1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * xfrm_state.c 4 * 5 * Changes: 6 * Mitsuru KANDA @USAGI 7 * Kazunori MIYAZAWA @USAGI 8 * Kunihiro Ishiguro <kunihiro@ipinfusion.com> 9 * IPv6 support 10 * YOSHIFUJI Hideaki @USAGI 11 * Split up af-specific functions 12 * Derek Atkins <derek@ihtfp.com> 13 * Add UDP Encapsulation 14 * 15 */ 16 17 #include <linux/compat.h> 18 #include <linux/workqueue.h> 19 #include <net/xfrm.h> 20 #include <linux/pfkeyv2.h> 21 #include <linux/ipsec.h> 22 #include <linux/module.h> 23 #include <linux/cache.h> 24 #include <linux/audit.h> 25 #include <linux/uaccess.h> 26 #include <linux/ktime.h> 27 #include <linux/slab.h> 28 #include <linux/interrupt.h> 29 #include <linux/kernel.h> 30 31 #include <crypto/aead.h> 32 33 #include "xfrm_hash.h" 34 35 #define xfrm_state_deref_prot(table, net) \ 36 rcu_dereference_protected((table), lockdep_is_held(&(net)->xfrm.xfrm_state_lock)) 37 38 static void xfrm_state_gc_task(struct work_struct *work); 39 40 /* Each xfrm_state may be linked to two tables: 41 42 1. Hash table by (spi,daddr,ah/esp) to find SA by SPI. (input,ctl) 43 2. Hash table by (daddr,family,reqid) to find what SAs exist for given 44 destination/tunnel endpoint. (output) 45 */ 46 47 static unsigned int xfrm_state_hashmax __read_mostly = 1 * 1024 * 1024; 48 static struct kmem_cache *xfrm_state_cache __ro_after_init; 49 50 static DECLARE_WORK(xfrm_state_gc_work, xfrm_state_gc_task); 51 static HLIST_HEAD(xfrm_state_gc_list); 52 53 static inline bool xfrm_state_hold_rcu(struct xfrm_state __rcu *x) 54 { 55 return refcount_inc_not_zero(&x->refcnt); 56 } 57 58 static inline unsigned int xfrm_dst_hash(struct net *net, 59 const xfrm_address_t *daddr, 60 const xfrm_address_t *saddr, 61 u32 reqid, 62 unsigned short family) 63 { 64 return __xfrm_dst_hash(daddr, saddr, reqid, family, net->xfrm.state_hmask); 65 } 66 67 static inline unsigned int xfrm_src_hash(struct net *net, 68 const xfrm_address_t *daddr, 69 const xfrm_address_t *saddr, 70 unsigned short family) 71 { 72 return __xfrm_src_hash(daddr, saddr, family, net->xfrm.state_hmask); 73 } 74 75 static inline unsigned int 76 xfrm_spi_hash(struct net *net, const xfrm_address_t *daddr, 77 __be32 spi, u8 proto, unsigned short family) 78 { 79 return __xfrm_spi_hash(daddr, spi, proto, family, net->xfrm.state_hmask); 80 } 81 82 static unsigned int xfrm_seq_hash(struct net *net, u32 seq) 83 { 84 return __xfrm_seq_hash(seq, net->xfrm.state_hmask); 85 } 86 87 #define XFRM_STATE_INSERT(by, _n, _h, _type) \ 88 { \ 89 struct xfrm_state *_x = NULL; \ 90 \ 91 if (_type != XFRM_DEV_OFFLOAD_PACKET) { \ 92 hlist_for_each_entry_rcu(_x, _h, by) { \ 93 if (_x->xso.type == XFRM_DEV_OFFLOAD_PACKET) \ 94 continue; \ 95 break; \ 96 } \ 97 } \ 98 \ 99 if (!_x || _x->xso.type == XFRM_DEV_OFFLOAD_PACKET) \ 100 /* SAD is empty or consist from HW SAs only */ \ 101 hlist_add_head_rcu(_n, _h); \ 102 else \ 103 hlist_add_before_rcu(_n, &_x->by); \ 104 } 105 106 static void xfrm_hash_transfer(struct hlist_head *list, 107 struct hlist_head *ndsttable, 108 struct hlist_head *nsrctable, 109 struct hlist_head *nspitable, 110 struct hlist_head *nseqtable, 111 unsigned int nhashmask) 112 { 113 struct hlist_node *tmp; 114 struct xfrm_state *x; 115 116 hlist_for_each_entry_safe(x, tmp, list, bydst) { 117 unsigned int h; 118 119 h = __xfrm_dst_hash(&x->id.daddr, &x->props.saddr, 120 x->props.reqid, x->props.family, 121 nhashmask); 122 XFRM_STATE_INSERT(bydst, &x->bydst, ndsttable + h, x->xso.type); 123 124 h = __xfrm_src_hash(&x->id.daddr, &x->props.saddr, 125 x->props.family, 126 nhashmask); 127 XFRM_STATE_INSERT(bysrc, &x->bysrc, nsrctable + h, x->xso.type); 128 129 if (x->id.spi) { 130 h = __xfrm_spi_hash(&x->id.daddr, x->id.spi, 131 x->id.proto, x->props.family, 132 nhashmask); 133 XFRM_STATE_INSERT(byspi, &x->byspi, nspitable + h, 134 x->xso.type); 135 } 136 137 if (x->km.seq) { 138 h = __xfrm_seq_hash(x->km.seq, nhashmask); 139 XFRM_STATE_INSERT(byseq, &x->byseq, nseqtable + h, 140 x->xso.type); 141 } 142 } 143 } 144 145 static unsigned long xfrm_hash_new_size(unsigned int state_hmask) 146 { 147 return ((state_hmask + 1) << 1) * sizeof(struct hlist_head); 148 } 149 150 static void xfrm_hash_resize(struct work_struct *work) 151 { 152 struct net *net = container_of(work, struct net, xfrm.state_hash_work); 153 struct hlist_head *ndst, *nsrc, *nspi, *nseq, *odst, *osrc, *ospi, *oseq; 154 unsigned long nsize, osize; 155 unsigned int nhashmask, ohashmask; 156 int i; 157 158 nsize = xfrm_hash_new_size(net->xfrm.state_hmask); 159 ndst = xfrm_hash_alloc(nsize); 160 if (!ndst) 161 return; 162 nsrc = xfrm_hash_alloc(nsize); 163 if (!nsrc) { 164 xfrm_hash_free(ndst, nsize); 165 return; 166 } 167 nspi = xfrm_hash_alloc(nsize); 168 if (!nspi) { 169 xfrm_hash_free(ndst, nsize); 170 xfrm_hash_free(nsrc, nsize); 171 return; 172 } 173 nseq = xfrm_hash_alloc(nsize); 174 if (!nseq) { 175 xfrm_hash_free(ndst, nsize); 176 xfrm_hash_free(nsrc, nsize); 177 xfrm_hash_free(nspi, nsize); 178 return; 179 } 180 181 spin_lock_bh(&net->xfrm.xfrm_state_lock); 182 write_seqcount_begin(&net->xfrm.xfrm_state_hash_generation); 183 184 nhashmask = (nsize / sizeof(struct hlist_head)) - 1U; 185 odst = xfrm_state_deref_prot(net->xfrm.state_bydst, net); 186 for (i = net->xfrm.state_hmask; i >= 0; i--) 187 xfrm_hash_transfer(odst + i, ndst, nsrc, nspi, nseq, nhashmask); 188 189 osrc = xfrm_state_deref_prot(net->xfrm.state_bysrc, net); 190 ospi = xfrm_state_deref_prot(net->xfrm.state_byspi, net); 191 oseq = xfrm_state_deref_prot(net->xfrm.state_byseq, net); 192 ohashmask = net->xfrm.state_hmask; 193 194 rcu_assign_pointer(net->xfrm.state_bydst, ndst); 195 rcu_assign_pointer(net->xfrm.state_bysrc, nsrc); 196 rcu_assign_pointer(net->xfrm.state_byspi, nspi); 197 rcu_assign_pointer(net->xfrm.state_byseq, nseq); 198 net->xfrm.state_hmask = nhashmask; 199 200 write_seqcount_end(&net->xfrm.xfrm_state_hash_generation); 201 spin_unlock_bh(&net->xfrm.xfrm_state_lock); 202 203 osize = (ohashmask + 1) * sizeof(struct hlist_head); 204 205 synchronize_rcu(); 206 207 xfrm_hash_free(odst, osize); 208 xfrm_hash_free(osrc, osize); 209 xfrm_hash_free(ospi, osize); 210 xfrm_hash_free(oseq, osize); 211 } 212 213 static DEFINE_SPINLOCK(xfrm_state_afinfo_lock); 214 static struct xfrm_state_afinfo __rcu *xfrm_state_afinfo[NPROTO]; 215 216 static DEFINE_SPINLOCK(xfrm_state_gc_lock); 217 218 int __xfrm_state_delete(struct xfrm_state *x); 219 220 int km_query(struct xfrm_state *x, struct xfrm_tmpl *t, struct xfrm_policy *pol); 221 static bool km_is_alive(const struct km_event *c); 222 void km_state_expired(struct xfrm_state *x, int hard, u32 portid); 223 224 int xfrm_register_type(const struct xfrm_type *type, unsigned short family) 225 { 226 struct xfrm_state_afinfo *afinfo = xfrm_state_get_afinfo(family); 227 int err = 0; 228 229 if (!afinfo) 230 return -EAFNOSUPPORT; 231 232 #define X(afi, T, name) do { \ 233 WARN_ON((afi)->type_ ## name); \ 234 (afi)->type_ ## name = (T); \ 235 } while (0) 236 237 switch (type->proto) { 238 case IPPROTO_COMP: 239 X(afinfo, type, comp); 240 break; 241 case IPPROTO_AH: 242 X(afinfo, type, ah); 243 break; 244 case IPPROTO_ESP: 245 X(afinfo, type, esp); 246 break; 247 case IPPROTO_IPIP: 248 X(afinfo, type, ipip); 249 break; 250 case IPPROTO_DSTOPTS: 251 X(afinfo, type, dstopts); 252 break; 253 case IPPROTO_ROUTING: 254 X(afinfo, type, routing); 255 break; 256 case IPPROTO_IPV6: 257 X(afinfo, type, ipip6); 258 break; 259 default: 260 WARN_ON(1); 261 err = -EPROTONOSUPPORT; 262 break; 263 } 264 #undef X 265 rcu_read_unlock(); 266 return err; 267 } 268 EXPORT_SYMBOL(xfrm_register_type); 269 270 void xfrm_unregister_type(const struct xfrm_type *type, unsigned short family) 271 { 272 struct xfrm_state_afinfo *afinfo = xfrm_state_get_afinfo(family); 273 274 if (unlikely(afinfo == NULL)) 275 return; 276 277 #define X(afi, T, name) do { \ 278 WARN_ON((afi)->type_ ## name != (T)); \ 279 (afi)->type_ ## name = NULL; \ 280 } while (0) 281 282 switch (type->proto) { 283 case IPPROTO_COMP: 284 X(afinfo, type, comp); 285 break; 286 case IPPROTO_AH: 287 X(afinfo, type, ah); 288 break; 289 case IPPROTO_ESP: 290 X(afinfo, type, esp); 291 break; 292 case IPPROTO_IPIP: 293 X(afinfo, type, ipip); 294 break; 295 case IPPROTO_DSTOPTS: 296 X(afinfo, type, dstopts); 297 break; 298 case IPPROTO_ROUTING: 299 X(afinfo, type, routing); 300 break; 301 case IPPROTO_IPV6: 302 X(afinfo, type, ipip6); 303 break; 304 default: 305 WARN_ON(1); 306 break; 307 } 308 #undef X 309 rcu_read_unlock(); 310 } 311 EXPORT_SYMBOL(xfrm_unregister_type); 312 313 static const struct xfrm_type *xfrm_get_type(u8 proto, unsigned short family) 314 { 315 const struct xfrm_type *type = NULL; 316 struct xfrm_state_afinfo *afinfo; 317 int modload_attempted = 0; 318 319 retry: 320 afinfo = xfrm_state_get_afinfo(family); 321 if (unlikely(afinfo == NULL)) 322 return NULL; 323 324 switch (proto) { 325 case IPPROTO_COMP: 326 type = afinfo->type_comp; 327 break; 328 case IPPROTO_AH: 329 type = afinfo->type_ah; 330 break; 331 case IPPROTO_ESP: 332 type = afinfo->type_esp; 333 break; 334 case IPPROTO_IPIP: 335 type = afinfo->type_ipip; 336 break; 337 case IPPROTO_DSTOPTS: 338 type = afinfo->type_dstopts; 339 break; 340 case IPPROTO_ROUTING: 341 type = afinfo->type_routing; 342 break; 343 case IPPROTO_IPV6: 344 type = afinfo->type_ipip6; 345 break; 346 default: 347 break; 348 } 349 350 if (unlikely(type && !try_module_get(type->owner))) 351 type = NULL; 352 353 rcu_read_unlock(); 354 355 if (!type && !modload_attempted) { 356 request_module("xfrm-type-%d-%d", family, proto); 357 modload_attempted = 1; 358 goto retry; 359 } 360 361 return type; 362 } 363 364 static void xfrm_put_type(const struct xfrm_type *type) 365 { 366 module_put(type->owner); 367 } 368 369 int xfrm_register_type_offload(const struct xfrm_type_offload *type, 370 unsigned short family) 371 { 372 struct xfrm_state_afinfo *afinfo = xfrm_state_get_afinfo(family); 373 int err = 0; 374 375 if (unlikely(afinfo == NULL)) 376 return -EAFNOSUPPORT; 377 378 switch (type->proto) { 379 case IPPROTO_ESP: 380 WARN_ON(afinfo->type_offload_esp); 381 afinfo->type_offload_esp = type; 382 break; 383 default: 384 WARN_ON(1); 385 err = -EPROTONOSUPPORT; 386 break; 387 } 388 389 rcu_read_unlock(); 390 return err; 391 } 392 EXPORT_SYMBOL(xfrm_register_type_offload); 393 394 void xfrm_unregister_type_offload(const struct xfrm_type_offload *type, 395 unsigned short family) 396 { 397 struct xfrm_state_afinfo *afinfo = xfrm_state_get_afinfo(family); 398 399 if (unlikely(afinfo == NULL)) 400 return; 401 402 switch (type->proto) { 403 case IPPROTO_ESP: 404 WARN_ON(afinfo->type_offload_esp != type); 405 afinfo->type_offload_esp = NULL; 406 break; 407 default: 408 WARN_ON(1); 409 break; 410 } 411 rcu_read_unlock(); 412 } 413 EXPORT_SYMBOL(xfrm_unregister_type_offload); 414 415 static const struct xfrm_type_offload * 416 xfrm_get_type_offload(u8 proto, unsigned short family, bool try_load) 417 { 418 const struct xfrm_type_offload *type = NULL; 419 struct xfrm_state_afinfo *afinfo; 420 421 retry: 422 afinfo = xfrm_state_get_afinfo(family); 423 if (unlikely(afinfo == NULL)) 424 return NULL; 425 426 switch (proto) { 427 case IPPROTO_ESP: 428 type = afinfo->type_offload_esp; 429 break; 430 default: 431 break; 432 } 433 434 if ((type && !try_module_get(type->owner))) 435 type = NULL; 436 437 rcu_read_unlock(); 438 439 if (!type && try_load) { 440 request_module("xfrm-offload-%d-%d", family, proto); 441 try_load = false; 442 goto retry; 443 } 444 445 return type; 446 } 447 448 static void xfrm_put_type_offload(const struct xfrm_type_offload *type) 449 { 450 module_put(type->owner); 451 } 452 453 static const struct xfrm_mode xfrm4_mode_map[XFRM_MODE_MAX] = { 454 [XFRM_MODE_BEET] = { 455 .encap = XFRM_MODE_BEET, 456 .flags = XFRM_MODE_FLAG_TUNNEL, 457 .family = AF_INET, 458 }, 459 [XFRM_MODE_TRANSPORT] = { 460 .encap = XFRM_MODE_TRANSPORT, 461 .family = AF_INET, 462 }, 463 [XFRM_MODE_TUNNEL] = { 464 .encap = XFRM_MODE_TUNNEL, 465 .flags = XFRM_MODE_FLAG_TUNNEL, 466 .family = AF_INET, 467 }, 468 }; 469 470 static const struct xfrm_mode xfrm6_mode_map[XFRM_MODE_MAX] = { 471 [XFRM_MODE_BEET] = { 472 .encap = XFRM_MODE_BEET, 473 .flags = XFRM_MODE_FLAG_TUNNEL, 474 .family = AF_INET6, 475 }, 476 [XFRM_MODE_ROUTEOPTIMIZATION] = { 477 .encap = XFRM_MODE_ROUTEOPTIMIZATION, 478 .family = AF_INET6, 479 }, 480 [XFRM_MODE_TRANSPORT] = { 481 .encap = XFRM_MODE_TRANSPORT, 482 .family = AF_INET6, 483 }, 484 [XFRM_MODE_TUNNEL] = { 485 .encap = XFRM_MODE_TUNNEL, 486 .flags = XFRM_MODE_FLAG_TUNNEL, 487 .family = AF_INET6, 488 }, 489 }; 490 491 static const struct xfrm_mode *xfrm_get_mode(unsigned int encap, int family) 492 { 493 const struct xfrm_mode *mode; 494 495 if (unlikely(encap >= XFRM_MODE_MAX)) 496 return NULL; 497 498 switch (family) { 499 case AF_INET: 500 mode = &xfrm4_mode_map[encap]; 501 if (mode->family == family) 502 return mode; 503 break; 504 case AF_INET6: 505 mode = &xfrm6_mode_map[encap]; 506 if (mode->family == family) 507 return mode; 508 break; 509 default: 510 break; 511 } 512 513 return NULL; 514 } 515 516 void xfrm_state_free(struct xfrm_state *x) 517 { 518 kmem_cache_free(xfrm_state_cache, x); 519 } 520 EXPORT_SYMBOL(xfrm_state_free); 521 522 static void ___xfrm_state_destroy(struct xfrm_state *x) 523 { 524 hrtimer_cancel(&x->mtimer); 525 del_timer_sync(&x->rtimer); 526 kfree(x->aead); 527 kfree(x->aalg); 528 kfree(x->ealg); 529 kfree(x->calg); 530 kfree(x->encap); 531 kfree(x->coaddr); 532 kfree(x->replay_esn); 533 kfree(x->preplay_esn); 534 if (x->type_offload) 535 xfrm_put_type_offload(x->type_offload); 536 if (x->type) { 537 x->type->destructor(x); 538 xfrm_put_type(x->type); 539 } 540 if (x->xfrag.page) 541 put_page(x->xfrag.page); 542 xfrm_dev_state_free(x); 543 security_xfrm_state_free(x); 544 xfrm_state_free(x); 545 } 546 547 static void xfrm_state_gc_task(struct work_struct *work) 548 { 549 struct xfrm_state *x; 550 struct hlist_node *tmp; 551 struct hlist_head gc_list; 552 553 spin_lock_bh(&xfrm_state_gc_lock); 554 hlist_move_list(&xfrm_state_gc_list, &gc_list); 555 spin_unlock_bh(&xfrm_state_gc_lock); 556 557 synchronize_rcu(); 558 559 hlist_for_each_entry_safe(x, tmp, &gc_list, gclist) 560 ___xfrm_state_destroy(x); 561 } 562 563 static enum hrtimer_restart xfrm_timer_handler(struct hrtimer *me) 564 { 565 struct xfrm_state *x = container_of(me, struct xfrm_state, mtimer); 566 enum hrtimer_restart ret = HRTIMER_NORESTART; 567 time64_t now = ktime_get_real_seconds(); 568 time64_t next = TIME64_MAX; 569 int warn = 0; 570 int err = 0; 571 572 spin_lock(&x->lock); 573 xfrm_dev_state_update_curlft(x); 574 575 if (x->km.state == XFRM_STATE_DEAD) 576 goto out; 577 if (x->km.state == XFRM_STATE_EXPIRED) 578 goto expired; 579 if (x->lft.hard_add_expires_seconds) { 580 time64_t tmo = x->lft.hard_add_expires_seconds + 581 x->curlft.add_time - now; 582 if (tmo <= 0) { 583 if (x->xflags & XFRM_SOFT_EXPIRE) { 584 /* enter hard expire without soft expire first?! 585 * setting a new date could trigger this. 586 * workaround: fix x->curflt.add_time by below: 587 */ 588 x->curlft.add_time = now - x->saved_tmo - 1; 589 tmo = x->lft.hard_add_expires_seconds - x->saved_tmo; 590 } else 591 goto expired; 592 } 593 if (tmo < next) 594 next = tmo; 595 } 596 if (x->lft.hard_use_expires_seconds) { 597 time64_t tmo = x->lft.hard_use_expires_seconds + 598 (READ_ONCE(x->curlft.use_time) ? : now) - now; 599 if (tmo <= 0) 600 goto expired; 601 if (tmo < next) 602 next = tmo; 603 } 604 if (x->km.dying) 605 goto resched; 606 if (x->lft.soft_add_expires_seconds) { 607 time64_t tmo = x->lft.soft_add_expires_seconds + 608 x->curlft.add_time - now; 609 if (tmo <= 0) { 610 warn = 1; 611 x->xflags &= ~XFRM_SOFT_EXPIRE; 612 } else if (tmo < next) { 613 next = tmo; 614 x->xflags |= XFRM_SOFT_EXPIRE; 615 x->saved_tmo = tmo; 616 } 617 } 618 if (x->lft.soft_use_expires_seconds) { 619 time64_t tmo = x->lft.soft_use_expires_seconds + 620 (READ_ONCE(x->curlft.use_time) ? : now) - now; 621 if (tmo <= 0) 622 warn = 1; 623 else if (tmo < next) 624 next = tmo; 625 } 626 627 x->km.dying = warn; 628 if (warn) 629 km_state_expired(x, 0, 0); 630 resched: 631 if (next != TIME64_MAX) { 632 hrtimer_forward_now(&x->mtimer, ktime_set(next, 0)); 633 ret = HRTIMER_RESTART; 634 } 635 636 goto out; 637 638 expired: 639 if (x->km.state == XFRM_STATE_ACQ && x->id.spi == 0) 640 x->km.state = XFRM_STATE_EXPIRED; 641 642 err = __xfrm_state_delete(x); 643 if (!err) 644 km_state_expired(x, 1, 0); 645 646 xfrm_audit_state_delete(x, err ? 0 : 1, true); 647 648 out: 649 spin_unlock(&x->lock); 650 return ret; 651 } 652 653 static void xfrm_replay_timer_handler(struct timer_list *t); 654 655 struct xfrm_state *xfrm_state_alloc(struct net *net) 656 { 657 struct xfrm_state *x; 658 659 x = kmem_cache_zalloc(xfrm_state_cache, GFP_ATOMIC); 660 661 if (x) { 662 write_pnet(&x->xs_net, net); 663 refcount_set(&x->refcnt, 1); 664 atomic_set(&x->tunnel_users, 0); 665 INIT_LIST_HEAD(&x->km.all); 666 INIT_HLIST_NODE(&x->bydst); 667 INIT_HLIST_NODE(&x->bysrc); 668 INIT_HLIST_NODE(&x->byspi); 669 INIT_HLIST_NODE(&x->byseq); 670 hrtimer_init(&x->mtimer, CLOCK_BOOTTIME, HRTIMER_MODE_ABS_SOFT); 671 x->mtimer.function = xfrm_timer_handler; 672 timer_setup(&x->rtimer, xfrm_replay_timer_handler, 0); 673 x->curlft.add_time = ktime_get_real_seconds(); 674 x->lft.soft_byte_limit = XFRM_INF; 675 x->lft.soft_packet_limit = XFRM_INF; 676 x->lft.hard_byte_limit = XFRM_INF; 677 x->lft.hard_packet_limit = XFRM_INF; 678 x->replay_maxage = 0; 679 x->replay_maxdiff = 0; 680 spin_lock_init(&x->lock); 681 } 682 return x; 683 } 684 EXPORT_SYMBOL(xfrm_state_alloc); 685 686 void __xfrm_state_destroy(struct xfrm_state *x, bool sync) 687 { 688 WARN_ON(x->km.state != XFRM_STATE_DEAD); 689 690 if (sync) { 691 synchronize_rcu(); 692 ___xfrm_state_destroy(x); 693 } else { 694 spin_lock_bh(&xfrm_state_gc_lock); 695 hlist_add_head(&x->gclist, &xfrm_state_gc_list); 696 spin_unlock_bh(&xfrm_state_gc_lock); 697 schedule_work(&xfrm_state_gc_work); 698 } 699 } 700 EXPORT_SYMBOL(__xfrm_state_destroy); 701 702 int __xfrm_state_delete(struct xfrm_state *x) 703 { 704 struct net *net = xs_net(x); 705 int err = -ESRCH; 706 707 if (x->km.state != XFRM_STATE_DEAD) { 708 x->km.state = XFRM_STATE_DEAD; 709 spin_lock(&net->xfrm.xfrm_state_lock); 710 list_del(&x->km.all); 711 hlist_del_rcu(&x->bydst); 712 hlist_del_rcu(&x->bysrc); 713 if (x->km.seq) 714 hlist_del_rcu(&x->byseq); 715 if (x->id.spi) 716 hlist_del_rcu(&x->byspi); 717 net->xfrm.state_num--; 718 spin_unlock(&net->xfrm.xfrm_state_lock); 719 720 if (x->encap_sk) 721 sock_put(rcu_dereference_raw(x->encap_sk)); 722 723 xfrm_dev_state_delete(x); 724 725 /* All xfrm_state objects are created by xfrm_state_alloc. 726 * The xfrm_state_alloc call gives a reference, and that 727 * is what we are dropping here. 728 */ 729 xfrm_state_put(x); 730 err = 0; 731 } 732 733 return err; 734 } 735 EXPORT_SYMBOL(__xfrm_state_delete); 736 737 int xfrm_state_delete(struct xfrm_state *x) 738 { 739 int err; 740 741 spin_lock_bh(&x->lock); 742 err = __xfrm_state_delete(x); 743 spin_unlock_bh(&x->lock); 744 745 return err; 746 } 747 EXPORT_SYMBOL(xfrm_state_delete); 748 749 #ifdef CONFIG_SECURITY_NETWORK_XFRM 750 static inline int 751 xfrm_state_flush_secctx_check(struct net *net, u8 proto, bool task_valid) 752 { 753 int i, err = 0; 754 755 for (i = 0; i <= net->xfrm.state_hmask; i++) { 756 struct xfrm_state *x; 757 758 hlist_for_each_entry(x, net->xfrm.state_bydst+i, bydst) { 759 if (xfrm_id_proto_match(x->id.proto, proto) && 760 (err = security_xfrm_state_delete(x)) != 0) { 761 xfrm_audit_state_delete(x, 0, task_valid); 762 return err; 763 } 764 } 765 } 766 767 return err; 768 } 769 770 static inline int 771 xfrm_dev_state_flush_secctx_check(struct net *net, struct net_device *dev, bool task_valid) 772 { 773 int i, err = 0; 774 775 for (i = 0; i <= net->xfrm.state_hmask; i++) { 776 struct xfrm_state *x; 777 struct xfrm_dev_offload *xso; 778 779 hlist_for_each_entry(x, net->xfrm.state_bydst+i, bydst) { 780 xso = &x->xso; 781 782 if (xso->dev == dev && 783 (err = security_xfrm_state_delete(x)) != 0) { 784 xfrm_audit_state_delete(x, 0, task_valid); 785 return err; 786 } 787 } 788 } 789 790 return err; 791 } 792 #else 793 static inline int 794 xfrm_state_flush_secctx_check(struct net *net, u8 proto, bool task_valid) 795 { 796 return 0; 797 } 798 799 static inline int 800 xfrm_dev_state_flush_secctx_check(struct net *net, struct net_device *dev, bool task_valid) 801 { 802 return 0; 803 } 804 #endif 805 806 int xfrm_state_flush(struct net *net, u8 proto, bool task_valid, bool sync) 807 { 808 int i, err = 0, cnt = 0; 809 810 spin_lock_bh(&net->xfrm.xfrm_state_lock); 811 err = xfrm_state_flush_secctx_check(net, proto, task_valid); 812 if (err) 813 goto out; 814 815 err = -ESRCH; 816 for (i = 0; i <= net->xfrm.state_hmask; i++) { 817 struct xfrm_state *x; 818 restart: 819 hlist_for_each_entry(x, net->xfrm.state_bydst+i, bydst) { 820 if (!xfrm_state_kern(x) && 821 xfrm_id_proto_match(x->id.proto, proto)) { 822 xfrm_state_hold(x); 823 spin_unlock_bh(&net->xfrm.xfrm_state_lock); 824 825 err = xfrm_state_delete(x); 826 xfrm_audit_state_delete(x, err ? 