xref: /linux/net/xfrm/xfrm_state.c (revision 0d3b051adbb72ed81956447d0d1e54d5943ee6f5)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * xfrm_state.c
4  *
5  * Changes:
6  *	Mitsuru KANDA @USAGI
7  * 	Kazunori MIYAZAWA @USAGI
8  * 	Kunihiro Ishiguro <kunihiro@ipinfusion.com>
9  * 		IPv6 support
10  * 	YOSHIFUJI Hideaki @USAGI
11  * 		Split up af-specific functions
12  *	Derek Atkins <derek@ihtfp.com>
13  *		Add UDP Encapsulation
14  *
15  */
16 
17 #include <linux/workqueue.h>
18 #include <net/xfrm.h>
19 #include <linux/pfkeyv2.h>
20 #include <linux/ipsec.h>
21 #include <linux/module.h>
22 #include <linux/cache.h>
23 #include <linux/audit.h>
24 #include <linux/uaccess.h>
25 #include <linux/ktime.h>
26 #include <linux/slab.h>
27 #include <linux/interrupt.h>
28 #include <linux/kernel.h>
29 
30 #include <crypto/aead.h>
31 
32 #include "xfrm_hash.h"
33 
34 #define xfrm_state_deref_prot(table, net) \
35 	rcu_dereference_protected((table), lockdep_is_held(&(net)->xfrm.xfrm_state_lock))
36 
37 static void xfrm_state_gc_task(struct work_struct *work);
38 
39 /* Each xfrm_state may be linked to two tables:
40 
41    1. Hash table by (spi,daddr,ah/esp) to find SA by SPI. (input,ctl)
42    2. Hash table by (daddr,family,reqid) to find what SAs exist for given
43       destination/tunnel endpoint. (output)
44  */
45 
46 static unsigned int xfrm_state_hashmax __read_mostly = 1 * 1024 * 1024;
47 static __read_mostly seqcount_t xfrm_state_hash_generation = SEQCNT_ZERO(xfrm_state_hash_generation);
48 static struct kmem_cache *xfrm_state_cache __ro_after_init;
49 
50 static DECLARE_WORK(xfrm_state_gc_work, xfrm_state_gc_task);
51 static HLIST_HEAD(xfrm_state_gc_list);
52 
53 static inline bool xfrm_state_hold_rcu(struct xfrm_state __rcu *x)
54 {
55 	return refcount_inc_not_zero(&x->refcnt);
56 }
57 
58 static inline unsigned int xfrm_dst_hash(struct net *net,
59 					 const xfrm_address_t *daddr,
60 					 const xfrm_address_t *saddr,
61 					 u32 reqid,
62 					 unsigned short family)
63 {
64 	return __xfrm_dst_hash(daddr, saddr, reqid, family, net->xfrm.state_hmask);
65 }
66 
67 static inline unsigned int xfrm_src_hash(struct net *net,
68 					 const xfrm_address_t *daddr,
69 					 const xfrm_address_t *saddr,
70 					 unsigned short family)
71 {
72 	return __xfrm_src_hash(daddr, saddr, family, net->xfrm.state_hmask);
73 }
74 
75 static inline unsigned int
76 xfrm_spi_hash(struct net *net, const xfrm_address_t *daddr,
77 	      __be32 spi, u8 proto, unsigned short family)
78 {
79 	return __xfrm_spi_hash(daddr, spi, proto, family, net->xfrm.state_hmask);
80 }
81 
82 static void xfrm_hash_transfer(struct hlist_head *list,
83 			       struct hlist_head *ndsttable,
84 			       struct hlist_head *nsrctable,
85 			       struct hlist_head *nspitable,
86 			       unsigned int nhashmask)
87 {
88 	struct hlist_node *tmp;
89 	struct xfrm_state *x;
90 
91 	hlist_for_each_entry_safe(x, tmp, list, bydst) {
92 		unsigned int h;
93 
94 		h = __xfrm_dst_hash(&x->id.daddr, &x->props.saddr,
95 				    x->props.reqid, x->props.family,
96 				    nhashmask);
97 		hlist_add_head_rcu(&x->bydst, ndsttable + h);
98 
99 		h = __xfrm_src_hash(&x->id.daddr, &x->props.saddr,
100 				    x->props.family,
101 				    nhashmask);
102 		hlist_add_head_rcu(&x->bysrc, nsrctable + h);
103 
104 		if (x->id.spi) {
105 			h = __xfrm_spi_hash(&x->id.daddr, x->id.spi,
106 					    x->id.proto, x->props.family,
107 					    nhashmask);
108 			hlist_add_head_rcu(&x->byspi, nspitable + h);
109 		}
110 	}
111 }
112 
113 static unsigned long xfrm_hash_new_size(unsigned int state_hmask)
114 {
115 	return ((state_hmask + 1) << 1) * sizeof(struct hlist_head);
116 }
117 
118 static void xfrm_hash_resize(struct work_struct *work)
119 {
120 	struct net *net = container_of(work, struct net, xfrm.state_hash_work);
121 	struct hlist_head *ndst, *nsrc, *nspi, *odst, *osrc, *ospi;
122 	unsigned long nsize, osize;
123 	unsigned int nhashmask, ohashmask;
124 	int i;
125 
126 	nsize = xfrm_hash_new_size(net->xfrm.state_hmask);
127 	ndst = xfrm_hash_alloc(nsize);
128 	if (!ndst)
129 		return;
130 	nsrc = xfrm_hash_alloc(nsize);
131 	if (!nsrc) {
132 		xfrm_hash_free(ndst, nsize);
133 		return;
134 	}
135 	nspi = xfrm_hash_alloc(nsize);
136 	if (!nspi) {
137 		xfrm_hash_free(ndst, nsize);
138 		xfrm_hash_free(nsrc, nsize);
139 		return;
140 	}
141 
142 	spin_lock_bh(&net->xfrm.xfrm_state_lock);
143 	write_seqcount_begin(&xfrm_state_hash_generation);
144 
145 	nhashmask = (nsize / sizeof(struct hlist_head)) - 1U;
146 	odst = xfrm_state_deref_prot(net->xfrm.state_bydst, net);
147 	for (i = net->xfrm.state_hmask; i >= 0; i--)
148 		xfrm_hash_transfer(odst + i, ndst, nsrc, nspi, nhashmask);
149 
150 	osrc = xfrm_state_deref_prot(net->xfrm.state_bysrc, net);
151 	ospi = xfrm_state_deref_prot(net->xfrm.state_byspi, net);
152 	ohashmask = net->xfrm.state_hmask;
153 
154 	rcu_assign_pointer(net->xfrm.state_bydst, ndst);
155 	rcu_assign_pointer(net->xfrm.state_bysrc, nsrc);
156 	rcu_assign_pointer(net->xfrm.state_byspi, nspi);
157 	net->xfrm.state_hmask = nhashmask;
158 
159 	write_seqcount_end(&xfrm_state_hash_generation);
160 	spin_unlock_bh(&net->xfrm.xfrm_state_lock);
161 
162 	osize = (ohashmask + 1) * sizeof(struct hlist_head);
163 
164 	synchronize_rcu();
165 
166 	xfrm_hash_free(odst, osize);
167 	xfrm_hash_free(osrc, osize);
168 	xfrm_hash_free(ospi, osize);
169 }
170 
171 static DEFINE_SPINLOCK(xfrm_state_afinfo_lock);
172 static struct xfrm_state_afinfo __rcu *xfrm_state_afinfo[NPROTO];
173 
174 static DEFINE_SPINLOCK(xfrm_state_gc_lock);
175 
176 int __xfrm_state_delete(struct xfrm_state *x);
177 
178 int km_query(struct xfrm_state *x, struct xfrm_tmpl *t, struct xfrm_policy *pol);
179 static bool km_is_alive(const struct km_event *c);
180 void km_state_expired(struct xfrm_state *x, int hard, u32 portid);
181 
182 int xfrm_register_type(const struct xfrm_type *type, unsigned short family)
183 {
184 	struct xfrm_state_afinfo *afinfo = xfrm_state_get_afinfo(family);
185 	int err = 0;
186 
187 	if (!afinfo)
188 		return -EAFNOSUPPORT;
189 
190 #define X(afi, T, name) do {			\
191 		WARN_ON((afi)->type_ ## name);	\
192 		(afi)->type_ ## name = (T);	\
193 	} while (0)
194 
195 	switch (type->proto) {
196 	case IPPROTO_COMP:
197 		X(afinfo, type, comp);
198 		break;
199 	case IPPROTO_AH:
200 		X(afinfo, type, ah);
201 		break;
202 	case IPPROTO_ESP:
203 		X(afinfo, type, esp);
204 		break;
205 	case IPPROTO_IPIP:
206 		X(afinfo, type, ipip);
207 		break;
208 	case IPPROTO_DSTOPTS:
209 		X(afinfo, type, dstopts);
210 		break;
211 	case IPPROTO_ROUTING:
212 		X(afinfo, type, routing);
213 		break;
214 	case IPPROTO_IPV6:
215 		X(afinfo, type, ipip6);
216 		break;
217 	default:
218 		WARN_ON(1);
219 		err = -EPROTONOSUPPORT;
220 		break;
221 	}
222 #undef X
223 	rcu_read_unlock();
224 	return err;
225 }
226 EXPORT_SYMBOL(xfrm_register_type);
227 
228 void xfrm_unregister_type(const struct xfrm_type *type, unsigned short family)
229 {
230 	struct xfrm_state_afinfo *afinfo = xfrm_state_get_afinfo(family);
231 
232 	if (unlikely(afinfo == NULL))
233 		return;
234 
235 #define X(afi, T, name) do {				\
236 		WARN_ON((afi)->type_ ## name != (T));	\
237 		(afi)->type_ ## name = NULL;		\
238 	} while (0)
239 
240 	switch (type->proto) {
241 	case IPPROTO_COMP:
242 		X(afinfo, type, comp);
243 		break;
244 	case IPPROTO_AH:
245 		X(afinfo, type, ah);
246 		break;
247 	case IPPROTO_ESP:
248 		X(afinfo, type, esp);
249 		break;
250 	case IPPROTO_IPIP:
251 		X(afinfo, type, ipip);
252 		break;
253 	case IPPROTO_DSTOPTS:
254 		X(afinfo, type, dstopts);
255 		break;
256 	case IPPROTO_ROUTING:
257 		X(afinfo, type, routing);
258 		break;
259 	case IPPROTO_IPV6:
260 		X(afinfo, type, ipip6);
261 		break;
262 	default:
263 		WARN_ON(1);
264 		break;
265 	}
266 #undef X
267 	rcu_read_unlock();
268 }
269 EXPORT_SYMBOL(xfrm_unregister_type);
270 
271 static const struct xfrm_type *xfrm_get_type(u8 proto, unsigned short family)
272 {
273 	const struct xfrm_type *type = NULL;
274 	struct xfrm_state_afinfo *afinfo;
275 	int modload_attempted = 0;
276 
277 retry:
278 	afinfo = xfrm_state_get_afinfo(family);
279 	if (unlikely(afinfo == NULL))
280 		return NULL;
281 
282 	switch (proto) {
283 	case IPPROTO_COMP:
284 		type = afinfo->type_comp;
285 		break;
286 	case IPPROTO_AH:
287 		type = afinfo->type_ah;
288 		break;
289 	case IPPROTO_ESP:
290 		type = afinfo->type_esp;
291 		break;
292 	case IPPROTO_IPIP:
293 		type = afinfo->type_ipip;
294 		break;
295 	case IPPROTO_DSTOPTS:
296 		type = afinfo->type_dstopts;
297 		break;
298 	case IPPROTO_ROUTING:
299 		type = afinfo->type_routing;
300 		break;
301 	case IPPROTO_IPV6:
302 		type = afinfo->type_ipip6;
303 		break;
304 	default:
305 		break;
306 	}
307 
308 	if (unlikely(type && !try_module_get(type->owner)))
309 		type = NULL;
310 
311 	rcu_read_unlock();
312 
313 	if (!type && !modload_attempted) {
314 		request_module("xfrm-type-%d-%d", family, proto);
315 		modload_attempted = 1;
316 		goto retry;
317 	}
318 
319 	return type;
320 }
321 
322 static void xfrm_put_type(const struct xfrm_type *type)
323 {
324 	module_put(type->owner);
325 }
326 
327 int xfrm_register_type_offload(const struct xfrm_type_offload *type,
328 			       unsigned short family)
329 {
