xref: /linux/net/xfrm/xfrm_policy.c (revision 36ca1195ad7f760a6af3814cb002bd3a3d4b4db1)
1 /*
2  * xfrm_policy.c
3  *
4  * Changes:
5  *	Mitsuru KANDA @USAGI
6  * 	Kazunori MIYAZAWA @USAGI
7  * 	Kunihiro Ishiguro <kunihiro@ipinfusion.com>
8  * 		IPv6 support
9  * 	Kazunori MIYAZAWA @USAGI
10  * 	YOSHIFUJI Hideaki
11  * 		Split up af-specific portion
12  *	Derek Atkins <derek@ihtfp.com>		Add the post_input processor
13  *
14  */
15 
16 #include <asm/bug.h>
17 #include <linux/config.h>
18 #include <linux/slab.h>
19 #include <linux/kmod.h>
20 #include <linux/list.h>
21 #include <linux/spinlock.h>
22 #include <linux/workqueue.h>
23 #include <linux/notifier.h>
24 #include <linux/netdevice.h>
25 #include <linux/module.h>
26 #include <net/xfrm.h>
27 #include <net/ip.h>
28 
29 DECLARE_MUTEX(xfrm_cfg_sem);
30 EXPORT_SYMBOL(xfrm_cfg_sem);
31 
32 static DEFINE_RWLOCK(xfrm_policy_lock);
33 
34 struct xfrm_policy *xfrm_policy_list[XFRM_POLICY_MAX*2];
35 EXPORT_SYMBOL(xfrm_policy_list);
36 
37 static DEFINE_RWLOCK(xfrm_policy_afinfo_lock);
38 static struct xfrm_policy_afinfo *xfrm_policy_afinfo[NPROTO];
39 
40 static kmem_cache_t *xfrm_dst_cache;
41 
42 static struct work_struct xfrm_policy_gc_work;
43 static struct list_head xfrm_policy_gc_list =
44 	LIST_HEAD_INIT(xfrm_policy_gc_list);
45 static DEFINE_SPINLOCK(xfrm_policy_gc_lock);
46 
47 static struct xfrm_policy_afinfo *xfrm_policy_get_afinfo(unsigned short family);
48 static void xfrm_policy_put_afinfo(struct xfrm_policy_afinfo *afinfo);
49 
50 int xfrm_register_type(struct xfrm_type *type, unsigned short family)
51 {
52 	struct xfrm_policy_afinfo *afinfo = xfrm_policy_get_afinfo(family);
53 	struct xfrm_type_map *typemap;
54 	int err = 0;
55 
56 	if (unlikely(afinfo == NULL))
57 		return -EAFNOSUPPORT;
58 	typemap = afinfo->type_map;
59 
60 	write_lock(&typemap->lock);
61 	if (likely(typemap->map[type->proto] == NULL))
62 		typemap->map[type->proto] = type;
63 	else
64 		err = -EEXIST;
65 	write_unlock(&typemap->lock);
66 	xfrm_policy_put_afinfo(afinfo);
67 	return err;
68 }
69 EXPORT_SYMBOL(xfrm_register_type);
70 
71 int xfrm_unregister_type(struct xfrm_type *type, unsigned short family)
72 {
73 	struct xfrm_policy_afinfo *afinfo = xfrm_policy_get_afinfo(family);
74 	struct xfrm_type_map *typemap;
75 	int err = 0;
76 
77 	if (unlikely(afinfo == NULL))
78 		return -EAFNOSUPPORT;
79 	typemap = afinfo->type_map;
80 
81 	write_lock(&typemap->lock);
82 	if (unlikely(typemap->map[type->proto] != type))
83 		err = -ENOENT;
84 	else
85 		typemap->map[type->proto] = NULL;
86 	write_unlock(&typemap->lock);
87 	xfrm_policy_put_afinfo(afinfo);
88 	return err;
89 }
90 EXPORT_SYMBOL(xfrm_unregister_type);
91 
92 struct xfrm_type *xfrm_get_type(u8 proto, unsigned short family)
93 {
94 	struct xfrm_policy_afinfo *afinfo;
95 	struct xfrm_type_map *typemap;
96 	struct xfrm_type *type;
97 	int modload_attempted = 0;
98 
99 retry:
100 	afinfo = xfrm_policy_get_afinfo(family);
101 	if (unlikely(afinfo == NULL))
102 		return NULL;
103 	typemap = afinfo->type_map;
104 
105 	read_lock(&typemap->lock);
