xref: /linux/net/xfrm/xfrm_policy.c (revision f24e9f586b377749dff37554696cf3a105540c94)
1 /*
2  * xfrm_policy.c
3  *
4  * Changes:
5  *	Mitsuru KANDA @USAGI
6  * 	Kazunori MIYAZAWA @USAGI
7  * 	Kunihiro Ishiguro <kunihiro@ipinfusion.com>
8  * 		IPv6 support
9  * 	Kazunori MIYAZAWA @USAGI
10  * 	YOSHIFUJI Hideaki
11  * 		Split up af-specific portion
12  *	Derek Atkins <derek@ihtfp.com>		Add the post_input processor
13  *
14  */
15 
16 #include <linux/slab.h>
17 #include <linux/kmod.h>
18 #include <linux/list.h>
19 #include <linux/spinlock.h>
20 #include <linux/workqueue.h>
21 #include <linux/notifier.h>
22 #include <linux/netdevice.h>
23 #include <linux/netfilter.h>
24 #include <linux/module.h>
25 #include <net/xfrm.h>
26 #include <net/ip.h>
27 
28 DEFINE_MUTEX(xfrm_cfg_mutex);
29 EXPORT_SYMBOL(xfrm_cfg_mutex);
30 
31 static DEFINE_RWLOCK(xfrm_policy_lock);
32 
33 struct xfrm_policy *xfrm_policy_list[XFRM_POLICY_MAX*2];
34 EXPORT_SYMBOL(xfrm_policy_list);
35 
36 static DEFINE_RWLOCK(xfrm_policy_afinfo_lock);
37 static struct xfrm_policy_afinfo *xfrm_policy_afinfo[NPROTO];
38 
39 static kmem_cache_t *xfrm_dst_cache __read_mostly;
40 
41 static struct work_struct xfrm_policy_gc_work;
42 static struct list_head xfrm_policy_gc_list =
43 	LIST_HEAD_INIT(xfrm_policy_gc_list);
44 static DEFINE_SPINLOCK(xfrm_policy_gc_lock);
45 
46 static struct xfrm_policy_afinfo *xfrm_policy_get_afinfo(unsigned short family);
47 static void xfrm_policy_put_afinfo(struct xfrm_policy_afinfo *afinfo);
48 static struct xfrm_policy_afinfo *xfrm_policy_lock_afinfo(unsigned int family);
49 static void xfrm_policy_unlock_afinfo(struct xfrm_policy_afinfo *afinfo);
50 
51 int xfrm_register_type(struct xfrm_type *type, unsigned short family)
52 {
53 	struct xfrm_policy_afinfo *afinfo = xfrm_policy_lock_afinfo(family);
54 	struct xfrm_type **typemap;
55 	int err = 0;
56 
57 	if (unlikely(afinfo == NULL))
58 		return -EAFNOSUPPORT;
59 	typemap = afinfo->type_map;
60 
61 	if (likely(typemap[type->proto] == NULL))
62 		typemap[type->proto] = type;
63 	else
64 		err = -EEXIST;
65 	xfrm_policy_unlock_afinfo(afinfo);
66 	return err;
67 }
68 EXPORT_SYMBOL(xfrm_register_type);
69 
70 int xfrm_unregister_type(struct xfrm_type *type, unsigned short family)
71 {
72 	struct xfrm_policy_afinfo *afinfo = xfrm_policy_lock_afinfo(family);
73 	struct xfrm_type **typemap;
74 	int err = 0;
75 
76 	if (unlikely(afinfo == NULL))
77 		return -EAFNOSUPPORT;
78 	typemap = afinfo->type_map;
79 
80 	if (unlikely(typemap[type->proto] != type))
81 		err = -ENOENT;
82 	else
83 		typemap[type->proto] = NULL;
84 	xfrm_policy_unlock_afinfo(afinfo);
85 	return err;
86 }
87 EXPORT_SYMBOL(xfrm_unregister_type);
88 
89 struct xfrm_type *xfrm_get_type(u8 proto, unsigned short family)
90 {
91 	struct xfrm_policy_afinfo *afinfo;
92 	struct xfrm_type **typemap;
93 	struct xfrm_type *type;
94 	int modload_attempted = 0;
95 
96 retry:
97 	afinfo = xfrm_policy_get_afinfo(family);
98 	if (unlikely(afinfo == NULL))
99 		return NULL;
100 	typemap = afinfo->type_map;
101 
102 	type = typemap[proto];
103 	if (unlikely(type && !try_module_get(type->owner)))
104 		type = NULL;
105 	if (!type && !modload_attempted) {
106 		xfrm_policy_put_afinfo(afinfo);
107 		request_module("xfrm-type-%d-%d",
108 			       (int) family, (int) proto);
109 		modload_attempted = 1;
110 		goto retry;
111 	}
112 
113 	xfrm_policy_put_afinfo(afinfo);
114 	return type;
115 }
116 
117 int xfrm_dst_lookup(struct xfrm_dst **dst, struct flowi *fl,
118 		    unsigned short family)
119 {
120 	struct xfrm_policy_afinfo *afinfo = xfrm_policy_get_afinfo(family);
121 	int err = 0;
122 
123 	if (unlikely(afinfo == NULL))
124 		return -EAFNOSUPPORT;
125 
126 	if (likely(afinfo->dst_lookup != NULL))
127 		err = afinfo->dst_lookup(dst, fl);
128 	else
129 		err = -EINVAL;
130 	xfrm_policy_put_afinfo(afinfo);
131 	return err;
132 }
133 EXPORT_SYMBOL(xfrm_dst_lookup);
134 
135 void xfrm_put_type(struct xfrm_type *type)
136 {
137 	module_put(type->owner);
138 }
139 
140 int xfrm_register_mode(struct xfrm_mode *mode, int family)
141 {
142 	struct xfrm_policy_afinfo *afinfo;
143 	struct xfrm_mode **modemap;
144 	int err;
145 
146 	if (unlikely(mode->encap >= XFRM_MODE_MAX))
147 		return -EINVAL;
148 
149 	afinfo = xfrm_policy_lock_afinfo(family);
150 	if (unlikely(afinfo == NULL))
151 		return -EAFNOSUPPORT;
152 
153 	err = -EEXIST;
154 	modemap = afinfo->mode_map;
155 	if (likely(modemap[mode->encap] == NULL)) {
156 		modemap[mode->encap] = mode;
157 		err = 0;
158 	}
159 
160 	xfrm_policy_unlock_afinfo(afinfo);
161 	return err;
162 }
163 EXPORT_SYMBOL(xfrm_register_mode);
164 
165 int xfrm_unregister_mode(struct xfrm_mode *mode, int family)
166 {
167 	struct xfrm_policy_afinfo *afinfo;
168 	struct xfrm_mode **modemap;
169 	int err;
170 
171 	if (unlikely(mode->encap >= XFRM_MODE_MAX))
172 		return -EINVAL;
173 
174 	afinfo = xfrm_policy_lock_afinfo(family);
175 	if (unlikely(afinfo == NULL))
176 		return -EAFNOSUPPORT;
177 
178 	err = -ENOENT;
179 	modemap = afinfo->mode_map;
