1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * xfrm_state.c 4 * 5 * Changes: 6 * Mitsuru KANDA @USAGI 7 * Kazunori MIYAZAWA @USAGI 8 * Kunihiro Ishiguro <kunihiro@ipinfusion.com> 9 * IPv6 support 10 * YOSHIFUJI Hideaki @USAGI 11 * Split up af-specific functions 12 * Derek Atkins <derek@ihtfp.com> 13 * Add UDP Encapsulation 14 * 15 */ 16 17 #include <linux/compat.h> 18 #include <linux/workqueue.h> 19 #include <net/xfrm.h> 20 #include <linux/pfkeyv2.h> 21 #include <linux/ipsec.h> 22 #include <linux/module.h> 23 #include <linux/cache.h> 24 #include <linux/audit.h> 25 #include <linux/uaccess.h> 26 #include <linux/ktime.h> 27 #include <linux/slab.h> 28 #include <linux/interrupt.h> 29 #include <linux/kernel.h> 30 31 #include <crypto/aead.h> 32 33 #include "xfrm_hash.h" 34 35 #define xfrm_state_deref_prot(table, net) \ 36 rcu_dereference_protected((table), lockdep_is_held(&(net)->xfrm.xfrm_state_lock)) 37 38 static void xfrm_state_gc_task(struct work_struct *work); 39 40 /* Each xfrm_state may be linked to two tables: 41 42 1. Hash table by (spi,daddr,ah/esp) to find SA by SPI. (input,ctl) 43 2. Hash table by (daddr,family,reqid) to find what SAs exist for given 44 destination/tunnel endpoint. (output) 45 */ 46 47 static unsigned int xfrm_state_hashmax __read_mostly = 1 * 1024 * 1024; 48 static struct kmem_cache *xfrm_state_cache __ro_after_init; 49 50 static DECLARE_WORK(xfrm_state_gc_work, xfrm_state_gc_task); 51 static HLIST_HEAD(xfrm_state_gc_list); 52 53 static inline bool xfrm_state_hold_rcu(struct xfrm_state __rcu *x) 54 { 55 return refcount_inc_not_zero(&x->refcnt); 56 } 57 58 static inline unsigned int xfrm_dst_hash(struct net *net, 59 const xfrm_address_t *daddr, 60 const xfrm_address_t *saddr, 61 u32 reqid, 62 unsigned short family) 63 { 64 return __xfrm_dst_hash(daddr, saddr, reqid, family, net->xfrm.state_hmask); 65 } 66 67 static inline unsigned int xfrm_src_hash(struct net *net, 68 const xfrm_address_t *daddr, 69 const xfrm_address_t *saddr, 70 unsigned short family) 71 { 72 return __xfrm_src_hash(daddr, saddr, family, net->xfrm.state_hmask); 73 } 74 75 static inline unsigned int 76 xfrm_spi_hash(struct net *net, const xfrm_address_t *daddr, 77 __be32 spi, u8 proto, unsigned short family) 78 { 79 return __xfrm_spi_hash(daddr, spi, proto, family, net->xfrm.state_hmask); 80 } 81 82 static unsigned int xfrm_seq_hash(struct net *net, u32 seq) 83 { 84 return __xfrm_seq_hash(seq, net->xfrm.state_hmask); 85 } 86 87 #define XFRM_STATE_INSERT(by, _n, _h, _type) \ 88 { \ 89 struct xfrm_state *_x = NULL; \ 90 \ 91 if (_type != XFRM_DEV_OFFLOAD_PACKET) { \ 92 hlist_for_each_entry_rcu(_x, _h, by) { \ 93 if (_x->xso.type == XFRM_DEV_OFFLOAD_PACKET) \ 94 continue; \ 95 break; \ 96 } \ 97 } \ 98 \ 99 if (!_x || _x->xso.type == XFRM_DEV_OFFLOAD_PACKET) \ 100 /* SAD is empty or consist from HW SAs only */ \ 101 hlist_add_head_rcu(_n, _h); \ 102 else \ 103 hlist_add_before_rcu(_n, &_x->by); \ 104 } 105 106 static void xfrm_hash_transfer(struct hlist_head *list, 107 struct hlist_head *ndsttable, 108 struct hlist_head *nsrctable, 109 struct hlist_head *nspitable, 110 struct hlist_head *nseqtable, 111 unsigned int nhashmask) 112 { 113 struct hlist_node *tmp; 114 struct xfrm_state *x; 115 116 hlist_for_each_entry_safe(x, tmp, list, bydst) { 117 unsigned int h; 118 119 h = __xfrm_dst_hash(&x->id.daddr, &x->props.saddr, 120 x->props.reqid, x->props.family, 121 nhashmask); 122 XFRM_STATE_INSERT(bydst, &x->bydst, ndsttable + h, x->xso.type); 123 124 h = __xfrm_src_hash(&x->id.daddr, &x->props.saddr, 125 x->props.family, 126 nhashmask); 127 XFRM_STATE_INSERT(bysrc, &x->bysrc, nsrctable + h, x->xso.type); 128 129 if (x->id.spi) { 130 h = __xfrm_spi_hash(&x->id.daddr, x->id.spi, 131 x->id.proto, x->props.family, 132 nhashmask); 133 XFRM_STATE_INSERT(byspi, &x->byspi, nspitable + h, 134 x->xso.type); 135 } 136 137 if (x->km.seq) { 138 h = __xfrm_seq_hash(x->km.seq, nhashmask); 139 XFRM_STATE_INSERT(byseq, &x->byseq, nseqtable + h, 140 x->xso.type); 141 } 142 } 143 } 144 145 static unsigned long xfrm_hash_new_size(unsigned int state_hmask) 146 { 147 return ((state_hmask + 1) << 1) * sizeof(struct hlist_head); 148 } 149 150 static void xfrm_hash_resize(struct work_struct *work) 151 { 152 struct net *net = container_of(work, struct net, xfrm.state_hash_work); 153 struct hlist_head *ndst, *nsrc, *nspi, *nseq, *odst, *osrc, *ospi, *oseq; 154 unsigned long nsize, osize; 155 unsigned int nhashmask, ohashmask; 156 int i; 157 158 nsize = xfrm_hash_new_size(net->xfrm.state_hmask); 159 ndst = xfrm_hash_alloc(nsize); 160 if (!ndst) 161 return; 162 nsrc = xfrm_hash_alloc(nsize); 163 if (!nsrc) { 164 xfrm_hash_free(ndst, nsize); 165 return; 166 } 167 nspi = xfrm_hash_alloc(nsize); 168 if (!nspi) { 169 xfrm_hash_free(ndst, nsize); 170 xfrm_hash_free(nsrc, nsize); 171 return; 172 } 173 nseq = xfrm_hash_alloc(nsize); 174 if (!nseq) { 175 xfrm_hash_free(ndst, nsize); 176 xfrm_hash_free(nsrc, nsize); 177 xfrm_hash_free(nspi, nsize); 178 return; 179 } 180 181 spin_lock_bh(&net->xfrm.xfrm_state_lock); 182 write_seqcount_begin(&net->xfrm.xfrm_state_hash_generation); 183 184 nhashmask = (nsize / sizeof(struct hlist_head)) - 1U; 185 odst = xfrm_state_deref_prot(net->xfrm.state_bydst, net); 186 for (i = net->xfrm.state_hmask; i >= 0; i--) 187 xfrm_hash_transfer(odst + i, ndst, nsrc, nspi, nseq, nhashmask); 188 189 osrc = xfrm_state_deref_prot(net->xfrm.state_bysrc, net); 190 ospi = xfrm_state_deref_prot(net->xfrm.state_byspi, net); 191 oseq = xfrm_state_deref_prot(net->xfrm.state_byseq, net); 192 ohashmask = net->xfrm.state_hmask; 193 194 rcu_assign_pointer(net->xfrm.state_bydst, ndst); 195 rcu_assign_pointer(net->xfrm.state_bysrc, nsrc); 196 rcu_assign_pointer(net->xfrm.state_byspi, nspi); 197 rcu_assign_pointer(net->xfrm.state_byseq, nseq); 198 net->xfrm.state_hmask = nhashmask; 199 200 write_seqcount_end(&net->xfrm.xfrm_state_hash_generation); 201 spin_unlock_bh(&net->xfrm.xfrm_state_lock); 202 203 osize = (ohashmask + 1) * sizeof(struct hlist_head); 204 205 synchronize_rcu(); 206 207 xfrm_hash_free(odst, osize); 208 xfrm_hash_free(osrc, osize); 209 xfrm_hash_free(ospi, osize); 210 xfrm_hash_free(oseq, osize); 211 } 212 213 static DEFINE_SPINLOCK(xfrm_state_afinfo_lock); 214 static struct xfrm_state_afinfo __rcu *xfrm_state_afinfo[NPROTO]; 215 216 static DEFINE_SPINLOCK(xfrm_state_gc_lock); 217 218 int __xfrm_state_delete(struct xfrm_state *x); 219 220 int km_query(struct xfrm_state *x, struct xfrm_tmpl *t, struct xfrm_policy *pol); 221 static bool km_is_alive(const struct km_event *c); 222 void km_state_expired(struct xfrm_state *x, int hard, u32 portid); 223 224 int xfrm_register_type(const struct xfrm_type *type, unsigned short family) 225 { 226 struct xfrm_state_afinfo *afinfo = xfrm_state_get_afinfo(family); 227 int err = 0; 228 229 if (!afinfo) 230 return -EAFNOSUPPORT; 231 232 #define X(afi, T, name) do { \ 233 WARN_ON((afi)->type_ ## name); \ 234 (afi)->type_ ## name = (T); \ 235 } while (0) 236 237 switch (type->proto) { 238 case IPPROTO_COMP: 239 X(afinfo, type, comp); 240 break; 241 case IPPROTO_AH: 242 X(afinfo, type, ah); 243 break; 244 case IPPROTO_ESP: 245 X(afinfo, type, esp); 246 break; 247 case IPPROTO_IPIP: 248 X(afinfo, type, ipip); 249 break; 250 case IPPROTO_DSTOPTS: 251 X(afinfo, type, dstopts); 252 break; 253 case IPPROTO_ROUTING: 254 X(afinfo, type, routing); 255 break; 256 case IPPROTO_IPV6: 257 X(afinfo, type, ipip6); 258 break; 259 default: 260 WARN_ON(1); 261 err = -EPROTONOSUPPORT; 262 break; 263 } 264 #undef X 265 rcu_read_unlock(); 266 return err; 267 } 268 EXPORT_SYMBOL(xfrm_register_type); 269 270 void xfrm_unregister_type(const struct xfrm_type *type, unsigned short family) 271 { 272 struct xfrm_state_afinfo *afinfo = xfrm_state_get_afinfo(family); 273 274 if (unlikely(afinfo == NULL)) 275 return; 276 277 #define X(afi, T, name) do { \ 278 WARN_ON((afi)->type_ ## name != (T)); \ 279 (afi)->type_ ## name = NULL; \ 280 } while (0) 281 282 switch (type->proto) { 283 case IPPROTO_COMP: 284 X(afinfo, type, comp); 285 break; 286 case IPPROTO_AH: 287 X(afinfo, type, ah); 288 break; 289 case IPPROTO_ESP: 290 X(afinfo, type, esp); 291 break; 292 case IPPROTO_IPIP: 293 X(afinfo, type, ipip); 294 break; 295 case IPPROTO_DSTOPTS: 296 X(afinfo, type, dstopts); 297 break; 298 case IPPROTO_ROUTING: 299 X(afinfo, type, routing); 300 break; 301 case IPPROTO_IPV6: 302 X(afinfo, type, ipip6); 303 break; 304 default: 305 WARN_ON(1); 306 break; 307 } 308 #undef X 309 rcu_read_unlock(); 310 } 311 EXPORT_SYMBOL(xfrm_unregister_type); 312 313 static const struct xfrm_type *xfrm_get_type(u8 proto, unsigned short family) 314 { 315 const struct xfrm_type *type = NULL; 316 struct xfrm_state_afinfo *afinfo; 317 int modload_attempted = 0; 318 319 retry: 320 afinfo = xfrm_state_get_afinfo(family); 321 if (unlikely(afinfo == NULL)) 322 return NULL; 323 324 switch (proto) { 325 case IPPROTO_COMP: 326 type = afinfo->type_comp; 327 break; 328 case IPPROTO_AH: 329 type = afinfo->type_ah; 330 break; 331 case IPPROTO_ESP: 332 type = afinfo->type_esp; 333 break; 334 case IPPROTO_IPIP: 335 type = afinfo->type_ipip; 336 break; 337 case IPPROTO_DSTOPTS: 338 type = afinfo->type_dstopts; 339 break; 340 case IPPROTO_ROUTING: 341 type = afinfo->type_routing; 342 break; 343 case IPPROTO_IPV6: 344 type = afinfo->type_ipip6; 345 break; 346 default: 347 break; 348 } 349 350 if (unlikely(type && !try_module_get(type->owner))) 351 type = NULL; 352 353 rcu_read_unlock(); 354 355 if (!type && !modload_attempted) { 356 request_module("xfrm-type-%d-%d", family, proto); 357 modload_attempted = 1; 358 goto retry; 359 } 360 361 return type; 362 } 363 364 static void xfrm_put_type(const struct xfrm_type *type) 365 { 366 module_put(type->owner); 367 } 368 369 int xfrm_register_type_offload(const struct xfrm_type_offload *type, 370 unsigned short family) 371 { 372 struct xfrm_state_afinfo *afinfo = xfrm_state_get_afinfo(family); 373 int err = 0; 374 375 if (unlikely(afinfo == NULL)) 376 return -EAFNOSUPPORT; 377 378 switch (type->proto) { 379 case IPPROTO_ESP: 380 WARN_ON(afinfo->type_offload_esp); 381 afinfo->type_offload_esp = type; 382 break; 383 default: 384 WARN_ON(1); 385 err = -EPROTONOSUPPORT; 386 break; 387 } 388 389 rcu_read_unlock(); 390 return err; 391 } 392 EXPORT_SYMBOL(xfrm_register_type_offload); 393 394 void xfrm_unregister_type_offload(const struct xfrm_type_offload *type, 395 unsigned short family) 396 { 397 struct xfrm_state_afinfo *afinfo = xfrm_state_get_afinfo(family); 398 399 if (unlikely(afinfo == NULL)) 400 return; 401 402 switch (type->proto) { 403 case IPPROTO_ESP: 404 WARN_ON(afinfo->type_offload_esp != type); 405 afinfo->type_offload_esp = NULL; 406 break; 407 default: 408 WARN_ON(1); 409 break; 410 } 411 rcu_read_unlock(); 412 } 413 EXPORT_SYMBOL(xfrm_unregister_type_offload); 414 415 static const struct xfrm_type_offload * 416 xfrm_get_type_offload(u8 proto, unsigned short family, bool try_load) 417 { 418 const struct xfrm_type_offload *type = NULL; 419 struct xfrm_state_afinfo *afinfo; 420 421 retry: 422 afinfo = xfrm_state_get_afinfo(family); 423 if (unlikely(afinfo == NULL)) 424 return NULL; 425 426 switch (proto) { 427 case IPPROTO_ESP: 428 type = afinfo->type_offload_esp; 429 break; 430 default: 431 break; 432 } 433 434 if ((type && !try_module_get(type->owner))) 435 type = NULL; 436 437 rcu_read_unlock(); 438 439 if (!type && try_load) { 440 request_module("xfrm-offload-%d-%d", family, proto); 441 try_load = false; 442 goto retry; 443 } 444 445 return type; 446 } 447 448 static void xfrm_put_type_offload(const struct xfrm_type_offload *type) 449 { 450 module_put(type->owner); 451 } 452 453 static const struct xfrm_mode xfrm4_mode_map[XFRM_MODE_MAX] = { 454 [XFRM_MODE_BEET] = { 455 .encap = XFRM_MODE_BEET, 456 .flags = XFRM_MODE_FLAG_TUNNEL, 457 .family = AF_INET, 458 }, 459 [XFRM_MODE_TRANSPORT] = { 460 .encap = XFRM_MODE_TRANSPORT, 461 .family = AF_INET, 462 }, 463 [XFRM_MODE_TUNNEL] = { 464 .encap = XFRM_MODE_TUNNEL, 465 .flags = XFRM_MODE_FLAG_TUNNEL, 466 .family = AF_INET, 467 }, 468 }; 469 470 static const struct xfrm_mode xfrm6_mode_map[XFRM_MODE_MAX] = { 471 [XFRM_MODE_BEET] = { 472 .encap = XFRM_MODE_BEET, 473 .flags = XFRM_MODE_FLAG_TUNNEL, 474 .family = AF_INET6, 475 }, 476 [XFRM_MODE_ROUTEOPTIMIZATION] = { 477 .encap = XFRM_MODE_ROUTEOPTIMIZATION, 478 .family = AF_INET6, 479 }, 480 [XFRM_MODE_TRANSPORT] = { 481 .encap = XFRM_MODE_TRANSPORT, 482 .family = AF_INET6, 483 }, 484 [XFRM_MODE_TUNNEL] = { 485 .encap = XFRM_MODE_TUNNEL, 486 .flags = XFRM_MODE_FLAG_TUNNEL, 487 .family = AF_INET6, 488 }, 489 }; 490 491 static const struct xfrm_mode *xfrm_get_mode(unsigned int encap, int family) 492 { 493 const struct xfrm_mode *mode; 494 495 if (unlikely(encap >= XFRM_MODE_MAX)) 496 return NULL; 497 498 switch (family) { 499 case AF_INET: 500 mode = &xfrm4_mode_map[encap]; 501 if (mode->family == family) 502 return mode; 503 break; 504 case AF_INET6: 505 mode = &xfrm6_mode_map[encap]; 506 if (mode->family == family) 507 return mode; 508 break; 509 default: 510 break; 511 } 512 513 return NULL; 514 } 515 516 void xfrm_state_free(struct xfrm_state *x) 517 { 518 kmem_cache_free(xfrm_state_cache, x); 519 } 520 EXPORT_SYMBOL(xfrm_state_free); 521 522 static void ___xfrm_state_destroy(struct xfrm_state *x) 523 { 524 hrtimer_cancel(&x->mtimer); 525 del_timer_sync(&x->rtimer); 526 kfree(x->aead); 527 kfree(x->aalg); 528 kfree(x->ealg); 529 kfree(x->calg); 530 kfree(x->encap); 531 kfree(x->coaddr); 532 kfree(x->replay_esn); 533 kfree(x->preplay_esn); 534 if (x->type_offload) 535 xfrm_put_type_offload(x->type_offload); 536 if (x->type) { 537 x->type->destructor(x); 538 xfrm_put_type(x->type); 539 } 540 if (x->xfrag.page) 541 put_page(x->xfrag.page); 542 xfrm_dev_state_free(x); 543 security_xfrm_state_free(x); 544 xfrm_state_free(x); 545 } 546 547 static void xfrm_state_gc_task(struct work_struct *work) 548 { 549 struct xfrm_state *x; 550 struct hlist_node *tmp; 551 struct hlist_head gc_list; 552 553 spin_lock_bh(&xfrm_state_gc_lock); 554 hlist_move_list(&xfrm_state_gc_list, &gc_list); 555 spin_unlock_bh(&xfrm_state_gc_lock); 556 557 synchronize_rcu(); 558 559 hlist_for_each_entry_safe(x, tmp, &gc_list, gclist) 560 ___xfrm_state_destroy(x); 561 } 562 563 static enum hrtimer_restart xfrm_timer_handler(struct hrtimer *me) 564 { 565 struct xfrm_state *x = container_of(me, struct xfrm_state, mtimer); 566 enum hrtimer_restart ret = HRTIMER_NORESTART; 567 time64_t now = ktime_get_real_seconds(); 568 time64_t next = TIME64_MAX; 569 int warn = 0; 570 int err = 0; 571 572 spin_lock(&x->lock); 573 xfrm_dev_state_update_curlft(x); 574 575 if (x->km.state == XFRM_STATE_DEAD) 576 goto out; 577 if (x->km.state == XFRM_STATE_EXPIRED) 578 goto expired; 579 if (x->lft.hard_add_expires_seconds) { 580 time64_t tmo = x->lft.hard_add_expires_seconds + 581 x->curlft.add_time - now; 582 if (tmo <= 0) { 583 if (x->xflags & XFRM_SOFT_EXPIRE) { 584 /* enter hard expire without soft expire first?! 585 * setting a new date could trigger this. 586 * workaround: fix x->curflt.add_time by below: 587 */ 588 x->curlft.add_time = now - x->saved_tmo - 1; 589 tmo = x->lft.hard_add_expires_seconds - x->saved_tmo; 590 } else 591 goto expired; 592 } 593 if (tmo < next) 594 next = tmo; 595 } 596 if (x->lft.hard_use_expires_seconds) { 597 time64_t tmo = x->lft.hard_use_expires_seconds + 598 (READ_ONCE(x->curlft.use_time) ? : now) - now; 599 if (tmo <= 0) 600 goto expired; 601 if (tmo < next) 602 next = tmo; 603 } 604 if (x->km.dying) 605 goto resched; 606 if (x->lft.soft_add_expires_seconds) { 607 time64_t tmo = x->lft.soft_add_expires_seconds + 608 x->curlft.add_time - now; 609 if (tmo <= 0) { 610 warn = 1; 611 x->xflags &= ~XFRM_SOFT_EXPIRE; 612 } else if (tmo < next) { 613 next = tmo; 614 x->xflags |= XFRM_SOFT_EXPIRE; 615 x->saved_tmo = tmo; 616 } 617 } 618 if (x->lft.soft_use_expires_seconds) { 619 time64_t tmo = x->lft.soft_use_expires_seconds + 620 (READ_ONCE(x->curlft.use_time) ? : now) - now; 621 if (tmo <= 0) 622 warn = 1; 623 else if (tmo < next) 624 next = tmo; 625 } 626 627 x->km.dying = warn; 628 if (warn) 629 km_state_expired(x, 0, 0); 630 resched: 631 if (next != TIME64_MAX) { 632 hrtimer_forward_now(&x->mtimer, ktime_set(next, 0)); 633 ret = HRTIMER_RESTART; 634 } 635 636 goto out; 637 638 expired: 639 if (x->km.state == XFRM_STATE_ACQ && x->id.spi == 0) 640 x->km.state = XFRM_STATE_EXPIRED; 641 642 err = __xfrm_state_delete(x); 643 if (!err) 644 km_state_expired(x, 1, 0); 645 646 xfrm_audit_state_delete(x, err ? 0 : 1, true); 647 648 out: 649 spin_unlock(&x->lock); 650 return ret; 651 } 652 653 static void xfrm_replay_timer_handler(struct timer_list *t); 654 655 struct xfrm_state *xfrm_state_alloc(struct net *net) 656 { 657 struct xfrm_state *x; 658 659 x = kmem_cache_zalloc(xfrm_state_cache, GFP_ATOMIC); 660 661 if (x) { 662 write_pnet(&x->xs_net, net); 663 refcount_set(&x->refcnt, 1); 664 atomic_set(&x->tunnel_users, 0); 665 INIT_LIST_HEAD(&x->km.all); 666 INIT_HLIST_NODE(&x->bydst); 667 INIT_HLIST_NODE(&x->bysrc); 668 INIT_HLIST_NODE(&x->byspi); 669 INIT_HLIST_NODE(&x->byseq); 670 hrtimer_init(&x->mtimer, CLOCK_BOOTTIME, HRTIMER_MODE_ABS_SOFT); 671 x->mtimer.function = xfrm_timer_handler; 672 timer_setup(&x->rtimer, xfrm_replay_timer_handler, 0); 673 x->curlft.add_time = ktime_get_real_seconds(); 674 x->lft.soft_byte_limit = XFRM_INF; 675 x->lft.soft_packet_limit = XFRM_INF; 676 x->lft.hard_byte_limit = XFRM_INF; 677 x->lft.hard_packet_limit = XFRM_INF; 678 x->replay_maxage = 0; 679 x->replay_maxdiff = 0; 680 spin_lock_init(&x->lock); 681 } 682 return x; 683 } 684 EXPORT_SYMBOL(xfrm_state_alloc); 685 686 void __xfrm_state_destroy(struct xfrm_state *x, bool sync) 687 { 688 WARN_ON(x->km.state != XFRM_STATE_DEAD); 689 690 if (sync) { 691 synchronize_rcu(); 692 ___xfrm_state_destroy(x); 693 } else { 694 spin_lock_bh(&xfrm_state_gc_lock); 695 hlist_add_head(&x->gclist, &xfrm_state_gc_list); 696 spin_unlock_bh(&xfrm_state_gc_lock); 697 schedule_work(&xfrm_state_gc_work); 698 } 699 } 700 EXPORT_SYMBOL(__xfrm_state_destroy); 701 702 int __xfrm_state_delete(struct xfrm_state *x) 703 { 704 struct net *net = xs_net(x); 705 int err = -ESRCH; 706 707 if (x->km.state != XFRM_STATE_DEAD) { 708 x->km.state = XFRM_STATE_DEAD; 709 spin_lock(&net->xfrm.xfrm_state_lock); 710 list_del(&x->km.all); 711 hlist_del_rcu(&x->bydst); 712 hlist_del_rcu(&x->bysrc); 713 if (x->km.seq) 714 hlist_del_rcu(&x->byseq); 715 if (x->id.spi) 716 hlist_del_rcu(&x->byspi); 717 net->xfrm.state_num--; 718 spin_unlock(&net->xfrm.xfrm_state_lock); 719 720 if (x->encap_sk) 721 sock_put(rcu_dereference_raw(x->encap_sk)); 722 723 xfrm_dev_state_delete(x); 724 725 /* All xfrm_state objects are created by xfrm_state_alloc. 726 * The xfrm_state_alloc call gives a reference, and that 727 * is what we are dropping here. 728 */ 729 xfrm_state_put(x); 730 err = 0; 731 } 732 733 return err; 734 } 735 EXPORT_SYMBOL(__xfrm_state_delete); 736 737 int xfrm_state_delete(struct xfrm_state *x) 738 { 739 int err; 740 741 spin_lock_bh(&x->lock); 742 err = __xfrm_state_delete(x); 743 spin_unlock_bh(&x->lock); 744 745 return err; 746 } 747 EXPORT_SYMBOL(xfrm_state_delete); 748 749 #ifdef CONFIG_SECURITY_NETWORK_XFRM 750 static inline int 751 xfrm_state_flush_secctx_check(struct net *net, u8 proto, bool task_valid) 752 { 753 int i, err = 0; 754 755 for (i = 0; i <= net->xfrm.state_hmask; i++) { 756 struct xfrm_state *x; 757 758 hlist_for_each_entry(x, net->xfrm.state_bydst+i, bydst) { 759 if (xfrm_id_proto_match(x->id.proto, proto) && 760 (err = security_xfrm_state_delete(x)) != 0) { 761 xfrm_audit_state_delete(x, 0, task_valid); 762 return err; 763 } 764 } 765 } 766 767 return err; 768 } 769 770 static inline int 771 xfrm_dev_state_flush_secctx_check(struct net *net, struct net_device *dev, bool task_valid) 772 { 773 int i, err = 0; 774 775 for (i = 0; i <= net->xfrm.state_hmask; i++) { 776 struct xfrm_state *x; 777 struct xfrm_dev_offload *xso; 778 779 hlist_for_each_entry(x, net->xfrm.state_bydst+i, bydst) { 780 xso = &x->xso; 781 782 if (xso->dev == dev && 783 (err = security_xfrm_state_delete(x)) != 0) { 784 xfrm_audit_state_delete(x, 0, task_valid); 785 return err; 786 } 787 } 788 } 789 790 return err; 791 } 792 #else 793 static inline int 794 xfrm_state_flush_secctx_check(struct net *net, u8 proto, bool task_valid) 795 { 796 return 0; 797 } 798 799 static inline int 800 xfrm_dev_state_flush_secctx_check(struct net *net, struct net_device *dev, bool task_valid) 801 { 802 return 0; 803 } 804 #endif 805 806 int xfrm_state_flush(struct net *net, u8 proto, bool task_valid, bool sync) 807 { 808 int i, err = 0, cnt = 0; 809 810 spin_lock_bh(&net->xfrm.xfrm_state_lock); 811 err = xfrm_state_flush_secctx_check(net, proto, task_valid); 812 if (err) 813 goto out; 814 815 err = -ESRCH; 816 for (i = 0; i <= net->xfrm.state_hmask; i++) { 817 struct xfrm_state *x; 818 restart: 819 hlist_for_each_entry(x, net->xfrm.state_bydst+i, bydst) { 820 if (!xfrm_state_kern(x) && 821 xfrm_id_proto_match(x->id.proto, proto)) { 822 xfrm_state_hold(x); 823 spin_unlock_bh(&net->xfrm.xfrm_state_lock); 824 825 err = xfrm_state_delete(x); 826 xfrm_audit_state_delete(x, err ? 