106 	type = typemap->map[proto];
107 	if (unlikely(type && !try_module_get(type->owner)))
108 		type = NULL;
109 	read_unlock(&typemap->lock);
110 	if (!type && !modload_attempted) {
111 		xfrm_policy_put_afinfo(afinfo);
112 		request_module("xfrm-type-%d-%d",
113 			       (int) family, (int) proto);
114 		modload_attempted = 1;
115 		goto retry;
116 	}
117 
118 	xfrm_policy_put_afinfo(afinfo);
119 	return type;
120 }
121 EXPORT_SYMBOL(xfrm_get_type);
122 
123 int xfrm_dst_lookup(struct xfrm_dst **dst, struct flowi *fl,
124 		    unsigned short family)
125 {
126 	struct xfrm_policy_afinfo *afinfo = xfrm_policy_get_afinfo(family);
127 	int err = 0;
128 
129 	if (unlikely(afinfo == NULL))
130 		return -EAFNOSUPPORT;
131 
132 	if (likely(afinfo->dst_lookup != NULL))
133 		err = afinfo->dst_lookup(dst, fl);
134 	else
135 		err = -EINVAL;
136 	xfrm_policy_put_afinfo(afinfo);
137 	return err;
138 }
139 EXPORT_SYMBOL(xfrm_dst_lookup);
140 
141 void xfrm_put_type(struct xfrm_type *type)
142 {
143 	module_put(type->owner);
144 }
145 
146 static inline unsigned long make_jiffies(long secs)
147 {
148 	if (secs >= (MAX_SCHEDULE_TIMEOUT-1)/HZ)
149 		return MAX_SCHEDULE_TIMEOUT-1;
150 	else
151 	        return secs*HZ;
152 }
153 
154 static void xfrm_policy_timer(unsigned long data)
155 {
156 	struct xfrm_policy *xp = (struct xfrm_policy*)data;
157 	unsigned long now = (unsigned long)xtime.tv_sec;
158 	long next = LONG_MAX;
159 	int warn = 0;
160 	int dir;
161 
162 	read_lock(&xp->lock);
163 
164 	if (xp->dead)
165 		goto out;
166 
167 	dir = xp->index & 7;
168 
169 	if (xp->lft.hard_add_expires_seconds) {
170 		long tmo = xp->lft.hard_add_expires_seconds +
171 			xp->curlft.add_time - now;
172 		if (tmo <= 0)
173 			goto expired;
174 		if (tmo < next)
175 			next = tmo;
176 	}
177 	if (xp->lft.hard_use_expires_seconds) {
178 		long tmo = xp->lft.hard_use_expires_seconds +
179 			(xp->curlft.use_time ? : xp->curlft.add_time) - now;
180 		if (tmo <= 0)
181 			goto expired;
182 		if (tmo < next)
183 			next = tmo;
184 	}
185 	if (xp->lft.soft_add_expires_seconds) {
186 		long tmo = xp->lft.soft_add_expires_seconds +
187 			xp->curlft.add_time - now;
188 		if (tmo <= 0) {
189 			warn = 1;
190 			tmo = XFRM_KM_TIMEOUT;
191 		}
192 		if (tmo < next)
193 			next = tmo;
194 	}
195 	if (xp->lft.soft_use_expires_seconds) {
196 		long tmo = xp->lft.soft_use_expires_seconds +
197 			(xp->curlft.use_time ? : xp->curlft.add_time) - now;
198 		if (tmo <= 0) {
199 			warn = 1;
200 			tmo = XFRM_KM_TIMEOUT;
201 		}
202 		if (tmo < next)
203 			next = tmo;
204 	}
205 
206 	if (warn)
207 		km_policy_expired(xp, dir, 0);
208 	if (next != LONG_MAX &&
209 	    !mod_timer(&xp->timer, jiffies + make_jiffies(next)))
210 		xfrm_pol_hold(xp);
211 
212 out:
213 	read_unlock(&xp->lock);
214 	xfrm_pol_put(xp);
215 	return;
216 
217 expired:
218 	read_unlock(&xp->lock);
219 	km_policy_expired(xp, dir, 1);
220 	xfrm_policy_delete(xp, dir);
221 	xfrm_pol_put(xp);
222 }
223 
224 
225 /* Allocate xfrm_policy. Not used here, it is supposed to be used by pfkeyv2
226  * SPD calls.
