xref: /linux/net/xfrm/xfrm_policy.c (revision f3d9478b2ce468c3115b02ecae7e975990697f15)
1 /*
2  * xfrm_policy.c
3  *
4  * Changes:
5  *	Mitsuru KANDA @USAGI
6  * 	Kazunori MIYAZAWA @USAGI
7  * 	Kunihiro Ishiguro <kunihiro@ipinfusion.com>
8  * 		IPv6 support
9  * 	Kazunori MIYAZAWA @USAGI
10  * 	YOSHIFUJI Hideaki
11  * 		Split up af-specific portion
12  *	Derek Atkins <derek@ihtfp.com>		Add the post_input processor
13  *
14  */
15 
16 #include <linux/config.h>
17 #include <linux/slab.h>
18 #include <linux/kmod.h>
19 #include <linux/list.h>
20 #include <linux/spinlock.h>
21 #include <linux/workqueue.h>
22 #include <linux/notifier.h>
23 #include <linux/netdevice.h>
24 #include <linux/netfilter.h>
25 #include <linux/module.h>
26 #include <net/xfrm.h>
27 #include <net/ip.h>
28 
29 DEFINE_MUTEX(xfrm_cfg_mutex);
30 EXPORT_SYMBOL(xfrm_cfg_mutex);
31 
32 static DEFINE_RWLOCK(xfrm_policy_lock);
33 
34 struct xfrm_policy *xfrm_policy_list[XFRM_POLICY_MAX*2];
35 EXPORT_SYMBOL(xfrm_policy_list);
36 
37 static DEFINE_RWLOCK(xfrm_policy_afinfo_lock);
38 static struct xfrm_policy_afinfo *xfrm_policy_afinfo[NPROTO];
39 
40 static kmem_cache_t *xfrm_dst_cache __read_mostly;
41 
42 static struct work_struct xfrm_policy_gc_work;
43 static struct list_head xfrm_policy_gc_list =
44 	LIST_HEAD_INIT(xfrm_policy_gc_list);
45 static DEFINE_SPINLOCK(xfrm_policy_gc_lock);
46 
47 static struct xfrm_policy_afinfo *xfrm_policy_get_afinfo(unsigned short family);
48 static void xfrm_policy_put_afinfo(struct xfrm_policy_afinfo *afinfo);
49 static struct xfrm_policy_afinfo *xfrm_policy_lock_afinfo(unsigned int family);
50 static void xfrm_policy_unlock_afinfo(struct xfrm_policy_afinfo *afinfo);
51 
52 int xfrm_register_type(struct xfrm_type *type, unsigned short family)
53 {
54 	struct xfrm_policy_afinfo *afinfo = xfrm_policy_lock_afinfo(family);
55 	struct xfrm_type **typemap;
56 	int err = 0;
57 
58 	if (unlikely(afinfo == NULL))
59 		return -EAFNOSUPPORT;
60 	typemap = afinfo->type_map;
61 
62 	if (likely(typemap[type->proto] == NULL))
63 		typemap[type->proto] = type;
64 	else
65 		err = -EEXIST;
66 	xfrm_policy_unlock_afinfo(afinfo);
67 	return err;
68 }
69 EXPORT_SYMBOL(xfrm_register_type);
70 
71 int xfrm_unregister_type(struct xfrm_type *type, unsigned short family)
72 {
73 	struct xfrm_policy_afinfo *afinfo = xfrm_policy_lock_afinfo(family);
74 	struct xfrm_type **typemap;
75 	int err = 0;
76 
77 	if (unlikely(afinfo == NULL))
78 		return -EAFNOSUPPORT;
79 	typemap = afinfo->type_map;
80 
81 	if (unlikely(typemap[type->proto] != type))
82 		err = -ENOENT;
83 	else
84 		typemap[type->proto] = NULL;
85 	xfrm_policy_unlock_afinfo(afinfo);
86 	return err;
87 }
88 EXPORT_SYMBOL(xfrm_unregister_type);
89 
90 struct xfrm_type *xfrm_get_type(u8 proto, unsigned short family)
91 {
92 	struct xfrm_policy_afinfo *afinfo;
93 	struct xfrm_type **typemap;
94 	struct xfrm_type *type;
95 	int modload_attempted = 0;
96 
97 retry:
98 	afinfo = xfrm_policy_get_afinfo(family);
99 	if (unlikely(afinfo == NULL))
100 		return NULL;
101 	typemap = afinfo->type_map;
102 
103 	type = typemap[proto];
104 	if (unlikely(type && !try_module_get(type->owner)))
105 		type = NULL;
106 	if (!type && !modload_attempted) {
107 		xfrm_policy_put_afinfo(afinfo);
108 		request_module("xfrm-type-%d-%d",
109 			       (int) family, (int) proto);
110 		modload_attempted = 1;
111 		goto retry;
112 	}
113 
114 	xfrm_policy_put_afinfo(afinfo);
115 	return type;
116 }
117 
118 int xfrm_dst_lookup(struct xfrm_dst **dst, struct flowi *fl,
119 		    unsigned short family)
120 {
121 	struct xfrm_policy_afinfo *afinfo = xfrm_policy_get_afinfo(family);
122 	int err = 0;
123 
124 	if (unlikely(afinfo == NULL))
125 		return -EAFNOSUPPORT;
126 
127 	if (likely(afinfo->dst_lookup != NULL))
128 		err = afinfo->dst_lookup(dst, fl);
129 	else
130 		err = -EINVAL;
131 	xfrm_policy_put_afinfo(afinfo);
132 	return err;
133 }
134 EXPORT_SYMBOL(xfrm_dst_lookup);
135 
136 void xfrm_put_type(struct xfrm_type *type)
137 {
138 	module_put(type->owner);
139 }
140 
141 int xfrm_register_mode(struct xfrm_mode *mode, int family)
142 {
143 	struct xfrm_policy_afinfo *afinfo;
144 	struct xfrm_mode **modemap;
145 	int err;
146 
147 	if (unlikely(mode->encap >= XFRM_MODE_MAX))
148 		return -EINVAL;
149 
150 	afinfo = xfrm_policy_lock_afinfo(family);
151 	if (unlikely(afinfo == NULL))
152 		return -EAFNOSUPPORT;
153 
154 	err = -EEXIST;
155 	modemap = afinfo->mode_map;
156 	if (likely(modemap[mode->encap] == NULL)) {
157 		modemap[mode->encap] = mode;
158 		err = 0;
159 	}
160 
161 	xfrm_policy_unlock_afinfo(afinfo);
162 	return err;
163 }
164 EXPORT_SYMBOL(xfrm_register_mode);
165 
166 int xfrm_unregister_mode(struct xfrm_mode *mode, int family)
167 {
168 	struct xfrm_policy_afinfo *afinfo;
169 	struct xfrm_mode **modemap;
170 	int err;
171 
172 	if (unlikely(mode->encap >= XFRM_MODE_MAX))
173 		return -EINVAL;
174 
175 	afinfo = xfrm_policy_lock_afinfo(family);
176 	if (unlikely(afinfo == NULL))
177 		return -EAFNOSUPPORT;
178 
179 	err = -ENOENT;
180 	modemap = afinfo->mode_map;