0 : 1, 827 task_valid); 828 if (sync) 829 xfrm_state_put_sync(x); 830 else 831 xfrm_state_put(x); 832 if (!err) 833 cnt++; 834 835 spin_lock_bh(&net->xfrm.xfrm_state_lock); 836 goto restart; 837 } 838 } 839 } 840 out: 841 spin_unlock_bh(&net->xfrm.xfrm_state_lock); 842 if (cnt) 843 err = 0; 844 845 return err; 846 } 847 EXPORT_SYMBOL(xfrm_state_flush); 848 849 int xfrm_dev_state_flush(struct net *net, struct net_device *dev, bool task_valid) 850 { 851 int i, err = 0, cnt = 0; 852 853 spin_lock_bh(&net->xfrm.xfrm_state_lock); 854 err = xfrm_dev_state_flush_secctx_check(net, dev, task_valid); 855 if (err) 856 goto out; 857 858 err = -ESRCH; 859 for (i = 0; i <= net->xfrm.state_hmask; i++) { 860 struct xfrm_state *x; 861 struct xfrm_dev_offload *xso; 862 restart: 863 hlist_for_each_entry(x, net->xfrm.state_bydst+i, bydst) { 864 xso = &x->xso; 865 866 if (!xfrm_state_kern(x) && xso->dev == dev) { 867 xfrm_state_hold(x); 868 spin_unlock_bh(&net->xfrm.xfrm_state_lock); 869 870 err = xfrm_state_delete(x); 871 xfrm_audit_state_delete(x, err ? 0 : 1, 872 task_valid); 873 xfrm_state_put(x); 874 if (!err) 875 cnt++; 876 877 spin_lock_bh(&net->xfrm.xfrm_state_lock); 878 goto restart; 879 } 880 } 881 } 882 if (cnt) 883 err = 0; 884 885 out: 886 spin_unlock_bh(&net->xfrm.xfrm_state_lock); 887 return err; 888 } 889 EXPORT_SYMBOL(xfrm_dev_state_flush); 890 891 void xfrm_sad_getinfo(struct net *net, struct xfrmk_sadinfo *si) 892 { 893 spin_lock_bh(&net->xfrm.xfrm_state_lock); 894 si->sadcnt = net->xfrm.state_num; 895 si->sadhcnt = net->xfrm.state_hmask + 1; 896 si->sadhmcnt = xfrm_state_hashmax; 897 spin_unlock_bh(&net->xfrm.xfrm_state_lock); 898 } 899 EXPORT_SYMBOL(xfrm_sad_getinfo); 900 901 static void 902 __xfrm4_init_tempsel(struct xfrm_selector *sel, const struct flowi *fl) 903 { 904 const struct flowi4 *fl4 = &fl->u.ip4; 905 906 sel->daddr.a4 = fl4->daddr; 907 sel->saddr.a4 = fl4->saddr; 908 sel->dport = xfrm_flowi_dport(fl, &fl4->uli); 909 sel->dport_mask = htons(0xffff); 910 sel->sport = xfrm_flowi_sport(fl, &fl4->uli); 911 sel->sport_mask = htons(0xffff); 912 sel->family = AF_INET; 913 sel->prefixlen_d = 32; 914 sel->prefixlen_s = 32; 915 sel->proto = fl4->flowi4_proto; 916 sel->ifindex = fl4->flowi4_oif; 917 } 918 919 static void 920 __xfrm6_init_tempsel(struct xfrm_selector *sel, const struct flowi *fl) 921 { 922 const struct flowi6 *fl6 = &fl->u.ip6; 923 924 /* Initialize temporary selector matching only to current session. */ 925 *(struct in6_addr *)&sel->daddr = fl6->daddr; 926 *(struct in6_addr *)&sel->saddr = fl6->saddr; 927 sel->dport = xfrm_flowi_dport(fl, &fl6->uli); 928 sel->dport_mask = htons(0xffff); 929 sel->sport = xfrm_flowi_sport(fl, &fl6->uli); 930 sel->sport_mask = htons(0xffff); 931 sel->family = AF_INET6; 932 sel->prefixlen_d = 128; 933 sel->prefixlen_s = 128; 934 sel->proto = fl6->flowi6_proto; 935 sel->ifindex = fl6->flowi6_oif; 936 } 937 938 static void 939 xfrm_init_tempstate(struct xfrm_state *x, const struct flowi *fl, 940 const struct xfrm_tmpl *tmpl, 941 const xfrm_address_t *daddr, const xfrm_address_t *saddr, 942 unsigned short family) 943 { 944 switch (family) { 945 case AF_INET: 946 __xfrm4_init_tempsel(&x->sel, fl); 947 break; 948 case AF_INET6: 949 __xfrm6_init_tempsel(&x->sel, fl); 950 break; 951 } 952 953 x->id = tmpl->id; 954 955 switch (tmpl->encap_family) { 956 case AF_INET: 957 if (x->id.daddr.a4 == 0) 958 x->id.daddr.a4 = daddr->a4; 959 x->props.saddr = tmpl->saddr; 960 if (x->props.saddr.a4 == 0) 961 x->props.saddr.a4 = saddr->a4; 962 break; 963 case AF_INET6: 964 if (ipv6_addr_any((struct in6_addr *)&x->id.daddr)) 965 memcpy(&x->id.daddr, daddr, sizeof(x->sel.daddr)); 966 memcpy(&x->props.saddr, &tmpl->saddr, sizeof(x->props.saddr)); 967 if (ipv6_addr_any((struct in6_addr *)&x->props.saddr)) 968 memcpy(&x->props.saddr, saddr, sizeof(x->props.saddr)); 969 break; 970 } 971 972 x->props.mode = tmpl->mode; 973 x->props.reqid = tmpl->reqid; 974 x->props.family = tmpl->encap_family; 975 } 976 977 static struct xfrm_state *__xfrm_state_lookup_all(struct net *net, u32 mark, 978 const xfrm_address_t *daddr, 979 __be32 spi, u8 proto, 980 unsigned short family, 981 struct xfrm_dev_offload *xdo) 982 { 983 unsigned int h = xfrm_spi_hash(net, daddr, spi, proto, family); 984 struct xfrm_state *x; 985 986 hlist_for_each_entry_rcu(x, net->xfrm.state_byspi + h, byspi) { 987 #ifdef CONFIG_XFRM_OFFLOAD 988 if (xdo->type == XFRM_DEV_OFFLOAD_PACKET) { 989 if (x->xso.type != XFRM_DEV_OFFLOAD_PACKET) 990 /* HW states are in the head of list, there is 991 * no need to iterate further. 992 */ 993 break; 994 995 /* Packet offload: both policy and SA should 996 * have same device. 997 */ 998 if (xdo->dev != x->xso.dev) 999 continue; 1000 } else if (x->xso.type == XFRM_DEV_OFFLOAD_PACKET) 1001 /* Skip HW policy for SW lookups */ 1002 continue; 1003 #endif 1004 if (x->props.family != family || 1005 x->id.spi != spi || 1006 x->id.proto != proto || 1007 !xfrm_addr_equal(&x->id.daddr, daddr, family)) 1008 continue; 1009 1010 if ((mark & x->mark.m) != x->mark.v) 1011 continue; 1012 if (!xfrm_state_hold_rcu(x)) 1013 continue; 1014 return x; 1015 } 1016 1017 return NULL; 1018 } 1019 1020 static struct xfrm_state *__xfrm_state_lookup(struct net *net, u32 mark, 1021 const xfrm_address_t *daddr, 1022 __be32 spi, u8 proto, 1023 unsigned short family) 1024 { 1025 unsigned int h = xfrm_spi_hash(net, daddr, spi, proto, family); 1026 struct xfrm_state *x; 1027 1028 hlist_for_each_entry_rcu(x, net->xfrm.state_byspi + h, byspi) { 1029 if (x->props.family != family || 1030 x->id.spi != spi || 1031 x->id.proto != proto || 1032 !xfrm_addr_equal(&x->id.daddr, daddr, family)) 1033 continue; 1034 1035 if ((mark & x->mark.m) != x->mark.v) 1036 continue; 1037 if (!xfrm_state_hold_rcu(x)) 1038 continue; 1039 return x; 1040 } 1041 1042 return NULL; 1043 } 1044 1045 static struct xfrm_state *__xfrm_state_lookup_byaddr(struct net *net, u32 mark, 1046 const xfrm_address_t *daddr, 1047 const xfrm_address_t *saddr, 1048 u8 proto, unsigned short family) 1049 { 1050 unsigned int h = xfrm_src_hash(net, daddr, saddr, family); 1051 struct xfrm_state *x; 1052 1053 hlist_for_each_entry_rcu(x, net->xfrm.state_bysrc + h, bysrc) { 1054 if (x->props.family != family || 1055 x->id.proto != proto || 1056 !xfrm_addr_equal(&x->id.daddr, daddr, family) || 1057 !xfrm_addr_equal(&x->props.saddr, saddr, family)) 1058 continue; 1059 1060 if ((mark & x->mark.m) != x->mark.v) 1061 continue; 1062 if (!xfrm_state_hold_rcu(x)) 1063 continue; 1064 return x; 1065 } 1066 1067 return NULL; 1068 } 1069 1070 static inline struct xfrm_state * 1071 __xfrm_state_locate(struct xfrm_state *x, int use_spi, int family) 1072 { 1073 struct net *net = xs_net(x); 1074 u32 mark = x->mark.v & x->mark.m; 1075 1076 if (use_spi) 1077 return __xfrm_state_lookup(net, mark, &x->id.daddr, 1078 x->id.spi, x->id.proto, family); 1079 else 1080 return __xfrm_state_lookup_byaddr(net, mark, 1081 &x->id.daddr, 1082 &x->props.saddr, 1083 x->id.proto, family); 1084 } 1085 1086 static void xfrm_hash_grow_check(struct net *net, int have_hash_collision) 1087 { 1088 if (have_hash_collision && 1089 (net->xfrm.state_hmask + 1) < xfrm_state_hashmax && 1090 net->xfrm.state_num > net->xfrm.state_hmask) 1091 schedule_work(&net->xfrm.state_hash_work); 1092 } 1093 1094 static void xfrm_state_look_at(struct xfrm_policy *pol, struct xfrm_state *x, 1095 const struct flowi *fl, unsigned short family, 1096 struct xfrm_state **best, int *acq_in_progress, 1097 int *error) 1098 { 1099 /* Resolution logic: 1100 * 1. There is a valid state with matching selector. Done. 1101 * 2. Valid state with inappropriate selector. Skip. 1102 * 1103 * Entering area of "sysdeps". 1104 * 1105 * 3. If state is not valid, selector is temporary, it selects 1106 * only session which triggered previous resolution. Key 1107 * manager will do something to install a state with proper 1108 * selector. 1109 */ 1110 if (x->km.state == XFRM_STATE_VALID) { 1111 if ((x->sel.family && 1112 (x->sel.family != family || 1113 !xfrm_selector_match(&x->sel, fl, family))) || 1114 !security_xfrm_state_pol_flow_match(x, pol, 1115 &fl->u.__fl_common)) 1116 return; 1117 1118 if (!*best || 1119 (*best)->km.dying > x->km.dying || 1120 ((*best)->km.dying == x->km.dying && 1121 (*best)->curlft.add_time < x->curlft.add_time)) 1122 *best = x; 1123 } else if (x->km.state == XFRM_STATE_ACQ) { 1124 *acq_in_progress = 1; 1125 } else if (x->km.state == XFRM_STATE_ERROR || 1126 x->km.state == XFRM_STATE_EXPIRED) { 1127 if ((!x->sel.family || 1128 (x->sel.family == family && 1129 xfrm_selector_match(&x->sel, fl, family))) && 1130 security_xfrm_state_pol_flow_match(x, pol, 1131 &fl->u.__fl_common)) 1132 *error = -ESRCH; 1133 } 1134 } 1135 1136 struct xfrm_state * 1137 xfrm_state_find(const xfrm_address_t *daddr, const xfrm_address_t *saddr, 1138 const struct flowi *fl, struct xfrm_tmpl *tmpl, 1139 struct xfrm_policy *pol, int *err, 1140 unsigned short family, u32 if_id) 1141 { 1142 static xfrm_address_t saddr_wildcard = { }; 1143 struct net *net = xp_net(pol); 1144 unsigned int h, h_wildcard; 1145 struct xfrm_state *x, *x0, *to_put; 1146 int acquire_in_progress = 0; 1147 int error = 0; 1148 struct xfrm_state *best = NULL; 1149 u32 mark = pol->mark.v & pol->mark.m; 1150 unsigned short encap_family = tmpl->encap_family; 1151 unsigned int sequence; 1152 struct km_event c; 1153 1154 to_put = NULL; 1155 1156 sequence = read_seqcount_begin(&net->xfrm.xfrm_state_hash_generation); 1157 1158 rcu_read_lock(); 1159 h = xfrm_dst_hash(net, daddr, saddr, tmpl->reqid, encap_family); 1160 hlist_for_each_entry_rcu(x, net->xfrm.state_bydst + h, bydst) { 1161 #ifdef CONFIG_XFRM_OFFLOAD 1162 if (pol->xdo.type == XFRM_DEV_OFFLOAD_PACKET) { 1163 if (x->xso.type != XFRM_DEV_OFFLOAD_PACKET) 1164 /* HW states are in the head of list, there is 1165 * no need to iterate further. 1166 */ 1167 break; 1168 1169 /* Packet offload: both policy and SA should 1170 * have same device. 1171 */ 1172 if (pol->xdo.dev != x->xso.dev) 1173 continue; 1174 } else if (x->xso.type == XFRM_DEV_OFFLOAD_PACKET) 1175 /* Skip HW policy for SW lookups */ 1176 continue; 1177 #endif 1178 if (x->props.family == encap_family && 1179 x->props.reqid == tmpl->reqid && 1180 (mark & x->mark.m) == x->mark.v && 1181 x->if_id == if_id && 1182 !