227  */
228 
229 struct xfrm_policy *xfrm_policy_alloc(int gfp)
230 {
231 	struct xfrm_policy *policy;
232 
233 	policy = kmalloc(sizeof(struct xfrm_policy), gfp);
234 
235 	if (policy) {
236 		memset(policy, 0, sizeof(struct xfrm_policy));
237 		atomic_set(&policy->refcnt, 1);
238 		rwlock_init(&policy->lock);
239 		init_timer(&policy->timer);
240 		policy->timer.data = (unsigned long)policy;
241 		policy->timer.function = xfrm_policy_timer;
242 	}
243 	return policy;
244 }
245 EXPORT_SYMBOL(xfrm_policy_alloc);
246 
247 /* Destroy xfrm_policy: descendant resources must be released to this moment. */
248 
249 void __xfrm_policy_destroy(struct xfrm_policy *policy)
250 {
251 	if (!policy->dead)
252 		BUG();
253 
254 	if (policy->bundles)
255 		BUG();
256 
257 	if (del_timer(&policy->timer))
258 		BUG();
259 
260 	kfree(policy);
261 }
262 EXPORT_SYMBOL(__xfrm_policy_destroy);
263 
264 static void xfrm_policy_gc_kill(struct xfrm_policy *policy)
265 {
266 	struct dst_entry *dst;
267 
268 	while ((dst = policy->bundles) != NULL) {
269 		policy->bundles = dst->next;
270 		dst_free(dst);
271 	}
272 
273 	if (del_timer(&policy->timer))
274 		atomic_dec(&policy->refcnt);
275 
276 	if (atomic_read(&policy->refcnt) > 1)
277 		flow_cache_flush();
278 
279 	xfrm_pol_put(policy);
280 }
281 
282 static void xfrm_policy_gc_task(void *data)
283 {
284 	struct xfrm_policy *policy;
285 	struct list_head *entry, *tmp;
286 	struct list_head gc_list = LIST_HEAD_INIT(gc_list);
287 
288 	spin_lock_bh(&xfrm_policy_gc_lock);
289 	list_splice_init(&xfrm_policy_gc_list, &gc_list);
290 	spin_unlock_bh(&xfrm_policy_gc_lock);
291 
292 	list_for_each_safe(entry, tmp, &gc_list) {
293 		policy = list_entry(entry, struct xfrm_policy, list);
294 		xfrm_policy_gc_kill(policy);
295 	}
296 }
297 
298 /* Rule must be locked. Release descentant resources, announce
299  * entry dead. The rule must be unlinked from lists to the moment.
