1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * xfrm_state.c 4 * 5 * Changes: 6 * Mitsuru KANDA @USAGI 7 * Kazunori MIYAZAWA @USAGI 8 * Kunihiro Ishiguro <kunihiro@ipinfusion.com> 9 * IPv6 support 10 * YOSHIFUJI Hideaki @USAGI 11 * Split up af-specific functions 12 * Derek Atkins <derek@ihtfp.com> 13 * Add UDP Encapsulation 14 * 15 */ 16 17 #include <linux/workqueue.h> 18 #include <net/xfrm.h> 19 #include <linux/pfkeyv2.h> 20 #include <linux/ipsec.h> 21 #include <linux/module.h> 22 #include <linux/cache.h> 23 #include <linux/audit.h> 24 #include <linux/uaccess.h> 25 #include <linux/ktime.h> 26 #include <linux/slab.h> 27 #include <linux/interrupt.h> 28 #include <linux/kernel.h> 29 30 #include <crypto/aead.h> 31 32 #include "xfrm_hash.h" 33 34 #define xfrm_state_deref_prot(table, net) \ 35 rcu_dereference_protected((table), lockdep_is_held(&(net)->xfrm.xfrm_state_lock)) 36 37 static void xfrm_state_gc_task(struct work_struct *work); 38 39 /* Each xfrm_state may be linked to two tables: 40 41 1. Hash table by (spi,daddr,ah/esp) to find SA by SPI. (input,ctl) 42 2. Hash table by (daddr,family,reqid) to find what SAs exist for given 43 destination/tunnel endpoint. (output) 44 */ 45 46 static unsigned int xfrm_state_hashmax __read_mostly = 1 * 1024 * 1024; 47 static struct kmem_cache *xfrm_state_cache __ro_after_init; 48 49 static DECLARE_WORK(xfrm_state_gc_work, xfrm_state_gc_task); 50 static HLIST_HEAD(xfrm_state_gc_list); 51 52 static inline bool xfrm_state_hold_rcu(struct xfrm_state __rcu *x) 53 { 54 return refcount_inc_not_zero(&x->refcnt); 55 } 56 57 static inline unsigned int xfrm_dst_hash(struct net *net, 58 const xfrm_address_t *daddr, 59 const xfrm_address_t *saddr, 60 u32 reqid, 61 unsigned short family) 62 { 63 return __xfrm_dst_hash(daddr, saddr, reqid, family, net->xfrm.state_hmask); 64 } 65 66 static inline unsigned int xfrm_src_hash(struct net *net, 67 const xfrm_address_t *daddr, 68 const xfrm_address_t *saddr, 69 unsigned short family) 70 { 71 return __xfrm_src_hash(daddr, saddr, family, net->xfrm.state_hmask); 72 } 73 74 static inline unsigned int 75 xfrm_spi_hash(struct net *net, const xfrm_address_t *daddr, 76 __be32 spi, u8 proto, unsigned short family) 77 { 78 return __xfrm_spi_hash(daddr, spi, proto, family, net->xfrm.state_hmask); 79 } 80 81 static void xfrm_hash_transfer(struct hlist_head *list, 82 struct hlist_head *ndsttable, 83 struct hlist_head *nsrctable, 84 struct hlist_head *nspitable, 85 unsigned int nhashmask) 86 { 87 struct hlist_node *tmp; 88 struct xfrm_state *x; 89 90 hlist_for_each_entry_safe(x, tmp, list, bydst) { 91 unsigned int h; 92 93 h = __xfrm_dst_hash(&x->id.daddr, &x->props.saddr, 94 x->props.reqid, x->props.family, 95 nhashmask); 96 hlist_add_head_rcu(&x->bydst, ndsttable + h); 97 98 h = __xfrm_src_hash(&x->id.daddr, &x->props.saddr, 99 x->props.family, 100 nhashmask); 101 hlist_add_head_rcu(&x->bysrc, nsrctable + h); 102 103 if (x->id.spi) { 104 h = __xfrm_spi_hash(&x->id.daddr, x->id.spi, 105 x->id.proto, x->props.family, 106 nhashmask); 107 hlist_add_head_rcu(&x->byspi, nspitable + h); 108 } 109 } 110 } 111 112 static unsigned long xfrm_hash_new_size(unsigned int state_hmask) 113 { 114 return ((state_hmask + 1) << 1) * sizeof(struct hlist_head); 115 } 116 117 static void xfrm_hash_resize(struct work_struct *work) 118 { 119 struct net *net = container_of(work, struct net, xfrm.state_hash_work); 120 struct hlist_head *ndst, *nsrc, *nspi, *odst, *osrc, *ospi; 121 unsigned long nsize, osize; 122 unsigned int nhashmask, ohashmask; 123 int i; 124 125 nsize = xfrm_hash_new_size(net->xfrm.state_hmask); 126 ndst = xfrm_hash_alloc(nsize); 127 if (!ndst) 128 return; 129 nsrc = xfrm_hash_alloc(nsize); 130 if (!nsrc) { 131 xfrm_hash_free(ndst, nsize); 132 return; 133 } 134 nspi = xfrm_hash_alloc(nsize); 135 if (!nspi) { 136 xfrm_hash_free(ndst, nsize); 137 xfrm_hash_free(nsrc, nsize); 138 return; 139 } 140 141 spin_lock_bh(&net->xfrm.xfrm_state_lock); 142 write_seqcount_begin(&net->xfrm.xfrm_state_hash_generation); 143 144 nhashmask = (nsize / sizeof(struct hlist_head)) - 1U; 145 odst = xfrm_state_deref_prot(net->xfrm.state_bydst, net); 146 for (i = net->xfrm.state_hmask; i >= 0; i--) 147 xfrm_hash_transfer(odst + i, ndst, nsrc, nspi, nhashmask); 148 149 osrc = xfrm_state_deref_prot(net->xfrm.state_bysrc, net); 150 ospi = xfrm_state_deref_prot(net->xfrm.state_byspi, net); 151 ohashmask = net->xfrm.state_hmask; 152 153 rcu_assign_pointer(net->xfrm.state_bydst, ndst); 154 rcu_assign_pointer(net->xfrm.state_bysrc, nsrc); 155 rcu_assign_pointer(net->xfrm.state_byspi, nspi); 156 net->xfrm.state_hmask = nhashmask; 157 158 write_seqcount_end(&net->xfrm.xfrm_state_hash_generation); 159 spin_unlock_bh(&net->xfrm.xfrm_state_lock); 160 161 osize = (ohashmask + 1) * sizeof(struct hlist_head); 162 163 synchronize_rcu(); 164 165 xfrm_hash_free(odst, osize); 166 xfrm_hash_free(osrc, osize); 167 xfrm_hash_free(ospi, osize); 168 } 169 170 static DEFINE_SPINLOCK(xfrm_state_afinfo_lock); 171 static struct xfrm_state_afinfo __rcu *xfrm_state_afinfo[NPROTO]; 172 173 static DEFINE_SPINLOCK(xfrm_state_gc_lock); 174 175 int __xfrm_state_delete(struct xfrm_state *x); 176 177 int km_query(struct xfrm_state *x, struct xfrm_tmpl *t, struct xfrm_policy *pol); 178 static bool km_is_alive(const struct km_event *c); 179 void km_state_expired(struct xfrm_state *x, int hard, u32 portid); 180 181 int xfrm_register_type(const struct xfrm_type *type, unsigned short family) 182 { 183 struct xfrm_state_afinfo *afinfo = xfrm_state_get_afinfo(family); 184 int err = 0; 185 186 if (!afinfo) 187 return -EAFNOSUPPORT; 188 189 #define X(afi, T, name) do { \ 190 WARN_ON((afi)->type_ ## name); \ 191 (afi)->type_ ## name = (T); \ 192 } while (0) 193 194 switch (type->proto) { 195 case IPPROTO_COMP: 196 X(afinfo, type, comp); 197 break; 198 case IPPROTO_AH: 199 X(afinfo, type, ah); 200 break; 201 case IPPROTO_ESP: 202 X(afinfo, type, esp); 203 break; 204 case IPPROTO_IPIP: 205 X(afinfo, type, ipip); 206 break; 207 case IPPROTO_DSTOPTS: 208 X(afinfo, type, dstopts); 209 break; 210 case IPPROTO_ROUTING: 211 X(afinfo, type, routing); 212 break; 213 case IPPROTO_IPV6: 214 X(afinfo, type, ipip6); 215 break; 216 default: 217 WARN_ON(1); 218 err = -EPROTONOSUPPORT; 219 break; 220 } 221 #undef X 222 rcu_read_unlock(); 223 return err; 224 } 225 EXPORT_SYMBOL(xfrm_register_type); 226 227 void xfrm_unregister_type(const struct xfrm_type *type, unsigned short family) 228 { 229 struct xfrm_state_afinfo *afinfo = xfrm_state_get_afinfo(family); 230 231 if (unlikely(afinfo == NULL)) 232 return; 233 234 #define X(afi, T, name) do { \ 235 WARN_ON((afi)->type_ ## name != (T)); \ 236 (afi)->type_ ## name = NULL; \ 237 } while (0) 238 239 switch (type->proto) { 240 case IPPROTO_COMP: 241 X(afinfo, type, comp); 242 break; 243 case IPPROTO_AH: 244 X(afinfo, type, ah); 245 break; 246 case IPPROTO_ESP: 247 X(afinfo, type, esp); 248 break; 249 case IPPROTO_IPIP: 250 X(afinfo, type, ipip); 251 break; 252 case IPPROTO_DSTOPTS: 253 X(afinfo, type, dstopts); 254 break; 255 case IPPROTO_ROUTING: 256 X(afinfo, type, routing); 257 break; 258 case IPPROTO_IPV6: 259 X(afinfo, type, ipip6); 260 break; 261 default: 262 WARN_ON(1); 263 break; 264 } 265 #undef X 266 rcu_read_unlock(); 267 } 268 EXPORT_SYMBOL(xfrm_unregister_type); 269 270 static const struct xfrm_type *xfrm_get_type(u8 proto, unsigned short family) 271 { 272 const struct xfrm_type *type = NULL; 273 struct xfrm_state_afinfo *afinfo; 274 int modload_attempted = 0; 275 276 retry: 277 afinfo = xfrm_state_get_afinfo(family); 278 if (unlikely(afinfo == NULL)) 279 return NULL; 280 281 switch (proto) { 282 case IPPROTO_COMP: 283 type = afinfo->type_comp; 284 break; 285 case IPPROTO_AH: 286 type = afinfo->type_ah; 287 break; 288 case IPPROTO_ESP: 289 type = afinfo->type_esp; 290 break; 291 case IPPROTO_IPIP: 292 type = afinfo->type_ipip; 293 break; 294 case IPPROTO_DSTOPTS: 295 type = afinfo->type_dstopts; 296 break; 297 case IPPROTO_ROUTING: 298 type = afinfo->type_routing; 299 break; 300 case IPPROTO_IPV6: 301 type = afinfo->type_ipip6; 302 break; 303 default: 304 break; 305 } 306 307 if (unlikely(type && !try_module_get(type->owner))) 308 type = NULL; 309 310 rcu_read_unlock(); 311 312 if (!type && !modload_attempted) { 313 request_module("xfrm-type-%d-%d", family, proto); 314 modload_attempted = 1; 315 goto retry; 316 } 317 318 return type; 319 } 320 321 static void xfrm_put_type(const struct xfrm_type *type) 322 { 323 module_put(type->owner); 324 } 325 326 int xfrm_register_type_offload(const struct xfrm_type_offload *type, 327 unsigned short family) 328 { 329 struct xfrm_state_afinfo *afinfo = xfrm_state_get_afinfo(family); 330 int err = 0; 331 332 if (unlikely(afinfo == NULL)) 333 return -EAFNOSUPPORT; 334 335 switch (type->proto) { 336 case IPPROTO_ESP: 337 WARN_ON(afinfo->type_offload_esp); 338 afinfo->type_offload_esp = type; 339 break; 340 default: 341 WARN_ON(1); 342 err = -EPROTONOSUPPORT; 343 break; 344 } 345 346 rcu_read_unlock(); 347 return err; 348 } 349 EXPORT_SYMBOL(xfrm_register_type_offload); 350 351 void xfrm_unregister_type_offload(const struct xfrm_type_offload *type, 352 unsigned short family) 353 { 354 struct xfrm_state_afinfo *afinfo = xfrm_state_get_afinfo(family); 355 356 if (unlikely(afinfo == NULL)) 357 return; 358 359 switch (type->proto) { 360 case IPPROTO_ESP: 361 WARN_ON(afinfo->type_offload_esp != type); 362 afinfo->type_offload_esp = NULL; 363 break; 364 default: 365 WARN_ON(1); 366 break; 367 } 368 rcu_read_unlock(); 369 } 370 EXPORT_SYMBOL(xfrm_unregister_type_offload); 