0 : 1, 827 task_valid); 828 if (sync) 829 xfrm_state_put_sync(x); 830 else 831 xfrm_state_put(x); 832 if (!err) 833 cnt++; 834 835 spin_lock_bh(&net->xfrm.xfrm_state_lock); 836 goto restart; 837 } 838 } 839 } 840 out: 841 spin_unlock_bh(&net->xfrm.xfrm_state_lock); 842 if (cnt) 843 err = 0; 844 845 return err; 846 } 847 EXPORT_SYMBOL(xfrm_state_flush); 848 849 int xfrm_dev_state_flush(struct net *net, struct net_device *dev, bool task_valid) 850 { 851 int i, err = 0, cnt = 0; 852 853 spin_lock_bh(&net->xfrm.xfrm_state_lock); 854 err = xfrm_dev_state_flush_secctx_check(net, dev, task_valid); 855 if (err) 856 goto out; 857 858 err = -ESRCH; 859 for (i = 0; i <= net->xfrm.state_hmask; i++) { 860 struct xfrm_state *x; 861 struct xfrm_dev_offload *xso; 862 restart: 863 hlist_for_each_entry(x, net->xfrm.state_bydst+i, bydst) { 864 xso = &x->xso; 865 866 if (!xfrm_state_kern(x) && xso->dev == dev) { 867 xfrm_state_hold(x); 868 spin_unlock_bh(&net->xfrm.xfrm_state_lock); 869 870 err = xfrm_state_delete(x); 871 xfrm_audit_state_delete(x, err ? 0 : 1, 872 task_valid); 873 xfrm_state_put(x); 874 if (!err) 875 cnt++; 876 877 spin_lock_bh(&net->xfrm.xfrm_state_lock); 878 goto restart; 879 } 880 } 881 } 882 if (cnt) 883 err = 0; 884 885 out: 886 spin_unlock_bh(&net->xfrm.xfrm_state_lock); 887 return err; 888 } 889 EXPORT_SYMBOL(xfrm_dev_state_flush); 890 891 void xfrm_sad_getinfo(struct net *net, struct xfrmk_sadinfo *si) 892 { 893 spin_lock_bh(&net->xfrm.xfrm_state_lock); 894 si->sadcnt = net->xfrm.state_num; 895 si->sadhcnt = net->xfrm.state_hmask + 1; 896 si->sadhmcnt = xfrm_state_hashmax; 897 spin_unlock_bh(&net->xfrm.xfrm_state_lock); 898 } 899 EXPORT_SYMBOL(xfrm_sad_getinfo); 900 901 static void 902 __xfrm4_init_tempsel(struct xfrm_selector *sel, const struct flowi *fl) 903 { 904 const struct flowi4 *fl4 = &fl->u.ip4; 905 906 sel->daddr.a4 = fl4->daddr; 907 sel->saddr.a4 = fl4->saddr; 908 sel->dport = xfrm_flowi_dport(fl, &fl4->uli); 909 sel->dport_mask = htons(0xffff); 910 sel->sport = xfrm_flowi_sport(fl, &fl4->uli); 911 sel->sport_mask = htons(0xffff); 912 sel->family = AF_INET; 913 sel->prefixlen_d = 32; 914 sel->prefixlen_s = 32; 915 sel->proto = fl4->flowi4_proto; 916 sel->ifindex = fl4->flowi4_oif; 917 } 918 919 static void 920 __xfrm6_init_tempsel(struct xfrm_selector *sel, const struct flowi *fl) 921 { 922 const struct flowi6 *fl6 = &fl->u.ip6; 923 924 /* Initialize temporary selector matching only to current session. */ 925 *(struct in6_addr *)&sel->daddr = fl6->daddr; 926 *(struct in6_addr *)&sel->saddr = fl6->saddr; 927 sel->dport = xfrm_flowi_dport(fl, &fl6->uli); 928 sel->dport_mask = htons(0xffff); 929 sel->sport = xfrm_flowi_sport(fl, &fl6->uli); 930 sel->sport_mask = htons(0xffff); 931 sel->family = AF_INET6; 932 sel->prefixlen_d = 128; 933 sel->prefixlen_s = 128; 934 sel->proto = fl6->flowi6_proto; 935 sel->ifindex = fl6->flowi6_oif; 936 } 937 938 static void 939 xfrm_init_tempstate(struct xfrm_state *x, const struct flowi *fl, 940 const struct xfrm_tmpl *tmpl, 941 const xfrm_address_t *daddr, const xfrm_address_t *saddr, 942 unsigned short family) 943 { 944 switch (family) { 945 case AF_INET: 946 __xfrm4_init_tempsel(&x->sel, fl); 947 break; 948 case AF_INET6: 949 __xfrm6_init_tempsel(&x->sel, fl); 950 break; 951 } 952 953 x->id = tmpl->id; 954 955 switch (tmpl->encap_family) { 956 case AF_INET: 957 if (x->id.daddr.a4 == 0) 958 x->id.daddr.a4 = daddr->a4; 959 x->props.saddr = tmpl->saddr; 960 if (x->props.saddr.a4 == 0) 961 x->props.saddr.a4 = saddr->a4; 962 break; 963 case AF_INET6: 964 if (ipv6_addr_any((struct in6_addr *)&x->id.daddr)) 965 memcpy(&x->id.daddr, daddr, sizeof(x->sel.daddr)); 966 memcpy(&x->props.saddr, &tmpl->saddr, sizeof(x->props.saddr)); 967 if (ipv6_addr_any((struct in6_addr *)&x->props.saddr)) 968 memcpy(&x->props.saddr, saddr, sizeof(x->props.saddr)); 969 break; 970 } 971 972 x->props.mode = tmpl->mode; 973 x->props.reqid = tmpl->reqid; 974 x->props.family = tmpl->encap_family; 975 } 976 977 static struct xfrm_state *__xfrm_state_lookup_all(struct net *net, u32 mark, 978 const xfrm_address_t *daddr, 979 __be32 spi, u8 proto, 980 unsigned short family, 981 struct xfrm_dev_offload *xdo) 982 { 983 unsigned int h = xfrm_spi_hash(net, daddr, spi, proto, family); 984 struct xfrm_state *x; 985 986 hlist_for_each_entry_rcu(x, net->xfrm.state_byspi + h, byspi) { 987 #ifdef CONFIG_XFRM_OFFLOAD 988 if (xdo->type == XFRM_DEV_OFFLOAD_PACKET) { 989 if (x->xso.type != XFRM_DEV_OFFLOAD_PACKET) 990 /* HW states are in the head of list, there is 991 * no need to iterate further. 992 */ 993 break; 994 995 /* Packet offload: both policy and SA should 996 * have same device. 997 */ 998 if (xdo->dev != x->xso.dev) 999 continue; 1000 } else if (x->xso.type == XFRM_DEV_OFFLOAD_PACKET) 1001 /* Skip HW policy for SW lookups */ 1002 continue; 1003 #endif 1004 if (x->props.family != family || 1005 x->id.spi != spi || 1006 x->id.proto != proto || 1007 !xfrm_addr_equal(&x->id.daddr, daddr, family)) 1008 continue; 1009 1010 if ((mark & x->mark.m) != x->mark.v) 1011 continue; 1012 if (!xfrm_state_hold_rcu(x)) 1013 continue; 1014 return x; 1015 } 1016 1017 return NULL; 1018 } 1019 1020 static struct xfrm_state *__xfrm_state_lookup(struct net *net, u32 mark, 1021 const xfrm_address_t *daddr, 1022 __be32 spi, u8 proto, 1023 unsigned short family) 1024 { 1025 unsigned int h = xfrm_spi_hash(net, daddr, spi, proto, family); 1026 struct xfrm_state *x; 1027 1028 hlist_for_each_entry_rcu(x, net->xfrm.state_byspi + h, byspi) { 1029 if (x->props.family != family || 1030 x->id.spi != spi || 1031 x->id.proto != proto || 1032 !xfrm_addr_equal(&x->id.daddr, daddr, family)) 1033 continue; 1034 1035 if ((mark & x->mark.m) != x->mark.v) 1036 continue; 1037 if (!xfrm_state_hold_rcu(x)) 1038 continue; 1039 return x; 1040 } 1041 1042 return NULL; 1043 } 1044 1045 static struct xfrm_state *__xfrm_state_lookup_byaddr(struct net *net, u32 mark, 1046 const xfrm_address_t *daddr, 1047 const xfrm_address_t *saddr, 1048 u8 proto, unsigned short family) 1049 { 1050 unsigned int h = xfrm_src_hash(net, daddr, saddr, family); 1051 struct xfrm_state *x; 1052 1053 hlist_for_each_entry_rcu(x, net->xfrm.state_bysrc + h, bysrc) { 1054 if (x->props.family != family || 1055 x->id.proto != proto || 1056 !xfrm_addr_equal(&x->id.daddr, daddr, family) || 1057 !xfrm_addr_equal(&x->props.saddr, saddr, family)) 1058 continue; 1059 1060 if ((mark & x->mark.m) != x->mark.v) 1061 continue; 1062 if (!xfrm_state_hold_rcu(x)) 1063 continue; 1064 return x; 1065 } 1066 1067 return NULL; 1068 } 1069 1070 static inline struct xfrm_state * 1071 __xfrm_state_locate(struct xfrm_state *x, int use_spi, int family) 1072 { 1073 struct net *net = xs_net(x); 1074 u32 mark = x->mark.v & x->mark.m; 1075 1076 if (use_spi) 1077 return __xfrm_state_lookup(net, mark, &x->id.daddr, 1078 x->id.spi, x->id.proto, family); 1079 else 1080 return __xfrm_state_lookup_byaddr(net, mark, 1081 &x->id.daddr, 1082 &x->props.saddr, 1083 x->id.proto, family); 1084 } 1085 1086 static void xfrm_hash_grow_check(struct net *net, int have_hash_collision) 1087 { 1088 if (have_hash_collision && 1089 (net->xfrm.state_hmask + 1) < xfrm_state_hashmax && 1090 net->xfrm.state_num > net->xfrm.state_hmask) 1091 schedule_work(&net->xfrm.state_hash_work); 1092 } 1093 1094 static void xfrm_state_look_at(struct xfrm_policy *pol, struct xfrm_state *x, 1095 const struct flowi *fl, unsigned short family, 1096 struct xfrm_state **best, int *acq_in_progress, 1097 int *error) 1098 { 1099 /* Resolution logic: 1100 * 1. There is a valid state with matching selector. Done. 1101 * 2. Valid state with inappropriate selector. Skip. 1102 * 1103 * Entering area of "sysdeps". 1104 * 1105 * 3. If state is not valid, selector is temporary, it selects 1106 * only session which triggered previous resolution. Key 1107 * manager will do something to install a state with proper 1108 * selector. 1109 */ 1110 if (x->km.state == XFRM_STATE_VALID) { 1111 if ((x->sel.family && 1112 (x->sel.family != family || 1113 !xfrm_selector_match(&x->sel, fl, family))) || 1114 !security_xfrm_state_pol_flow_match(x, pol, 1115 &fl->u.__fl_common)) 1116 return; 1117 1118 if (!*best || 1119 (*best)->km.dying > x->km.dying || 1120 ((*best)->km.dying == x->km.dying && 1121 (*best)->curlft.add_time < x->curlft.add_time)) 1122 *best = x; 1123 } else if (x->km.state == XFRM_STATE_ACQ) { 1124 *acq_in_progress = 1; 1125 } else if (x->km.state == XFRM_STATE_ERROR || 1126 x->km.state == XFRM_STATE_EXPIRED) { 1127 if ((!x->sel.family || 1128 (x->sel.family == family && 1129 xfrm_selector_match(&x->sel, fl, family))) && 1130 security_xfrm_state_pol_flow_match(x, pol, 1131 &fl->u.__fl_common)) 1132 *error = -ESRCH; 1133 } 1134 } 1135 1136 struct xfrm_state * 1137 xfrm_state_find(const xfrm_address_t *daddr, const xfrm_address_t *saddr, 1138 const struct flowi *fl, struct xfrm_tmpl *tmpl, 1139 struct xfrm_policy *pol, int *err, 1140 unsigned short family, u32 if_id) 1141 { 1142 static xfrm_address_t saddr_wildcard = { }; 1143 struct net *net = xp_net(pol); 1144 unsigned int h, h_wildcard; 1145 struct xfrm_state *x, *x0, *to_put; 1146 int acquire_in_progress = 0; 1147 int error = 0; 1148 struct xfrm_state *best = NULL; 1149 u32 mark = pol->mark.v & pol->mark.m; 1150 unsigned short encap_family = tmpl->encap_family; 1151 unsigned int sequence; 1152 struct km_event c; 1153 1154 to_put = NULL; 1155 1156 sequence = read_seqcount_begin(&net->xfrm.xfrm_state_hash_generation); 1157 1158 rcu_read_lock(); 1159 h = xfrm_dst_hash(net, daddr, saddr, tmpl->reqid, encap_family); 1160 hlist_for_each_entry_rcu(x, net->xfrm.state_bydst + h, bydst) { 1161 #ifdef CONFIG_XFRM_OFFLOAD 1162 if (pol->xdo.type == XFRM_DEV_OFFLOAD_PACKET) { 1163 if (x->xso.type != XFRM_DEV_OFFLOAD_PACKET) 1164 /* HW states are in the head of list, there is 1165 * no need to iterate further. 1166 */ 1167 break; 1168 1169 /* Packet offload: both policy and SA should 1170 * have same device. 1171 */ 1172 if (pol->xdo.dev != x->xso.dev) 1173 continue; 1174 } else if (x->xso.type == XFRM_DEV_OFFLOAD_PACKET) 1175 /* Skip HW policy for SW lookups */ 1176 continue; 1177 #endif 1178 if (x->props.family == encap_family && 1179 x->props.reqid == tmpl->reqid && 1180 (mark & x->mark.m) == x->mark.v && 1181 x->if_id == if_id && 1182 !