1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * xfrm_state.c 4 * 5 * Changes: 6 * Mitsuru KANDA @USAGI 7 * Kazunori MIYAZAWA @USAGI 8 * Kunihiro Ishiguro <kunihiro@ipinfusion.com> 9 * IPv6 support 10 * YOSHIFUJI Hideaki @USAGI 11 * Split up af-specific functions 12 * Derek Atkins <derek@ihtfp.com> 13 * Add UDP Encapsulation 14 * 15 */ 16 17 #include <linux/compat.h> 18 #include <linux/workqueue.h> 19 #include <net/xfrm.h> 20 #include <linux/pfkeyv2.h> 21 #include <linux/ipsec.h> 22 #include <linux/module.h> 23 #include <linux/cache.h> 24 #include <linux/audit.h> 25 #include <linux/uaccess.h> 26 #include <linux/ktime.h> 27 #include <linux/slab.h> 28 #include <linux/interrupt.h> 29 #include <linux/kernel.h> 30 31 #include <crypto/aead.h> 32 33 #include "xfrm_hash.h" 34 35 #define xfrm_state_deref_prot(table, net) \ 36 rcu_dereference_protected((table), lockdep_is_held(&(net)->xfrm.xfrm_state_lock)) 37 38 static void xfrm_state_gc_task(struct work_struct *work); 39 40 /* Each xfrm_state may be linked to two tables: 41 42 1. Hash table by (spi,daddr,ah/esp) to find SA by SPI. (input,ctl) 43 2. Hash table by (daddr,family,reqid) to find what SAs exist for given 44 destination/tunnel endpoint. (output) 45 */ 46 47 static unsigned int xfrm_state_hashmax __read_mostly = 1 * 1024 * 1024; 48 static struct kmem_cache *xfrm_state_cache __ro_after_init; 49 50 static DECLARE_WORK(xfrm_state_gc_work, xfrm_state_gc_task); 51 static HLIST_HEAD(xfrm_state_gc_list); 52 static HLIST_HEAD(xfrm_state_dev_gc_list); 53 54 static inline bool xfrm_state_hold_rcu(struct xfrm_state __rcu *x) 55 { 56 return refcount_inc_not_zero(&x->refcnt); 57 } 58 59 static inline unsigned int xfrm_dst_hash(struct net *net, 60 const xfrm_address_t *daddr, 61 const xfrm_address_t *saddr, 62 u32 reqid, 63 unsigned short family) 64 { 65 return __xfrm_dst_hash(daddr, saddr, reqid, family, net->xfrm.state_hmask); 66 } 67 68 static inline unsigned int xfrm_src_hash(struct net *net, 69 const xfrm_address_t *daddr, 70 const xfrm_address_t *saddr, 71 unsigned short family) 72 { 73 return __xfrm_src_hash(daddr, saddr, family, net->xfrm.state_hmask); 74 } 75 76 static inline unsigned int 77 xfrm_spi_hash(struct net *net, const xfrm_address_t *daddr, 78 __be32 spi, u8 proto, unsigned short family) 79 { 80 return __xfrm_spi_hash(daddr, spi, proto, family, net->xfrm.state_hmask); 81 } 82 83 static unsigned int xfrm_seq_hash(struct net *net, u32 seq) 84 { 85 return __xfrm_seq_hash(seq, net->xfrm.state_hmask); 86 } 87 88 #define XFRM_STATE_INSERT(by, _n, _h, _type) \ 89 { \ 90 struct xfrm_state *_x = NULL; \ 91 \ 92 if (_type != XFRM_DEV_OFFLOAD_PACKET) { \ 93 hlist_for_each_entry_rcu(_x, _h, by) { \ 94 if (_x->xso.type == XFRM_DEV_OFFLOAD_PACKET) \ 95 continue; \ 96 break; \ 97 } \ 98 } \ 99 \ 100 if (!_x || _x->xso.type == XFRM_DEV_OFFLOAD_PACKET) \ 101 /* SAD is empty or consist from HW SAs only */ \ 102 hlist_add_head_rcu(_n, _h); \ 103 else \ 104 hlist_add_before_rcu(_n, &_x->by); \ 105 } 106 107 static void xfrm_hash_transfer(struct hlist_head *list, 108 struct hlist_head *ndsttable, 109 struct hlist_head *nsrctable, 110 struct hlist_head *nspitable, 111 struct hlist_head *nseqtable, 112 unsigned int nhashmask) 113 { 114 struct hlist_node *tmp; 115 struct xfrm_state *x; 116 117 hlist_for_each_entry_safe(x, tmp, list, bydst) { 118 unsigned int h; 119 120 h = __xfrm_dst_hash(&x->id.daddr, &x->props.saddr, 121 x->props.reqid, x->props.family, 122 nhashmask); 123 XFRM_STATE_INSERT(bydst, &x->bydst, ndsttable + h, x->xso.type); 124 125 h = __xfrm_src_hash(&x->id.daddr, &x->props.saddr, 126 x->props.family, 127 nhashmask); 128 XFRM_STATE_INSERT(bysrc, &x->bysrc, nsrctable + h, x->xso.type); 129 130 if (x->id.spi) { 131 h = __xfrm_spi_hash(&x->id.daddr, x->id.spi, 132 x->id.proto, x->props.family, 133 nhashmask); 134 XFRM_STATE_INSERT(byspi, &x->byspi, nspitable + h, 135 x->xso.type); 136 } 137 138 if (x->km.seq) { 139 h = __xfrm_seq_hash(x->km.seq, nhashmask); 140 XFRM_STATE_INSERT(byseq, &x->byseq, nseqtable + h, 141 x->xso.type); 142 } 143 } 144 } 145 146 static unsigned long xfrm_hash_new_size(unsigned int state_hmask) 147 { 148 return ((state_hmask + 1) << 1) * sizeof(struct hlist_head); 149 } 150 151 static void xfrm_hash_resize(struct work_struct *work) 152 { 153 struct net *net = container_of(work, struct net, xfrm.state_hash_work); 154 struct hlist_head *ndst, *nsrc, *nspi, *nseq, *odst, *osrc, *ospi, *oseq; 155 unsigned long nsize, osize; 156 unsigned int nhashmask, ohashmask; 157 int i; 158 159 nsize = xfrm_hash_new_size(net->xfrm.state_hmask); 160 ndst = xfrm_hash_alloc(nsize); 161 if (!ndst) 162 return; 163 nsrc = xfrm_hash_alloc(nsize); 164 if (!nsrc) { 165 xfrm_hash_free(ndst, nsize); 166 return; 167 } 168 nspi = xfrm_hash_alloc(nsize); 169 if (!nspi) { 170 xfrm_hash_free(ndst, nsize); 171 xfrm_hash_free(nsrc, nsize); 172 return; 173 } 174 nseq = xfrm_hash_alloc(nsize); 175 if (!nseq) { 176 xfrm_hash_free(ndst, nsize); 177 xfrm_hash_free(nsrc, nsize); 178 xfrm_hash_free(nspi, nsize); 179 return; 180 } 181 182 spin_lock_bh(&net->xfrm.xfrm_state_lock); 183 write_seqcount_begin(&net->xfrm.xfrm_state_hash_generation); 184 185 nhashmask = (nsize / sizeof(struct hlist_head)) - 1U; 186 odst = xfrm_state_deref_prot(net->xfrm.state_bydst, net); 187 for (i = net->xfrm.state_hmask; i >= 0; i--) 188 xfrm_hash_transfer(odst + i, ndst, nsrc, nspi, nseq, nhashmask); 189 190 osrc = xfrm_state_deref_prot(net->xfrm.state_bysrc, net); 191 ospi = xfrm_state_deref_prot(net->xfrm.state_byspi, net); 192 oseq = xfrm_state_deref_prot(net->xfrm.state_byseq, net); 193 ohashmask = net->xfrm.state_hmask; 194 195 rcu_assign_pointer(net->xfrm.state_bydst, ndst); 196 rcu_assign_pointer(net->xfrm.state_bysrc, nsrc); 197 rcu_assign_pointer(net->xfrm.state_byspi, nspi); 198 rcu_assign_pointer(net->xfrm.state_byseq, nseq); 199 net->xfrm.state_hmask = nhashmask; 200 201 write_seqcount_end(&net->xfrm.xfrm_state_hash_generation); 202 spin_unlock_bh(&net->xfrm.xfrm_state_lock); 203 204 osize = (ohashmask + 1) * sizeof(struct hlist_head); 205 206 synchronize_rcu(); 207 208 xfrm_hash_free(odst, osize); 209 xfrm_hash_free(osrc, osize); 210 xfrm_hash_free(ospi, osize); 211 xfrm_hash_free(oseq, osize); 212 } 213 214 static DEFINE_SPINLOCK(xfrm_state_afinfo_lock); 215 static struct xfrm_state_afinfo __rcu *xfrm_state_afinfo[NPROTO]; 216 217 static DEFINE_SPINLOCK(xfrm_state_gc_lock); 218 static DEFINE_SPINLOCK(xfrm_state_dev_gc_lock); 219 220 int __xfrm_state_delete(struct xfrm_state *x); 221 222 int km_query(struct xfrm_state *x, struct xfrm_tmpl *t, struct xfrm_policy *pol); 223 static bool km_is_alive(const struct km_event *c); 224 void km_state_expired(struct xfrm_state *x, int hard, u32 portid); 225 226 int xfrm_register_type(const struct xfrm_type *type, unsigned short family) 227 { 228 struct xfrm_state_afinfo *afinfo = xfrm_state_get_afinfo(family); 229 int err = 0; 230 231 if (!afinfo) 232 return -EAFNOSUPPORT; 233 234 #define X(afi, T, name) do { \ 235 WARN_ON((afi)->type_ ## name); \ 236 (afi)->type_ ## name = (T); \ 237 } while (0) 238 239 switch (type->proto) { 240 case IPPROTO_COMP: 241 X(afinfo, type, comp); 242 break; 243 case IPPROTO_AH: 244 X(afinfo, type, ah); 245 break; 246 case IPPROTO_ESP: 247 X(afinfo, type, esp); 248 break; 249 case IPPROTO_IPIP: 250 X(afinfo, type, ipip); 251 break; 252 case IPPROTO_DSTOPTS: 253 X(afinfo, type, dstopts); 254 break; 255 case IPPROTO_ROUTING: 256 X(afinfo, type, routing); 257 break; 258 case IPPROTO_IPV6: 259 X(afinfo, type, ipip6); 260 break; 261 default: 262 WARN_ON(1); 263 err = -EPROTONOSUPPORT; 264 break; 265 } 266 #undef X 267 rcu_read_unlock(); 268 return err; 269 } 270 EXPORT_SYMBOL(xfrm_register_type); 271 272 void xfrm_unregister_type(const struct xfrm_type *type, unsigned short family) 273 { 274 struct xfrm_state_afinfo *afinfo = xfrm_state_get_afinfo(family); 275 276 if (unlikely(afinfo == NULL)) 277 return; 278 279 #define X(afi, T, name) do { \ 280 WARN_ON((afi)->type_ ## name != (T)); \ 281 (afi)->type_ ## name = NULL; \ 282 } while (0) 283 284 switch (type->proto) { 285 case IPPROTO_COMP: 286 X(afinfo, type, comp); 287 break; 288 case IPPROTO_AH: 289 X(afinfo, type, ah); 290 break; 291 case IPPROTO_ESP: 292 X(afinfo, type, esp); 293 break; 294 case IPPROTO_IPIP: 295 X(afinfo, type, ipip); 296 break; 297 case IPPROTO_DSTOPTS: 298 X(afinfo, type, dstopts); 299 break; 300 case IPPROTO_ROUTING: 301 X(afinfo, type, routing); 302 break; 303 case IPPROTO_IPV6: 304 X(afinfo, type, ipip6); 305 break; 306 default: 307 WARN_ON(1); 308 break; 309 } 310 #undef X 311 rcu_read_unlock(); 312 } 313 EXPORT_SYMBOL(xfrm_unregister_type); 314 315 static const struct xfrm_type *xfrm_get_type(u8 proto, unsigned short family) 316 { 317 const struct xfrm_type *type = NULL; 318 struct xfrm_state_afinfo *afinfo; 319 int modload_attempted = 0; 320 321 retry: 322 afinfo = xfrm_state_get_afinfo(family); 323 if (unlikely(afinfo == NULL)) 324 return NULL; 325 326 switch (proto) { 327 case IPPROTO_COMP: 328 type = afinfo->type_comp; 329 break; 330 case IPPROTO_AH: 331 type = afinfo->type_ah; 332 break; 333 case IPPROTO_ESP: 334 type = afinfo->type_esp; 335 break; 336 case IPPROTO_IPIP: 337 type = afinfo->type_ipip; 338 break; 339 case IPPROTO_DSTOPTS: 340 type = afinfo->type_dstopts; 341 break; 342 case IPPROTO_ROUTING: 343 type = afinfo->type_routing; 344 break; 345 case IPPROTO_IPV6: 346 type = afinfo->type_ipip6; 347 break; 348 default: 349 break; 350 } 351 352 if (unlikely(type && !try_module_get(type->owner))) 353 type = NULL; 354 355 rcu_read_unlock(); 356 357 if (!type && !modload_attempted) { 358 request_module("xfrm-type-%d-%d", family, proto); 359 modload_attempted = 1; 360 goto retry; 361 } 362 363 return type; 364 } 365 366 static void xfrm_put_type(const struct xfrm_type *type) 367 { 368 module_put(type->owner); 369 } 370 371 int xfrm_register_type_offload(const struct xfrm_type_offload *type, 372 unsigned short family) 373 { 374 struct xfrm_state_afinfo *afinfo = xfrm_state_get_afinfo(family); 375 int err = 0; 376 377 if (unlikely(afinfo == NULL)) 378 return -EAFNOSUPPORT; 379 380 switch (type->proto) { 381 case IPPROTO_ESP: 382 WARN_ON(afinfo->type_offload_esp); 383 afinfo->type_offload_esp = type; 384 break; 385 default: 386 WARN_ON(1); 387 err = -EPROTONOSUPPORT; 388 break; 389 } 390 391 rcu_read_unlock(); 392 return err; 393 } 394 EXPORT_SYMBOL(xfrm_register_type_offload); 395 396 void xfrm_unregister_type_offload(const struct xfrm_type_offload *type, 397 unsigned short family) 398 { 399 struct xfrm_state_afinfo *afinfo = xfrm_state_get_afinfo(family); 400 401 if (unlikely(afinfo == NULL)) 402 return; 403 404 switch (type->proto) { 405 case IPPROTO_ESP: 406 WARN_ON(afinfo->type_offload_esp != type); 407 afinfo->type_offload_esp = NULL; 408 break; 409 default: 410 WARN_ON(1); 411 break; 412 } 413 rcu_read_unlock(); 414 } 415 EXPORT_SYMBOL(xfrm_unregister_type_offload); 416 417 static const struct xfrm_type_offload * 418 xfrm_get_type_offload(u8 proto, unsigned short family, bool try_load) 419 { 420 const struct xfrm_type_offload *type = NULL; 421 struct xfrm_state_afinfo *afinfo; 422 423 retry: 424 afinfo = xfrm_state_get_afinfo(family); 425 if (unlikely(afinfo == NULL)) 426 return NULL; 427 428 switch (proto) { 429 case IPPROTO_ESP: 430 type = afinfo->type_offload_esp; 431 break; 432 default: 433 break; 434 } 435 436 if ((type && !try_module_get(type->owner))) 437 type = NULL; 438 439 rcu_read_unlock(); 440 441 if (!type && try_load) { 442 request_module("xfrm-offload-%d-%d", family, proto); 443 try_load = false; 444 goto retry; 445 } 446 447 return type; 448 } 449 450 static void xfrm_put_type_offload(const struct xfrm_type_offload *type) 451 { 452 module_put(type->owner); 453 } 454 455 static const struct xfrm_mode xfrm4_mode_map[XFRM_MODE_MAX] = { 456 [XFRM_MODE_BEET] = { 457 .encap = XFRM_MODE_BEET, 458 .flags = XFRM_MODE_FLAG_TUNNEL, 459 .family = AF_INET, 460 }, 461 [XFRM_MODE_TRANSPORT] = { 462 .encap = XFRM_MODE_TRANSPORT, 463 .family = AF_INET, 464 }, 465 [XFRM_MODE_TUNNEL] = { 466 .encap = XFRM_MODE_TUNNEL, 467 .flags = XFRM_MODE_FLAG_TUNNEL, 468 .family = AF_INET, 469 }, 470 }; 471 472 static const struct xfrm_mode xfrm6_mode_map[XFRM_MODE_MAX] = { 473 [XFRM_MODE_BEET] = { 474 .encap = XFRM_MODE_BEET, 475 .flags = XFRM_MODE_FLAG_TUNNEL, 476 .family = AF_INET6, 477 }, 478 [XFRM_MODE_ROUTEOPTIMIZATION] = { 479 .encap = XFRM_MODE_ROUTEOPTIMIZATION, 480 .family = AF_INET6, 481 }, 482 [XFRM_MODE_TRANSPORT] = { 483 .encap = XFRM_MODE_TRANSPORT, 484 .family = AF_INET6, 485 }, 486 [XFRM_MODE_TUNNEL] = { 487 .encap = XFRM_MODE_TUNNEL, 488 .flags = XFRM_MODE_FLAG_TUNNEL, 489 .family = AF_INET6, 490 }, 491 }; 492 493 static const struct xfrm_mode *xfrm_get_mode(unsigned int encap, int family) 494 { 495 const struct xfrm_mode *mode; 496 497 if (unlikely(encap >= XFRM_MODE_MAX)) 498 return NULL; 499 500 switch (family) { 501 case AF_INET: 502 mode = &xfrm4_mode_map[encap]; 503 if (mode->family == family) 504 return mode; 505 break; 506 case AF_INET6: 507 mode = &xfrm6_mode_map[encap]; 508 if (mode->family == family) 509 return mode; 510 break; 511 default: 512 break; 513 } 514 515 return NULL; 516 } 517 518 void xfrm_state_free(struct xfrm_state *x) 519 { 520 kmem_cache_free(xfrm_state_cache, x); 521 } 522 EXPORT_SYMBOL(xfrm_state_free); 523 524 static void ___xfrm_state_destroy(struct xfrm_state *x) 525 { 526 hrtimer_cancel(&x->mtimer); 527 del_timer_sync(&x->rtimer); 528 kfree(x->aead); 529 kfree(x->aalg); 530 kfree(x->ealg); 531 kfree(x->calg); 532 kfree(x->encap); 533 kfree(x->coaddr); 534 kfree(x->replay_esn); 535 kfree(x->preplay_esn); 536 if (x->type_offload) 537 xfrm_put_type_offload(x->type_offload); 538 if (x->type) { 539 x->type->destructor(x); 540 xfrm_put_type(x->type); 541 } 542 if (x->xfrag.page) 543 put_page(x->xfrag.page); 544 xfrm_dev_state_free(x); 545 security_xfrm_state_free(x); 546 xfrm_state_free(x); 547 } 548 549 static void xfrm_state_gc_task(struct work_struct *work) 550 { 551 struct xfrm_state *x; 552 struct hlist_node *tmp; 553 struct hlist_head gc_list; 554 555 spin_lock_bh(&xfrm_state_gc_lock); 556 hlist_move_list(&xfrm_state_gc_list, &gc_list); 557 spin_unlock_bh(&xfrm_state_gc_lock); 558 559 synchronize_rcu(); 560 561 hlist_for_each_entry_safe(x, tmp, &gc_list, gclist) 562 ___xfrm_state_destroy(x); 563 } 564 565 static enum hrtimer_restart xfrm_timer_handler(struct hrtimer *me) 566 { 567 struct xfrm_state *x = container_of(me, struct xfrm_state, mtimer); 568 enum hrtimer_restart ret = HRTIMER_NORESTART; 569 time64_t now = ktime_get_real_seconds(); 570 time64_t next = TIME64_MAX; 571 int warn = 0; 572 int err = 0; 573 574 spin_lock(&x->lock); 575 xfrm_dev_state_update_stats(x); 576 577 if (x->km.state == XFRM_STATE_DEAD) 578 goto out; 579 if (x->km.state == XFRM_STATE_EXPIRED) 580 goto expired; 581 if (x->lft.hard_add_expires_seconds) { 582 time64_t tmo = x->lft.hard_add_expires_seconds + 583 x->curlft.add_time - now; 584 if (tmo <= 0) { 585 if (x->xflags & XFRM_SOFT_EXPIRE) { 586 /* enter hard expire without soft expire first?! 587 * setting a new date could trigger this. 588 * workaround: fix x->curflt.add_time by below: 589 */ 590 x->curlft.add_time = now - x->saved_tmo - 1; 591 tmo = x->lft.hard_add_expires_seconds - x->saved_tmo; 592 } else 593 goto expired; 594 } 595 if (tmo < next) 596 next = tmo; 597 } 598 if (x->lft.hard_use_expires_seconds) { 599 time64_t tmo = x->lft.hard_use_expires_seconds + 600 (READ_ONCE(x->curlft.use_time) ? : now) - now; 601 if (tmo <= 0) 602 goto expired; 603 if (tmo < next) 604 next = tmo; 605 } 606 if (x->km.dying) 607 goto resched; 608 if (x->lft.soft_add_expires_seconds) { 609 time64_t tmo = x->lft.soft_add_expires_seconds + 610 x->curlft.add_time - now; 611 if (tmo <= 0) { 612 warn = 1; 613 x->xflags &= ~XFRM_SOFT_EXPIRE; 614 } else if (tmo < next) { 615 next = tmo; 616 x->xflags |= XFRM_SOFT_EXPIRE; 617 x->saved_tmo = tmo; 618 } 619 } 620 if (x->lft.soft_use_expires_seconds) { 621 time64_t tmo = x->lft.soft_use_expires_seconds + 622 (READ_ONCE(x->curlft.use_time) ? : now) - now; 623 if (tmo <= 0) 624 warn = 1; 625 else if (tmo < next) 626 next = tmo; 627 } 628 629 x->km.dying = warn; 630 if (warn) 631 km_state_expired(x, 0, 0); 632 resched: 633 if (next != TIME64_MAX) { 634 hrtimer_forward_now(&x->mtimer, ktime_set(next, 0)); 635 ret = HRTIMER_RESTART; 636 } 637 638 goto out; 639 640 expired: 641 if (x->km.state == XFRM_STATE_ACQ && x->id.spi == 0) 642 x->km.state = XFRM_STATE_EXPIRED; 643 644 err = __xfrm_state_delete(x); 645 if (!err) 646 km_state_expired(x, 1, 0); 647 648 xfrm_audit_state_delete(x, err ? 0 : 1, true); 649 650 out: 651 spin_unlock(&x->lock); 652 return ret; 653 } 654 655 static void xfrm_replay_timer_handler(struct timer_list *t); 656 657 struct xfrm_state *xfrm_state_alloc(struct net *net) 658 { 659 struct xfrm_state *x; 660 661 x = kmem_cache_zalloc(xfrm_state_cache, GFP_ATOMIC); 662 663 if (x) { 664 write_pnet(&x->xs_net, net); 665 refcount_set(&x->refcnt, 1); 666 atomic_set(&x->tunnel_users, 0); 667 INIT_LIST_HEAD(&x->km.all); 668 INIT_HLIST_NODE(&x->state_cache); 669 INIT_HLIST_NODE(&x->bydst); 670 INIT_HLIST_NODE(&x->bysrc); 671 INIT_HLIST_NODE(&x->byspi); 672 INIT_HLIST_NODE(&x->byseq); 673 hrtimer_init(&x->mtimer, CLOCK_BOOTTIME, HRTIMER_MODE_ABS_SOFT); 674 x->mtimer.function = xfrm_timer_handler; 675 timer_setup(&x->rtimer, xfrm_replay_timer_handler, 0); 676 x->curlft.add_time = ktime_get_real_seconds(); 677 x->lft.soft_byte_limit = XFRM_INF; 678 x->lft.soft_packet_limit = XFRM_INF; 679 x->lft.hard_byte_limit = XFRM_INF; 680 x->lft.hard_packet_limit = XFRM_INF; 681 x->replay_maxage = 0; 682 x->replay_maxdiff = 0; 683 x->pcpu_num = UINT_MAX; 684 spin_lock_init(&x->lock); 685 } 686 return x; 687 } 688 EXPORT_SYMBOL(xfrm_state_alloc); 689 690 #ifdef CONFIG_XFRM_OFFLOAD 691 void xfrm_dev_state_delete(struct xfrm_state *x) 692 { 693 struct xfrm_dev_offload *xso = &x->xso; 694 struct net_device *dev = READ_ONCE(xso->dev); 695 696 if (dev) { 697 dev->xfrmdev_ops->xdo_dev_state_delete(x); 698 spin_lock_bh(&xfrm_state_dev_gc_lock); 699 hlist_add_head(&x->dev_gclist, &xfrm_state_dev_gc_list); 700 spin_unlock_bh(&xfrm_state_dev_gc_lock); 701 } 702 } 703 EXPORT_SYMBOL_GPL(xfrm_dev_state_delete); 704 705 void xfrm_dev_state_free(struct xfrm_state *x) 706 { 707 struct xfrm_dev_offload *xso = &x->xso; 708 struct net_device *dev = READ_ONCE(xso->dev); 709 710 if (dev && dev->xfrmdev_ops) { 711 spin_lock_bh(&xfrm_state_dev_gc_lock); 712 if (!hlist_unhashed(&x->dev_gclist)) 713 hlist_del(&x->dev_gclist); 714 spin_unlock_bh(&xfrm_state_dev_gc_lock); 715 716 if (dev->xfrmdev_ops->xdo_dev_state_free) 717 dev->xfrmdev_ops->xdo_dev_state_free(x); 718 WRITE_ONCE(xso->dev, NULL); 719 xso->type = XFRM_DEV_OFFLOAD_UNSPECIFIED; 720 netdev_put(dev, &xso->dev_tracker); 721 } 722 } 723 #endif 724 725 void __xfrm_state_destroy(struct xfrm_state *x, bool sync) 726 { 727 WARN_ON(x->km.state != XFRM_STATE_DEAD); 728 729 if (sync) { 730 synchronize_rcu(); 731 ___xfrm_state_destroy(x); 732 } else { 733 spin_lock_bh(&xfrm_state_gc_lock); 734 hlist_add_head(&x->gclist, &xfrm_state_gc_list); 735 spin_unlock_bh(&xfrm_state_gc_lock); 736 schedule_work(&xfrm_state_gc_work); 737 } 738 } 739 EXPORT_SYMBOL(__xfrm_state_destroy); 740 741 int __xfrm_state_delete(struct xfrm_state *x) 742 { 743 struct net *net = xs_net(x); 744 int err = -ESRCH; 745 746 if (x->km.state != XFRM_STATE_DEAD) { 747 x->km.state = XFRM_STATE_DEAD; 748 749 spin_lock(&net->xfrm.xfrm_state_lock); 750 list_del(&x->km.all); 751 hlist_del_rcu(&x->bydst); 752 hlist_del_rcu(&x->bysrc); 753 if (x->km.seq) 754 hlist_del_rcu(&x->byseq); 755 if (!hlist_unhashed(&x->state_cache)) 756 hlist_del_rcu(&x->state_cache); 757 if (!hlist_unhashed(&x->state_cache_input)) 758 hlist_del_rcu(&x->state_cache_input); 759 760 if (x->id.spi) 761 hlist_del_rcu(&x->byspi); 762 net->xfrm.state_num--; 763 xfrm_nat_keepalive_state_updated(x); 764 spin_unlock(&net->xfrm.xfrm_state_lock); 765 766 if (x->encap_sk) 767 sock_put(rcu_dereference_raw(x->encap_sk)); 768 769 xfrm_dev_state_delete(x); 770 771 /* All xfrm_state objects are created by xfrm_state_alloc. 772 * The xfrm_state_alloc call gives a reference, and that 773 * is what we are dropping here. 774 */ 775 xfrm_state_put(x); 776 err = 0; 777 } 778 779 return err; 780 } 781 EXPORT_SYMBOL(__xfrm_state_delete); 782 783 int xfrm_state_delete(struct xfrm_state *x) 784 { 785 int err; 786 787 spin_lock_bh(&x->lock); 788 err = __xfrm_state_delete(x); 789 spin_unlock_bh(&x->lock); 790 791 return err; 792 } 793 EXPORT_SYMBOL(xfrm_state_delete); 794 795 #ifdef CONFIG_SECURITY_NETWORK_XFRM 796 static inline int 797 xfrm_state_flush_secctx_check(struct net *net, u8 proto, bool task_valid) 798 { 799 int i, err = 0; 800 801 for (i = 0; i <= net->xfrm.state_hmask; i++) { 802 struct xfrm_state *x; 803 804 hlist_for_each_entry(x, net->xfrm.state_bydst+i, bydst) { 805 if (xfrm_id_proto_match(x->id.proto, proto) && 806 (err = security_xfrm_state_delete(x)) != 0) { 807 xfrm_audit_state_delete(x, 0, task_valid); 808 return err; 809 } 810 } 811 } 812 813 return err; 814 } 815 816 static inline int 817 xfrm_dev_state_flush_secctx_check(struct net *net, struct net_device *dev, bool task_valid) 818 { 819 int i, err = 0; 820 821 for (i = 0; i <= net->xfrm.state_hmask; i++) { 822 struct xfrm_state *x; 823 struct xfrm_dev_offload *xso; 824 825 hlist_for_each_entry(x, net->xfrm.state_bydst+i, bydst) { 826 xso = &x->xso; 827 828 if (xso->dev == dev && 829 (err = security_xfrm_state_delete(x)) != 0) { 830 xfrm_audit_state_delete(x, 0, task_valid); 831 return err; 832 } 833 } 834 } 835 836 return err; 837 } 838 #else 839 static inline int 840 xfrm_state_flush_secctx_check(struct net *net, u8 proto, bool task_valid) 841 { 842 return 0; 843 } 844 845 static inline int 846 xfrm_dev_state_flush_secctx_check(struct net *net, struct net_device *dev, bool task_valid) 847 { 848 return 0; 849 } 850 #endif 851 852 int xfrm_state_flush(struct net *net, u8 proto, bool task_valid, bool sync) 853 { 854 int i, err = 0, cnt = 0; 855 856 spin_lock_bh(&net->xfrm.xfrm_state_lock); 857 err = xfrm_state_flush_secctx_check(net, proto, task_valid); 858 if (err) 859 goto out; 860 861 err = -ESRCH; 862 for (i = 0; i <= net->xfrm.state_hmask; i++) { 863 struct xfrm_state *x; 864 restart: 865 hlist_for_each_entry(x, net->xfrm.state_bydst+i, bydst) { 866 if (!xfrm_state_kern(x) && 867 xfrm_id_proto_match(x->id.proto, proto)) { 868 xfrm_state_hold(x); 869 spin_unlock_bh(&net->xfrm.xfrm_state_lock); 870 871 err = xfrm_state_delete(x); 872 xfrm_audit_state_delete(x, err ? 