330 	struct xfrm_state_afinfo *afinfo = xfrm_state_get_afinfo(family);
331 	int err = 0;
332 
333 	if (unlikely(afinfo == NULL))
334 		return -EAFNOSUPPORT;
335 
336 	switch (type->proto) {
337 	case IPPROTO_ESP:
338 		WARN_ON(afinfo->type_offload_esp);
339 		afinfo->type_offload_esp = type;
340 		break;
341 	default:
342 		WARN_ON(1);
343 		err = -EPROTONOSUPPORT;
344 		break;
345 	}
346 
347 	rcu_read_unlock();
348 	return err;
349 }
350 EXPORT_SYMBOL(xfrm_register_type_offload);
351 
352 void xfrm_unregister_type_offload(const struct xfrm_type_offload *type,
353 				  unsigned short family)
354 {
355 	struct xfrm_state_afinfo *afinfo = xfrm_state_get_afinfo(family);
356 
357 	if (unlikely(afinfo == NULL))
358 		return;
359 
360 	switch (type->proto) {
361 	case IPPROTO_ESP:
362 		WARN_ON(afinfo->type_offload_esp != type);
363 		afinfo->type_offload_esp = NULL;
364 		break;
365 	default:
366 		WARN_ON(1);
367 		break;
368 	}
369 	rcu_read_unlock();
370 }
371 EXPORT_SYMBOL(xfrm_unregister_type_offload);
372 
373 static const struct xfrm_type_offload *
374 xfrm_get_type_offload(u8 proto, unsigned short family, bool try_load)
375 {
376 	const struct xfrm_type_offload *type = NULL;
377 	struct xfrm_state_afinfo *afinfo;
378 
379 retry:
380 	afinfo = xfrm_state_get_afinfo(family);
381 	if (unlikely(afinfo == NULL))
382 		return NULL;
383 
384 	switch (proto) {
385 	case IPPROTO_ESP:
386 		type = afinfo->type_offload_esp;
387 		break;
388 	default:
389 		break;
390 	}
391 
392 	if ((type && !try_module_get(type->owner)))
393 		type = NULL;
394 
395 	rcu_read_unlock();
396 
397 	if (!type && try_load) {
398 		request_module("xfrm-offload-%d-%d", family, proto);
399 		try_load = false;
400 		goto retry;
401 	}
402 
403 	return type;
404 }
405 
406 static void xfrm_put_type_offload(const struct xfrm_type_offload *type)
407 {
408 	module_put(type->owner);
409 }
410 
411 static const struct xfrm_mode xfrm4_mode_map[XFRM_MODE_MAX] = {
412 	[XFRM_MODE_BEET] = {
413 		.encap = XFRM_MODE_BEET,
414 		.flags = XFRM_MODE_FLAG_TUNNEL,
415 		.family = AF_INET,
416 	},
417 	[XFRM_MODE_TRANSPORT] = {
418 		.encap = XFRM_MODE_TRANSPORT,
419 		.family = AF_INET,
420 	},
421 	[XFRM_MODE_TUNNEL] = {
422 		.encap = XFRM_MODE_TUNNEL,
423 		.flags = XFRM_MODE_FLAG_TUNNEL,
424 		.family = AF_INET,
425 	},
426 };
427 
428 static const struct xfrm_mode xfrm6_mode_map[XFRM_MODE_MAX] = {
429 	[XFRM_MODE_BEET] = {
430 		.encap = XFRM_MODE_BEET,
431 		.flags = XFRM_MODE_FLAG_TUNNEL,
432 		.family = AF_INET6,
433 	},
434 	[XFRM_MODE_ROUTEOPTIMIZATION] = {
435 		.encap = XFRM_MODE_ROUTEOPTIMIZATION,
436 		.family = AF_INET6,
437 	},
438 	[XFRM_MODE_TRANSPORT] = {
439 		.encap = XFRM_MODE_TRANSPORT,
440 		.family = AF_INET6,
441 	},
442 	[XFRM_MODE_TUNNEL] = {
443 		.encap = XFRM_MODE_TUNNEL,
444 		.flags = XFRM_MODE_FLAG_TUNNEL,
445 		.family = AF_INET6,
446 	},
447 };
448 
449 static const struct xfrm_mode *xfrm_get_mode(unsigned int encap, int family)
450 {
451 	const struct xfrm_mode *mode;
452 
453 	if (unlikely(encap >= XFRM_MODE_MAX))
454 		return NULL;
455 
456 	switch (family) {
457 	case AF_INET:
458 		mode = &xfrm4_mode_map[encap];
459 		if (mode->family == family)
460 			return mode;
461 		break;
462 	case AF_INET6:
463 		mode = &xfrm6_mode_map[encap];
464 		if (mode->family == family)
465 			return mode;
466 		break;
467 	default:
468 		break;
469 	}
470 
471 	return NULL;
472 }
473 
474 void xfrm_state_free(struct xfrm_state *x)
475 {
476 	kmem_cache_free(xfrm_state_cache, x);
477 }
478 EXPORT_SYMBOL(xfrm_state_free);
479 
480 static void ___xfrm_state_destroy(struct xfrm_state *x)
481 {
482 	hrtimer_cancel(&x->mtimer);
483 	del_timer_sync(&x->rtimer);
484 	kfree(x->aead);
485 	kfree(x->aalg);
486 	kfree(x->ealg);
487 	kfree(x->calg);
488 	kfree(x->encap);
489 	kfree(x->coaddr);
490 	kfree(x->replay_esn);
491 	kfree(x->preplay_esn);
492 	if (x->type_offload)
493 		xfrm_put_type_offload(x->type_offload);
494 	if (x->type) {
495 		x->type->destructor(x);
496 		xfrm_put_type(x->type);
497 	}
498 	if (x->xfrag.page)
499 		put_page(x->xfrag.page);
500 	xfrm_dev_state_free(x);
501 	security_xfrm_state_free(x);
502 	xfrm_state_free(x);
503 }
504 
505 static void xfrm_state_gc_task(struct work_struct *work)
506 {
507 	struct xfrm_state *x;
508 	struct hlist_node *tmp;
509 	struct hlist_head gc_list;
510 
511 	spin_lock_bh(&xfrm_state_gc_lock);
512 	hlist_move_list(&xfrm_state_gc_list, &gc_list);
513 	spin_unlock_bh(&xfrm_state_gc_lock);
514 
515 	synchronize_rcu();
516 
517 	hlist_for_each_entry_safe(x, tmp, &gc_list, gclist)
518 		___xfrm_state_destroy(x);
519 }
520 
521 static enum hrtimer_restart xfrm_timer_handler(struct hrtimer *me)
522 {
523 	struct xfrm_state *x = container_of(me, struct xfrm_state, mtimer);
524 	enum hrtimer_restart ret = HRTIMER_NORESTART;
525 	time64_t now = ktime_get_real_seconds();
526 	time64_t next = TIME64_MAX;
527 	int warn = 0;
528 	int err = 0;
529 
530 	spin_lock(&x->lock);
531 	if (x->km.state == XFRM_STATE_DEAD)
532 		goto out;
533 	if (x->km.state == XFRM_STATE_EXPIRED)
534 		goto expired;
535 	if (x->lft.hard_add_expires_seconds) {
536 		long tmo = x->lft.hard_add_expires_seconds +
537 			x->curlft.add_time - now;
538 		if (tmo <= 0) {
539 			if (x->xflags & XFRM_SOFT_EXPIRE) {
540 				/* enter hard expire without soft expire first?!
541 				 * setting a new date could trigger this.
542 				 * workaround: fix x->curflt.add_time by below:
543 				 */
544 				x->curlft.add_time = now - x->saved_tmo - 1;
545 				tmo = x->lft.hard_add_expires_seconds - x->saved_tmo;
546 			} else
547 				goto expired;
548 		}
549 		if (tmo < next)
550 			next = tmo;
551 	}
552 	if (x->lft.hard_use_expires_seconds) {
553 		long tmo = x->lft.hard_use_expires_seconds +
554 			(x->curlft.use_time ? : now) - now;
555 		if (tmo <= 0)
556 			goto expired;
557 		if (tmo < next)
558 			next = tmo;
559 	}
560 	if (x->km.dying)
561 		goto resched;
562 	if (x->lft.soft_add_expires_seconds) {
563 		long tmo = x->lft.soft_add_expires_seconds +
564 			x->curlft.add_time - now;
565 		if (tmo <= 0) {
566 			warn = 1;
567 			x->xflags &= ~XFRM_SOFT_EXPIRE;
568 		} else if (tmo < next) {
569 			next = tmo;
570 			x->xflags |= XFRM_SOFT_EXPIRE;
571 			x->saved_tmo = tmo;
572 		}
573 	}
574 	if (x->lft.soft_use_expires_seconds) {
575 		long tmo = x->lft.soft_use_expires_seconds +
576 			(x->curlft.use_time ? : now) - now;
577 		if (tmo <= 0)
578 			warn = 1;
579 		else if (tmo < next)
580 			next = tmo;
581 	}
582 
583 	x->km.dying = warn;
584 	if (warn)
585 		km_state_expired(x, 0, 0);
586 resched:
587 	if (next != TIME64_MAX) {
588 		hrtimer_forward_now(&x->mtimer, ktime_set(next, 0));
589 		ret = HRTIMER_RESTART;
590 	}
591 
592 	goto out;
593 
594 expired:
595 	if (x->km.state == XFRM_STATE_ACQ && x->id.spi == 0)
596 		x->km.state = XFRM_STATE_EXPIRED;
597 
598 	err = __xfrm_state_delete(x);
599 	if (!err)
600 		km_state_expired(x, 1, 0);
601 
602 	xfrm_audit_state_delete(x, err ? 0 : 1, true);
603 
604 out:
605 	spin_unlock(&x->lock);
606 	return ret;
607 }
608 
609 static void xfrm_replay_timer_handler(struct timer_list *t);
610 
611 struct xfrm_state *xfrm_state_alloc(struct net *net)
612 {
613 	struct xfrm_state *x;
614 
615 	x = kmem_cache_zalloc(xfrm_state_cache, GFP_ATOMIC);
616 
617 	if (x) {
618 		write_pnet(&x->xs_net, net);
619 		refcount_set(&x->refcnt, 1);
620 		atomic_set(&x->tunnel_users, 0);
621 		INIT_LIST_HEAD(&x->km.all);
622 		INIT_HLIST_NODE(&x->bydst);
623 		INIT_HLIST_NODE(&x->bysrc);
624 		INIT_HLIST_NODE(&x->byspi);
625 		hrtimer_init(&x->mtimer, CLOCK_BOOTTIME, HRTIMER_MODE_ABS_SOFT);
626 		x->mtimer.function = xfrm_timer_handler;
627 		timer_setup(&x->rtimer, xfrm_replay_timer_handler, 0);
628 		x->curlft.add_time = ktime_get_real_seconds();
629 		x->lft.soft_byte_limit = XFRM_INF;
630 		x->lft.soft_packet_limit = XFRM_INF;
631 		x->lft.hard_byte_limit = XFRM_INF;
632 		x->lft.hard_packet_limit = XFRM_INF;
633 		x->replay_maxage = 0;
634 		x->replay_maxdiff = 0;
635 		spin_lock_init(&x->lock);
636 	}
637 	return x;
638 }
639 EXPORT_SYMBOL(xfrm_state_alloc);
640 
641 void __xfrm_state_destroy(struct xfrm_state *x, bool sync)
642 {
643 	WARN_ON(x->km.state != XFRM_STATE_DEAD);
644 
645 	if (sync) {
646 		synchronize_rcu();
647 		___xfrm_state_destroy(x);
648 	} else {
649 		spin_lock_bh(&xfrm_state_gc_lock);
650 		hlist_add_head(&x->gclist, &xfrm_state_gc_list);
651 		spin_unlock_bh(&xfrm_state_gc_lock);
652 		schedule_work(&xfrm_state_gc_work);
653 	}
654 }
655 EXPORT_SYMBOL(__xfrm_state_destroy);
656 
657 int __xfrm_state_delete(struct xfrm_state *x)
658 {
659 	struct net *net = xs_net(x);
660 	int err = -ESRCH;
661 
662 	if (x->km.state != XFRM_STATE_DEAD) {
663 		x->km.state = XFRM_STATE_DEAD;
664 		spin_lock(&net->xfrm.xfrm_state_lock);
665 		list_del(&x->km.all);
666 		hlist_del_rcu(&x->bydst);
667 		hlist_del_rcu(&x->bysrc);
668 		if (x->id.spi)
669 			hlist_del_rcu(&x->byspi);
670 		net->xfrm.state_num--;
671 		spin_unlock(&net->xfrm.xfrm_state_lock);
672 
673 		if (x->encap_sk)
674 			sock_put(rcu_dereference_raw(x->encap_sk));
675 
676 		xfrm_dev_state_delete(x);
677 
678 		/* All xfrm_state objects are created by xfrm_state_alloc.
679 		 * The xfrm_state_alloc call gives a reference, and that
680 		 * is what we are dropping here.