(x->props.flags & XFRM_STATE_WILDRECV) && 1183 xfrm_state_addr_check(x, daddr, saddr, encap_family) && 1184 tmpl->mode == x->props.mode && 1185 tmpl->id.proto == x->id.proto && 1186 (tmpl->id.spi == x->id.spi || !tmpl->id.spi)) 1187 xfrm_state_look_at(pol, x, fl, family, 1188 &best, &acquire_in_progress, &error); 1189 } 1190 if (best || acquire_in_progress) 1191 goto found; 1192 1193 h_wildcard = xfrm_dst_hash(net, daddr, &saddr_wildcard, tmpl->reqid, encap_family); 1194 hlist_for_each_entry_rcu(x, net->xfrm.state_bydst + h_wildcard, bydst) { 1195 #ifdef CONFIG_XFRM_OFFLOAD 1196 if (pol->xdo.type == XFRM_DEV_OFFLOAD_PACKET) { 1197 if (x->xso.type != XFRM_DEV_OFFLOAD_PACKET) 1198 /* HW states are in the head of list, there is 1199 * no need to iterate further. 1200 */ 1201 break; 1202 1203 /* Packet offload: both policy and SA should 1204 * have same device. 1205 */ 1206 if (pol->xdo.dev != x->xso.dev) 1207 continue; 1208 } else if (x->xso.type == XFRM_DEV_OFFLOAD_PACKET) 1209 /* Skip HW policy for SW lookups */ 1210 continue; 1211 #endif 1212 if (x->props.family == encap_family && 1213 x->props.reqid == tmpl->reqid && 1214 (mark & x->mark.m) == x->mark.v && 1215 x->if_id == if_id && 1216 !(x->props.flags & XFRM_STATE_WILDRECV) && 1217 xfrm_addr_equal(&x->id.daddr, daddr, encap_family) && 1218 tmpl->mode == x->props.mode && 1219 tmpl->id.proto == x->id.proto && 1220 (tmpl->id.spi == x->id.spi || !tmpl->id.spi)) 1221 xfrm_state_look_at(pol, x, fl, family, 1222 &best, &acquire_in_progress, &error); 1223 } 1224 1225 found: 1226 x = best; 1227 if (!x && !error && !acquire_in_progress) { 1228 if (tmpl->id.spi && 1229 (x0 = __xfrm_state_lookup_all(net, mark, daddr, 1230 tmpl->id.spi, tmpl->id.proto, 1231 encap_family, 1232 &pol->xdo)) != NULL) { 1233 to_put = x0; 1234 error = -EEXIST; 1235 goto out; 1236 } 1237 1238 c.net = net; 1239 /* If the KMs have no listeners (yet...), avoid allocating an SA 1240 * for each and every packet - garbage collection might not 1241 * handle the flood. 1242 */ 1243 if (!km_is_alive(&c)) { 1244 error = -ESRCH; 1245 goto out; 1246 } 1247 1248 x = xfrm_state_alloc(net); 1249 if (x == NULL) { 1250 error = -ENOMEM; 1251 goto out; 1252 } 1253 /* Initialize temporary state matching only 1254 * to current session. */ 1255 xfrm_init_tempstate(x, fl, tmpl, daddr, saddr, family); 1256 memcpy(&x->mark, &pol->mark, sizeof(x->mark)); 1257 x->if_id = if_id; 1258 1259 error = security_xfrm_state_alloc_acquire(x, pol->security, fl->flowi_secid); 1260 if (error) { 1261 x->km.state = XFRM_STATE_DEAD; 1262 to_put = x; 1263 x = NULL; 1264 goto out; 1265 } 1266 #ifdef CONFIG_XFRM_OFFLOAD 1267 if (pol->xdo.type == XFRM_DEV_OFFLOAD_PACKET) { 1268 struct xfrm_dev_offload *xdo = &pol->xdo; 1269 struct xfrm_dev_offload *xso = &x->xso; 1270 1271 xso->type = XFRM_DEV_OFFLOAD_PACKET; 1272 xso->dir = xdo->dir; 1273 xso->dev = xdo->dev; 1274 xso->real_dev = xdo->real_dev; 1275 xso->flags = XFRM_DEV_OFFLOAD_FLAG_ACQ; 1276 netdev_tracker_alloc(xso->dev, &xso->dev_tracker, 1277 GFP_ATOMIC); 1278 error = xso->dev->xfrmdev_ops->xdo_dev_state_add(x, NULL); 1279 if (error) { 1280 xso->dir = 0; 1281 netdev_put(xso->dev, &xso->dev_tracker); 1282 xso->dev = NULL; 1283 xso->real_dev = NULL; 1284 xso->type = XFRM_DEV_OFFLOAD_UNSPECIFIED; 1285 x->km.state = XFRM_STATE_DEAD; 1286 to_put = x; 1287 x = NULL; 1288 goto out; 1289 } 1290 } 1291 #endif 1292 if (km_query(x, tmpl, pol) == 0) { 1293 spin_lock_bh(&net->xfrm.xfrm_state_lock); 1294 x->km.state = XFRM_STATE_ACQ; 1295 list_add(&x->km.all, &net->xfrm.state_all); 1296 XFRM_STATE_INSERT(bydst, &x->bydst, 1297 net->xfrm.state_bydst + h, 1298 x->xso.type); 1299 h = xfrm_src_hash(net, daddr, saddr, encap_family); 1300 XFRM_STATE_INSERT(bysrc, &x->bysrc, 1301 net->xfrm.state_bysrc + h, 1302 x->xso.type); 1303 if (x->id.spi) { 1304 h = xfrm_spi_hash(net, &x->id.daddr, x->id.spi, x->id.proto, encap_family); 1305 XFRM_STATE_INSERT(byspi, &x->byspi, 1306 net->xfrm.state_byspi + h, 1307 x->xso.type); 1308 } 1309 if (x->km.seq) { 1310 h = xfrm_seq_hash(net, x->km.seq); 1311 XFRM_STATE_INSERT(byseq, &x->byseq, 1312 net->xfrm.state_byseq + h, 1313 x->xso.type); 1314 } 1315 x->lft.hard_add_expires_seconds = net->xfrm.sysctl_acq_expires; 1316 hrtimer_start(&x->mtimer, 1317 ktime_set(net->xfrm.sysctl_acq_expires, 0), 1318 HRTIMER_MODE_REL_SOFT); 1319 net->xfrm.state_num++; 1320 xfrm_hash_grow_check(net, x->bydst.next != NULL); 1321 spin_unlock_bh(&net->xfrm.xfrm_state_lock); 1322 } else { 1323 #ifdef CONFIG_XFRM_OFFLOAD 1324 struct xfrm_dev_offload *xso = &x->xso; 1325 1326 if (xso->type == XFRM_DEV_OFFLOAD_PACKET) { 1327 xfrm_dev_state_delete(x); 1328 xfrm_dev_state_free(x); 1329 } 1330 #endif 1331 x->km.state = XFRM_STATE_DEAD; 1332 to_put = x; 1333 x = NULL; 1334 error = -ESRCH; 1335 } 1336 } 1337 out: 1338 if (x) { 1339 if (!xfrm_state_hold_rcu(x)) { 1340 *err = -EAGAIN; 1341 x = NULL; 1342 } 1343 } else { 1344 *err = acquire_in_progress ? -EAGAIN : error; 1345 } 1346 rcu_read_unlock(); 1347 if (to_put) 1348 xfrm_state_put(to_put); 1349 1350 if (read_seqcount_retry(&net->xfrm.xfrm_state_hash_generation, sequence)) { 1351 *err = -EAGAIN; 1352 if (x) { 1353 xfrm_state_put(x); 1354 x = NULL; 1355 } 1356 } 1357 1358 return x; 1359 } 1360 1361 struct xfrm_state * 1362 xfrm_stateonly_find(struct net *net, u32 mark, u32 if_id, 1363 xfrm_address_t *daddr, xfrm_address_t *saddr, 1364 unsigned short family, u8 mode, u8 proto, u32 reqid) 1365 { 1366 unsigned int h; 1367 struct xfrm_state *rx = NULL, *x = NULL; 1368 1369 spin_lock_bh(&net->xfrm.xfrm_state_lock); 1370 h = xfrm_dst_hash(net, daddr, saddr, reqid, family); 1371 hlist_for_each_entry(x, net->xfrm.state_bydst+h, bydst) { 1372 if (x->props.family == family && 1373 x->props.reqid == reqid && 1374 (mark & x->mark.m) == x->mark.v && 1375 x->if_id == if_id && 1376 !(x->props.flags & XFRM_STATE_WILDRECV) && 1377 xfrm_state_addr_check(x, daddr, saddr, family) && 1378 mode == x->props.mode && 1379 proto == x->id.proto && 1380 x->km.state == XFRM_STATE_VALID) { 1381 rx = x; 1382 break; 1383 } 1384 } 1385 1386 if (rx) 1387 xfrm_state_hold(rx); 1388 spin_unlock_bh(&net->xfrm.xfrm_state_lock); 1389 1390 1391 return rx; 1392 } 1393 EXPORT_SYMBOL(xfrm_stateonly_find); 1394 1395 struct xfrm_state *xfrm_state_lookup_byspi(struct net *net, __be32 spi, 1396 unsigned short family) 1397 { 1398 struct xfrm_state *x; 1399 struct xfrm_state_walk *w; 1400 1401 spin_lock_bh(&net->xfrm.xfrm_state_lock); 1402 list_for_each_entry(w, &net->xfrm.state_all, all) { 1403 x = container_of(w, struct xfrm_state, km); 1404 if (x->props.family != family || 1405 x->id.spi != spi) 1406 continue; 1407 1408 xfrm_state_hold(x); 1409 spin_unlock_bh(&net->xfrm.xfrm_state_lock); 1410 return x; 1411 } 1412 spin_unlock_bh(&net->xfrm.xfrm_state_lock); 1413 return NULL; 1414 } 1415 EXPORT_SYMBOL(xfrm_state_lookup_byspi); 1416 1417 static void __xfrm_state_insert(struct xfrm_state *x) 1418 { 1419 struct net *net = xs_net(x); 1420 unsigned int h; 1421 1422 list_add(&x->km.all, &net->xfrm.state_all); 1423 1424 h = xfrm_dst_hash(net, &x->id.daddr, &x->props.saddr, 1425 x->props.reqid, x->props.family); 1426 XFRM_STATE_INSERT(bydst, &x->bydst, net->xfrm.state_bydst + h, 1427 x->xso.type); 1428 1429 h = xfrm_src_hash(net, &x->id.daddr, &x->props.saddr, x->props.family); 1430 XFRM_STATE_INSERT(bysrc, &x->bysrc, net->xfrm.state_bysrc + h, 1431 x->xso.type); 1432 1433 if (x->id.spi) { 1434 h = xfrm_spi_hash(net, &x->id.daddr, x->id.spi, x->id.proto, 1435 x->props.family); 1436 1437 XFRM_STATE_INSERT(byspi, &x->byspi, net->xfrm.state_byspi + h, 1438 x->xso.type); 1439 } 1440 1441 if (x->km.seq) { 1442 h = xfrm_seq_hash(net, x->km.seq); 1443 1444 XFRM_STATE_INSERT(byseq, &x->byseq, net->xfrm.state_byseq + h, 1445 x->xso.type); 1446 } 1447 1448 hrtimer_start(&x->mtimer, ktime_set(1, 0), HRTIMER_MODE_REL_SOFT); 1449 if (x->replay_maxage) 1450 mod_timer(&x->rtimer, jiffies + x->replay_maxage); 1451 1452 net->xfrm.state_num++; 1453 1454 xfrm_hash_grow_check(net, x->bydst.next != NULL); 1455 } 1456 1457 /* net->xfrm.xfrm_state_lock is held */ 1458 static void __xfrm_state_bump_genids(struct xfrm_state *xnew) 1459 { 1460 struct net *net = xs_net(xnew); 1461 unsigned short family = xnew->props.family; 1462 u32 reqid = xnew->props.reqid; 1463 struct xfrm_state *x; 1464 unsigned int h; 1465 u32 mark = xnew->mark.v & xnew->mark.m; 1466 u32 if_id = xnew->if_id; 1467 1468 h = xfrm_dst_hash(net, &xnew->id.daddr, &xnew->props.saddr, reqid, family); 1469 hlist_for_each_entry(x, net->xfrm.state_bydst+h, bydst) { 1470 if (x->props.family == family && 1471 x->props.reqid == reqid && 1472 x->if_id == if_id && 1473 (mark & x->mark.m) == x->mark.v && 1474 xfrm_addr_equal(&x->id.daddr, &xnew->id.daddr, family) && 1475 xfrm_addr_equal(&x->props.saddr, &xnew->props.saddr, family)) 1476 x->genid++; 1477 } 1478 } 1479 1480 void xfrm_state_insert(struct xfrm_state *x) 1481 { 1482 struct net *net = xs_net(x); 1483 1484 spin_lock_bh(&net->xfrm.xfrm_state_lock); 1485 __xfrm_state_bump_genids(x); 1486 __xfrm_state_insert(x); 1487 spin_unlock_bh(&net->xfrm.xfrm_state_lock); 1488 } 1489 EXPORT_SYMBOL(xfrm_state_insert); 1490 1491 /* net->xfrm.xfrm_state_lock is held */ 1492 static struct xfrm_state *__find_acq_core(struct net *net, 1493 const struct xfrm_mark *m, 1494 unsigned short family, u8 mode, 1495 u32 reqid, u32 if_id, u8 proto, 1496 const xfrm_address_t *daddr, 1497 const xfrm_address_t *saddr, 1498 int create) 1499 { 1500 unsigned int h = xfrm_dst_hash(net, daddr, saddr, reqid, family); 1501 struct xfrm_state *x; 1502 u32 mark = m->v & m->m; 1503 1504 hlist_for_each_entry(x, net->xfrm.state_bydst+h, bydst) { 1505 if (x->props.reqid != reqid || 1506 x->props.mode != mode || 1507 x->props.family != family || 1508 x->km.state != XFRM_STATE_ACQ || 1509 x->id.spi != 0 || 1510 x->id.proto != proto || 1511 (mark & x->mark.m) != x->mark.v || 1512 !xfrm_addr_equal(&x->id.daddr, daddr, family) || 1513 !xfrm_addr_equal(&x->props.saddr, saddr, family)) 1514 continue; 1515 1516 xfrm_state_hold(x); 1517 return x; 1518 } 1519 1520 if (!create) 1521 return NULL; 1522 1523 x = xfrm_state_alloc(net); 1524 if (likely(x)) { 1525 switch (family) { 1526 case AF_INET: 1527 x->sel.daddr.a4 = daddr->a4; 1528 x->sel.saddr.a4 = saddr->a4; 1529 x->sel.prefixlen_d = 32; 1530 x->sel.prefixlen_s = 32; 1531 x->props.saddr.a4 = saddr->a4; 