0 : 1, 873 task_valid); 874 if (sync) 875 xfrm_state_put_sync(x); 876 else 877 xfrm_state_put(x); 878 if (!err) 879 cnt++; 880 881 spin_lock_bh(&net->xfrm.xfrm_state_lock); 882 goto restart; 883 } 884 } 885 } 886 out: 887 spin_unlock_bh(&net->xfrm.xfrm_state_lock); 888 if (cnt) 889 err = 0; 890 891 return err; 892 } 893 EXPORT_SYMBOL(xfrm_state_flush); 894 895 int xfrm_dev_state_flush(struct net *net, struct net_device *dev, bool task_valid) 896 { 897 struct xfrm_state *x; 898 struct hlist_node *tmp; 899 struct xfrm_dev_offload *xso; 900 int i, err = 0, cnt = 0; 901 902 spin_lock_bh(&net->xfrm.xfrm_state_lock); 903 err = xfrm_dev_state_flush_secctx_check(net, dev, task_valid); 904 if (err) 905 goto out; 906 907 err = -ESRCH; 908 for (i = 0; i <= net->xfrm.state_hmask; i++) { 909 restart: 910 hlist_for_each_entry(x, net->xfrm.state_bydst+i, bydst) { 911 xso = &x->xso; 912 913 if (!xfrm_state_kern(x) && xso->dev == dev) { 914 xfrm_state_hold(x); 915 spin_unlock_bh(&net->xfrm.xfrm_state_lock); 916 917 err = xfrm_state_delete(x); 918 xfrm_dev_state_free(x); 919 920 xfrm_audit_state_delete(x, err ? 0 : 1, 921 task_valid); 922 xfrm_state_put(x); 923 if (!err) 924 cnt++; 925 926 spin_lock_bh(&net->xfrm.xfrm_state_lock); 927 goto restart; 928 } 929 } 930 } 931 if (cnt) 932 err = 0; 933 934 out: 935 spin_unlock_bh(&net->xfrm.xfrm_state_lock); 936 937 spin_lock_bh(&xfrm_state_dev_gc_lock); 938 restart_gc: 939 hlist_for_each_entry_safe(x, tmp, &xfrm_state_dev_gc_list, dev_gclist) { 940 xso = &x->xso; 941 942 if (xso->dev == dev) { 943 spin_unlock_bh(&xfrm_state_dev_gc_lock); 944 xfrm_dev_state_free(x); 945 spin_lock_bh(&xfrm_state_dev_gc_lock); 946 goto restart_gc; 947 } 948 949 } 950 spin_unlock_bh(&xfrm_state_dev_gc_lock); 951 952 xfrm_flush_gc(); 953 954 return err; 955 } 956 EXPORT_SYMBOL(xfrm_dev_state_flush); 957 958 void xfrm_sad_getinfo(struct net *net, struct xfrmk_sadinfo *si) 959 { 960 spin_lock_bh(&net->xfrm.xfrm_state_lock); 961 si->sadcnt = net->xfrm.state_num; 962 si->sadhcnt = net->xfrm.state_hmask + 1; 963 si->sadhmcnt = xfrm_state_hashmax; 964 spin_unlock_bh(&net->xfrm.xfrm_state_lock); 965 } 966 EXPORT_SYMBOL(xfrm_sad_getinfo); 967 968 static void 969 __xfrm4_init_tempsel(struct xfrm_selector *sel, const struct flowi *fl) 970 { 971 const struct flowi4 *fl4 = &fl->u.ip4; 972 973 sel->daddr.a4 = fl4->daddr; 974 sel->saddr.a4 = fl4->saddr; 975 sel->dport = xfrm_flowi_dport(fl, &fl4->uli); 976 sel->dport_mask = htons(0xffff); 977 sel->sport = xfrm_flowi_sport(fl, &fl4->uli); 978 sel->sport_mask = htons(0xffff); 979 sel->family = AF_INET; 980 sel->prefixlen_d = 32; 981 sel->prefixlen_s = 32; 982 sel->proto = fl4->flowi4_proto; 983 sel->ifindex = fl4->flowi4_oif; 984 } 985 986 static void 987 __xfrm6_init_tempsel(struct xfrm_selector *sel, const struct flowi *fl) 988 { 989 const struct flowi6 *fl6 = &fl->u.ip6; 990 991 /* Initialize temporary selector matching only to current session. */ 992 *(struct in6_addr *)&sel->daddr = fl6->daddr; 993 *(struct in6_addr *)&sel->saddr = fl6->saddr; 994 sel->dport = xfrm_flowi_dport(fl, &fl6->uli); 995 sel->dport_mask = htons(0xffff); 996 sel->sport = xfrm_flowi_sport(fl, &fl6->uli); 997 sel->sport_mask = htons(0xffff); 998 sel->family = AF_INET6; 999 sel->prefixlen_d = 128; 1000 sel->prefixlen_s = 128; 1001 sel->proto = fl6->flowi6_proto; 1002 sel->ifindex = fl6->flowi6_oif; 1003 } 1004 1005 static void 1006 xfrm_init_tempstate(struct xfrm_state *x, const struct flowi *fl, 1007 const struct xfrm_tmpl *tmpl, 1008 const xfrm_address_t *daddr, const xfrm_address_t *saddr, 1009 unsigned short family) 1010 { 1011 switch (family) { 1012 case AF_INET: 1013 __xfrm4_init_tempsel(&x->sel, fl); 1014 break; 1015 case AF_INET6: 1016 __xfrm6_init_tempsel(&x->sel, fl); 1017 break; 1018 } 1019 1020 x->id = tmpl->id; 1021 1022 switch (tmpl->encap_family) { 1023 case AF_INET: 1024 if (x->id.daddr.a4 == 0) 1025 x->id.daddr.a4 = daddr->a4; 1026 x->props.saddr = tmpl->saddr; 1027 if (x->props.saddr.a4 == 0) 1028 x->props.saddr.a4 = saddr->a4; 1029 break; 1030 case AF_INET6: 1031 if (ipv6_addr_any((struct in6_addr *)&x->id.daddr)) 1032 memcpy(&x->id.daddr, daddr, sizeof(x->sel.daddr)); 1033 memcpy(&x->props.saddr, &tmpl->saddr, sizeof(x->props.saddr)); 1034 if (ipv6_addr_any((struct in6_addr *)&x->props.saddr)) 1035 memcpy(&x->props.saddr, saddr, sizeof(x->props.saddr)); 1036 break; 1037 } 1038 1039 x->props.mode = tmpl->mode; 1040 x->props.reqid = tmpl->reqid; 1041 x->props.family = tmpl->encap_family; 1042 } 1043 1044 static struct xfrm_state *__xfrm_state_lookup_all(struct net *net, u32 mark, 1045 const xfrm_address_t *daddr, 1046 __be32 spi, u8 proto, 1047 unsigned short family, 1048 struct xfrm_dev_offload *xdo) 1049 { 1050 unsigned int h = xfrm_spi_hash(net, daddr, spi, proto, family); 1051 struct xfrm_state *x; 1052 1053 hlist_for_each_entry_rcu(x, net->xfrm.state_byspi + h, byspi) { 1054 #ifdef CONFIG_XFRM_OFFLOAD 1055 if (xdo->type == XFRM_DEV_OFFLOAD_PACKET) { 1056 if (x->xso.type != XFRM_DEV_OFFLOAD_PACKET) 1057 /* HW states are in the head of list, there is 1058 * no need to iterate further. 1059 */ 1060 break; 1061 1062 /* Packet offload: both policy and SA should 1063 * have same device. 1064 */ 1065 if (xdo->dev != x->xso.dev) 1066 continue; 1067 } else if (x->xso.type == XFRM_DEV_OFFLOAD_PACKET) 1068 /* Skip HW policy for SW lookups */ 1069 continue; 1070 #endif 1071 if (x->props.family != family || 1072 x->id.spi != spi || 1073 x->id.proto != proto || 1074 !xfrm_addr_equal(&x->id.daddr, daddr, family)) 1075 continue; 1076 1077 if ((mark & x->mark.m) != x->mark.v) 1078 continue; 1079 if (!xfrm_state_hold_rcu(x)) 1080 continue; 1081 return x; 1082 } 1083 1084 return NULL; 1085 } 1086 1087 static struct xfrm_state *__xfrm_state_lookup(struct net *net, u32 mark, 1088 const xfrm_address_t *daddr, 1089 __be32 spi, u8 proto, 1090 unsigned short family) 1091 { 1092 unsigned int h = xfrm_spi_hash(net, daddr, spi, proto, family); 1093 struct xfrm_state *x; 1094 1095 hlist_for_each_entry_rcu(x, net->xfrm.state_byspi + h, byspi) { 1096 if (x->props.family != family || 1097 x->id.spi != spi || 1098 x->id.proto != proto || 1099 !xfrm_addr_equal(&x->id.daddr, daddr, family)) 1100 continue; 1101 1102 if ((mark & x->mark.m) != x->mark.v) 1103 continue; 1104 if (!xfrm_state_hold_rcu(x)) 1105 continue; 1106 return x; 1107 } 1108 1109 return NULL; 1110 } 1111 1112 struct xfrm_state *xfrm_input_state_lookup(struct net *net, u32 mark, 1113 const xfrm_address_t *daddr, 1114 __be32 spi, u8 proto, 1115 unsigned short family) 1116 { 1117 struct hlist_head *state_cache_input; 1118 struct xfrm_state *x = NULL; 1119 int cpu = get_cpu(); 1120 1121 state_cache_input = per_cpu_ptr(net->xfrm.state_cache_input, cpu); 1122 1123 rcu_read_lock(); 1124 hlist_for_each_entry_rcu(x, state_cache_input, state_cache_input) { 1125 if (x->props.family != family || 1126 x->id.spi != spi || 1127 x->id.proto != proto || 1128 !xfrm_addr_equal(&x->id.daddr, daddr, family)) 1129 continue; 1130 1131 if ((mark & x->mark.m) != x->mark.v) 1132 continue; 1133 if (!xfrm_state_hold_rcu(x)) 1134 continue; 1135 goto out; 1136 } 1137 1138 x = __xfrm_state_lookup(net, mark, daddr, spi, proto, family); 1139 1140 if (x && x->km.state == XFRM_STATE_VALID) { 1141 spin_lock_bh(&net->xfrm.xfrm_state_lock); 1142 if (hlist_unhashed(&x->state_cache_input)) { 1143 hlist_add_head_rcu(&x->state_cache_input, state_cache_input); 1144 } else { 1145 hlist_del_rcu(&x->state_cache_input); 1146 hlist_add_head_rcu(&x->state_cache_input, state_cache_input); 1147 } 1148 spin_unlock_bh(&net->xfrm.xfrm_state_lock); 1149 } 1150 1151 out: 1152 rcu_read_unlock(); 1153 put_cpu(); 1154 return x; 1155 } 1156 EXPORT_SYMBOL(xfrm_input_state_lookup); 1157 1158 static struct xfrm_state *__xfrm_state_lookup_byaddr(struct net *net, u32 mark, 1159 const xfrm_address_t *daddr, 1160 const xfrm_address_t *saddr, 1161 u8 proto, unsigned short family) 1162 { 1163 unsigned int h = xfrm_src_hash(net, daddr, saddr, family); 1164 struct xfrm_state *x; 1165 1166 hlist_for_each_entry_rcu(x, net->xfrm.state_bysrc + h, bysrc) { 1167 if (x->props.family != family || 1168 x->id.proto != proto || 1169 !xfrm_addr_equal(&x->id.daddr, daddr, family) || 1170 !xfrm_addr_equal(&x->props.saddr, saddr, family)) 1171 continue; 1172 1173 if ((mark & x->mark.m) != x->mark.v) 1174 continue; 1175 if (!xfrm_state_hold_rcu(x)) 1176 continue; 1177 return x; 1178 } 1179 1180 return NULL; 1181 } 1182 1183 static inline struct xfrm_state * 1184 __xfrm_state_locate(struct xfrm_state *x, int use_spi, int family) 1185 { 1186 struct net *net = xs_net(x); 1187 u32 mark = x->mark.v & x->mark.m; 1188 1189 if (use_spi) 1190 return __xfrm_state_lookup(net, mark, &x->id.daddr, 1191 x->id.spi, x->id.proto, family); 1192 else 1193 return __xfrm_state_lookup_byaddr(net, mark, 1194 &x->id.daddr, 1195 &x->props.saddr, 1196 x->id.proto, family); 1197 } 1198 1199 static void xfrm_hash_grow_check(struct net *net, int have_hash_collision) 1200 { 1201 if (have_hash_collision && 1202 (net->xfrm.state_hmask + 1) < xfrm_state_hashmax && 1203 net->xfrm.state_num > net->xfrm.state_hmask) 1204 schedule_work(&net->xfrm.state_hash_work); 1205 } 1206 1207 static void xfrm_state_look_at(struct xfrm_policy *pol, struct xfrm_state *x, 1208 const struct flowi *fl, unsigned short family, 1209 struct xfrm_state **best, int *acq_in_progress, 1210 int *error) 1211 { 1212 /* We need the cpu id just as a lookup key, 1213 * we don't require it to be stable. 1214 */ 1215 unsigned int pcpu_id = get_cpu(); 1216 put_cpu(); 1217 1218 /* Resolution logic: 1219 * 1. There is a valid state with matching selector. Done. 1220 * 2. Valid state with inappropriate selector. Skip. 1221 * 1222 * Entering area of "sysdeps". 1223 * 1224 * 3. If state is not valid, selector is temporary, it selects 1225 * only session which triggered previous resolution. Key 1226 * manager will do something to install a state with proper 1227 * selector. 1228 */ 1229 if (x->km.state == XFRM_STATE_VALID) { 1230 if ((x->sel.family && 1231 (x->sel.family != family || 1232 !xfrm_selector_match(&x->sel, fl, family))) || 1233 !security_xfrm_state_pol_flow_match(x, pol, 1234 &fl->u.__fl_common)) 1235 return; 1236 1237 if (x->pcpu_num != UINT_MAX && x->pcpu_num != pcpu_id) 1238 return; 1239 1240 if (!*best || 1241 ((*best)->pcpu_num == UINT_MAX && x->pcpu_num == pcpu_id) || 1242 (*best)->km.dying > x->km.dying || 1243 ((*best)->km.dying == x->km.dying && 1244 (*best)->curlft.add_time < x->curlft.add_time)) 1245 *best = x; 1246 } else if (x->km.state == XFRM_STATE_ACQ) { 1247 if (!*best || x->pcpu_num == pcpu_id) 1248 *acq_in_progress = 1; 1249 } else if (x->km.state == XFRM_STATE_ERROR || 1250 x->km.state == XFRM_STATE_EXPIRED) { 1251 if ((!x->sel.family || 1252 (x->sel.family == family && 1253 xfrm_selector_match(&x->sel, fl, family))) && 1254 security_xfrm_state_pol_flow_match(x, pol, 1255 &fl->u.__fl_common)) 1256 *error = -ESRCH; 1257 } 1258 } 1259 1260 struct xfrm_state * 1261 xfrm_state_find(const xfrm_address_t *daddr, const xfrm_address_t *saddr, 1262 const struct flowi *fl, struct xfrm_tmpl *tmpl, 1263 struct xfrm_policy *pol, int *err, 1264 unsigned short family, u32 if_id) 1265 { 1266 static xfrm_address_t saddr_wildcard = { }; 1267 struct net *net = xp_net(pol); 1268 unsigned int h, h_wildcard; 1269 struct xfrm_state *x, *x0, *to_put; 1270 int acquire_in_progress = 0; 1271 int error = 0; 1272 struct xfrm_state *best = NULL; 1273 u32 mark = pol->mark.v & pol->mark.m; 1274 unsigned short encap_family = tmpl->encap_family; 1275 unsigned int sequence; 1276 struct km_event c; 1277 unsigned int pcpu_id; 1278 bool cached = false; 1279 1280 /* We need the cpu id just as a lookup key, 1281 * we don't require it to be stable. 