371 372 static const struct xfrm_type_offload * 373 xfrm_get_type_offload(u8 proto, unsigned short family, bool try_load) 374 { 375 const struct xfrm_type_offload *type = NULL; 376 struct xfrm_state_afinfo *afinfo; 377 378 retry: 379 afinfo = xfrm_state_get_afinfo(family); 380 if (unlikely(afinfo == NULL)) 381 return NULL; 382 383 switch (proto) { 384 case IPPROTO_ESP: 385 type = afinfo->type_offload_esp; 386 break; 387 default: 388 break; 389 } 390 391 if ((type && !try_module_get(type->owner))) 392 type = NULL; 393 394 rcu_read_unlock(); 395 396 if (!type && try_load) { 397 request_module("xfrm-offload-%d-%d", family, proto); 398 try_load = false; 399 goto retry; 400 } 401 402 return type; 403 } 404 405 static void xfrm_put_type_offload(const struct xfrm_type_offload *type) 406 { 407 module_put(type->owner); 408 } 409 410 static const struct xfrm_mode xfrm4_mode_map[XFRM_MODE_MAX] = { 411 [XFRM_MODE_BEET] = { 412 .encap = XFRM_MODE_BEET, 413 .flags = XFRM_MODE_FLAG_TUNNEL, 414 .family = AF_INET, 415 }, 416 [XFRM_MODE_TRANSPORT] = { 417 .encap = XFRM_MODE_TRANSPORT, 418 .family = AF_INET, 419 }, 420 [XFRM_MODE_TUNNEL] = { 421 .encap = XFRM_MODE_TUNNEL, 422 .flags = XFRM_MODE_FLAG_TUNNEL, 423 .family = AF_INET, 424 }, 425 }; 426 427 static const struct xfrm_mode xfrm6_mode_map[XFRM_MODE_MAX] = { 428 [XFRM_MODE_BEET] = { 429 .encap = XFRM_MODE_BEET, 430 .flags = XFRM_MODE_FLAG_TUNNEL, 431 .family = AF_INET6, 432 }, 433 [XFRM_MODE_ROUTEOPTIMIZATION] = { 434 .encap = XFRM_MODE_ROUTEOPTIMIZATION, 435 .family = AF_INET6, 436 }, 437 [XFRM_MODE_TRANSPORT] = { 438 .encap = XFRM_MODE_TRANSPORT, 439 .family = AF_INET6, 440 }, 441 [XFRM_MODE_TUNNEL] = { 442 .encap = XFRM_MODE_TUNNEL, 443 .flags = XFRM_MODE_FLAG_TUNNEL, 444 .family = AF_INET6, 445 }, 446 }; 447 448 static const struct xfrm_mode *xfrm_get_mode(unsigned int encap, int family) 449 { 450 const struct xfrm_mode *mode; 451 452 if (unlikely(encap >= XFRM_MODE_MAX)) 453 return NULL; 454 455 switch (family) { 456 case AF_INET: 457 mode = &xfrm4_mode_map[encap]; 458 if (mode->family == family) 459 return mode; 460 break; 461 case AF_INET6: 462 mode = &xfrm6_mode_map[encap]; 463 if (mode->family == family) 464 return mode; 465 break; 466 default: 467 break; 468 } 469 470 return NULL; 471 } 472 473 void xfrm_state_free(struct xfrm_state *x) 474 { 475 kmem_cache_free(xfrm_state_cache, x); 476 } 477 EXPORT_SYMBOL(xfrm_state_free); 478 479 static void ___xfrm_state_destroy(struct xfrm_state *x) 480 { 481 hrtimer_cancel(&x->mtimer); 482 del_timer_sync(&x->rtimer); 483 kfree(x->aead); 484 kfree(x->aalg); 485 kfree(x->ealg); 486 kfree(x->calg); 487 kfree(x->encap); 488 kfree(x->coaddr); 489 kfree(x->replay_esn); 490 kfree(x->preplay_esn); 491 if (x->type_offload) 492 xfrm_put_type_offload(x->type_offload); 493 if (x->type) { 494 x->type->destructor(x); 495 xfrm_put_type(x->type); 496 } 497 if (x->xfrag.page) 498 put_page(x->xfrag.page); 499 xfrm_dev_state_free(x); 500 security_xfrm_state_free(x); 501 xfrm_state_free(x); 502 } 503 504 static void xfrm_state_gc_task(struct work_struct *work) 505 { 506 struct xfrm_state *x; 507 struct hlist_node *tmp; 508 struct hlist_head gc_list; 509 510 spin_lock_bh(&xfrm_state_gc_lock); 511 hlist_move_list(&xfrm_state_gc_list, &gc_list); 512 spin_unlock_bh(&xfrm_state_gc_lock); 513 514 synchronize_rcu(); 515 516 hlist_for_each_entry_safe(x, tmp, &gc_list, gclist) 517 ___xfrm_state_destroy(x); 518 } 519 520 static enum hrtimer_restart xfrm_timer_handler(struct hrtimer *me) 521 { 522 struct xfrm_state *x = container_of(me, struct xfrm_state, mtimer); 523 enum hrtimer_restart ret = HRTIMER_NORESTART; 524 time64_t now = ktime_get_real_seconds(); 525 time64_t next = TIME64_MAX; 526 int warn = 0; 527 int err = 0; 528 529 spin_lock(&x->lock); 530 if (x->km.state == XFRM_STATE_DEAD) 531 goto out; 532 if (x->km.state == XFRM_STATE_EXPIRED) 533 goto expired; 534 if (x->lft.hard_add_expires_seconds) { 535 long tmo = x->lft.hard_add_expires_seconds + 536 x->curlft.add_time - now; 537 if (tmo <= 0) { 538 if (x->xflags & XFRM_SOFT_EXPIRE) { 539 /* enter hard expire without soft expire first?! 540 * setting a new date could trigger this. 541 * workaround: fix x->curflt.add_time by below: 542 */ 543 x->curlft.add_time = now - x->saved_tmo - 1; 544 tmo = x->lft.hard_add_expires_seconds - x->saved_tmo; 545 } else 546 goto expired; 547 } 548 if (tmo < next) 549 next = tmo; 550 } 551 if (x->lft.hard_use_expires_seconds) { 552 long tmo = x->lft.hard_use_expires_seconds + 553 (x->curlft.use_time ? : now) - now; 554 if (tmo <= 0) 555 goto expired; 556 if (tmo < next) 557 next = tmo; 558 } 559 if (x->km.dying) 560 goto resched; 561 if (x->lft.soft_add_expires_seconds) { 562 long tmo = x->lft.soft_add_expires_seconds + 563 x->curlft.add_time - now; 564 if (tmo <= 0) { 565 warn = 1; 566 x->xflags &= ~XFRM_SOFT_EXPIRE; 567 } else if (tmo < next) { 568 next = tmo; 569 x->xflags |= XFRM_SOFT_EXPIRE; 570 x->saved_tmo = tmo; 571 } 572 } 573 if (x->lft.soft_use_expires_seconds) { 574 long tmo = x->lft.soft_use_expires_seconds + 575 (x->curlft.use_time ? : now) - now; 576 if (tmo <= 0) 577 warn = 1; 578 else if (tmo < next) 579 next = tmo; 580 } 581 582 x->km.dying = warn; 583 if (warn) 584 km_state_expired(x, 0, 0); 585 resched: 586 if (next != TIME64_MAX) { 587 hrtimer_forward_now(&x->mtimer, ktime_set(next, 0)); 588 ret = HRTIMER_RESTART; 589 } 590 591 goto out; 592 593 expired: 594 if (x->km.state == XFRM_STATE_ACQ && x->id.spi == 0) 595 x->km.state = XFRM_STATE_EXPIRED; 596 597 err = __xfrm_state_delete(x); 598 if (!err) 599 km_state_expired(x, 1, 0); 600 601 xfrm_audit_state_delete(x, err ? 0 : 1, true); 602 603 out: 604 spin_unlock(&x->lock); 605 return ret; 606 } 607 608 static void xfrm_replay_timer_handler(struct timer_list *t); 609 610 struct xfrm_state *xfrm_state_alloc(struct net *net) 611 { 612 struct xfrm_state *x; 613 614 x = kmem_cache_zalloc(xfrm_state_cache, GFP_ATOMIC); 615 616 if (x) { 617 write_pnet(&x->xs_net, net); 618 refcount_set(&x->refcnt, 1); 619 atomic_set(&x->tunnel_users, 0); 620 INIT_LIST_HEAD(&x->km.all); 621 INIT_HLIST_NODE(&x->bydst); 622 INIT_HLIST_NODE(&x->bysrc); 623 INIT_HLIST_NODE(&x->byspi); 624 hrtimer_init(&x->mtimer, CLOCK_BOOTTIME, HRTIMER_MODE_ABS_SOFT); 625 x->mtimer.function = xfrm_timer_handler; 626 timer_setup(&x->rtimer, xfrm_replay_timer_handler, 0); 627 x->curlft.add_time = ktime_get_real_seconds(); 628 x->lft.soft_byte_limit = XFRM_INF; 629 x->lft.soft_packet_limit = XFRM_INF; 630 x->lft.hard_byte_limit = XFRM_INF; 631 x->lft.hard_packet_limit = XFRM_INF; 632 x->replay_maxage = 0; 633 x->replay_maxdiff = 0; 634 spin_lock_init(&x->lock); 635 } 636 return x; 637 } 638 EXPORT_SYMBOL(xfrm_state_alloc); 639 640 void __xfrm_state_destroy(struct xfrm_state *x, bool sync) 641 { 642 WARN_ON(x->km.state != XFRM_STATE_DEAD); 643 644 if (sync) { 645 synchronize_rcu(); 646 ___xfrm_state_destroy(x); 647 } else { 648 spin_lock_bh(&xfrm_state_gc_lock); 649 hlist_add_head(&x->gclist, &xfrm_state_gc_list); 650 spin_unlock_bh(&xfrm_state_gc_lock); 651 schedule_work(&xfrm_state_gc_work); 652 } 653 } 654 EXPORT_SYMBOL(__xfrm_state_destroy); 655 656 int __xfrm_state_delete(struct xfrm_state *x) 657 { 658 struct net *net = xs_net(x); 659 int err = -ESRCH; 660 661 if (x->km.state != XFRM_STATE_DEAD) { 662 x->km.state = XFRM_STATE_DEAD; 663 spin_lock(&net->xfrm.xfrm_state_lock); 664 list_del(&x->km.all); 665 hlist_del_rcu(&x->bydst); 666 hlist_del_rcu(&x->bysrc); 667 if (x->id.spi) 668 hlist_del_rcu(&x->byspi); 669 net->xfrm.state_num--; 670 spin_unlock(&net->xfrm.xfrm_state_lock); 671 672 if (x->encap_sk) 673 sock_put(rcu_dereference_raw(x->encap_sk)); 674 675 xfrm_dev_state_delete(x); 676 677 /* All xfrm_state objects are created by xfrm_state_alloc. 678 * The xfrm_state_alloc call gives a reference, and that 679 * is what we are dropping here. 680 */ 681 xfrm_state_put(x); 682 err = 0; 683 } 684 685 return err; 686 } 687 EXPORT_SYMBOL(__xfrm_state_delete); 688 689 int xfrm_state_delete(struct xfrm_state *x) 690 { 691 int err; 692 693 spin_lock_bh(&x->lock); 694 err = __xfrm_state_delete(x); 695 spin_unlock_bh(&x->lock); 696 697 return err; 698 } 699 EXPORT_SYMBOL(xfrm_state_delete); 700 701 #ifdef CONFIG_SECURITY_NETWORK_XFRM 702 static inline int 703 xfrm_state_flush_secctx_check(struct net *net, u8 proto, bool task_valid) 704 { 705 int i, err = 0; 706 707 for (i = 0; i <= net->xfrm.state_hmask; i++) { 708 struct xfrm_state *x; 709 710 hlist_for_each_entry(x, net->xfrm.state_bydst+i, bydst) { 711 if (xfrm_id_proto_match(x->id.proto, proto) && 712 (err = security_xfrm_state_delete(x)) != 0) { 713 xfrm_audit_state_delete(x, 0, task_valid); 714 return err; 715 } 716 } 717 } 718 719 return err; 720 } 721 722 static inline int 723 xfrm_dev_state_flush_secctx_check(struct net *net, struct net_device *dev, bool task_valid) 724 { 725 int i, err = 0; 726 727 for (i = 0; i <= net->xfrm.state_hmask; i++) { 728 struct xfrm_state *x; 729 struct xfrm_state_offload *xso; 730 731 hlist_for_each_entry(x, net->xfrm.state_bydst+i, bydst) { 732 xso = &x->xso; 733 734 if (xso->dev == dev && 735 (err = security_xfrm_state_delete(x)) != 0) { 736 xfrm_audit_state_delete(x, 0, task_valid); 737 return err; 738 } 739 } 740 } 741 742 return err; 743 } 744 #else 745 static inline int 746 xfrm_state_flush_secctx_check(struct net *net, u8 proto, bool task_valid) 747 { 748 return 0; 749 } 750 751 static inline int 752 xfrm_dev_state_flush_secctx_check(struct net *net, struct net_device *dev, bool task_valid) 753 { 754 return 0; 755 } 756 #endif 757 758 int xfrm_state_flush(struct net *net, u8 proto, bool task_valid, bool sync) 759 { 760 int i, err = 0, cnt = 0; 761 762 spin_lock_bh(&net->xfrm.xfrm_state_lock); 763 err = xfrm_state_flush_secctx_check(net, proto, task_valid); 764 if (err) 765 goto out; 766 767 err = -ESRCH; 768 for (i = 0; i <= net->xfrm.state_hmask; i++) { 769 struct xfrm_state *x; 770 restart: 771 hlist_for_each_entry(x, net->xfrm.state_bydst+i, bydst) { 772 if (!xfrm_state_kern(x) && 773 xfrm_id_proto_match(x->id.proto, proto)) { 774 xfrm_state_hold(x); 775 spin_unlock_bh(&net->xfrm.xfrm_state_lock); 776 777 err = xfrm_state_delete(x); 778 xfrm_audit_state_delete(x, err ? 