180 	if (likely(modemap[mode->encap] == mode)) {
181 		modemap[mode->encap] = NULL;
182 		err = 0;
183 	}
184 
185 	xfrm_policy_unlock_afinfo(afinfo);
186 	return err;
187 }
188 EXPORT_SYMBOL(xfrm_unregister_mode);
189 
190 struct xfrm_mode *xfrm_get_mode(unsigned int encap, int family)
191 {
192 	struct xfrm_policy_afinfo *afinfo;
193 	struct xfrm_mode *mode;
194 	int modload_attempted = 0;
195 
196 	if (unlikely(encap >= XFRM_MODE_MAX))
197 		return NULL;
198 
199 retry:
200 	afinfo = xfrm_policy_get_afinfo(family);
201 	if (unlikely(afinfo == NULL))
202 		return NULL;
203 
204 	mode = afinfo->mode_map[encap];
205 	if (unlikely(mode && !try_module_get(mode->owner)))
206 		mode = NULL;
207 	if (!mode && !modload_attempted) {
208 		xfrm_policy_put_afinfo(afinfo);
209 		request_module("xfrm-mode-%d-%d", family, encap);
210 		modload_attempted = 1;
211 		goto retry;
212 	}
213 
214 	xfrm_policy_put_afinfo(afinfo);
215 	return mode;
216 }
217 
218 void xfrm_put_mode(struct xfrm_mode *mode)
219 {
220 	module_put(mode->owner);
221 }
222 
223 static inline unsigned long make_jiffies(long secs)
224 {
225 	if (secs >= (MAX_SCHEDULE_TIMEOUT-1)/HZ)
226 		return MAX_SCHEDULE_TIMEOUT-1;
227 	else
228 	        return secs*HZ;
229 }
230 
231 static void xfrm_policy_timer(unsigned long data)
232 {
233 	struct xfrm_policy *xp = (struct xfrm_policy*)data;
234 	unsigned long now = (unsigned long)xtime.tv_sec;
235 	long next = LONG_MAX;
236 	int warn = 0;
237 	int dir;
238 
239 	read_lock(&xp->lock);
240 
241 	if (xp->dead)
242 		goto out;
243 
244 	dir = xfrm_policy_id2dir(xp->index);
245 
246 	if (xp->lft.hard_add_expires_seconds) {
247 		long tmo = xp->lft.hard_add_expires_seconds +
248 			xp->curlft.add_time - now;
249 		if (tmo <= 0)
250 			goto expired;
251 		if (tmo < next)
252 			next = tmo;
253 	}
254 	if (xp->lft.hard_use_expires_seconds) {
255 		long tmo = xp->lft.hard_use_expires_seconds +
256 			(xp->curlft.use_time ? : xp->curlft.add_time) - now;
257 		if (tmo <= 0)
258 			goto expired;
259 		if (tmo < next)
260 			next = tmo;
261 	}
262 	if (xp->lft.soft_add_expires_seconds) {
263 		long tmo = xp->lft.soft_add_expires_seconds +
264 			xp->curlft.add_time - now;
265 		if (tmo <= 0) {
266 			warn = 1;
267 			tmo = XFRM_KM_TIMEOUT;
268 		}
269 		if (tmo < next)
270 			next = tmo;
271 	}
272 	if (xp->lft.soft_use_expires_seconds) {
273 		long tmo = xp->lft.soft_use_expires_seconds +
274 			(xp->curlft.use_time ? : xp->curlft.add_time) - now;
275 		if (tmo <= 0) {
276 			warn = 1;
277 			tmo = XFRM_KM_TIMEOUT;
278 		}
279 		if (tmo < next)
280 			next = tmo;
281 	}
282 
283 	if (warn)
284 		km_policy_expired(xp, dir, 0, 0);
285 	if (next != LONG_MAX &&
286 	    !mod_timer(&xp->timer, jiffies + make_jiffies(next)))
287 		xfrm_pol_hold(xp);
288 
289 out:
290 	read_unlock(&xp->lock);
291 	xfrm_pol_put(xp);
292 	return;
293 
294 expired:
295 	read_unlock(&xp->lock);
296 	if (!xfrm_policy_delete(xp, dir))
297 		km_policy_expired(xp, dir, 1, 0);
298 	xfrm_pol_put(xp);
299 }
300 
301 
302 /* Allocate xfrm_policy. Not used here, it is supposed to be used by pfkeyv2
303  * SPD calls.
304  */
305 
306 struct xfrm_policy *xfrm_policy_alloc(gfp_t gfp)
307 {
308 	struct xfrm_policy *policy;
309 
310 	policy = kzalloc(sizeof(struct xfrm_policy), gfp);
311 
312 	if (policy) {
313 		atomic_set(&policy->refcnt, 1);
314 		rwlock_init(&policy->lock);
315 		init_timer(&policy->timer);
316 		policy->timer.data = (unsigned long)policy;
317 		policy->timer.function = xfrm_policy_timer;
318 	}
319 	return policy;
320 }
321 EXPORT_SYMBOL(xfrm_policy_alloc);
322 
323 /* Destroy xfrm_policy: descendant resources must be released to this moment. */
324 
325 void __xfrm_policy_destroy(struct xfrm_policy *policy)
326 {
327 	BUG_ON(!policy->dead);
328 
329 	BUG_ON(policy->bundles);
330 
331 	if (del_timer(&policy->timer))
332 		BUG();
333 
334 	security_xfrm_policy_free(policy);
335 	kfree(policy);
336 }
337 EXPORT_SYMBOL(__xfrm_policy_destroy);
338 
339 static void xfrm_policy_gc_kill(struct xfrm_policy *policy)
340 {
341 	struct dst_entry *dst;
342 
343 	while ((dst = policy->bundles) != NULL) {
344 		policy->bundles = dst->next;
345 		dst_free(dst);
346 	}
347 
348 	if (del_timer(&policy->timer))
349 		atomic_dec(&policy->refcnt);
350 
351 	if (atomic_read(&policy->refcnt) > 1)
352 		flow_cache_flush();
353 
354 	xfrm_pol_put(policy);
355 }
356 
357 static void xfrm_policy_gc_task(void *data)
358 {
359 	struct xfrm_policy *policy;
360 	struct list_head *entry, *tmp;
361 	struct list_head gc_list = LIST_HEAD_INIT(gc_list);
362 
363 	spin_lock_bh(&xfrm_policy_gc_lock);
364 	list_splice_init(&xfrm_policy_gc_list, &gc_list);
365 	spin_unlock_bh(&xfrm_policy_gc_lock);
366 
367 	list_for_each_safe(entry, tmp, &gc_list) {
368 		policy = list_entry(entry, struct xfrm_policy, list);
369 		xfrm_policy_gc_kill(policy);
370 	}
371 }
372 
373 /* Rule must be locked. Release descentant resources, announce
374  * entry dead. The rule must be unlinked from lists to the moment.