181 	if (likely(modemap[mode->encap] == mode)) {
182 		modemap[mode->encap] = NULL;
183 		err = 0;
184 	}
185 
186 	xfrm_policy_unlock_afinfo(afinfo);
187 	return err;
188 }
189 EXPORT_SYMBOL(xfrm_unregister_mode);
190 
191 struct xfrm_mode *xfrm_get_mode(unsigned int encap, int family)
192 {
193 	struct xfrm_policy_afinfo *afinfo;
194 	struct xfrm_mode *mode;
195 	int modload_attempted = 0;
196 
197 	if (unlikely(encap >= XFRM_MODE_MAX))
198 		return NULL;
199 
200 retry:
201 	afinfo = xfrm_policy_get_afinfo(family);
202 	if (unlikely(afinfo == NULL))
203 		return NULL;
204 
205 	mode = afinfo->mode_map[encap];
206 	if (unlikely(mode && !try_module_get(mode->owner)))
207 		mode = NULL;
208 	if (!mode && !modload_attempted) {
209 		xfrm_policy_put_afinfo(afinfo);
210 		request_module("xfrm-mode-%d-%d", family, encap);
211 		modload_attempted = 1;
212 		goto retry;
213 	}
214 
215 	xfrm_policy_put_afinfo(afinfo);
216 	return mode;
217 }
218 
219 void xfrm_put_mode(struct xfrm_mode *mode)
220 {
221 	module_put(mode->owner);
222 }
223 
224 static inline unsigned long make_jiffies(long secs)
225 {
226 	if (secs >= (MAX_SCHEDULE_TIMEOUT-1)/HZ)
227 		return MAX_SCHEDULE_TIMEOUT-1;
228 	else
229 	        return secs*HZ;
230 }
231 
232 static void xfrm_policy_timer(unsigned long data)
233 {
234 	struct xfrm_policy *xp = (struct xfrm_policy*)data;
235 	unsigned long now = (unsigned long)xtime.tv_sec;
236 	long next = LONG_MAX;
237 	int warn = 0;
238 	int dir;
239 
240 	read_lock(&xp->lock);
241 
242 	if (xp->dead)
243 		goto out;
244 
245 	dir = xfrm_policy_id2dir(xp->index);
246 
247 	if (xp->lft.hard_add_expires_seconds) {
248 		long tmo = xp->lft.hard_add_expires_seconds +
249 			xp->curlft.add_time - now;
250 		if (tmo <= 0)
251 			goto expired;
252 		if (tmo < next)
253 			next = tmo;
254 	}
255 	if (xp->lft.hard_use_expires_seconds) {
256 		long tmo = xp->lft.hard_use_expires_seconds +
257 			(xp->curlft.use_time ? : xp->curlft.add_time) - now;
258 		if (tmo <= 0)
259 			goto expired;
260 		if (tmo < next)
261 			next = tmo;
262 	}
263 	if (xp->lft.soft_add_expires_seconds) {
264 		long tmo = xp->lft.soft_add_expires_seconds +
265 			xp->curlft.add_time - now;
266 		if (tmo <= 0) {
267 			warn = 1;
268 			tmo = XFRM_KM_TIMEOUT;
269 		}
270 		if (tmo < next)
271 			next = tmo;
272 	}
273 	if (xp->lft.soft_use_expires_seconds) {
274 		long tmo = xp->lft.soft_use_expires_seconds +
275 			(xp->curlft.use_time ? : xp->curlft.add_time) - now;
276 		if (tmo <= 0) {
277 			warn = 1;
278 			tmo = XFRM_KM_TIMEOUT;
279 		}
280 		if (tmo < next)
281 			next = tmo;
282 	}
283 
284 	if (warn)
285 		km_policy_expired(xp, dir, 0, 0);
286 	if (next != LONG_MAX &&
287 	    !mod_timer(&xp->timer, jiffies + make_jiffies(next)))
288 		xfrm_pol_hold(xp);
289 
290 out:
291 	read_unlock(&xp->lock);
292 	xfrm_pol_put(xp);
293 	return;
294 
295 expired:
296 	read_unlock(&xp->lock);
297 	if (!xfrm_policy_delete(xp, dir))
298 		km_policy_expired(xp, dir, 1, 0);
299 	xfrm_pol_put(xp);
300 }
301 
302 
303 /* Allocate xfrm_policy. Not used here, it is supposed to be used by pfkeyv2
304  * SPD calls.
305  */
306 
307 struct xfrm_policy *xfrm_policy_alloc(gfp_t gfp)
308 {
309 	struct xfrm_policy *policy;
310 
311 	policy = kmalloc(sizeof(struct xfrm_policy), gfp);
312 
313 	if (policy) {
314 		memset(policy, 0, sizeof(struct xfrm_policy));
315 		atomic_set(&policy->refcnt, 1);
316 		rwlock_init(&policy->lock);
317 		init_timer(&policy->timer);
318 		policy->timer.data = (unsigned long)policy;
319 		policy->timer.function = xfrm_policy_timer;
320 	}
321 	return policy;
322 }
323 EXPORT_SYMBOL(xfrm_policy_alloc);
324 
325 /* Destroy xfrm_policy: descendant resources must be released to this moment. */
326 
327 void __xfrm_policy_destroy(struct xfrm_policy *policy)
328 {
329 	BUG_ON(!policy->dead);
330 
331 	BUG_ON(policy->bundles);
332 
333 	if (del_timer(&policy->timer))
334 		BUG();
335 
336 	security_xfrm_policy_free(policy);
337 	kfree(policy);
338 }
339 EXPORT_SYMBOL(__xfrm_policy_destroy);
340 
341 static void xfrm_policy_gc_kill(struct xfrm_policy *policy)
342 {
343 	struct dst_entry *dst;
344 
345 	while ((dst = policy->bundles) != NULL) {
346 		policy->bundles = dst->next;
347 		dst_free(dst);
348 	}
349 
350 	if (del_timer(&policy->timer))
351 		atomic_dec(&policy->refcnt);
352 
353 	if (atomic_read(&policy->refcnt) > 1)
354 		flow_cache_flush();
355 
356 	xfrm_pol_put(policy);
357 }
358 
359 static void xfrm_policy_gc_task(void *data)
360 {
361 	struct xfrm_policy *policy;
362 	struct list_head *entry, *tmp;
363 	struct list_head gc_list = LIST_HEAD_INIT(gc_list);
364 
365 	spin_lock_bh(&xfrm_policy_gc_lock);
366 	list_splice_init(&xfrm_policy_gc_list, &gc_list);
367 	spin_unlock_bh(&xfrm_policy_gc_lock);
368 
369 	list_for_each_safe(entry, tmp, &gc_list) {
370 		policy = list_entry(entry, struct xfrm_policy, list);
371 		xfrm_policy_gc_kill(policy);
372 	}
373 }
374 
375 /* Rule must be locked. Release descentant resources, announce
376  * entry dead. The rule must be unlinked from lists to the moment.