1532 x->id.daddr.a4 = daddr->a4; 1533 break; 1534 1535 case AF_INET6: 1536 x->sel.daddr.in6 = daddr->in6; 1537 x->sel.saddr.in6 = saddr->in6; 1538 x->sel.prefixlen_d = 128; 1539 x->sel.prefixlen_s = 128; 1540 x->props.saddr.in6 = saddr->in6; 1541 x->id.daddr.in6 = daddr->in6; 1542 break; 1543 } 1544 1545 x->km.state = XFRM_STATE_ACQ; 1546 x->id.proto = proto; 1547 x->props.family = family; 1548 x->props.mode = mode; 1549 x->props.reqid = reqid; 1550 x->if_id = if_id; 1551 x->mark.v = m->v; 1552 x->mark.m = m->m; 1553 x->lft.hard_add_expires_seconds = net->xfrm.sysctl_acq_expires; 1554 xfrm_state_hold(x); 1555 hrtimer_start(&x->mtimer, 1556 ktime_set(net->xfrm.sysctl_acq_expires, 0), 1557 HRTIMER_MODE_REL_SOFT); 1558 list_add(&x->km.all, &net->xfrm.state_all); 1559 XFRM_STATE_INSERT(bydst, &x->bydst, net->xfrm.state_bydst + h, 1560 x->xso.type); 1561 h = xfrm_src_hash(net, daddr, saddr, family); 1562 XFRM_STATE_INSERT(bysrc, &x->bysrc, net->xfrm.state_bysrc + h, 1563 x->xso.type); 1564 1565 net->xfrm.state_num++; 1566 1567 xfrm_hash_grow_check(net, x->bydst.next != NULL); 1568 } 1569 1570 return x; 1571 } 1572 1573 static struct xfrm_state *__xfrm_find_acq_byseq(struct net *net, u32 mark, u32 seq); 1574 1575 int xfrm_state_add(struct xfrm_state *x) 1576 { 1577 struct net *net = xs_net(x); 1578 struct xfrm_state *x1, *to_put; 1579 int family; 1580 int err; 1581 u32 mark = x->mark.v & x->mark.m; 1582 int use_spi = xfrm_id_proto_match(x->id.proto, IPSEC_PROTO_ANY); 1583 1584 family = x->props.family; 1585 1586 to_put = NULL; 1587 1588 spin_lock_bh(&net->xfrm.xfrm_state_lock); 1589 1590 x1 = __xfrm_state_locate(x, use_spi, family); 1591 if (x1) { 1592 to_put = x1; 1593 x1 = NULL; 1594 err = -EEXIST; 1595 goto out; 1596 } 1597 1598 if (use_spi && x->km.seq) { 1599 x1 = __xfrm_find_acq_byseq(net, mark, x->km.seq); 1600 if (x1 && ((x1->id.proto != x->id.proto) || 1601 !xfrm_addr_equal(&x1->id.daddr, &x->id.daddr, family))) { 1602 to_put = x1; 1603 x1 = NULL; 1604 } 1605 } 1606 1607 if (use_spi && !x1) 1608 x1 = __find_acq_core(net, &x->mark, family, x->props.mode, 1609 x->props.reqid, x->if_id, x->id.proto, 1610 &x->id.daddr, &x->props.saddr, 0); 1611 1612 __xfrm_state_bump_genids(x); 1613 __xfrm_state_insert(x); 1614 err = 0; 1615 1616 out: 1617 spin_unlock_bh(&net->xfrm.xfrm_state_lock); 1618 1619 if (x1) { 1620 xfrm_state_delete(x1); 1621 xfrm_state_put(x1); 1622 } 1623 1624 if (to_put) 1625 xfrm_state_put(to_put); 1626 1627 return err; 1628 } 1629 EXPORT_SYMBOL(xfrm_state_add); 1630 1631 #ifdef CONFIG_XFRM_MIGRATE 1632 static inline int clone_security(struct xfrm_state *x, struct xfrm_sec_ctx *security) 1633 { 1634 struct xfrm_user_sec_ctx *uctx; 1635 int size = sizeof(*uctx) + security->ctx_len; 1636 int err; 1637 1638 uctx = kmalloc(size, GFP_KERNEL); 1639 if (!uctx) 1640 return -ENOMEM; 1641 1642 uctx->exttype = XFRMA_SEC_CTX; 1643 uctx->len = size; 1644 uctx->ctx_doi = security->ctx_doi; 1645 uctx->ctx_alg = security->ctx_alg; 1646 uctx->ctx_len = security->ctx_len; 1647 memcpy(uctx + 1, security->ctx_str, security->ctx_len); 1648 err = security_xfrm_state_alloc(x, uctx); 1649 kfree(uctx); 1650 if (err) 1651 return err; 1652 1653 return 0; 1654 } 1655 1656 static struct xfrm_state *xfrm_state_clone(struct xfrm_state *orig, 1657 struct xfrm_encap_tmpl *encap) 1658 { 1659 struct net *net = xs_net(orig); 1660 struct xfrm_state *x = xfrm_state_alloc(net); 1661 if (!x) 1662 goto out; 1663 1664 memcpy(&x->id, &orig->id, sizeof(x->id)); 1665 memcpy(&x->sel, &orig->sel, sizeof(x->sel)); 1666 memcpy(&x->lft, &orig->lft, sizeof(x->lft)); 1667 x->props.mode = orig->props.mode; 1668 x->props.replay_window = orig->props.replay_window; 1669 x->props.reqid = orig->props.reqid; 1670 x->props.family = orig->props.family; 1671 x->props.saddr = orig->props.saddr; 1672 1673 if (orig->aalg) { 1674 x->aalg = xfrm_algo_auth_clone(orig->aalg); 1675 if (!x->aalg) 1676 goto error; 1677 } 1678 x->props.aalgo = orig->props.aalgo; 1679 1680 if (orig->aead) { 1681 x->aead = xfrm_algo_aead_clone(orig->aead); 1682 x->geniv = orig->geniv; 1683 if (!x->aead) 1684 goto error; 1685 } 1686 if (orig->ealg) { 1687 x->ealg = xfrm_algo_clone(orig->ealg); 1688 if (!x->ealg) 1689 goto error; 1690 } 1691 x->props.ealgo = orig->props.ealgo; 1692 1693 if (orig->calg) { 1694 x->calg = xfrm_algo_clone(orig->calg); 1695 if (!x->calg) 1696 goto error; 1697 } 1698 x->props.calgo = orig->props.calgo; 1699 1700 if (encap || orig->encap) { 1701 if (encap) 1702 x->encap = kmemdup(encap, sizeof(*x->encap), 1703 GFP_KERNEL); 1704 else 1705 x->encap = kmemdup(orig->encap, sizeof(*x->encap), 1706 GFP_KERNEL); 1707 1708 if (!x->encap) 1709 goto error; 1710 } 1711 1712 if (orig->security) 1713 if (clone_security(x, orig->security)) 1714 goto error; 1715 1716 if (orig->coaddr) { 1717 x->coaddr = kmemdup(orig->coaddr, sizeof(*x->coaddr), 1718 GFP_KERNEL); 1719 if (!x->coaddr) 1720 goto error; 1721 } 1722 1723 if (orig->replay_esn) { 1724 if (xfrm_replay_clone(x, orig)) 1725 goto error; 1726 } 1727 1728 memcpy(&x->mark, &orig->mark, sizeof(x->mark)); 1729 memcpy(&x->props.smark, &orig->props.smark, sizeof(x->props.smark)); 1730 1731 x->props.flags = orig->props.flags; 1732 x->props.extra_flags = orig->props.extra_flags; 1733 1734 x->if_id = orig->if_id; 1735 x->tfcpad = orig->tfcpad; 1736 x->replay_maxdiff = orig->replay_maxdiff; 1737 x->replay_maxage = orig->replay_maxage; 1738 memcpy(&x->curlft, &orig->curlft, sizeof(x->curlft)); 1739 x->km.state = orig->km.state; 1740 x->km.seq = orig->km.seq; 1741 x->replay = orig->replay; 1742 x->preplay = orig->preplay; 1743 x->mapping_maxage = orig->mapping_maxage; 1744 x->lastused = orig->lastused; 1745 x->new_mapping = 0; 1746 x->new_mapping_sport = 0; 1747 1748 return x; 1749 1750 error: 1751 xfrm_state_put(x); 1752 out: 1753 return NULL; 1754 } 1755 1756 struct xfrm_state *xfrm_migrate_state_find(struct xfrm_migrate *m, struct net *net, 1757 u32 if_id) 1758 { 1759 unsigned int h; 1760 struct xfrm_state *x = NULL; 1761 1762 spin_lock_bh(&net->xfrm.xfrm_state_lock); 1763 1764 if (m->reqid) { 1765 h = xfrm_dst_hash(net, &m->old_daddr, &m->old_saddr, 1766 m->reqid, m->old_family); 1767 hlist_for_each_entry(x, net->xfrm.state_bydst+h, bydst) { 1768 if (x->props.mode != m->mode || 1769 x->id.proto != m->proto) 1770 continue; 1771 if (m->reqid && x->props.reqid != m->reqid) 1772 continue; 1773 if (if_id != 0 && x->if_id != if_id) 1774 continue; 1775 if (!xfrm_addr_equal(&x->id.daddr, &m->old_daddr, 1776 m->old_family) || 1777 !xfrm_addr_equal(&x->props.saddr, &m->old_saddr, 1778 m->old_family)) 1779 continue; 1780 xfrm_state_hold(x); 1781 break; 1782 } 1783 } else { 1784 h = xfrm_src_hash(net, &m->old_daddr, &m->old_saddr, 1785 m->old_family); 1786 hlist_for_each_entry(x, net->xfrm.state_bysrc+h, bysrc) { 1787 if (x->props.mode != m->mode || 1788 x->id.proto != m->proto) 1789 continue; 1790 if (if_id != 0 && x->if_id != if_id) 1791 continue; 1792 if (!xfrm_addr_equal(&x->id.daddr, &m->old_daddr, 1793 m->old_family) || 1794 !xfrm_addr_equal(&x->props.saddr, &m->old_saddr, 1795 m->old_family)) 1796 continue; 1797 xfrm_state_hold(x); 1798 break; 1799 } 1800 } 1801 1802 spin_unlock_bh(&net->xfrm.xfrm_state_lock); 1803 1804 return x; 1805 } 1806 EXPORT_SYMBOL(xfrm_migrate_state_find); 1807 1808 struct xfrm_state *xfrm_state_migrate(struct xfrm_state *x, 1809 struct xfrm_migrate *m, 1810 struct xfrm_encap_tmpl *encap) 1811 { 1812 struct xfrm_state *xc; 1813 1814 xc = xfrm_state_clone(x, encap); 1815 if (!xc) 1816 return NULL; 1817 1818 xc->props.family = m->new_family; 1819 1820 if (xfrm_init_state(xc) < 0) 1821 goto error; 1822 1823 memcpy(&xc->id.daddr, &m->new_daddr, sizeof(xc->id.daddr)); 1824 memcpy(&xc->props.saddr, &m->new_saddr, sizeof(xc->props.saddr)); 1825 1826 /* add state */ 1827 if (xfrm_addr_equal(&x->id.daddr, &m->new_daddr, m->new_family)) { 1828 /* a care is needed when the destination address of the 1829 state is to be updated as it is a part of triplet */ 1830 xfrm_state_insert(xc); 1831 } else { 1832 if (xfrm_state_add(xc) < 0) 1833 goto error; 1834 } 1835 1836 return xc; 1837 error: 1838 xfrm_state_put(xc); 1839 return NULL; 1840 } 1841 EXPORT_SYMBOL(xfrm_state_migrate); 1842 #endif 1843 1844 int xfrm_state_update(struct xfrm_state *x) 1845 { 1846 struct xfrm_state *x1, *to_put; 1847 int err; 1848 int use_spi = xfrm_id_proto_match(x->id.proto, IPSEC_PROTO_ANY); 1849 struct net *net = xs_net(x); 1850 1851 to_put = NULL; 1852 1853 spin_lock_bh(&net->xfrm.xfrm_state_lock); 1854 x1 = __xfrm_state_locate(x, use_spi, x->props.family); 1855 1856 err = -ESRCH; 1857 if (!x1) 1858 goto out; 1859 1860 if (xfrm_state_kern(x1)) { 1861 to_put = x1; 1862 err = -EEXIST; 1863 goto out; 1864 } 1865 1866 if (x1->km.state == XFRM_STATE_ACQ) { 1867 __xfrm_state_insert(x); 1868 x = NULL; 1869 } 1870 err = 0; 1871 1872 out: 1873 spin_unlock_bh(&net->xfrm.xfrm_state_lock); 1874 1875 if (to_put) 1876 xfrm_state_put(to_put); 1877 1878 if (err) 1879 return err; 1880 1881 if (!x) { 1882 xfrm_state_delete(x1); 1883 xfrm_state_put(x1); 1884 return 0; 1885 } 1886 1887 err = -EINVAL; 1888 spin_lock_bh(&x1->lock); 1889 if (likely(x1->km.state == XFRM_STATE_VALID)) { 1890 if (x->encap && x1->encap && 1891 x->encap->encap_type == x1->encap->encap_type) 1892 memcpy(x1->encap, x->encap, sizeof(*x1->encap)); 1893 else if (x->encap || x1->encap) 1894 goto fail; 1895 1896 if (x->coaddr && x1->coaddr) { 1897 memcpy(x1->coaddr, x->coaddr, sizeof(*x1->coaddr)); 1898 } 1899 if (!use_spi && memcmp(&x1->sel, &x->sel, sizeof(x1->sel))) 1900 memcpy(&x1->sel, &x->sel, sizeof(x1->sel)); 1901 memcpy(&x1->lft, &x->lft, sizeof(x1->lft)); 1902 x1->km.dying = 0; 1903 1904 hrtimer_start(&x1->mtimer, ktime_set(1, 0), 1905 HRTIMER_MODE_REL_SOFT); 1906 if (READ_ONCE(x1->curlft.use_time)) 1907 xfrm_state_check_expire(x1); 1908 1909 if (x->props.smark.m || x->props.smark.v || x->if_id) { 1910 spin_lock_bh(&net->xfrm.xfrm_state_lock); 1911 1912 if (x->props.smark.m || x->props.smark.v) 1913 x1->props.smark = x->props.smark; 1914 1915 if (x->if_id) 1916 x1->if_id = x->if_id; 1917 1918 __xfrm_state_bump_genids(x1); 1919 spin_unlock_bh(&net->xfrm.xfrm_state_lock); 1920 } 1921 1922 err = 0; 1923 x->km.state = XFRM_STATE_DEAD; 1924 __xfrm_state_put(x); 1925 } 1926 1927 fail: 1928 spin_unlock_bh(&x1->lock); 1929 1930 xfrm_state_put(x1); 1931 1932 return err; 1933 } 1934 EXPORT_SYMBOL(xfrm_state_update); 1935 1936 int xfrm_state_check_expire(struct xfrm_state *x) 1937 { 1938 xfrm_dev_state_update_curlft(x); 1939 1940 if (!READ_ONCE(x->curlft.use_time)) 1941 WRITE_ONCE(x->curlft.use_time, ktime_get_real_seconds()); 1942 1943 if (x->curlft.bytes >= x->lft.hard_byte_limit || 1944 x->curlft.packets >= x->lft.hard_packet_limit) { 1945 x->km.state = XFRM_STATE_EXPIRED; 1946 hrtimer_start(&x->mtimer, 0, HRTIMER_MODE_REL_SOFT); 1947 return -EINVAL; 1948 } 1949 1950 if (!x->km.dying && 1951 (x->curlft.bytes >= x->lft.soft_byte_limit || 1952 x->curlft.packets >= x->lft.soft_packet_limit)) { 1953 x->km.dying = 1; 1954 km_state_expired(x, 0, 0); 1955 } 1956 return 0; 1957 } 1958 EXPORT_SYMBOL(xfrm_state_check_expire); 1959 1960 struct xfrm_state * 1961 xfrm_state_lookup(struct net *net, u32 mark, const xfrm_address_t *daddr, __be32 spi, 1962 u8 proto, unsigned short family) 1963 { 1964 struct xfrm_state *x; 1965 1966 rcu_read_lock(); 1967 x = __xfrm_state_lookup(net, mark, daddr, spi, proto, family); 1968 rcu_read_unlock(); 1969 return x; 1970 } 1971 EXPORT_SYMBOL(xfrm_state_lookup); 1972 1973 struct xfrm_state * 1974 xfrm_state_lookup_byaddr(struct net *net, u32 mark, 1975 const xfrm_address_t *daddr, const xfrm_address_t *saddr, 1976 u8 proto, unsigned short family) 1977 { 1978 struct xfrm_state *x; 1979 1980 spin_lock_bh(&net->xfrm.xfrm_state_lock); 1981 x = __xfrm_state_lookup_byaddr(net, mark, daddr, saddr, proto, family); 1982 spin_unlock_bh(&net->xfrm.xfrm_state_lock); 1983 return x; 1984 } 1985 EXPORT_SYMBOL(xfrm_state_lookup_byaddr); 1986 1987 struct xfrm_state * 1988 xfrm_find_acq(struct net *net, const struct xfrm_mark *mark, u8 mode, u32 reqid, 1989 u32 if_id, u8 proto, const xfrm_address_t *daddr, 1990 const xfrm_address_t *saddr, int create, unsigned short family) 1991 { 1992 struct xfrm_state *x; 1993 1994 spin_lock_bh(&net->xfrm.xfrm_state_lock); 1995 x = __find_acq_core(net, mark, family, mode, reqid, if_id, proto, daddr, saddr, create); 1996 spin_unlock_bh(&net->xfrm.xfrm_state_lock); 1997 1998 return x; 1999 } 2000 EXPORT_SYMBOL(xfrm_find_acq); 2001 2002 #ifdef CONFIG_XFRM_SUB_POLICY 2003 #if IS_ENABLED(CONFIG_IPV6) 2004 /* distribution counting sort function for xfrm_state and xfrm_tmpl */ 2005 static void 2006 __xfrm6_sort(void **dst, void **src, int n, 2007 int (*cmp)(const void *p), int maxclass) 2008 { 2009 int count[XFRM_MAX_DEPTH] = { }; 2010 int class[XFRM_MAX_DEPTH]; 2011 int i; 2012 2013 for (i = 0; i < n; i++) { 2014 int c = cmp(src[i]); 2015 2016 class[i] = c; 2017 count[c]++; 2018 } 2019 2020 for (i = 2; i < maxclass; i++) 2021 count[i] += count[i - 1]; 2022 2023 for (i = 0; i < n; i++) { 2024 dst[count[class[i] - 1]++] = src[i]; 2025 src[i] = NULL; 2026 } 2027 } 2028 2029 /* Rule for xfrm_state: 2030 * 2031 * rule 1: select IPsec transport except AH 2032 * rule 2: select MIPv6 RO or inbound trigger 2033 * rule 3: select IPsec transport AH 2034 * rule 4: select IPsec tunnel 2035 * rule 5: others 2036 */ 2037 static int __xfrm6_state_sort_cmp(const void *p) 2038 { 2039 const struct xfrm_state *v = p; 2040 2041 switch (v->props.mode) { 2042 case XFRM_MODE_TRANSPORT: 2043 if (v->id.proto != IPPROTO_AH) 2044 return 1; 2045 else 2046 return 3; 2047 #if IS_ENABLED(CONFIG_IPV6_MIP6) 2048 case XFRM_MODE_ROUTEOPTIMIZATION: 2049 case XFRM_MODE_IN_TRIGGER: 2050 return 2; 2051 #endif 2052 case XFRM_MODE_TUNNEL: 2053 case XFRM_MODE_BEET: 2054 return 4; 2055 } 2056 return 5; 2057 } 2058 2059 /* Rule for xfrm_tmpl: 2060 * 2061 * rule 1: select IPsec transport 2062 * rule 2: select MIPv6 RO or inbound trigger 2063 * rule 3: select IPsec tunnel 2064 * rule 4: others 2065 */ 2066 static int __xfrm6_tmpl_sort_cmp(const void *p) 2067 { 2068 const struct xfrm_tmpl *v = p; 2069 2070 switch (v->mode) { 2071 case XFRM_MODE_TRANSPORT: 2072 return 1; 2073 #if IS_ENABLED(CONFIG_IPV6_MIP6) 2074 case XFRM_MODE_ROUTEOPTIMIZATION: 2075 case XFRM_MODE_IN_TRIGGER: 2076 return 2; 2077 #endif 2078 case XFRM_MODE_TUNNEL: 2079 case XFRM_MODE_BEET: 2080 return 3; 2081 } 2082 return 4; 2083 } 2084 #else 2085 static inline int __xfrm6_state_sort_cmp(const void *p) { return 5; } 2086 static inline int __xfrm6_tmpl_sort_cmp(const void *p) { return 4; } 2087 2088 static inline void 2089 __xfrm6_sort(void **dst, void **src, int n, 2090 int (*cmp)(const void *p), int maxclass) 2091 { 2092 int i; 2093 2094 for (i = 0; i < n; i++) 2095 dst[i] = src[i]; 2096 } 2097 #endif /* CONFIG_IPV6 */ 2098 2099 void 2100 xfrm_tmpl_sort(struct xfrm_tmpl **dst, struct xfrm_tmpl **src, int n, 2101 unsigned short family) 2102 { 2103 int i; 2104 2105 if (family == AF_INET6) 2106 __xfrm6_sort((void **)dst, (void **)src, n, 2107 __xfrm6_tmpl_sort_cmp, 5); 2108 else 2109 for (i = 0; i < n; i++) 2110 dst[i] = src[i]; 2111 } 2112 2113 void 2114 xfrm_state_sort(struct xfrm_state **dst, struct xfrm_state **src, int n, 2115 unsigned short family) 2116 { 2117 int i; 2118 2119 if (family == AF_INET6) 2120 __xfrm6_sort((void **)dst, (void **)src, n, 2121 __xfrm6_state_sort_cmp, 6); 2122 else 2123 for (i = 0; i < n; i++) 2124 dst[i] = src[i]; 2125 } 2126 #endif 2127 2128 /* Silly enough, but I'm lazy to build resolution list */ 2129 2130 static struct xfrm_state *__xfrm_find_acq_byseq(struct net *net, u32 mark, u32 seq) 2131 { 2132 unsigned int h = xfrm_seq_hash(net, seq); 2133 struct xfrm_state *x; 2134 2135 hlist_for_each_entry_rcu(x, net->xfrm.state_byseq + h, byseq) { 2136 if (x->km.seq == seq && 2137 (mark & x->mark.m) == x->mark.v && 2138 x->km.state == XFRM_STATE_ACQ) { 2139 xfrm_state_hold(x); 2140 return x; 2141 } 2142 } 2143 2144 return NULL; 2145 } 2146 2147 struct xfrm_state *xfrm_find_acq_byseq(struct net *net, u32 mark, u32 seq) 2148 { 2149 struct xfrm_state *x; 2150 2151 spin_lock_bh(&net->xfrm.xfrm_state_lock); 2152 x = __xfrm_find_acq_byseq(net, mark, seq); 2153 spin_unlock_bh(&net->xfrm.xfrm_state_lock); 2154 return x; 2155 } 2156 EXPORT_SYMBOL(xfrm_find_acq_byseq); 2157 2158 u32 xfrm_get_acqseq(void) 2159 { 2160 u32 res; 2161 static atomic_t acqseq; 2162 2163 do { 2164 res = atomic_inc_return(&acqseq); 2165 } while (!res); 2166 2167 return res; 2168 } 2169 EXPORT_SYMBOL(xfrm_get_acqseq); 2170 2171 int verify_spi_info(u8 proto, u32 min, u32 max, struct netlink_ext_ack *extack) 2172 { 2173 switch (proto) { 2174 case IPPROTO_AH: 2175 case IPPROTO_ESP: 2176 break; 2177 2178 case IPPROTO_COMP: 2179 /* IPCOMP spi is 16-bits. */ 2180 if (max >= 0x10000) { 2181 NL_SET_ERR_MSG(extack, "IPCOMP SPI must be <= 65535"); 2182 return -EINVAL; 2183 } 2184 break; 2185 2186 default: 2187 NL_SET_ERR_MSG(extack, "Invalid protocol, must be one of AH, ESP, IPCOMP"); 2188 return -EINVAL; 2189 } 2190 2191 if (min > max) { 2192 NL_SET_ERR_MSG(extack, "Invalid SPI range: min > max"); 2193 return -EINVAL; 2194 } 2195 2196 return 0; 2197 } 2198 EXPORT_SYMBOL(verify_spi_info); 2199 2200 int xfrm_alloc_spi(struct xfrm_state *x, u32 low, u32 high, 2201 struct netlink_ext_ack *extack) 2202 { 2203 struct net *net = xs_net(x); 2204 unsigned int h; 2205 struct xfrm_state *x0; 2206 int err = -ENOENT; 2207 __be32 minspi = htonl(low); 2208 __be32 maxspi = htonl(high); 2209 __be32 newspi = 0; 2210 u32 mark = x->mark.v & x->mark.m; 2211 2212 spin_lock_bh(&x->lock); 2213 if (x->km.state == XFRM_STATE_DEAD) { 2214 NL_SET_ERR_MSG(extack, "Target ACQUIRE is in DEAD state"); 2215 goto unlock; 2216 } 2217 2218 err = 0; 2219 if (x->id.spi) 2220 goto unlock; 2221 2222 err = -ENOENT; 2223 2224 if (minspi == maxspi) { 2225 x0 = xfrm_state_lookup(net, mark, &x->id.daddr, minspi, x->id.proto, x->props.family); 2226 if (x0) { 2227 NL_SET_ERR_MSG(extack, "Requested SPI is already in use"); 2228 xfrm_state_put(x0); 2229 goto unlock; 2230 } 2231 newspi = minspi; 2232 } else { 2233 u32 spi = 0; 2234 for (h = 0; h < high-low+1; h++) { 2235 spi = get_random_u32_inclusive(low, high); 2236 x0 = xfrm_state_lookup(net, mark, &x->id.daddr, htonl(spi), x->id.proto, x->props.family); 2237 if (x0 == NULL) { 2238 newspi = htonl(spi); 2239 break; 2240 } 2241 xfrm_state_put(x0); 2242 } 2243 } 2244 if (newspi) { 2245 spin_lock_bh(&net->xfrm.xfrm_state_lock); 2246 x->id.spi = newspi; 2247 h = xfrm_spi_hash(net, &x->id.daddr, x->id.spi, x->id.proto, x->props.family); 2248 XFRM_STATE_INSERT(byspi, &x->byspi, net->xfrm.state_byspi + h, 2249 x->xso.type); 2250 spin_unlock_bh(&net->xfrm.xfrm_state_lock); 2251 2252 err = 0; 2253 } else { 2254 NL_SET_ERR_MSG(extack, "No SPI available in the requested range"); 2255 } 2256 2257 unlock: 2258 spin_unlock_bh(&x->lock); 2259 2260 return err; 2261 } 2262 EXPORT_SYMBOL(xfrm_alloc_spi); 2263 2264 static bool __xfrm_state_filter_match(struct xfrm_state *x, 2265 struct xfrm_address_filter *filter) 2266 { 2267 if (filter) { 2268 if ((filter->family == AF_INET || 2269 filter->family == AF_INET6) && 2270 x->props.family != filter->family) 2271 return false; 2272 2273 return addr_match(&x->props.saddr, &filter->saddr, 2274 filter->splen) && 2275 addr_match(&x->id.daddr, &filter->daddr, 2276 filter->dplen); 2277 } 2278 return true; 2279 } 2280 2281 int xfrm_state_walk(struct net *net, struct xfrm_state_walk *walk, 2282 int (*func)(struct xfrm_state *, int, void*), 2283 void *data) 2284 { 2285 struct xfrm_state *state; 2286 struct xfrm_state_walk *x; 2287 int err = 0; 2288 2289 if (walk->seq != 0 && list_empty(&walk->all)) 2290 return 0; 2291 2292 spin_lock_bh(&net->xfrm.xfrm_state_lock); 2293 if (list_empty(&walk->all)) 2294 x = list_first_entry(&net->xfrm.state_all, struct xfrm_state_walk, all); 2295 else 2296 x = list_first_entry(&walk->all, struct xfrm_state_walk, all); 2297 list_for_each_entry_from(x, &net->xfrm.state_all, all) { 2298 if (x->state == XFRM_STATE_DEAD) 2299 continue; 2300 state = container_of(x, struct xfrm_state, km); 2301 if (!xfrm_id_proto_match(state->id.proto, walk->proto)) 2302 continue; 2303 if (!