1282 */ 1283 pcpu_id = get_cpu(); 1284 put_cpu(); 1285 1286 to_put = NULL; 1287 1288 sequence = read_seqcount_begin(&net->xfrm.xfrm_state_hash_generation); 1289 1290 rcu_read_lock(); 1291 hlist_for_each_entry_rcu(x, &pol->state_cache_list, state_cache) { 1292 if (x->props.family == encap_family && 1293 x->props.reqid == tmpl->reqid && 1294 (mark & x->mark.m) == x->mark.v && 1295 x->if_id == if_id && 1296 !(x->props.flags & XFRM_STATE_WILDRECV) && 1297 xfrm_state_addr_check(x, daddr, saddr, encap_family) && 1298 tmpl->mode == x->props.mode && 1299 tmpl->id.proto == x->id.proto && 1300 (tmpl->id.spi == x->id.spi || !tmpl->id.spi)) 1301 xfrm_state_look_at(pol, x, fl, encap_family, 1302 &best, &acquire_in_progress, &error); 1303 } 1304 1305 if (best) 1306 goto cached; 1307 1308 hlist_for_each_entry_rcu(x, &pol->state_cache_list, state_cache) { 1309 if (x->props.family == encap_family && 1310 x->props.reqid == tmpl->reqid && 1311 (mark & x->mark.m) == x->mark.v && 1312 x->if_id == if_id && 1313 !(x->props.flags & XFRM_STATE_WILDRECV) && 1314 xfrm_addr_equal(&x->id.daddr, daddr, encap_family) && 1315 tmpl->mode == x->props.mode && 1316 tmpl->id.proto == x->id.proto && 1317 (tmpl->id.spi == x->id.spi || !tmpl->id.spi)) 1318 xfrm_state_look_at(pol, x, fl, family, 1319 &best, &acquire_in_progress, &error); 1320 } 1321 1322 cached: 1323 cached = true; 1324 if (best) 1325 goto found; 1326 else if (error) 1327 best = NULL; 1328 else if (acquire_in_progress) /* XXX: acquire_in_progress should not happen */ 1329 WARN_ON(1); 1330 1331 h = xfrm_dst_hash(net, daddr, saddr, tmpl->reqid, encap_family); 1332 hlist_for_each_entry_rcu(x, net->xfrm.state_bydst + h, bydst) { 1333 #ifdef CONFIG_XFRM_OFFLOAD 1334 if (pol->xdo.type == XFRM_DEV_OFFLOAD_PACKET) { 1335 if (x->xso.type != XFRM_DEV_OFFLOAD_PACKET) 1336 /* HW states are in the head of list, there is 1337 * no need to iterate further. 1338 */ 1339 break; 1340 1341 /* Packet offload: both policy and SA should 1342 * have same device. 1343 */ 1344 if (pol->xdo.dev != x->xso.dev) 1345 continue; 1346 } else if (x->xso.type == XFRM_DEV_OFFLOAD_PACKET) 1347 /* Skip HW policy for SW lookups */ 1348 continue; 1349 #endif 1350 if (x->props.family == encap_family && 1351 x->props.reqid == tmpl->reqid && 1352 (mark & x->mark.m) == x->mark.v && 1353 x->if_id == if_id && 1354 !(x->props.flags & XFRM_STATE_WILDRECV) && 1355 xfrm_state_addr_check(x, daddr, saddr, encap_family) && 1356 tmpl->mode == x->props.mode && 1357 tmpl->id.proto == x->id.proto && 1358 (tmpl->id.spi == x->id.spi || !tmpl->id.spi)) 1359 xfrm_state_look_at(pol, x, fl, family, 1360 &best, &acquire_in_progress, &error); 1361 } 1362 if (best || acquire_in_progress) 1363 goto found; 1364 1365 h_wildcard = xfrm_dst_hash(net, daddr, &saddr_wildcard, tmpl->reqid, encap_family); 1366 hlist_for_each_entry_rcu(x, net->xfrm.state_bydst + h_wildcard, bydst) { 1367 #ifdef CONFIG_XFRM_OFFLOAD 1368 if (pol->xdo.type == XFRM_DEV_OFFLOAD_PACKET) { 1369 if (x->xso.type != XFRM_DEV_OFFLOAD_PACKET) 1370 /* HW states are in the head of list, there is 1371 * no need to iterate further. 1372 */ 1373 break; 1374 1375 /* Packet offload: both policy and SA should 1376 * have same device. 1377 */ 1378 if (pol->xdo.dev != x->xso.dev) 1379 continue; 1380 } else if (x->xso.type == XFRM_DEV_OFFLOAD_PACKET) 1381 /* Skip HW policy for SW lookups */ 1382 continue; 1383 #endif 1384 if (x->props.family == encap_family && 1385 x->props.reqid == tmpl->reqid && 1386 (mark & x->mark.m) == x->mark.v && 1387 x->if_id == if_id && 1388 !(x->props.flags & XFRM_STATE_WILDRECV) && 1389 xfrm_addr_equal(&x->id.daddr, daddr, encap_family) && 1390 tmpl->mode == x->props.mode && 1391 tmpl->id.proto == x->id.proto && 1392 (tmpl->id.spi == x->id.spi || !tmpl->id.spi)) 1393 xfrm_state_look_at(pol, x, fl, family, 1394 &best, &acquire_in_progress, &error); 1395 } 1396 1397 found: 1398 if (!(pol->flags & XFRM_POLICY_CPU_ACQUIRE) || 1399 (best && (best->pcpu_num == pcpu_id))) 1400 x = best; 1401 1402 if (!x && !error && !acquire_in_progress) { 1403 if (tmpl->id.spi && 1404 (x0 = __xfrm_state_lookup_all(net, mark, daddr, 1405 tmpl->id.spi, tmpl->id.proto, 1406 encap_family, 1407 &pol->xdo)) != NULL) { 1408 to_put = x0; 1409 error = -EEXIST; 1410 goto out; 1411 } 1412 1413 c.net = net; 1414 /* If the KMs have no listeners (yet...), avoid allocating an SA 1415 * for each and every packet - garbage collection might not 1416 * handle the flood. 1417 */ 1418 if (!km_is_alive(&c)) { 1419 error = -ESRCH; 1420 goto out; 1421 } 1422 1423 x = xfrm_state_alloc(net); 1424 if (x == NULL) { 1425 error = -ENOMEM; 1426 goto out; 1427 } 1428 /* Initialize temporary state matching only 1429 * to current session. */ 1430 xfrm_init_tempstate(x, fl, tmpl, daddr, saddr, family); 1431 memcpy(&x->mark, &pol->mark, sizeof(x->mark)); 1432 x->if_id = if_id; 1433 if ((pol->flags & XFRM_POLICY_CPU_ACQUIRE) && best) 1434 x->pcpu_num = pcpu_id; 1435 1436 error = security_xfrm_state_alloc_acquire(x, pol->security, fl->flowi_secid); 1437 if (error) { 1438 x->km.state = XFRM_STATE_DEAD; 1439 to_put = x; 1440 x = NULL; 1441 goto out; 1442 } 1443 #ifdef CONFIG_XFRM_OFFLOAD 1444 if (pol->xdo.type == XFRM_DEV_OFFLOAD_PACKET) { 1445 struct xfrm_dev_offload *xdo = &pol->xdo; 1446 struct xfrm_dev_offload *xso = &x->xso; 1447 1448 xso->type = XFRM_DEV_OFFLOAD_PACKET; 1449 xso->dir = xdo->dir; 1450 xso->dev = xdo->dev; 1451 xso->real_dev = xdo->real_dev; 1452 xso->flags = XFRM_DEV_OFFLOAD_FLAG_ACQ; 1453 netdev_hold(xso->dev, &xso->dev_tracker, GFP_ATOMIC); 1454 error = xso->dev->xfrmdev_ops->xdo_dev_state_add(x, NULL); 1455 if (error) { 1456 xso->dir = 0; 1457 netdev_put(xso->dev, &xso->dev_tracker); 1458 xso->dev = NULL; 1459 xso->real_dev = NULL; 1460 xso->type = XFRM_DEV_OFFLOAD_UNSPECIFIED; 1461 x->km.state = XFRM_STATE_DEAD; 1462 to_put = x; 1463 x = NULL; 1464 goto out; 1465 } 1466 } 1467 #endif 1468 if (km_query(x, tmpl, pol) == 0) { 1469 spin_lock_bh(&net->xfrm.xfrm_state_lock); 1470 x->km.state = XFRM_STATE_ACQ; 1471 x->dir = XFRM_SA_DIR_OUT; 1472 list_add(&x->km.all, &net->xfrm.state_all); 1473 h = xfrm_dst_hash(net, daddr, saddr, tmpl->reqid, encap_family); 1474 XFRM_STATE_INSERT(bydst, &x->bydst, 1475 net->xfrm.state_bydst + h, 1476 x->xso.type); 1477 h = xfrm_src_hash(net, daddr, saddr, encap_family); 1478 XFRM_STATE_INSERT(bysrc, &x->bysrc, 1479 net->xfrm.state_bysrc + h, 1480 x->xso.type); 1481 INIT_HLIST_NODE(&x->state_cache); 1482 if (x->id.spi) { 1483 h = xfrm_spi_hash(net, &x->id.daddr, x->id.spi, x->id.proto, encap_family); 1484 XFRM_STATE_INSERT(byspi, &x->byspi, 1485 net->xfrm.state_byspi + h, 1486 x->xso.type); 1487 } 1488 if (x->km.seq) { 1489 h = xfrm_seq_hash(net, x->km.seq); 1490 XFRM_STATE_INSERT(byseq, &x->byseq, 1491 net->xfrm.state_byseq + h, 1492 x->xso.type); 1493 } 1494 x->lft.hard_add_expires_seconds = net->xfrm.sysctl_acq_expires; 1495 hrtimer_start(&x->mtimer, 1496 ktime_set(net->xfrm.sysctl_acq_expires, 0), 1497 HRTIMER_MODE_REL_SOFT); 1498 net->xfrm.state_num++; 1499 xfrm_hash_grow_check(net, x->bydst.next != NULL); 1500 spin_unlock_bh(&net->xfrm.xfrm_state_lock); 1501 } else { 1502 #ifdef CONFIG_XFRM_OFFLOAD 1503 struct xfrm_dev_offload *xso = &x->xso; 1504 1505 if (xso->type == XFRM_DEV_OFFLOAD_PACKET) { 1506 xfrm_dev_state_delete(x); 1507 xfrm_dev_state_free(x); 1508 } 1509 #endif 1510 x->km.state = XFRM_STATE_DEAD; 1511 to_put = x; 1512 x = NULL; 1513 error = -ESRCH; 1514 } 1515 1516 /* Use the already installed 'fallback' while the CPU-specific 1517 * SA acquire is handled*/ 1518 if (best) 1519 x = best; 1520 } 1521 out: 1522 if (x) { 1523 if (!xfrm_state_hold_rcu(x)) { 1524 *err = -EAGAIN; 1525 x = NULL; 1526 } 1527 } else { 1528 *err = acquire_in_progress ? -EAGAIN : error; 1529 } 1530 1531 if (x && x->km.state == XFRM_STATE_VALID && !cached && 1532 (!(pol->flags & XFRM_POLICY_CPU_ACQUIRE) || x->pcpu_num == pcpu_id)) { 1533 spin_lock_bh(&net->xfrm.xfrm_state_lock); 1534 if (hlist_unhashed(&x->state_cache)) 1535 hlist_add_head_rcu(&x->state_cache, &pol->state_cache_list); 1536 spin_unlock_bh(&net->xfrm.xfrm_state_lock); 1537 } 1538 1539 rcu_read_unlock(); 1540 if (to_put) 1541 xfrm_state_put(to_put); 1542 1543 if (read_seqcount_retry(&net->xfrm.xfrm_state_hash_generation, sequence)) { 1544 *err = -EAGAIN; 1545 if (x) { 1546 xfrm_state_put(x); 1547 x = NULL; 1548 } 1549 } 1550 1551 return x; 1552 } 1553 1554 struct xfrm_state * 1555 xfrm_stateonly_find(struct net *net, u32 mark, u32 if_id, 1556 xfrm_address_t *daddr, xfrm_address_t *saddr, 1557 unsigned short family, u8 mode, u8 proto, u32 reqid) 1558 { 1559 unsigned int h; 1560 struct xfrm_state *rx = NULL, *x = NULL; 1561 1562 spin_lock_bh(&net->xfrm.xfrm_state_lock); 1563 h = xfrm_dst_hash(net, daddr, saddr, reqid, family); 1564 hlist_for_each_entry(x, net->xfrm.state_bydst+h, bydst) { 1565 if (x->props.family == family && 1566 x->props.reqid == reqid && 1567 (mark & x->mark.m) == x->mark.v && 1568 x->if_id == if_id && 1569 !(x->props.flags & XFRM_STATE_WILDRECV) && 1570 xfrm_state_addr_check(x, daddr, saddr, family) && 1571 mode == x->props.mode && 1572 proto == x->id.proto && 1573 x->km.state == XFRM_STATE_VALID) { 1574 rx = x; 1575 break; 1576 } 1577 } 1578 1579 if (rx) 1580 xfrm_state_hold(rx); 1581 spin_unlock_bh(&net->xfrm.xfrm_state_lock); 1582 1583 1584 return rx; 1585 } 1586 EXPORT_SYMBOL(xfrm_stateonly_find); 1587 1588 struct xfrm_state *xfrm_state_lookup_byspi(struct net *net, __be32 spi, 1589 unsigned short family) 1590 { 1591 struct xfrm_state *x; 1592 struct xfrm_state_walk *w; 1593 1594 spin_lock_bh(&net->xfrm.xfrm_state_lock); 1595 list_for_each_entry(w, &net->xfrm.state_all, all) { 1596 x = container_of(w, struct xfrm_state, km); 1597 if (x->props.family != family || 1598 x->id.spi != spi) 1599 continue; 1600 1601 xfrm_state_hold(x); 1602 spin_unlock_bh(&net->xfrm.xfrm_state_lock); 1603 return x; 1604 } 1605 spin_unlock_bh(&net->xfrm.xfrm_state_lock); 1606 return NULL; 1607 } 1608 EXPORT_SYMBOL(xfrm_state_lookup_byspi); 1609 1610 static void __xfrm_state_insert(struct xfrm_state *x) 1611 { 1612 struct net *net = xs_net(x); 1613 unsigned int h; 1614 1615 list_add(&x->km.all, &net->xfrm.state_all); 1616 1617 h = xfrm_dst_hash(net, &x->id.daddr, &x->props.saddr, 1618 x->props.reqid, x->props.family); 1619 XFRM_STATE_INSERT(bydst, &x->bydst, net->xfrm.state_bydst + h, 1620 x->xso.type); 1621 1622 h = xfrm_src_hash(net, &x->id.daddr, &x->props.saddr, x->props.family); 1623 XFRM_STATE_INSERT(bysrc, &x->bysrc, net->xfrm.state_bysrc + h, 1624 x->xso.type); 1625 1626 if (x->id.spi) { 1627 h = xfrm_spi_hash(net, &x->id.daddr, x->id.spi, x->id.proto, 1628 x->props.family); 1629 1630 XFRM_STATE_INSERT(byspi, &x->byspi, net->xfrm.state_byspi + h, 1631 x->xso.type); 1632 } 1633 1634 if (x->km.seq) { 1635 h = xfrm_seq_hash(net, x->km.seq); 1636 1637 XFRM_STATE_INSERT(byseq, &x->byseq, net->xfrm.state_byseq + h, 1638 x->xso.type); 1639 } 1640 1641 hrtimer_start(&x->mtimer, ktime_set(1, 0), HRTIMER_MODE_REL_SOFT); 1642 if (x->replay_maxage) 1643 mod_timer(&x->rtimer, jiffies + x->replay_maxage); 1644 1645 net->xfrm.state_num++; 1646 1647 xfrm_hash_grow_check(net, x->bydst.next != NULL); 1648 xfrm_nat_keepalive_state_updated(x); 1649 } 1650 1651 /* net->xfrm.xfrm_state_lock is held */ 1652 static