377  */
378 
379 static void xfrm_policy_kill(struct xfrm_policy *policy)
380 {
381 	int dead;
382 
383 	write_lock_bh(&policy->lock);
384 	dead = policy->dead;
385 	policy->dead = 1;
386 	write_unlock_bh(&policy->lock);
387 
388 	if (unlikely(dead)) {
389 		WARN_ON(1);
390 		return;
391 	}
392 
393 	spin_lock(&xfrm_policy_gc_lock);
394 	list_add(&policy->list, &xfrm_policy_gc_list);
395 	spin_unlock(&xfrm_policy_gc_lock);
396 
397 	schedule_work(&xfrm_policy_gc_work);
398 }
399 
400 /* Generate new index... KAME seems to generate them ordered by cost
401  * of an absolute inpredictability of ordering of rules. This will not pass. */
402 static u32 xfrm_gen_index(int dir)
403 {
404 	u32 idx;
405 	struct xfrm_policy *p;
406 	static u32 idx_generator;
407 
408 	for (;;) {
409 		idx = (idx_generator | dir);
410 		idx_generator += 8;
411 		if (idx == 0)
412 			idx = 8;
413 		for (p = xfrm_policy_list[dir]; p; p = p->next) {
414 			if (p->index == idx)
415 				break;
416 		}
417 		if (!p)
418 			return idx;
419 	}
420 }
421 
422 int xfrm_policy_insert(int dir, struct xfrm_policy *policy, int excl)
423 {
424 	struct xfrm_policy *pol, **p;
425 	struct xfrm_policy *delpol = NULL;
426 	struct xfrm_policy **newpos = NULL;
427 	struct dst_entry *gc_list;
428 
429 	write_lock_bh(&xfrm_policy_lock);
430 	for (p = &xfrm_policy_list[dir]; (pol=*p)!=NULL;) {
431 		if (!delpol && memcmp(&policy->selector, &pol->selector, sizeof(pol->selector)) == 0 &&
432 		    xfrm_sec_ctx_match(pol->security, policy->security)) {
433 			if (excl) {
434 				write_unlock_bh(&xfrm_policy_lock);
435 				return -EEXIST;
436 			}
437 			*p = pol->next;
438 			delpol = pol;
439 			if (policy->priority > pol->priority)
440 				continue;
441 		} else if (policy->priority >= pol->priority) {
442 			p = &pol->next;
443 			continue;
444 		}
445 		if (!newpos)
446 			newpos = p;
447 		if (delpol)
448 			break;
449 		p = &pol->next;
450 	}
451 	if (newpos)
452 		p = newpos;
453 	xfrm_pol_hold(policy);
454 	policy->next = *p;
455 	*p = policy;
456 	atomic_inc(&flow_cache_genid);
457 	policy->index = delpol ? delpol->index : xfrm_gen_index(dir);
458 	policy->curlft.add_time = (unsigned long)xtime.tv_sec;
459 	policy->curlft.use_time = 0;
460 	if (!mod_timer(&policy->timer, jiffies + HZ))
461 		xfrm_pol_hold(policy);
462 	write_unlock_bh(&xfrm_policy_lock);
463 
464 	if (delpol)
465 		xfrm_policy_kill(delpol);
466 
467 	read_lock_bh(&xfrm_policy_lock);
468 	gc_list = NULL;
469 	for (policy = policy->next; policy; policy = policy->next) {
470 		struct dst_entry *dst;
471 
472 		write_lock(&policy->lock);
473 		dst = policy->bundles;
474 		if (dst) {
475 			struct dst_entry *tail = dst;
476 			while (tail->next)
477 				tail = tail->next;
478 			tail->next = gc_list;
479 			gc_list = dst;
480 
481 			policy->bundles = NULL;
482 		}
483 		write_unlock(&policy->lock);
484 	}
485 	read_unlock_bh(&xfrm_policy_lock);
486 
487 	while (gc_list) {
488 		struct dst_entry *dst = gc_list;
489 
490 		gc_list = dst->next;
491 		dst_free(dst);
492 	}
493 
494 	return 0;
495 }
496 EXPORT_SYMBOL(xfrm_policy_insert);
497 
498 struct xfrm_policy *xfrm_policy_bysel_ctx(int dir, struct xfrm_selector *sel,
499 					  struct xfrm_sec_ctx *ctx, int delete)
500 {
501 	struct xfrm_policy *pol, **p;
502 
503 	write_lock_bh(&xfrm_policy_lock);
504 	for (p = &xfrm_policy_list[dir]; (pol=*p)!=NULL; p = &pol->next) {
505 		if ((memcmp(sel, &pol->selector, sizeof(*sel)) == 0) &&
506 		    (xfrm_sec_ctx_match(ctx, pol->security))) {
507 			xfrm_pol_hold(pol);
508 			if (delete)
509 				*p = pol->next;
510 			break;
511 		}
512 	}
513 	write_unlock_bh(&xfrm_policy_lock);
514 
515 	if (pol && delete) {
516 		atomic_inc(&flow_cache_genid);
517 		xfrm_policy_kill(pol);
518 	}
519 	return pol;
520 }
521 EXPORT_SYMBOL(xfrm_policy_bysel_ctx);
522 
523 struct xfrm_policy *xfrm_policy_byid(int dir, u32 id, int delete)
524 {
525 	struct xfrm_policy *pol, **p;
526 
527 	write_lock_bh(&xfrm_policy_lock);
528 	for (p = &xfrm_policy_list[dir]; (pol=*p)!=NULL; p = &pol->next) {
529 		if (pol->index == id) {
530 			xfrm_pol_hold(pol);
531 			if (delete)
532 				*p = pol->next;
533 			break;
534 		}
535 	}
536 	write_unlock_bh(&xfrm_policy_lock);
537 
538 	if (pol && delete) {
539 		atomic_inc(&flow_cache_genid);
540 		xfrm_policy_kill(pol);
541 	}
542 	return pol;
543 }
544 EXPORT_SYMBOL(xfrm_policy_byid);
545 
546 void xfrm_policy_flush(void)
547 {
548 	struct xfrm_policy *xp;
549 	int dir;
550 
551 	write_lock_bh(&xfrm_policy_lock);
552 	for (dir = 0; dir < XFRM_POLICY_MAX; dir++) {
553 		while ((xp = xfrm_policy_list[dir]) != NULL) {
554 			xfrm_policy_list[dir] = xp->next;
555 			write_unlock_bh(&xfrm_policy_lock);
556 
557 			xfrm_policy_kill(xp);
558 