0 : 1, 779 task_valid); 780 if (sync) 781 xfrm_state_put_sync(x); 782 else 783 xfrm_state_put(x); 784 if (!err) 785 cnt++; 786 787 spin_lock_bh(&net->xfrm.xfrm_state_lock); 788 goto restart; 789 } 790 } 791 } 792 out: 793 spin_unlock_bh(&net->xfrm.xfrm_state_lock); 794 if (cnt) 795 err = 0; 796 797 return err; 798 } 799 EXPORT_SYMBOL(xfrm_state_flush); 800 801 int xfrm_dev_state_flush(struct net *net, struct net_device *dev, bool task_valid) 802 { 803 int i, err = 0, cnt = 0; 804 805 spin_lock_bh(&net->xfrm.xfrm_state_lock); 806 err = xfrm_dev_state_flush_secctx_check(net, dev, task_valid); 807 if (err) 808 goto out; 809 810 err = -ESRCH; 811 for (i = 0; i <= net->xfrm.state_hmask; i++) { 812 struct xfrm_state *x; 813 struct xfrm_state_offload *xso; 814 restart: 815 hlist_for_each_entry(x, net->xfrm.state_bydst+i, bydst) { 816 xso = &x->xso; 817 818 if (!xfrm_state_kern(x) && xso->dev == dev) { 819 xfrm_state_hold(x); 820 spin_unlock_bh(&net->xfrm.xfrm_state_lock); 821 822 err = xfrm_state_delete(x); 823 xfrm_audit_state_delete(x, err ? 0 : 1, 824 task_valid); 825 xfrm_state_put(x); 826 if (!err) 827 cnt++; 828 829 spin_lock_bh(&net->xfrm.xfrm_state_lock); 830 goto restart; 831 } 832 } 833 } 834 if (cnt) 835 err = 0; 836 837 out: 838 spin_unlock_bh(&net->xfrm.xfrm_state_lock); 839 return err; 840 } 841 EXPORT_SYMBOL(xfrm_dev_state_flush); 842 843 void xfrm_sad_getinfo(struct net *net, struct xfrmk_sadinfo *si) 844 { 845 spin_lock_bh(&net->xfrm.xfrm_state_lock); 846 si->sadcnt = net->xfrm.state_num; 847 si->sadhcnt = net->xfrm.state_hmask + 1; 848 si->sadhmcnt = xfrm_state_hashmax; 849 spin_unlock_bh(&net->xfrm.xfrm_state_lock); 850 } 851 EXPORT_SYMBOL(xfrm_sad_getinfo); 852 853 static void 854 __xfrm4_init_tempsel(struct xfrm_selector *sel, const struct flowi *fl) 855 { 856 const struct flowi4 *fl4 = &fl->u.ip4; 857 858 sel->daddr.a4 = fl4->daddr; 859 sel->saddr.a4 = fl4->saddr; 860 sel->dport = xfrm_flowi_dport(fl, &fl4->uli); 861 sel->dport_mask = htons(0xffff); 862 sel->sport = xfrm_flowi_sport(fl, &fl4->uli); 863 sel->sport_mask = htons(0xffff); 864 sel->family = AF_INET; 865 sel->prefixlen_d = 32; 866 sel->prefixlen_s = 32; 867 sel->proto = fl4->flowi4_proto; 868 sel->ifindex = fl4->flowi4_oif; 869 } 870 871 static void 872 __xfrm6_init_tempsel(struct xfrm_selector *sel, const struct flowi *fl) 873 { 874 const struct flowi6 *fl6 = &fl->u.ip6; 875 876 /* Initialize temporary selector matching only to current session. */ 877 *(struct in6_addr *)&sel->daddr = fl6->daddr; 878 *(struct in6_addr *)&sel->saddr = fl6->saddr; 879 sel->dport = xfrm_flowi_dport(fl, &fl6->uli); 880 sel->dport_mask = htons(0xffff); 881 sel->sport = xfrm_flowi_sport(fl, &fl6->uli); 882 sel->sport_mask = htons(0xffff); 883 sel->family = AF_INET6; 884 sel->prefixlen_d = 128; 885 sel->prefixlen_s = 128; 886 sel->proto = fl6->flowi6_proto; 887 sel->ifindex = fl6->flowi6_oif; 888 } 889 890 static void 891 xfrm_init_tempstate(struct xfrm_state *x, const struct flowi *fl, 892 const struct xfrm_tmpl *tmpl, 893 const xfrm_address_t *daddr, const xfrm_address_t *saddr, 894 unsigned short family) 895 { 896 switch (family) { 897 case AF_INET: 898 __xfrm4_init_tempsel(&x->sel, fl); 899 break; 900 case AF_INET6: 901 __xfrm6_init_tempsel(&x->sel, fl); 902 break; 903 } 904 905 x->id = tmpl->id; 906 907 switch (tmpl->encap_family) { 908 case AF_INET: 909 if (x->id.daddr.a4 == 0) 910 x->id.daddr.a4 = daddr->a4; 911 x->props.saddr = tmpl->saddr; 912 if (x->props.saddr.a4 == 0) 913 x->props.saddr.a4 = saddr->a4; 914 break; 915 case AF_INET6: 916 if (ipv6_addr_any((struct in6_addr *)&x->id.daddr)) 917 memcpy(&x->id.daddr, daddr, sizeof(x->sel.daddr)); 918 memcpy(&x->props.saddr, &tmpl->saddr, sizeof(x->props.saddr)); 919 if (ipv6_addr_any((struct in6_addr *)&x->props.saddr)) 920 memcpy(&x->props.saddr, saddr, sizeof(x->props.saddr)); 921 break; 922 } 923 924 x->props.mode = tmpl->mode; 925 x->props.reqid = tmpl->reqid; 926 x->props.family = tmpl->encap_family; 927 } 928 929 static struct xfrm_state *__xfrm_state_lookup(struct net *net, u32 mark, 930 const xfrm_address_t *daddr, 931 __be32 spi, u8 proto, 932 unsigned short family) 933 { 934 unsigned int h = xfrm_spi_hash(net, daddr, spi, proto, family); 935 struct xfrm_state *x; 936 937 hlist_for_each_entry_rcu(x, net->xfrm.state_byspi + h, byspi) { 938 if (x->props.family != family || 939 x->id.spi != spi || 940 x->id.proto != proto || 941 !xfrm_addr_equal(&x->id.daddr, daddr, family)) 942 continue; 943 944 if ((mark & x->mark.m) != x->mark.v) 945 continue; 946 if (!xfrm_state_hold_rcu(x)) 947 continue; 948 return x; 949 } 950 951 return NULL; 952 } 953 954 static struct xfrm_state *__xfrm_state_lookup_byaddr(struct net *net, u32 mark, 955 const xfrm_address_t *daddr, 956 const xfrm_address_t *saddr, 957 u8 proto, unsigned short family) 958 { 959 unsigned int h = xfrm_src_hash(net, daddr, saddr, family); 960 struct xfrm_state *x; 961 962 hlist_for_each_entry_rcu(x, net->xfrm.state_bysrc + h, bysrc) { 963 if (x->props.family != family || 964 x->id.proto != proto || 965 !xfrm_addr_equal(&x->id.daddr, daddr, family) || 966 !xfrm_addr_equal(&x->props.saddr, saddr, family)) 967 continue; 968 969 if ((mark & x->mark.m) != x->mark.v) 970 continue; 971 if (!xfrm_state_hold_rcu(x)) 972 continue; 973 return x; 974 } 975 976 return NULL; 977 } 978 979 static inline struct xfrm_state * 980 __xfrm_state_locate(struct xfrm_state *x, int use_spi, int family) 981 { 982 struct net *net = xs_net(x); 983 u32 mark = x->mark.v & x->mark.m; 984 985 if (use_spi) 986 return __xfrm_state_lookup(net, mark, &x->id.daddr, 987 x->id.spi, x->id.proto, family); 988 else 989 return __xfrm_state_lookup_byaddr(net, mark, 990 &x->id.daddr, 991 &x->props.saddr, 992 x->id.proto, family); 993 } 994 995 static void xfrm_hash_grow_check(struct net *net, int have_hash_collision) 996 { 997 if (have_hash_collision && 998 (net->xfrm.state_hmask + 1) < xfrm_state_hashmax && 999 net->xfrm.state_num > net->xfrm.state_hmask) 1000 schedule_work(&net->xfrm.state_hash_work); 1001 } 1002 1003 static void xfrm_state_look_at(struct xfrm_policy *pol, struct xfrm_state *x, 1004 const struct flowi *fl, unsigned short family, 1005 struct xfrm_state **best, int *acq_in_progress, 1006 int *error) 1007 { 1008 /* Resolution logic: 1009 * 1. There is a valid state with matching selector. Done. 1010 * 2. Valid state with inappropriate selector. Skip. 1011 * 1012 * Entering area of "sysdeps". 1013 * 1014 * 3. If state is not valid, selector is temporary, it selects 1015 * only session which triggered previous resolution. Key 1016 * manager will do something to install a state with proper 1017 * selector. 1018 */ 1019 if (x->km.state == XFRM_STATE_VALID) { 1020 if ((x->sel.family && 1021 (x->sel.family != family || 1022 !xfrm_selector_match(&x->sel, fl, family))) || 1023 !security_xfrm_state_pol_flow_match(x, pol, 1024 &fl->u.__fl_common)) 1025 return; 1026 1027 if (!*best || 1028 (*best)->km.dying > x->km.dying || 1029 ((*best)->km.dying == x->km.dying && 1030 (*best)->curlft.add_time < x->curlft.add_time)) 1031 *best = x; 1032 } else if (x->km.state == XFRM_STATE_ACQ) { 1033 *acq_in_progress = 1; 1034 } else if (x->km.state == XFRM_STATE_ERROR || 1035 x->km.state == XFRM_STATE_EXPIRED) { 1036 if ((!x->sel.family || 1037 (x->sel.family == family && 1038 xfrm_selector_match(&x->sel, fl, family))) && 1039 security_xfrm_state_pol_flow_match(x, pol, 1040 &fl->u.__fl_common)) 1041 *error = -ESRCH; 1042 } 1043 } 1044 1045 struct xfrm_state * 1046 xfrm_state_find(const xfrm_address_t *daddr, const xfrm_address_t *saddr, 1047 const struct flowi *fl, struct xfrm_tmpl *tmpl, 1048 struct xfrm_policy *pol, int *err, 1049 unsigned short family, u32 if_id) 1050 { 1051 static xfrm_address_t saddr_wildcard = { }; 1052 struct net *net = xp_net(pol); 1053 unsigned int h, h_wildcard; 1054 struct xfrm_state *x, *x0, *to_put; 1055 int acquire_in_progress = 0; 1056 int error = 0; 1057 struct xfrm_state *best = NULL; 1058 u32 mark = pol->mark.v & pol->mark.m; 1059 unsigned short encap_family = tmpl->encap_family; 1060 unsigned int sequence; 1061 struct km_event c; 1062 1063 to_put = NULL; 1064 1065 sequence = read_seqcount_begin(&net->xfrm.xfrm_state_hash_generation); 1066 1067 rcu_read_lock(); 1068 h = xfrm_dst_hash(net, daddr, saddr, tmpl->reqid, encap_family); 1069 hlist_for_each_entry_rcu(x, net->xfrm.state_bydst + h, bydst) { 1070 if (x->props.family == encap_family && 1071 x->props.reqid == tmpl->reqid && 1072 (mark & x->mark.m) == x->mark.v && 1073 x->if_id == if_id && 1074 !(x->props.flags & XFRM_STATE_WILDRECV) && 1075 xfrm_state_addr_check(x, daddr, saddr, encap_family) && 1076 tmpl->mode == x->props.mode && 1077 tmpl->id.proto == x->id.proto && 1078 (tmpl->id.spi == x->id.spi || !tmpl->id.spi)) 1079 xfrm_state_look_at(pol, x, fl, family, 1080 &best, &acquire_in_progress, &error); 1081 } 1082 if (best || acquire_in_progress) 1083 goto found; 1084 1085 h_wildcard = xfrm_dst_hash(net, daddr, &saddr_wildcard, tmpl->reqid, encap_family); 1086 hlist_for_each_entry_rcu(x, net->xfrm.state_bydst + h_wildcard, bydst) { 1087 if (x->props.family == encap_family && 1088 x->props.reqid == tmpl->reqid && 1089 (mark & x->mark.m) == x->mark.v && 1090 x->if_id == if_id && 1091 !