void __xfrm_state_bump_genids(struct xfrm_state *xnew) 1653 { 1654 struct net *net = xs_net(xnew); 1655 unsigned short family = xnew->props.family; 1656 u32 reqid = xnew->props.reqid; 1657 struct xfrm_state *x; 1658 unsigned int h; 1659 u32 mark = xnew->mark.v & xnew->mark.m; 1660 u32 if_id = xnew->if_id; 1661 u32 cpu_id = xnew->pcpu_num; 1662 1663 h = xfrm_dst_hash(net, &xnew->id.daddr, &xnew->props.saddr, reqid, family); 1664 hlist_for_each_entry(x, net->xfrm.state_bydst+h, bydst) { 1665 if (x->props.family == family && 1666 x->props.reqid == reqid && 1667 x->if_id == if_id && 1668 x->pcpu_num == cpu_id && 1669 (mark & x->mark.m) == x->mark.v && 1670 xfrm_addr_equal(&x->id.daddr, &xnew->id.daddr, family) && 1671 xfrm_addr_equal(&x->props.saddr, &xnew->props.saddr, family)) 1672 x->genid++; 1673 } 1674 } 1675 1676 void xfrm_state_insert(struct xfrm_state *x) 1677 { 1678 struct net *net = xs_net(x); 1679 1680 spin_lock_bh(&net->xfrm.xfrm_state_lock); 1681 __xfrm_state_bump_genids(x); 1682 __xfrm_state_insert(x); 1683 spin_unlock_bh(&net->xfrm.xfrm_state_lock); 1684 } 1685 EXPORT_SYMBOL(xfrm_state_insert); 1686 1687 /* net->xfrm.xfrm_state_lock is held */ 1688 static struct xfrm_state *__find_acq_core(struct net *net, 1689 const struct xfrm_mark *m, 1690 unsigned short family, u8 mode, 1691 u32 reqid, u32 if_id, u32 pcpu_num, u8 proto, 1692 const xfrm_address_t *daddr, 1693 const xfrm_address_t *saddr, 1694 int create) 1695 { 1696 unsigned int h = xfrm_dst_hash(net, daddr, saddr, reqid, family); 1697 struct xfrm_state *x; 1698 u32 mark = m->v & m->m; 1699 1700 hlist_for_each_entry(x, net->xfrm.state_bydst+h, bydst) { 1701 if (x->props.reqid != reqid || 1702 x->props.mode != mode || 1703 x->props.family != family || 1704 x->km.state != XFRM_STATE_ACQ || 1705 x->id.spi != 0 || 1706 x->id.proto != proto || 1707 (mark & x->mark.m) != x->mark.v || 1708 x->pcpu_num != pcpu_num || 1709 !xfrm_addr_equal(&x->id.daddr, daddr, family) || 1710 !xfrm_addr_equal(&x->props.saddr, saddr, family)) 1711 continue; 1712 1713 xfrm_state_hold(x); 1714 return x; 1715 } 1716 1717 if (!create) 1718 return NULL; 1719 1720 x = xfrm_state_alloc(net); 1721 if (likely(x)) { 1722 switch (family) { 1723 case AF_INET: 1724 x->sel.daddr.a4 = daddr->a4; 1725 x->sel.saddr.a4 = saddr->a4; 1726 x->sel.prefixlen_d = 32; 1727 x->sel.prefixlen_s = 32; 1728 x->props.saddr.a4 = saddr->a4; 1729 x->id.daddr.a4 = daddr->a4; 1730 break; 1731 1732 case AF_INET6: 1733 x->sel.daddr.in6 = daddr->in6; 1734 x->sel.saddr.in6 = saddr->in6; 1735 x->sel.prefixlen_d = 128; 1736 x->sel.prefixlen_s = 128; 1737 x->props.saddr.in6 = saddr->in6; 1738 x->id.daddr.in6 = daddr->in6; 1739 break; 1740 } 1741 1742 x->pcpu_num = pcpu_num; 1743 x->km.state = XFRM_STATE_ACQ; 1744 x->id.proto = proto; 1745 x->props.family = family; 1746 x->props.mode = mode; 1747 x->props.reqid = reqid; 1748 x->if_id = if_id; 1749 x->mark.v = m->v; 1750 x->mark.m = m->m; 1751 x->lft.hard_add_expires_seconds = net->xfrm.sysctl_acq_expires; 1752 xfrm_state_hold(x); 1753 hrtimer_start(&x->mtimer, 1754 ktime_set(net->xfrm.sysctl_acq_expires, 0), 1755 HRTIMER_MODE_REL_SOFT); 1756 list_add(&x->km.all, &net->xfrm.state_all); 1757 XFRM_STATE_INSERT(bydst, &x->bydst, net->xfrm.state_bydst + h, 1758 x->xso.type); 1759 h = xfrm_src_hash(net, daddr, saddr, family); 1760 XFRM_STATE_INSERT(bysrc, &x->bysrc, net->xfrm.state_bysrc + h, 1761 x->xso.type); 1762 1763 net->xfrm.state_num++; 1764 1765 xfrm_hash_grow_check(net, x->bydst.next != NULL); 1766 } 1767 1768 return x; 1769 } 1770 1771 static struct xfrm_state *__xfrm_find_acq_byseq(struct net *net, u32 mark, u32 seq, u32 pcpu_num); 1772 1773 int xfrm_state_add(struct xfrm_state *x) 1774 { 1775 struct net *net = xs_net(x); 1776 struct xfrm_state *x1, *to_put; 1777 int family; 1778 int err; 1779 u32 mark = x->mark.v & x->mark.m; 1780 int use_spi = xfrm_id_proto_match(x->id.proto, IPSEC_PROTO_ANY); 1781 1782 family = x->props.family; 1783 1784 to_put = NULL; 1785 1786 spin_lock_bh(&net->xfrm.xfrm_state_lock); 1787 1788 x1 = __xfrm_state_locate(x, use_spi, family); 1789 if (x1) { 1790 to_put = x1; 1791 x1 = NULL; 1792 err = -EEXIST; 1793 goto out; 1794 } 1795 1796 if (use_spi && x->km.seq) { 1797 x1 = __xfrm_find_acq_byseq(net, mark, x->km.seq, x->pcpu_num); 1798 if (x1 && ((x1->id.proto != x->id.proto) || 1799 !xfrm_addr_equal(&x1->id.daddr, &x->id.daddr, family))) { 1800 to_put = x1; 1801 x1 = NULL; 1802 } 1803 } 1804 1805 if (use_spi && !x1) 1806 x1 = __find_acq_core(net, &x->mark, family, x->props.mode, 1807 x->props.reqid, x->if_id, x->pcpu_num, x->id.proto, 1808 &x->id.daddr, &x->props.saddr, 0); 1809 1810 __xfrm_state_bump_genids(x); 1811 __xfrm_state_insert(x); 1812 err = 0; 1813 1814 out: 1815 spin_unlock_bh(&net->xfrm.xfrm_state_lock); 1816 1817 if (x1) { 1818 xfrm_state_delete(x1); 1819 xfrm_state_put(x1); 1820 } 1821 1822 if (to_put) 1823 xfrm_state_put(to_put); 1824 1825 return err; 1826 } 1827 EXPORT_SYMBOL(xfrm_state_add); 1828 1829 #ifdef CONFIG_XFRM_MIGRATE 1830 static inline int clone_security(struct xfrm_state *x, struct xfrm_sec_ctx *security) 1831 { 1832 struct xfrm_user_sec_ctx *uctx; 1833 int size = sizeof(*uctx) + security->ctx_len; 1834 int err; 1835 1836 uctx = kmalloc(size, GFP_KERNEL); 1837 if (!uctx) 1838 return -ENOMEM; 1839 1840 uctx->exttype = XFRMA_SEC_CTX; 1841 uctx->len = size; 1842 uctx->ctx_doi = security->ctx_doi; 1843 uctx->ctx_alg = security->ctx_alg; 1844 uctx->ctx_len = security->ctx_len; 1845 memcpy(uctx + 1, security->ctx_str, security->ctx_len); 1846 err = security_xfrm_state_alloc(x, uctx); 1847 kfree(uctx); 1848 if (err) 1849 return err; 1850 1851 return 0; 1852 } 1853 1854 static struct xfrm_state *xfrm_state_clone(struct xfrm_state *orig, 1855 struct xfrm_encap_tmpl *encap) 1856 { 1857 struct net *net = xs_net(orig); 1858 struct xfrm_state *x = xfrm_state_alloc(net); 1859 if (!x) 1860 goto out; 1861 1862 memcpy(&x->id, &orig->id, sizeof(x->id)); 1863 memcpy(&x->sel, &orig->sel, sizeof(x->sel)); 1864 memcpy(&x->lft, &orig->lft, sizeof(x->lft)); 1865 x->props.mode = orig->props.mode; 1866 x->props.replay_window = orig->props.replay_window; 1867 x->props.reqid = orig->props.reqid; 1868 x->props.family = orig->props.family; 1869 x->props.saddr = orig->props.saddr; 1870 1871 if (orig->aalg) { 1872 x->aalg = xfrm_algo_auth_clone(orig->aalg); 1873 if (!x->aalg) 1874 goto error; 1875 } 1876 x->props.aalgo = orig->props.aalgo; 1877 1878 if (orig->aead) { 1879 x->aead = xfrm_algo_aead_clone(orig->aead); 1880 x->geniv = orig->geniv; 1881 if (!x->aead) 1882 goto error; 1883 } 1884 if (orig->ealg) { 1885 x->ealg = xfrm_algo_clone(orig->ealg); 1886 if (!x->ealg) 1887 goto error; 1888 } 1889 x->props.ealgo = orig->props.ealgo; 1890 1891 if (orig->calg) { 1892 x->calg = xfrm_algo_clone(orig->calg); 1893 if (!x->calg) 1894 goto error; 1895 } 1896 x->props.calgo = orig->props.calgo; 1897 1898 if (encap || orig->encap) { 1899 if (encap) 1900 x->encap = kmemdup(encap, sizeof(*x->encap), 1901 GFP_KERNEL); 1902 else 1903 x->encap = kmemdup(orig->encap, sizeof(*x->encap), 1904 GFP_KERNEL); 1905 1906 if (!x->encap) 1907 goto error; 1908 } 1909 1910 if (orig->security) 1911 if (clone_security(x, orig->security)) 1912 goto error; 1913 1914 if (orig->coaddr) { 1915 x->coaddr = kmemdup(orig->coaddr, sizeof(*x->coaddr), 1916 GFP_KERNEL); 1917 if (!x->coaddr) 1918 goto error; 1919 } 1920 1921 if (orig->replay_esn) { 1922 if (xfrm_replay_clone(x, orig)) 1923 goto error; 1924 } 1925 1926 memcpy(&x->mark, &orig->mark, sizeof(x->mark)); 1927 memcpy(&x->props.smark, &orig->props.smark, sizeof(x->props.smark)); 1928 1929 x->props.flags = orig->props.flags; 1930 x->props.extra_flags = orig->props.extra_flags; 1931 1932 x->pcpu_num = orig->pcpu_num; 1933 x->if_id = orig->if_id; 1934 x->tfcpad = orig->tfcpad; 1935 x->replay_maxdiff = orig->replay_maxdiff; 1936 x->replay_maxage = orig->replay_maxage; 1937 memcpy(&x->curlft, &orig->curlft, sizeof(x->curlft)); 1938 x->km.state = orig->km.state; 1939 x->km.seq = orig->km.seq; 1940 x->replay = orig->replay; 1941 x->preplay = orig->preplay; 1942 x->mapping_maxage = orig->mapping_maxage; 1943 x->lastused = orig->lastused; 1944 x->new_mapping = 0; 1945 x->new_mapping_sport = 0; 1946 x->dir = orig->dir; 1947 1948 return x; 1949 1950 error: 1951 xfrm_state_put(x); 1952 out: 1953 return NULL; 1954 } 1955 1956 struct xfrm_state *xfrm_migrate_state_find(struct xfrm_migrate *m, struct net *net, 1957 u32 if_id) 1958 { 1959 unsigned int h; 1960 struct xfrm_state *x = NULL; 1961 1962 spin_lock_bh(&net->xfrm.xfrm_state_lock); 1963 1964 if (m->reqid) { 1965 h = xfrm_dst_hash(net, &m->old_daddr, &m->old_saddr, 1966 m->reqid, m->old_family); 1967 hlist_for_each_entry(x, net->xfrm.state_bydst+h, bydst) { 1968 if (x->props.mode != m->mode || 1969 x->id.proto != m->proto) 1970 continue; 1971 if (m->reqid && x->props.reqid != m->reqid) 1972 continue; 1973 if (if_id != 0 && x->if_id != if_id) 1974 continue; 1975 if (!xfrm_addr_equal(&x->id.daddr, &m->old_daddr, 1976 m->old_family) || 1977 !xfrm_addr_equal(&x->props.saddr, &m->old_saddr, 1978 m->old_family)) 1979 continue; 1980 xfrm_state_hold(x); 1981 break; 1982 } 1983 } else { 1984 h = xfrm_src_hash(net, &m->old_daddr, &m->old_saddr, 1985 m->old_family); 1986 hlist_for_each_entry(x, net->xfrm.state_bysrc+h, bysrc) { 1987 if (x->props.mode != m->mode || 1988 x->id.proto != m->proto) 1989 continue; 1990 if (if_id != 0 && x->if_id != if_id) 1991 continue; 1992 if (!xfrm_addr_equal(&x->id.daddr, &m->old_daddr, 1993 m->old_family) || 1994 !xfrm_addr_equal(&x->props.saddr, &m->old_saddr, 1995 m->old_family)) 1996 continue; 1997 xfrm_state_hold(x); 1998 break; 1999 } 2000 } 2001 2002 spin_unlock_bh(&net->xfrm.xfrm_state_lock); 2003 2004 return x; 2005 } 2006 EXPORT_SYMBOL(xfrm_migrate_state_find); 2007 2008 struct xfrm_state *xfrm_state_migrate(struct xfrm_state *x, 2009 struct xfrm_migrate *m, 2010 struct xfrm_encap_tmpl *encap) 2011 { 2012 struct xfrm_state *xc; 2013 2014 xc = xfrm_state_clone(x, encap); 2015 if (!xc) 2016 return NULL; 2017 2018 xc->props.family = m->new_family; 2019 2020 if (xfrm_init_state(xc) < 0) 2021 goto error; 2022 2023 memcpy(&xc->id.daddr, &m->new_daddr, sizeof(xc->id.daddr)); 2024 memcpy(&xc->props.saddr, &m->new_saddr, sizeof(xc->props.saddr)); 2025 2026 /* add state */ 2027 if (xfrm_addr_equal(&x->id.daddr, &m->new_daddr, m->new_family)) { 2028 /* a care is needed when the destination address of the 2029 state is to be updated as it is a part of triplet */ 2030 xfrm_state_insert(xc); 2031 } else { 2032 if (xfrm_state_add(xc) < 0) 2033 goto error; 2034 } 2035 2036 return xc; 2037 error: 2038 xfrm_state_put(xc); 2039 return NULL; 2040 } 2041 EXPORT_SYMBOL(xfrm_state_migrate); 2042 #endif 2043 2044 int xfrm_state_update(struct xfrm_state *x) 2045 { 2046 struct xfrm_state *x1, *to_put; 2047 int err; 2048 int use_spi = xfrm_id_proto_match(x->id.proto, IPSEC_PROTO_ANY); 2049 struct net *net = xs_net(x); 2050 2051 to_put = NULL; 2052 2053 spin_lock_bh(&net->xfrm.xfrm_state_lock); 2054 x1 = __xfrm_state_locate(x, use_spi, x->props.family); 2055 2056 err = -ESRCH; 2057 if (!x1) 2058 goto out; 2059 2060 if (xfrm_state_kern(x1)) { 2061 to_put = x1; 2062 err = -EEXIST; 2063 goto out; 2064 } 2065 2066 if (x1->km.state == XFRM_STATE_ACQ) { 2067 if (x->dir && x1->dir != x->dir) 2068 goto out; 2069 2070 __xfrm_state_insert(x); 2071 x = NULL; 2072 } else { 2073 if (x1->dir != x->dir) 2074 goto out; 2075 } 2076 err = 0; 2077 2078 out: 2079 spin_unlock_bh(&net->xfrm.xfrm_state_lock); 2080 2081 if (to_put) 2082 xfrm_state_put(to_put); 2083 2084 if (err) 2085 return err; 2086 2087 if (!x) { 2088 xfrm_state_delete(x1); 2089 xfrm_state_put(x1); 2090 return 0; 2091 } 2092 2093 err = -EINVAL; 2094 spin_lock_bh(&x1->lock); 2095 if (likely(x1->km.state == XFRM_STATE_VALID)) { 2096 if (x->encap && x1->encap && 2097 x->encap->encap_type == x1->encap->encap_type) 2098 memcpy(x1->encap, x->encap, sizeof(*x1->encap)); 2099 else if (x->encap || x1->encap) 2100 goto fail; 2101 2102 if (x->coaddr && x1->coaddr) { 2103 memcpy(x1->coaddr, x->coaddr, sizeof(*x1->coaddr)); 2104 } 2105 if (!use_spi && memcmp(&x1->sel, &x->sel, sizeof(x1->sel))) 2106 memcpy(&x1->sel, &x->sel, sizeof(x1->sel)); 2107 memcpy(&x1->lft, &x->lft, sizeof(x1->lft)); 2108 x1->km.dying = 0; 2109 2110 hrtimer_start(&x1->mtimer, ktime_set(1, 0), 2111 HRTIMER_MODE_REL_SOFT); 2112 if (READ_ONCE(x1->curlft.use_time)) 2113 xfrm_state_check_expire(x1); 2114 2115 if (x->props.smark.m || x->props.smark.v || x->if_id) { 2116 spin_lock_bh(&net->xfrm.xfrm_state_lock); 2117 2118 if (x->props.smark.m || x->props.smark.v) 2119 x1->props.smark = x->props.smark; 2120 2121 if (x->if_id) 2122 x1->if_id = x->if_id; 2123 2124 __xfrm_state_bump_genids(x1); 2125 spin_unlock_bh(&net->xfrm.xfrm_state_lock); 2126 } 2127 2128 err = 0; 2129 x->km.state = XFRM_STATE_DEAD; 2130 __xfrm_state_put(x); 2131 } 2132 2133 fail: 2134 spin_unlock_bh(&x1->lock); 2135 2136 xfrm_state_put(x1); 2137 2138 return err; 2139 } 2140 EXPORT_SYMBOL(xfrm_state_update); 2141 2142 int xfrm_state_check_expire(struct xfrm_state *x) 2143 { 2144 xfrm_dev_state_update_stats(x); 2145 2146 if (!READ_ONCE(x->curlft.use_time)) 2147 WRITE_ONCE(x->curlft.use_time, ktime_get_real_seconds()); 2148 2149 if (x->curlft.bytes >= x->lft.hard_byte_limit || 2150 x->curlft.packets >= x->lft.hard_packet_limit) { 2151 x->km.state = XFRM_STATE_EXPIRED; 2152 hrtimer_start(&x->mtimer, 0, HRTIMER_MODE_REL_SOFT); 2153 return -EINVAL; 2154 } 2155 2156 if (!x->km.dying && 2157 (x->curlft.bytes >= x->lft.soft_byte_limit || 2158 x->curlft.packets >= x->lft.soft_packet_limit)) { 2159 x->km.dying = 1; 2160 km_state_expired(x, 0, 0); 2161 } 2162 return 0; 2163 } 2164 EXPORT_SYMBOL(xfrm_state_check_expire); 2165 2166 void xfrm_state_update_stats(struct net *net) 2167 { 2168 struct xfrm_state *x; 2169 int i; 2170 2171 spin_lock_bh(&net->xfrm.xfrm_state_lock); 2172 for (i = 0; i <= net->xfrm.state_hmask; i++) { 2173 hlist_for_each_entry(x, net->xfrm.state_bydst + i, bydst) 2174 xfrm_dev_state_update_stats(x); 2175 } 2176 spin_unlock_bh(&net->xfrm.xfrm_state_lock); 2177 } 2178 2179 struct xfrm_state * 2180 xfrm_state_lookup(struct net *net, u32 mark, const xfrm_address_t *daddr, __be32 spi, 2181 u8 proto, unsigned short family) 2182 { 2183 struct xfrm_state *x; 2184 2185 rcu_read_lock(); 2186 x = __xfrm_state_lookup(net, mark, daddr, spi, proto, family); 2187 rcu_read_unlock(); 2188 return x; 2189 } 2190 EXPORT_SYMBOL(xfrm_state_lookup); 2191 2192 struct xfrm_state * 2193 xfrm_state_lookup_byaddr(struct net *net, u32 mark, 2194 const xfrm_address_t *daddr, const xfrm_address_t *saddr, 2195 u8 proto, unsigned short family) 2196 { 2197 struct xfrm_state *x; 2198 2199 spin_lock_bh(&net->xfrm.xfrm_state_lock); 2200 x = __xfrm_state_lookup_byaddr(net, mark, daddr, saddr, proto, family); 2201 spin_unlock_bh(&net->xfrm.xfrm_state_lock); 2202 return x; 2203 } 2204 EXPORT_SYMBOL(xfrm_state_lookup_byaddr); 2205 2206 struct xfrm_state * 2207 xfrm_find_acq(struct net *net, const struct xfrm_mark *mark, u8 mode, u32 reqid, 2208 u32 if_id, u32 pcpu_num, u8 proto, const xfrm_address_t *daddr, 2209 const xfrm_address_t *saddr, int create, unsigned short family) 2210 { 2211 struct xfrm_state *x; 2212 2213 spin_lock_bh(&net->xfrm.xfrm_state_lock); 2214 x = __find_acq_core(net, mark, family, mode, reqid, if_id, pcpu_num, 2215 proto, daddr, saddr, create); 2216 spin_unlock_bh(&net->xfrm.xfrm_state_lock); 2217 2218 return x; 2219 } 2220 EXPORT_SYMBOL(xfrm_find_acq); 2221 2222 #ifdef CONFIG_XFRM_SUB_POLICY 2223 #if IS_ENABLED(CONFIG_IPV6) 2224 /* distribution counting sort function for xfrm_state and xfrm_tmpl */ 2225 static void 2226 __xfrm6_sort(void **dst, void **src, int n, 2227 int (*cmp)(const void *p), int maxclass) 2228 { 2229 int count[XFRM_MAX_DEPTH] = { }; 2230 int class[XFRM_MAX_DEPTH]; 2231 int i; 2232 2233 for (i = 0; i < n; i++) { 2234 int c = cmp(src[i]); 2235 2236 class[i] = c; 2237 count[c]++; 2238 } 2239 2240 for (i = 2; i < maxclass; i++) 2241 count[i] += count[i - 1]; 2242 2243 for (i = 0; i < n; i++) { 2244 dst[count[class[i] - 1]++] = src[i]; 2245 src[i] = NULL; 2246 } 2247 } 2248 2249 /* Rule for xfrm_state: 2250 * 2251 * rule 1: select IPsec transport except AH 2252 * rule 2: select MIPv6 RO or inbound trigger 2253 * rule 3: select IPsec transport AH 2254 * rule 4: select IPsec tunnel 2255 * rule 5: others 2256 */ 2257 static int __xfrm6_state_sort_cmp(const void *p) 2258 { 2259 const struct xfrm_state *v = p; 2260 2261 switch (v->props.mode) { 2262 case XFRM_MODE_TRANSPORT: 2263 if (v->id.proto != IPPROTO_AH) 2264 return 1; 2265 else 2266 return 3; 2267 #if IS_ENABLED(CONFIG_IPV6_MIP6) 2268 case XFRM_MODE_ROUTEOPTIMIZATION: 2269 case XFRM_MODE_IN_TRIGGER: 2270 return 2; 2271 #endif 2272 case XFRM_MODE_TUNNEL: 2273 case XFRM_MODE_BEET: 2274 return 4; 2275 } 2276 return 5; 2277 } 2278 2279 /* Rule for xfrm_tmpl: 2280 * 2281 * rule 1: select IPsec transport 2282 * rule 2: select MIPv6 RO or inbound trigger 2283 * rule 3: select IPsec tunnel 2284 * rule 4: others 2285 */ 2286 static int __xfrm6_tmpl_sort_cmp(const void *p) 2287 { 2288 const struct xfrm_tmpl *v = p; 2289 2290 switch (v->mode) { 2291 case XFRM_MODE_TRANSPORT: 2292 return 1; 2293 #if IS_ENABLED(CONFIG_IPV6_MIP6) 2294 case XFRM_MODE_ROUTEOPTIMIZATION: 2295 case XFRM_MODE_IN_TRIGGER: 2296 return 2; 2297 #endif 2298 case XFRM_MODE_TUNNEL: 2299 case XFRM_MODE_BEET: 2300 return 3; 2301 } 2302 return 4; 2303 } 2304 #else 2305 static inline int __xfrm6_state_sort_cmp(const void *p) { return 5; } 2306 static inline int __xfrm6_tmpl_sort_cmp(const void *p) { return 4; } 2307 2308 static inline void 2309 __xfrm6_sort(void **dst, void **src, int n, 2310 int (*cmp)(const void *p), int maxclass) 2311 { 2312 int i; 2313 2314 for (i = 0; i < n; i++) 2315 dst[i] = src[i]; 2316 } 2317 #endif /* CONFIG_IPV6 */ 2318 2319 void 2320 xfrm_tmpl_sort(struct xfrm_tmpl **dst, struct xfrm_tmpl **src, int n, 2321 unsigned short family) 2322 { 2323 int i; 2324 2325 if (family == AF_INET6) 2326 __xfrm6_sort((void **)dst, (void **)src, n, 2327 __xfrm6_tmpl_sort_cmp, 5); 2328 else 2329 for (i = 0; i < n; i++) 2330 dst[i] = src[i]; 2331 } 2332 2333 void 2334 xfrm_state_sort(struct xfrm_state **dst, struct xfrm_state **src, int n, 2335 unsigned short family) 2336 { 2337 int i; 2338 2339 if (family == AF_INET6) 2340 __xfrm6_sort((void **)dst, (void **)src, n, 2341 __xfrm6_state_sort_cmp, 6); 2342 else 2343 for (i = 0; i < n; i++) 2344 dst[i] = src[i]; 2345 } 2346 #endif 2347 2348 /* Silly enough, but I'm lazy to build resolution list */ 2349 2350 static struct xfrm_state *__xfrm_find_acq_byseq(struct net *net, u32 mark, u32 seq, u32 pcpu_num) 2351 { 2352 unsigned int h = xfrm_seq_hash(net, seq); 2353 struct xfrm_state *x; 2354 2355 hlist_for_each_entry_rcu(x, net->xfrm.state_byseq + h, byseq) { 2356 if (x->km.seq == seq && 2357 (mark & x->mark.m) == x->mark.v && 2358 x->pcpu_num == pcpu_num && 2359 x->km.state == XFRM_STATE_ACQ) { 2360 xfrm_state_hold(x); 2361 return x; 2362 } 2363 } 2364 2365 return NULL; 2366 } 2367 2368 struct xfrm_state *xfrm_find_acq_byseq(struct net *net, u32 mark, u32 seq, u32 pcpu_num) 2369 { 2370 struct xfrm_state *x; 2371 2372 spin_lock_bh(&net->xfrm.xfrm_state_lock); 2373 x = __xfrm_find_acq_byseq(net, mark, seq, pcpu_num); 2374 spin_unlock_bh(&net->xfrm.xfrm_state_lock); 2375 return x; 2376 } 2377 EXPORT_SYMBOL(xfrm_find_acq_byseq); 2378 2379 u32 xfrm_get_acqseq(void) 2380 { 2381 u32 res; 2382 static atomic_t acqseq; 2383 2384 do { 2385 res = atomic_inc_return(&acqseq); 2386 } while (!res); 2387 2388 return res; 2389 } 2390 EXPORT_SYMBOL(xfrm_get_acqseq); 2391 2392 int verify_spi_info(u8 proto, u32 min, u32 max, struct netlink_ext_ack *extack) 2393 { 2394 switch (proto) { 2395 case IPPROTO_AH: 2396 case IPPROTO_ESP: 2397 break; 2398 2399 case IPPROTO_COMP: 2400 /* IPCOMP spi is 16-bits. */ 2401 if (max >= 0x10000) { 2402 NL_SET_ERR_MSG(extack, "IPCOMP SPI must be <= 65535"); 2403 return -EINVAL; 2404 } 2405 break; 2406 2407 default: 2408 NL_SET_ERR_MSG(extack, "Invalid protocol, must be one of AH, ESP, IPCOMP"); 2409 return -EINVAL; 2410 } 2411 2412 if (min > max) { 2413 NL_SET_ERR_MSG(extack, "Invalid SPI range: min > max"); 2414 return -EINVAL; 2415 } 2416 2417 return 0; 2418 } 2419 EXPORT_SYMBOL(verify_spi_info); 2420 2421 int xfrm_alloc_spi(struct xfrm_state *x, u32 low, u32 high, 2422 struct netlink_ext_ack *extack) 2423 { 2424 struct net *net = xs_net(x); 2425 unsigned int h; 2426 struct xfrm_state *x0; 2427 int err = -ENOENT; 2428 __be32 minspi = htonl(low); 2429 __be32 maxspi = htonl(high); 2430 __be32 newspi = 0; 2431 u32 mark = x->mark.v & x->mark.m; 2432 2433 spin_lock_bh(&x->lock); 2434 if (x->km.state == XFRM_STATE_DEAD) { 2435 NL_SET_ERR_MSG(extack, "Target ACQUIRE is in DEAD state"); 2436 goto unlock; 2437 } 2438 2439 err = 0; 2440 if (x->id.spi) 2441 goto unlock; 2442 2443 err = -ENOENT; 2444 2445 if (minspi == maxspi) { 2446 x0 = xfrm_state_lookup(net, mark, &x->id.daddr, minspi, x->id.proto, x->props.family); 2447 if (x0) { 2448 NL_SET_ERR_MSG(extack, "Requested SPI is already in use"); 2449 xfrm_state_put(x0); 2450 goto unlock; 2451 } 2452 newspi = minspi; 2453 } else { 2454 u32 spi = 0; 2455 for (h = 0; h < high-low+1; h++) { 2456 spi = get_random_u32_inclusive(low, high); 2457 x0 = xfrm_state_lookup(net, mark, &x->id.daddr, htonl(spi), x->id.proto, x->props.family); 2458 if (x0 == NULL) { 2459 newspi = htonl(spi); 2460 break; 2461 } 2462 xfrm_state_put(x0); 2463 } 2464 } 2465 if (newspi) { 2466 spin_lock_bh(&net->xfrm.xfrm_state_lock); 2467 x->id.spi = newspi; 2468 h = xfrm_spi_hash(net, &x->id.daddr, x->id.spi, x->id.proto, x->props.family); 2469 XFRM_STATE_INSERT(byspi, &x->byspi, net->xfrm.state_byspi + h, 2470 x->xso.type); 2471 spin_unlock_bh(&net->xfrm.xfrm_state_lock); 2472 2473 err = 0; 2474 } else { 2475 NL_SET_ERR_MSG(extack, "No SPI available in the requested range"); 2476 } 2477 2478 unlock: 2479 spin_unlock_bh(&x->lock); 2480 2481 return err; 2482 } 2483 EXPORT_SYMBOL(xfrm_alloc_spi); 2484 2485 static bool __xfrm_state_filter_match(struct xfrm_state *x, 2486 struct xfrm_address_filter *filter) 2487 { 2488 if (filter) { 2489 if ((filter->family == AF_INET || 2490 filter->family == AF_INET6) && 2491 x->props.family != filter->family) 2492 return false; 2493 2494 return addr_match(&x->props.saddr, &filter->saddr, 2495 filter->splen) && 2496 addr_match(&x->id.daddr, &filter->daddr, 2497 filter->dplen); 2498 } 2499 return true; 2500 } 2501 2502 int xfrm_state_walk(struct net *net, struct xfrm_state_walk *walk, 2503 int (*func)(struct xfrm_state *, int, void*), 2504 void *data) 2505 { 2506 struct xfrm_state *state; 2507 struct xfrm_state_walk *x; 2508 int err = 0; 2509 2510 if (walk->seq != 0 && list_empty(&walk->all)) 2511 return 0; 2512 2513 spin_lock_bh(&net->xfrm.xfrm_state_lock); 2514 if (list_empty(&walk->all)) 2515 x = list_first_entry(&net->xfrm.state_all, struct xfrm_state_walk, all); 2516 else 2517 x = list_first_entry(&walk->all, struct xfrm_state_walk, all); 2518 list_for_each_entry_from(x, &net->xfrm.state_all, all) { 2519 if (x->state == XFRM_STATE_DEAD) 2520 continue; 2521 state = container_of(x, struct xfrm_state, km); 2522 if (!xfrm_id_proto_match(state->id.proto, walk->proto)) 2523 continue; 2524 if (!