559 			write_lock_bh(&xfrm_policy_lock);
560 		}
561 	}
562 	atomic_inc(&flow_cache_genid);
563 	write_unlock_bh(&xfrm_policy_lock);
564 }
565 EXPORT_SYMBOL(xfrm_policy_flush);
566 
567 int xfrm_policy_walk(int (*func)(struct xfrm_policy *, int, int, void*),
568 		     void *data)
569 {
570 	struct xfrm_policy *xp;
571 	int dir;
572 	int count = 0;
573 	int error = 0;
574 
575 	read_lock_bh(&xfrm_policy_lock);
576 	for (dir = 0; dir < 2*XFRM_POLICY_MAX; dir++) {
577 		for (xp = xfrm_policy_list[dir]; xp; xp = xp->next)
578 			count++;
579 	}
580 
581 	if (count == 0) {
582 		error = -ENOENT;
583 		goto out;
584 	}
585 
586 	for (dir = 0; dir < 2*XFRM_POLICY_MAX; dir++) {
587 		for (xp = xfrm_policy_list[dir]; xp; xp = xp->next) {
588 			error = func(xp, dir%XFRM_POLICY_MAX, --count, data);
589 			if (error)
590 				goto out;
591 		}
592 	}
593 
594 out:
595 	read_unlock_bh(&xfrm_policy_lock);
596 	return error;
597 }
598 EXPORT_SYMBOL(xfrm_policy_walk);
599 
600 /* Find policy to apply to this flow. */
601 
602 static void xfrm_policy_lookup(struct flowi *fl, u32 sk_sid, u16 family, u8 dir,
603 			       void **objp, atomic_t **obj_refp)
604 {
605 	struct xfrm_policy *pol;
606 
607 	read_lock_bh(&xfrm_policy_lock);
608 	for (pol = xfrm_policy_list[dir]; pol; pol = pol->next) {
609 		struct xfrm_selector *sel = &pol->selector;
610 		int match;
611 
612 		if (pol->family != family)
613 			continue;
614 
615 		match = xfrm_selector_match(sel, fl, family);
616 
617 		if (match) {
618  			if (!security_xfrm_policy_lookup(pol, sk_sid, dir)) {
619 				xfrm_pol_hold(pol);
620 				break;
621 			}
622 		}
623 	}
624 	read_unlock_bh(&xfrm_policy_lock);
625 	if ((*objp = (void *) pol) != NULL)
626 		*obj_refp = &pol->refcnt;
627 }
628 
629 static inline int policy_to_flow_dir(int dir)
630 {
631 	if (XFRM_POLICY_IN == FLOW_DIR_IN &&
632  	    XFRM_POLICY_OUT == FLOW_DIR_OUT &&
633  	    XFRM_POLICY_FWD == FLOW_DIR_FWD)
634  		return dir;
635  	switch (dir) {
636  	default:
637  	case XFRM_POLICY_IN:
638  		return FLOW_DIR_IN;
639  	case XFRM_POLICY_OUT:
640  		return FLOW_DIR_OUT;
641  	case XFRM_POLICY_FWD:
642  		return FLOW_DIR_FWD;
643 	};
644 }
645 
646 static struct xfrm_policy *xfrm_sk_policy_lookup(struct sock *sk, int dir, struct flowi *fl, u32 sk_sid)
647 {
648 	struct xfrm_policy *pol;
649 
650 	read_lock_bh(&xfrm_policy_lock);
651 	if ((pol = sk->sk_policy[dir]) != NULL) {
652  		int match = xfrm_selector_match(&pol->selector, fl,
653 						sk->sk_family);
654  		int err = 0;
655 
656 		if (match)
657 		  err = security_xfrm_policy_lookup(pol, sk_sid, policy_to_flow_dir(dir));
658 
659  		if (match && !err)
660 			xfrm_pol_hold(pol);
661 		else
662 			pol = NULL;
663 	}
664 	read_unlock_bh(&xfrm_policy_lock);
665 	return pol;
666 }
667 
668 static void __xfrm_policy_link(struct xfrm_policy *pol, int dir)
669 {
670 	pol->next = xfrm_policy_list[dir];
671 	xfrm_policy_list[dir] = pol;
672 	xfrm_pol_hold(pol);
673 }
674 
675 static struct xfrm_policy *__xfrm_policy_unlink(struct xfrm_policy *pol,
676 						int dir)
677 {
678 	struct xfrm_policy **polp;
679 
680 	for (polp = &xfrm_policy_list[dir];
681 	     *polp != NULL; polp = &(*polp)->next) {
682 		if (*polp == pol) {
683 			*polp = pol->next;
684 			return pol;
685 		}
686 	}
687 	return NULL;
688 }
689 
690 int xfrm_policy_delete(struct xfrm_policy *pol, int dir)
691 {
692 	write_lock_bh(&xfrm_policy_lock);
693 	pol = __xfrm_policy_unlink(pol, dir);
694 	write_unlock_bh(&xfrm_policy_lock);
695 	if (pol) {
696 		if (dir < XFRM_POLICY_MAX)
697 			atomic_inc(&flow_cache_genid);
698 		xfrm_policy_kill(pol);
699 		return 0;
700 	}
701 	return -ENOENT;
702 }
703 EXPORT_SYMBOL(xfrm_policy_delete);
704 
705 int xfrm_sk_policy_insert(struct sock *sk, int dir, struct xfrm_policy *pol)
706 {
707 	struct xfrm_policy *old_pol;
708 
709 	write_lock_bh(&xfrm_policy_lock);
710 	old_pol = sk->sk_policy[dir];
711 	sk->sk_policy[dir] = pol;
712 	if (pol) {
713 		pol->curlft.add_time = (unsigned long)xtime.tv_sec;
714 		pol->index = xfrm_gen_index(XFRM_POLICY_MAX+dir);
715 		__xfrm_policy_link(pol, XFRM_POLICY_MAX+dir);
716 	}
717 	if (old_pol)
718 		__xfrm_policy_unlink(old_pol, XFRM_POLICY_MAX+dir);
719 	write_unlock_bh(&xfrm_policy_lock);
720 
721 	if (old_pol) {
722 		xfrm_policy_kill(old_pol);
723 	}
724 	return 0;
725 }
726 
727 static struct xfrm_policy *clone_policy(struct xfrm_policy *old, int dir)
728 {
729 	struct xfrm_policy *newp = xfrm_policy_alloc(GFP_ATOMIC);
730 
731 	if (newp) {
732 		newp->selector = old->selector;
733 		if (security_xfrm_policy_clone(old, newp)) {
734 			kfree(newp);
735 			return NULL;  /* ENOMEM */
736 		}
737 		newp->lft = old->lft;
738 		newp->curlft = old->curlft;
739 		newp->action = old->action;
740 		newp->flags = old->flags;