681 		 */
682 		xfrm_state_put(x);
683 		err = 0;
684 	}
685 
686 	return err;
687 }
688 EXPORT_SYMBOL(__xfrm_state_delete);
689 
690 int xfrm_state_delete(struct xfrm_state *x)
691 {
692 	int err;
693 
694 	spin_lock_bh(&x->lock);
695 	err = __xfrm_state_delete(x);
696 	spin_unlock_bh(&x->lock);
697 
698 	return err;
699 }
700 EXPORT_SYMBOL(xfrm_state_delete);
701 
702 #ifdef CONFIG_SECURITY_NETWORK_XFRM
703 static inline int
704 xfrm_state_flush_secctx_check(struct net *net, u8 proto, bool task_valid)
705 {
706 	int i, err = 0;
707 
708 	for (i = 0; i <= net->xfrm.state_hmask; i++) {
709 		struct xfrm_state *x;
710 
711 		hlist_for_each_entry(x, net->xfrm.state_bydst+i, bydst) {
712 			if (xfrm_id_proto_match(x->id.proto, proto) &&
713 			   (err = security_xfrm_state_delete(x)) != 0) {
714 				xfrm_audit_state_delete(x, 0, task_valid);
715 				return err;
716 			}
717 		}
718 	}
719 
720 	return err;
721 }
722 
723 static inline int
724 xfrm_dev_state_flush_secctx_check(struct net *net, struct net_device *dev, bool task_valid)
725 {
726 	int i, err = 0;
727 
728 	for (i = 0; i <= net->xfrm.state_hmask; i++) {
729 		struct xfrm_state *x;
730 		struct xfrm_state_offload *xso;
731 
732 		hlist_for_each_entry(x, net->xfrm.state_bydst+i, bydst) {
733 			xso = &x->xso;
734 
735 			if (xso->dev == dev &&
736 			   (err = security_xfrm_state_delete(x)) != 0) {
737 				xfrm_audit_state_delete(x, 0, task_valid);
738 				return err;
739 			}
740 		}
741 	}
742 
743 	return err;
744 }
745 #else
746 static inline int
747 xfrm_state_flush_secctx_check(struct net *net, u8 proto, bool task_valid)
748 {
749 	return 0;
750 }
751 
752 static inline int
753 xfrm_dev_state_flush_secctx_check(struct net *net, struct net_device *dev, bool task_valid)
754 {
755 	return 0;
756 }
757 #endif
758 
759 int xfrm_state_flush(struct net *net, u8 proto, bool task_valid, bool sync)
760 {
761 	int i, err = 0, cnt = 0;
762 
763 	spin_lock_bh(&net->xfrm.xfrm_state_lock);
764 	err = xfrm_state_flush_secctx_check(net, proto, task_valid);
765 	if (err)
766 		goto out;
767 
768 	err = -ESRCH;
769 	for (i = 0; i <= net->xfrm.state_hmask; i++) {
770 		struct xfrm_state *x;
771 restart:
772 		hlist_for_each_entry(x, net->xfrm.state_bydst+i, bydst) {
773 			if (!xfrm_state_kern(x) &&
774 			    xfrm_id_proto_match(x->id.proto, proto)) {
775 				xfrm_state_hold(x);
776 				spin_unlock_bh(&net->xfrm.xfrm_state_lock);
777 
778 				err = xfrm_state_delete(x);
779 				xfrm_audit_state_delete(x, err ? 0 : 1,
780 							task_valid);
781 				if (sync)
782 					xfrm_state_put_sync(x);
783 				else
784 					xfrm_state_put(x);
785 				if (!err)
786 					cnt++;
787 
788 				spin_lock_bh(&net->xfrm.xfrm_state_lock);
789 				goto restart;
790 			}
791 		}
792 	}
793 out:
794 	spin_unlock_bh(&net->xfrm.xfrm_state_lock);
795 	if (cnt)
796 		err = 0;
797 
798 	return err;
799 }
800 EXPORT_SYMBOL(xfrm_state_flush);
801 
802 int xfrm_dev_state_flush(struct net *net, struct net_device *dev, bool task_valid)
803 {
804 	int i, err = 0, cnt = 0;
805 
806 	spin_lock_bh(&net->xfrm.xfrm_state_lock);
807 	err = xfrm_dev_state_flush_secctx_check(net, dev, task_valid);
808 	if (err)
809 		goto out;
810 
811 	err = -ESRCH;
812 	for (i = 0; i <= net->xfrm.state_hmask; i++) {
813 		struct xfrm_state *x;
814 		struct xfrm_state_offload *xso;
815 restart:
816 		hlist_for_each_entry(x, net->xfrm.state_bydst+i, bydst) {
817 			xso = &x->xso;
818 
819 			if (!xfrm_state_kern(x) && xso->dev == dev) {
820 				xfrm_state_hold(x);
821 				spin_unlock_bh(&net->xfrm.xfrm_state_lock);
822 
823 				err = xfrm_state_delete(x);
824 				xfrm_audit_state_delete(x, err ? 0 : 1,
825 							task_valid);
826 				xfrm_state_put(x);
827 				if (!err)
828 					cnt++;
829 
830 				spin_lock_bh(&net->xfrm.xfrm_state_lock);
831 				goto restart;
832 			}
833 		}
834 	}
835 	if (cnt)
836 		err = 0;
837 
838 out:
839 	spin_unlock_bh(&net->xfrm.xfrm_state_lock);
840 	return err;
841 }
842 EXPORT_SYMBOL(xfrm_dev_state_flush);
843 
844 void xfrm_sad_getinfo(struct net *net, struct xfrmk_sadinfo *si)
845 {
846 	spin_lock_bh(&net->xfrm.xfrm_state_lock);
847 	si->sadcnt = net->xfrm.state_num;
848 	si->sadhcnt = net->xfrm.state_hmask + 1;
849 	si->sadhmcnt = xfrm_state_hashmax;
850 	spin_unlock_bh(&net->xfrm.xfrm_state_lock);
851 }
852 EXPORT_SYMBOL(xfrm_sad_getinfo);
853 
854 static void
855 __xfrm4_init_tempsel(struct xfrm_selector *sel, const struct flowi *fl)
856 {
857 	const struct flowi4 *fl4 = &fl->u.ip4;
858 
859 	sel->daddr.a4 = fl4->daddr;
860 	sel->saddr.a4 = fl4->saddr;
861 	sel->dport = xfrm_flowi_dport(fl, &fl4->uli);
862 	sel->dport_mask = htons(0xffff);
863 	sel->sport = xfrm_flowi_sport(fl, &fl4->uli);
864 	sel->sport_mask = htons(0xffff);
865 	sel->family = AF_INET;
866 	sel->prefixlen_d = 32;
867 	sel->prefixlen_s = 32;
868 	sel->proto = fl4->flowi4_proto;
869 	sel->ifindex = fl4->flowi4_oif;
870 }
871 
872 static void
873 __xfrm6_init_tempsel(struct xfrm_selector *sel, const struct flowi *fl)
874 {
875 	const struct flowi6 *fl6 = &fl->u.ip6;
876 
877 	/* Initialize temporary selector matching only to current session. */
878 	*(struct in6_addr *)&sel->daddr = fl6->daddr;
879 	*(struct in6_addr *)&sel->saddr = fl6->saddr;
880 	sel->dport = xfrm_flowi_dport(fl, &fl6->uli);
881 	sel->dport_mask = htons(0xffff);
882 	sel->sport = xfrm_flowi_sport(fl, &fl6->uli);
883 	sel->sport_mask = htons(0xffff);
884 	sel->family = AF_INET6;
885 	sel->prefixlen_d = 128;
886 	sel->prefixlen_s = 128;
887 	sel->proto = fl6->flowi6_proto;
888 	sel->ifindex = fl6->flowi6_oif;
889 }
890 
891 static void
892 xfrm_init_tempstate(struct xfrm_state *x, const struct flowi *fl,
893 		    const struct xfrm_tmpl *tmpl,
894 		    const xfrm_address_t *daddr, const xfrm_address_t *saddr,
895 		    unsigned short family)
896 {
897 	switch (family) {
898 	case AF_INET:
899 		__xfrm4_init_tempsel(&x->sel, fl);
900 		break;
901 	case AF_INET6:
902 		__xfrm6_init_tempsel(&x->sel, fl);
903 		break;
904 	}
905 
906 	x->id = tmpl->id;
907 
908 	switch (tmpl->encap_family) {
909 	case AF_INET:
910 		if (x->id.daddr.a4 == 0)
911 			x->id.daddr.a4 = daddr->a4;
912 		x->props.saddr = tmpl->saddr;
913 		if (x->props.saddr.a4 == 0)
914 			x->props.saddr.a4 = saddr->a4;
915 		break;
916 	case AF_INET6:
917 		if (ipv6_addr_any((struct in6_addr *)&x->id.daddr))
918 			memcpy(&x->id.daddr, daddr, sizeof(x->sel.daddr));
919 		memcpy(&x->props.saddr, &tmpl->saddr, sizeof(x->props.saddr));
920 		if (ipv6_addr_any((struct in6_addr *)&x->props.saddr))
921 			memcpy(&x->props.saddr, saddr, sizeof(x->props.saddr));
922 		break;
923 	}
924 
925 	x->props.mode = tmpl->mode;
926 	x->props.reqid = tmpl->reqid;
927 	x->props.family = tmpl->encap_family;
928 }
929 
930 static struct xfrm_state *__xfrm_state_lookup(struct net *net, u32 mark,
931 					      const xfrm_address_t *daddr,
932 					      __be32 spi, u8 proto,
933 					      unsigned short family)
934 {
935 	unsigned int h = xfrm_spi_hash(net, daddr, spi, proto, family);
936 	struct xfrm_state *x;
937 
938 	hlist_for_each_entry_rcu(x, net->xfrm.state_byspi + h, byspi) {
939 		if (x->props.family != family ||
940 		    x->id.spi       != spi ||
941 		    x->id.proto     != proto ||
942 		    !xfrm_addr_equal(&x->id.daddr, daddr, family))
943 			continue;
944 
945 		if ((mark & x->mark.m) != x->mark.v)
946 			continue;
947 		if (!xfrm_state_hold_rcu(x))
948 			continue;
949 		return x;
950 	}
951 
952 	return NULL;
953 }
954 
955 static struct xfrm_state *__xfrm_state_lookup_byaddr(struct net *net, u32 mark,
956 						     const xfrm_address_t *daddr,
957 						     const xfrm_address_t *saddr,
958 						     u8 proto, unsigned short family)
959 {
960 	unsigned int h = xfrm_src_hash(net, daddr, saddr, family);
961 	struct xfrm_state *x;
962 
963 	hlist_for_each_entry_rcu(x, net->xfrm.state_bysrc + h, bysrc) {
964 		if (x->props.family != family ||
965 		    x->id.proto     != proto ||
966 		    !xfrm_addr_equal(&x->id.daddr, daddr, family) ||
967 		    !xfrm_addr_equal(&x->props.saddr, saddr, family))
968 			continue;
969 
970 		if ((mark & x->mark.m) != x->mark.v)
971 			continue;
972 		if (!xfrm_state_hold_rcu(x))
973 			continue;
974 		return x;
975 	}
976 
977 	return NULL;
978 }
979 
980 static inline struct xfrm_state *
981 __xfrm_state_locate(struct xfrm_state *x, int use_spi, int family)
982 {
983 	struct net *net = xs_net(x);
984 	u32 mark = x->mark.v & x->mark.m;
985 
986 	if (use_spi)
987 		return __xfrm_state_lookup(net, mark, &x->id.daddr,
988 					   x->id.spi, x->id.proto, family);
989 	else
990 		return __xfrm_state_lookup_byaddr(net, mark,
991 						  &x->id.daddr,
992 						  &x->props.saddr,
993 						  x->id.proto, family);
994 }
995 
996 static void xfrm_hash_grow_check(struct net *net, int have_hash_collision)
997 {
998 	if (have_hash_collision &&
999 	    (net->xfrm.state_hmask + 1) < xfrm_state_hashmax &&
1000 	    net->xfrm.state_num > net->xfrm.state_hmask)
1001 		schedule_work(&net->xfrm.state_hash_work);
1002 }
1003 
1004 static void xfrm_state_look_at(struct xfrm_policy *pol, struct xfrm_state *x,
1005 			       const struct flowi *fl, unsigned short family,
1006 			       struct xfrm_state **best, int *acq_in_progress,
1007 			       int *error)
1008 {
1009 	/* Resolution logic:
1010 	 * 1. There is a valid state with matching selector. Done.
1011 	 * 2. Valid state with inappropriate selector. Skip.
1012 	 *
1013 	 * Entering area of "sysdeps".
1014 	 *
1015 	 * 3. If state is not valid, selector is temporary, it selects
1016 	 *    only session which triggered previous resolution. Key
1017 	 *    manager will do something to install a state with proper
1018 	 *    selector.
1019 	 */
1020 	if (x->km.state == XFRM_STATE_VALID) {
1021 		if ((x->sel.family &&
1022 		     (x->sel.family != family ||
1023 		      !xfrm_selector_match(&x->sel, fl, family))) ||
1024 		    !security_xfrm_state_pol_flow_match(x, pol,
1025 							&fl->u.__fl_common))
1026 			return;
1027 
1028 		if (!*best ||
1029 		    (*best)->km.dying > x->km.dying ||
1030 		    ((*best)->km.dying == x->km.dying &&
1031 		     (*best)->curlft.add_time < x->curlft.add_time))
1032 			*best = x;
1033 	} else if (x->km.state == XFRM_STATE_ACQ) {
1034 		*acq_in_progress = 1;
1035 	} else if (x->km.state == XFRM_STATE_ERROR ||
1036 		   x->km.state == XFRM_STATE_EXPIRED) {
1037 		if ((!x->sel.family ||
1038 		     (x->sel.family == family &&
1039 		      xfrm_selector_match(&x->sel, fl, family))) &&
1040 		    security_xfrm_state_pol_flow_match(x, pol,
1041 						       &fl->u.__fl_common))
1042 			*error = -ESRCH;
1043 	}
1044 }
1045 
1046 struct xfrm_state *
1047 xfrm_state_find(const xfrm_address_t *daddr, const xfrm_address_t *saddr,
1048 		const struct flowi *fl, struct xfrm_tmpl *tmpl,
1049 		struct xfrm_policy *pol, int *err,
1050 		unsigned short family, u32 if_id)
1051 {
1052 	static xfrm_address_t saddr_wildcard = { };
1053 	struct net *net = xp_net(pol);
1054 	unsigned int h, h_wildcard;
1055 	struct xfrm_state *x, *x0, *to_put;
1056 	int acquire_in_progress = 0;
1057 	int error = 0;
1058 	struct xfrm_state *best = NULL;
1059 	u32 mark = pol->mark.v & pol->mark.m;
1060 	unsigned short encap_family = tmpl->encap_family;
1061 	unsigned int sequence;
1062 	struct km_event c;
1063 
1064 	to_put = NULL;
1065 
1066 	sequence = read_seqcount_begin(&xfrm_state_hash_generation);
1067 
1068 	rcu_read_lock();
1069 	h = xfrm_dst_hash(net, daddr, saddr, tmpl->reqid, encap_family);
1070 	hlist_for_each_entry_rcu(x, net->xfrm.state_bydst + h, bydst) {
1071 		if (x->props.family == encap_family &&
1072 		    x->props.reqid == tmpl->reqid &&
1073 		    (mark & x->mark.m) == x->mark.v &&
1074 		    x->if_id == if_id &&
1075 		    !(x->props.flags & XFRM_STATE_WILDRECV) &&
1076 		    xfrm_state_addr_check(x, daddr, saddr, encap_family) &&
1077 		    tmpl->mode == x->props.mode &&
1078 		    tmpl->id.proto == x->id.proto &&
1079 		    (tmpl->id.spi == x->id.spi || !tmpl->id.spi))
1080 			xfrm_state_look_at(pol, x, fl, family,
1081 					   &best, &acquire_in_progress, &error);
1082 	}
1083 	if (best || acquire_in_progress)
1084 		goto found;
1085 
1086 	h_wildcard = xfrm_dst_hash(net, daddr, &saddr_wildcard, tmpl->reqid, encap_family);
1087 	hlist_for_each_entry_rcu(x, net->xfrm.state_bydst + h_wildcard, bydst) {
1088 		if (x->props.family == encap_family &&
1089 		    x->props.reqid == tmpl->reqid &&
1090 		    (mark & x->mark.m) == x->mark.v &&
1091 		    x->if_id == if_id &&
1092 		    !(x->props.flags & XFRM_STATE_WILDRECV) &&
1093 		    xfrm_addr_equal(&x->id.daddr, daddr, encap_family) &&
1094 		    tmpl->mode == x->props.mode &&
1095 		    tmpl->id.proto == x->id.proto &&
1096 		    (tmpl->id.spi == x->id.spi || !tmpl->id.spi))
1097 			xfrm_state_look_at(pol, x, fl, family,
1098 					   &best, &acquire_in_progress, &error);
1099 	}
1100 
1101 found:
1102 	x = best;
1103 	if (!x && !error && !acquire_in_progress) {
1104 		if (tmpl->id.spi &&
1105 		    (x0 = __xfrm_state_lookup(net, mark, daddr, tmpl->id.spi,
1106 					      tmpl->id.proto, encap_family)) != NULL) {
1107 			to_put = x0;
1108 			error = -EEXIST;
1109 			goto out;
1110 		}
1111 
1112 		c.net = net;
1113 		/* If the KMs have no listeners (yet...), avoid allocating an SA
1114 		 * for each and every packet - garbage collection might not
1115 		 * handle the flood.