(x->props.flags & XFRM_STATE_WILDRECV) && 1092 xfrm_addr_equal(&x->id.daddr, daddr, encap_family) && 1093 tmpl->mode == x->props.mode && 1094 tmpl->id.proto == x->id.proto && 1095 (tmpl->id.spi == x->id.spi || !tmpl->id.spi)) 1096 xfrm_state_look_at(pol, x, fl, family, 1097 &best, &acquire_in_progress, &error); 1098 } 1099 1100 found: 1101 x = best; 1102 if (!x && !error && !acquire_in_progress) { 1103 if (tmpl->id.spi && 1104 (x0 = __xfrm_state_lookup(net, mark, daddr, tmpl->id.spi, 1105 tmpl->id.proto, encap_family)) != NULL) { 1106 to_put = x0; 1107 error = -EEXIST; 1108 goto out; 1109 } 1110 1111 c.net = net; 1112 /* If the KMs have no listeners (yet...), avoid allocating an SA 1113 * for each and every packet - garbage collection might not 1114 * handle the flood. 1115 */ 1116 if (!km_is_alive(&c)) { 1117 error = -ESRCH; 1118 goto out; 1119 } 1120 1121 x = xfrm_state_alloc(net); 1122 if (x == NULL) { 1123 error = -ENOMEM; 1124 goto out; 1125 } 1126 /* Initialize temporary state matching only 1127 * to current session. */ 1128 xfrm_init_tempstate(x, fl, tmpl, daddr, saddr, family); 1129 memcpy(&x->mark, &pol->mark, sizeof(x->mark)); 1130 x->if_id = if_id; 1131 1132 error = security_xfrm_state_alloc_acquire(x, pol->security, fl->flowi_secid); 1133 if (error) { 1134 x->km.state = XFRM_STATE_DEAD; 1135 to_put = x; 1136 x = NULL; 1137 goto out; 1138 } 1139 1140 if (km_query(x, tmpl, pol) == 0) { 1141 spin_lock_bh(&net->xfrm.xfrm_state_lock); 1142 x->km.state = XFRM_STATE_ACQ; 1143 list_add(&x->km.all, &net->xfrm.state_all); 1144 hlist_add_head_rcu(&x->bydst, net->xfrm.state_bydst + h); 1145 h = xfrm_src_hash(net, daddr, saddr, encap_family); 1146 hlist_add_head_rcu(&x->bysrc, net->xfrm.state_bysrc + h); 1147 if (x->id.spi) { 1148 h = xfrm_spi_hash(net, &x->id.daddr, x->id.spi, x->id.proto, encap_family); 1149 hlist_add_head_rcu(&x->byspi, net->xfrm.state_byspi + h); 1150 } 1151 x->lft.hard_add_expires_seconds = net->xfrm.sysctl_acq_expires; 1152 hrtimer_start(&x->mtimer, 1153 ktime_set(net->xfrm.sysctl_acq_expires, 0), 1154 HRTIMER_MODE_REL_SOFT); 1155 net->xfrm.state_num++; 1156 xfrm_hash_grow_check(net, x->bydst.next != NULL); 1157 spin_unlock_bh(&net->xfrm.xfrm_state_lock); 1158 } else { 1159 x->km.state = XFRM_STATE_DEAD; 1160 to_put = x; 1161 x = NULL; 1162 error = -ESRCH; 1163 } 1164 } 1165 out: 1166 if (x) { 1167 if (!xfrm_state_hold_rcu(x)) { 1168 *err = -EAGAIN; 1169 x = NULL; 1170 } 1171 } else { 1172 *err = acquire_in_progress ? -EAGAIN : error; 1173 } 1174 rcu_read_unlock(); 1175 if (to_put) 1176 xfrm_state_put(to_put); 1177 1178 if (read_seqcount_retry(&net->xfrm.xfrm_state_hash_generation, sequence)) { 1179 *err = -EAGAIN; 1180 if (x) { 1181 xfrm_state_put(x); 1182 x = NULL; 1183 } 1184 } 1185 1186 return x; 1187 } 1188 1189 struct xfrm_state * 1190 xfrm_stateonly_find(struct net *net, u32 mark, u32 if_id, 1191 xfrm_address_t *daddr, xfrm_address_t *saddr, 1192 unsigned short family, u8 mode, u8 proto, u32 reqid) 1193 { 1194 unsigned int h; 1195 struct xfrm_state *rx = NULL, *x = NULL; 1196 1197 spin_lock_bh(&net->xfrm.xfrm_state_lock); 1198 h = xfrm_dst_hash(net, daddr, saddr, reqid, family); 1199 hlist_for_each_entry(x, net->xfrm.state_bydst+h, bydst) { 1200 if (x->props.family == family && 1201 x->props.reqid == reqid && 1202 (mark & x->mark.m) == x->mark.v && 1203 x->if_id == if_id && 1204 !(x->props.flags & XFRM_STATE_WILDRECV) && 1205 xfrm_state_addr_check(x, daddr, saddr, family) && 1206 mode == x->props.mode && 1207 proto == x->id.proto && 1208 x->km.state == XFRM_STATE_VALID) { 1209 rx = x; 1210 break; 1211 } 1212 } 1213 1214 if (rx) 1215 xfrm_state_hold(rx); 1216 spin_unlock_bh(&net->xfrm.xfrm_state_lock); 1217 1218 1219 return rx; 1220 } 1221 EXPORT_SYMBOL(xfrm_stateonly_find); 1222 1223 struct xfrm_state *xfrm_state_lookup_byspi(struct net *net, __be32 spi, 1224 unsigned short family) 1225 { 1226 struct xfrm_state *x; 1227 struct xfrm_state_walk *w; 1228 1229 spin_lock_bh(&net->xfrm.xfrm_state_lock); 1230 list_for_each_entry(w, &net->xfrm.state_all, all) { 1231 x = container_of(w, struct xfrm_state, km); 1232 if (x->props.family != family || 1233 x->id.spi != spi) 1234 continue; 1235 1236 xfrm_state_hold(x); 1237 spin_unlock_bh(&net->xfrm.xfrm_state_lock); 1238 return x; 1239 } 1240 spin_unlock_bh(&net->xfrm.xfrm_state_lock); 1241 return NULL; 1242 } 1243 EXPORT_SYMBOL(xfrm_state_lookup_byspi); 1244 1245 static void __xfrm_state_insert(struct xfrm_state *x) 1246 { 1247 struct net *net = xs_net(x); 1248 unsigned int h; 1249 1250 list_add(&x->km.all, &net->xfrm.state_all); 1251 1252 h = xfrm_dst_hash(net, &x->id.daddr, &x->props.saddr, 1253 x->props.reqid, x->props.family); 1254 hlist_add_head_rcu(&x->bydst, net->xfrm.state_bydst + h); 1255 1256 h = xfrm_src_hash(net, &x->id.daddr, &x->props.saddr, x->props.family); 1257 hlist_add_head_rcu(&x->bysrc, net->xfrm.state_bysrc + h); 1258 1259 if (x->id.spi) { 1260 h = xfrm_spi_hash(net, &x->id.daddr, x->id.spi, x->id.proto, 1261 x->props.family); 1262 1263 hlist_add_head_rcu(&x->byspi, net->xfrm.state_byspi + h); 1264 } 1265 1266 hrtimer_start(&x->mtimer, ktime_set(1, 0), HRTIMER_MODE_REL_SOFT); 1267 if (x->replay_maxage) 1268 mod_timer(&x->rtimer, jiffies + x->replay_maxage); 1269 1270 net->xfrm.state_num++; 1271 1272 xfrm_hash_grow_check(net, x->bydst.next != NULL); 1273 } 1274 1275 /* net->xfrm.xfrm_state_lock is held */ 1276 static void __xfrm_state_bump_genids(struct xfrm_state *xnew) 1277 { 1278 struct net *net = xs_net(xnew); 1279 unsigned short family = xnew->props.family; 1280 u32 reqid = xnew->props.reqid; 1281 struct xfrm_state *x; 1282 unsigned int h; 1283 u32 mark = xnew->mark.v & xnew->mark.m; 1284 u32 if_id = xnew->if_id; 1285 1286 h = xfrm_dst_hash(net, &xnew->id.daddr, &xnew->props.saddr, reqid, family); 1287 hlist_for_each_entry(x, net->xfrm.state_bydst+h, bydst) { 1288 if (x->props.family == family && 1289 x->props.reqid == reqid && 1290 x->if_id == if_id && 1291 (mark & x->mark.m) == x->mark.v && 1292 xfrm_addr_equal(&x->id.daddr, &xnew->id.daddr, family) && 1293 xfrm_addr_equal(&x->props.saddr, &xnew->props.saddr, family)) 1294 x->genid++; 1295 } 1296 } 1297 1298 void xfrm_state_insert(struct xfrm_state *x) 1299 { 1300 struct net *net = xs_net(x); 1301 1302 spin_lock_bh(&net->xfrm.xfrm_state_lock); 1303 __xfrm_state_bump_genids(x); 1304 __xfrm_state_insert(x); 1305 spin_unlock_bh(&net->xfrm.xfrm_state_lock); 1306 } 1307 EXPORT_SYMBOL(xfrm_state_insert); 1308 1309 /* net->xfrm.xfrm_state_lock is held */ 1310 static struct xfrm_state *__find_acq_core(struct net *net, 1311 const struct xfrm_mark *m, 1312 unsigned short family, u8 mode, 1313 u32 reqid, u32 if_id, u8 proto, 1314 const xfrm_address_t *daddr, 1315 const xfrm_address_t *saddr, 1316 int create) 1317 { 1318 unsigned int h = xfrm_dst_hash(net, daddr, saddr, reqid, family); 1319 struct xfrm_state *x; 1320 u32 mark = m->v & m->m; 1321 1322 hlist_for_each_entry(x, net->xfrm.state_bydst+h, bydst) { 1323 if (x->props.reqid != reqid || 1324 x->props.mode != mode || 1325 x->props.family != family || 1326 x->km.state != XFRM_STATE_ACQ || 1327 x->id.spi != 0 || 1328 x->id.proto != proto || 1329 (mark & x->mark.m) != x->mark.v || 1330 !xfrm_addr_equal(&x->id.daddr, daddr, family) || 1331 !xfrm_addr_equal(&x->props.saddr, saddr, family)) 1332 continue; 1333 1334 xfrm_state_hold(x); 1335 return x; 1336 } 1337 1338 if (!create) 1339 return NULL; 1340 1341 x = xfrm_state_alloc(net); 1342 if (likely(x)) { 1343 switch (family) { 1344 case AF_INET: 1345 x->sel.daddr.a4 = daddr->a4; 1346 x->sel.saddr.a4 = saddr->a4; 1347 x->sel.prefixlen_d = 32; 1348 x->sel.prefixlen_s = 32; 1349 x->props.saddr.a4 = saddr->a4; 1350 x->id.daddr.a4 = daddr->a4; 1351 break; 1352 1353 case AF_INET6: 1354 x->sel.daddr.in6 = daddr->in6; 1355 x->sel.saddr.in6 = saddr->in6; 1356 x->sel.prefixlen_d = 128; 1357 x->sel.prefixlen_s = 128; 1358 x->props.saddr.in6 = saddr->in6; 1359 x->id.daddr.in6 = daddr->in6; 1360 break; 1361 } 1362 1363 x->km.state = XFRM_STATE_ACQ; 1364 x->id.proto = proto; 1365 x->props.family = family; 1366 x->props.mode = mode; 1367 x->props.reqid = reqid; 1368 x->if_id = if_id; 1369 x->mark.v = m->v; 1370 x->mark.m = m->m; 1371 x->lft.hard_add_expires_seconds = net->xfrm.sysctl_acq_expires; 1372 xfrm_state_hold(x); 1373 hrtimer_start(&x->mtimer, 1374 ktime_set(net->xfrm.sysctl_acq_expires, 0), 1375 HRTIMER_MODE_REL_SOFT); 1376 list_add(&x->km.all, &net->xfrm.state_all); 1377 hlist_add_head_rcu(&x->bydst, net->xfrm.state_bydst + h); 1378 h = xfrm_src_hash(net, daddr, saddr, family); 1379 hlist_add_head_rcu(&x->bysrc, net->xfrm.state_bysrc + h); 1380 1381 net->xfrm.state_num++; 1382 1383 xfrm_hash_grow_check(net, x->bydst.next != NULL); 1384 } 1385 1386 return x; 1387 } 1388 1389 static struct xfrm_state *__xfrm_find_acq_byseq(struct net *net, u32 mark, u32 seq); 1390 1391 int xfrm_state_add(struct xfrm_state *x) 1392 { 1393 struct net *net = xs_net(x); 1394 struct xfrm_state *x1, *to_put; 1395 int family; 1396 int err; 1397 u32 mark = x->mark.v & x->mark.m; 1398 int use_spi = xfrm_id_proto_match(x->id.proto, IPSEC_PROTO_ANY); 1399 1400 family = x->props.family; 1401 1402 to_put = NULL; 1403 1404 spin_lock_bh(&net->xfrm.xfrm_state_lock); 1405 1406 x1 = __xfrm_state_locate(x, use_spi, family); 1407 if (x1) { 1408 to_put = x1; 1409 x1 = NULL; 1410 err = -EEXIST; 1411 goto out; 1412 } 1413 1414 if (use_spi && x->km.seq) { 1415 x1 = __xfrm_find_acq_byseq(net, mark, x->km.seq); 1416 if (x1 && ((x1->id.proto != x->id.proto) || 1417 !xfrm_addr_equal(&x1->id.daddr, &x->id.daddr, family))) { 1418 to_put = x1; 1419 x1 = NULL; 1420 } 1421 } 1422 1423 if (use_spi && !x1) 1424 x1 = __find_acq_core(net, &x->mark, family, x->props.mode, 1425 x->props.reqid, x->if_id, x->id.proto, 1426 &x->id.daddr, &x->props.saddr, 0); 1427 1428 __xfrm_state_bump_genids(x); 1429 __xfrm_state_insert(x); 1430 err = 0; 1431 1432 out: 1433 spin_unlock_bh(&net->xfrm.xfrm_state_lock); 1434 1435 if (x1) { 1436 xfrm_state_delete(x1); 1437 xfrm_state_put(x1); 1438 } 1439 1440 if (to_put) 1441 xfrm_state_put(to_put); 1442 1443 return err; 1444 } 1445 EXPORT_SYMBOL(xfrm_state_add); 1446 1447 #ifdef CONFIG_XFRM_MIGRATE 1448 static inline int clone_security(struct xfrm_state *x, struct xfrm_sec_ctx *security) 1449 { 1450 struct xfrm_user_sec_ctx *uctx; 1451 int size = sizeof(*uctx) + security->ctx_len; 1452 int err; 1453 1454 uctx = kmalloc(size, GFP_KERNEL); 1455 if (!uctx) 1456 return -ENOMEM; 1457 1458 uctx->exttype = XFRMA_SEC_CTX; 1459 uctx->len = size; 1460 uctx->ctx_doi = security->ctx_doi; 1461 uctx->ctx_alg = security->ctx_alg; 1462 uctx->ctx_len = security->ctx_len; 1463 memcpy(uctx + 1, security->ctx_str, security->ctx_len); 1464 err = security_xfrm_state_alloc(x, uctx); 1465 kfree(uctx); 1466 if (err) 1467 return err; 1468 1469 return 0; 1470 } 1471 1472 static struct xfrm_state *xfrm_state_clone(struct xfrm_state *orig, 1473 struct xfrm_encap_tmpl *encap) 1474 { 1475 struct net *net = xs_net(orig); 1476 struct xfrm_state *x = xfrm_state_alloc(net); 1477 if (!x) 1478 goto out; 1479 1480 memcpy(&x->id, &orig->id, sizeof(x->id)); 1481 memcpy(&x->sel, &orig->sel, sizeof(x->sel)); 1482 memcpy(&x->lft, &orig->lft, sizeof(x->lft)); 1483 x->props.mode = orig->props.mode; 1484 x->props.replay_window = orig->props.replay_window; 1485 x->props.reqid = orig->props.reqid; 1486 x->props.family = orig->props.family; 1487 x->props.saddr = orig->props.saddr; 1488 1489 if (orig->aalg) { 1490 x->aalg = xfrm_algo_auth_clone(orig->aalg); 1491 if (!x->aalg) 1492 goto error; 1493 } 1494 x->props.aalgo = orig->props.aalgo; 1495 1496 if (orig->aead) { 1497 x->aead = xfrm_algo_aead_clone(orig->aead); 1498 x->geniv = orig->geniv; 1499 if (!x->aead) 1500 goto error; 1501 } 1502 if (orig->ealg) { 1503 x->ealg = xfrm_algo_clone(orig->ealg); 1504 if (!x->ealg) 1505 goto error; 1506 } 1507 x->props.ealgo = orig->props.ealgo; 1508 1509 if (orig->calg) { 1510 x->calg = xfrm_algo_clone(orig->calg); 1511 if (!x->calg) 1512 goto error; 1513 } 1514 x->props.calgo = orig->props.calgo; 1515 1516 if (encap || orig->encap) { 1517 if (encap) 1518 x->encap = kmemdup(encap, sizeof(*x->encap), 1519 GFP_KERNEL); 1520 else 1521 x->encap = kmemdup(orig->encap, sizeof(*x->encap), 1522 GFP_KERNEL); 1523 1524 if (!x->encap) 1525 goto error; 1526 } 1527 1528 if (orig->security) 1529 if (clone_security(x, orig->security)) 1530 goto error; 1531 1532 if (orig->coaddr) { 1533 x->coaddr = kmemdup(orig->coaddr, sizeof(*x->coaddr), 1534 GFP_KERNEL); 1535 if (!x->coaddr) 1536 goto error; 1537 } 1538 1539 if (orig->replay_esn) { 1540 if (xfrm_replay_clone(x, orig)) 1541 goto error; 1542 } 1543 1544 memcpy(&x->mark, &orig->mark, sizeof(x->mark)); 1545 memcpy(&x->props.smark, &orig->props.smark, sizeof(x->props.smark)); 1546 1547 if (xfrm_init_state(x) < 0) 1548 goto error; 1549 1550 x->props.flags = orig->props.flags; 1551 x->props.extra_flags = orig->props.extra_flags; 1552 1553 x->if_id = orig->if_id; 1554 x->tfcpad = orig->tfcpad; 1555 x->replay_maxdiff = orig->replay_maxdiff; 1556 x->replay_maxage = orig->replay_maxage; 1557 memcpy(&x->curlft, &orig->curlft, sizeof(x->curlft)); 1558 x->km.state = orig->km.state; 1559 x->km.seq = orig->km.seq; 1560 x->replay = orig->replay; 1561 x->preplay = orig->preplay; 1562 1563 return x; 1564 1565 error: 1566 xfrm_state_put(x); 1567 out: 1568 return NULL; 1569 } 1570 1571 struct xfrm_state *xfrm_migrate_state_find(struct xfrm_migrate *m, struct net *net) 1572 { 1573 unsigned int h; 1574 struct xfrm_state *x = NULL; 1575 1576 spin_lock_bh(&net->xfrm.xfrm_state_lock); 1577 1578 if (m->reqid) { 1579 h = xfrm_dst_hash(net, &m->old_daddr, &m->old_saddr, 1580 m->reqid, m->old_family); 1581 hlist_for_each_entry(x, net->xfrm.state_bydst+h, bydst) { 1582 if (x->props.mode != m->mode || 1583 x->id.proto != m->proto) 1584 continue; 1585 if (m->reqid && x->props.reqid != m->reqid) 1586 continue; 1587 if (!xfrm_addr_equal(&x->id.daddr, &m->old_daddr, 1588 m->old_family) || 1589 !xfrm_addr_equal(&x->props.saddr, &m->old_saddr, 1590 m->old_family)) 1591 continue; 1592 xfrm_state_hold(x); 1593 break; 1594 } 1595 } else { 1596 h = xfrm_src_hash(net, &m->old_daddr, &m->old_saddr, 1597 m->old_family); 1598 hlist_for_each_entry(x, net->xfrm.state_bysrc+h, bysrc) { 1599 if (x->props.mode != m->mode || 1600 x->id.proto != m->proto) 1601 continue; 1602 if (!xfrm_addr_equal(&x->id.daddr, &m->old_daddr, 1603 m->old_family) || 1604 !xfrm_addr_equal(&x->props.saddr, &m->old_saddr, 1605 m->old_family)) 1606 continue; 1607 xfrm_state_hold(x); 1608 break; 1609 } 1610 } 1611 1612 spin_unlock_bh(&net->xfrm.xfrm_state_lock); 1613 1614 return x; 1615 } 1616 EXPORT_SYMBOL(xfrm_migrate_state_find); 1617 1618 struct xfrm_state *xfrm_state_migrate(struct xfrm_state *x, 1619 struct xfrm_migrate *m, 1620 struct xfrm_encap_tmpl *encap) 1621 { 1622 struct xfrm_state *xc; 1623 1624 xc = xfrm_state_clone(x, encap); 1625 if (!xc) 1626 return NULL; 1627 1628 memcpy(&xc->id.daddr, &m->new_daddr, sizeof(xc->id.daddr)); 1629 memcpy(&xc->props.saddr, &m->new_saddr, sizeof(xc->props.saddr)); 1630 1631 /* add state */ 1632 if (xfrm_addr_equal(&x->id.daddr, &m->new_daddr, m->new_family)) { 1633 /* a care is needed when the destination address of the 1634 state is to be updated as it is a part of triplet */ 1635 xfrm_state_insert(xc); 1636 } else { 1637 if (xfrm_state_add(xc) < 0) 1638 goto error; 1639 } 1640 1641 return xc; 1642 error: 1643 xfrm_state_put(xc); 1644 return NULL; 1645 } 1646 EXPORT_SYMBOL(xfrm_state_migrate); 1647 #endif 1648 1649 int xfrm_state_update(struct xfrm_state *x) 1650 { 1651 struct xfrm_state *x1, *to_put; 1652 int err; 1653 int use_spi = xfrm_id_proto_match(x->id.proto, IPSEC_PROTO_ANY); 1654 struct net *net = xs_net(x); 1655 1656 to_put = NULL; 1657 1658 spin_lock_bh(&net->xfrm.xfrm_state_lock); 1659 x1 = __xfrm_state_locate(x, use_spi, x->props.family); 1660 1661 err = -ESRCH; 1662 if (!x1) 1663 goto out; 1664 1665 if (xfrm_state_kern(x1)) { 1666 to_put = x1; 1667 err = -EEXIST; 1668 goto out; 1669 } 1670 1671 if (x1->km.state == XFRM_STATE_ACQ) { 1672 __xfrm_state_insert(x); 1673 x = NULL; 1674 } 1675 err = 0; 1676 1677 out: 1678 spin_unlock_bh(&net->xfrm.xfrm_state_lock); 1679 1680 if (to_put) 1681 xfrm_state_put(to_put); 1682 1683 if (err) 1684 return err; 1685 1686 if (!x) { 1687 xfrm_state_delete(x1); 1688 xfrm_state_put(x1); 1689 return 0; 1690 } 1691 1692 err = -EINVAL; 1693 spin_lock_bh(&x1->lock); 1694 if (likely(x1->km.state == XFRM_STATE_VALID)) { 1695 if (x->encap && x1->encap && 1696 x->encap->encap_type == x1->encap->encap_type) 1697 memcpy(x1->encap, x->encap, sizeof(*x1->encap)); 1698 else if (x->encap || x1->encap) 1699 goto fail; 1700 1701 if (x->coaddr && x1->coaddr) { 1702 memcpy(x1->coaddr, x->coaddr, sizeof(*x1->coaddr)); 1703 } 1704 if (!use_spi && memcmp(&x1->sel, &x->sel, sizeof(x1->sel))) 1705 memcpy(&x1->sel, &x->sel, sizeof(x1->sel)); 1706 memcpy(&x1->lft, &x->lft, sizeof(x1->lft)); 1707 x1->km.dying = 0; 1708 1709 hrtimer_start(&x1->mtimer, ktime_set(1, 0), 1710 HRTIMER_MODE_REL_SOFT); 1711 if (x1->curlft.use_time) 1712 xfrm_state_check_expire(x1); 1713 1714 if (x->props.smark.m || x->props.smark.v || x->if_id) { 1715 spin_lock_bh(&net->xfrm.xfrm_state_lock); 1716 1717 if (x->props.smark.m || x->props.smark.v) 1718 x1->props.smark = x->props.smark; 1719 1720 if (x->if_id) 1721 x1->if_id = x->if_id; 1722 1723 __xfrm_state_bump_genids(x1); 1724 spin_unlock_bh(&net->xfrm.xfrm_state_lock); 1725 } 1726 1727 err = 0; 1728 x->km.state = XFRM_STATE_DEAD; 1729 __xfrm_state_put(x); 1730 } 1731 1732 fail: 1733 spin_unlock_bh(&x1->lock); 1734 1735 xfrm_state_put(x1); 1736 1737 return err; 1738 } 1739 EXPORT_SYMBOL(xfrm_state_update); 1740 1741 int xfrm_state_check_expire(struct xfrm_state *x) 1742 { 1743 if (!x->curlft.use_time) 1744 x->curlft.use_time = ktime_get_real_seconds(); 1745 1746 if (x->curlft.bytes >= x->lft.hard_byte_limit || 1747 x->curlft.packets >= x->lft.hard_packet_limit) { 1748 x->km.state = XFRM_STATE_EXPIRED; 1749 hrtimer_start(&x->mtimer, 0, HRTIMER_MODE_REL_SOFT); 1750 return -EINVAL; 1751 } 1752 1753 if (!x->km.dying && 1754 (x->curlft.bytes >= x->lft.soft_byte_limit || 1755 x->curlft.packets >= x->lft.soft_packet_limit)) { 1756 x->km.dying = 1; 1757 km_state_expired(x, 0, 0); 1758 } 1759 return 0; 1760 } 1761 EXPORT_SYMBOL(xfrm_state_check_expire); 1762 1763 struct xfrm_state * 1764 xfrm_state_lookup(struct net *net, u32 mark, const xfrm_address_t *daddr, __be32 spi, 1765 u8 proto, unsigned short family) 1766 { 1767 struct xfrm_state *x; 1768 1769 rcu_read_lock(); 1770 x = __xfrm_state_lookup(net, mark, daddr, spi, proto, family); 1771 rcu_read_unlock(); 1772 return x; 1773 } 1774 EXPORT_SYMBOL(xfrm_state_lookup); 1775 1776 struct xfrm_state * 1777 xfrm_state_lookup_byaddr(struct net *net, u32 