741 		newp->xfrm_nr = old->xfrm_nr;
742 		newp->index = old->index;
743 		memcpy(newp->xfrm_vec, old->xfrm_vec,
744 		       newp->xfrm_nr*sizeof(struct xfrm_tmpl));
745 		write_lock_bh(&xfrm_policy_lock);
746 		__xfrm_policy_link(newp, XFRM_POLICY_MAX+dir);
747 		write_unlock_bh(&xfrm_policy_lock);
748 		xfrm_pol_put(newp);
749 	}
750 	return newp;
751 }
752 
753 int __xfrm_sk_clone_policy(struct sock *sk)
754 {
755 	struct xfrm_policy *p0 = sk->sk_policy[0],
756 			   *p1 = sk->sk_policy[1];
757 
758 	sk->sk_policy[0] = sk->sk_policy[1] = NULL;
759 	if (p0 && (sk->sk_policy[0] = clone_policy(p0, 0)) == NULL)
760 		return -ENOMEM;
761 	if (p1 && (sk->sk_policy[1] = clone_policy(p1, 1)) == NULL)
762 		return -ENOMEM;
763 	return 0;
764 }
765 
766 /* Resolve list of templates for the flow, given policy. */
767 
768 static int
769 xfrm_tmpl_resolve(struct xfrm_policy *policy, struct flowi *fl,
770 		  struct xfrm_state **xfrm,
771 		  unsigned short family)
772 {
773 	int nx;
774 	int i, error;
775 	xfrm_address_t *daddr = xfrm_flowi_daddr(fl, family);
776 	xfrm_address_t *saddr = xfrm_flowi_saddr(fl, family);
777 
778 	for (nx=0, i = 0; i < policy->xfrm_nr; i++) {
779 		struct xfrm_state *x;
780 		xfrm_address_t *remote = daddr;
781 		xfrm_address_t *local  = saddr;
782 		struct xfrm_tmpl *tmpl = &policy->xfrm_vec[i];
783 
784 		if (tmpl->mode) {
785 			remote = &tmpl->id.daddr;
786 			local = &tmpl->saddr;
787 		}
788 
789 		x = xfrm_state_find(remote, local, fl, tmpl, policy, &error, family);
790 
791 		if (x && x->km.state == XFRM_STATE_VALID) {
792 			xfrm[nx++] = x;
793 			daddr = remote;
794 			saddr = local;
795 			continue;
796 		}
797 		if (x) {
798 			error = (x->km.state == XFRM_STATE_ERROR ?
799 				 -EINVAL : -EAGAIN);
800 			xfrm_state_put(x);
801 		}
802 
803 		if (!tmpl->optional)
804 			goto fail;
805 	}
806 	return nx;
807 
808 fail:
809 	for (nx--; nx>=0; nx--)
810 		xfrm_state_put(xfrm[nx]);
811 	return error;
812 }
813 
814 /* Check that the bundle accepts the flow and its components are
815  * still valid.
816  */
817 
818 static struct dst_entry *
819 xfrm_find_bundle(struct flowi *fl, struct xfrm_policy *policy, unsigned short family)
820 {
821 	struct dst_entry *x;
822 	struct xfrm_policy_afinfo *afinfo = xfrm_policy_get_afinfo(family);
823 	if (unlikely(afinfo == NULL))
824 		return ERR_PTR(-EINVAL);
825 	x = afinfo->find_bundle(fl, policy);
826 	xfrm_policy_put_afinfo(afinfo);
827 	return x;
828 }
829 
830 /* Allocate chain of dst_entry's, attach known xfrm's, calculate
831  * all the metrics... Shortly, bundle a bundle.
832  */
833 
834 static int
835 xfrm_bundle_create(struct xfrm_policy *policy, struct xfrm_state **xfrm, int nx,
836 		   struct flowi *fl, struct dst_entry **dst_p,
837 		   unsigned short family)
838 {
839 	int err;
840 	struct xfrm_policy_afinfo *afinfo = xfrm_policy_get_afinfo(family);
841 	if (unlikely(afinfo == NULL))
842 		return -EINVAL;
843 	err = afinfo->bundle_create(policy, xfrm, nx, fl, dst_p);
844 	xfrm_policy_put_afinfo(afinfo);
845 	return err;
846 }
847 
848 
849 static int stale_bundle(struct dst_entry *dst);
850 
851 /* Main function: finds/creates a bundle for given flow.
852  *
853  * At the moment we eat a raw IP route. Mostly to speed up lookups
854  * on interfaces with disabled IPsec.
855  */
856 int xfrm_lookup(struct dst_entry **dst_p, struct flowi *fl,
857 		struct sock *sk, int flags)
858 {
859 	struct xfrm_policy *policy;
860 	struct xfrm_state *xfrm[XFRM_MAX_DEPTH];
861 	struct dst_entry *dst, *dst_orig = *dst_p;
862 	int nx = 0;
863 	int err;
864 	u32 genid;
865 	u16 family;
866 	u8 dir = policy_to_flow_dir(XFRM_POLICY_OUT);
867 	u32 sk_sid = security_sk_sid(sk, fl, dir);
868 restart:
869 	genid = atomic_read(&flow_cache_genid);
870 	policy = NULL;
871 	if (sk && sk->sk_policy[1])
872 		policy = xfrm_sk_policy_lookup(sk, XFRM_POLICY_OUT, fl, sk_sid);
873 
874 	if (!policy) {
875 		/* To accelerate a bit...  */
876 		if ((dst_orig->flags & DST_NOXFRM) || !xfrm_policy_list[XFRM_POLICY_OUT])
877 			return 0;
878 
879 		policy = flow_cache_lookup(fl, sk_sid, dst_orig->ops->family,
880 					   dir, xfrm_policy_lookup);
881 	}
882 
883 	if (!policy)
884 		return 0;
885 
886 	family = dst_orig->ops->family;
887 	policy->curlft.use_time = (unsigned long)xtime.tv_sec;
888 
889 	switch (policy->action) {
890 	case XFRM_POLICY_BLOCK:
891 		/* Prohibit the flow */
892 		err = -EPERM;
893 		goto error;
894 
895 	case XFRM_POLICY_ALLOW:
896 		if (policy->xfrm_nr == 0) {
897 			/* Flow passes not transformed. */
898 			xfrm_pol_put(policy);
899 			return 0;
900 		}
901 
902 		/* Try to find matching bundle.
903 		 *
904 		 * LATER: help from flow cache. It is optional, this
905 		 * is required only for output policy.