1116 		 */
1117 		if (!km_is_alive(&c)) {
1118 			error = -ESRCH;
1119 			goto out;
1120 		}
1121 
1122 		x = xfrm_state_alloc(net);
1123 		if (x == NULL) {
1124 			error = -ENOMEM;
1125 			goto out;
1126 		}
1127 		/* Initialize temporary state matching only
1128 		 * to current session. */
1129 		xfrm_init_tempstate(x, fl, tmpl, daddr, saddr, family);
1130 		memcpy(&x->mark, &pol->mark, sizeof(x->mark));
1131 		x->if_id = if_id;
1132 
1133 		error = security_xfrm_state_alloc_acquire(x, pol->security, fl->flowi_secid);
1134 		if (error) {
1135 			x->km.state = XFRM_STATE_DEAD;
1136 			to_put = x;
1137 			x = NULL;
1138 			goto out;
1139 		}
1140 
1141 		if (km_query(x, tmpl, pol) == 0) {
1142 			spin_lock_bh(&net->xfrm.xfrm_state_lock);
1143 			x->km.state = XFRM_STATE_ACQ;
1144 			list_add(&x->km.all, &net->xfrm.state_all);
1145 			hlist_add_head_rcu(&x->bydst, net->xfrm.state_bydst + h);
1146 			h = xfrm_src_hash(net, daddr, saddr, encap_family);
1147 			hlist_add_head_rcu(&x->bysrc, net->xfrm.state_bysrc + h);
1148 			if (x->id.spi) {
1149 				h = xfrm_spi_hash(net, &x->id.daddr, x->id.spi, x->id.proto, encap_family);
1150 				hlist_add_head_rcu(&x->byspi, net->xfrm.state_byspi + h);
1151 			}
1152 			x->lft.hard_add_expires_seconds = net->xfrm.sysctl_acq_expires;
1153 			hrtimer_start(&x->mtimer,
1154 				      ktime_set(net->xfrm.sysctl_acq_expires, 0),
1155 				      HRTIMER_MODE_REL_SOFT);
1156 			net->xfrm.state_num++;
1157 			xfrm_hash_grow_check(net, x->bydst.next != NULL);
1158 			spin_unlock_bh(&net->xfrm.xfrm_state_lock);
1159 		} else {
1160 			x->km.state = XFRM_STATE_DEAD;
1161 			to_put = x;
1162 			x = NULL;
1163 			error = -ESRCH;
1164 		}
1165 	}
1166 out:
1167 	if (x) {
1168 		if (!xfrm_state_hold_rcu(x)) {
1169 			*err = -EAGAIN;
1170 			x = NULL;
1171 		}
1172 	} else {
1173 		*err = acquire_in_progress ? -EAGAIN : error;
1174 	}
1175 	rcu_read_unlock();
1176 	if (to_put)
1177 		xfrm_state_put(to_put);
1178 
1179 	if (read_seqcount_retry(&xfrm_state_hash_generation, sequence)) {
1180 		*err = -EAGAIN;
1181 		if (x) {
1182 			xfrm_state_put(x);
1183 			x = NULL;
1184 		}
1185 	}
1186 
1187 	return x;
1188 }
1189 
1190 struct xfrm_state *
1191 xfrm_stateonly_find(struct net *net, u32 mark, u32 if_id,
1192 		    xfrm_address_t *daddr, xfrm_address_t *saddr,
1193 		    unsigned short family, u8 mode, u8 proto, u32 reqid)
1194 {
1195 	unsigned int h;
1196 	struct xfrm_state *rx = NULL, *x = NULL;
1197 
1198 	spin_lock_bh(&net->xfrm.xfrm_state_lock);
1199 	h = xfrm_dst_hash(net, daddr, saddr, reqid, family);
1200 	hlist_for_each_entry(x, net->xfrm.state_bydst+h, bydst) {
1201 		if (x->props.family == family &&
1202 		    x->props.reqid == reqid &&
1203 		    (mark & x->mark.m) == x->mark.v &&
1204 		    x->if_id == if_id &&
1205 		    !(x->props.flags & XFRM_STATE_WILDRECV) &&
1206 		    xfrm_state_addr_check(x, daddr, saddr, family) &&
1207 		    mode == x->props.mode &&
1208 		    proto == x->id.proto &&
1209 		    x->km.state == XFRM_STATE_VALID) {
1210 			rx = x;
1211 			break;
1212 		}
1213 	}
1214 
1215 	if (rx)
1216 		xfrm_state_hold(rx);
1217 	spin_unlock_bh(&net->xfrm.xfrm_state_lock);
1218 
1219 
1220 	return rx;
1221 }
1222 EXPORT_SYMBOL(xfrm_stateonly_find);
1223 
1224 struct xfrm_state *xfrm_state_lookup_byspi(struct net *net, __be32 spi,
1225 					      unsigned short family)
1226 {
1227 	struct xfrm_state *x;
1228 	struct xfrm_state_walk *w;
1229 
1230 	spin_lock_bh(&net->xfrm.xfrm_state_lock);
1231 	list_for_each_entry(w, &net->xfrm.state_all, all) {
1232 		x = container_of(w, struct xfrm_state, km);
1233 		if (x->props.family != family ||
1234 			x->id.spi != spi)
1235 			continue;
1236 
1237 		xfrm_state_hold(x);
1238 		spin_unlock_bh(&net->xfrm.xfrm_state_lock);
1239 		return x;
1240 	}
1241 	spin_unlock_bh(&net->xfrm.xfrm_state_lock);
1242 	return NULL;
1243 }
1244 EXPORT_SYMBOL(xfrm_state_lookup_byspi);
1245 
1246 static void __xfrm_state_insert(struct xfrm_state *x)
1247 {
1248 	struct net *net = xs_net(x);
1249 	unsigned int h;
1250 
1251 	list_add(&x->km.all, &net->xfrm.state_all);
1252 
1253 	h = xfrm_dst_hash(net, &x->id.daddr, &x->props.saddr,
1254 			  x->props.reqid, x->props.family);
1255 	hlist_add_head_rcu(&x->bydst, net->xfrm.state_bydst + h);
1256 
1257 	h = xfrm_src_hash(net, &x->id.daddr, &x->props.saddr, x->props.family);
1258 	hlist_add_head_rcu(&x->bysrc, net->xfrm.state_bysrc + h);
1259 
1260 	if (x->id.spi) {
1261 		h = xfrm_spi_hash(net, &x->id.daddr, x->id.spi, x->id.proto,
1262 				  x->props.family);
1263 
1264 		hlist_add_head_rcu(&x->byspi, net->xfrm.state_byspi + h);
1265 	}
1266 
1267 	hrtimer_start(&x->mtimer, ktime_set(1, 0), HRTIMER_MODE_REL_SOFT);
1268 	if (x->replay_maxage)
1269 		mod_timer(&x->rtimer, jiffies + x->replay_maxage);
1270 
1271 	net->xfrm.state_num++;
1272 
1273 	xfrm_hash_grow_check(net, x->bydst.next != NULL);
1274 }
1275 
1276 /* net->xfrm.xfrm_state_lock is held */
1277 static void __xfrm_state_bump_genids(struct xfrm_state *xnew)
1278 {
1279 	struct net *net = xs_net(xnew);
1280 	unsigned short family = xnew->props.family;
1281 	u32 reqid = xnew->props.reqid;
1282 	struct xfrm_state *x;
1283 	unsigned int h;
1284 	u32 mark = xnew->mark.v & xnew->mark.m;
1285 	u32 if_id = xnew->if_id;
1286 
1287 	h = xfrm_dst_hash(net, &xnew->id.daddr, &xnew->props.saddr, reqid, family);
1288 	hlist_for_each_entry(x, net->xfrm.state_bydst+h, bydst) {
1289 		if (x->props.family	== family &&
1290 		    x->props.reqid	== reqid &&
1291 		    x->if_id		== if_id &&
1292 		    (mark & x->mark.m) == x->mark.v &&
1293 		    xfrm_addr_equal(&x->id.daddr, &xnew->id.daddr, family) &&
1294 		    xfrm_addr_equal(&x->props.saddr, &xnew->props.saddr, family))
1295 			x->genid++;
1296 	}
1297 }
1298 
1299 void xfrm_state_insert(struct xfrm_state *x)
1300 {
1301 	struct net *net = xs_net(x);
1302 
1303 	spin_lock_bh(&net->xfrm.xfrm_state_lock);
1304 	__xfrm_state_bump_genids(x);
1305 	__xfrm_state_insert(x);
1306 	spin_unlock_bh(&net->xfrm.xfrm_state_lock);
1307 }
1308 EXPORT_SYMBOL(xfrm_state_insert);
1309 
1310 /* net->xfrm.xfrm_state_lock is held */
1311 static struct xfrm_state *__find_acq_core(struct net *net,
1312 					  const struct xfrm_mark *m,
1313 					  unsigned short family, u8 mode,
1314 					  u32 reqid, u32 if_id, u8 proto,
1315 					  const xfrm_address_t *daddr,
1316 					  const xfrm_address_t *saddr,
1317 					  int create)
1318 {
1319 	unsigned int h = xfrm_dst_hash(net, daddr, saddr, reqid, family);
1320 	struct xfrm_state *x;
1321 	u32 mark = m->v & m->m;
1322 
1323 	hlist_for_each_entry(x, net->xfrm.state_bydst+h, bydst) {
1324 		if (x->props.reqid  != reqid ||
1325 		    x->props.mode   != mode ||
1326 		    x->props.family != family ||
1327 		    x->km.state     != XFRM_STATE_ACQ ||
1328 		    x->id.spi       != 0 ||
1329 		    x->id.proto	    != proto ||
1330 		    (mark & x->mark.m) != x->mark.v ||
1331 		    !xfrm_addr_equal(&x->id.daddr, daddr, family) ||
1332 		    !xfrm_addr_equal(&x->props.saddr, saddr, family))
1333 			continue;
1334 
1335 		xfrm_state_hold(x);
1336 		return x;
1337 	}
1338 
1339 	if (!create)
1340 		return NULL;
1341 
1342 	x = xfrm_state_alloc(net);
1343 	if (likely(x)) {
1344 		switch (family) {
1345 		case AF_INET:
1346 			x->sel.daddr.a4 = daddr->a4;
1347 			x->sel.saddr.a4 = saddr->a4;
1348 			x->sel.prefixlen_d = 32;
1349 			x->sel.prefixlen_s = 32;
1350 			x->props.saddr.a4 = saddr->a4;
1351 			x->id.daddr.a4 = daddr->a4;
1352 			break;
1353 
1354 		case AF_INET6:
1355 			x->sel.daddr.in6 = daddr->in6;
1356 			x->sel.saddr.in6 = saddr->in6;
1357 			x->sel.prefixlen_d = 128;
1358 			x->sel.prefixlen_s = 128;
1359 			x->props.saddr.in6 = saddr->in6;
1360 			x->id.daddr.in6 = daddr->in6;
1361 			break;
1362 		}
1363 
1364 		x->km.state = XFRM_STATE_ACQ;
1365 		x->id.proto = proto;
1366 		x->props.family = family;
1367 		x->props.mode = mode;
1368 		x->props.reqid = reqid;
1369 		x->if_id = if_id;
1370 		x->mark.v = m->v;
1371 		x->mark.m = m->m;
1372 		x->lft.hard_add_expires_seconds = net->xfrm.sysctl_acq_expires;
1373 		xfrm_state_hold(x);
1374 		hrtimer_start(&x->mtimer,
1375 			      ktime_set(net->xfrm.sysctl_acq_expires, 0),
1376 			      HRTIMER_MODE_REL_SOFT);
1377 		list_add(&x->km.all, &net->xfrm.state_all);
1378 		hlist_add_head_rcu(&x->bydst, net->xfrm.state_bydst + h);
1379 		h = xfrm_src_hash(net, daddr, saddr, family);
1380 		hlist_add_head_rcu(&x->bysrc, net->xfrm.state_bysrc + h);
1381 
1382 		net->xfrm.state_num++;
1383 
1384 		xfrm_hash_grow_check(net, x->bydst.next != NULL);
1385 	}
1386 
1387 	return x;
1388 }
1389 
1390 static struct xfrm_state *__xfrm_find_acq_byseq(struct net *net, u32 mark, u32 seq);
1391 
1392 int xfrm_state_add(struct xfrm_state *x)
1393 {
1394 	struct net *net = xs_net(x);
1395 	struct xfrm_state *x1, *to_put;
1396 	int family;
1397 	int err;
1398 	u32 mark = x->mark.v & x->mark.m;
1399 	int use_spi = xfrm_id_proto_match(x->id.proto, IPSEC_PROTO_ANY);
1400 
1401 	family = x->props.family;
1402 
1403 	to_put = NULL;
1404 
1405 	spin_lock_bh(&net->xfrm.xfrm_state_lock);
1406 
1407 	x1 = __xfrm_state_locate(x, use_spi, family);
1408 	if (x1) {
1409 		to_put = x1;
1410 		x1 = NULL;
1411 		err = -EEXIST;
1412 		goto out;
1413 	}
1414 
1415 	if (use_spi && x->km.seq) {
1416 		x1 = __xfrm_find_acq_byseq(net, mark, x->km.seq);
1417 		if (x1 && ((x1->id.proto != x->id.proto) ||
1418 		    !xfrm_addr_equal(&x1->id.daddr, &x->id.daddr, family))) {
1419 			to_put = x1;
1420 			x1 = NULL;
1421 		}
1422 	}
1423 
1424 	if (use_spi && !x1)
1425 		x1 = __find_acq_core(net, &x->mark, family, x->props.mode,
1426 				     x->props.reqid, x->if_id, x->id.proto,
1427 				     &x->id.daddr, &x->props.saddr, 0);
1428 
1429 	__xfrm_state_bump_genids(x);
1430 	__xfrm_state_insert(x);
1431 	err = 0;
1432 
1433 out:
1434 	spin_unlock_bh(&net->xfrm.xfrm_state_lock);
1435 