375  */
376 
377 static void xfrm_policy_kill(struct xfrm_policy *policy)
378 {
379 	int dead;
380 
381 	write_lock_bh(&policy->lock);
382 	dead = policy->dead;
383 	policy->dead = 1;
384 	write_unlock_bh(&policy->lock);
385 
386 	if (unlikely(dead)) {
387 		WARN_ON(1);
388 		return;
389 	}
390 
391 	spin_lock(&xfrm_policy_gc_lock);
392 	list_add(&policy->list, &xfrm_policy_gc_list);
393 	spin_unlock(&xfrm_policy_gc_lock);
394 
395 	schedule_work(&xfrm_policy_gc_work);
396 }
397 
398 /* Generate new index... KAME seems to generate them ordered by cost
399  * of an absolute inpredictability of ordering of rules. This will not pass. */
400 static u32 xfrm_gen_index(int dir)
401 {
402 	u32 idx;
403 	struct xfrm_policy *p;
404 	static u32 idx_generator;
405 
406 	for (;;) {
407 		idx = (idx_generator | dir);
408 		idx_generator += 8;
409 		if (idx == 0)
410 			idx = 8;
411 		for (p = xfrm_policy_list[dir]; p; p = p->next) {
412 			if (p->index == idx)
413 				break;
414 		}
415 		if (!p)
416 			return idx;
417 	}
418 }
419 
420 int xfrm_policy_insert(int dir, struct xfrm_policy *policy, int excl)
421 {
422 	struct xfrm_policy *pol, **p;
423 	struct xfrm_policy *delpol = NULL;
424 	struct xfrm_policy **newpos = NULL;
425 	struct dst_entry *gc_list;
426 
427 	write_lock_bh(&xfrm_policy_lock);
428 	for (p = &xfrm_policy_list[dir]; (pol=*p)!=NULL;) {
429 		if (!delpol && memcmp(&policy->selector, &pol->selector, sizeof(pol->selector)) == 0 &&
430 		    xfrm_sec_ctx_match(pol->security, policy->security)) {
431 			if (excl) {
432 				write_unlock_bh(&xfrm_policy_lock);
433 				return -EEXIST;
434 			}
435 			*p = pol->next;
436 			delpol = pol;
437 			if (policy->priority > pol->priority)
438 				continue;
439 		} else if (policy->priority >= pol->priority) {
440 			p = &pol->next;
441 			continue;
442 		}
443 		if (!newpos)
444 			newpos = p;
445 		if (delpol)
446 			break;
447 		p = &pol->next;
448 	}
449 	if (newpos)
450 		p = newpos;
451 	xfrm_pol_hold(policy);
452 	policy->next = *p;
453 	*p = policy;
454 	atomic_inc(&flow_cache_genid);
455 	policy->index = delpol ? delpol->index : xfrm_gen_index(dir);
456 	policy->curlft.add_time = (unsigned long)xtime.tv_sec;
457 	policy->curlft.use_time = 0;
458 	if (!mod_timer(&policy->timer, jiffies + HZ))
459 		xfrm_pol_hold(policy);
460 	write_unlock_bh(&xfrm_policy_lock);
461 
462 	if (delpol)
463 		xfrm_policy_kill(delpol);
464 
465 	read_lock_bh(&xfrm_policy_lock);
466 	gc_list = NULL;
467 	for (policy = policy->next; policy; policy = policy->next) {
468 		struct dst_entry *dst;
469 
470 		write_lock(&policy->lock);
471 		dst = policy->bundles;
472 		if (dst) {
473 			struct dst_entry *tail = dst;
474 			while (tail->next)
475 				tail = tail->next;
476 			tail->next = gc_list;
477 			gc_list = dst;
478 
479 			policy->bundles = NULL;
480 		}
481 		write_unlock(&policy->lock);
482 	}
483 	read_unlock_bh(&xfrm_policy_lock);
484 
485 	while (gc_list) {
486 		struct dst_entry *dst = gc_list;
487 
488 		gc_list = dst->next;
489 		dst_free(dst);
490 	}
491 
492 	return 0;
493 }
494 EXPORT_SYMBOL(xfrm_policy_insert);
495 
496 struct xfrm_policy *xfrm_policy_bysel_ctx(int dir, struct xfrm_selector *sel,
497 					  struct xfrm_sec_ctx *ctx, int delete)
498 {
499 	struct xfrm_policy *pol, **p;
500 
501 	write_lock_bh(&xfrm_policy_lock);
502 	for (p = &xfrm_policy_list[dir]; (pol=*p)!=NULL; p = &pol->next) {
503 		if ((memcmp(sel, &pol->selector, sizeof(*sel)) == 0) &&
504 		    (xfrm_sec_ctx_match(ctx, pol->security))) {
505 			xfrm_pol_hold(pol);
506 			if (delete)
507 				*p = pol->next;
508 			break;
509 		}
510 	}
511 	write_unlock_bh(&xfrm_policy_lock);
512 
513 	if (pol && delete) {
514 		atomic_inc(&flow_cache_genid);
515 		xfrm_policy_kill(pol);
516 	}
517 	return pol;
518 }
519 EXPORT_SYMBOL(xfrm_policy_bysel_ctx);
520 
521 struct xfrm_policy *xfrm_policy_byid(int dir, u32 id, int delete)
522 {
523 	struct xfrm_policy *pol, **p;
524 
525 	write_lock_bh(&xfrm_policy_lock);
526 	for (p = &xfrm_policy_list[dir]; (pol=*p)!=NULL; p = &pol->next) {
527 		if (pol->index == id) {
528 			xfrm_pol_hold(pol);
529 			if (delete)
530 				*p = pol->next;
531 			break;
532 		}
533 	}
534 	write_unlock_bh(&xfrm_policy_lock);
535 
536 	if (pol && delete) {
537 		atomic_inc(&flow_cache_genid);
538 		xfrm_policy_kill(pol);
539 	}
540 	return pol;
541 }
542 EXPORT_SYMBOL(xfrm_policy_byid);
543 
544 void xfrm_policy_flush(void)
545 {
546 	struct xfrm_policy *xp;
547 	int dir;
548 
549 	write_lock_bh(&xfrm_policy_lock);
550 	for (dir = 0; dir < XFRM_POLICY_MAX; dir++) {
551 		while ((xp = xfrm_policy_list[dir]) != NULL) {
552 			xfrm_policy_list[dir] = xp->next;
553 			write_unlock_bh(&xfrm_policy_lock);
554 
555 			xfrm_policy_kill(xp);
556 
557 			write_lock_bh(&xfrm_policy_lock);
558 		}
559 	}
560 	atomic_inc(&flow_cache_genid);
561 	write_unlock_bh(&xfrm_policy_lock);
562 }
563 EXPORT_SYMBOL(xfrm_policy_flush);
564 
565 int xfrm_policy_walk(int (*func)(struct xfrm_policy *, int, int, void*),
566 		     void *data)
567 {
568 	struct xfrm_policy *xp;
569 	int dir;
570 	int count = 0;
571 	int error = 0;
572 
573 	read_lock_bh(&xfrm_policy_lock);
574 	for (dir = 0; dir < 2*XFRM_POLICY_MAX; dir++) {
575 		for (xp = xfrm_policy_list[dir]; xp; xp = xp->next)
576 			count++;
577 	}
578 
579 	if (count == 0) {
580 		error = -ENOENT;
581 		goto out;
582 	}
583 
584 	for (dir = 0; dir < 2*XFRM_POLICY_MAX; dir++) {
585 		for (xp = xfrm_policy_list[dir]; xp; xp = xp->next) {
586 			error = func(xp, dir%XFRM_POLICY_MAX, --count, data);
587 			if (error)
588 				goto out;
589 		}
590 	}
591 
592 out:
593 	read_unlock_bh(&xfrm_policy_lock);