906 		 */
907 		dst = xfrm_find_bundle(fl, policy, family);
908 		if (IS_ERR(dst)) {
909 			err = PTR_ERR(dst);
910 			goto error;
911 		}
912 
913 		if (dst)
914 			break;
915 
916 		nx = xfrm_tmpl_resolve(policy, fl, xfrm, family);
917 
918 		if (unlikely(nx<0)) {
919 			err = nx;
920 			if (err == -EAGAIN && flags) {
921 				DECLARE_WAITQUEUE(wait, current);
922 
923 				add_wait_queue(&km_waitq, &wait);
924 				set_current_state(TASK_INTERRUPTIBLE);
925 				schedule();
926 				set_current_state(TASK_RUNNING);
927 				remove_wait_queue(&km_waitq, &wait);
928 
929 				nx = xfrm_tmpl_resolve(policy, fl, xfrm, family);
930 
931 				if (nx == -EAGAIN && signal_pending(current)) {
932 					err = -ERESTART;
933 					goto error;
934 				}
935 				if (nx == -EAGAIN ||
936 				    genid != atomic_read(&flow_cache_genid)) {
937 					xfrm_pol_put(policy);
938 					goto restart;
939 				}
940 				err = nx;
941 			}
942 			if (err < 0)
943 				goto error;
944 		}
945 		if (nx == 0) {
946 			/* Flow passes not transformed. */
947 			xfrm_pol_put(policy);
948 			return 0;
949 		}
950 
951 		dst = dst_orig;
952 		err = xfrm_bundle_create(policy, xfrm, nx, fl, &dst, family);
953 
954 		if (unlikely(err)) {
955 			int i;
956 			for (i=0; i<nx; i++)
957 				xfrm_state_put(xfrm[i]);
958 			goto error;
959 		}
960 
961 		write_lock_bh(&policy->lock);
962 		if (unlikely(policy->dead || stale_bundle(dst))) {
963 			/* Wow! While we worked on resolving, this
964 			 * policy has gone. Retry. It is not paranoia,
965 			 * we just cannot enlist new bundle to dead object.
966 			 * We can't enlist stable bundles either.
967 			 */
968 			write_unlock_bh(&policy->lock);
969 			if (dst)
970 				dst_free(dst);
971 
972 			err = -EHOSTUNREACH;
973 			goto error;
974 		}
975 		dst->next = policy->bundles;
976 		policy->bundles = dst;
977 		dst_hold(dst);
978 		write_unlock_bh(&policy->lock);
979 	}
980 	*dst_p = dst;
981 	dst_release(dst_orig);
982 	xfrm_pol_put(policy);
983 	return 0;
984 
985 error:
986 	dst_release(dst_orig);
987 	xfrm_pol_put(policy);
988 	*dst_p = NULL;
989 	return err;
990 }
991 EXPORT_SYMBOL(xfrm_lookup);
992 
993 /* When skb is transformed back to its "native" form, we have to
994  * check policy restrictions. At the moment we make this in maximally
995  * stupid way. Shame on me. :-) Of course, connected sockets must
996  * have policy cached at them.
997  */
998 
999 static inline int
1000 xfrm_state_ok(struct xfrm_tmpl *tmpl, struct xfrm_state *x,
1001 	      unsigned short family)
1002 {
1003 	if (xfrm_state_kern(x))
1004 		return tmpl->optional && !xfrm_state_addr_cmp(tmpl, x, family);
1005 	return	x->id.proto == tmpl->id.proto &&
1006 		(x->id.spi == tmpl->id.spi || !tmpl->id.spi) &&
1007 		(x->props.reqid == tmpl->reqid || !tmpl->reqid) &&
1008 		x->props.mode == tmpl->mode &&
1009 		(tmpl->aalgos & (1<<x->props.aalgo)) &&
1010 		!(x->props.mode && xfrm_state_addr_cmp(tmpl, x, family));
1011 }
1012 
1013 static inline int
1014 xfrm_policy_ok(struct xfrm_tmpl *tmpl, struct sec_path *sp, int start,
1015 	       unsigned short family)
1016 {
1017 	int idx = start;
1018 
1019 	if (tmpl->optional) {
1020 		if (!tmpl->mode)
1021 			return start;
1022 	} else
1023 		start = -1;
1024 	for (; idx < sp->len; idx++) {
1025 		if (xfrm_state_ok(tmpl, sp->xvec[idx], family))
1026 			return ++idx;
1027 		if (sp->xvec[idx]->props.mode)
1028 			break;
1029 	}
1030 	return start;
1031 }
1032 
1033 int
1034 xfrm_decode_session(struct sk_buff *skb, struct flowi *fl, unsigned short family)
1035 {
1036 	struct xfrm_policy_afinfo *afinfo = xfrm_policy_get_afinfo(family);
1037 
1038 	if (unlikely(afinfo == NULL))
1039 		return -EAFNOSUPPORT;
1040 
1041 	afinfo->decode_session(skb, fl);
1042 	xfrm_policy_put_afinfo(afinfo);
1043 	return 0;
1044 }
1045 EXPORT_SYMBOL(xfrm_decode_session);
1046 
1047 static inline int secpath_has_tunnel(struct sec_path *sp, int k)
1048 {
1049 	for (; k < sp->len; k++) {
1050 		if (sp->xvec[k]->props.mode)
1051 			return 1;
1052 	}
1053 
1054 	return 0;
1055 }
1056 
1057 int __xfrm_policy_check(struct sock *sk, int dir, struct sk_buff *skb,
1058 			unsigned short family)
1059 {
1060 	struct xfrm_policy *pol;
1061 	struct flowi fl;
1062 	u8 fl_dir = policy_to_flow_dir(dir);
1063 	u32 sk_sid;
1064 
1065 	if (xfrm_decode_session(skb, &fl, family) < 0)
1066 		return 0;
1067 	nf_nat_decode_session(skb, &fl, family);
1068 
1069 	sk_sid = security_sk_sid(sk, &fl, fl_dir);
1070 
1071 	/* First, check used SA against their selectors. */
1072 	if (skb->sp) {
1073 		int i;
1074 
1075 		for (i=skb->sp->len-1; i>=0; i--) {
1076 			struct xfrm_state *x = skb->sp->xvec[i];
1077 			if (!xfrm_selector_match(&x->sel, &fl, family))
1078 				return 0;
1079 		}
1080 	}
1081 
1082 	pol = NULL;
1083 	if (sk && sk->sk_policy[dir])
1084 		pol = xfrm_sk_policy_lookup(sk, dir, &fl, sk_sid);
1085 
1086 	if (!pol)
1087 		pol = flow_cache_lookup(&fl, sk_sid, family, fl_dir,
1088 					xfrm_policy_lookup);
1089 
1090 	if (!pol)
1091 		return !skb->sp || !secpath_has_tunnel(skb->sp, 0);
1092 
1093 	pol->curlft.use_time = (unsigned long)xtime.tv_sec;
1094 
1095 	if (pol->action == XFRM_POLICY_ALLOW) {
1096 		struct sec_path *sp;
1097 		static struct sec_path dummy;
1098 		int i, k;
1099 
1100 		if ((sp = skb->sp) == NULL)
1101 			sp = &dummy;
1102 
1103 		/* For each tunnel xfrm, find the first matching tmpl.