1436 	if (x1) {
1437 		xfrm_state_delete(x1);
1438 		xfrm_state_put(x1);
1439 	}
1440 
1441 	if (to_put)
1442 		xfrm_state_put(to_put);
1443 
1444 	return err;
1445 }
1446 EXPORT_SYMBOL(xfrm_state_add);
1447 
1448 #ifdef CONFIG_XFRM_MIGRATE
1449 static inline int clone_security(struct xfrm_state *x, struct xfrm_sec_ctx *security)
1450 {
1451 	struct xfrm_user_sec_ctx *uctx;
1452 	int size = sizeof(*uctx) + security->ctx_len;
1453 	int err;
1454 
1455 	uctx = kmalloc(size, GFP_KERNEL);
1456 	if (!uctx)
1457 		return -ENOMEM;
1458 
1459 	uctx->exttype = XFRMA_SEC_CTX;
1460 	uctx->len = size;
1461 	uctx->ctx_doi = security->ctx_doi;
1462 	uctx->ctx_alg = security->ctx_alg;
1463 	uctx->ctx_len = security->ctx_len;
1464 	memcpy(uctx + 1, security->ctx_str, security->ctx_len);
1465 	err = security_xfrm_state_alloc(x, uctx);
1466 	kfree(uctx);
1467 	if (err)
1468 		return err;
1469 
1470 	return 0;
1471 }
1472 
1473 static struct xfrm_state *xfrm_state_clone(struct xfrm_state *orig,
1474 					   struct xfrm_encap_tmpl *encap)
1475 {
1476 	struct net *net = xs_net(orig);
1477 	struct xfrm_state *x = xfrm_state_alloc(net);
1478 	if (!x)
1479 		goto out;
1480 
1481 	memcpy(&x->id, &orig->id, sizeof(x->id));
1482 	memcpy(&x->sel, &orig->sel, sizeof(x->sel));
1483 	memcpy(&x->lft, &orig->lft, sizeof(x->lft));
1484 	x->props.mode = orig->props.mode;
1485 	x->props.replay_window = orig->props.replay_window;
1486 	x->props.reqid = orig->props.reqid;
1487 	x->props.family = orig->props.family;
1488 	x->props.saddr = orig->props.saddr;
1489 
1490 	if (orig->aalg) {
1491 		x->aalg = xfrm_algo_auth_clone(orig->aalg);
1492 		if (!x->aalg)
1493 			goto error;
1494 	}
1495 	x->props.aalgo = orig->props.aalgo;
1496 
1497 	if (orig->aead) {
1498 		x->aead = xfrm_algo_aead_clone(orig->aead);
1499 		x->geniv = orig->geniv;
1500 		if (!x->aead)
1501 			goto error;
1502 	}
1503 	if (orig->ealg) {
1504 		x->ealg = xfrm_algo_clone(orig->ealg);
1505 		if (!x->ealg)
1506 			goto error;
1507 	}
1508 	x->props.ealgo = orig->props.ealgo;
1509 
1510 	if (orig->calg) {
1511 		x->calg = xfrm_algo_clone(orig->calg);
1512 		if (!x->calg)
1513 			goto error;
1514 	}
1515 	x->props.calgo = orig->props.calgo;
1516 
1517 	if (encap || orig->encap) {
1518 		if (encap)
1519 			x->encap = kmemdup(encap, sizeof(*x->encap),
1520 					GFP_KERNEL);
1521 		else
1522 			x->encap = kmemdup(orig->encap, sizeof(*x->encap),
1523 					GFP_KERNEL);
1524 
1525 		if (!x->encap)
1526 			goto error;
1527 	}
1528 
1529 	if (orig->security)
1530 		if (clone_security(x, orig->security))
1531 			goto error;
1532 
1533 	if (orig->coaddr) {
1534 		x->coaddr = kmemdup(orig->coaddr, sizeof(*x->coaddr),
1535 				    GFP_KERNEL);
1536 		if (!x->coaddr)
1537 			goto error;
1538 	}
1539 
1540 	if (orig->replay_esn) {
1541 		if (xfrm_replay_clone(x, orig))
1542 			goto error;
1543 	}
1544 
1545 	memcpy(&x->mark, &orig->mark, sizeof(x->mark));
1546 	memcpy(&x->props.smark, &orig->props.smark, sizeof(x->props.smark));
1547 
1548 	if (xfrm_init_state(x) < 0)
1549 		goto error;
1550 
1551 	x->props.flags = orig->props.flags;
1552 	x->props.extra_flags = orig->props.extra_flags;
1553 
1554 	x->if_id = orig->if_id;
1555 	x->tfcpad = orig->tfcpad;
1556 	x->replay_maxdiff = orig->replay_maxdiff;
1557 	x->replay_maxage = orig->replay_maxage;
1558 	memcpy(&x->curlft, &orig->curlft, sizeof(x->curlft));
1559 	x->km.state = orig->km.state;
1560 	x->km.seq = orig->km.seq;
1561 	x->replay = orig->replay;
1562 	x->preplay = orig->preplay;
1563 
1564 	return x;
1565 
1566  error:
1567 	xfrm_state_put(x);
1568 out:
1569 	return NULL;
1570 }
1571 
1572 struct xfrm_state *xfrm_migrate_state_find(struct xfrm_migrate *m, struct net *net)
1573 {
1574 	unsigned int h;
1575 	struct xfrm_state *x = NULL;
1576 
1577 	spin_lock_bh(&net->xfrm.xfrm_state_lock);
1578 
1579 	if (m->reqid) {
1580 		h = xfrm_dst_hash(net, &m->old_daddr, &m->old_saddr,
1581 				  m->reqid, m->old_family);
1582 		hlist_for_each_entry(x, net->xfrm.state_bydst+h, bydst) {
1583 			if (x->props.mode != m->mode ||
1584 			    x->id.proto != m->proto)
1585 				continue;
1586 			if (m->reqid && x->props.reqid != m->reqid)
1587 				continue;
1588 			if (!xfrm_addr_equal(&x->id.daddr, &m->old_daddr,
1589 					     m->old_family) ||
1590 			    !xfrm_addr_equal(&x->props.saddr, &m->old_saddr,
1591 					     m->old_family))
1592 				continue;
1593 			xfrm_state_hold(x);
1594 			break;
1595 		}
1596 	} else {
1597 		h = xfrm_src_hash(net, &m->old_daddr, &m->old_saddr,
1598 				  m->old_family);
1599 		hlist_for_each_entry(x, net->xfrm.state_bysrc+h, bysrc) {
1600 			if (x->props.mode != m->mode ||
1601 			    x->id.proto != m->proto)
1602 				continue;
1603 			if (!xfrm_addr_equal(&x->id.daddr, &m->old_daddr,
1604 					     m->old_family) ||
1605 			    !xfrm_addr_equal(&x->props.saddr, &m->old_saddr,
1606 					     m->old_family))
1607 				continue;
1608 			xfrm_state_hold(x);
1609 			break;
1610 		}
1611 	}
1612 
1613 	spin_unlock_bh(&net->xfrm.xfrm_state_lock);
1614 
1615 	return x;
1616 }
1617 EXPORT_SYMBOL(xfrm_migrate_state_find);
1618 
1619 struct xfrm_state *xfrm_state_migrate(struct xfrm_state *x,
1620 				      struct xfrm_migrate *m,
1621 				      struct xfrm_encap_tmpl *encap)
1622 {
1623 	struct xfrm_state *xc;
1624 
1625 	xc = xfrm_state_clone(x, encap);
1626 	if (!xc)
1627 		return NULL;
1628 
1629 	memcpy(&xc->id.daddr, &m->new_daddr, sizeof(xc->id.daddr));
1630 	memcpy(&xc->props.saddr, &m->new_saddr, sizeof(xc->props.saddr));
1631 
1632 	/* add state */
1633 	if (xfrm_addr_equal(&x->id.daddr, &m->new_daddr, m->new_family)) {
1634 		/* a care is needed when the destination address of the
1635 		   state is to be updated as it is a part of triplet */
1636 		xfrm_state_insert(xc);
1637 	} else {
1638 		if (xfrm_state_add(xc) < 0)
1639 			goto error;
1640 	}
1641 
1642 	return xc;
1643 error:
1644 	xfrm_state_put(xc);
1645 	return NULL;
1646 }
1647 EXPORT_SYMBOL(xfrm_state_migrate);
1648 #endif
1649 
1650 int xfrm_state_update(struct xfrm_state *x)
1651 {
1652 	struct xfrm_state *x1, *to_put;
1653 	int err;
1654 	int use_spi = xfrm_id_proto_match(x->id.proto, IPSEC_PROTO_ANY);
1655 	struct net *net = xs_net(x);
1656 
1657 	to_put = NULL;
1658 
1659 	spin_lock_bh(&net->xfrm.xfrm_state_lock);
1660 	x1 = __xfrm_state_locate(x, use_spi, x->props.family);
1661 
1662 	err = -ESRCH;
1663 	if (!x1)
1664 		goto out;
1665 
1666 	if (xfrm_state_kern(x1)) {
1667 		to_put = x1;
1668 		err = -EEXIST;
1669 		goto out;
1670 	}
1671 
1672 	if (x1->km.state == XFRM_STATE_ACQ) {
1673 		__xfrm_state_insert(x);
1674 		x = NULL;
1675 	}
1676 	err = 0;
1677 
1678 out:
1679 	spin_unlock_bh(&net->xfrm.xfrm_state_lock);
1680 
1681 	if (to_put)
1682 		xfrm_state_put(to_put);
1683 
1684 	if (err)
1685 		return err;
1686 
1687 	if (!x) {
1688 		xfrm_state_delete(x1);
1689 		xfrm_state_put(x1);
1690 		return 0;
1691 	}
1692 
1693 	err = -EINVAL;
1694 	spin_lock_bh(&x1->lock);
1695 	if (likely(x1->km.state == XFRM_STATE_VALID)) {
1696 		if (x->encap && x1->encap &&
1697 		    x->encap->encap_type == x1->encap->encap_type)
1698 			memcpy(x1->encap, x->encap, sizeof(*x1->encap));
1699 		else if (x->encap || x1->encap)
1700 			goto fail;
1701 
1702 		if (x->coaddr && x1->coaddr) {
1703 			memcpy(x1->coaddr, x->coaddr, sizeof(*x1->coaddr));
1704 		}
1705 		if (!use_spi && memcmp(&x1->sel, &x->sel, sizeof(x1->sel)))
1706 			memcpy(&x1->sel, &x->sel, sizeof(x1->sel));
1707 		memcpy(&x1->lft, &x->lft, sizeof(x1->lft));
1708 		x1->km.dying = 0;
1709 
1710 		hrtimer_start(&x1->mtimer, ktime_set(1, 0),
1711 			      HRTIMER_MODE_REL_SOFT);
1712 		if (x1->curlft.use_time)
1713 			xfrm_state_check_expire(x1);
1714 
1715 		if (x->props.smark.m || x->props.smark.v || x->if_id) {
1716 			spin_lock_bh(&net->xfrm.xfrm_state_lock);
1717 
1718 			if (x->props.smark.m || x->props.smark.v)
1719 				x1->props.smark = x->props.smark;
1720 
1721 			if (x->if_id)
1722 				x1->if_id = x->if_id;
1723 
1724 			__xfrm_state_bump_genids(x1);
1725 			spin_unlock_bh(&net->xfrm.xfrm_state_lock);
1726 		}
1727 
1728 		err = 0;
1729 		x->km.state = XFRM_STATE_DEAD;
1730 		__xfrm_state_put(x);
1731 	}
1732 
1733 fail:
1734 	spin_unlock_bh(&x1->lock);
1735 
1736 	xfrm_state_put(x1);
1737 
1738 	return err;
1739 }
1740 EXPORT_SYMBOL(xfrm_state_update);
1741 
1742 int xfrm_state_check_expire(struct xfrm_state *x)
1743 {
1744 	if (!x->curlft.use_time)
1745 		x->curlft.use_time = ktime_get_real_seconds();
1746 
1747 	if (x->curlft.bytes >= x->lft.hard_byte_limit ||
1748 	    x->curlft.packets >= x->lft.hard_packet_limit) {
1749 		x->km.state = XFRM_STATE_EXPIRED;
1750 		hrtimer_start(&x->mtimer, 0, HRTIMER_MODE_REL_SOFT);
1751 		return -EINVAL;
1752 	}
1753 
1754 	if (!x->km.dying &&
1755 	    (x->curlft.bytes >= x->lft.soft_byte_limit ||
1756 	     x->curlft.packets >= x->lft.soft_packet_limit)) {
1757 		x->km.dying = 1;
1758 		km_state_expired(x, 0, 0);
1759 	}
1760 	return 0;
1761 }
1762 EXPORT_SYMBOL(xfrm_state_check_expire);
1763 
1764 struct xfrm_state *
1765 xfrm_state_lookup(struct net *net, u32 mark, const xfrm_address_t *daddr, __be32 spi,
1766 		  u8 proto, unsigned short family)
1767 {
1768 	struct xfrm_state *x;
1769 
1770 	rcu_read_lock();
1771 	x = __xfrm_state_lookup(net, mark, daddr, spi, proto, family);
1772 	rcu_read_unlock();
1773 	return x;
1774 }
1775 EXPORT_SYMBOL(xfrm_state_lookup);
1776 
1777 struct xfrm_state *
1778 xfrm_state_lookup_byaddr(struct net *net, u32 mark,
1779 			 const xfrm_address_t *daddr, const xfrm_address_t *saddr,
1780 			 u8 proto, unsigned short family)
1781 {
1782 	struct xfrm_state *x;
1783 
1784 	spin_lock_bh(&net->xfrm.xfrm_state_lock);
1785 	x = __xfrm_state_lookup_byaddr(net, mark, daddr, saddr, proto, family);
1786 	spin_unlock_bh(&net->xfrm.xfrm_state_lock);
1787 	return x;
1788 }
1789 EXPORT_SYMBOL(xfrm_state_lookup_byaddr);
1790 