__xfrm_state_filter_match(state, walk->filter)) 2525 continue; 2526 err = func(state, walk->seq, data); 2527 if (err) { 2528 list_move_tail(&walk->all, &x->all); 2529 goto out; 2530 } 2531 walk->seq++; 2532 } 2533 if (walk->seq == 0) { 2534 err = -ENOENT; 2535 goto out; 2536 } 2537 list_del_init(&walk->all); 2538 out: 2539 spin_unlock_bh(&net->xfrm.xfrm_state_lock); 2540 return err; 2541 } 2542 EXPORT_SYMBOL(xfrm_state_walk); 2543 2544 void xfrm_state_walk_init(struct xfrm_state_walk *walk, u8 proto, 2545 struct xfrm_address_filter *filter) 2546 { 2547 INIT_LIST_HEAD(&walk->all); 2548 walk->proto = proto; 2549 walk->state = XFRM_STATE_DEAD; 2550 walk->seq = 0; 2551 walk->filter = filter; 2552 } 2553 EXPORT_SYMBOL(xfrm_state_walk_init); 2554 2555 void xfrm_state_walk_done(struct xfrm_state_walk *walk, struct net *net) 2556 { 2557 kfree(walk->filter); 2558 2559 if (list_empty(&walk->all)) 2560 return; 2561 2562 spin_lock_bh(&net->xfrm.xfrm_state_lock); 2563 list_del(&walk->all); 2564 spin_unlock_bh(&net->xfrm.xfrm_state_lock); 2565 } 2566 EXPORT_SYMBOL(xfrm_state_walk_done); 2567 2568 static void xfrm_replay_timer_handler(struct timer_list *t) 2569 { 2570 struct xfrm_state *x = from_timer(x, t, rtimer); 2571 2572 spin_lock(&x->lock); 2573 2574 if (x->km.state == XFRM_STATE_VALID) { 2575 if (xfrm_aevent_is_on(xs_net(x))) 2576 xfrm_replay_notify(x, XFRM_REPLAY_TIMEOUT); 2577 else 2578 x->xflags |= XFRM_TIME_DEFER; 2579 } 2580 2581 spin_unlock(&x->lock); 2582 } 2583 2584 static LIST_HEAD(xfrm_km_list); 2585 2586 void km_policy_notify(struct xfrm_policy *xp, int dir, const struct km_event *c) 2587 { 2588 struct xfrm_mgr *km; 2589 2590 rcu_read_lock(); 2591 list_for_each_entry_rcu(km, &xfrm_km_list, list) 2592 if (km->notify_policy) 2593 km->notify_policy(xp, dir, c); 2594 rcu_read_unlock(); 2595 } 2596 2597 void km_state_notify(struct xfrm_state *x, const struct km_event *c) 2598 { 2599 struct xfrm_mgr *km; 2600 rcu_read_lock(); 2601 list_for_each_entry_rcu(km, &xfrm_km_list, list) 2602 if (km->notify) 2603 km->notify(x, c); 2604 rcu_read_unlock(); 2605 } 2606 2607 EXPORT_SYMBOL(km_policy_notify); 2608 EXPORT_SYMBOL(km_state_notify); 2609 2610 void km_state_expired(struct xfrm_state *x, int hard, u32 portid) 2611 { 2612 struct km_event c; 2613 2614 c.data.hard = hard; 2615 c.portid = portid; 2616 c.event = XFRM_MSG_EXPIRE; 2617 km_state_notify(x, &c); 2618 } 2619 2620 EXPORT_SYMBOL(km_state_expired); 2621 /* 2622 * We send to all registered managers regardless of failure 2623 * We are happy with one success 2624 */ 2625 int km_query(struct xfrm_state *x, struct xfrm_tmpl *t, struct xfrm_policy *pol) 2626 { 2627 int err = -EINVAL, acqret; 2628 struct xfrm_mgr *km; 2629 2630 rcu_read_lock(); 2631 list_for_each_entry_rcu(km, &xfrm_km_list, list) { 2632 acqret = km->acquire(x, t, pol); 2633 if (!acqret) 2634 err = acqret; 2635 } 2636 rcu_read_unlock(); 2637 return err; 2638 } 2639 EXPORT_SYMBOL(km_query); 2640 2641 static int __km_new_mapping(struct xfrm_state *x, xfrm_address_t *ipaddr, __be16 sport) 2642 { 2643 int err = -EINVAL; 2644 struct xfrm_mgr *km; 2645 2646 rcu_read_lock(); 2647 list_for_each_entry_rcu(km, &xfrm_km_list, list) { 2648 if (km->new_mapping) 2649 err = km->new_mapping(x, ipaddr, sport); 2650 if (!err) 2651 break; 2652 } 2653 rcu_read_unlock(); 2654 return err; 2655 } 2656 2657 int km_new_mapping(struct xfrm_state *x, xfrm_address_t *ipaddr, __be16 sport) 2658 { 2659 int ret = 0; 2660 2661 if (x->mapping_maxage) { 2662 if ((jiffies / HZ - x->new_mapping) > x->mapping_maxage || 2663 x->new_mapping_sport != sport) { 2664 x->new_mapping_sport = sport; 2665 x->new_mapping = jiffies / HZ; 2666 ret = __km_new_mapping(x, ipaddr, sport); 2667 } 2668 } else { 2669 ret = __km_new_mapping(x, ipaddr, sport); 2670 } 2671 2672 return ret; 2673 } 2674 EXPORT_SYMBOL(km_new_mapping); 2675 2676 void km_policy_expired(struct xfrm_policy *pol, int dir, int hard, u32 portid) 2677 { 2678 struct km_event c; 2679 2680 c.data.hard = hard; 2681 c.portid = portid; 2682 c.event = XFRM_MSG_POLEXPIRE; 2683 km_policy_notify(pol, dir, &c); 2684 } 2685 EXPORT_SYMBOL(km_policy_expired); 2686 2687 #ifdef CONFIG_XFRM_MIGRATE 2688 int km_migrate(const struct xfrm_selector *sel, u8 dir, u8 type, 2689 const struct xfrm_migrate *m, int num_migrate, 2690 const struct xfrm_kmaddress *k, 2691 const struct xfrm_encap_tmpl *encap) 2692 { 2693 int err = -EINVAL; 2694 int ret; 2695 struct xfrm_mgr *km; 2696 2697 rcu_read_lock(); 2698 list_for_each_entry_rcu(km, &xfrm_km_list, list) { 2699 if (km->migrate) { 2700 ret = km->migrate(sel, dir, type, m, num_migrate, k, 2701 encap); 2702 if (!ret) 2703 err = ret; 2704 } 2705 } 2706 rcu_read_unlock(); 2707 return err; 2708 } 2709 EXPORT_SYMBOL(km_migrate); 2710 #endif 2711 2712 int km_report(struct net *net, u8 proto, struct xfrm_selector *sel, xfrm_address_t *addr) 2713 { 2714 int err = -EINVAL; 2715 int ret; 2716 struct xfrm_mgr *km; 2717 2718 rcu_read_lock(); 2719 list_for_each_entry_rcu(km, &xfrm_km_list, list) { 2720 if (km->report) { 2721 ret = km->report(net, proto, sel, addr); 2722 if (!ret) 2723 err = ret; 2724 } 2725 } 2726 rcu_read_unlock(); 2727 return err; 2728 } 2729 EXPORT_SYMBOL(km_report); 2730 2731 static bool km_is_alive(const struct km_event *c) 2732 { 2733 struct xfrm_mgr *km; 2734 bool is_alive = false; 2735 2736 rcu_read_lock(); 2737 list_for_each_entry_rcu(km, &xfrm_km_list, list) { 2738 if (km->is_alive && km->is_alive(c)) { 2739 is_alive = true; 2740 break; 2741 } 2742 } 2743 rcu_read_unlock(); 2744 2745 return is_alive; 2746 } 2747 2748 #if IS_ENABLED(CONFIG_XFRM_USER_COMPAT) 2749 static DEFINE_SPINLOCK(xfrm_translator_lock); 2750 static struct xfrm_translator __rcu *xfrm_translator; 2751 2752 struct xfrm_translator *xfrm_get_translator(void) 2753 { 2754 struct xfrm_translator *xtr; 2755 2756 rcu_read_lock(); 2757 xtr = rcu_dereference(xfrm_translator); 2758 if (unlikely(!xtr)) 2759 goto out; 2760 if (!try_module_get(xtr->owner)) 2761 xtr = NULL; 2762 out: 2763 rcu_read_unlock(); 2764 return xtr; 2765 } 2766 EXPORT_SYMBOL_GPL(xfrm_get_translator); 2767 2768 void xfrm_put_translator(struct xfrm_translator *xtr) 2769 { 2770 module_put(xtr->owner); 2771 } 2772 EXPORT_SYMBOL_GPL(xfrm_put_translator); 2773 2774 int xfrm_register_translator(struct xfrm_translator *xtr) 2775 { 2776 int err = 0; 2777 2778 spin_lock_bh(&xfrm_translator_lock); 2779 if (unlikely(xfrm_translator != NULL)) 2780 err = -EEXIST; 2781 else 2782 rcu_assign_pointer(xfrm_translator, xtr); 2783 spin_unlock_bh(&xfrm_translator_lock); 2784 2785 return err; 2786 } 2787 EXPORT_SYMBOL_GPL(xfrm_register_translator); 2788 2789 int xfrm_unregister_translator(struct xfrm_translator *xtr) 2790 { 2791 int err = 0; 2792 2793 spin_lock_bh(&xfrm_translator_lock); 2794 if (likely(xfrm_translator != NULL)) { 2795 if (rcu_access_pointer(xfrm_translator) != xtr) 2796 err = -EINVAL; 2797 else 2798 RCU_INIT_POINTER(xfrm_translator, NULL); 2799 } 2800 spin_unlock_bh(&xfrm_translator_lock); 2801 synchronize_rcu(); 2802 2803 return err; 2804 } 2805 EXPORT_SYMBOL_GPL(xfrm_unregister_translator); 2806 #endif 2807 2808 int xfrm_user_policy(struct sock *sk, int optname, sockptr_t optval, int optlen) 2809 { 2810 int err; 2811 u8 *data; 2812 struct xfrm_mgr *km; 2813 struct xfrm_policy *pol = NULL; 2814 2815 if (sockptr_is_null(optval) && !optlen) { 2816 xfrm_sk_policy_insert(sk, XFRM_POLICY_IN, NULL); 2817 xfrm_sk_policy_insert(sk, XFRM_POLICY_OUT, NULL); 2818 __sk_dst_reset(sk); 2819 return 0; 2820 } 2821 2822 if (optlen <= 0 || optlen > PAGE_SIZE) 2823 return -EMSGSIZE; 2824 2825 data = memdup_sockptr(optval, optlen); 2826 if (IS_ERR(data)) 2827 return PTR_ERR(data); 2828 2829 if (in_compat_syscall()) { 2830 struct xfrm_translator *xtr = xfrm_get_translator(); 2831 2832 if (!xtr) { 2833 kfree(data); 2834 return -EOPNOTSUPP; 2835 } 2836 2837 err = xtr->xlate_user_policy_sockptr(&data, optlen); 2838 xfrm_put_translator(xtr); 2839 if (err) { 2840 kfree(data); 2841 return err; 2842 } 2843 } 2844 2845 err = -EINVAL; 2846 rcu_read_lock(); 2847 list_for_each_entry_rcu(km, &xfrm_km_list, list) { 2848 pol = km->compile_policy(sk, optname, data, 2849 optlen, &err); 2850 if (err >= 0) 2851 break; 2852 } 2853 rcu_read_unlock(); 2854 2855 if (err >= 0) { 2856 xfrm_sk_policy_insert(sk, err, pol); 2857 xfrm_pol_put(pol); 2858 __sk_dst_reset(sk); 2859 err = 0; 2860 } 2861 2862 kfree(data); 2863 return err; 2864 } 2865 EXPORT_SYMBOL(xfrm_user_policy); 2866 2867 static DEFINE_SPINLOCK(xfrm_km_lock); 2868 2869 void xfrm_register_km(struct xfrm_mgr *km) 2870 { 2871 spin_lock_bh(&xfrm_km_lock); 2872 list_add_tail_rcu(&km->list, &xfrm_km_list); 2873 spin_unlock_bh(&xfrm_km_lock); 2874 } 2875 EXPORT_SYMBOL(xfrm_register_km); 2876 2877 void xfrm_unregister_km(struct xfrm_mgr *km) 2878 { 2879 spin_lock_bh(&xfrm_km_lock); 2880 list_del_rcu(&km->list); 2881 spin_unlock_bh(&xfrm_km_lock); 2882 synchronize_rcu(); 2883 } 2884 EXPORT_SYMBOL(xfrm_unregister_km); 2885 2886 int xfrm_state_register_afinfo(struct xfrm_state_afinfo *afinfo) 2887 { 2888 int err = 0; 2889 2890 if (WARN_ON(afinfo->family >= NPROTO)) 2891 return -EAFNOSUPPORT; 2892 2893 spin_lock_bh(&xfrm_state_afinfo_lock); 2894 if (unlikely(xfrm_state_afinfo[afinfo->family] != NULL)) 2895 err = -EEXIST; 2896 else 2897 rcu_assign_pointer(xfrm_state_afinfo[afinfo->family], afinfo); 2898 spin_unlock_bh(&xfrm_state_afinfo_lock); 2899 return err; 2900 } 2901 EXPORT_SYMBOL(xfrm_state_register_afinfo); 2902 2903 int xfrm_state_unregister_afinfo(struct xfrm_state_afinfo *afinfo) 2904 { 2905 int err = 0, family = afinfo->family; 2906 2907 if (WARN_ON(family >= NPROTO)) 2908 return -EAFNOSUPPORT; 2909 2910 spin_lock_bh(&xfrm_state_afinfo_lock); 2911 if (likely(xfrm_state_afinfo[afinfo->family] != NULL)) { 2912 if (rcu_access_pointer(xfrm_state_afinfo[family]) != afinfo) 2913 err = -EINVAL; 2914 else 2915 RCU_INIT_POINTER(xfrm_state_afinfo[afinfo->family], NULL); 2916 } 2917 spin_unlock_bh(&xfrm_state_afinfo_lock); 2918 synchronize_rcu(); 2919 return err; 2920 } 2921 EXPORT_SYMBOL(xfrm_state_unregister_afinfo); 2922 2923 struct xfrm_state_afinfo *xfrm_state_afinfo_get_rcu(unsigned int family) 2924 { 2925 if (unlikely(family >= NPROTO)) 2926 return NULL; 2927 2928 return rcu_dereference(xfrm_state_afinfo[family]); 2929 } 2930 EXPORT_SYMBOL_GPL(xfrm_state_afinfo_get_rcu); 2931 2932 struct xfrm_state_afinfo *xfrm_state_get_afinfo(unsigned int family) 2933 { 2934 struct xfrm_state_afinfo *afinfo; 2935 if (unlikely(family >= NPROTO)) 2936 return NULL; 2937 rcu_read_lock(); 2938 afinfo = rcu_dereference(xfrm_state_afinfo[family]); 2939 if (unlikely(!afinfo)) 2940 rcu_read_unlock(); 2941 return afinfo; 2942 } 2943 2944 void xfrm_flush_gc(void) 2945 { 2946 flush_work(&xfrm_state_gc_work); 2947 } 2948 EXPORT_SYMBOL(xfrm_flush_gc); 2949 2950 /* Temporarily located here until net/xfrm/xfrm_tunnel.c is created */ 2951 void xfrm_state_delete_tunnel(struct