mark, 1778 const xfrm_address_t *daddr, const xfrm_address_t *saddr, 1779 u8 proto, unsigned short family) 1780 { 1781 struct xfrm_state *x; 1782 1783 spin_lock_bh(&net->xfrm.xfrm_state_lock); 1784 x = __xfrm_state_lookup_byaddr(net, mark, daddr, saddr, proto, family); 1785 spin_unlock_bh(&net->xfrm.xfrm_state_lock); 1786 return x; 1787 } 1788 EXPORT_SYMBOL(xfrm_state_lookup_byaddr); 1789 1790 struct xfrm_state * 1791 xfrm_find_acq(struct net *net, const struct xfrm_mark *mark, u8 mode, u32 reqid, 1792 u32 if_id, u8 proto, const xfrm_address_t *daddr, 1793 const xfrm_address_t *saddr, int create, unsigned short family) 1794 { 1795 struct xfrm_state *x; 1796 1797 spin_lock_bh(&net->xfrm.xfrm_state_lock); 1798 x = __find_acq_core(net, mark, family, mode, reqid, if_id, proto, daddr, saddr, create); 1799 spin_unlock_bh(&net->xfrm.xfrm_state_lock); 1800 1801 return x; 1802 } 1803 EXPORT_SYMBOL(xfrm_find_acq); 1804 1805 #ifdef CONFIG_XFRM_SUB_POLICY 1806 #if IS_ENABLED(CONFIG_IPV6) 1807 /* distribution counting sort function for xfrm_state and xfrm_tmpl */ 1808 static void 1809 __xfrm6_sort(void **dst, void **src, int n, 1810 int (*cmp)(const void *p), int maxclass) 1811 { 1812 int count[XFRM_MAX_DEPTH] = { }; 1813 int class[XFRM_MAX_DEPTH]; 1814 int i; 1815 1816 for (i = 0; i < n; i++) { 1817 int c = cmp(src[i]); 1818 1819 class[i] = c; 1820 count[c]++; 1821 } 1822 1823 for (i = 2; i < maxclass; i++) 1824 count[i] += count[i - 1]; 1825 1826 for (i = 0; i < n; i++) { 1827 dst[count[class[i] - 1]++] = src[i]; 1828 src[i] = NULL; 1829 } 1830 } 1831 1832 /* Rule for xfrm_state: 1833 * 1834 * rule 1: select IPsec transport except AH 1835 * rule 2: select MIPv6 RO or inbound trigger 1836 * rule 3: select IPsec transport AH 1837 * rule 4: select IPsec tunnel 1838 * rule 5: others 1839 */ 1840 static int __xfrm6_state_sort_cmp(const void *p) 1841 { 1842 const struct xfrm_state *v = p; 1843 1844 switch (v->props.mode) { 1845 case XFRM_MODE_TRANSPORT: 1846 if (v->id.proto != IPPROTO_AH) 1847 return 1; 1848 else 1849 return 3; 1850 #if IS_ENABLED(CONFIG_IPV6_MIP6) 1851 case XFRM_MODE_ROUTEOPTIMIZATION: 1852 case XFRM_MODE_IN_TRIGGER: 1853 return 2; 1854 #endif 1855 case XFRM_MODE_TUNNEL: 1856 case XFRM_MODE_BEET: 1857 return 4; 1858 } 1859 return 5; 1860 } 1861 1862 /* Rule for xfrm_tmpl: 1863 * 1864 * rule 1: select IPsec transport 1865 * rule 2: select MIPv6 RO or inbound trigger 1866 * rule 3: select IPsec tunnel 1867 * rule 4: others 1868 */ 1869 static int __xfrm6_tmpl_sort_cmp(const void *p) 1870 { 1871 const struct xfrm_tmpl *v = p; 1872 1873 switch (v->mode) { 1874 case XFRM_MODE_TRANSPORT: 1875 return 1; 1876 #if IS_ENABLED(CONFIG_IPV6_MIP6) 1877 case XFRM_MODE_ROUTEOPTIMIZATION: 1878 case XFRM_MODE_IN_TRIGGER: 1879 return 2; 1880 #endif 1881 case XFRM_MODE_TUNNEL: 1882 case XFRM_MODE_BEET: 1883 return 3; 1884 } 1885 return 4; 1886 } 1887 #else 1888 static inline int __xfrm6_state_sort_cmp(const void *p) { return 5; } 1889 static inline int __xfrm6_tmpl_sort_cmp(const void *p) { return 4; } 1890 1891 static inline void 1892 __xfrm6_sort(void **dst, void **src, int n, 1893 int (*cmp)(const void *p), int maxclass) 1894 { 1895 int i; 1896 1897 for (i = 0; i < n; i++) 1898 dst[i] = src[i]; 1899 } 1900 #endif /* CONFIG_IPV6 */ 1901 1902 void 1903 xfrm_tmpl_sort(struct xfrm_tmpl **dst, struct xfrm_tmpl **src, int n, 1904 unsigned short family) 1905 { 1906 int i; 1907 1908 if (family == AF_INET6) 1909 __xfrm6_sort((void **)dst, (void **)src, n, 1910 __xfrm6_tmpl_sort_cmp, 5); 1911 else 1912 for (i = 0; i < n; i++) 1913 dst[i] = src[i]; 1914 } 1915 1916 void 1917 xfrm_state_sort(struct xfrm_state **dst, struct xfrm_state **src, int n, 1918 unsigned short family) 1919 { 1920 int i; 1921 1922 if (family == AF_INET6) 1923 __xfrm6_sort((void **)dst, (void **)src, n, 1924 __xfrm6_state_sort_cmp, 6); 1925 else 1926 for (i = 0; i < n; i++) 1927 dst[i] = src[i]; 1928 } 1929 #endif 1930 1931 /* Silly enough, but I'm lazy to build resolution list */ 1932 1933 static struct xfrm_state *__xfrm_find_acq_byseq(struct net *net, u32 mark, u32 seq) 1934 { 1935 int i; 1936 1937 for (i = 0; i <= net->xfrm.state_hmask; i++) { 1938 struct xfrm_state *x; 1939 1940 hlist_for_each_entry(x, net->xfrm.state_bydst+i, bydst) { 1941 if (x->km.seq == seq && 1942 (mark & x->mark.m) == x->mark.v && 1943 x->km.state == XFRM_STATE_ACQ) { 1944 xfrm_state_hold(x); 1945 return x; 1946 } 1947 } 1948 } 1949 return NULL; 1950 } 1951 1952 struct xfrm_state *xfrm_find_acq_byseq(struct net *net, u32 mark, u32 seq) 1953 { 1954 struct xfrm_state *x; 1955 1956 spin_lock_bh(&net->xfrm.xfrm_state_lock); 1957 x = __xfrm_find_acq_byseq(net, mark, seq); 1958 spin_unlock_bh(&net->xfrm.xfrm_state_lock); 1959 return x; 1960 } 1961 EXPORT_SYMBOL(xfrm_find_acq_byseq); 1962 1963 u32 xfrm_get_acqseq(void) 1964 { 1965 u32 res; 1966 static atomic_t acqseq; 1967 1968 do { 1969 res = atomic_inc_return(&acqseq); 1970 } while (!res); 1971 1972 return res; 1973 } 1974 EXPORT_SYMBOL(xfrm_get_acqseq); 1975 1976 int verify_spi_info(u8 proto, u32 min, u32 max) 1977 { 1978 switch (proto) { 1979 case IPPROTO_AH: 1980 case IPPROTO_ESP: 1981 break; 1982 1983 case IPPROTO_COMP: 1984 /* IPCOMP spi is 16-bits. */ 1985 if (max >= 0x10000) 1986 return -EINVAL; 1987 break; 1988 1989 default: 1990 return -EINVAL; 1991 } 1992 1993 if (min > max) 1994 return -EINVAL; 1995 1996 return 0; 1997 } 1998 EXPORT_SYMBOL(verify_spi_info); 1999 2000 int xfrm_alloc_spi(struct xfrm_state *x, u32 low, u32 high) 2001 { 2002 struct net *net = xs_net(x); 2003 unsigned int h; 2004 struct xfrm_state *x0; 2005 int err = -ENOENT; 2006 __be32 minspi = htonl(low); 2007 __be32 maxspi = htonl(high); 2008 __be32 newspi = 0; 2009 u32 mark = x->mark.v & x->mark.m; 2010 2011 spin_lock_bh(&x->lock); 2012 if (x->km.state == XFRM_STATE_DEAD) 2013 goto unlock; 2014 2015 err = 0; 2016 if (x->id.spi) 2017 goto unlock; 2018 2019 err = -ENOENT; 2020 2021 if (minspi == maxspi) { 2022 x0 = xfrm_state_lookup(net, mark, &x->id.daddr, minspi, x->id.proto, x->props.family); 2023 if (x0) { 2024 xfrm_state_put(x0); 2025 goto unlock; 2026 } 2027 newspi = minspi; 2028 } else { 2029 u32 spi = 0; 2030 for (h = 0; h < high-low+1; h++) { 2031 spi = low + prandom_u32()%(high-low+1); 2032 x0 = xfrm_state_lookup(net, mark, &x->id.daddr, htonl(spi), x->id.proto, x->props.family); 2033 if (x0 == NULL) { 2034 newspi = htonl(spi); 2035 break; 2036 } 2037 xfrm_state_put(x0); 2038 } 2039 } 2040 if (newspi) { 2041 spin_lock_bh(&net->xfrm.xfrm_state_lock); 2042 x->id.spi = newspi; 2043 h = xfrm_spi_hash(net, &x->id.daddr, x->id.spi, x->id.proto, x->props.family); 2044 hlist_add_head_rcu(&x->byspi, net->xfrm.state_byspi + h); 2045 spin_unlock_bh(&net->xfrm.xfrm_state_lock); 2046 2047 err = 0; 2048 } 2049 2050 unlock: 2051 spin_unlock_bh(&x->lock); 2052 2053 return err; 2054 } 2055 EXPORT_SYMBOL(xfrm_alloc_spi); 2056 2057 static bool __xfrm_state_filter_match(struct xfrm_state *x, 2058 struct xfrm_address_filter *filter) 2059 { 2060 if (filter) { 2061 if ((filter->family == AF_INET || 2062 filter->family == AF_INET6) && 2063 x->props.family != filter->family) 2064 return false; 2065 2066 return addr_match(&x->props.saddr, &filter->saddr, 2067 filter->splen) && 2068 addr_match(&x->id.daddr, &filter->daddr, 2069 filter->dplen); 2070 } 2071 return true; 2072 } 2073 2074 int xfrm_state_walk(struct net *net, struct xfrm_state_walk *walk, 2075 int (*func)(struct xfrm_state *, int, void*), 2076 void *data) 2077 { 2078 struct xfrm_state *state; 2079 struct xfrm_state_walk *x; 2080 int err = 0; 2081 2082 if (walk->seq != 0 && list_empty(&walk->all)) 2083 return 0; 2084 2085 spin_lock_bh(&net->xfrm.xfrm_state_lock); 2086 if (list_empty(&walk->all)) 2087 x = list_first_entry(&net->xfrm.state_all, struct xfrm_state_walk, all); 2088 else 2089 x = list_first_entry(&walk->all, struct xfrm_state_walk, all); 2090 list_for_each_entry_from(x, &net->xfrm.state_all, all) { 2091 if (x->state == XFRM_STATE_DEAD) 2092 continue; 2093 state = container_of(x, struct xfrm_state, km); 2094 if (!xfrm_id_proto_match(state->id.proto, walk->proto)) 2095 continue; 2096 if (!__xfrm_state_filter_match(state, walk->filter)) 2097 continue; 2098 err = func(state, walk->seq, data); 2099 if (err) { 2100 list_move_tail(&walk->all, &x->all); 2101 goto out; 2102 } 2103 walk->seq++; 2104 } 2105 if (walk->seq == 0) { 2106 err = -ENOENT; 2107 goto out; 2108 } 2109 list_del_init(&walk->all); 2110 out: 2111 spin_unlock_bh(&net->xfrm.xfrm_state_lock); 2112 return err; 2113 } 2114 EXPORT_SYMBOL(xfrm_state_walk); 2115 2116 void xfrm_state_walk_init(struct xfrm_state_walk *walk, u8 proto, 2117 struct xfrm_address_filter *filter) 2118 { 2119 INIT_LIST_HEAD(&walk->all); 2120 walk->proto = proto; 2121 walk->state = XFRM_STATE_DEAD; 2122 walk->seq = 0; 2123 walk->filter = filter; 2124 } 2125 EXPORT_SYMBOL(xfrm_state_walk_init); 2126 2127 void xfrm_state_walk_done(struct xfrm_state_walk *walk, struct net *net) 2128 { 2129 kfree(walk->filter); 2130 2131 if (list_empty(&walk->all)) 2132 return; 2133 2134 spin_lock_bh(&net->xfrm.xfrm_state_lock); 2135 list_del(&walk->all); 2136 spin_unlock_bh(&net->xfrm.xfrm_state_lock); 2137 } 2138 EXPORT_SYMBOL(xfrm_state_walk_done); 2139 2140 static void xfrm_replay_timer_handler(struct timer_list *t) 2141 { 2142 struct xfrm_state *x = from_timer(x, t, rtimer); 2143 2144 spin_lock(&x->lock); 2145 2146 if (x->km.state == XFRM_STATE_VALID) { 2147 if (xfrm_aevent_is_on(xs_net(x))) 2148 x->repl->notify(x, XFRM_REPLAY_TIMEOUT); 2149 else 2150 x->xflags |= XFRM_TIME_DEFER; 2151 } 2152 2153 