1791 struct xfrm_state *
1792 xfrm_find_acq(struct net *net, const struct xfrm_mark *mark, u8 mode, u32 reqid,
1793 	      u32 if_id, u8 proto, const xfrm_address_t *daddr,
1794 	      const xfrm_address_t *saddr, int create, unsigned short family)
1795 {
1796 	struct xfrm_state *x;
1797 
1798 	spin_lock_bh(&net->xfrm.xfrm_state_lock);
1799 	x = __find_acq_core(net, mark, family, mode, reqid, if_id, proto, daddr, saddr, create);
1800 	spin_unlock_bh(&net->xfrm.xfrm_state_lock);
1801 
1802 	return x;
1803 }
1804 EXPORT_SYMBOL(xfrm_find_acq);
1805 
1806 #ifdef CONFIG_XFRM_SUB_POLICY
1807 #if IS_ENABLED(CONFIG_IPV6)
1808 /* distribution counting sort function for xfrm_state and xfrm_tmpl */
1809 static void
1810 __xfrm6_sort(void **dst, void **src, int n,
1811 	     int (*cmp)(const void *p), int maxclass)
1812 {
1813 	int count[XFRM_MAX_DEPTH] = { };
1814 	int class[XFRM_MAX_DEPTH];
1815 	int i;
1816 
1817 	for (i = 0; i < n; i++) {
1818 		int c = cmp(src[i]);
1819 
1820 		class[i] = c;
1821 		count[c]++;
1822 	}
1823 
1824 	for (i = 2; i < maxclass; i++)
1825 		count[i] += count[i - 1];
1826 
1827 	for (i = 0; i < n; i++) {
1828 		dst[count[class[i] - 1]++] = src[i];
1829 		src[i] = NULL;
1830 	}
1831 }
1832 
1833 /* Rule for xfrm_state:
1834  *
1835  * rule 1: select IPsec transport except AH
1836  * rule 2: select MIPv6 RO or inbound trigger
1837  * rule 3: select IPsec transport AH
1838  * rule 4: select IPsec tunnel
1839  * rule 5: others
1840  */
1841 static int __xfrm6_state_sort_cmp(const void *p)
1842 {
1843 	const struct xfrm_state *v = p;
1844 
1845 	switch (v->props.mode) {
1846 	case XFRM_MODE_TRANSPORT:
1847 		if (v->id.proto != IPPROTO_AH)
1848 			return 1;
1849 		else
1850 			return 3;
1851 #if IS_ENABLED(CONFIG_IPV6_MIP6)
1852 	case XFRM_MODE_ROUTEOPTIMIZATION:
1853 	case XFRM_MODE_IN_TRIGGER:
1854 		return 2;
1855 #endif
1856 	case XFRM_MODE_TUNNEL:
1857 	case XFRM_MODE_BEET:
1858 		return 4;
1859 	}
1860 	return 5;
1861 }
1862 
1863 /* Rule for xfrm_tmpl:
1864  *
1865  * rule 1: select IPsec transport
1866  * rule 2: select MIPv6 RO or inbound trigger
1867  * rule 3: select IPsec tunnel
1868  * rule 4: others
1869  */
1870 static int __xfrm6_tmpl_sort_cmp(const void *p)
1871 {
1872 	const struct xfrm_tmpl *v = p;
1873 
1874 	switch (v->mode) {
1875 	case XFRM_MODE_TRANSPORT:
1876 		return 1;
1877 #if IS_ENABLED(CONFIG_IPV6_MIP6)
1878 	case XFRM_MODE_ROUTEOPTIMIZATION:
1879 	case XFRM_MODE_IN_TRIGGER:
1880 		return 2;
1881 #endif
1882 	case XFRM_MODE_TUNNEL:
1883 	case XFRM_MODE_BEET:
1884 		return 3;
1885 	}
1886 	return 4;
1887 }
1888 #else
1889 static inline int __xfrm6_state_sort_cmp(const void *p) { return 5; }
1890 static inline int __xfrm6_tmpl_sort_cmp(const void *p) { return 4; }
1891 
1892 static inline void
1893 __xfrm6_sort(void **dst, void **src, int n,
1894 	     int (*cmp)(const void *p), int maxclass)
1895 {
1896 	int i;
1897 
1898 	for (i = 0; i < n; i++)
1899 		dst[i] = src[i];
1900 }
1901 #endif /* CONFIG_IPV6 */
1902 
1903 void
1904 xfrm_tmpl_sort(struct xfrm_tmpl **dst, struct xfrm_tmpl **src, int n,
1905 	       unsigned short family)
1906 {
1907 	int i;
1908 
1909 	if (family == AF_INET6)
1910 		__xfrm6_sort((void **)dst, (void **)src, n,
1911 			     __xfrm6_tmpl_sort_cmp, 5);
1912 	else
1913 		for (i = 0; i < n; i++)
1914 			dst[i] = src[i];
1915 }
1916 
1917 void
1918 xfrm_state_sort(struct xfrm_state **dst, struct xfrm_state **src, int n,
1919 		unsigned short family)
1920 {
1921 	int i;
1922 
1923 	if (family == AF_INET6)
1924 		__xfrm6_sort((void **)dst, (void **)src, n,
1925 			     __xfrm6_state_sort_cmp, 6);
1926 	else
1927 		for (i = 0; i < n; i++)
1928 			dst[i] = src[i];
1929 }
1930 #endif
1931 
1932 /* Silly enough, but I'm lazy to build resolution list */
1933 
1934 static struct xfrm_state *__xfrm_find_acq_byseq(struct net *net, u32 mark, u32 seq)
1935 {
1936 	int i;
1937 
1938 	for (i = 0; i <= net->xfrm.state_hmask; i++) {
1939 		struct xfrm_state *x;
1940 
1941 		hlist_for_each_entry(x, net->xfrm.state_bydst+i, bydst) {
1942 			if (x->km.seq == seq &&
1943 			    (mark & x->mark.m) == x->mark.v &&
1944 			    x->km.state == XFRM_STATE_ACQ) {
1945 				xfrm_state_hold(x);
1946 				return x;
1947 			}
1948 		}
1949 	}
1950 	return NULL;
1951 }
1952 
1953 struct xfrm_state *xfrm_find_acq_byseq(struct net *net, u32 mark, u32 seq)
1954 {
1955 	struct xfrm_state *x;
1956 
1957 	spin_lock_bh(&net->xfrm.xfrm_state_lock);
1958 	x = __xfrm_find_acq_byseq(net, mark, seq);
1959 	spin_unlock_bh(&net->xfrm.xfrm_state_lock);
1960 	return x;
1961 }
1962 EXPORT_SYMBOL(xfrm_find_acq_byseq);
1963 
1964 u32 xfrm_get_acqseq(void)
1965 {
1966 	u32 res;
1967 	static atomic_t acqseq;
1968 
1969 	do {
1970 		res = atomic_inc_return(&acqseq);
1971 	} while (!res);
1972 
1973 	return res;
1974 }
1975 EXPORT_SYMBOL(xfrm_get_acqseq);
1976 
1977 int verify_spi_info(u8 proto, u32 min, u32 max)
1978 {
1979 	switch (proto) {
1980 	case IPPROTO_AH:
1981 	case IPPROTO_ESP:
1982 		break;
1983 
1984 	case IPPROTO_COMP:
1985 		/* IPCOMP spi is 16-bits. */
1986 		if (max >= 0x10000)
1987 			return -EINVAL;
1988 		break;
1989 
1990 	default:
1991 		return -EINVAL;
1992 	}
1993 
1994 	if (min > max)
1995 		return -EINVAL;
1996 
1997 	return 0;
1998 }
1999 EXPORT_SYMBOL(verify_spi_info);
2000 
2001 int xfrm_alloc_spi(struct xfrm_state *x, u32 low, u32 high)
2002 {
2003 	struct net *net = xs_net(x);
2004 	unsigned int h;
2005 	struct xfrm_state *x0;
2006 	int err = -ENOENT;
2007 	__be32 minspi = htonl(low);
2008 	__be32 maxspi = htonl(high);
2009 	__be32 newspi = 0;
2010 	u32 mark = x->mark.v & x->mark.m;
2011 
2012 	spin_lock_bh(&x->lock);
2013 	if (x->km.state == XFRM_STATE_DEAD)
2014 		goto unlock;
2015 
2016 	err = 0;
2017 	if (x->id.spi)
2018 		goto unlock;
2019 
2020 	err = -ENOENT;
2021 
2022 	if (minspi == maxspi) {
2023 		x0 = xfrm_state_lookup(net, mark, &x->id.daddr, minspi, x->id.proto, x->props.family);
2024 		if (x0) {
2025 			xfrm_state_put(x0);
2026 			goto unlock;
2027 		}
2028 		newspi = minspi;
2029 	} else {
2030 		u32 spi = 0;
2031 		for (h = 0; h < high-low+1; h++) {
2032 			spi = low + prandom_u32()%(high-low+1);
2033 			x0 = xfrm_state_lookup(net, mark, &x->id.daddr, htonl(spi), x->id.proto, x->props.family);
2034 			if (x0 == NULL) {
2035 				newspi = htonl(spi);
2036 				break;
2037 			}
2038 			xfrm_state_put(x0);
2039 		}
2040 	}
2041 	if (newspi) {
2042 		spin_lock_bh(&net->xfrm.xfrm_state_lock);
2043 		x->id.spi = newspi;
2044 		h = xfrm_spi_hash(net, &x->id.daddr, x->id.spi, x->id.proto, x->props.family);
2045 		hlist_add_head_rcu(&x->byspi, net->xfrm.state_byspi + h);
2046 		spin_unlock_bh(&net->xfrm.xfrm_state_lock);
2047 
2048 		err = 0;
2049 	}
2050 
2051 unlock:
2052 	spin_unlock_bh(&x->lock);
2053 
2054 	return err;
2055 }
2056 EXPORT_SYMBOL(xfrm_alloc_spi);
2057 
2058 static bool __xfrm_state_filter_match(struct xfrm_state *x,
2059 				      struct xfrm_address_filter *filter)
2060 {
2061 	if (filter) {
2062 		if ((filter->family == AF_INET ||
2063 		     filter->family == AF_INET6) &&
2064 		    x->props.family != filter->family)
2065 			return false;
2066 
2067 		return addr_match(&x->props.saddr, &filter->saddr,
2068 				  filter->splen) &&
2069 		       addr_match(&x->id.daddr, &filter->daddr,
2070 				  filter->dplen);
2071 	}
2072 	return true;
2073 }
2074 
2075 int xfrm_state_walk(struct net *net, struct xfrm_state_walk *walk,
2076 		    int (*func)(struct xfrm_state *, int, void*),
2077 		    void *data)
2078 {
2079 	struct xfrm_state *state;
2080 	struct xfrm_state_walk *x;
2081 	int err = 0;
2082 
2083 	if (walk->seq != 0 && list_empty(&walk->all))
2084 		return 0;
2085 
2086 	spin_lock_bh(&net->xfrm.xfrm_state_lock);
2087 	if (list_empty(&walk->all))
2088 		x = list_first_entry(&net->xfrm.state_all, struct xfrm_state_walk, all);
2089 	else
2090 		x = list_first_entry(&walk->all, struct xfrm_state_walk, all);
2091 	list_for_each_entry_from(x, &net->xfrm.state_all, all) {
2092 		if (x->state == XFRM_STATE_DEAD)
2093 			continue;
2094 		state = container_of(x, struct xfrm_state, km);
2095 		if (!xfrm_id_proto_match(state->id.proto, walk->proto))
2096 			continue;
2097 		if (!__xfrm_state_filter_match(state, walk->filter))
2098 			continue;
2099 		err = func(state, walk->seq, data);
2100 		if (err) {
2101 			list_move_tail(&walk->all, &x->all);
2102 			goto out;
2103 		}
2104 		walk->seq++;
2105 	}
2106 	if (walk->seq == 0) {
2107 		err = -ENOENT;
2108 		goto out;
2109 	}
2110 	list_del_init(&walk->all);
2111 out:
2112 	spin_unlock_bh(&net->xfrm.xfrm_state_lock);
2113 	return err;
2114 }
2115 EXPORT_SYMBOL(xfrm_state_walk);
2116 
2117 void xfrm_state_walk_init(struct xfrm_state_walk *walk, u8 proto,
2118 			  struct xfrm_address_filter *filter)
2119 {
2120 	INIT_LIST_HEAD(&walk->all);
2121 	walk->proto = proto;
2122 	walk->state = XFRM_STATE_DEAD;
2123 	walk->seq = 0;
2124 	walk->filter = filter;
2125 }
2126 EXPORT_SYMBOL(xfrm_state_walk_init);
2127 
2128 void xfrm_state_walk_done(struct xfrm_state_walk *walk, struct net *net)
2129 {
2130 	kfree(walk->filter);
2131 
2132 	if (list_empty(&walk->all))
2133 		return;
2134 
2135 	spin_lock_bh(&net->xfrm.xfrm_state_lock);
2136 	list_del(&walk->all);
2137 	spin_unlock_bh(&net->xfrm.xfrm_state_lock);
2138 }
2139 EXPORT_SYMBOL(xfrm_state_walk_done);
2140 
2141 static void xfrm_replay_timer_handler(struct timer_list *t)
2142 {
2143 	struct xfrm_state *x = from_timer(x, t, rtimer);
2144 
2145 	spin_lock(&x->lock);
2146 
2147 	if (x->km.state == XFRM_STATE_VALID) {
2148 		if (xfrm_aevent_is_on(xs_net(x)))
2149 			x->repl->notify(x, XFRM_REPLAY_TIMEOUT);
2150 		else
2151 			x->xflags |= XFRM_TIME_DEFER;
2152 	}
2153 
2154 	spin_unlock(&x->lock);
2155 }
2156 
2157 static LIST_HEAD(xfrm_km_list);
2158 
2159 void km_policy_notify(struct xfrm_policy *xp, int dir, const struct km_event *c)
2160 {