xfrm_state *x) 2952 { 2953 if (x->tunnel) { 2954 struct xfrm_state *t = x->tunnel; 2955 2956 if (atomic_read(&t->tunnel_users) == 2) 2957 xfrm_state_delete(t); 2958 atomic_dec(&t->tunnel_users); 2959 xfrm_state_put_sync(t); 2960 x->tunnel = NULL; 2961 } 2962 } 2963 EXPORT_SYMBOL(xfrm_state_delete_tunnel); 2964 2965 u32 xfrm_state_mtu(struct xfrm_state *x, int mtu) 2966 { 2967 const struct xfrm_type *type = READ_ONCE(x->type); 2968 struct crypto_aead *aead; 2969 u32 blksize, net_adj = 0; 2970 2971 if (x->km.state != XFRM_STATE_VALID || 2972 !type || type->proto != IPPROTO_ESP) 2973 return mtu - x->props.header_len; 2974 2975 aead = x->data; 2976 blksize = ALIGN(crypto_aead_blocksize(aead), 4); 2977 2978 switch (x->props.mode) { 2979 case XFRM_MODE_TRANSPORT: 2980 case XFRM_MODE_BEET: 2981 if (x->props.family == AF_INET) 2982 net_adj = sizeof(struct iphdr); 2983 else if (x->props.family == AF_INET6) 2984 net_adj = sizeof(struct ipv6hdr); 2985 break; 2986 case XFRM_MODE_TUNNEL: 2987 break; 2988 default: 2989 WARN_ON_ONCE(1); 2990 break; 2991 } 2992 2993 return ((mtu - x->props.header_len - crypto_aead_authsize(aead) - 2994 net_adj) & ~(blksize - 1)) + net_adj - 2; 2995 } 2996 EXPORT_SYMBOL_GPL(xfrm_state_mtu); 2997 2998 int __xfrm_init_state(struct xfrm_state *x, bool init_replay, bool offload, 2999 struct netlink_ext_ack *extack) 3000 { 3001 const struct xfrm_mode *inner_mode; 3002 const struct xfrm_mode *outer_mode; 3003 int family = x->props.family; 3004 int err; 3005 3006 if (family == AF_INET && 3007 READ_ONCE(xs_net(x)->ipv4.sysctl_ip_no_pmtu_disc)) 3008 x->props.flags |= XFRM_STATE_NOPMTUDISC; 3009 3010 err = -EPROTONOSUPPORT; 3011 3012 if (x->sel.family != AF_UNSPEC) { 3013 inner_mode = xfrm_get_mode(x->props.mode, x->sel.family); 3014 if (inner_mode == NULL) { 3015 NL_SET_ERR_MSG(extack, "Requested mode not found"); 3016 goto error; 3017 } 3018 3019 if (!(inner_mode->flags & XFRM_MODE_FLAG_TUNNEL) && 3020 family != x->sel.family) { 3021 NL_SET_ERR_MSG(extack, "Only tunnel modes can accommodate a change of family"); 3022 goto error; 3023 } 3024 3025 x->inner_mode = *inner_mode; 3026 } else { 3027 const struct xfrm_mode *inner_mode_iaf; 3028 int iafamily = AF_INET; 3029 3030 inner_mode = xfrm_get_mode(x->props.mode, x->props.family); 3031 if (inner_mode == NULL) { 3032 NL_SET_ERR_MSG(extack, "Requested mode not found"); 3033 goto error; 3034 } 3035 3036 x->inner_mode = *inner_mode; 3037 3038 if (x->props.family == AF_INET) 3039 iafamily = AF_INET6; 3040 3041 inner_mode_iaf = xfrm_get_mode(x->props.mode, iafamily); 3042 if (inner_mode_iaf) { 3043 if (inner_mode_iaf->flags & XFRM_MODE_FLAG_TUNNEL) 3044 x->inner_mode_iaf = *inner_mode_iaf; 3045 } 3046 } 3047 3048 x->type = xfrm_get_type(x->id.proto, family); 3049 if (x->type == NULL) { 3050 NL_SET_ERR_MSG(extack, "Requested type not found"); 3051 goto error; 3052 } 3053 3054 x->type_offload = xfrm_get_type_offload(x->id.proto, family, offload); 3055 3056 err = x->type->init_state(x, extack); 3057 if (err) 3058 goto error; 3059 3060 outer_mode = xfrm_get_mode(x->props.mode, family); 3061 if (!outer_mode) { 3062 NL_SET_ERR_MSG(extack, "Requested mode not found"); 3063 err = -EPROTONOSUPPORT; 3064 goto error; 3065 } 3066 3067 x->outer_mode = *outer_mode; 3068 if (init_replay) { 3069 err = xfrm_init_replay(x, extack); 3070 if (err) 3071 goto error; 3072 } 3073 3074 if (x->nat_keepalive_interval) { 3075 if (x->dir != XFRM_SA_DIR_OUT) { 3076 NL_SET_ERR_MSG(extack, "NAT keepalive is only supported for outbound SAs"); 3077 err = -EINVAL; 3078 goto error; 3079 } 3080 3081 if (!x->encap || x->encap->encap_type != UDP_ENCAP_ESPINUDP) { 3082 NL_SET_ERR_MSG(extack, 3083 "NAT keepalive is only supported for UDP encapsulation"); 3084 err = -EINVAL; 3085 goto error; 3086 } 3087 } 3088 3089 error: 3090 return err; 3091 } 3092 3093 EXPORT_SYMBOL(__xfrm_init_state); 3094 3095 int xfrm_init_state(struct xfrm_state *x) 3096 { 3097 int err; 3098 3099 err = __xfrm_init_state(x, true, false, NULL); 3100 if (!err) 3101 x->km.state = XFRM_STATE_VALID; 3102 3103 return err; 3104 } 3105 3106 EXPORT_SYMBOL(xfrm_init_state); 3107 3108 int __net_init xfrm_state_init(struct net *net) 3109 { 3110 unsigned int sz; 3111 3112 if (net_eq(net, &init_net)) 3113 xfrm_state_cache = KMEM_CACHE(xfrm_state, 3114 SLAB_HWCACHE_ALIGN | SLAB_PANIC); 3115 3116 INIT_LIST_HEAD(&net->xfrm.state_all); 3117 3118 sz = sizeof(struct hlist_head) * 8; 3119 3120 net->xfrm.state_bydst = xfrm_hash_alloc(sz); 3121 if (!net->xfrm.state_bydst) 3122 goto out_bydst; 3123 net->xfrm.state_bysrc = xfrm_hash_alloc(sz); 3124 if (!net->xfrm.state_bysrc) 3125 goto out_bysrc; 3126 net->xfrm.state_byspi = xfrm_hash_alloc(sz); 3127 if (!net->xfrm.state_byspi) 3128 goto out_byspi; 3129 net->xfrm.state_byseq = xfrm_hash_alloc(sz); 3130 if (!net->xfrm.state_byseq) 3131 goto out_byseq; 3132 3133 net->xfrm.state_cache_input = alloc_percpu(struct hlist_head); 3134 if (!net->xfrm.state_cache_input) 3135 goto out_state_cache_input; 3136 3137 net->xfrm.state_hmask = ((sz / sizeof(struct hlist_head)) - 1); 3138 3139 net->xfrm.state_num = 0; 3140 INIT_WORK(&net->xfrm.state_hash_work, xfrm_hash_resize); 3141 spin_lock_init(&net->xfrm.xfrm_state_lock); 3142 seqcount_spinlock_init(&net->xfrm.xfrm_state_hash_generation, 3143 &net->xfrm.xfrm_state_lock); 3144 return 0; 3145 3146 out_state_cache_input: 3147 xfrm_hash_free(net->xfrm.state_byseq, sz); 3148 out_byseq: 3149 xfrm_hash_free(net->xfrm.state_byspi, sz); 3150 out_byspi: 3151 xfrm_hash_free(net->xfrm.state_bysrc, sz); 3152 out_bysrc: 3153 xfrm_hash_free(net->xfrm.state_bydst, sz); 3154 out_bydst: 3155 return -ENOMEM; 3156 } 3157 3158 void xfrm_state_fini(struct net *net) 3159 { 3160 unsigned int sz; 3161 3162 flush_work(&net->xfrm.state_hash_work); 3163 flush_work(&xfrm_state_gc_work); 3164 xfrm_state_flush(net, 0, false, true); 3165 3166 WARN_ON(!list_empty(&net->xfrm.state_all)); 3167 3168 sz = (net->xfrm.state_hmask + 1) * sizeof(struct hlist_head); 3169 WARN_ON(!hlist_empty(net->xfrm.state_byseq)); 3170 xfrm_hash_free(net->xfrm.state_byseq, sz); 3171 WARN_ON(!hlist_empty(net->xfrm.state_byspi)); 3172 xfrm_hash_free(net->xfrm.state_byspi, sz); 3173 WARN_ON(!hlist_empty(net->xfrm.state_bysrc)); 3174 xfrm_hash_free(net->xfrm.state_bysrc, sz); 3175 WARN_ON(!hlist_empty(net->xfrm.state_bydst)); 3176 xfrm_hash_free(net->xfrm.state_bydst, sz); 3177 free_percpu(net->xfrm.state_cache_input); 3178 } 3179 3180 #ifdef CONFIG_AUDITSYSCALL 3181 static void xfrm_audit_helper_sainfo(struct xfrm_state *x, 3182 struct audit_buffer *audit_buf) 3183 { 3184 struct xfrm_sec_ctx *ctx = x->security; 3185 u32 spi = ntohl(x->id.spi); 3186 3187 if (ctx) 3188 audit_log_format(audit_buf, " sec_alg=%u sec_doi=%u sec_obj=%s", 3189 ctx->ctx_alg, ctx->ctx_doi, ctx->ctx_str); 3190 3191 switch (x->props.family) { 3192 case AF_INET: 3193 audit_log_format(audit_buf, " src=%pI4 dst=%pI4", 3194 &x->props.saddr.a4, &x->id.daddr.a4); 3195 break; 3196 case AF_INET6: 3197 audit_log_format(audit_buf, " src=%pI6 dst=%pI6", 3198 x->props.saddr.a6, x->id.daddr.a6); 3199 break; 3200 } 3201 3202 audit_log_format(audit_buf, " spi=%u(0x%x)", spi, spi); 3203 } 3204 3205 static void xfrm_audit_helper_pktinfo(struct sk_buff *skb, u16 family, 3206 struct audit_buffer *audit_buf) 3207 { 3208 const struct iphdr *iph4; 3209 const struct ipv6hdr *iph6; 3210 3211 switch (family) { 3212 case AF_INET: 3213 iph4 = ip_hdr(skb); 3214 audit_log_format(audit_buf, " src=%pI4 dst=%pI4", 3215 &iph4->saddr, &iph4->daddr); 3216 break; 3217 case AF_INET6: 3218 iph6 = ipv6_hdr(skb); 3219 audit_log_format(audit_buf, 3220 " src=%pI6 dst=%pI6 flowlbl=0x%x%02x%02x", 3221 &iph6->saddr, &iph6->daddr, 3222 iph6->flow_lbl[0] & 0x0f, 3223 iph6->flow_lbl[1], 3224 iph6->flow_lbl[2]); 3225 break; 3226 } 3227 } 3228 3229 void xfrm_audit_state_add(struct xfrm_state *x, int result, bool task_valid) 3230 { 3231 struct audit_buffer *audit_buf; 3232 3233 audit_buf = xfrm_audit_start("SAD-add"); 3234 if (audit_buf == NULL) 3235 return; 3236 xfrm_audit_helper_usrinfo(task_valid, audit_buf); 3237 xfrm_audit_helper_sainfo(x, audit_buf); 3238 audit_log_format(audit_buf, " res=%u", result); 3239 audit_log_end(audit_buf); 3240 } 3241 EXPORT_SYMBOL_GPL(xfrm_audit_state_add); 3242 3243 void xfrm_audit_state_delete(struct xfrm_state *x, int result, bool task_valid) 3244 { 3245 struct audit_buffer *audit_buf; 3246 3247 audit_buf = xfrm_audit_start("SAD-delete"); 3248 if (audit_buf == NULL) 3249 return; 3250 xfrm_audit_helper_usrinfo(task_valid, audit_buf); 3251 xfrm_audit_helper_sainfo(x, audit_buf); 3252 audit_log_format(audit_buf, " res=%u", result); 3253 audit_log_end(audit_buf); 3254 } 3255 EXPORT_SYMBOL_GPL(xfrm_audit_state_delete); 3256 3257 void xfrm_audit_state_replay_overflow(struct xfrm_state *x, 3258 struct sk_buff *skb) 3259 { 3260 struct audit_buffer *audit_buf; 3261 u32 spi; 3262 3263 audit_buf = xfrm_audit_start("SA-replay-overflow"); 3264 if (audit_buf == NULL) 3265 return; 3266 xfrm_audit_helper_pktinfo(skb, x->props.family, audit_buf); 3267 /* don't record the sequence number because it's inherent in this kind 3268 * of audit message */ 3269 spi = ntohl(x->id.spi); 3270 audit_log_format(audit_buf, " spi=%u(0x%x)", spi, spi); 3271 audit_log_end(audit_buf); 3272 } 3273 EXPORT_SYMBOL_GPL(xfrm_audit_state_replay_overflow); 3274 3275 void xfrm_audit_state_replay(struct xfrm_state *x, 3276 struct sk_buff *skb, __be32 net_seq) 3277 { 3278 struct audit_buffer *audit_buf; 3279 u32 spi; 3280 3281 audit_buf = xfrm_audit_start("SA-replayed-pkt"); 3282 if (audit_buf == NULL) 3283 return; 3284 xfrm_audit_helper_pktinfo(skb, x->props.family, audit_buf); 3285 spi = ntohl(x->id.spi); 3286 audit_log_format(audit_buf, " spi=%u(0x%x) seqno=%u", 3287 spi, spi, ntohl(net_seq)); 3288 audit_log_end(audit_buf); 3289 } 3290 EXPORT_SYMBOL_GPL(xfrm_audit_state_replay); 3291 3292 void xfrm_audit_state_notfound_simple(struct sk_buff *skb, u16 family) 3293 { 3294 struct audit_buffer *audit_buf; 3295 3296 audit_buf = xfrm_audit_start("SA-notfound"); 3297 if (audit_buf == NULL) 3298 return; 3299 xfrm_audit_helper_pktinfo(skb, family, audit_buf); 3300 audit_log_end(audit_buf); 3301 } 3302 EXPORT_SYMBOL_GPL(xfrm_audit_state_notfound_simple); 3303 3304 void xfrm_audit_state_notfound(struct sk_buff *skb, u16 family, 3305 __be32 net_spi, __be32 net_seq) 3306 { 3307 struct audit_buffer *audit_buf; 3308 u32 spi; 3309 3310 audit_buf = xfrm_audit_start("SA-notfound"); 3311 if (audit_buf == NULL) 3312 return; 3313 xfrm_audit_helper_pktinfo(skb, family, audit_buf); 3314 spi = ntohl(net_spi); 3315 audit_log_format(audit_buf, " spi=%u(0x%x) seqno=%u", 3316 spi, spi, ntohl(net_seq)); 3317 audit_log_end(audit_buf); 3318 } 3319 EXPORT_SYMBOL_GPL(xfrm_audit_state_notfound); 3320 3321 void xfrm_audit_state_icvfail(struct xfrm_state *x, 3322 struct sk_buff *skb, u8 proto) 3323 { 3324 struct audit_buffer *audit_buf; 3325 __be32 net_spi; 3326 __be32 net_seq; 3327 3328 audit_buf = xfrm_audit_start("SA-icv-failure"); 3329 if (audit_buf == NULL) 3330 return; 3331 xfrm_audit_helper_pktinfo(skb, x->props.family, audit_buf); 3332 if (xfrm_parse_spi(skb, proto, &net_spi, &net_seq) == 0) { 3333 u32 spi = ntohl(net_spi); 3334 audit_log_format(audit_buf, " spi=%u(0x%x) seqno=%u", 3335 spi, spi, ntohl(net_seq)); 3336 } 3337 audit_log_end(audit_buf); 3338 } 3339 EXPORT_SYMBOL_GPL(xfrm_audit_state_icvfail); 3340 #endif /* CONFIG_AUDITSYSCALL */ 3341