spin_unlock(&x->lock); 2154 } 2155 2156 static LIST_HEAD(xfrm_km_list); 2157 2158 void km_policy_notify(struct xfrm_policy *xp, int dir, const struct km_event *c) 2159 { 2160 struct xfrm_mgr *km; 2161 2162 rcu_read_lock(); 2163 list_for_each_entry_rcu(km, &xfrm_km_list, list) 2164 if (km->notify_policy) 2165 km->notify_policy(xp, dir, c); 2166 rcu_read_unlock(); 2167 } 2168 2169 void km_state_notify(struct xfrm_state *x, const struct km_event *c) 2170 { 2171 struct xfrm_mgr *km; 2172 rcu_read_lock(); 2173 list_for_each_entry_rcu(km, &xfrm_km_list, list) 2174 if (km->notify) 2175 km->notify(x, c); 2176 rcu_read_unlock(); 2177 } 2178 2179 EXPORT_SYMBOL(km_policy_notify); 2180 EXPORT_SYMBOL(km_state_notify); 2181 2182 void km_state_expired(struct xfrm_state *x, int hard, u32 portid) 2183 { 2184 struct km_event c; 2185 2186 c.data.hard = hard; 2187 c.portid = portid; 2188 c.event = XFRM_MSG_EXPIRE; 2189 km_state_notify(x, &c); 2190 } 2191 2192 EXPORT_SYMBOL(km_state_expired); 2193 /* 2194 * We send to all registered managers regardless of failure 2195 * We are happy with one success 2196 */ 2197 int km_query(struct xfrm_state *x, struct xfrm_tmpl *t, struct xfrm_policy *pol) 2198 { 2199 int err = -EINVAL, acqret; 2200 struct xfrm_mgr *km; 2201 2202 rcu_read_lock(); 2203 list_for_each_entry_rcu(km, &xfrm_km_list, list) { 2204 acqret = km->acquire(x, t, pol); 2205 if (!acqret) 2206 err = acqret; 2207 } 2208 rcu_read_unlock(); 2209 return err; 2210 } 2211 EXPORT_SYMBOL(km_query); 2212 2213 int km_new_mapping(struct xfrm_state *x, xfrm_address_t *ipaddr, __be16 sport) 2214 { 2215 int err = -EINVAL; 2216 struct xfrm_mgr *km; 2217 2218 rcu_read_lock(); 2219 list_for_each_entry_rcu(km, &xfrm_km_list, list) { 2220 if (km->new_mapping) 2221 err = km->new_mapping(x, ipaddr, sport); 2222 if (!err) 2223 break; 2224 } 2225 rcu_read_unlock(); 2226 return err; 2227 } 2228 EXPORT_SYMBOL(km_new_mapping); 2229 2230 void km_policy_expired(struct xfrm_policy *pol, int dir, int hard, u32 portid) 2231 { 2232 struct km_event c; 2233 2234 c.data.hard = hard; 2235 c.portid = portid; 2236 c.event = XFRM_MSG_POLEXPIRE; 2237 km_policy_notify(pol, dir, &c); 2238 } 2239 EXPORT_SYMBOL(km_policy_expired); 2240 2241 #ifdef CONFIG_XFRM_MIGRATE 2242 int km_migrate(const struct xfrm_selector *sel, u8 dir, u8 type, 2243 const struct xfrm_migrate *m, int num_migrate, 2244 const struct xfrm_kmaddress *k, 2245 const struct xfrm_encap_tmpl *encap) 2246 { 2247 int err = -EINVAL; 2248 int ret; 2249 struct xfrm_mgr *km; 2250 2251 rcu_read_lock(); 2252 list_for_each_entry_rcu(km, &xfrm_km_list, list) { 2253 if (km->migrate) { 2254 ret = km->migrate(sel, dir, type, m, num_migrate, k, 2255 encap); 2256 if (!ret) 2257 err = ret; 2258 } 2259 } 2260 rcu_read_unlock(); 2261 return err; 2262 } 2263 EXPORT_SYMBOL(km_migrate); 2264 #endif 2265 2266 int km_report(struct net *net, u8 proto, struct xfrm_selector *sel, xfrm_address_t *addr) 2267 { 2268 int err = -EINVAL; 2269 int ret; 2270 struct xfrm_mgr *km; 2271 2272 rcu_read_lock(); 2273 list_for_each_entry_rcu(km, &xfrm_km_list, list) { 2274 if (km->report) { 2275 ret = km->report(net, proto, sel, addr); 2276 if (!ret) 2277 err = ret; 2278 } 2279 } 2280 rcu_read_unlock(); 2281 return err; 2282 } 2283 EXPORT_SYMBOL(km_report); 2284 2285 static bool km_is_alive(const struct km_event *c) 2286 { 2287 struct xfrm_mgr *km; 2288 bool is_alive = false; 2289 2290 rcu_read_lock(); 2291 list_for_each_entry_rcu(km, &xfrm_km_list, list) { 2292 if (km->is_alive && km->is_alive(c)) { 2293 is_alive = true; 2294 break; 2295 } 2296 } 2297 rcu_read_unlock(); 2298 2299 return is_alive; 2300 } 2301 2302 #if IS_ENABLED(CONFIG_XFRM_USER_COMPAT) 2303 static DEFINE_SPINLOCK(xfrm_translator_lock); 2304 static struct xfrm_translator __rcu *xfrm_translator; 2305 2306 struct xfrm_translator *xfrm_get_translator(void) 2307 { 2308 struct xfrm_translator *xtr; 2309 2310 rcu_read_lock(); 2311 xtr = rcu_dereference(xfrm_translator); 2312 if (unlikely(!xtr)) 2313 goto out; 2314 if (!try_module_get(xtr->owner)) 2315 xtr = NULL; 2316 out: 2317 rcu_read_unlock(); 2318 return xtr; 2319 } 2320 EXPORT_SYMBOL_GPL(xfrm_get_translator); 2321 2322 void xfrm_put_translator(struct xfrm_translator *xtr) 2323 { 2324 module_put(xtr->owner); 2325 } 2326 EXPORT_SYMBOL_GPL(xfrm_put_translator); 2327 2328 int xfrm_register_translator(struct xfrm_translator *xtr) 2329 { 2330 int err = 0; 2331 2332 spin_lock_bh(&xfrm_translator_lock); 2333 if (unlikely(xfrm_translator != NULL)) 2334 err = -EEXIST; 2335 else 2336 rcu_assign_pointer(xfrm_translator, xtr); 2337 spin_unlock_bh(&xfrm_translator_lock); 2338 2339 return err; 2340 } 2341 EXPORT_SYMBOL_GPL(xfrm_register_translator); 2342 2343 int xfrm_unregister_translator(struct xfrm_translator *xtr) 2344 { 2345 int err = 0; 2346 2347 spin_lock_bh(&xfrm_translator_lock); 2348 if (likely(xfrm_translator != NULL)) { 2349 if (rcu_access_pointer(xfrm_translator) != xtr) 2350 err = -EINVAL; 2351 else 2352 RCU_INIT_POINTER(xfrm_translator, NULL); 2353 } 2354 spin_unlock_bh(&xfrm_translator_lock); 2355 synchronize_rcu(); 2356 2357 return err; 2358 } 2359 EXPORT_SYMBOL_GPL(xfrm_unregister_translator); 2360 #endif 2361 2362 int xfrm_user_policy(struct sock *sk, int optname, sockptr_t optval, int optlen) 2363 { 2364 int err; 2365 u8 *data; 2366 struct xfrm_mgr *km; 2367 struct xfrm_policy *pol = NULL; 2368 2369 if (sockptr_is_null(optval) && !optlen) { 2370 xfrm_sk_policy_insert(sk, XFRM_POLICY_IN, NULL); 2371 xfrm_sk_policy_insert(sk, XFRM_POLICY_OUT, NULL); 2372 __sk_dst_reset(sk); 2373 return 0; 2374 } 2375 2376 if (optlen <= 0 || optlen > PAGE_SIZE) 2377 return -EMSGSIZE; 2378 2379 data = memdup_sockptr(optval, optlen); 2380 if (IS_ERR(data)) 2381 return PTR_ERR(data); 2382 2383 if (in_compat_syscall()) { 2384 struct xfrm_translator *xtr = xfrm_get_translator(); 2385 2386 if (!xtr) { 2387 kfree(data); 2388 return -EOPNOTSUPP; 2389 } 2390 2391 err = xtr->xlate_user_policy_sockptr(&data, optlen); 2392 xfrm_put_translator(xtr); 2393 if (err) { 2394 kfree(data); 2395 return err; 2396 } 2397 } 2398 2399 err = -EINVAL; 2400 rcu_read_lock(); 2401 list_for_each_entry_rcu(km, &xfrm_km_list, list) { 2402 pol = km->compile_policy(sk, optname, data, 2403 optlen, &err); 2404 if (err >= 0) 2405 break; 2406 } 2407 rcu_read_unlock(); 2408 2409 if (err >= 0) { 2410 xfrm_sk_policy_insert(sk, err, pol); 2411 xfrm_pol_put(pol); 2412 __sk_dst_reset(sk); 2413 err = 0; 2414 } 2415 2416 kfree(data); 2417 return err; 2418 } 2419 EXPORT_SYMBOL(xfrm_user_policy); 2420 2421 static DEFINE_SPINLOCK(xfrm_km_lock); 2422 2423 int xfrm_register_km(struct xfrm_mgr *km) 2424 { 2425 spin_lock_bh(&xfrm_km_lock); 2426 list_add_tail_rcu(&km->list, &xfrm_km_list); 2427 spin_unlock_bh(&xfrm_km_lock); 2428 return 0; 2429 } 2430 EXPORT_SYMBOL(xfrm_register_km); 2431 2432 int xfrm_unregister_km(struct xfrm_mgr *km) 2433 { 2434 spin_lock_bh(&xfrm_km_lock); 2435 list_del_rcu(&km->list); 2436 spin_unlock_bh(&xfrm_km_lock); 2437 synchronize_rcu(); 2438 return 0; 2439 } 2440 EXPORT_SYMBOL(xfrm_unregister_km); 2441 2442 int xfrm_state_register_afinfo(struct xfrm_state_afinfo *afinfo) 2443 { 2444 int err = 0; 2445 2446 if (WARN_ON(afinfo->family >= NPROTO)) 2447 return -EAFNOSUPPORT; 2448 2449 spin_lock_bh(&xfrm_state_afinfo_lock); 2450 if (unlikely(xfrm_state_afinfo[afinfo->family] != NULL)) 2451 err = -EEXIST; 2452 else 2453 rcu_assign_pointer(xfrm_state_afinfo[afinfo->family], afinfo); 2454 spin_unlock_bh(&xfrm_state_afinfo_lock); 2455 return err; 2456 } 2457 EXPORT_SYMBOL(xfrm_state_register_afinfo); 2458 2459 int xfrm_state_unregister_afinfo(struct xfrm_state_afinfo *afinfo) 2460 { 2461 int err = 0, family = afinfo->family; 2462 2463 if (WARN_ON(family >= NPROTO)) 2464 return -EAFNOSUPPORT; 2465 2466 spin_lock_bh(&xfrm_state_afinfo_lock); 2467 if (likely(xfrm_state_afinfo[afinfo->family] != NULL)) { 2468 if (rcu_access_pointer(xfrm_state_afinfo[family]) != afinfo) 2469 err = -EINVAL; 2470 else 2471 RCU_INIT_POINTER(xfrm_state_afinfo[afinfo->family], NULL); 2472 } 2473 spin_unlock_bh(&xfrm_state_afinfo_lock); 2474 synchronize_rcu(); 2475 return err; 2476 } 2477 EXPORT_SYMBOL(xfrm_state_unregister_afinfo); 2478 2479 struct xfrm_state_afinfo *xfrm_state_afinfo_get_rcu(unsigned int family) 2480 { 2481 if (unlikely(family >= NPROTO)) 2482 return NULL; 2483 2484 return rcu_dereference(xfrm_state_afinfo[family]); 2485 } 2486 EXPORT_SYMBOL_GPL(xfrm_state_afinfo_get_rcu); 2487 2488 struct xfrm_state_afinfo *xfrm_state_get_afinfo(unsigned int family) 2489 { 2490 struct xfrm_state_afinfo *afinfo; 2491 if (unlikely(family >= NPROTO)) 2492 return NULL; 2493 rcu_read_lock(); 2494 afinfo = rcu_dereference(xfrm_state_afinfo[family]); 2495 if (unlikely(!afinfo)) 2496 rcu_read_unlock(); 2497 return afinfo; 2498 } 2499 2500 void xfrm_flush_gc(void) 2501 { 2502 flush_work(&xfrm_state_gc_work); 2503 } 2504 EXPORT_SYMBOL(xfrm_flush_gc); 2505 2506 /* Temporarily located here until net/xfrm/xfrm_tunnel.c is created */ 2507 void xfrm_state_delete_tunnel(struct xfrm_state *x) 2508 { 2509 if (x->tunnel) { 2510 struct xfrm_state *t = x->tunnel; 2511 2512 if (atomic_read(&t->tunnel_users) == 2) 2513 xfrm_state_delete(t); 2514 atomic_dec(&t->tunnel_users); 2515 xfrm_state_put_sync(t); 2516 x->tunnel = NULL; 2517 } 2518 } 2519 EXPORT_SYMBOL(xfrm_state_delete_tunnel); 2520 2521 u32 xfrm_state_mtu(struct xfrm_state *x, int mtu) 2522 { 2523 const struct xfrm_type *type = READ_ONCE(x->type); 2524 struct crypto_aead *aead; 2525 u32 blksize, net_adj = 0; 2526 2527 if (x->km.state != XFRM_STATE_VALID || 2528 !type || type->proto != IPPROTO_ESP) 2529 return mtu - x->props.header_len; 2530 2531 aead = x->data; 2532 blksize = ALIGN(crypto_aead_blocksize(aead), 4); 2533 2534 switch (x->props.mode) { 2535 case XFRM_MODE_TRANSPORT: 2536 case XFRM_MODE_BEET: 2537 if (x->props.family == AF_INET) 2538 net_adj = sizeof(struct iphdr); 2539 else if (x->props.family == AF_INET6) 2540 net_adj = sizeof(struct ipv6hdr); 2541 break; 2542 case XFRM_MODE_TUNNEL: 2543 break; 2544 default: 2545 WARN_ON_ONCE(1); 2546 break; 2547 } 2548 2549 return ((mtu - x->props.header_len - crypto_aead_authsize(aead) - 2550 net_adj) & ~(blksize - 1)) + net_adj - 2; 2551 } 2552 EXPORT_SYMBOL_GPL(xfrm_state_mtu); 2553 2554 int __xfrm_init_state(struct xfrm_state *x, bool init_replay, bool offload) 2555 { 2556 const struct xfrm_mode *inner_mode; 2557 const struct xfrm_mode *outer_mode; 2558 int family = x->props.family; 2559 int err; 2560 2561 if (family == AF_INET && 2562 xs_net(x)->ipv4.sysctl_ip_no_pmtu_disc) 2563 x->props.flags |= XFRM_STATE_NOPMTUDISC; 2564 2565 err = -EPROTONOSUPPORT; 2566 2567 if (x->sel.family != AF_UNSPEC) { 2568 inner_mode = xfrm_get_mode(x->props.mode, x->sel.family); 2569 if (inner_mode == NULL) 2570 goto error; 2571 2572 if (!