2161 	struct xfrm_mgr *km;
2162 
2163 	rcu_read_lock();
2164 	list_for_each_entry_rcu(km, &xfrm_km_list, list)
2165 		if (km->notify_policy)
2166 			km->notify_policy(xp, dir, c);
2167 	rcu_read_unlock();
2168 }
2169 
2170 void km_state_notify(struct xfrm_state *x, const struct km_event *c)
2171 {
2172 	struct xfrm_mgr *km;
2173 	rcu_read_lock();
2174 	list_for_each_entry_rcu(km, &xfrm_km_list, list)
2175 		if (km->notify)
2176 			km->notify(x, c);
2177 	rcu_read_unlock();
2178 }
2179 
2180 EXPORT_SYMBOL(km_policy_notify);
2181 EXPORT_SYMBOL(km_state_notify);
2182 
2183 void km_state_expired(struct xfrm_state *x, int hard, u32 portid)
2184 {
2185 	struct km_event c;
2186 
2187 	c.data.hard = hard;
2188 	c.portid = portid;
2189 	c.event = XFRM_MSG_EXPIRE;
2190 	km_state_notify(x, &c);
2191 }
2192 
2193 EXPORT_SYMBOL(km_state_expired);
2194 /*
2195  * We send to all registered managers regardless of failure
2196  * We are happy with one success
2197 */
2198 int km_query(struct xfrm_state *x, struct xfrm_tmpl *t, struct xfrm_policy *pol)
2199 {
2200 	int err = -EINVAL, acqret;
2201 	struct xfrm_mgr *km;
2202 
2203 	rcu_read_lock();
2204 	list_for_each_entry_rcu(km, &xfrm_km_list, list) {
2205 		acqret = km->acquire(x, t, pol);
2206 		if (!acqret)
2207 			err = acqret;
2208 	}
2209 	rcu_read_unlock();
2210 	return err;
2211 }
2212 EXPORT_SYMBOL(km_query);
2213 
2214 int km_new_mapping(struct xfrm_state *x, xfrm_address_t *ipaddr, __be16 sport)
2215 {
2216 	int err = -EINVAL;
2217 	struct xfrm_mgr *km;
2218 
2219 	rcu_read_lock();
2220 	list_for_each_entry_rcu(km, &xfrm_km_list, list) {
2221 		if (km->new_mapping)
2222 			err = km->new_mapping(x, ipaddr, sport);
2223 		if (!err)
2224 			break;
2225 	}
2226 	rcu_read_unlock();
2227 	return err;
2228 }
2229 EXPORT_SYMBOL(km_new_mapping);
2230 
2231 void km_policy_expired(struct xfrm_policy *pol, int dir, int hard, u32 portid)
2232 {
2233 	struct km_event c;
2234 
2235 	c.data.hard = hard;
2236 	c.portid = portid;
2237 	c.event = XFRM_MSG_POLEXPIRE;
2238 	km_policy_notify(pol, dir, &c);
2239 }
2240 EXPORT_SYMBOL(km_policy_expired);
2241 
2242 #ifdef CONFIG_XFRM_MIGRATE
2243 int km_migrate(const struct xfrm_selector *sel, u8 dir, u8 type,
2244 	       const struct xfrm_migrate *m, int num_migrate,
2245 	       const struct xfrm_kmaddress *k,
2246 	       const struct xfrm_encap_tmpl *encap)
2247 {
2248 	int err = -EINVAL;
2249 	int ret;
2250 	struct xfrm_mgr *km;
2251 
2252 	rcu_read_lock();
2253 	list_for_each_entry_rcu(km, &xfrm_km_list, list) {
2254 		if (km->migrate) {
2255 			ret = km->migrate(sel, dir, type, m, num_migrate, k,
2256 					  encap);
2257 			if (!ret)
2258 				err = ret;
2259 		}
2260 	}
2261 	rcu_read_unlock();
2262 	return err;
2263 }
2264 EXPORT_SYMBOL(km_migrate);
2265 #endif
2266 
2267 int km_report(struct net *net, u8 proto, struct xfrm_selector *sel, xfrm_address_t *addr)
2268 {
2269 	int err = -EINVAL;
2270 	int ret;
2271 	struct xfrm_mgr *km;
2272 
2273 	rcu_read_lock();
2274 	list_for_each_entry_rcu(km, &xfrm_km_list, list) {
2275 		if (km->report) {
2276 			ret = km->report(net, proto, sel, addr);
2277 			if (!ret)
2278 				err = ret;
2279 		}
2280 	}
2281 	rcu_read_unlock();
2282 	return err;
2283 }
2284 EXPORT_SYMBOL(km_report);
2285 
2286 static bool km_is_alive(const struct km_event *c)
2287 {
2288 	struct xfrm_mgr *km;
2289 	bool is_alive = false;
2290 
2291 	rcu_read_lock();
2292 	list_for_each_entry_rcu(km, &xfrm_km_list, list) {
2293 		if (km->is_alive && km->is_alive(c)) {
2294 			is_alive = true;
2295 			break;
2296 		}
2297 	}
2298 	rcu_read_unlock();
2299 
2300 	return is_alive;
2301 }
2302 
2303 #if IS_ENABLED(CONFIG_XFRM_USER_COMPAT)
2304 static DEFINE_SPINLOCK(xfrm_translator_lock);
2305 static struct xfrm_translator __rcu *xfrm_translator;
2306 
2307 struct xfrm_translator *xfrm_get_translator(void)
2308 {
2309 	struct xfrm_translator *xtr;
2310 
2311 	rcu_read_lock();
2312 	xtr = rcu_dereference(xfrm_translator);
2313 	if (unlikely(!xtr))
2314 		goto out;
2315 	if (!try_module_get(xtr->owner))
2316 		xtr = NULL;
2317 out:
2318 	rcu_read_unlock();
2319 	return xtr;
2320 }
2321 EXPORT_SYMBOL_GPL(xfrm_get_translator);
2322 
2323 void xfrm_put_translator(struct xfrm_translator *xtr)
2324 {
2325 	module_put(xtr->owner);
2326 }
2327 EXPORT_SYMBOL_GPL(xfrm_put_translator);
2328 
2329 int xfrm_register_translator(struct xfrm_translator *xtr)
2330 {
2331 	int err = 0;
2332 
2333 	spin_lock_bh(&xfrm_translator_lock);
2334 	if (unlikely(xfrm_translator != NULL))
2335 		err = -EEXIST;
2336 	else
2337 		rcu_assign_pointer(xfrm_translator, xtr);
2338 	spin_unlock_bh(&xfrm_translator_lock);
2339 
2340 	return err;
2341 }
2342 EXPORT_SYMBOL_GPL(xfrm_register_translator);
2343 
2344 int xfrm_unregister_translator(struct xfrm_translator *xtr)
2345 {
2346 	int err = 0;
2347 
2348 	spin_lock_bh(&xfrm_translator_lock);
2349 	if (likely(xfrm_translator != NULL)) {
2350 		if (rcu_access_pointer(xfrm_translator) != xtr)
2351 			err = -EINVAL;
2352 		else
2353 			RCU_INIT_POINTER(xfrm_translator, NULL);
2354 	}
2355 	spin_unlock_bh(&xfrm_translator_lock);
2356 	synchronize_rcu();
2357 
2358 	return err;
2359 }
2360 EXPORT_SYMBOL_GPL(xfrm_unregister_translator);
2361 #endif
2362 
2363 int xfrm_user_policy(struct sock *sk, int optname, sockptr_t optval, int optlen)
2364 {
2365 	int err;
2366 	u8 *data;
2367 	struct xfrm_mgr *km;
2368 	struct xfrm_policy *pol = NULL;
2369 
2370 	if (sockptr_is_null(optval) && !optlen) {
2371 		xfrm_sk_policy_insert(sk, XFRM_POLICY_IN, NULL);
2372 		xfrm_sk_policy_insert(sk, XFRM_POLICY_OUT, NULL);
2373 		__sk_dst_reset(sk);
2374 		return 0;
2375 	}
2376 
2377 	if (optlen <= 0 || optlen > PAGE_SIZE)
2378 		return -EMSGSIZE;
2379 
2380 	data = memdup_sockptr(optval, optlen);
2381 	if (IS_ERR(data))
2382 		return PTR_ERR(data);
2383 
2384 	if (in_compat_syscall()) {
2385 		struct xfrm_translator *xtr = xfrm_get_translator();
2386 
2387 		if (!xtr) {
2388 			kfree(data);
2389 			return -EOPNOTSUPP;
2390 		}
2391 
2392 		err = xtr->xlate_user_policy_sockptr(&data, optlen);
2393 		xfrm_put_translator(xtr);
2394 		if (err) {
2395 			kfree(data);
2396 			return err;
2397 		}
2398 	}
2399 
2400 	err = -EINVAL;
2401 	rcu_read_lock();
2402 	list_for_each_entry_rcu(km, &xfrm_km_list, list) {
2403 		pol = km->compile_policy(sk, optname, data,
2404 					 optlen, &err);
2405 		if (err >= 0)
2406 			break;
2407 	}
2408 	rcu_read_unlock();
2409 
2410 	if (err >= 0) {
2411 		xfrm_sk_policy_insert(sk, err, pol);
2412 		xfrm_pol_put(pol);
2413 		__sk_dst_reset(sk);
2414 		err = 0;
2415 	}
2416 
2417 	kfree(data);
2418 	return err;
2419 }
2420 EXPORT_SYMBOL(xfrm_user_policy);
2421 
2422 static DEFINE_SPINLOCK(xfrm_km_lock);
2423 
2424 int xfrm_register_km(struct xfrm_mgr *km)
2425 {
2426 	spin_lock_bh(&xfrm_km_lock);
2427 	list_add_tail_rcu(&km->list, &xfrm_km_list);
2428 	spin_unlock_bh(&xfrm_km_lock);
2429 	return 0;
2430 }
2431 EXPORT_SYMBOL(xfrm_register_km);
2432 
2433 int xfrm_unregister_km(struct xfrm_mgr *km)
2434 {
2435 	spin_lock_bh(&xfrm_km_lock);
2436 	list_del_rcu(&km->list);
2437 	spin_unlock_bh(&xfrm_km_lock);
2438 	synchronize_rcu();
2439 	return 0;
2440 }
2441 EXPORT_SYMBOL(xfrm_unregister_km);
2442 
2443 int xfrm_state_register_afinfo(struct xfrm_state_afinfo *afinfo)
2444 {
2445 	int err = 0;
2446 
2447 	if (WARN_ON(afinfo->family >= NPROTO))
2448 		return -EAFNOSUPPORT;
2449 
2450 	spin_lock_bh(&xfrm_state_afinfo_lock);
2451 	if (unlikely(xfrm_state_afinfo[afinfo->family] != NULL))
2452 		err = -EEXIST;
2453 	else
2454 		rcu_assign_pointer(xfrm_state_afinfo[afinfo->family], afinfo);
2455 	spin_unlock_bh(&xfrm_state_afinfo_lock);
2456 	return err;
2457 }
2458 EXPORT_SYMBOL(xfrm_state_register_afinfo);
2459 
2460 int xfrm_state_unregister_afinfo(struct xfrm_state_afinfo *afinfo)
2461 {
2462 	int err = 0, family = afinfo->family;
2463 
2464 	if (WARN_ON(family >= NPROTO))
2465 		return -EAFNOSUPPORT;
2466 
2467 	spin_lock_bh(&xfrm_state_afinfo_lock);
2468 	if (likely(xfrm_state_afinfo[afinfo->family] != NULL)) {
2469 		if (rcu_access_pointer(xfrm_state_afinfo[family]) != afinfo)
2470 			err = -EINVAL;
2471 		else
2472 			RCU_INIT_POINTER(xfrm_state_afinfo[afinfo->family], NULL);
2473 	}
2474 	spin_unlock_bh(&xfrm_state_afinfo_lock);
2475 	synchronize_rcu();
2476 	return err;
2477 }
2478 EXPORT_SYMBOL(xfrm_state_unregister_afinfo);
2479 
2480 struct xfrm_state_afinfo *xfrm_state_afinfo_get_rcu(unsigned int family)
2481 {
2482 	if (unlikely(family >= NPROTO))
2483 		return NULL;
2484 
2485 	return rcu_dereference(xfrm_state_afinfo[family]);
2486 }
2487 EXPORT_SYMBOL_GPL(xfrm_state_afinfo_get_rcu);
2488 
2489 struct xfrm_state_afinfo *xfrm_state_get_afinfo(unsigned int family)
2490 {
2491 	struct xfrm_state_afinfo *afinfo;
2492 	if (unlikely(family >= NPROTO))
2493 		return NULL;
2494 	rcu_read_lock();
2495 	afinfo = rcu_dereference(xfrm_state_afinfo[family]);
2496 	if (unlikely(!afinfo))
2497 		rcu_read_unlock();
2498 	return afinfo;
2499 }
2500 
2501 void xfrm_flush_gc(void)
2502 {
2503 	flush_work(&xfrm_state_gc_work);
2504 }
2505 EXPORT_SYMBOL(xfrm_flush_gc);
2506 
2507 /* Temporarily located here until net/xfrm/xfrm_tunnel.c is created */
2508 void xfrm_state_delete_tunnel(struct xfrm_state *x)
2509 {
2510 	if (x->tunnel) {
2511 		struct xfrm_state *t = x->tunnel;
2512 
2513 		if (atomic_read(&t->tunnel_users) == 2)
2514 			xfrm_state_delete(t);
2515 		atomic_dec(&t->tunnel_users);
2516 		xfrm_state_put_sync(t);
2517 		x->tunnel = NULL;
2518 	}
2519 }
2520 EXPORT_SYMBOL(xfrm_state_delete_tunnel);
2521 
2522 u32 xfrm_state_mtu(struct xfrm_state *x, int mtu)
2523 {
2524 	const struct xfrm_type *type = READ_ONCE(x->type);
2525 	struct crypto_aead *aead;
2526 	u32 blksize, net_adj = 0;
2527 
2528 	if (x->km.state != XFRM_STATE_VALID ||
2529 	    !type || type->proto != IPPROTO_ESP)
2530 		return mtu - x->props.header_len;