1104 		 * For each tmpl before that, find corresponding xfrm.
1105 		 * Order is _important_. Later we will implement
1106 		 * some barriers, but at the moment barriers
1107 		 * are implied between each two transformations.
1108 		 */
1109 		for (i = pol->xfrm_nr-1, k = 0; i >= 0; i--) {
1110 			k = xfrm_policy_ok(pol->xfrm_vec+i, sp, k, family);
1111 			if (k < 0)
1112 				goto reject;
1113 		}
1114 
1115 		if (secpath_has_tunnel(sp, k))
1116 			goto reject;
1117 
1118 		xfrm_pol_put(pol);
1119 		return 1;
1120 	}
1121 
1122 reject:
1123 	xfrm_pol_put(pol);
1124 	return 0;
1125 }
1126 EXPORT_SYMBOL(__xfrm_policy_check);
1127 
1128 int __xfrm_route_forward(struct sk_buff *skb, unsigned short family)
1129 {
1130 	struct flowi fl;
1131 
1132 	if (xfrm_decode_session(skb, &fl, family) < 0)
1133 		return 0;
1134 
1135 	return xfrm_lookup(&skb->dst, &fl, NULL, 0) == 0;
1136 }
1137 EXPORT_SYMBOL(__xfrm_route_forward);
1138 
1139 static struct dst_entry *xfrm_dst_check(struct dst_entry *dst, u32 cookie)
1140 {
1141 	/* If it is marked obsolete, which is how we even get here,
1142 	 * then we have purged it from the policy bundle list and we
1143 	 * did that for a good reason.
1144 	 */
1145 	return NULL;
1146 }
1147 
1148 static int stale_bundle(struct dst_entry *dst)
1149 {
1150 	return !xfrm_bundle_ok((struct xfrm_dst *)dst, NULL, AF_UNSPEC);
1151 }
1152 
1153 void xfrm_dst_ifdown(struct dst_entry *dst, struct net_device *dev)
1154 {
1155 	while ((dst = dst->child) && dst->xfrm && dst->dev == dev) {
1156 		dst->dev = &loopback_dev;
1157 		dev_hold(&loopback_dev);
1158 		dev_put(dev);
1159 	}
1160 }
1161 EXPORT_SYMBOL(xfrm_dst_ifdown);
1162 
1163 static void xfrm_link_failure(struct sk_buff *skb)
1164 {
1165 	/* Impossible. Such dst must be popped before reaches point of failure. */
1166 	return;
1167 }
1168 
1169 static struct dst_entry *xfrm_negative_advice(struct dst_entry *dst)
1170 {
1171 	if (dst) {
1172 		if (dst->obsolete) {
1173 			dst_release(dst);
1174 			dst = NULL;
1175 		}
1176 	}
1177 	return dst;
1178 }
1179 
1180 static void xfrm_prune_bundles(int (*func)(struct dst_entry *))
1181 {
1182 	int i;
1183 	struct xfrm_policy *pol;
1184 	struct dst_entry *dst, **dstp, *gc_list = NULL;
1185 
1186 	read_lock_bh(&xfrm_policy_lock);
1187 	for (i=0; i<2*XFRM_POLICY_MAX; i++) {
1188 		for (pol = xfrm_policy_list[i]; pol; pol = pol->next) {
1189 			write_lock(&pol->lock);
1190 			dstp = &pol->bundles;
1191 			while ((dst=*dstp) != NULL) {
1192 				if (func(dst)) {
1193 					*dstp = dst->next;
1194 					dst->next = gc_list;
1195 					gc_list = dst;
1196 				} else {
1197 					dstp = &dst->next;
1198 				}
1199 			}
1200 			write_unlock(&pol->lock);
1201 		}
1202 	}
1203 	read_unlock_bh(&xfrm_policy_lock);
1204 
1205 	while (gc_list) {
1206 		dst = gc_list;
1207 		gc_list = dst->next;
1208 		dst_free(dst);
1209 	}
1210 }
1211 
1212 static int unused_bundle(struct dst_entry *dst)
1213 {
1214 	return !atomic_read(&dst->__refcnt);
1215 }
1216 
1217 static void __xfrm_garbage_collect(void)
1218 {
1219 	xfrm_prune_bundles(unused_bundle);
1220 }
1221 
1222 int xfrm_flush_bundles(void)
1223 {
1224 	xfrm_prune_bundles(stale_bundle);
1225 	return 0;
1226 }
1227 
1228 static int always_true(struct dst_entry *dst)
1229 {
1230 	return 1;
1231 }
1232 
1233 void xfrm_flush_all_bundles(void)
1234 {
1235 	xfrm_prune_bundles(always_true);
1236 }
1237 
1238 void xfrm_init_pmtu(struct dst_entry *dst)
1239 {
1240 	do {
1241 		struct xfrm_dst *xdst = (struct xfrm_dst *)dst;
1242 		u32 pmtu, route_mtu_cached;
1243 
1244 		pmtu = dst_mtu(dst->child);
1245 		xdst->child_mtu_cached = pmtu;
1246 
1247 		pmtu = xfrm_state_mtu(dst->xfrm, pmtu);
1248 
1249 		route_mtu_cached = dst_mtu(xdst->route);
1250 		xdst->route_mtu_cached = route_mtu_cached;
1251 
1252 		if (pmtu > route_mtu_cached)
1253 			pmtu = route_mtu_cached;
1254 
1255 		dst->metrics[RTAX_MTU-1] = pmtu;
1256 	} while ((dst = dst->next));
1257 }
1258 
1259 EXPORT_SYMBOL(xfrm_init_pmtu);
1260 
1261 /* Check that the bundle accepts the flow and its components are
1262  * still valid.