594 	return error;
595 }
596 EXPORT_SYMBOL(xfrm_policy_walk);
597 
598 /* Find policy to apply to this flow. */
599 
600 static void xfrm_policy_lookup(struct flowi *fl, u32 sk_sid, u16 family, u8 dir,
601 			       void **objp, atomic_t **obj_refp)
602 {
603 	struct xfrm_policy *pol;
604 
605 	read_lock_bh(&xfrm_policy_lock);
606 	for (pol = xfrm_policy_list[dir]; pol; pol = pol->next) {
607 		struct xfrm_selector *sel = &pol->selector;
608 		int match;
609 
610 		if (pol->family != family)
611 			continue;
612 
613 		match = xfrm_selector_match(sel, fl, family);
614 
615 		if (match) {
616  			if (!security_xfrm_policy_lookup(pol, sk_sid, dir)) {
617 				xfrm_pol_hold(pol);
618 				break;
619 			}
620 		}
621 	}
622 	read_unlock_bh(&xfrm_policy_lock);
623 	if ((*objp = (void *) pol) != NULL)
624 		*obj_refp = &pol->refcnt;
625 }
626 
627 static inline int policy_to_flow_dir(int dir)
628 {
629 	if (XFRM_POLICY_IN == FLOW_DIR_IN &&
630  	    XFRM_POLICY_OUT == FLOW_DIR_OUT &&
631  	    XFRM_POLICY_FWD == FLOW_DIR_FWD)
632  		return dir;
633  	switch (dir) {
634  	default:
635  	case XFRM_POLICY_IN:
636  		return FLOW_DIR_IN;
637  	case XFRM_POLICY_OUT:
638  		return FLOW_DIR_OUT;
639  	case XFRM_POLICY_FWD:
640  		return FLOW_DIR_FWD;
641 	};
642 }
643 
644 static struct xfrm_policy *xfrm_sk_policy_lookup(struct sock *sk, int dir, struct flowi *fl, u32 sk_sid)
645 {
646 	struct xfrm_policy *pol;
647 
648 	read_lock_bh(&xfrm_policy_lock);
649 	if ((pol = sk->sk_policy[dir]) != NULL) {
650  		int match = xfrm_selector_match(&pol->selector, fl,
651 						sk->sk_family);
652  		int err = 0;
653 
654 		if (match)
655 		  err = security_xfrm_policy_lookup(pol, sk_sid, policy_to_flow_dir(dir));
656 
657  		if (match && !err)
658 			xfrm_pol_hold(pol);
659 		else
660 			pol = NULL;
661 	}
662 	read_unlock_bh(&xfrm_policy_lock);
663 	return pol;
664 }
665 
666 static void __xfrm_policy_link(struct xfrm_policy *pol, int dir)
667 {
668 	pol->next = xfrm_policy_list[dir];
669 	xfrm_policy_list[dir] = pol;
670 	xfrm_pol_hold(pol);
671 }
672 
673 static struct xfrm_policy *__xfrm_policy_unlink(struct xfrm_policy *pol,
674 						int dir)
675 {
676 	struct xfrm_policy **polp;
677 
678 	for (polp = &xfrm_policy_list[dir];
679 	     *polp != NULL; polp = &(*polp)->next) {
680 		if (*polp == pol) {
681 			*polp = pol->next;
682 			return pol;
683 		}
684 	}
685 	return NULL;
686 }
687 
688 int xfrm_policy_delete(struct xfrm_policy *pol, int dir)
689 {
690 	write_lock_bh(&xfrm_policy_lock);
691 	pol = __xfrm_policy_unlink(pol, dir);
692 	write_unlock_bh(&xfrm_policy_lock);
693 	if (pol) {
694 		if (dir < XFRM_POLICY_MAX)
695 			atomic_inc(&flow_cache_genid);
696 		xfrm_policy_kill(pol);
697 		return 0;
698 	}
699 	return -ENOENT;
700 }
701 EXPORT_SYMBOL(xfrm_policy_delete);
702 
703 int xfrm_sk_policy_insert(struct sock *sk, int dir, struct xfrm_policy *pol)
704 {
705 	struct xfrm_policy *old_pol;
706 
707 	write_lock_bh(&xfrm_policy_lock);
708 	old_pol = sk->sk_policy[dir];
709 	sk->sk_policy[dir] = pol;
710 	if (pol) {
711 		pol->curlft.add_time = (unsigned long)xtime.tv_sec;
712 		pol->index = xfrm_gen_index(XFRM_POLICY_MAX+dir);
713 		__xfrm_policy_link(pol, XFRM_POLICY_MAX+dir);
714 	}
715 	if (old_pol)
716 		__xfrm_policy_unlink(old_pol, XFRM_POLICY_MAX+dir);
717 	write_unlock_bh(&xfrm_policy_lock);
718 
719 	if (old_pol) {
720 		xfrm_policy_kill(old_pol);
721 	}
722 	return 0;
723 }
724 
725 static struct xfrm_policy *clone_policy(struct xfrm_policy *old, int dir)
726 {
727 	struct xfrm_policy *newp = xfrm_policy_alloc(GFP_ATOMIC);
728 
729 	if (newp) {
730 		newp->selector = old->selector;
731 		if (security_xfrm_policy_clone(old, newp)) {
732 			kfree(newp);
733 			return NULL;  /* ENOMEM */
734 		}
735 		newp->lft = old->lft;
736 		newp->curlft = old->curlft;
737 		newp->action = old->action;
738 		newp->flags = old->flags;
739 		newp->xfrm_nr = old->xfrm_nr;
740 		newp->index = old->index;
741 		memcpy(newp->xfrm_vec, old->xfrm_vec,
742 		       newp->xfrm_nr*sizeof(struct xfrm_tmpl));
743 		write_lock_bh(&xfrm_policy_lock);
744 		__xfrm_policy_link(newp, XFRM_POLICY_MAX+dir);
745 		write_unlock_bh(&xfrm_policy_lock);
746 		xfrm_pol_put(newp);
747 	}
748 	return newp;
749 }
750 
751 int __xfrm_sk_clone_policy(struct sock *sk)
752 {
753 	struct xfrm_policy *p0 = sk->sk_policy[0],
754 			   *p1 = sk->sk_policy[1];
755 
756 	sk->sk_policy[0] = sk->sk_policy[1] = NULL;
757 	if (p0 && (sk->sk_policy[0] = clone_policy(p0, 0)) == NULL)
758 		return -ENOMEM;
759 	if (p1 && (sk->sk_policy[1] = clone_policy(p1, 1)) == NULL)
760 		return -ENOMEM;
761 	return 0;
762 }
763 
764 /* Resolve list of templates for the flow, given policy. */
765 
766 static int
767 xfrm_tmpl_resolve(struct xfrm_policy *policy, struct flowi *fl,
768 		  struct xfrm_state **xfrm,
769 		  unsigned short family)
770 {
771 	int nx;
772 	int i, error;
773 	xfrm_address_t *daddr = xfrm_flowi_daddr(fl, family);
774 	xfrm_address_t *saddr = xfrm_flowi_saddr(fl, family);
775 
776 	for (nx=0, i = 0; i < policy->xfrm_nr; i++) {
777 		struct xfrm_state *x;
778 		xfrm_address_t *remote = daddr;
779 		xfrm_address_t *local  = saddr;
780 		struct xfrm_tmpl *tmpl = &policy->xfrm_vec[i];
781 
782 		if (tmpl->mode) {
783 			remote = &tmpl->id.daddr;
784 			local = &tmpl->saddr;
785 		}
786 
787 		x = xfrm_state_find(remote, local, fl, tmpl, policy, &error, family);
788 
789 		if (x && x->km.state == XFRM_STATE_VALID) {
790 			xfrm[nx++] = x;
791 			daddr = remote;
792 			saddr = local;
793 			continue;
794 		}
795 		if (x) {
796 			error = (x->km.state == XFRM_STATE_ERROR ?