2531 
2532 	aead = x->data;
2533 	blksize = ALIGN(crypto_aead_blocksize(aead), 4);
2534 
2535 	switch (x->props.mode) {
2536 	case XFRM_MODE_TRANSPORT:
2537 	case XFRM_MODE_BEET:
2538 		if (x->props.family == AF_INET)
2539 			net_adj = sizeof(struct iphdr);
2540 		else if (x->props.family == AF_INET6)
2541 			net_adj = sizeof(struct ipv6hdr);
2542 		break;
2543 	case XFRM_MODE_TUNNEL:
2544 		break;
2545 	default:
2546 		WARN_ON_ONCE(1);
2547 		break;
2548 	}
2549 
2550 	return ((mtu - x->props.header_len - crypto_aead_authsize(aead) -
2551 		 net_adj) & ~(blksize - 1)) + net_adj - 2;
2552 }
2553 EXPORT_SYMBOL_GPL(xfrm_state_mtu);
2554 
2555 int __xfrm_init_state(struct xfrm_state *x, bool init_replay, bool offload)
2556 {
2557 	const struct xfrm_mode *inner_mode;
2558 	const struct xfrm_mode *outer_mode;
2559 	int family = x->props.family;
2560 	int err;
2561 
2562 	if (family == AF_INET &&
2563 	    xs_net(x)->ipv4.sysctl_ip_no_pmtu_disc)
2564 		x->props.flags |= XFRM_STATE_NOPMTUDISC;
2565 
2566 	err = -EPROTONOSUPPORT;
2567 
2568 	if (x->sel.family != AF_UNSPEC) {
2569 		inner_mode = xfrm_get_mode(x->props.mode, x->sel.family);
2570 		if (inner_mode == NULL)
2571 			goto error;
2572 
2573 		if (!(inner_mode->flags & XFRM_MODE_FLAG_TUNNEL) &&
2574 		    family != x->sel.family)
2575 			goto error;
2576 
2577 		x->inner_mode = *inner_mode;
2578 	} else {
2579 		const struct xfrm_mode *inner_mode_iaf;
2580 		int iafamily = AF_INET;
2581 
2582 		inner_mode = xfrm_get_mode(x->props.mode, x->props.family);
2583 		if (inner_mode == NULL)
2584 			goto error;
2585 
2586 		if (!(inner_mode->flags & XFRM_MODE_FLAG_TUNNEL))
2587 			goto error;
2588 
2589 		x->inner_mode = *inner_mode;
2590 
2591 		if (x->props.family == AF_INET)
2592 			iafamily = AF_INET6;
2593 
2594 		inner_mode_iaf = xfrm_get_mode(x->props.mode, iafamily);
2595 		if (inner_mode_iaf) {
2596 			if (inner_mode_iaf->flags & XFRM_MODE_FLAG_TUNNEL)
2597 				x->inner_mode_iaf = *inner_mode_iaf;
2598 		}
2599 	}
2600 
2601 	x->type = xfrm_get_type(x->id.proto, family);
2602 	if (x->type == NULL)
2603 		goto error;
2604 
2605 	x->type_offload = xfrm_get_type_offload(x->id.proto, family, offload);
2606 
2607 	err = x->type->init_state(x);
2608 	if (err)
2609 		goto error;
2610 
2611 	outer_mode = xfrm_get_mode(x->props.mode, family);
2612 	if (!outer_mode) {
2613 		err = -EPROTONOSUPPORT;
2614 		goto error;
2615 	}
2616 
2617 	x->outer_mode = *outer_mode;
2618 	if (init_replay) {
2619 		err = xfrm_init_replay(x);
2620 		if (err)
2621 			goto error;
2622 	}
2623 
2624 error:
2625 	return err;
2626 }
2627 
2628 EXPORT_SYMBOL(__xfrm_init_state);
2629 
2630 int xfrm_init_state(struct xfrm_state *x)
2631 {
2632 	int err;
2633 
2634 	err = __xfrm_init_state(x, true, false);
2635 	if (!err)
2636 		x->km.state = XFRM_STATE_VALID;
2637 
2638 	return err;
2639 }
2640 
2641 EXPORT_SYMBOL(xfrm_init_state);
2642 
2643 int __net_init xfrm_state_init(struct net *net)
2644 {
2645 	unsigned int sz;
2646 
2647 	if (net_eq(net, &init_net))
2648 		xfrm_state_cache = KMEM_CACHE(xfrm_state,
2649 					      SLAB_HWCACHE_ALIGN | SLAB_PANIC);
2650 
2651 	INIT_LIST_HEAD(&net->xfrm.state_all);
2652 
2653 	sz = sizeof(struct hlist_head) * 8;
2654 
2655 	net->xfrm.state_bydst = xfrm_hash_alloc(sz);
2656 	if (!net->xfrm.state_bydst)
2657 		goto out_bydst;
2658 	net->xfrm.state_bysrc = xfrm_hash_alloc(sz);
2659 	if (!net->xfrm.state_bysrc)
2660 		goto out_bysrc;
2661 	net->xfrm.state_byspi = xfrm_hash_alloc(sz);
2662 	if (!net->xfrm.state_byspi)
2663 		goto out_byspi;
2664 	net->xfrm.state_hmask = ((sz / sizeof(struct hlist_head)) - 1);
2665 
2666 	net->xfrm.state_num = 0;
2667 	INIT_WORK(&net->xfrm.state_hash_work, xfrm_hash_resize);
2668 	spin_lock_init(&net->xfrm.xfrm_state_lock);
2669 	return 0;
2670 
2671 out_byspi:
2672 	xfrm_hash_free(net->xfrm.state_bysrc, sz);
2673 out_bysrc:
2674 	xfrm_hash_free(net->xfrm.state_bydst, sz);
2675 out_bydst:
2676 	return -ENOMEM;
2677 }
2678 
2679 void xfrm_state_fini(struct net *net)
2680 {
2681 	unsigned int sz;
2682 
2683 	flush_work(&net->xfrm.state_hash_work);
2684 	flush_work(&xfrm_state_gc_work);
2685 	xfrm_state_flush(net, 0, false, true);
2686 
2687 	WARN_ON(!list_empty(&net->xfrm.state_all));
2688 
2689 	sz = (net->xfrm.state_hmask + 1) * sizeof(struct hlist_head);
2690 	WARN_ON(!hlist_empty(net->xfrm.state_byspi));
2691 	xfrm_hash_free(net->xfrm.state_byspi, sz);
2692 	WARN_ON(!hlist_empty(net->xfrm.state_bysrc));
2693 	xfrm_hash_free(net->xfrm.state_bysrc, sz);
2694 	WARN_ON(!hlist_empty(net->xfrm.state_bydst));
2695 	xfrm_hash_free(net->xfrm.state_bydst, sz);
2696 }
2697 
2698 #ifdef CONFIG_AUDITSYSCALL
2699 static void xfrm_audit_helper_sainfo(struct xfrm_state *x,
2700 				     struct audit_buffer *audit_buf)
2701 {
2702 	struct xfrm_sec_ctx *ctx = x->security;
2703 	u32 spi = ntohl(x->id.spi);
2704 
2705 	if (ctx)
2706 		audit_log_format(audit_buf, " sec_alg=%u sec_doi=%u sec_obj=%s",
2707 				 ctx->ctx_alg, ctx->ctx_doi, ctx->ctx_str);
2708 
2709 	switch (x->props.family) {
2710 	case AF_INET:
2711 		audit_log_format(audit_buf, " src=%pI4 dst=%pI4",
2712 				 &x->props.saddr.a4, &x->id.daddr.a4);
2713 		break;
2714 	case AF_INET6:
2715 		audit_log_format(audit_buf, " src=%pI6 dst=%pI6",
2716 				 x->props.saddr.a6, x->id.daddr.a6);
2717 		break;
2718 	}
2719 
2720 	audit_log_format(audit_buf, " spi=%u(0x%x)", spi, spi);
2721 }
2722 
2723 static void xfrm_audit_helper_pktinfo(struct sk_buff *skb, u16 family,
2724 				      struct audit_buffer *audit_buf)
2725 {
2726 	const struct iphdr *iph4;
2727 	const struct ipv6hdr *iph6;
2728 
2729 	switch (family) {
2730 	case AF_INET:
2731 		iph4 = ip_hdr(skb);
2732 		audit_log_format(audit_buf, " src=%pI4 dst=%pI4",
2733 				 &iph4->saddr, &iph4->daddr);
2734 		break;
2735 	case AF_INET6:
2736 		iph6 = ipv6_hdr(skb);
2737 		audit_log_format(audit_buf,
2738 				 " src=%pI6 dst=%pI6 flowlbl=0x%x%02x%02x",
2739 				 &iph6->saddr, &iph6->daddr,
2740 				 iph6->flow_lbl[0] & 0x0f,
2741 				 iph6->flow_lbl[1],
2742 				 iph6->flow_lbl[2]);
2743 		break;
2744 	}
2745 }
2746 
2747 void xfrm_audit_state_add(struct xfrm_state *x, int result, bool task_valid)
2748 {
2749 	struct audit_buffer *audit_buf;
2750 
2751 	audit_buf = xfrm_audit_start("SAD-add");
2752 	if (audit_buf == NULL)
2753 		return;
2754 	xfrm_audit_helper_usrinfo(task_valid, audit_buf);
2755 	xfrm_audit_helper_sainfo(x, audit_buf);
2756 	audit_log_format(audit_buf, " res=%u", result);
2757 	audit_log_end(audit_buf);
2758 }
2759 EXPORT_SYMBOL_GPL(xfrm_audit_state_add);
2760 
2761 void xfrm_audit_state_delete(struct xfrm_state *x, int result, bool task_valid)
2762 {
2763 	struct audit_buffer *audit_buf;
2764 
2765 	audit_buf = xfrm_audit_start("SAD-delete");
2766 	if (audit_buf == NULL)
2767 		return;
2768 	xfrm_audit_helper_usrinfo(task_valid, audit_buf);
2769 	xfrm_audit_helper_sainfo(x, audit_buf);
2770 	audit_log_format(audit_buf, " res=%u", result);
2771 	audit_log_end(audit_buf);
2772 }
2773 EXPORT_SYMBOL_GPL(xfrm_audit_state_delete);
2774 
2775 void xfrm_audit_state_replay_overflow(struct xfrm_state *x,
2776 				      struct sk_buff *skb)
2777 {
2778 	struct audit_buffer *audit_buf;
2779 	u32 spi;
2780 
2781 	audit_buf = xfrm_audit_start("SA-replay-overflow");
2782 	if (audit_buf == NULL)
2783 		return;
2784 	xfrm_audit_helper_pktinfo(skb, x->props.family, audit_buf);
2785 	/* don't record the sequence number because it's inherent in this kind
2786 	 * of audit message */
2787 	spi = ntohl(x->id.spi);
2788 	audit_log_format(audit_buf, " spi=%u(0x%x)", spi, spi);
2789 	audit_log_end(audit_buf);
2790 }
2791 EXPORT_SYMBOL_GPL(xfrm_audit_state_replay_overflow);
2792 
2793 void xfrm_audit_state_replay(struct xfrm_state *x,
2794 			     struct sk_buff *skb, __be32 net_seq)
2795 {
2796 	struct audit_buffer *audit_buf;
2797 	u32 spi;
2798 
2799 	audit_buf = xfrm_audit_start("SA-replayed-pkt");
2800 	if (audit_buf == NULL)
2801 		return;
2802 	xfrm_audit_helper_pktinfo(skb, x->props.family, audit_buf);
2803 	spi = ntohl(x->id.spi);
2804 	audit_log_format(audit_buf, " spi=%u(0x%x) seqno=%u",
2805 			 spi, spi, ntohl(net_seq));
2806 	audit_log_end(audit_buf);
2807 }
2808 EXPORT_SYMBOL_GPL(xfrm_audit_state_replay);
2809 
2810 void xfrm_audit_state_notfound_simple(struct sk_buff *skb, u16 family)
2811 {
2812 	struct audit_buffer *audit_buf;
2813 
2814 	audit_buf = xfrm_audit_start("SA-notfound");
2815 	if (audit_buf == NULL)
2816 		return;
2817 	xfrm_audit_helper_pktinfo(skb, family, audit_buf);
2818 	audit_log_end(audit_buf);
2819 }
2820 EXPORT_SYMBOL_GPL(xfrm_audit_state_notfound_simple);
2821 
2822 void xfrm_audit_state_notfound(struct sk_buff *skb, u16 family,
2823 			       __be32 net_spi, __be32 net_seq)
2824 {
2825 	struct audit_buffer *audit_buf;
2826 	u32 spi;
2827 
2828 	audit_buf = xfrm_audit_start("SA-notfound");
2829 	if (audit_buf == NULL)
2830 		return;
2831 	xfrm_audit_helper_pktinfo(skb, family, audit_buf);
2832 	spi = ntohl(net_spi);
2833 	audit_log_format(audit_buf, " spi=%u(0x%x) seqno=%u",
2834 			 spi, spi, ntohl(net_seq));
2835 	audit_log_end(audit_buf);
2836 }
2837 EXPORT_SYMBOL_GPL(xfrm_audit_state_notfound);
2838 
2839 void xfrm_audit_state_icvfail(struct xfrm_state *x,
2840 			      struct sk_buff *skb, u8 proto)
2841 {
2842 	struct audit_buffer *audit_buf;
2843 	__be32 net_spi;
2844 	__be32 net_seq;
2845 
2846 	audit_buf = xfrm_audit_start("SA-icv-failure");
2847 	if (audit_buf == NULL)
2848 		return;
2849 	xfrm_audit_helper_pktinfo(skb, x->props.family, audit_buf);
2850 	if (xfrm_parse_spi(skb, proto, &net_spi, &net_seq) == 0) {
2851 		u32 spi = ntohl(net_spi);
2852 		audit_log_format(audit_buf, " spi=%u(0x%x) seqno=%u",
2853 				 spi, spi, ntohl(net_seq));
2854 	}
2855 	audit_log_end(audit_buf);
2856 }
2857 EXPORT_SYMBOL_GPL(xfrm_audit_state_icvfail);
2858 #endif /* CONFIG_AUDITSYSCALL */
2859