__xfrm_state_filter_match(state, walk->filter)) 2304 continue; 2305 err = func(state, walk->seq, data); 2306 if (err) { 2307 list_move_tail(&walk->all, &x->all); 2308 goto out; 2309 } 2310 walk->seq++; 2311 } 2312 if (walk->seq == 0) { 2313 err = -ENOENT; 2314 goto out; 2315 } 2316 list_del_init(&walk->all); 2317 out: 2318 spin_unlock_bh(&net->xfrm.xfrm_state_lock); 2319 return err; 2320 } 2321 EXPORT_SYMBOL(xfrm_state_walk); 2322 2323 void xfrm_state_walk_init(struct xfrm_state_walk *walk, u8 proto, 2324 struct xfrm_address_filter *filter) 2325 { 2326 INIT_LIST_HEAD(&walk->all); 2327 walk->proto = proto; 2328 walk->state = XFRM_STATE_DEAD; 2329 walk->seq = 0; 2330 walk->filter = filter; 2331 } 2332 EXPORT_SYMBOL(xfrm_state_walk_init); 2333 2334 void xfrm_state_walk_done(struct xfrm_state_walk *walk, struct net *net) 2335 { 2336 kfree(walk->filter); 2337 2338 if (list_empty(&walk->all)) 2339 return; 2340 2341 spin_lock_bh(&net->xfrm.xfrm_state_lock); 2342 list_del(&walk->all); 2343 spin_unlock_bh(&net->xfrm.xfrm_state_lock); 2344 } 2345 EXPORT_SYMBOL(xfrm_state_walk_done); 2346 2347 static void xfrm_replay_timer_handler(struct timer_list *t) 2348 { 2349 struct xfrm_state *x = from_timer(x, t, rtimer); 2350 2351 spin_lock(&x->lock); 2352 2353 if (x->km.state == XFRM_STATE_VALID) { 2354 if (xfrm_aevent_is_on(xs_net(x))) 2355 xfrm_replay_notify(x, XFRM_REPLAY_TIMEOUT); 2356 else 2357 x->xflags |= XFRM_TIME_DEFER; 2358 } 2359 2360 spin_unlock(&x->lock); 2361 } 2362 2363 static LIST_HEAD(xfrm_km_list); 2364 2365 void km_policy_notify(struct xfrm_policy *xp, int dir, const struct km_event *c) 2366 { 2367 struct xfrm_mgr *km; 2368 2369 rcu_read_lock(); 2370 list_for_each_entry_rcu(km, &xfrm_km_list, list) 2371 if (km->notify_policy) 2372 km->notify_policy(xp, dir, c); 2373 rcu_read_unlock(); 2374 } 2375 2376 void km_state_notify(struct xfrm_state *x, const struct km_event *c) 2377 { 2378 struct xfrm_mgr *km; 2379 rcu_read_lock(); 2380 list_for_each_entry_rcu(km, &xfrm_km_list, list) 2381 if (km->notify) 2382 km->notify(x, c); 2383 rcu_read_unlock(); 2384 } 2385 2386 EXPORT_SYMBOL(km_policy_notify); 2387 EXPORT_SYMBOL(km_state_notify); 2388 2389 void km_state_expired(struct xfrm_state *x, int hard, u32 portid) 2390 { 2391 struct km_event c; 2392 2393 c.data.hard = hard; 2394 c.portid = portid; 2395 c.event = XFRM_MSG_EXPIRE; 2396 km_state_notify(x, &c); 2397 } 2398 2399 EXPORT_SYMBOL(km_state_expired); 2400 /* 2401 * We send to all registered managers regardless of failure 2402 * We are happy with one success 2403 */ 2404 int km_query(struct xfrm_state *x, struct xfrm_tmpl *t, struct xfrm_policy *pol) 2405 { 2406 int err = -EINVAL, acqret; 2407 struct xfrm_mgr *km; 2408 2409 rcu_read_lock(); 2410 list_for_each_entry_rcu(km, &xfrm_km_list, list) { 2411 acqret = km->acquire(x, t, pol); 2412 if (!acqret) 2413 err = acqret; 2414 } 2415 rcu_read_unlock(); 2416 return err; 2417 } 2418 EXPORT_SYMBOL(km_query); 2419 2420 static int __km_new_mapping(struct xfrm_state *x, xfrm_address_t *ipaddr, __be16 sport) 2421 { 2422 int err = -EINVAL; 2423 struct xfrm_mgr *km; 2424 2425 rcu_read_lock(); 2426 list_for_each_entry_rcu(km, &xfrm_km_list, list) { 2427 if (km->new_mapping) 2428 err = km->new_mapping(x, ipaddr, sport); 2429 if (!err) 2430 break; 2431 } 2432 rcu_read_unlock(); 2433 return err; 2434 } 2435 2436 int km_new_mapping(struct xfrm_state *x, xfrm_address_t *ipaddr, __be16 sport) 2437 { 2438 int ret = 0; 2439 2440 if (x->mapping_maxage) { 2441 if ((jiffies / HZ - x->new_mapping) > x->mapping_maxage || 2442 x->new_mapping_sport != sport) { 2443 x->new_mapping_sport = sport; 2444 x->new_mapping = jiffies / HZ; 2445 ret = __km_new_mapping(x, ipaddr, sport); 2446 } 2447 } else { 2448 ret = __km_new_mapping(x, ipaddr, sport); 2449 } 2450 2451 return ret; 2452 } 2453 EXPORT_SYMBOL(km_new_mapping); 2454 2455 void km_policy_expired(struct xfrm_policy *pol, int dir, int hard, u32 portid) 2456 { 2457 struct km_event c; 2458 2459 c.data.hard = hard; 2460 c.portid = portid; 2461 c.event = XFRM_MSG_POLEXPIRE; 2462 km_policy_notify(pol, dir, &c); 2463 } 2464 EXPORT_SYMBOL(km_policy_expired); 2465 2466 #ifdef CONFIG_XFRM_MIGRATE 2467 int km_migrate(const struct xfrm_selector *sel, u8 dir, u8 type, 2468 const struct xfrm_migrate *m, int num_migrate, 2469 const struct xfrm_kmaddress *k, 2470 const struct xfrm_encap_tmpl *encap) 2471 { 2472 int err = -EINVAL; 2473 int ret; 2474 struct xfrm_mgr *km; 2475 2476 rcu_read_lock(); 2477 list_for_each_entry_rcu(km, &xfrm_km_list, list) { 2478 if (km->migrate) { 2479 ret = km->migrate(sel, dir, type, m, num_migrate, k, 2480 encap); 2481 if (!ret) 2482 err = ret; 2483 } 2484 } 2485 rcu_read_unlock(); 2486 return err; 2487 } 2488 EXPORT_SYMBOL(km_migrate); 2489 #endif 2490 2491 int km_report(struct net *net, u8 proto, struct xfrm_selector *sel, xfrm_address_t *addr) 2492 { 2493 int err = -EINVAL; 2494 int ret; 2495 struct xfrm_mgr *km; 2496 2497 rcu_read_lock(); 2498 list_for_each_entry_rcu(km, &xfrm_km_list, list) { 2499 if (km->report) { 2500 ret = km->report(net, proto, sel, addr); 2501 if (!ret) 2502 err = ret; 2503 } 2504 } 2505 rcu_read_unlock(); 2506 return err; 2507 } 2508 EXPORT_SYMBOL(km_report); 2509 2510 static bool km_is_alive(const struct km_event *c) 2511 { 2512 struct xfrm_mgr *km; 2513 bool is_alive = false; 2514 2515 rcu_read_lock(); 2516 list_for_each_entry_rcu(km, &xfrm_km_list, list) { 2517 if (km->is_alive && km->is_alive(c)) { 2518 is_alive = true; 2519 break; 2520 } 2521 } 2522 rcu_read_unlock(); 2523 2524 return is_alive; 2525 } 2526 2527 #if IS_ENABLED(CONFIG_XFRM_USER_COMPAT) 2528 static DEFINE_SPINLOCK(xfrm_translator_lock); 2529 static struct xfrm_translator __rcu *xfrm_translator; 2530 2531 struct xfrm_translator *xfrm_get_translator(void) 2532 { 2533 struct xfrm_translator *xtr; 2534 2535 rcu_read_lock(); 2536 xtr = rcu_dereference(xfrm_translator); 2537 if (unlikely(!xtr)) 2538 goto out; 2539 if (!try_module_get(xtr->owner)) 2540 xtr = NULL; 2541 out: 2542 rcu_read_unlock(); 2543 return xtr; 2544 } 2545 EXPORT_SYMBOL_GPL(xfrm_get_translator); 2546 2547 void xfrm_put_translator(struct xfrm_translator *xtr) 2548 { 2549 module_put(xtr->owner); 2550 } 2551 EXPORT_SYMBOL_GPL(xfrm_put_translator); 2552 2553 int xfrm_register_translator(struct xfrm_translator *xtr) 2554 { 2555 int err = 0; 2556 2557 spin_lock_bh(&xfrm_translator_lock); 2558 if (unlikely(xfrm_translator != NULL)) 2559 err = -EEXIST; 2560 else 2561 rcu_assign_pointer(xfrm_translator, xtr); 2562 spin_unlock_bh(&xfrm_translator_lock); 2563 2564 return err; 2565 } 2566 EXPORT_SYMBOL_GPL(xfrm_register_translator); 2567 2568 int xfrm_unregister_translator(struct xfrm_translator *xtr) 2569 { 2570 int err = 0; 2571 2572 spin_lock_bh(&xfrm_translator_lock); 2573 if (likely(xfrm_translator != NULL)) { 2574 if (rcu_access_pointer(xfrm_translator) != xtr) 2575 err = -EINVAL; 2576 else 2577 RCU_INIT_POINTER(xfrm_translator, NULL); 2578 } 2579 spin_unlock_bh(&xfrm_translator_lock); 2580 synchronize_rcu(); 2581 2582 return err; 2583 } 2584 EXPORT_SYMBOL_GPL(xfrm_unregister_translator); 2585 #endif 2586 2587 int xfrm_user_policy(struct sock *sk, int optname, sockptr_t optval, int optlen) 2588 { 2589 int err; 2590 u8 *data; 2591 struct xfrm_mgr *km; 2592 struct xfrm_policy *pol = NULL; 2593 2594 if (sockptr_is_null(optval) && !optlen) { 2595 xfrm_sk_policy_insert(sk, XFRM_POLICY_IN, NULL); 2596 xfrm_sk_policy_insert(sk, XFRM_POLICY_OUT, NULL); 2597 __sk_dst_reset(sk); 2598 return 0; 2599 } 2600 2601 if (optlen <= 0 || optlen > PAGE_SIZE) 2602 return -EMSGSIZE; 2603 2604 data = memdup_sockptr(optval, optlen); 2605 if (IS_ERR(data)) 2606 return PTR_ERR(data); 2607 2608 if (in_compat_syscall()) { 2609 struct xfrm_translator *xtr = xfrm_get_translator(); 2610 2611 if (!xtr) { 2612 kfree(data); 2613 return -EOPNOTSUPP; 2614 } 2615 2616 err = xtr->xlate_user_policy_sockptr(&data, optlen); 2617 xfrm_put_translator(xtr); 2618 if (err) { 2619 kfree(data); 2620 return err; 2621 } 2622 } 2623 2624 err = -EINVAL; 2625 rcu_read_lock(); 2626 list_for_each_entry_rcu(km, &xfrm_km_list, list) { 2627 pol = km->compile_policy(sk, optname, data, 2628 optlen, &err); 2629 if (err >= 0) 2630 break; 2631 } 2632 rcu_read_unlock(); 2633 2634 if (err >= 0) { 2635 xfrm_sk_policy_insert(sk, err, pol); 2636 xfrm_pol_put(pol); 2637 __sk_dst_reset(sk); 2638 err = 0; 2639 } 2640 2641 kfree(data); 2642 return err; 2643 } 2644 EXPORT_SYMBOL(xfrm_user_policy); 2645 2646 static DEFINE_SPINLOCK(xfrm_km_lock); 2647 2648 void xfrm_register_km(struct xfrm_mgr *km) 2649 { 2650 spin_lock_bh(&xfrm_km_lock); 2651 list_add_tail_rcu(&km->list, &xfrm_km_list); 2652 spin_unlock_bh(&xfrm_km_lock); 2653 } 2654 EXPORT_SYMBOL(xfrm_register_km); 2655 2656 void xfrm_unregister_km(struct xfrm_mgr *km) 2657 { 2658 spin_lock_bh(&xfrm_km_lock); 2659 list_del_rcu(&km->list); 2660 spin_unlock_bh(&xfrm_km_lock); 2661 synchronize_rcu(); 2662 } 2663 EXPORT_SYMBOL(xfrm_unregister_km); 2664 2665 int xfrm_state_register_afinfo(struct xfrm_state_afinfo *afinfo) 2666 { 2667 int err = 0; 2668 2669 if (WARN_ON(afinfo->family >= NPROTO)) 2670 return -EAFNOSUPPORT; 2671 2672 spin_lock_bh(&xfrm_state_afinfo_lock); 2673 if (unlikely(xfrm_state_afinfo[afinfo->family] != NULL)) 2674 err = -EEXIST; 2675 else 2676 rcu_assign_pointer(xfrm_state_afinfo[afinfo->family], afinfo); 2677 spin_unlock_bh(&xfrm_state_afinfo_lock); 2678 return err; 2679 } 2680 EXPORT_SYMBOL(xfrm_state_register_afinfo); 2681 2682 int xfrm_state_unregister_afinfo(struct xfrm_state_afinfo *afinfo) 2683 { 2684 int err = 0, family = afinfo->family; 2685 2686 if (WARN_ON(family >= NPROTO)) 2687 return -EAFNOSUPPORT; 2688 2689 spin_lock_bh(&xfrm_state_afinfo_lock); 2690 if (likely(xfrm_state_afinfo[afinfo->family] != NULL)) { 2691 if (rcu_access_pointer(xfrm_state_afinfo[family]) != afinfo) 2692 err = -EINVAL; 2693 else 2694 RCU_INIT_POINTER(xfrm_state_afinfo[afinfo->family], NULL); 2695 } 2696 spin_unlock_bh(&xfrm_state_afinfo_lock); 2697 synchronize_rcu(); 2698 return err; 2699 } 2700 EXPORT_SYMBOL(xfrm_state_unregister_afinfo); 2701 2702 struct xfrm_state_afinfo *xfrm_state_afinfo_get_rcu(unsigned int family) 2703 { 2704 if (unlikely(family >= NPROTO)) 2705 return NULL; 2706 2707 return rcu_dereference(xfrm_state_afinfo[family]); 2708 } 2709 EXPORT_SYMBOL_GPL(xfrm_state_afinfo_get_rcu); 2710 2711 struct xfrm_state_afinfo *xfrm_state_get_afinfo(unsigned int family) 2712 { 2713 struct xfrm_state_afinfo *afinfo; 2714 if (unlikely(family >= NPROTO)) 2715 return NULL; 2716 rcu_read_lock(); 2717 afinfo = rcu_dereference(xfrm_state_afinfo[family]); 2718 if (unlikely(!afinfo)) 2719 rcu_read_unlock(); 2720 return afinfo; 2721 } 2722 2723 void xfrm_flush_gc(void) 2724 { 2725 flush_work(&xfrm_state_gc_work); 2726 } 2727 EXPORT_SYMBOL(xfrm_flush_gc); 2728 2729 /* Temporarily located here until net/xfrm/xfrm_tunnel.c is created */ 2730 void xfrm_state_delete_tunnel(struct xfrm_state *x) 2731 { 2732 if (x->tunnel) { 2733 struct xfrm_state *t = x->tunnel; 2734 2735 if (atomic_read(&t->tunnel_users) == 2) 2736 xfrm_state_delete(t); 2737 atomic_dec(&t->tunnel_users); 2738 xfrm_state_put_sync(t); 2739 x->tunnel = NULL; 2740 } 2741 } 2742 EXPORT_SYMBOL(xfrm_state_delete_tunnel); 2743 2744 u32 xfrm_state_mtu(struct xfrm_state *x, int mtu) 2745 { 2746 const struct xfrm_type *type = READ_ONCE(x->type); 2747 struct crypto_aead *aead; 2748 u32 blksize, net_adj = 0; 2749 2750 if (x->km.state != XFRM_STATE_VALID || 2751 !type || type->proto != IPPROTO_ESP) 2752 return mtu - x->props.header_len; 2753 2754 aead = x->data; 2755 blksize = ALIGN(crypto_aead_blocksize(aead), 4); 2756 2757 switch (x->props.mode) { 2758 case XFRM_MODE_TRANSPORT: 2759 case XFRM_MODE_BEET: 2760 if (x->props.family == AF_INET) 2761 net_adj = sizeof(struct iphdr); 2762 else if (x->props.family == AF_INET6) 2763 net_adj = sizeof(struct ipv6hdr); 2764 break; 2765 case XFRM_MODE_TUNNEL: 2766 break; 2767 default: 2768 WARN_ON_ONCE(1); 2769 break; 2770 } 2771 2772 return ((mtu - x->props.header_len - crypto_aead_authsize(aead) - 2773 net_adj) & ~(blksize - 1)) + net_adj - 2; 2774 } 2775 EXPORT_SYMBOL_GPL(xfrm_state_mtu); 2776 2777 int __xfrm_init_state(struct xfrm_state *x, bool init_replay, bool offload, 2778 struct netlink_ext_ack *extack) 2779 { 2780 const struct xfrm_mode *inner_mode; 2781 const struct xfrm_mode *outer_mode; 2782 int family = x->props.family; 2783 int err; 2784 2785 if (family == AF_INET && 2786 READ_ONCE(xs_net(x)->ipv4.sysctl_ip_no_pmtu_disc)) 2787 x->props.flags |= XFRM_STATE_NOPMTUDISC; 2788 2789 err = -EPROTONOSUPPORT; 2790 2791 if (x->sel.family != AF_UNSPEC) { 2792 inner_mode = xfrm_get_mode(x->props.mode, x->sel.family); 2793 if (inner_mode == NULL) { 2794 NL_SET_ERR_MSG(extack, "Requested mode not found"); 2795 goto error; 2796 } 2797 2798 if (!(inner_mode->flags & XFRM_MODE_FLAG_TUNNEL) && 2799 family != x->sel.family) { 2800 NL_SET_ERR_MSG(extack, "Only tunnel modes can accommodate a change of family"); 2801 goto error; 2802 } 2803 2804 x->inner_mode = *inner_mode; 2805 } else { 2806 const struct xfrm_mode *inner_mode_iaf; 2807 int iafamily = AF_INET; 2808 2809 inner_mode = xfrm_get_mode(x->props.mode, x->props.family); 2810 if (inner_mode == NULL) { 2811 NL_SET_ERR_MSG(extack, "Requested mode not found"); 2812 goto error; 2813 } 2814 2815 x->inner_mode = *inner_mode; 2816 2817 if (x->props.family == AF_INET) 2818 iafamily = AF_INET6; 2819 2820 inner_mode_iaf = xfrm_get_mode(x->props.mode, iafamily); 2821 if (inner_mode_iaf) { 2822 if (inner_mode_iaf->flags & XFRM_MODE_FLAG_TUNNEL) 2823 x->inner_mode_iaf = *inner_mode_iaf; 2824 } 2825 } 2826 2827 x->type = xfrm_get_type(x->id.proto, family); 2828 if (x->type == NULL) { 2829 NL_SET_ERR_MSG(extack, "Requested type not found"); 2830 goto error; 2831 } 2832 2833 x->type_offload = xfrm_get_type_offload(x->id.proto, family, offload); 2834 2835 err = x->type->init_state(x, extack); 2836 if (err) 2837 goto error; 2838 2839 outer_mode = xfrm_get_mode(x->props.mode, family); 2840 if (!outer_mode) { 2841 NL_SET_ERR_MSG(extack, "Requested mode not found"); 2842 err = -EPROTONOSUPPORT; 2843 goto error; 2844 } 2845 2846 x->outer_mode = *outer_mode; 2847 if (init_replay) { 2848 err = xfrm_init_replay(x, extack); 2849 if (err) 2850 goto error; 2851 } 2852 2853 error: 2854 return err; 2855 } 2856 2857 EXPORT_SYMBOL(__xfrm_init_state); 2858 2859 int xfrm_init_state(struct xfrm_state *x) 2860 { 2861 int err; 2862 2863 err = __xfrm_init_state(x, true, false, NULL); 2864 if (!err) 2865 x->km.state = XFRM_STATE_VALID; 2866 2867 return err; 2868 } 2869 2870 EXPORT_SYMBOL(xfrm_init_state); 2871 2872 int __net_init xfrm_state_init(struct net *net) 2873 { 2874 unsigned int sz; 2875 2876 if (net_eq(net, &init_net)) 2877 xfrm_state_cache = KMEM_CACHE(xfrm_state, 2878 SLAB_HWCACHE_ALIGN | SLAB_PANIC); 2879 2880 INIT_LIST_HEAD(&net->xfrm.state_all); 2881 2882 sz = sizeof(struct hlist_head) * 8; 2883 2884 net->xfrm.state_bydst = xfrm_hash_alloc(sz); 2885 if (!net->xfrm.state_bydst) 2886 goto out_bydst; 2887 net->xfrm.state_bysrc = xfrm_hash_alloc(sz); 2888 if (!net->xfrm.state_bysrc) 2889 goto out_bysrc; 2890 net->xfrm.state_byspi = xfrm_hash_alloc(sz); 2891 if (!net->xfrm.state_byspi) 2892 goto out_byspi; 2893 net->xfrm.state_byseq = xfrm_hash_alloc(sz); 2894 if (!net->xfrm.state_byseq) 2895 goto out_byseq; 2896 net->xfrm.state_hmask = ((sz / sizeof(struct hlist_head)) - 1); 2897 2898 net->xfrm.state_num = 0; 2899 INIT_WORK(&net->xfrm.state_hash_work, xfrm_hash_resize); 2900 spin_lock_init(&net->xfrm.xfrm_state_lock); 2901 seqcount_spinlock_init(&net->xfrm.xfrm_state_hash_generation, 2902 &net->xfrm.xfrm_state_lock); 2903 return 0; 2904 2905 out_byseq: 2906 xfrm_hash_free(net->xfrm.state_byspi, sz); 2907 out_byspi: 2908 xfrm_hash_free(net->xfrm.state_bysrc, sz); 2909 out_bysrc: 2910 xfrm_hash_free(net->xfrm.state_bydst, sz); 2911 out_bydst: 2912 return -ENOMEM; 2913 } 2914 2915 void xfrm_state_fini(struct net *net) 2916 { 2917 unsigned int sz; 2918 2919 flush_work(&net->xfrm.state_hash_work); 2920 flush_work(&xfrm_state_gc_work); 2921 xfrm_state_flush(net, 0, false, true); 2922 2923 WARN_ON(!list_empty(&net->xfrm.state_all)); 2924 2925 sz = (net->xfrm.state_hmask + 1) * sizeof(struct hlist_head); 2926 WARN_ON(!hlist_empty(net->xfrm.state_byseq)); 2927 xfrm_hash_free(net->xfrm.state_byseq, sz); 2928 WARN_ON(!hlist_empty(net->xfrm.state_byspi)); 2929 xfrm_hash_free(net->xfrm.state_byspi, sz); 2930 WARN_ON(!hlist_empty(net->xfrm.state_bysrc)); 2931 xfrm_hash_free(net->xfrm.state_bysrc, sz); 2932 WARN_ON(!hlist_empty(net->xfrm.state_bydst)); 2933 xfrm_hash_free(net->xfrm.state_bydst, sz); 2934 } 2935 2936 #ifdef CONFIG_AUDITSYSCALL 2937 static void xfrm_audit_helper_sainfo(struct xfrm_state *x, 2938 struct audit_buffer *audit_buf) 2939 { 2940 struct xfrm_sec_ctx *ctx = x->security; 2941 u32 spi = ntohl(x->id.spi); 2942 2943 if (ctx) 2944 audit_log_format(audit_buf, " sec_alg=%u sec_doi=%u sec_obj=%s", 2945 ctx->ctx_alg, ctx->ctx_doi, ctx->ctx_str); 2946 2947 switch (x->props.family) { 2948 case AF_INET: 2949 audit_log_format(audit_buf, " src=%pI4 dst=%pI4", 2950 &x->props.saddr.a4, &x->id.daddr.a4); 2951 break; 2952 case AF_INET6: 2953 audit_log_format(audit_buf, " src=%pI6 dst=%pI6", 2954 x->props.saddr.a6, x->id.daddr.a6); 2955 break; 2956 } 2957 2958 audit_log_format(audit_buf, " spi=%u(0x%x)", spi, spi); 2959 } 2960 2961 static void xfrm_audit_helper_pktinfo(struct sk_buff *skb, u16 family, 2962 struct audit_buffer *audit_buf) 2963 { 2964 const struct iphdr *iph4; 2965 const struct ipv6hdr *iph6; 2966 2967 switch (family) { 2968 case AF_INET: 2969 iph4 = ip_hdr(skb); 2970 audit_log_format(audit_buf, " src=%pI4 dst=%pI4", 2971 &iph4->saddr, &iph4->daddr); 2972 break; 2973 case AF_INET6: 2974 iph6 = ipv6_hdr(skb); 2975 audit_log_format(audit_buf, 2976 " src=%pI6 dst=%pI6 flowlbl=0x%x%02x%02x", 2977 &iph6->saddr, &iph6->daddr, 2978 iph6->flow_lbl[0] & 0x0f, 2979 iph6->flow_lbl[1], 2980 iph6->flow_lbl[2]); 2981 break; 2982 } 2983 } 2984 2985 void xfrm_audit_state_add(struct xfrm_state *x, int result, bool task_valid) 2986 { 2987 struct audit_buffer *audit_buf; 2988 2989 audit_buf = xfrm_audit_start("SAD-add"); 2990 if (audit_buf == NULL) 2991 return; 2992 xfrm_audit_helper_usrinfo(task_valid, audit_buf); 2993 xfrm_audit_helper_sainfo(x, audit_buf); 2994 audit_log_format(audit_buf, " res=%u", result); 2995 audit_log_end(audit_buf); 2996 } 2997 EXPORT_SYMBOL_GPL(xfrm_audit_state_add); 2998 2999 void xfrm_audit_state_delete(struct xfrm_state *x, int result, bool task_valid) 3000 { 3001 struct audit_buffer *audit_buf; 3002 3003 audit_buf = xfrm_audit_start("SAD-delete"); 3004 if (audit_buf == NULL) 3005 return; 3006 xfrm_audit_helper_usrinfo(task_valid, audit_buf); 3007 xfrm_audit_helper_sainfo(x, audit_buf); 3008 audit_log_format(audit_buf, " res=%u", result); 3009 audit_log_end(audit_buf); 3010 } 3011 EXPORT_SYMBOL_GPL(xfrm_audit_state_delete); 3012 3013 void xfrm_audit_state_replay_overflow(struct xfrm_state *x, 3014 struct sk_buff *skb) 3015 { 3016 struct audit_buffer *audit_buf; 3017 u32 spi; 3018 3019 audit_buf = xfrm_audit_start("SA-replay-overflow"); 3020 if (audit_buf == NULL) 3021 return; 3022 xfrm_audit_helper_pktinfo(skb, x->props.family, audit_buf); 3023 /* don't record the sequence number because it's inherent in this kind 3024 * of audit message */ 3025 spi = ntohl(x->id.spi); 3026 audit_log_format(audit_buf, " spi=%u(0x%x)", spi, spi); 3027 audit_log_end(audit_buf); 3028 } 3029 EXPORT_SYMBOL_GPL(xfrm_audit_state_replay_overflow); 3030 3031 void xfrm_audit_state_replay(struct xfrm_state *x, 3032 struct sk_buff *skb, __be32 net_seq) 3033 { 3034 struct audit_buffer *audit_buf; 3035 u32 spi; 3036 3037 audit_buf = xfrm_audit_start("SA-replayed-pkt"); 3038 if (audit_buf == NULL) 3039 return; 3040 xfrm_audit_helper_pktinfo(skb, x->props.family, audit_buf); 3041 spi = ntohl(x->id.spi); 3042 audit_log_format(audit_buf, " spi=%u(0x%x) seqno=%u", 3043 spi, spi, ntohl(net_seq)); 3044 audit_log_end(audit_buf); 3045 } 3046 EXPORT_SYMBOL_GPL(xfrm_audit_state_replay); 3047 3048 void xfrm_audit_state_notfound_simple(struct sk_buff *skb, u16 family) 3049 { 3050 struct audit_buffer *audit_buf; 3051 3052 audit_buf = xfrm_audit_start("SA-notfound"); 3053 if (audit_buf == NULL) 3054 return; 3055 xfrm_audit_helper_pktinfo(skb, family, audit_buf); 3056 audit_log_end(audit_buf); 3057 } 3058 EXPORT_SYMBOL_GPL(xfrm_audit_state_notfound_simple); 3059 3060 void xfrm_audit_state_notfound(struct sk_buff *skb, u16 family, 3061 __be32 net_spi, __be32 net_seq) 3062 { 3063 struct audit_buffer *audit_buf; 3064 u32 spi; 3065 3066 audit_buf = xfrm_audit_start("SA-notfound"); 3067 if (audit_buf == NULL) 3068 return; 3069 xfrm_audit_helper_pktinfo(skb, family, audit_buf); 3070 spi = ntohl(net_spi); 3071 audit_log_format(audit_buf, " spi=%u(0x%x) seqno=%u", 3072 spi, spi, ntohl(net_seq)); 3073 audit_log_end(audit_buf); 3074 } 3075 EXPORT_SYMBOL_GPL(xfrm_audit_state_notfound); 3076 3077 void xfrm_audit_state_icvfail(struct xfrm_state *x, 3078 struct sk_buff *skb, u8 proto) 3079 { 3080 struct audit_buffer *audit_buf; 3081 __be32 net_spi; 3082 __be32 net_seq; 3083 3084 audit_buf = xfrm_audit_start("SA-icv-failure"); 3085 if (audit_buf == NULL) 3086 return; 3087 xfrm_audit_helper_pktinfo(skb, x->props.family, audit_buf); 3088 if (xfrm_parse_spi(skb, proto, &net_spi, &net_seq) == 0) { 3089 u32 spi = ntohl(net_spi); 3090 audit_log_format(audit_buf, " spi=%u(0x%x) seqno=%u", 3091 spi, spi, ntohl(net_seq)); 3092 } 3093 audit_log_end(audit_buf); 3094 } 3095 EXPORT_SYMBOL_GPL(xfrm_audit_state_icvfail); 3096 #endif /* CONFIG_AUDITSYSCALL */ 3097