797 				 -EINVAL : -EAGAIN);
798 			xfrm_state_put(x);
799 		}
800 
801 		if (!tmpl->optional)
802 			goto fail;
803 	}
804 	return nx;
805 
806 fail:
807 	for (nx--; nx>=0; nx--)
808 		xfrm_state_put(xfrm[nx]);
809 	return error;
810 }
811 
812 /* Check that the bundle accepts the flow and its components are
813  * still valid.
814  */
815 
816 static struct dst_entry *
817 xfrm_find_bundle(struct flowi *fl, struct xfrm_policy *policy, unsigned short family)
818 {
819 	struct dst_entry *x;
820 	struct xfrm_policy_afinfo *afinfo = xfrm_policy_get_afinfo(family);
821 	if (unlikely(afinfo == NULL))
822 		return ERR_PTR(-EINVAL);
823 	x = afinfo->find_bundle(fl, policy);
824 	xfrm_policy_put_afinfo(afinfo);
825 	return x;
826 }
827 
828 /* Allocate chain of dst_entry's, attach known xfrm's, calculate
829  * all the metrics... Shortly, bundle a bundle.
830  */
831 
832 static int
833 xfrm_bundle_create(struct xfrm_policy *policy, struct xfrm_state **xfrm, int nx,
834 		   struct flowi *fl, struct dst_entry **dst_p,
835 		   unsigned short family)
836 {
837 	int err;
838 	struct xfrm_policy_afinfo *afinfo = xfrm_policy_get_afinfo(family);
839 	if (unlikely(afinfo == NULL))
840 		return -EINVAL;
841 	err = afinfo->bundle_create(policy, xfrm, nx, fl, dst_p);
842 	xfrm_policy_put_afinfo(afinfo);
843 	return err;
844 }
845 
846 
847 static int stale_bundle(struct dst_entry *dst);
848 
849 /* Main function: finds/creates a bundle for given flow.
850  *
851  * At the moment we eat a raw IP route. Mostly to speed up lookups
852  * on interfaces with disabled IPsec.
853  */
854 int xfrm_lookup(struct dst_entry **dst_p, struct flowi *fl,
855 		struct sock *sk, int flags)
856 {
857 	struct xfrm_policy *policy;
858 	struct xfrm_state *xfrm[XFRM_MAX_DEPTH];
859 	struct dst_entry *dst, *dst_orig = *dst_p;
860 	int nx = 0;
861 	int err;
862 	u32 genid;
863 	u16 family;
864 	u8 dir = policy_to_flow_dir(XFRM_POLICY_OUT);
865 	u32 sk_sid = security_sk_sid(sk, fl, dir);
866 restart:
867 	genid = atomic_read(&flow_cache_genid);
868 	policy = NULL;
869 	if (sk && sk->sk_policy[1])
870 		policy = xfrm_sk_policy_lookup(sk, XFRM_POLICY_OUT, fl, sk_sid);
871 
872 	if (!policy) {
873 		/* To accelerate a bit...  */
874 		if ((dst_orig->flags & DST_NOXFRM) || !xfrm_policy_list[XFRM_POLICY_OUT])
875 			return 0;
876 
877 		policy = flow_cache_lookup(fl, sk_sid, dst_orig->ops->family,
878 					   dir, xfrm_policy_lookup);
879 	}
880 
881 	if (!policy)
882 		return 0;
883 
884 	family = dst_orig->ops->family;
885 	policy->curlft.use_time = (unsigned long)xtime.tv_sec;
886 
887 	switch (policy->action) {
888 	case XFRM_POLICY_BLOCK:
889 		/* Prohibit the flow */
890 		err = -EPERM;
891 		goto error;
892 
893 	case XFRM_POLICY_ALLOW:
894 		if (policy->xfrm_nr == 0) {
895 			/* Flow passes not transformed. */
896 			xfrm_pol_put(policy);
897 			return 0;
898 		}
899 
900 		/* Try to find matching bundle.
901 		 *
902 		 * LATER: help from flow cache. It is optional, this
903 		 * is required only for output policy.
904 		 */
905 		dst = xfrm_find_bundle(fl, policy, family);
906 		if (IS_ERR(dst)) {
907 			err = PTR_ERR(dst);
908 			goto error;
909 		}
910 
911 		if (dst)
912 			break;
913 
914 		nx = xfrm_tmpl_resolve(policy, fl, xfrm, family);
915 
916 		if (unlikely(nx<0)) {
917 			err = nx;
918 			if (err == -EAGAIN && flags) {
919 				DECLARE_WAITQUEUE(wait, current);
920 
921 				add_wait_queue(&km_waitq, &wait);
922 				set_current_state(TASK_INTERRUPTIBLE);
923 				schedule();
924 				set_current_state(TASK_RUNNING);
925 				remove_wait_queue(&km_waitq, &wait);
926 
927 				nx = xfrm_tmpl_resolve(policy, fl, xfrm, family);
928 
929 				if (nx == -EAGAIN && signal_pending(current)) {
930 					err = -ERESTART;
931 					goto error;
932 				}
933 				if (nx == -EAGAIN ||
934 				    genid != atomic_read(&flow_cache_genid)) {
935 					xfrm_pol_put(policy);
936 					goto restart;
937 				}
938 				err = nx;
939 			}
940 			if (err < 0)
941 				goto error;
942 		}
943 		if (nx == 0) {
944 			/* Flow passes not transformed. */
945 			xfrm_pol_put(policy);
946 			return 0;
947 		}
948 
949 		dst = dst_orig;
950 		err = xfrm_bundle_create(policy, xfrm, nx, fl, &dst, family);
951 
952 		if (unlikely(err)) {
953 			int i;
954 			for (i=0; i<nx; i++)
955 				xfrm_state_put(xfrm[i]);
956 			goto error;
957 		}
958 
959 		write_lock_bh(&policy->lock);
960 		if (unlikely(policy->dead || stale_bundle(dst))) {
961 			/* Wow! While we worked on resolving, this
962 			 * policy has gone. Retry. It is not paranoia,
963 			 * we just cannot enlist new bundle to dead object.