1263  */
1264 
1265 int xfrm_bundle_ok(struct xfrm_dst *first, struct flowi *fl, int family)
1266 {
1267 	struct dst_entry *dst = &first->u.dst;
1268 	struct xfrm_dst *last;
1269 	u32 mtu;
1270 
1271 	if (!dst_check(dst->path, ((struct xfrm_dst *)dst)->path_cookie) ||
1272 	    (dst->dev && !netif_running(dst->dev)))
1273 		return 0;
1274 
1275 	last = NULL;
1276 
1277 	do {
1278 		struct xfrm_dst *xdst = (struct xfrm_dst *)dst;
1279 
1280 		if (fl && !xfrm_selector_match(&dst->xfrm->sel, fl, family))
1281 			return 0;
1282 		if (dst->xfrm->km.state != XFRM_STATE_VALID)
1283 			return 0;
1284 
1285 		mtu = dst_mtu(dst->child);
1286 		if (xdst->child_mtu_cached != mtu) {
1287 			last = xdst;
1288 			xdst->child_mtu_cached = mtu;
1289 		}
1290 
1291 		if (!dst_check(xdst->route, xdst->route_cookie))
1292 			return 0;
1293 		mtu = dst_mtu(xdst->route);
1294 		if (xdst->route_mtu_cached != mtu) {
1295 			last = xdst;
1296 			xdst->route_mtu_cached = mtu;
1297 		}
1298 
1299 		dst = dst->child;
1300 	} while (dst->xfrm);
1301 
1302 	if (likely(!last))
1303 		return 1;
1304 
1305 	mtu = last->child_mtu_cached;
1306 	for (;;) {
1307 		dst = &last->u.dst;
1308 
1309 		mtu = xfrm_state_mtu(dst->xfrm, mtu);
1310 		if (mtu > last->route_mtu_cached)
1311 			mtu = last->route_mtu_cached;
1312 		dst->metrics[RTAX_MTU-1] = mtu;
1313 
1314 		if (last == first)
1315 			break;
1316 
1317 		last = last->u.next;
1318 		last->child_mtu_cached = mtu;
1319 	}
1320 
1321 	return 1;
1322 }
1323 
1324 EXPORT_SYMBOL(xfrm_bundle_ok);
1325 
1326 int xfrm_policy_register_afinfo(struct xfrm_policy_afinfo *afinfo)
1327 {
1328 	int err = 0;
1329 	if (unlikely(afinfo == NULL))
1330 		return -EINVAL;
1331 	if (unlikely(afinfo->family >= NPROTO))
1332 		return -EAFNOSUPPORT;
1333 	write_lock_bh(&xfrm_policy_afinfo_lock);
1334 	if (unlikely(xfrm_policy_afinfo[afinfo->family] != NULL))
1335 		err = -ENOBUFS;
1336 	else {
1337 		struct dst_ops *dst_ops = afinfo->dst_ops;
1338 		if (likely(dst_ops->kmem_cachep == NULL))
1339 			dst_ops->kmem_cachep = xfrm_dst_cache;
1340 		if (likely(dst_ops->check == NULL))
1341 			dst_ops->check = xfrm_dst_check;
1342 		if (likely(dst_ops->negative_advice == NULL))
1343 			dst_ops->negative_advice = xfrm_negative_advice;
1344 		if (likely(dst_ops->link_failure == NULL))
1345 			dst_ops->link_failure = xfrm_link_failure;
1346 		if (likely(afinfo->garbage_collect == NULL))
1347 			afinfo->garbage_collect = __xfrm_garbage_collect;
1348 		xfrm_policy_afinfo[afinfo->family] = afinfo;
1349 	}
1350 	write_unlock_bh(&xfrm_policy_afinfo_lock);
1351 	return err;
1352 }
1353 EXPORT_SYMBOL(xfrm_policy_register_afinfo);
1354 
1355 int xfrm_policy_unregister_afinfo(struct xfrm_policy_afinfo *afinfo)
1356 {
1357 	int err = 0;
1358 	if (unlikely(afinfo == NULL))
1359 		return -EINVAL;
1360 	if (unlikely(afinfo->family >= NPROTO))
1361 		return -EAFNOSUPPORT;
1362 	write_lock_bh(&xfrm_policy_afinfo_lock);
1363 	if (likely(xfrm_policy_afinfo[afinfo->family] != NULL)) {
1364 		if (unlikely(xfrm_policy_afinfo[afinfo->family] != afinfo))
1365 			err = -EINVAL;
1366 		else {
1367 			struct dst_ops *dst_ops = afinfo->dst_ops;
1368 			xfrm_policy_afinfo[afinfo->family] = NULL;
1369 			dst_ops->kmem_cachep = NULL;
1370 			dst_ops->check = NULL;
1371 			dst_ops->negative_advice = NULL;
1372 			dst_ops->link_failure = NULL;
1373 			afinfo->garbage_collect = NULL;
1374 		}
1375 	}
1376 	write_unlock_bh(&xfrm_policy_afinfo_lock);
1377 	return err;
1378 }
1379 EXPORT_SYMBOL(xfrm_policy_unregister_afinfo);
1380 
1381 static struct xfrm_policy_afinfo *xfrm_policy_get_afinfo(unsigned short family)
1382 {
1383 	struct xfrm_policy_afinfo *afinfo;
1384 	if (unlikely(family >= NPROTO))
1385 		return NULL;
1386 	read_lock(&xfrm_policy_afinfo_lock);
1387 	afinfo = xfrm_policy_afinfo[family];
1388 	if (unlikely(!afinfo))
1389 		read_unlock(&xfrm_policy_afinfo_lock);
1390 	return afinfo;
1391 }
1392 
1393 static void xfrm_policy_put_afinfo(struct xfrm_policy_afinfo *afinfo)
1394 {
1395 	read_unlock(&xfrm_policy_afinfo_lock);
1396 }
1397 
1398 static struct xfrm_policy_afinfo *xfrm_policy_lock_afinfo(unsigned int family)
1399 {
1400 	struct xfrm_policy_afinfo *afinfo;
1401 	if (unlikely(family >= NPROTO))
1402 		return NULL;
1403 	write_lock_bh(&xfrm_policy_afinfo_lock);
1404 	afinfo = xfrm_policy_afinfo[family];
1405 	if (unlikely(!afinfo))
1406 		write_unlock_bh(&xfrm_policy_afinfo_lock);
1407 	return afinfo;
1408 }
1409 
1410 static void xfrm_policy_unlock_afinfo(struct xfrm_policy_afinfo *afinfo)
1411 {
1412 	write_unlock_bh(&xfrm_policy_afinfo_lock);
1413 }
1414 
1415 static int xfrm_dev_event(struct notifier_block *this, unsigned long event, void *ptr)
1416 {
1417 	switch (event) {
1418 	case NETDEV_DOWN:
1419 		xfrm_flush_bundles();
1420 	}
1421 	return NOTIFY_DONE;
1422 }
1423 
1424 static struct notifier_block xfrm_dev_notifier = {
1425 	xfrm_dev_event,
1426 	NULL,
1427 	0
1428 };
1429 
1430 static void __init xfrm_policy_init(void)
1431 {
1432 	xfrm_dst_cache = kmem_cache_create("xfrm_dst_cache",
1433 					   sizeof(struct xfrm_dst),
1434 					   0, SLAB_HWCACHE_ALIGN,
1435 					   NULL, NULL);
1436 	if (!xfrm_dst_cache)
1437 		panic("XFRM: failed to allocate xfrm_dst_cache\n");
1438 
1439 	INIT_WORK(&xfrm_policy_gc_work, xfrm_policy_gc_task, NULL);
1440 	register_netdevice_notifier(&xfrm_dev_notifier);
1441 }
1442 
1443 void __init xfrm_init(void)
1444 {
1445 	xfrm_state_init();
1446 	xfrm_policy_init();
1447 	xfrm_input_init();
1448 }
1449 
1450