(inner_mode->flags & XFRM_MODE_FLAG_TUNNEL) && 2573 family != x->sel.family) 2574 goto error; 2575 2576 x->inner_mode = *inner_mode; 2577 } else { 2578 const struct xfrm_mode *inner_mode_iaf; 2579 int iafamily = AF_INET; 2580 2581 inner_mode = xfrm_get_mode(x->props.mode, x->props.family); 2582 if (inner_mode == NULL) 2583 goto error; 2584 2585 if (!(inner_mode->flags & XFRM_MODE_FLAG_TUNNEL)) 2586 goto error; 2587 2588 x->inner_mode = *inner_mode; 2589 2590 if (x->props.family == AF_INET) 2591 iafamily = AF_INET6; 2592 2593 inner_mode_iaf = xfrm_get_mode(x->props.mode, iafamily); 2594 if (inner_mode_iaf) { 2595 if (inner_mode_iaf->flags & XFRM_MODE_FLAG_TUNNEL) 2596 x->inner_mode_iaf = *inner_mode_iaf; 2597 } 2598 } 2599 2600 x->type = xfrm_get_type(x->id.proto, family); 2601 if (x->type == NULL) 2602 goto error; 2603 2604 x->type_offload = xfrm_get_type_offload(x->id.proto, family, offload); 2605 2606 err = x->type->init_state(x); 2607 if (err) 2608 goto error; 2609 2610 outer_mode = xfrm_get_mode(x->props.mode, family); 2611 if (!outer_mode) { 2612 err = -EPROTONOSUPPORT; 2613 goto error; 2614 } 2615 2616 x->outer_mode = *outer_mode; 2617 if (init_replay) { 2618 err = xfrm_init_replay(x); 2619 if (err) 2620 goto error; 2621 } 2622 2623 error: 2624 return err; 2625 } 2626 2627 EXPORT_SYMBOL(__xfrm_init_state); 2628 2629 int xfrm_init_state(struct xfrm_state *x) 2630 { 2631 int err; 2632 2633 err = __xfrm_init_state(x, true, false); 2634 if (!err) 2635 x->km.state = XFRM_STATE_VALID; 2636 2637 return err; 2638 } 2639 2640 EXPORT_SYMBOL(xfrm_init_state); 2641 2642 int __net_init xfrm_state_init(struct net *net) 2643 { 2644 unsigned int sz; 2645 2646 if (net_eq(net, &init_net)) 2647 xfrm_state_cache = KMEM_CACHE(xfrm_state, 2648 SLAB_HWCACHE_ALIGN | SLAB_PANIC); 2649 2650 INIT_LIST_HEAD(&net->xfrm.state_all); 2651 2652 sz = sizeof(struct hlist_head) * 8; 2653 2654 net->xfrm.state_bydst = xfrm_hash_alloc(sz); 2655 if (!net->xfrm.state_bydst) 2656 goto out_bydst; 2657 net->xfrm.state_bysrc = xfrm_hash_alloc(sz); 2658 if (!net->xfrm.state_bysrc) 2659 goto out_bysrc; 2660 net->xfrm.state_byspi = xfrm_hash_alloc(sz); 2661 if (!net->xfrm.state_byspi) 2662 goto out_byspi; 2663 net->xfrm.state_hmask = ((sz / sizeof(struct hlist_head)) - 1); 2664 2665 net->xfrm.state_num = 0; 2666 INIT_WORK(&net->xfrm.state_hash_work, xfrm_hash_resize); 2667 spin_lock_init(&net->xfrm.xfrm_state_lock); 2668 seqcount_spinlock_init(&net->xfrm.xfrm_state_hash_generation, 2669 &net->xfrm.xfrm_state_lock); 2670 return 0; 2671 2672 out_byspi: 2673 xfrm_hash_free(net->xfrm.state_bysrc, sz); 2674 out_bysrc: 2675 xfrm_hash_free(net->xfrm.state_bydst, sz); 2676 out_bydst: 2677 return -ENOMEM; 2678 } 2679 2680 void xfrm_state_fini(struct net *net) 2681 { 2682 unsigned int sz; 2683 2684 flush_work(&net->xfrm.state_hash_work); 2685 flush_work(&xfrm_state_gc_work); 2686 xfrm_state_flush(net, 0, false, true); 2687 2688 WARN_ON(!list_empty(&net->xfrm.state_all)); 2689 2690 sz = (net->xfrm.state_hmask + 1) * sizeof(struct hlist_head); 2691 WARN_ON(!hlist_empty(net->xfrm.state_byspi)); 2692 xfrm_hash_free(net->xfrm.state_byspi, sz); 2693 WARN_ON(!hlist_empty(net->xfrm.state_bysrc)); 2694 xfrm_hash_free(net->xfrm.state_bysrc, sz); 2695 WARN_ON(!hlist_empty(net->xfrm.state_bydst)); 2696 xfrm_hash_free(net->xfrm.state_bydst, sz); 2697 } 2698 2699 #ifdef CONFIG_AUDITSYSCALL 2700 static void xfrm_audit_helper_sainfo(struct xfrm_state *x, 2701 struct audit_buffer *audit_buf) 2702 { 2703 struct xfrm_sec_ctx *ctx = x->security; 2704 u32 spi = ntohl(x->id.spi); 2705 2706 if (ctx) 2707 audit_log_format(audit_buf, " sec_alg=%u sec_doi=%u sec_obj=%s", 2708 ctx->ctx_alg, ctx->ctx_doi, ctx->ctx_str); 2709 2710 switch (x->props.family) { 2711 case AF_INET: 2712 audit_log_format(audit_buf, " src=%pI4 dst=%pI4", 2713 &x->props.saddr.a4, &x->id.daddr.a4); 2714 break; 2715 case AF_INET6: 2716 audit_log_format(audit_buf, " src=%pI6 dst=%pI6", 2717 x->props.saddr.a6, x->id.daddr.a6); 2718 break; 2719 } 2720 2721 audit_log_format(audit_buf, " spi=%u(0x%x)", spi, spi); 2722 } 2723 2724 static void xfrm_audit_helper_pktinfo(struct sk_buff *skb, u16 family, 2725 struct audit_buffer *audit_buf) 2726 { 2727 const struct iphdr *iph4; 2728 const struct ipv6hdr *iph6; 2729 2730 switch (family) { 2731 case AF_INET: 2732 iph4 = ip_hdr(skb); 2733 audit_log_format(audit_buf, " src=%pI4 dst=%pI4", 2734 &iph4->saddr, &iph4->daddr); 2735 break; 2736 case AF_INET6: 2737 iph6 = ipv6_hdr(skb); 2738 audit_log_format(audit_buf, 2739 " src=%pI6 dst=%pI6 flowlbl=0x%x%02x%02x", 2740 &iph6->saddr, &iph6->daddr, 2741 iph6->flow_lbl[0] & 0x0f, 2742 iph6->flow_lbl[1], 2743 iph6->flow_lbl[2]); 2744 break; 2745 } 2746 } 2747 2748 void xfrm_audit_state_add(struct xfrm_state *x, int result, bool task_valid) 2749 { 2750 struct audit_buffer *audit_buf; 2751 2752 audit_buf = xfrm_audit_start("SAD-add"); 2753 if (audit_buf == NULL) 2754 return; 2755 xfrm_audit_helper_usrinfo(task_valid, audit_buf); 2756 xfrm_audit_helper_sainfo(x, audit_buf); 2757 audit_log_format(audit_buf, " res=%u", result); 2758 audit_log_end(audit_buf); 2759 } 2760 EXPORT_SYMBOL_GPL(xfrm_audit_state_add); 2761 2762 void xfrm_audit_state_delete(struct xfrm_state *x, int result, bool task_valid) 2763 { 2764 struct audit_buffer *audit_buf; 2765 2766 audit_buf = xfrm_audit_start("SAD-delete"); 2767 if (audit_buf == NULL) 2768 return; 2769 xfrm_audit_helper_usrinfo(task_valid, audit_buf); 2770 xfrm_audit_helper_sainfo(x, audit_buf); 2771 audit_log_format(audit_buf, " res=%u", result); 2772 audit_log_end(audit_buf); 2773 } 2774 EXPORT_SYMBOL_GPL(xfrm_audit_state_delete); 2775 2776 void xfrm_audit_state_replay_overflow(struct xfrm_state *x, 2777 struct sk_buff *skb) 2778 { 2779 struct audit_buffer *audit_buf; 2780 u32 spi; 2781 2782 audit_buf = xfrm_audit_start("SA-replay-overflow"); 2783 if (audit_buf == NULL) 2784 return; 2785 xfrm_audit_helper_pktinfo(skb, x->props.family, audit_buf); 2786 /* don't record the sequence number because it's inherent in this kind 2787 * of audit message */ 2788 spi = ntohl(x->id.spi); 2789 audit_log_format(audit_buf, " spi=%u(0x%x)", spi, spi); 2790 audit_log_end(audit_buf); 2791 } 2792 EXPORT_SYMBOL_GPL(xfrm_audit_state_replay_overflow); 2793 2794 void xfrm_audit_state_replay(struct xfrm_state *x, 2795 struct sk_buff *skb, __be32 net_seq) 2796 { 2797 struct audit_buffer *audit_buf; 2798 u32 spi; 2799 2800 audit_buf = xfrm_audit_start("SA-replayed-pkt"); 2801 if (audit_buf == NULL) 2802 return; 2803 xfrm_audit_helper_pktinfo(skb, x->props.family, audit_buf); 2804 spi = ntohl(x->id.spi); 2805 audit_log_format(audit_buf, " spi=%u(0x%x) seqno=%u", 2806 spi, spi, ntohl(net_seq)); 2807 audit_log_end(audit_buf); 2808 } 2809 EXPORT_SYMBOL_GPL(xfrm_audit_state_replay); 2810 2811 void xfrm_audit_state_notfound_simple(struct sk_buff *skb, u16 family) 2812 { 2813 struct audit_buffer *audit_buf; 2814 2815 audit_buf = xfrm_audit_start("SA-notfound"); 2816 if (audit_buf == NULL) 2817 return; 2818 xfrm_audit_helper_pktinfo(skb, family, audit_buf); 2819 audit_log_end(audit_buf); 2820 } 2821 EXPORT_SYMBOL_GPL(xfrm_audit_state_notfound_simple); 2822 2823 void xfrm_audit_state_notfound(struct sk_buff *skb, u16 family, 2824 __be32 net_spi, __be32 net_seq) 2825 { 2826 struct audit_buffer *audit_buf; 2827 u32 spi; 2828 2829 audit_buf = xfrm_audit_start("SA-notfound"); 2830 if (audit_buf == NULL) 2831 return; 2832 xfrm_audit_helper_pktinfo(skb, family, audit_buf); 2833 spi = ntohl(net_spi); 2834 audit_log_format(audit_buf, " spi=%u(0x%x) seqno=%u", 2835 spi, spi, ntohl(net_seq)); 2836 audit_log_end(audit_buf); 2837 } 2838 EXPORT_SYMBOL_GPL(xfrm_audit_state_notfound); 2839 2840 void xfrm_audit_state_icvfail(struct xfrm_state *x, 2841 struct sk_buff *skb, u8 proto) 2842 { 2843 struct audit_buffer *audit_buf; 2844 __be32 net_spi; 2845 __be32 net_seq; 2846 2847 audit_buf = xfrm_audit_start("SA-icv-failure"); 2848 if (audit_buf == NULL) 2849 return; 2850 xfrm_audit_helper_pktinfo(skb, x->props.family, audit_buf); 2851 if (xfrm_parse_spi(skb, proto, &net_spi, &net_seq) == 0) { 2852 u32 spi = ntohl(net_spi); 2853 audit_log_format(audit_buf, " spi=%u(0x%x) seqno=%u", 2854 spi, spi, ntohl(net_seq)); 2855 } 2856 audit_log_end(audit_buf); 2857 } 2858 EXPORT_SYMBOL_GPL(xfrm_audit_state_icvfail); 2859 #endif /* CONFIG_AUDITSYSCALL */ 2860