964 			 * We can't enlist stable bundles either.
965 			 */
966 			write_unlock_bh(&policy->lock);
967 			if (dst)
968 				dst_free(dst);
969 
970 			err = -EHOSTUNREACH;
971 			goto error;
972 		}
973 		dst->next = policy->bundles;
974 		policy->bundles = dst;
975 		dst_hold(dst);
976 		write_unlock_bh(&policy->lock);
977 	}
978 	*dst_p = dst;
979 	dst_release(dst_orig);
980 	xfrm_pol_put(policy);
981 	return 0;
982 
983 error:
984 	dst_release(dst_orig);
985 	xfrm_pol_put(policy);
986 	*dst_p = NULL;
987 	return err;
988 }
989 EXPORT_SYMBOL(xfrm_lookup);
990 
991 /* When skb is transformed back to its "native" form, we have to
992  * check policy restrictions. At the moment we make this in maximally
993  * stupid way. Shame on me. :-) Of course, connected sockets must
994  * have policy cached at them.
995  */
996 
997 static inline int
998 xfrm_state_ok(struct xfrm_tmpl *tmpl, struct xfrm_state *x,
999 	      unsigned short family)
1000 {
1001 	if (xfrm_state_kern(x))
1002 		return tmpl->optional && !xfrm_state_addr_cmp(tmpl, x, family);
1003 	return	x->id.proto == tmpl->id.proto &&
1004 		(x->id.spi == tmpl->id.spi || !tmpl->id.spi) &&
1005 		(x->props.reqid == tmpl->reqid || !tmpl->reqid) &&
1006 		x->props.mode == tmpl->mode &&
1007 		(tmpl->aalgos & (1<<x->props.aalgo)) &&
1008 		!(x->props.mode && xfrm_state_addr_cmp(tmpl, x, family));
1009 }
1010 
1011 static inline int
1012 xfrm_policy_ok(struct xfrm_tmpl *tmpl, struct sec_path *sp, int start,
1013 	       unsigned short family)
1014 {
1015 	int idx = start;
1016 
1017 	if (tmpl->optional) {
1018 		if (!tmpl->mode)
1019 			return start;
1020 	} else
1021 		start = -1;
1022 	for (; idx < sp->len; idx++) {
1023 		if (xfrm_state_ok(tmpl, sp->xvec[idx], family))
1024 			return ++idx;
1025 		if (sp->xvec[idx]->props.mode)
1026 			break;
1027 	}
1028 	return start;
1029 }
1030 
1031 int
1032 xfrm_decode_session(struct sk_buff *skb, struct flowi *fl, unsigned short family)
1033 {
1034 	struct xfrm_policy_afinfo *afinfo = xfrm_policy_get_afinfo(family);
1035 
1036 	if (unlikely(afinfo == NULL))
1037 		return -EAFNOSUPPORT;
1038 
1039 	afinfo->decode_session(skb, fl);
1040 	xfrm_policy_put_afinfo(afinfo);
1041 	return 0;
1042 }
1043 EXPORT_SYMBOL(xfrm_decode_session);
1044 
1045 static inline int secpath_has_tunnel(struct sec_path *sp, int k)
1046 {
1047 	for (; k < sp->len; k++) {
1048 		if (sp->xvec[k]->props.mode)
1049 			return 1;
1050 	}
1051 
1052 	return 0;
1053 }
1054 
1055 int __xfrm_policy_check(struct sock *sk, int dir, struct sk_buff *skb,
1056 			unsigned short family)
1057 {
1058 	struct xfrm_policy *pol;
1059 	struct flowi fl;
1060 	u8 fl_dir = policy_to_flow_dir(dir);
1061 	u32 sk_sid;
1062 
1063 	if (xfrm_decode_session(skb, &fl, family) < 0)
1064 		return 0;
1065 	nf_nat_decode_session(skb, &fl, family);
1066 
1067 	sk_sid = security_sk_sid(sk, &fl, fl_dir);
1068 
1069 	/* First, check used SA against their selectors. */
1070 	if (skb->sp) {
1071 		int i;
1072 
1073 		for (i=skb->sp->len-1; i>=0; i--) {
1074 			struct xfrm_state *x = skb->sp->xvec[i];
1075 			if (!xfrm_selector_match(&x->sel, &fl, family))
1076 				return 0;
1077 		}
1078 	}
1079 
1080 	pol = NULL;
1081 	if (sk && sk->sk_policy[dir])
1082 		pol = xfrm_sk_policy_lookup(sk, dir, &fl, sk_sid);
1083 
1084 	if (!pol)
1085 		pol = flow_cache_lookup(&fl, sk_sid, family, fl_dir,
1086 					xfrm_policy_lookup);
1087 
1088 	if (!pol)
1089 		return !skb->sp || !secpath_has_tunnel(skb->sp, 0);
1090 
1091 	pol->curlft.use_time = (unsigned long)xtime.tv_sec;
1092 
1093 	if (pol->action == XFRM_POLICY_ALLOW) {
1094 		struct sec_path *sp;
1095 		static struct sec_path dummy;
1096 		int i, k;
1097 
1098 		if ((sp = skb->sp) == NULL)
1099 			sp = &dummy;
1100 
1101 		/* For each tunnel xfrm, find the first matching tmpl.
1102 		 * For each tmpl before that, find corresponding xfrm.
1103 		 * Order is _important_. Later we will implement
1104 		 * some barriers, but at the moment barriers
1105 		 * are implied between each two transformations.