(x->props.flags & XFRM_STATE_WILDRECV) && 1183 xfrm_state_addr_check(x, daddr, saddr, encap_family) && 1184 tmpl->mode == x->props.mode && 1185 tmpl->id.proto == x->id.proto && 1186 (tmpl->id.spi == x->id.spi || !tmpl->id.spi)) 1187 xfrm_state_look_at(pol, x, fl, family, 1188 &best, &acquire_in_progress, &error); 1189 } 1190 if (best || acquire_in_progress) 1191 goto found; 1192 1193 h_wildcard = xfrm_dst_hash(net, daddr, &saddr_wildcard, tmpl->reqid, encap_family); 1194 hlist_for_each_entry_rcu(x, net->xfrm.state_bydst + h_wildcard, bydst) { 1195 #ifdef CONFIG_XFRM_OFFLOAD 1196 if (pol->xdo.type == XFRM_DEV_OFFLOAD_PACKET) { 1197 if (x->xso.type != XFRM_DEV_OFFLOAD_PACKET) 1198 /* HW states are in the head of list, there is 1199 * no need to iterate further. 1200 */ 1201 break; 1202 1203 /* Packet offload: both policy and SA should 1204 * have same device. 1205 */ 1206 if (pol->xdo.dev != x->xso.dev) 1207 continue; 1208 } else if (x->xso.type == XFRM_DEV_OFFLOAD_PACKET) 1209 /* Skip HW policy for SW lookups */ 1210 continue; 1211 #endif 1212 if (x->props.family == encap_family && 1213 x->props.reqid == tmpl->reqid && 1214 (mark & x->mark.m) == x->mark.v && 1215 x->if_id == if_id && 1216 !(x->props.flags & XFRM_STATE_WILDRECV) && 1217 xfrm_addr_equal(&x->id.daddr, daddr, encap_family) && 1218 tmpl->mode == x->props.mode && 1219 tmpl->id.proto == x->id.proto && 1220 (tmpl->id.spi == x->id.spi || !tmpl->id.spi)) 1221 xfrm_state_look_at(pol, x, fl, family, 1222 &best, &acquire_in_progress, &error); 1223 } 1224 1225 found: 1226 x = best; 1227 if (!x && !error && !acquire_in_progress) { 1228 if (tmpl->id.spi && 1229 (x0 = __xfrm_state_lookup_all(net, mark, daddr, 1230 tmpl->id.spi, tmpl->id.proto, 1231 encap_family, 1232 &pol->xdo)) != NULL) { 1233 to_put = x0; 1234 error = -EEXIST; 1235 goto out; 1236 } 1237 1238 c.net = net; 1239 /* If the KMs have no listeners (yet...), avoid allocating an SA 1240 * for each and every packet - garbage collection might not 1241 * handle the flood. 1242 */ 1243 if (!km_is_alive(&c)) { 1244 error = -ESRCH; 1245 goto out; 1246 } 1247 1248 x = xfrm_state_alloc(net); 1249 if (x == NULL) { 1250 error = -ENOMEM; 1251 goto out; 1252 } 1253 /* Initialize temporary state matching only 1254 * to current session. */ 1255 xfrm_init_tempstate(x, fl, tmpl, daddr, saddr, family); 1256 memcpy(&x->mark, &pol->mark, sizeof(x->mark)); 1257 x->if_id = if_id; 1258 1259 error = security_xfrm_state_alloc_acquire(x, pol->security, fl->flowi_secid); 1260 if (error) { 1261 x->km.state = XFRM_STATE_DEAD; 1262 to_put = x; 1263 x = NULL; 1264 goto out; 1265 } 1266 #ifdef CONFIG_XFRM_OFFLOAD 1267 if (pol->xdo.type == XFRM_DEV_OFFLOAD_PACKET) { 1268 struct xfrm_dev_offload *xdo = &pol->xdo; 1269 struct xfrm_dev_offload *xso = &x->xso; 1270 1271 xso->type = XFRM_DEV_OFFLOAD_PACKET; 1272 xso->dir = xdo->dir; 1273 xso->dev = xdo->dev; 1274 xso->real_dev = xdo->real_dev; 1275 xso->flags = XFRM_DEV_OFFLOAD_FLAG_ACQ; 1276 netdev_tracker_alloc(xso->dev, &xso->dev_tracker, 1277 GFP_ATOMIC); 1278 error = xso->dev->xfrmdev_ops->xdo_dev_state_add(x, NULL); 1279 if (error) { 1280 xso->dir = 0; 1281 netdev_put(xso->dev, &xso->dev_tracker); 1282 xso->dev = NULL; 1283 xso->real_dev = NULL; 1284 xso->type = XFRM_DEV_OFFLOAD_UNSPECIFIED; 1285 x->km.state = XFRM_STATE_DEAD; 1286 to_put = x; 1287 x = NULL; 1288 goto out; 1289 } 1290 } 1291 #endif 1292 if (km_query(x, tmpl, pol) == 0) { 1293 spin_lock_bh(&net->xfrm.xfrm_state_lock); 1294 x->km.state = XFRM_STATE_ACQ; 1295 list_add(&x->km.all, &net->xfrm.state_all); 1296 XFRM_STATE_INSERT(bydst, &x->bydst, 1297 net->xfrm.state_bydst + h, 1298 x->xso.type); 1299 h = xfrm_src_hash(net, daddr, saddr, encap_family); 1300 XFRM_STATE_INSERT(bysrc, &x->bysrc, 1301 net->xfrm.state_bysrc + h, 1302 x->xso.type); 1303 if (x->id.spi) { 1304 h = xfrm_spi_hash(net, &x->id.daddr, x->id.spi, x->id.proto, encap_family); 1305 XFRM_STATE_INSERT(byspi, &x->byspi, 1306 net->xfrm.state_byspi + h, 1307 x->xso.type); 1308 } 1309 if (x->km.seq) { 1310 h = xfrm_seq_hash(net, x->km.seq); 1311 XFRM_STATE_INSERT(byseq, &x->byseq, 1312 net->xfrm.state_byseq + h, 1313 x->xso.type); 1314 } 1315 x->lft.hard_add_expires_seconds = net->xfrm.sysctl_acq_expires; 1316 hrtimer_start(&x->mtimer, 1317 ktime_set(net->xfrm.sysctl_acq_expires, 0), 1318 HRTIMER_MODE_REL_SOFT); 1319 net->xfrm.state_num++; 1320 xfrm_hash_grow_check(net, x->bydst.next != NULL); 1321 spin_unlock_bh(&net->xfrm.xfrm_state_lock); 1322 } else { 1323 #ifdef CONFIG_XFRM_OFFLOAD 1324 struct xfrm_dev_offload *xso = &x->xso; 1325 1326 if (xso->type == XFRM_DEV_OFFLOAD_PACKET) { 1327 xso->dev->xfrmdev_ops->xdo_dev_state_delete(x); 1328 xso->dir = 0; 1329 netdev_put(xso->dev, &xso->dev_tracker); 1330 xso->dev = NULL; 1331 xso->real_dev = NULL; 1332 xso->type = XFRM_DEV_OFFLOAD_UNSPECIFIED; 1333 } 1334 #endif 1335 x->km.state = XFRM_STATE_DEAD; 1336 to_put = x; 1337 x = NULL; 1338 error = -ESRCH; 1339 } 1340 } 1341 out: 1342 if (x) { 1343 if (!xfrm_state_hold_rcu(x)) { 1344 *err = -EAGAIN; 1345 x = NULL; 1346 } 1347 } else { 1348 *err = acquire_in_progress ? -EAGAIN : error; 1349 } 1350 rcu_read_unlock(); 1351 if (to_put) 1352 xfrm_state_put(to_put); 1353 1354 if (read_seqcount_retry(&net->xfrm.xfrm_state_hash_generation, sequence)) { 1355 *err = -EAGAIN; 1356 if (x) { 1357 xfrm_state_put(x); 1358 x = NULL; 1359 } 1360 } 1361 1362 return x; 1363 } 1364 1365 struct xfrm_state * 1366 xfrm_stateonly_find(struct net *net, u32 mark, u32 if_id, 1367 xfrm_address_t *daddr, xfrm_address_t *saddr, 1368 unsigned short family, u8 mode, u8 proto, u32 reqid) 1369 { 1370 unsigned int h; 1371 struct xfrm_state *rx = NULL, *x = NULL; 1372 1373 spin_lock_bh(&net->xfrm.xfrm_state_lock); 1374 h = xfrm_dst_hash(net, daddr, saddr, reqid, family); 1375 hlist_for_each_entry(x, net->xfrm.state_bydst+h, bydst) { 1376 if (x->props.family == family && 1377 x->props.reqid == reqid && 1378 (mark & x->mark.m) == x->mark.v && 1379 x->if_id == if_id && 1380 !(x->props.flags & XFRM_STATE_WILDRECV) && 1381 xfrm_state_addr_check(x, daddr, saddr, family) && 1382 mode == x->props.mode && 1383 proto == x->id.proto && 1384 x->km.state == XFRM_STATE_VALID) { 1385 rx = x; 1386 break; 1387 } 1388 } 1389 1390 if (rx) 1391 xfrm_state_hold(rx); 1392 spin_unlock_bh(&net->xfrm.xfrm_state_lock); 1393 1394 1395 return rx; 1396 } 1397 EXPORT_SYMBOL(xfrm_stateonly_find); 1398 1399 struct xfrm_state *xfrm_state_lookup_byspi(struct net *net, __be32 spi, 1400 unsigned short family) 1401 { 1402 struct xfrm_state *x; 1403 struct xfrm_state_walk *w; 1404 1405 spin_lock_bh(&net->xfrm.xfrm_state_lock); 1406 list_for_each_entry(w, &net->xfrm.state_all, all) { 1407 x = container_of(w, struct xfrm_state, km); 1408 if (x->props.family != family || 1409 x->id.spi != spi) 1410 continue; 1411 1412 xfrm_state_hold(x); 1413 spin_unlock_bh(&net->xfrm.xfrm_state_lock); 1414 return x; 1415 } 1416 spin_unlock_bh(&net->xfrm.xfrm_state_lock); 1417 return NULL; 1418 } 1419 EXPORT_SYMBOL(xfrm_state_lookup_byspi); 1420 1421 static void __xfrm_state_insert(struct xfrm_state *x) 1422 { 1423 struct net *net = xs_net(x); 1424 unsigned int h; 1425 1426 list_add(&x->km.all, &net->xfrm.state_all); 1427 1428 h = xfrm_dst_hash(net, &x->id.daddr, &x->props.saddr, 1429 x->props.reqid, x->props.family); 1430 XFRM_STATE_INSERT(bydst, &x->bydst, net->xfrm.state_bydst + h, 1431 x->xso.type); 1432 1433 h = xfrm_src_hash(net, &x->id.daddr, &x->props.saddr, x->props.family); 1434 XFRM_STATE_INSERT(bysrc, &x->bysrc, net->xfrm.state_bysrc + h, 1435 x->xso.type); 1436 1437 if (x->id.spi) { 1438 h = xfrm_spi_hash(net, &x->id.daddr, x->id.spi, x->id.proto, 1439 x->props.family); 1440 1441 XFRM_STATE_INSERT(byspi, &x->byspi, net->xfrm.state_byspi + h, 1442 x->xso.type); 1443 } 1444 1445 if (x->km.seq) { 1446 h = xfrm_seq_hash(net, x->km.seq); 1447 1448 XFRM_STATE_INSERT(byseq, &x->byseq, net->xfrm.state_byseq + h, 1449 x->xso.type); 1450 } 1451 1452 hrtimer_start(&x->mtimer, ktime_set(1, 0), HRTIMER_MODE_REL_SOFT); 1453 if (x->replay_maxage) 1454 mod_timer(&x->rtimer, jiffies + x->replay_maxage); 1455 1456 net->xfrm.state_num++; 1457 1458 xfrm_hash_grow_check(net, x->bydst.next != NULL); 1459 } 1460 1461 /* net->xfrm.xfrm_state_lock is held */ 1462 static void __xfrm_state_bump_genids(struct xfrm_state *xnew) 1463 { 1464 struct net *net = xs_net(xnew); 1465 unsigned short family = xnew->props.family; 1466 u32 reqid = xnew->props.reqid; 1467 struct xfrm_state *x; 1468 unsigned int h; 1469 u32 mark = xnew->mark.v & xnew->mark.m; 1470 u32 if_id = xnew->if_id; 1471 1472 h = xfrm_dst_hash(net, &xnew->id.daddr, &xnew->props.saddr, reqid, family); 1473 hlist_for_each_entry(x, net->xfrm.state_bydst+h, bydst) { 1474 if (x->props.family == family && 1475 x->props.reqid == reqid && 1476 x->if_id == if_id && 1477 (mark & x->mark.m) == x->mark.v && 1478 xfrm_addr_equal(&x->id.daddr, &xnew->id.daddr, family) && 1479 xfrm_addr_equal(&x->props.saddr, &xnew->props.saddr, family)) 1480 x->genid++; 1481 } 1482 } 1483 1484 void xfrm_state_insert(struct xfrm_state *x) 1485 { 1486 struct net *net = xs_net(x); 1487 1488 spin_lock_bh(&net->xfrm.xfrm_state_lock); 1489 __xfrm_state_bump_genids(x); 1490 __xfrm_state_insert(x); 1491 spin_unlock_bh(&net->xfrm.xfrm_state_lock); 1492 } 1493 EXPORT_SYMBOL(xfrm_state_insert); 1494 1495 /* net->xfrm.xfrm_state_lock is held */ 1496 static struct xfrm_state *__find_acq_core(struct net *net, 1497 const struct xfrm_mark *m, 1498 unsigned short family, u8 mode, 1499 u32 reqid, u32 if_id, u8 proto, 1500 const xfrm_address_t *daddr, 1501 const xfrm_address_t *saddr, 1502 int create) 1503 { 1504 unsigned int h = xfrm_dst_hash(net, daddr, saddr, reqid, family); 1505 struct xfrm_state *x; 1506 u32 mark = m->v & m->m; 1507 1508 hlist_for_each_entry(x, net->xfrm.state_bydst+h, bydst) { 1509 if (x->props.reqid != reqid || 1510 x->props.mode != mode || 1511 x->props.family != family || 1512 x->km.state != XFRM_STATE_ACQ || 1513 x->id.spi != 0 || 1514 x->id.proto != proto || 1515 (mark & x->mark.m) != x->mark.v || 1516 !xfrm_addr_equal(&x->id.daddr, daddr, family) || 1517 !xfrm_addr_equal(&x->props.saddr, saddr, family)) 1518 continue; 1519 1520 xfrm_state_hold(x); 1521 return x; 1522 } 1523 1524 if (!create) 1525 return NULL; 1526 1527 x = xfrm_state_alloc(net); 1528 if (likely(x)) { 1529 switch (family) { 1530 case AF_INET: 1531 x->sel.daddr.a4 = daddr->a4; 1532 x->sel.saddr.a4 = saddr->a4; 1533 x->sel.prefixlen_d = 32; 1534 x->sel.prefixlen_s = 32; 1535 x->props.saddr.a4 = saddr->a4; 1536 x->id.daddr.a4 = daddr->a4; 1537 break; 1538 1539 case AF_INET6: 1540 x->sel.daddr.in6 = daddr->in6; 1541 x->sel.saddr.in6 = saddr->in6; 1542 x->sel.prefixlen_d = 128; 1543 x->sel.prefixlen_s = 128; 1544 x->props.saddr.in6 = saddr->in6; 1545 x->id.daddr.in6 = daddr->in6; 1546 break; 1547 } 1548 1549 x->km.state = XFRM_STATE_ACQ; 1550 x->id.proto = proto; 1551 x->props.family = family; 1552 x->props.mode = mode; 1553 x->props.reqid = reqid; 1554 x->if_id = if_id; 1555 x->mark.v = m->v; 1556 x->mark.m = m->m; 1557 x->lft.hard_add_expires_seconds = net->xfrm.sysctl_acq_expires; 1558 xfrm_state_hold(x); 1559 hrtimer_start(&x->mtimer, 1560 ktime_set(net->xfrm.sysctl_acq_expires, 0), 1561 HRTIMER_MODE_REL_SOFT); 1562 list_add(&x->km.all, &net->xfrm.state_all); 1563 XFRM_STATE_INSERT(bydst, &x->bydst, net->xfrm.state_bydst + h, 1564 x->xso.type); 1565 h = xfrm_src_hash(net, daddr, saddr, family); 1566 XFRM_STATE_INSERT(bysrc, &x->bysrc, net->xfrm.state_bysrc + h, 1567 x->xso.type); 1568 1569 net->xfrm.state_num++; 1570 1571 xfrm_hash_grow_check(net, x->bydst.next != NULL); 1572 } 1573 1574 return x; 1575 } 1576 1577 static struct xfrm_state *__xfrm_find_acq_byseq(struct net *net, u32 mark, u32 seq); 1578 1579 int xfrm_state_add(struct xfrm_state *x) 1580 { 1581 struct net *net = xs_net(x); 1582 struct xfrm_state *x1, *to_put; 1583 int family; 1584 int err; 1585 u32 mark = x->mark.v & x->mark.m; 1586 int use_spi = xfrm_id_proto_match(x->id.proto, IPSEC_PROTO_ANY); 1587 1588 family = x->props.family; 1589 1590 to_put = NULL; 1591 1592 spin_lock_bh(&net->xfrm.xfrm_state_lock); 1593 1594 x1 = __xfrm_state_locate(x, use_spi, family); 1595 if (x1) { 1596 to_put = x1; 1597 x1 = NULL; 1598 err = -EEXIST; 1599 goto out; 1600 } 1601 1602 if (use_spi && x->km.seq) { 1603 x1 = __xfrm_find_acq_byseq(net, mark, x->km.seq); 1604 if (x1 && ((x1->id.proto != x->id.proto) || 1605 !xfrm_addr_equal(&x1->id.daddr, &x->id.daddr, family))) { 1606 to_put = x1; 1607 x1 = NULL; 1608 } 1609 } 1610 1611 if (use_spi && !x1) 1612 x1 = __find_acq_core(net, &x->mark, family, x->props.mode, 1613 x->props.reqid, x->if_id, x->id.proto, 1614 &x->id.daddr, &x->props.saddr, 0); 1615 1616 __xfrm_state_bump_genids(x); 1617 __xfrm_state_insert(x); 1618 err = 0; 1619 1620 out: 1621 spin_unlock_bh(&net->xfrm.xfrm_state_lock); 1622 1623 if (x1) { 1624 xfrm_state_delete(x1); 1625 xfrm_state_put(x1); 1626 } 1627 1628 if (to_put) 1629 xfrm_state_put(to_put); 1630 1631 return err; 1632 } 1633 EXPORT_SYMBOL(xfrm_state_add); 1634 1635 #ifdef CONFIG_XFRM_MIGRATE 1636 static inline int clone_security(struct xfrm_state *x, struct xfrm_sec_ctx *security) 1637 { 1638 struct xfrm_user_sec_ctx *uctx; 1639 int size = sizeof(*uctx) + security->ctx_len; 1640 int err; 1641 1642 uctx = kmalloc(size, GFP_KERNEL); 1643 if (!uctx) 1644 return -ENOMEM; 1645 1646 uctx->exttype = XFRMA_SEC_CTX; 1647 uctx->len = size; 1648 uctx->ctx_doi = security->ctx_doi; 1649 uctx->ctx_alg = security->ctx_alg; 1650 uctx->ctx_len = security->ctx_len; 1651 memcpy(uctx + 1, security->ctx_str, security->ctx_len); 1652 err = security_xfrm_state_alloc(x, uctx); 1653 kfree(uctx); 1654 if (err) 1655 return err; 1656 1657 return 0; 1658 } 1659 1660 static struct xfrm_state *xfrm_state_clone(struct xfrm_state *orig, 1661 struct xfrm_encap_tmpl *encap) 1662 { 1663 struct net *net = xs_net(orig); 1664 struct xfrm_state *x = xfrm_state_alloc(net); 1665 if (!x) 1666 goto out; 1667 1668 memcpy(&x->id, &orig->id, sizeof(x->id)); 1669 memcpy(&x->sel, &orig->sel, sizeof(x->sel)); 1670 memcpy(&x->lft, &orig->lft, sizeof(x->lft)); 1671 x->props.mode = orig->props.mode; 1672 x->props.replay_window = orig->props.replay_window; 1673 x->props.reqid = orig->props.reqid; 1674 x->props.family = orig->props.family; 1675 x->props.saddr = orig->props.saddr; 1676 1677 if (orig->aalg) { 1678 x->aalg = xfrm_algo_auth_clone(orig->aalg); 1679 if (!x->aalg) 1680 goto error; 1681 } 1682 x->props.aalgo = orig->props.aalgo; 1683 1684 if (orig->aead) { 1685 x->aead = xfrm_algo_aead_clone(orig->aead); 1686 x->geniv = orig->geniv; 1687 if (!x->aead) 1688 goto error; 1689 } 1690 if (orig->ealg) { 1691 x->ealg = xfrm_algo_clone(orig->ealg); 1692 if (!x->ealg) 1693 goto error; 1694 } 1695 x->props.ealgo = orig->props.ealgo; 1696 1697 if (orig->calg) { 1698 x->calg = xfrm_algo_clone(orig->calg); 1699 if (!x->calg) 1700 goto error; 1701 } 1702 x->props.calgo = orig->props.calgo; 1703 1704 if (encap || orig->encap) { 1705 if (encap) 1706 x->encap = kmemdup(encap, sizeof(*x->encap), 1707 GFP_KERNEL); 1708 else 1709 x->encap = kmemdup(orig->encap, sizeof(*x->encap), 1710 GFP_KERNEL); 1711 1712 if (!x->encap) 1713 goto error; 1714 } 1715 1716 if (orig->security) 1717 if (clone_security(x, orig->security)) 1718 goto error; 1719 1720 if (orig->coaddr) { 1721 x->coaddr = kmemdup(orig->coaddr, sizeof(*x->coaddr), 1722 GFP_KERNEL); 1723 if (!x->coaddr) 1724 goto error; 1725 } 1726 1727 if (orig->replay_esn) { 1728 if (xfrm_replay_clone(x, orig)) 1729 goto error; 1730 } 1731 1732 memcpy(&x->mark, &orig->mark, sizeof(x->mark)); 1733 memcpy(&x->props.smark, &orig->props.smark, sizeof(x->props.smark)); 1734 1735 x->props.flags = orig->props.flags; 1736 x->props.extra_flags = orig->props.extra_flags; 1737 1738 x->if_id = orig->if_id; 1739 x->tfcpad = orig->tfcpad; 1740 x->replay_maxdiff = orig->replay_maxdiff; 1741 x->replay_maxage = orig->replay_maxage; 1742 memcpy(&x->curlft, &orig->curlft, sizeof(x->curlft)); 1743 x->km.state = orig->km.state; 1744 x->km.seq = orig->km.seq; 1745 x->replay = orig->replay; 1746 x->preplay = orig->preplay; 1747 x->mapping_maxage = orig->mapping_maxage; 1748 x->lastused = orig->lastused; 1749 x->new_mapping = 0; 1750 x->new_mapping_sport = 0; 1751 1752 return x; 1753 1754 error: 1755 xfrm_state_put(x); 1756 out: 1757 return NULL; 1758 } 1759 1760 struct xfrm_state *xfrm_migrate_state_find(struct xfrm_migrate *m, struct net *net, 1761 u32 if_id) 1762 { 1763 unsigned int h; 1764 struct xfrm_state *x = NULL; 1765 1766 spin_lock_bh(&net->xfrm.xfrm_state_lock); 1767 1768 if (m->reqid) { 1769 h = xfrm_dst_hash(net, &m->old_daddr, &m->old_saddr, 1770 m->reqid, m->old_family); 1771 hlist_for_each_entry(x, net->xfrm.state_bydst+h, bydst) { 1772 if (x->props.mode != m->mode || 1773 x->id.proto != m->proto) 1774 continue; 1775 if (m->reqid && x->props.reqid != m->reqid) 1776 continue; 1777 if (if_id != 0 && x->if_id != if_id) 1778 continue; 1779 if (!xfrm_addr_equal(&x->id.daddr, &m->old_daddr, 1780 m->old_family) || 1781 !xfrm_addr_equal(&x->props.saddr, &m->old_saddr, 1782 m->old_family)) 1783 continue; 1784 xfrm_state_hold(x); 1785 break; 1786 } 1787 } else { 1788 h = xfrm_src_hash(net, &m->old_daddr, &m->old_saddr, 1789 m->old_family); 1790 hlist_for_each_entry(x, net->xfrm.state_bysrc+h, bysrc) { 1791 if (x->props.mode != m->mode || 1792 x->id.proto != m->proto) 1793 continue; 1794 if (if_id != 0 && x->if_id != if_id) 1795 continue; 1796 if (!xfrm_addr_equal(&x->id.daddr, &m->old_daddr, 1797 m->old_family) || 1798 !xfrm_addr_equal(&x->props.saddr, &m->old_saddr, 1799 m->old_family)) 1800 continue; 1801 xfrm_state_hold(x); 1802 break; 1803 } 1804 } 1805 1806 spin_unlock_bh(&net->xfrm.xfrm_state_lock); 1807 1808 return x; 1809 } 1810 EXPORT_SYMBOL(xfrm_migrate_state_find); 1811 1812 struct xfrm_state *xfrm_state_migrate(struct xfrm_state *x, 1813 struct xfrm_migrate *m, 1814 struct xfrm_encap_tmpl *encap) 1815 { 1816 struct xfrm_state *xc; 1817 1818 xc = xfrm_state_clone(x, encap); 1819 if (!xc) 1820 return NULL; 1821 1822 xc->props.family = m->new_family; 1823 1824 if (xfrm_init_state(xc) < 0) 1825 goto error; 1826 1827 memcpy(&xc->id.daddr, &m->new_daddr, sizeof(xc->id.daddr)); 1828 memcpy(&xc->props.saddr, &m->new_saddr, sizeof(xc->props.saddr)); 1829 1830 /* add state */ 1831 if (xfrm_addr_equal(&x->id.daddr, &m->new_daddr, m->new_family)) { 1832 /* a care is needed when the destination address of the 1833 state is to be updated as it is a part of triplet */ 1834 xfrm_state_insert(xc); 1835 } else { 1836 if (xfrm_state_add(xc) < 0) 1837 goto error; 1838 } 1839 1840 return xc; 1841 error: 1842 xfrm_state_put(xc); 1843 return NULL; 1844 } 1845 EXPORT_SYMBOL(xfrm_state_migrate); 1846 #endif 1847 1848 int xfrm_state_update(struct xfrm_state *x) 1849 { 1850 struct xfrm_state *x1, *to_put; 1851 int err; 1852 int use_spi = xfrm_id_proto_match(x->id.proto, IPSEC_PROTO_ANY); 1853 struct net *net = xs_net(x); 1854 1855 to_put = NULL; 1856 1857 spin_lock_bh(&net->xfrm.xfrm_state_lock); 1858 x1 = __xfrm_state_locate(x, use_spi, x->props.family); 1859 1860 err = -ESRCH; 1861 if (!x1) 1862 goto out; 1863 1864 if (xfrm_state_kern(x1)) { 1865 to_put = x1; 1866 err = -EEXIST; 1867 goto out; 1868 } 1869 1870 if (x1->km.state == XFRM_STATE_ACQ) { 1871 __xfrm_state_insert(x); 1872 x = NULL; 1873 } 1874 err = 0; 1875 1876 out: 1877 spin_unlock_bh(&net->xfrm.xfrm_state_lock); 1878 1879 if (to_put) 1880 xfrm_state_put(to_put); 1881 1882 if (err) 1883 return err; 1884 1885 if (!x) { 1886 xfrm_state_delete(x1); 1887 xfrm_state_put(x1); 1888 return 0; 1889 } 1890 1891 err = -EINVAL; 1892 spin_lock_bh(&x1->lock); 1893 if (likely(x1->km.state == XFRM_STATE_VALID)) { 1894 if (x->encap && x1->encap && 1895 x->encap->encap_type == x1->encap->encap_type) 1896 memcpy(x1->encap, x->encap, sizeof(*x1->encap)); 1897 else if (x->encap || x1->encap) 1898 goto fail; 1899 1900 if (x->coaddr && x1->coaddr) { 1901 memcpy(x1->coaddr, x->coaddr, sizeof(*x1->coaddr)); 1902 } 1903 if (!use_spi && memcmp(&x1->sel, &x->sel, sizeof(x1->sel))) 1904 memcpy(&x1->sel, &x->sel, sizeof(x1->sel)); 1905 memcpy(&x1->lft, &x->lft, sizeof(x1->lft)); 1906 x1->km.dying = 0; 1907 1908 hrtimer_start(&x1->mtimer, ktime_set(1, 0), 1909 HRTIMER_MODE_REL_SOFT); 1910 if (READ_ONCE(x1->curlft.use_time)) 1911 xfrm_state_check_expire(x1); 1912 1913 if (x->props.smark.m || x->props.smark.v || x->if_id) { 1914 spin_lock_bh(&net->xfrm.xfrm_state_lock); 1915 1916 if (x->props.smark.m || x->props.smark.v) 1917 x1->props.smark = x->props.smark; 1918 1919 if (x->if_id) 1920 x1->if_id = x->if_id; 1921 1922 __xfrm_state_bump_genids(x1); 1923 spin_unlock_bh(&net->xfrm.xfrm_state_lock); 1924 } 1925 1926 err = 0; 1927 x->km.state = XFRM_STATE_DEAD; 1928 __xfrm_state_put(x); 1929 } 1930 1931 fail: 1932 spin_unlock_bh(&x1->lock); 1933 1934 xfrm_state_put(x1); 1935 1936 return err; 1937 } 1938 EXPORT_SYMBOL(xfrm_state_update); 