1106 		 */
1107 		for (i = pol->xfrm_nr-1, k = 0; i >= 0; i--) {
1108 			k = xfrm_policy_ok(pol->xfrm_vec+i, sp, k, family);
1109 			if (k < 0)
1110 				goto reject;
1111 		}
1112 
1113 		if (secpath_has_tunnel(sp, k))
1114 			goto reject;
1115 
1116 		xfrm_pol_put(pol);
1117 		return 1;
1118 	}
1119 
1120 reject:
1121 	xfrm_pol_put(pol);
1122 	return 0;
1123 }
1124 EXPORT_SYMBOL(__xfrm_policy_check);
1125 
1126 int __xfrm_route_forward(struct sk_buff *skb, unsigned short family)
1127 {
1128 	struct flowi fl;
1129 
1130 	if (xfrm_decode_session(skb, &fl, family) < 0)
1131 		return 0;
1132 
1133 	return xfrm_lookup(&skb->dst, &fl, NULL, 0) == 0;
1134 }
1135 EXPORT_SYMBOL(__xfrm_route_forward);
1136 
1137 /* Optimize later using cookies and generation ids. */
1138 
1139 static struct dst_entry *xfrm_dst_check(struct dst_entry *dst, u32 cookie)
1140 {
1141 	/* Code (such as __xfrm4_bundle_create()) sets dst->obsolete
1142 	 * to "-1" to force all XFRM destinations to get validated by
1143 	 * dst_ops->check on every use.  We do this because when a
1144 	 * normal route referenced by an XFRM dst is obsoleted we do
1145 	 * not go looking around for all parent referencing XFRM dsts
1146 	 * so that we can invalidate them.  It is just too much work.
1147 	 * Instead we make the checks here on every use.  For example:
1148 	 *
1149 	 *	XFRM dst A --> IPv4 dst X
1150 	 *
1151 	 * X is the "xdst->route" of A (X is also the "dst->path" of A
1152 	 * in this example).  If X is marked obsolete, "A" will not
1153 	 * notice.  That's what we are validating here via the
1154 	 * stale_bundle() check.
1155 	 *
1156 	 * When a policy's bundle is pruned, we dst_free() the XFRM
1157 	 * dst which causes it's ->obsolete field to be set to a
1158 	 * positive non-zero integer.  If an XFRM dst has been pruned
1159 	 * like this, we want to force a new route lookup.
1160 	 */
1161 	if (dst->obsolete < 0 && !stale_bundle(dst))
1162 		return dst;
1163 
1164 	return NULL;
1165 }
1166 
1167 static int stale_bundle(struct dst_entry *dst)
1168 {
1169 	return !xfrm_bundle_ok((struct xfrm_dst *)dst, NULL, AF_UNSPEC);
1170 }
1171 
1172 void xfrm_dst_ifdown(struct dst_entry *dst, struct net_device *dev)
1173 {
1174 	while ((dst = dst->child) && dst->xfrm && dst->dev == dev) {
1175 		dst->dev = &loopback_dev;
1176 		dev_hold(&loopback_dev);
1177 		dev_put(dev);
1178 	}
1179 }
1180 EXPORT_SYMBOL(xfrm_dst_ifdown);
1181 
1182 static void xfrm_link_failure(struct sk_buff *skb)
1183 {
1184 	/* Impossible. Such dst must be popped before reaches point of failure. */
1185 	return;
1186 }
1187 
1188 static struct dst_entry *xfrm_negative_advice(struct dst_entry *dst)
1189 {
1190 	if (dst) {
1191 		if (dst->obsolete) {
1192 			dst_release(dst);
1193 			dst = NULL;
1194 		}
1195 	}
1196 	return dst;
1197 }
1198 
1199 static void xfrm_prune_bundles(int (*func)(struct dst_entry *))
1200 {
1201 	int i;
1202 	struct xfrm_policy *pol;
1203 	struct dst_entry *dst, **dstp, *gc_list = NULL;
1204 
1205 	read_lock_bh(&xfrm_policy_lock);
1206 	for (i=0; i<2*XFRM_POLICY_MAX; i++) {
1207 		for (pol = xfrm_policy_list[i]; pol; pol = pol->next) {
1208 			write_lock(&pol->lock);
1209 			dstp = &pol->bundles;
1210 			while ((dst=*dstp) != NULL) {
1211 				if (func(dst)) {
1212 					*dstp = dst->next;
1213 					dst->next = gc_list;
1214 					gc_list = dst;
1215 				} else {
1216 					dstp = &dst->next;
1217 				}
1218 			}
1219 			write_unlock(&pol->lock);
1220 		}
1221 	}
1222 	read_unlock_bh(&xfrm_policy_lock);
1223 
1224 	while (gc_list) {
1225 		dst = gc_list;
1226 		gc_list = dst->next;
1227 		dst_free(dst);
1228 	}
1229 }
1230 
1231 static int unused_bundle(struct dst_entry *dst)
1232 {
1233 	return !atomic_read(&dst->__refcnt);
1234 }
1235 
1236 static void __xfrm_garbage_collect(void)
1237 {
1238 	xfrm_prune_bundles(unused_bundle);
1239 }
1240 
1241 int xfrm_flush_bundles(void)
1242 {
1243 	xfrm_prune_bundles(stale_bundle);
1244 	return 0;
1245 }
1246 
1247 static int always_true(struct dst_entry *dst)
1248 {
1249 	return 1;
1250 }
1251 
1252 void xfrm_flush_all_bundles(void)
1253 {
1254 	xfrm_prune_bundles(always_true);
1255 }
1256 
1257 void xfrm_init_pmtu(struct dst_entry *dst)
1258 {
1259 	do {
1260 		struct xfrm_dst *xdst = (struct xfrm_dst *)dst;
1261 		u32 pmtu, route_mtu_cached;
1262 
1263 		pmtu = dst_mtu(dst->child);
1264 		xdst->child_mtu_cached = pmtu;
1265 
1266 		pmtu = xfrm_state_mtu(dst->xfrm, pmtu);
1267 
1268 		route_mtu_cached = dst_mtu(xdst->route);
1269 		xdst->route_mtu_cached = route_mtu_cached;
1270 
1271 		if (pmtu > route_mtu_cached)
1272 			pmtu = route_mtu_cached;
1273 
1274 		dst->metrics[RTAX_MTU-1] = pmtu;
1275 	} while ((dst = dst->next));
1276 }
1277 
1278 EXPORT_SYMBOL(xfrm_init_pmtu);
1279 
1280 /* Check that the bundle accepts the flow and its components are
1281  * still valid.