1939 1940 int xfrm_state_check_expire(struct xfrm_state *x) 1941 { 1942 xfrm_dev_state_update_curlft(x); 1943 1944 if (!READ_ONCE(x->curlft.use_time)) 1945 WRITE_ONCE(x->curlft.use_time, ktime_get_real_seconds()); 1946 1947 if (x->curlft.bytes >= x->lft.hard_byte_limit || 1948 x->curlft.packets >= x->lft.hard_packet_limit) { 1949 x->km.state = XFRM_STATE_EXPIRED; 1950 hrtimer_start(&x->mtimer, 0, HRTIMER_MODE_REL_SOFT); 1951 return -EINVAL; 1952 } 1953 1954 if (!x->km.dying && 1955 (x->curlft.bytes >= x->lft.soft_byte_limit || 1956 x->curlft.packets >= x->lft.soft_packet_limit)) { 1957 x->km.dying = 1; 1958 km_state_expired(x, 0, 0); 1959 } 1960 return 0; 1961 } 1962 EXPORT_SYMBOL(xfrm_state_check_expire); 1963 1964 struct xfrm_state * 1965 xfrm_state_lookup(struct net *net, u32 mark, const xfrm_address_t *daddr, __be32 spi, 1966 u8 proto, unsigned short family) 1967 { 1968 struct xfrm_state *x; 1969 1970 rcu_read_lock(); 1971 x = __xfrm_state_lookup(net, mark, daddr, spi, proto, family); 1972 rcu_read_unlock(); 1973 return x; 1974 } 1975 EXPORT_SYMBOL(xfrm_state_lookup); 1976 1977 struct xfrm_state * 1978 xfrm_state_lookup_byaddr(struct net *net, u32 mark, 1979 const xfrm_address_t *daddr, const xfrm_address_t *saddr, 1980 u8 proto, unsigned short family) 1981 { 1982 struct xfrm_state *x; 1983 1984 spin_lock_bh(&net->xfrm.xfrm_state_lock); 1985 x = __xfrm_state_lookup_byaddr(net, mark, daddr, saddr, proto, family); 1986 spin_unlock_bh(&net->xfrm.xfrm_state_lock); 1987 return x; 1988 } 1989 EXPORT_SYMBOL(xfrm_state_lookup_byaddr); 1990 1991 struct xfrm_state * 1992 xfrm_find_acq(struct net *net, const struct xfrm_mark *mark, u8 mode, u32 reqid, 1993 u32 if_id, u8 proto, const xfrm_address_t *daddr, 1994 const xfrm_address_t *saddr, int create, unsigned short family) 1995 { 1996 struct xfrm_state *x; 1997 1998 spin_lock_bh(&net->xfrm.xfrm_state_lock); 1999 x = __find_acq_core(net, mark, family, mode, reqid, if_id, proto, daddr, saddr, create); 2000 spin_unlock_bh(&net->xfrm.xfrm_state_lock); 2001 2002 return x; 2003 } 2004 EXPORT_SYMBOL(xfrm_find_acq); 2005 2006 #ifdef CONFIG_XFRM_SUB_POLICY 2007 #if IS_ENABLED(CONFIG_IPV6) 2008 /* distribution counting sort function for xfrm_state and xfrm_tmpl */ 2009 static void 2010 __xfrm6_sort(void **dst, void **src, int n, 2011 int (*cmp)(const void *p), int maxclass) 2012 { 2013 int count[XFRM_MAX_DEPTH] = { }; 2014 int class[XFRM_MAX_DEPTH]; 2015 int i; 2016 2017 for (i = 0; i < n; i++) { 2018 int c = cmp(src[i]); 2019 2020 class[i] = c; 2021 count[c]++; 2022 } 2023 2024 for (i = 2; i < maxclass; i++) 2025 count[i] += count[i - 1]; 2026 2027 for (i = 0; i < n; i++) { 2028 dst[count[class[i] - 1]++] = src[i]; 2029 src[i] = NULL; 2030 } 2031 } 2032 2033 /* Rule for xfrm_state: 2034 * 2035 * rule 1: select IPsec transport except AH 2036 * rule 2: select MIPv6 RO or inbound trigger 2037 * rule 3: select IPsec transport AH 2038 * rule 4: select IPsec tunnel 2039 * rule 5: others 2040 */ 2041 static int __xfrm6_state_sort_cmp(const void *p) 2042 { 2043 const struct xfrm_state *v = p; 2044 2045 switch (v->props.mode) { 2046 case XFRM_MODE_TRANSPORT: 2047 if (v->id.proto != IPPROTO_AH) 2048 return 1; 2049 else 2050 return 3; 2051 #if IS_ENABLED(CONFIG_IPV6_MIP6) 2052 case XFRM_MODE_ROUTEOPTIMIZATION: 2053 case XFRM_MODE_IN_TRIGGER: 2054 return 2; 2055 #endif 2056 case XFRM_MODE_TUNNEL: 2057 case XFRM_MODE_BEET: 2058 return 4; 2059 } 2060 return 5; 2061 } 2062 2063 /* Rule for xfrm_tmpl: 2064 * 2065 * rule 1: select IPsec transport 2066 * rule 2: select MIPv6 RO or inbound trigger 2067 * rule 3: select IPsec tunnel 2068 * rule 4: others 2069 */ 2070 static int __xfrm6_tmpl_sort_cmp(const void *p) 2071 { 2072 const struct xfrm_tmpl *v = p; 2073 2074 switch (v->mode) { 2075 case XFRM_MODE_TRANSPORT: 2076 return 1; 2077 #if IS_ENABLED(CONFIG_IPV6_MIP6) 2078 case XFRM_MODE_ROUTEOPTIMIZATION: 2079 case XFRM_MODE_IN_TRIGGER: 2080 return 2; 2081 #endif 2082 case XFRM_MODE_TUNNEL: 2083 case XFRM_MODE_BEET: 2084 return 3; 2085 } 2086 return 4; 2087 } 2088 #else 2089 static inline int __xfrm6_state_sort_cmp(const void *p) { return 5; } 2090 static inline int __xfrm6_tmpl_sort_cmp(const void *p) { return 4; } 2091 2092 static inline void 2093 __xfrm6_sort(void **dst, void **src, int n, 2094 int (*cmp)(const void *p), int maxclass) 2095 { 2096 int i; 2097 2098 for (i = 0; i < n; i++) 2099 dst[i] = src[i]; 2100 } 2101 #endif /* CONFIG_IPV6 */ 2102 2103 void 2104 xfrm_tmpl_sort(struct xfrm_tmpl **dst, struct xfrm_tmpl **src, int n, 2105 unsigned short family) 2106 { 2107 int i; 2108 2109 if (family == AF_INET6) 2110 __xfrm6_sort((void **)dst, (void **)src, n, 2111 __xfrm6_tmpl_sort_cmp, 5); 2112 else 2113 for (i = 0; i < n; i++) 2114 dst[i] = src[i]; 2115 } 2116 2117 void 2118 xfrm_state_sort(struct xfrm_state **dst, struct xfrm_state **src, int n, 2119 unsigned short family) 2120 { 2121 int i; 2122 2123 if (family == AF_INET6) 2124 __xfrm6_sort((void **)dst, (void **)src, n, 2125 __xfrm6_state_sort_cmp, 6); 2126 else 2127 for (i = 0; i < n; i++) 2128 dst[i] = src[i]; 2129 } 2130 #endif 2131 2132 /* Silly enough, but I'm lazy to build resolution list */ 2133 2134 static struct xfrm_state *__xfrm_find_acq_byseq(struct net *net, u32 mark, u32 seq) 2135 { 2136 unsigned int h = xfrm_seq_hash(net, seq); 2137 struct xfrm_state *x; 2138 2139 hlist_for_each_entry_rcu(x, net->xfrm.state_byseq + h, byseq) { 2140 if (x->km.seq == seq && 2141 (mark & x->mark.m) == x->mark.v && 2142 x->km.state == XFRM_STATE_ACQ) { 2143 xfrm_state_hold(x); 2144 return x; 2145 } 2146 } 2147 2148 return NULL; 2149 } 2150 2151 struct xfrm_state *xfrm_find_acq_byseq(struct net *net, u32 mark, u32 seq) 2152 { 2153 struct xfrm_state *x; 2154 2155 spin_lock_bh(&net->xfrm.xfrm_state_lock); 2156 x = __xfrm_find_acq_byseq(net, mark, seq); 2157 spin_unlock_bh(&net->xfrm.xfrm_state_lock); 2158 return x; 2159 } 2160 EXPORT_SYMBOL(xfrm_find_acq_byseq); 2161 2162 u32 xfrm_get_acqseq(void) 2163 { 2164 u32 res; 2165 static atomic_t acqseq; 2166 2167 do { 2168 res = atomic_inc_return(&acqseq); 2169 } while (!res); 2170 2171 return res; 2172 } 2173 EXPORT_SYMBOL(xfrm_get_acqseq); 2174 2175 int verify_spi_info(u8 proto, u32 min, u32 max, struct netlink_ext_ack *extack) 2176 { 2177 switch (proto) { 2178 case IPPROTO_AH: 2179 case IPPROTO_ESP: 2180 break; 2181 2182 case IPPROTO_COMP: 2183 /* IPCOMP spi is 16-bits. */ 2184 if (max >= 0x10000) { 2185 NL_SET_ERR_MSG(extack, "IPCOMP SPI must be <= 65535"); 2186 return -EINVAL; 2187 } 2188 break; 2189 2190 default: 2191 NL_SET_ERR_MSG(extack, "Invalid protocol, must be one of AH, ESP, IPCOMP"); 2192 return -EINVAL; 2193 } 2194 2195 if (min > max) { 2196 NL_SET_ERR_MSG(extack, "Invalid SPI range: min > max"); 2197 return -EINVAL; 2198 } 2199 2200 return 0; 2201 } 2202 EXPORT_SYMBOL(verify_spi_info); 2203 2204 int xfrm_alloc_spi(struct xfrm_state *x, u32 low, u32 high, 2205 struct netlink_ext_ack *extack) 2206 { 2207 struct net *net = xs_net(x); 2208 unsigned int h; 2209 struct xfrm_state *x0; 2210 int err = -ENOENT; 2211 __be32 minspi = htonl(low); 2212 __be32 maxspi = htonl(high); 2213 __be32 newspi = 0; 2214 u32 mark = x->mark.v & x->mark.m; 2215 2216 spin_lock_bh(&x->lock); 2217 if (x->km.state == XFRM_STATE_DEAD) { 2218 NL_SET_ERR_MSG(extack, "Target ACQUIRE is in DEAD state"); 2219 goto unlock; 2220 } 2221 2222 err = 0; 2223 if (x->id.spi) 2224 goto unlock; 2225 2226 err = -ENOENT; 2227 2228 if (minspi == maxspi) { 2229 x0 = xfrm_state_lookup(net, mark, &x->id.daddr, minspi, x->id.proto, x->props.family); 2230 if (x0) { 2231 NL_SET_ERR_MSG(extack, "Requested SPI is already in use"); 2232 xfrm_state_put(x0); 2233 goto unlock; 2234 } 2235 newspi = minspi; 2236 } else { 2237 u32 spi = 0; 2238 for (h = 0; h < high-low+1; h++) { 2239 spi = get_random_u32_inclusive(low, high); 2240 x0 = xfrm_state_lookup(net, mark, &x->id.daddr, htonl(spi), x->id.proto, x->props.family); 2241 if (x0 == NULL) { 2242 newspi = htonl(spi); 2243 break; 2244 } 2245 xfrm_state_put(x0); 2246 } 2247 } 2248 if (newspi) { 2249 spin_lock_bh(&net->xfrm.xfrm_state_lock); 2250 x->id.spi = newspi; 2251 h = xfrm_spi_hash(net, &x->id.daddr, x->id.spi, x->id.proto, x->props.family); 2252 XFRM_STATE_INSERT(byspi, &x->byspi, net->xfrm.state_byspi + h, 2253 x->xso.type); 2254 spin_unlock_bh(&net->xfrm.xfrm_state_lock); 2255 2256 err = 0; 2257 } else { 2258 NL_SET_ERR_MSG(extack, "No SPI available in the requested range"); 2259 } 2260 2261 unlock: 2262 spin_unlock_bh(&x->lock); 2263 2264 return err; 2265 } 2266 EXPORT_SYMBOL(xfrm_alloc_spi); 2267 2268 static bool __xfrm_state_filter_match(struct xfrm_state *x, 2269 struct xfrm_address_filter *filter) 2270 { 2271 if (filter) { 2272 if ((filter->family == AF_INET || 2273 filter->family == AF_INET6) && 2274 x->props.family != filter->family) 2275 return false; 2276 2277 return addr_match(&x->props.saddr, &filter->saddr, 2278 filter->splen) && 2279 addr_match(&x->id.daddr, &filter->daddr, 2280 filter->dplen); 2281 } 2282 return true; 2283 } 2284 2285 int xfrm_state_walk(struct net *net, struct xfrm_state_walk *walk, 2286 int (*func)(struct xfrm_state *, int, void*), 2287 void *data) 2288 { 2289 struct xfrm_state *state; 2290 struct xfrm_state_walk *x; 2291 int err = 0; 2292 2293 if (walk->seq != 0 && list_empty(&walk->all)) 2294 return 0; 2295 2296 spin_lock_bh(&net->xfrm.xfrm_state_lock); 2297 if (list_empty(&walk->all)) 2298 x = list_first_entry(&net->xfrm.state_all, struct xfrm_state_walk, all); 2299 else 2300 x = list_first_entry(&walk->all, struct xfrm_state_walk, all); 2301 list_for_each_entry_from(x, &net->xfrm.state_all, all) { 2302 if (x->state == XFRM_STATE_DEAD) 2303 continue; 2304 state = container_of(x, struct xfrm_state, km); 2305 if (!xfrm_id_proto_match(state->id.proto, walk->proto)) 2306 continue; 2307 if (!