1282  */
1283 
1284 int xfrm_bundle_ok(struct xfrm_dst *first, struct flowi *fl, int family)
1285 {
1286 	struct dst_entry *dst = &first->u.dst;
1287 	struct xfrm_dst *last;
1288 	u32 mtu;
1289 
1290 	if (!dst_check(dst->path, ((struct xfrm_dst *)dst)->path_cookie) ||
1291 	    (dst->dev && !netif_running(dst->dev)))
1292 		return 0;
1293 
1294 	last = NULL;
1295 
1296 	do {
1297 		struct xfrm_dst *xdst = (struct xfrm_dst *)dst;
1298 
1299 		if (fl && !xfrm_selector_match(&dst->xfrm->sel, fl, family))
1300 			return 0;
1301 		if (dst->xfrm->km.state != XFRM_STATE_VALID)
1302 			return 0;
1303 
1304 		mtu = dst_mtu(dst->child);
1305 		if (xdst->child_mtu_cached != mtu) {
1306 			last = xdst;
1307 			xdst->child_mtu_cached = mtu;
1308 		}
1309 
1310 		if (!dst_check(xdst->route, xdst->route_cookie))
1311 			return 0;
1312 		mtu = dst_mtu(xdst->route);
1313 		if (xdst->route_mtu_cached != mtu) {
1314 			last = xdst;
1315 			xdst->route_mtu_cached = mtu;
1316 		}
1317 
1318 		dst = dst->child;
1319 	} while (dst->xfrm);
1320 
1321 	if (likely(!last))
1322 		return 1;
1323 
1324 	mtu = last->child_mtu_cached;
1325 	for (;;) {
1326 		dst = &last->u.dst;
1327 
1328 		mtu = xfrm_state_mtu(dst->xfrm, mtu);
1329 		if (mtu > last->route_mtu_cached)
1330 			mtu = last->route_mtu_cached;
1331 		dst->metrics[RTAX_MTU-1] = mtu;
1332 
1333 		if (last == first)
1334 			break;
1335 
1336 		last = last->u.next;
1337 		last->child_mtu_cached = mtu;
1338 	}
1339 
1340 	return 1;
1341 }
1342 
1343 EXPORT_SYMBOL(xfrm_bundle_ok);
1344 
1345 int xfrm_policy_register_afinfo(struct xfrm_policy_afinfo *afinfo)
1346 {
1347 	int err = 0;
1348 	if (unlikely(afinfo == NULL))
1349 		return -EINVAL;
1350 	if (unlikely(afinfo->family >= NPROTO))
1351 		return -EAFNOSUPPORT;
1352 	write_lock_bh(&xfrm_policy_afinfo_lock);
1353 	if (unlikely(xfrm_policy_afinfo[afinfo->family] != NULL))
1354 		err = -ENOBUFS;
1355 	else {
1356 		struct dst_ops *dst_ops = afinfo->dst_ops;
1357 		if (likely(dst_ops->kmem_cachep == NULL))
1358 			dst_ops->kmem_cachep = xfrm_dst_cache;
1359 		if (likely(dst_ops->check == NULL))
1360 			dst_ops->check = xfrm_dst_check;
1361 		if (likely(dst_ops->negative_advice == NULL))
1362 			dst_ops->negative_advice = xfrm_negative_advice;
1363 		if (likely(dst_ops->link_failure == NULL))
1364 			dst_ops->link_failure = xfrm_link_failure;
1365 		if (likely(afinfo->garbage_collect == NULL))
1366 			afinfo->garbage_collect = __xfrm_garbage_collect;
1367 		xfrm_policy_afinfo[afinfo->family] = afinfo;
1368 	}
1369 	write_unlock_bh(&xfrm_policy_afinfo_lock);
1370 	return err;
1371 }
1372 EXPORT_SYMBOL(xfrm_policy_register_afinfo);
1373 
1374 int xfrm_policy_unregister_afinfo(struct xfrm_policy_afinfo *afinfo)
1375 {
1376 	int err = 0;
1377 	if (unlikely(afinfo == NULL))
1378 		return -EINVAL;
1379 	if (unlikely(afinfo->family >= NPROTO))
1380 		return -EAFNOSUPPORT;
1381 	write_lock_bh(&xfrm_policy_afinfo_lock);
1382 	if (likely(xfrm_policy_afinfo[afinfo->family] != NULL)) {
1383 		if (unlikely(xfrm_policy_afinfo[afinfo->family] != afinfo))
1384 			err = -EINVAL;
1385 		else {
1386 			struct dst_ops *dst_ops = afinfo->dst_ops;
1387 			xfrm_policy_afinfo[afinfo->family] = NULL;
1388 			dst_ops->kmem_cachep = NULL;
1389 			dst_ops->check = NULL;
1390 			dst_ops->negative_advice = NULL;
1391 			dst_ops->link_failure = NULL;
1392 			afinfo->garbage_collect = NULL;
1393 		}
1394 	}
1395 	write_unlock_bh(&xfrm_policy_afinfo_lock);
1396 	return err;
1397 }
1398 EXPORT_SYMBOL(xfrm_policy_unregister_afinfo);
1399 
1400 static struct xfrm_policy_afinfo *xfrm_policy_get_afinfo(unsigned short family)
1401 {
1402 	struct xfrm_policy_afinfo *afinfo;
1403 	if (unlikely(family >= NPROTO))
1404 		return NULL;
1405 	read_lock(&xfrm_policy_afinfo_lock);
1406 	afinfo = xfrm_policy_afinfo[family];
1407 	if (unlikely(!afinfo))
1408 		read_unlock(&xfrm_policy_afinfo_lock);
1409 	return afinfo;
1410 }
1411 
1412 static void xfrm_policy_put_afinfo(struct xfrm_policy_afinfo *afinfo)
1413 {
1414 	read_unlock(&xfrm_policy_afinfo_lock);
1415 }
1416 
1417 static struct xfrm_policy_afinfo *xfrm_policy_lock_afinfo(unsigned int family)
1418 {
1419 	struct xfrm_policy_afinfo *afinfo;
1420 	if (unlikely(family >= NPROTO))
1421 		return NULL;
1422 	write_lock_bh(&xfrm_policy_afinfo_lock);
1423 	afinfo = xfrm_policy_afinfo[family];
1424 	if (unlikely(!afinfo))
1425 		write_unlock_bh(&xfrm_policy_afinfo_lock);
1426 	return afinfo;
1427 }
1428 
1429 static void xfrm_policy_unlock_afinfo(struct xfrm_policy_afinfo *afinfo)
1430 {
1431 	write_unlock_bh(&xfrm_policy_afinfo_lock);
1432 }
1433 
1434 static int xfrm_dev_event(struct notifier_block *this, unsigned long event, void *ptr)
1435 {
1436 	switch (event) {
1437 	case NETDEV_DOWN:
1438 		xfrm_flush_bundles();
1439 	}
1440 	return NOTIFY_DONE;
1441 }
1442 
1443 static struct notifier_block xfrm_dev_notifier = {
1444 	xfrm_dev_event,
1445 	NULL,
1446 	0
1447 };
1448 
1449 static void __init xfrm_policy_init(void)
1450 {
1451 	xfrm_dst_cache = kmem_cache_create("xfrm_dst_cache",
1452 					   sizeof(struct xfrm_dst),
1453 					   0, SLAB_HWCACHE_ALIGN,
1454 					   NULL, NULL);
1455 	if (!xfrm_dst_cache)
1456 		panic("XFRM: failed to allocate xfrm_dst_cache\n");
1457 
1458 	INIT_WORK(&xfrm_policy_gc_work, xfrm_policy_gc_task, NULL);
1459 	register_netdevice_notifier(&xfrm_dev_notifier);
1460 }
1461 
1462 void __init xfrm_init(void)
1463 {
1464 	xfrm_state_init();
1465 	xfrm_policy_init();
1466 	xfrm_input_init();
1467 }
1468 
1469