__xfrm_state_filter_match(state, walk->filter)) 2308 continue; 2309 err = func(state, walk->seq, data); 2310 if (err) { 2311 list_move_tail(&walk->all, &x->all); 2312 goto out; 2313 } 2314 walk->seq++; 2315 } 2316 if (walk->seq == 0) { 2317 err = -ENOENT; 2318 goto out; 2319 } 2320 list_del_init(&walk->all); 2321 out: 2322 spin_unlock_bh(&net->xfrm.xfrm_state_lock); 2323 return err; 2324 } 2325 EXPORT_SYMBOL(xfrm_state_walk); 2326 2327 void xfrm_state_walk_init(struct xfrm_state_walk *walk, u8 proto, 2328 struct xfrm_address_filter *filter) 2329 { 2330 INIT_LIST_HEAD(&walk->all); 2331 walk->proto = proto; 2332 walk->state = XFRM_STATE_DEAD; 2333 walk->seq = 0; 2334 walk->filter = filter; 2335 } 2336 EXPORT_SYMBOL(xfrm_state_walk_init); 2337 2338 void xfrm_state_walk_done(struct xfrm_state_walk *walk, struct net *net) 2339 { 2340 kfree(walk->filter); 2341 2342 if (list_empty(&walk->all)) 2343 return; 2344 2345 spin_lock_bh(&net->xfrm.xfrm_state_lock); 2346 list_del(&walk->all); 2347 spin_unlock_bh(&net->xfrm.xfrm_state_lock); 2348 } 2349 EXPORT_SYMBOL(xfrm_state_walk_done); 2350 2351 static void xfrm_replay_timer_handler(struct timer_list *t) 2352 { 2353 struct xfrm_state *x = from_timer(x, t, rtimer); 2354 2355 spin_lock(&x->lock); 2356 2357 if (x->km.state == XFRM_STATE_VALID) { 2358 if (xfrm_aevent_is_on(xs_net(x))) 2359 xfrm_replay_notify(x, XFRM_REPLAY_TIMEOUT); 2360 else 2361 x->xflags |= XFRM_TIME_DEFER; 2362 } 2363 2364 spin_unlock(&x->lock); 2365 } 2366 2367 static LIST_HEAD(xfrm_km_list); 2368 2369 void km_policy_notify(struct xfrm_policy *xp, int dir, const struct km_event *c) 2370 { 2371 struct xfrm_mgr *km; 2372 2373 rcu_read_lock(); 2374 list_for_each_entry_rcu(km, &xfrm_km_list, list) 2375 if (km->notify_policy) 2376 km->notify_policy(xp, dir, c); 2377 rcu_read_unlock(); 2378 } 2379 2380 void km_state_notify(struct xfrm_state *x, const struct km_event *c) 2381 { 2382 struct xfrm_mgr *km; 2383 rcu_read_lock(); 2384 list_for_each_entry_rcu(km, &xfrm_km_list, list) 2385 if (km->notify) 2386 km->notify(x, c); 2387 rcu_read_unlock(); 2388 } 2389 2390 EXPORT_SYMBOL(km_policy_notify); 2391 EXPORT_SYMBOL(km_state_notify); 2392 2393 void km_state_expired(struct xfrm_state *x, int hard, u32 portid) 2394 { 2395 struct km_event c; 2396 2397 c.data.hard = hard; 2398 c.portid = portid; 2399 c.event = XFRM_MSG_EXPIRE; 2400 km_state_notify(x, &c); 2401 } 2402 2403 EXPORT_SYMBOL(km_state_expired); 2404 /* 2405 * We send to all registered managers regardless of failure 2406 * We are happy with one success 2407 */ 2408 int km_query(struct xfrm_state *x, struct xfrm_tmpl *t, struct xfrm_policy *pol) 2409 { 2410 int err = -EINVAL, acqret; 2411 struct xfrm_mgr *km; 2412 2413 rcu_read_lock(); 2414 list_for_each_entry_rcu(km, &xfrm_km_list, list) { 2415 acqret = km->acquire(x, t, pol); 2416 if (!acqret) 2417 err = acqret; 2418 } 2419 rcu_read_unlock(); 2420 return err; 2421 } 2422 EXPORT_SYMBOL(km_query); 2423 2424 static int __km_new_mapping(struct xfrm_state *x, xfrm_address_t *ipaddr, __be16 sport) 2425 { 2426 int err = -EINVAL; 2427 struct xfrm_mgr *km; 2428 2429 rcu_read_lock(); 2430 list_for_each_entry_rcu(km, &xfrm_km_list, list) { 2431 if (km->new_mapping) 2432 err = km->new_mapping(x, ipaddr, sport); 2433 if (!err) 2434 break; 2435 } 2436 rcu_read_unlock(); 2437 return err; 2438 } 2439 2440 int km_new_mapping(struct xfrm_state *x, xfrm_address_t *ipaddr, __be16 sport) 2441 { 2442 int ret = 0; 2443 2444 if (x->mapping_maxage) { 2445 if ((jiffies / HZ - x->new_mapping) > x->mapping_maxage || 2446 x->new_mapping_sport != sport) { 2447 x->new_mapping_sport = sport; 2448 x->new_mapping = jiffies / HZ; 2449 ret = __km_new_mapping(x, ipaddr, sport); 2450 } 2451 } else { 2452 ret = __km_new_mapping(x, ipaddr, sport); 2453 } 2454 2455 return ret; 2456 } 2457 EXPORT_SYMBOL(km_new_mapping); 2458 2459 void km_policy_expired(struct xfrm_policy *pol, int dir, int hard, u32 portid) 2460 { 2461 struct km_event c; 2462 2463 c.data.hard = hard; 2464 c.portid = portid; 2465 c.event = XFRM_MSG_POLEXPIRE; 2466 km_policy_notify(pol, dir, &c); 2467 } 2468 EXPORT_SYMBOL(km_policy_expired); 2469 2470 #ifdef CONFIG_XFRM_MIGRATE 2471 int km_migrate(const struct xfrm_selector *sel, u8 dir, u8 type, 2472 const struct xfrm_migrate *m, int num_migrate, 2473 const struct xfrm_kmaddress *k, 2474 const struct xfrm_encap_tmpl *encap) 2475 { 2476 int err = -EINVAL; 2477 int ret; 2478 struct xfrm_mgr *km; 2479 2480 rcu_read_lock(); 2481 list_for_each_entry_rcu(km, &xfrm_km_list, list) { 2482 if (km->migrate) { 2483 ret = km->migrate(sel, dir, type, m, num_migrate, k, 2484 encap); 2485 if (!ret) 2486 err = ret; 2487 } 2488 } 2489 rcu_read_unlock(); 2490 return err; 2491 } 2492 EXPORT_SYMBOL(km_migrate); 2493 #endif 2494 2495 int km_report(struct net *net, u8 proto, struct xfrm_selector *sel, xfrm_address_t *addr) 2496 { 2497 int err = -EINVAL; 2498 int ret; 2499 struct xfrm_mgr *km; 2500 2501 rcu_read_lock(); 2502 list_for_each_entry_rcu(km, &xfrm_km_list, list) { 2503 if (km->report) { 2504 ret = km->report(net, proto, sel, addr); 2505 if (!ret) 2506 err = ret; 2507 } 2508 } 2509 rcu_read_unlock(); 2510 return err; 2511 } 2512 EXPORT_SYMBOL(km_report); 2513 2514 static bool km_is_alive(const struct km_event *c) 2515 { 2516 struct xfrm_mgr *km; 2517 bool is_alive = false; 2518 2519 rcu_read_lock(); 2520 list_for_each_entry_rcu(km, &xfrm_km_list, list) { 2521 if (km->is_alive && km->is_alive(c)) { 2522 is_alive = true; 2523 break; 2524 } 2525 } 2526 rcu_read_unlock(); 2527 2528 return is_alive; 2529 } 2530 2531 #if IS_ENABLED(CONFIG_XFRM_USER_COMPAT) 2532 static DEFINE_SPINLOCK(xfrm_translator_lock); 2533 static struct xfrm_translator __rcu *xfrm_translator; 2534 2535 struct xfrm_translator *xfrm_get_translator(void) 2536 { 2537 struct xfrm_translator *xtr; 2538 2539 rcu_read_lock(); 2540 xtr = rcu_dereference(xfrm_translator); 2541 if (unlikely(!xtr)) 2542 goto out; 2543 if (!try_module_get(xtr->owner)) 2544 xtr = NULL; 2545 out: 2546 rcu_read_unlock(); 2547 return xtr; 2548 } 2549 EXPORT_SYMBOL_GPL(xfrm_get_translator); 2550 2551 void xfrm_put_translator(struct xfrm_translator *xtr) 2552 { 2553 module_put(xtr->owner); 2554 } 2555 EXPORT_SYMBOL_GPL(xfrm_put_translator); 2556 2557 int xfrm_register_translator(struct xfrm_translator *xtr) 2558 { 2559 int err = 0; 2560 2561 spin_lock_bh(&xfrm_translator_lock); 2562 if (unlikely(xfrm_translator != NULL)) 2563 err = -EEXIST; 2564 else 2565 rcu_assign_pointer(xfrm_translator, xtr); 2566 spin_unlock_bh(&xfrm_translator_lock); 2567 2568 return err; 2569 } 2570 EXPORT_SYMBOL_GPL(xfrm_register_translator); 2571 2572 int xfrm_unregister_translator(struct xfrm_translator *xtr) 2573 { 2574 int err = 0; 2575 2576 spin_lock_bh(&xfrm_translator_lock); 2577 if (likely(xfrm_translator != NULL)) { 2578 if (rcu_access_pointer(xfrm_translator) != xtr) 2579 err = -EINVAL; 2580 else 2581 RCU_INIT_POINTER(xfrm_translator, NULL); 2582 } 2583 spin_unlock_bh(&xfrm_translator_lock); 2584 synchronize_rcu(); 2585 2586 return err; 2587 } 2588 EXPORT_SYMBOL_GPL(xfrm_unregister_translator); 2589 #endif 2590 2591 int xfrm_user_policy(struct sock *sk, int optname, sockptr_t optval, int optlen) 2592 { 2593 int err; 2594 u8 *data; 2595 struct xfrm_mgr *km; 2596 struct xfrm_policy *pol = NULL; 2597 2598 if (sockptr_is_null(optval) && !optlen) { 2599 xfrm_sk_policy_insert(sk, XFRM_POLICY_IN, NULL); 2600 xfrm_sk_policy_insert(sk, XFRM_POLICY_OUT, NULL); 2601 __sk_dst_reset(sk); 2602 return 0; 2603 } 2604 2605 if (optlen <= 0 || optlen > PAGE_SIZE) 2606 return -EMSGSIZE; 2607 2608 data = memdup_sockptr(optval, optlen); 2609 if (IS_ERR(data)) 2610 return PTR_ERR(data); 2611 2612 if (in_compat_syscall()) { 2613 struct xfrm_translator *xtr = xfrm_get_translator(); 2614 2615 if (!xtr) { 2616 kfree(data); 2617 return -EOPNOTSUPP; 2618 } 2619 2620 err = xtr->xlate_user_policy_sockptr(&data, optlen); 2621 xfrm_put_translator(xtr); 2622 if (err) { 2623 kfree(data); 2624 return err; 2625 } 2626 } 2627 2628 err = -EINVAL; 2629 rcu_read_lock(); 2630 list_for_each_entry_rcu(km, &xfrm_km_list, list) { 2631 pol = km->compile_policy(sk, optname, data, 2632 optlen, &err); 2633 if (err >= 0) 2634 break; 2635 } 2636 rcu_read_unlock(); 2637 2638 if (err >= 0) { 2639 xfrm_sk_policy_insert(sk, err, pol); 2640 xfrm_pol_put(pol); 2641 __sk_dst_reset(sk); 2642 err = 0; 2643 } 2644 2645 kfree(data); 2646 return err; 2647 } 2648 EXPORT_SYMBOL(xfrm_user_policy); 2649 2650 static DEFINE_SPINLOCK(xfrm_km_lock); 2651 2652 void xfrm_register_km(struct xfrm_mgr *km) 2653 { 2654 spin_lock_bh(&xfrm_km_lock); 2655 list_add_tail_rcu(&km->list, &xfrm_km_list); 2656 spin_unlock_bh(&xfrm_km_lock); 2657 } 2658 EXPORT_SYMBOL(xfrm_register_km); 2659 2660 void xfrm_unregister_km(struct xfrm_mgr *km) 2661 { 2662 spin_lock_bh(&xfrm_km_lock); 2663 list_del_rcu(&km->list); 2664 spin_unlock_bh(&xfrm_km_lock); 2665 synchronize_rcu(); 2666 } 2667 EXPORT_SYMBOL(xfrm_unregister_km); 2668 2669 int xfrm_state_register_afinfo(struct xfrm_state_afinfo *afinfo) 2670 { 2671 int err = 0; 2672 2673 if (WARN_ON(afinfo->family >= NPROTO)) 2674 return -EAFNOSUPPORT; 2675 2676 spin_lock_bh(&xfrm_state_afinfo_lock); 2677 if (unlikely(xfrm_state_afinfo[afinfo->family] != NULL)) 2678 err = -EEXIST; 2679 else 2680 rcu_assign_pointer(xfrm_state_afinfo[afinfo->family], afinfo); 2681 spin_unlock_bh(&xfrm_state_afinfo_lock); 2682 return err; 2683 } 2684 EXPORT_SYMBOL(xfrm_state_register_afinfo); 2685 2686 int xfrm_state_unregister_afinfo(struct xfrm_state_afinfo *afinfo) 2687 { 2688 int err = 0, family = afinfo->family; 2689 2690 if (WARN_ON(family >= NPROTO)) 2691 return -EAFNOSUPPORT; 2692 2693 spin_lock_bh(&xfrm_state_afinfo_lock); 2694 if (likely(xfrm_state_afinfo[afinfo->family] != NULL)) { 2695 if (rcu_access_pointer(xfrm_state_afinfo[family]) != afinfo) 2696 err = -EINVAL; 2697 else 2698 RCU_INIT_POINTER(xfrm_state_afinfo[afinfo->family], NULL); 2699 } 2700 spin_unlock_bh(&xfrm_state_afinfo_lock); 2701 synchronize_rcu(); 2702 return err; 2703 } 2704 EXPORT_SYMBOL(xfrm_state_unregister_afinfo); 2705 2706 struct xfrm_state_afinfo *xfrm_state_afinfo_get_rcu(unsigned int family) 2707 { 2708 if (unlikely(family >= NPROTO)) 2709 return NULL; 2710 2711 return rcu_dereference(xfrm_state_afinfo[family]); 2712 } 2713 EXPORT_SYMBOL_GPL(xfrm_state_afinfo_get_rcu); 2714 2715 struct xfrm_state_afinfo *xfrm_state_get_afinfo(unsigned int family) 2716 { 2717 struct xfrm_state_afinfo *afinfo; 2718 if (unlikely(family >= NPROTO)) 2719 return NULL; 2720 rcu_read_lock(); 2721 afinfo = rcu_dereference(xfrm_state_afinfo[family]); 2722 if (unlikely(!afinfo)) 2723 rcu_read_unlock(); 2724 return afinfo; 2725 } 2726 2727 void xfrm_flush_gc(void) 2728 { 2729 flush_work(&xfrm_state_gc_work); 2730 } 2731 EXPORT_SYMBOL(xfrm_flush_gc); 2732 2733 /* Temporarily located here until net/xfrm/xfrm_tunnel.c is created */ 2734 void xfrm_state_delete_tunnel(struct xfrm_state *x) 2735 { 2736 if (x->tunnel) { 2737 struct xfrm_state *t = x->tunnel; 2738 2739 if (atomic_read(&t->tunnel_users) == 2) 2740 xfrm_state_delete(t); 2741 atomic_dec(&t->tunnel_users); 2742 xfrm_state_put_sync(t); 2743 x->tunnel = NULL; 2744 } 2745 } 2746 EXPORT_SYMBOL(xfrm_state_delete_tunnel); 2747 2748 u32 xfrm_state_mtu(struct xfrm_state *x, int mtu) 2749 { 2750 const struct xfrm_type *type = READ_ONCE(x->type); 2751 struct crypto_aead *aead; 2752 u32 blksize, net_adj = 0; 2753 2754 if (x->km.state != XFRM_STATE_VALID || 2755 !type || type->proto != IPPROTO_ESP) 2756 return mtu - x->props.header_len; 2757 2758 aead = x->data; 2759 blksize = ALIGN(crypto_aead_blocksize(aead), 4); 2760 2761 switch (x->props.mode) { 2762 case XFRM_MODE_TRANSPORT: 2763 case XFRM_MODE_BEET: 2764 if (x->props.family == AF_INET) 2765 net_adj = sizeof(struct iphdr); 2766 else if (x->props.family == AF_INET6) 2767 net_adj = sizeof(struct ipv6hdr); 2768 break; 2769 case XFRM_MODE_TUNNEL: 2770 break; 2771 default: 2772 WARN_ON_ONCE(1); 2773 break; 2774 } 2775 2776 return ((mtu - x->props.header_len - crypto_aead_authsize(aead) - 2777 net_adj) & ~(blksize - 1)) + net_adj - 2; 2778 } 2779 EXPORT_SYMBOL_GPL(xfrm_state_mtu); 2780 2781 int __xfrm_init_state(struct xfrm_state *x, bool init_replay, bool offload, 2782 struct netlink_ext_ack *extack) 2783 { 2784 const struct xfrm_mode *inner_mode; 2785 const struct xfrm_mode *outer_mode; 2786 int family = x->props.family; 2787 int err; 2788 2789 if (family == AF_INET && 2790 READ_ONCE(xs_net(x)->ipv4.sysctl_ip_no_pmtu_disc)) 2791 x->props.flags |= XFRM_STATE_NOPMTUDISC; 2792 2793 err = -EPROTONOSUPPORT; 2794 2795 if (x->sel.family != AF_UNSPEC) { 2796 inner_mode = xfrm_get_mode(x->props.mode, x->sel.family); 2797 if (inner_mode == NULL) { 2798 NL_SET_ERR_MSG(extack, "Requested mode not found"); 2799 goto error; 2800 } 2801 2802 if (!(inner_mode->flags & XFRM_MODE_FLAG_TUNNEL) && 2803 family != x->sel.family) { 2804 NL_SET_ERR_MSG(extack, "Only tunnel modes can accommodate a change of family"); 2805 goto error; 2806 } 2807 2808 x->inner_mode = *inner_mode; 2809 } else { 2810 const struct xfrm_mode *inner_mode_iaf; 2811 int iafamily = AF_INET; 2812 2813 inner_mode = xfrm_get_mode(x->props.mode, x->props.family); 2814 if (inner_mode == NULL) { 2815 NL_SET_ERR_MSG(extack, "Requested mode not found"); 2816 goto error; 2817 } 2818 2819 x->inner_mode = *inner_mode; 2820 2821 if (x->props.family == AF_INET) 2822 iafamily = AF_INET6; 2823 2824 inner_mode_iaf = xfrm_get_mode(x->props.mode, iafamily); 2825 if (inner_mode_iaf) { 2826 if (inner_mode_iaf->flags & XFRM_MODE_FLAG_TUNNEL) 2827 x->inner_mode_iaf = *inner_mode_iaf; 2828 } 2829 } 2830 2831 x->type = xfrm_get_type(x->id.proto, family); 2832 if (x->type == NULL) { 2833 NL_SET_ERR_MSG(extack, "Requested type not found"); 2834 goto error; 2835 } 2836 2837 x->type_offload = xfrm_get_type_offload(x->id.proto, family, offload); 2838 2839 err = x->type->init_state(x, extack); 2840 if (err) 2841 goto error; 2842 2843 outer_mode = xfrm_get_mode(x->props.mode, family); 2844 if (!outer_mode) { 2845 NL_SET_ERR_MSG(extack, "Requested mode not found"); 2846 err = -EPROTONOSUPPORT; 2847 goto error; 2848 } 2849 2850 x->outer_mode = *outer_mode; 2851 if (init_replay) { 2852 err = xfrm_init_replay(x, extack); 2853 if (err) 2854 goto error; 2855 } 2856 2857 error: 2858 return err; 2859 } 2860 2861 EXPORT_SYMBOL(__xfrm_init_state); 2862 2863 int xfrm_init_state(struct xfrm_state *x) 2864 { 2865 int err; 2866 2867 err = __xfrm_init_state(x, true, false, NULL); 2868 if (!err) 2869 x->km.state = XFRM_STATE_VALID; 2870 2871 return err; 2872 } 2873 2874 EXPORT_SYMBOL(xfrm_init_state); 2875 2876 int __net_init xfrm_state_init(struct net *net) 2877 { 2878 unsigned int sz; 2879 2880 if (net_eq(net, &init_net)) 2881 xfrm_state_cache = KMEM_CACHE(xfrm_state, 2882 SLAB_HWCACHE_ALIGN | SLAB_PANIC); 2883 2884 INIT_LIST_HEAD(&net->xfrm.state_all); 2885 2886 sz = sizeof(struct hlist_head) * 8; 2887 2888 net->xfrm.state_bydst = xfrm_hash_alloc(sz); 2889 if (!net->xfrm.state_bydst) 2890 goto out_bydst; 2891 net->xfrm.state_bysrc = xfrm_hash_alloc(sz); 2892 if (!net->xfrm.state_bysrc) 2893 goto out_bysrc; 2894 net->xfrm.state_byspi = xfrm_hash_alloc(sz); 2895 if (!net->xfrm.state_byspi) 2896 goto out_byspi; 2897 net->xfrm.state_byseq = xfrm_hash_alloc(sz); 2898 if (!net->xfrm.state_byseq) 2899 goto out_byseq; 2900 net->xfrm.state_hmask = ((sz / sizeof(struct hlist_head)) - 1); 2901 2902 net->xfrm.state_num = 0; 2903 INIT_WORK(&net->xfrm.state_hash_work, xfrm_hash_resize); 2904 spin_lock_init(&net->xfrm.xfrm_state_lock); 2905 seqcount_spinlock_init(&net->xfrm.xfrm_state_hash_generation, 2906 &net->xfrm.xfrm_state_lock); 2907 return 0; 2908 2909 out_byseq: 2910 xfrm_hash_free(net->xfrm.state_byspi, sz); 2911 out_byspi: 2912 xfrm_hash_free(net->xfrm.state_bysrc, sz); 2913 out_bysrc: 2914 xfrm_hash_free(net->xfrm.state_bydst, sz); 2915 out_bydst: 2916 return -ENOMEM; 2917 } 2918 2919 void xfrm_state_fini(struct net *net) 2920 { 2921 unsigned int sz; 2922 2923 flush_work(&net->xfrm.state_hash_work); 2924 flush_work(&xfrm_state_gc_work); 2925 xfrm_state_flush(net, 0, false, true); 2926 2927 WARN_ON(!list_empty(&net->xfrm.state_all)); 2928 2929 sz = (net->xfrm.state_hmask + 1) * sizeof(struct hlist_head); 2930 WARN_ON(!hlist_empty(net->xfrm.state_byseq)); 2931 xfrm_hash_free(net->xfrm.state_byseq, sz); 2932 WARN_ON(!hlist_empty(net->xfrm.state_byspi)); 2933 xfrm_hash_free(net->xfrm.state_byspi, sz); 2934 WARN_ON(!hlist_empty(net->xfrm.state_bysrc)); 2935 xfrm_hash_free(net->xfrm.state_bysrc, sz); 2936 WARN_ON(!hlist_empty(net->xfrm.state_bydst)); 2937 xfrm_hash_free(net->xfrm.state_bydst, sz); 2938 } 2939 2940 #ifdef CONFIG_AUDITSYSCALL 2941 static void xfrm_audit_helper_sainfo(struct xfrm_state *x, 2942 struct audit_buffer *audit_buf) 2943 { 2944 struct xfrm_sec_ctx *ctx = x->security; 2945 u32 spi = ntohl(x->id.spi); 2946 2947 if (ctx) 2948 audit_log_format(audit_buf, " sec_alg=%u sec_doi=%u sec_obj=%s", 2949 ctx->ctx_alg, ctx->ctx_doi, ctx->ctx_str); 2950 2951 switch (x->props.family) { 2952 case AF_INET: 2953 audit_log_format(audit_buf, " src=%pI4 dst=%pI4", 2954 &x->props.saddr.a4, &x->id.daddr.a4); 2955 break; 2956 case AF_INET6: 2957 audit_log_format(audit_buf, " src=%pI6 dst=%pI6", 2958 x->props.saddr.a6, x->id.daddr.a6); 2959 break; 2960 } 2961 2962 audit_log_format(audit_buf, " spi=%u(0x%x)", spi, spi); 2963 } 2964 2965 static void xfrm_audit_helper_pktinfo(struct sk_buff *skb, u16 family, 2966 struct audit_buffer *audit_buf) 2967 { 2968 const struct iphdr *iph4; 2969 const struct ipv6hdr *iph6; 2970 2971 switch (family) { 2972 case AF_INET: 2973 iph4 = ip_hdr(skb); 2974 audit_log_format(audit_buf, " src=%pI4 dst=%pI4", 2975 &iph4->saddr, &iph4->daddr); 2976 break; 2977 case AF_INET6: 2978 iph6 = ipv6_hdr(skb); 2979 audit_log_format(audit_buf, 2980 " src=%pI6 dst=%pI6 flowlbl=0x%x%02x%02x", 2981 &iph6->saddr, &iph6->daddr, 2982 iph6->flow_lbl[0] & 0x0f, 2983 iph6->flow_lbl[1], 2984 iph6->flow_lbl[2]); 2985 break; 2986 } 2987 } 2988 2989 void xfrm_audit_state_add(struct xfrm_state *x, int result, bool task_valid) 2990 { 2991 struct audit_buffer *audit_buf; 2992 2993 audit_buf = xfrm_audit_start("SAD-add"); 2994 if (audit_buf == NULL) 2995 return; 2996 xfrm_audit_helper_usrinfo(task_valid, audit_buf); 2997 xfrm_audit_helper_sainfo(x, audit_buf); 2998 audit_log_format(audit_buf, " res=%u", result); 2999 audit_log_end(audit_buf); 3000 } 3001 EXPORT_SYMBOL_GPL(xfrm_audit_state_add); 3002 3003 void xfrm_audit_state_delete(struct xfrm_state *x, int result, bool task_valid) 3004 { 3005 struct audit_buffer *audit_buf; 3006 3007 audit_buf = xfrm_audit_start("SAD-delete"); 3008 if (audit_buf == NULL) 3009 return; 3010 xfrm_audit_helper_usrinfo(task_valid, audit_buf); 3011 xfrm_audit_helper_sainfo(x, audit_buf); 3012 audit_log_format(audit_buf, " res=%u", result); 3013 audit_log_end(audit_buf); 3014 } 3015 EXPORT_SYMBOL_GPL(xfrm_audit_state_delete); 3016 3017 void xfrm_audit_state_replay_overflow(struct xfrm_state *x, 3018 struct sk_buff *skb) 3019 { 3020 struct audit_buffer *audit_buf; 3021 u32 spi; 3022 3023 audit_buf = xfrm_audit_start("SA-replay-overflow"); 3024 if (audit_buf == NULL) 3025 return; 3026 xfrm_audit_helper_pktinfo(skb, x->props.family, audit_buf); 3027 /* don't record the sequence number because it's inherent in this kind 3028 * of audit message */ 3029 spi = ntohl(x->id.spi); 3030 audit_log_format(audit_buf, " spi=%u(0x%x)", spi, spi); 3031 audit_log_end(audit_buf); 3032 } 3033 EXPORT_SYMBOL_GPL(xfrm_audit_state_replay_overflow); 3034 3035 void xfrm_audit_state_replay(struct xfrm_state *x, 3036 struct sk_buff *skb, __be32 net_seq) 3037 { 3038 struct audit_buffer *audit_buf; 3039 u32 spi; 3040 3041 audit_buf = xfrm_audit_start("SA-replayed-pkt"); 3042 if (audit_buf == NULL) 3043 return; 3044 xfrm_audit_helper_pktinfo(skb, x->props.family, audit_buf); 3045 spi = ntohl(x->id.spi); 3046 audit_log_format(audit_buf, " spi=%u(0x%x) seqno=%u", 3047 spi, spi, ntohl(net_seq)); 3048 audit_log_end(audit_buf); 3049 } 3050 EXPORT_SYMBOL_GPL(xfrm_audit_state_replay); 3051 3052 void xfrm_audit_state_notfound_simple(struct sk_buff *skb, u16 family) 3053 { 3054 struct audit_buffer *audit_buf; 3055 3056 audit_buf = xfrm_audit_start("SA-notfound"); 3057 if (audit_buf == NULL) 3058 return; 3059 xfrm_audit_helper_pktinfo(skb, family, audit_buf); 3060 audit_log_end(audit_buf); 3061 } 3062 EXPORT_SYMBOL_GPL(xfrm_audit_state_notfound_simple); 3063 3064 void xfrm_audit_state_notfound(struct sk_buff *skb, u16 family, 3065 __be32 net_spi, __be32 net_seq) 3066 { 3067 struct audit_buffer *audit_buf; 3068 u32 spi; 3069 3070 audit_buf = xfrm_audit_start("SA-notfound"); 3071 if (audit_buf == NULL) 3072 return; 3073 xfrm_audit_helper_pktinfo(skb, family, audit_buf); 3074 spi = ntohl(net_spi); 3075 audit_log_format(audit_buf, " spi=%u(0x%x) seqno=%u", 3076 spi, spi, ntohl(net_seq)); 3077 audit_log_end(audit_buf); 3078 } 3079 EXPORT_SYMBOL_GPL(xfrm_audit_state_notfound); 3080 3081 void xfrm_audit_state_icvfail(struct xfrm_state *x, 3082 struct sk_buff *skb, u8 proto) 3083 { 3084 struct audit_buffer *audit_buf; 3085 __be32 net_spi; 3086 __be32 net_seq; 3087 3088 audit_buf = xfrm_audit_start("SA-icv-failure"); 3089 if (audit_buf == NULL) 3090 return; 3091 xfrm_audit_helper_pktinfo(skb, x->props.family, audit_buf); 3092 if (xfrm_parse_spi(skb, proto, &net_spi, &net_seq) == 0) { 3093 u32 spi = ntohl(net_spi); 3094 audit_log_format(audit_buf, " spi=%u(0x%x) seqno=%u", 3095 spi, spi, ntohl(net_seq)); 3096 } 3097 audit_log_end(audit_buf); 3098 } 3099 EXPORT_SYMBOL_GPL(xfrm_audit_state_icvfail); 3100 #endif /* CONFIG_AUDITSYSCALL */ 3101