300  */
301 
302 static void xfrm_policy_kill(struct xfrm_policy *policy)
303 {
304 	int dead;
305 
306 	write_lock_bh(&policy->lock);
307 	dead = policy->dead;
308 	policy->dead = 1;
309 	write_unlock_bh(&policy->lock);
310 
311 	if (unlikely(dead)) {
312 		WARN_ON(1);
313 		return;
314 	}
315 
316 	spin_lock(&xfrm_policy_gc_lock);
317 	list_add(&policy->list, &xfrm_policy_gc_list);
318 	spin_unlock(&xfrm_policy_gc_lock);
319 
320 	schedule_work(&xfrm_policy_gc_work);
321 }
322 
323 /* Generate new index... KAME seems to generate them ordered by cost
324  * of an absolute inpredictability of ordering of rules. This will not pass. */
325 static u32 xfrm_gen_index(int dir)
326 {
327 	u32 idx;
328 	struct xfrm_policy *p;
329 	static u32 idx_generator;
330 
331 	for (;;) {
332 		idx = (idx_generator | dir);
333 		idx_generator += 8;
334 		if (idx == 0)
335 			idx = 8;
336 		for (p = xfrm_policy_list[dir]; p; p = p->next) {
337 			if (p->index == idx)
338 				break;
339 		}
340 		if (!p)
341 			return idx;
342 	}
343 }
344 
345 int xfrm_policy_insert(int dir, struct xfrm_policy *policy, int excl)
346 {
347 	struct xfrm_policy *pol, **p;
348 	struct xfrm_policy *delpol = NULL;
349 	struct xfrm_policy **newpos = NULL;
350 
351 	write_lock_bh(&xfrm_policy_lock);
352 	for (p = &xfrm_policy_list[dir]; (pol=*p)!=NULL;) {
353 		if (!delpol && memcmp(&policy->selector, &pol->selector, sizeof(pol->selector)) == 0) {
354 			if (excl) {
355 				write_unlock_bh(&xfrm_policy_lock);
356 				return -EEXIST;
357 			}
358 			*p = pol->next;
359 			delpol = pol;
360 			if (policy->priority > pol->priority)
361 				continue;
362 		} else if (policy->priority >= pol->priority) {
363 			p = &pol->next;
364 			continue;
365 		}
366 		if (!newpos)
367 			newpos = p;
368 		if (delpol)
369 			break;
370 		p = &pol->next;
371 	}
372 	if (newpos)
373 		p = newpos;
374 	xfrm_pol_hold(policy);
375 	policy->next = *p;
376 	*p = policy;
377 	atomic_inc(&flow_cache_genid);
378 	policy->index = delpol ? delpol->index : xfrm_gen_index(dir);
379 	policy->curlft.add_time = (unsigned long)xtime.tv_sec;
380 	policy->curlft.use_time = 0;
381 	if (!mod_timer(&policy->timer, jiffies + HZ))
382 		xfrm_pol_hold(policy);
383 	write_unlock_bh(&xfrm_policy_lock);
384 
385 	if (delpol) {
386 		xfrm_policy_kill(delpol);
387 	}
388 	return 0;
389 }
390 EXPORT_SYMBOL(xfrm_policy_insert);
391 
392 struct xfrm_policy *xfrm_policy_bysel(int dir, struct xfrm_selector *sel,
393 				      int delete)
394 {
395 	struct xfrm_policy *pol, **p;
396 
397 	write_lock_bh(&xfrm_policy_lock);
398 	for (p = &xfrm_policy_list[dir]; (pol=*p)!=NULL; p = &pol->next) {
399 		if (memcmp(sel, &pol->selector, sizeof(*sel)) == 0) {
400 			xfrm_pol_hold(pol);
401 			if (delete)
402 				*p = pol->next;
403 			break;
404 		}
405 	}
406 	write_unlock_bh(&xfrm_policy_lock);
407 
408 	if (pol && delete) {
409 		atomic_inc(&flow_cache_genid);
410 		xfrm_policy_kill(pol);
411 	}
412 	return pol;
413 }
414 EXPORT_SYMBOL(xfrm_policy_bysel);
415 
416 struct xfrm_policy *xfrm_policy_byid(int dir, u32 id, int delete)
417 {
418 	struct xfrm_policy *pol, **p;
419 
420 	write_lock_bh(&xfrm_policy_lock);
421 	for (p = &xfrm_policy_list[id & 7]; (pol=*p)!=NULL; p = &pol->next) {
422 		if (pol->index == id) {
423 			xfrm_pol_hold(pol);
424 			if (delete)
425 				*p = pol->next;
426 			break;
427 		}
428 	}
429 	write_unlock_bh(&xfrm_policy_lock);
430 
431 	if (pol && delete) {
432 		atomic_inc(&flow_cache_genid);
433 		xfrm_policy_kill(pol);
434 	}
435 	return pol;
436 }
437 EXPORT_SYMBOL(xfrm_policy_byid);
438 
439 void xfrm_policy_flush(void)
440 {
441 	struct xfrm_policy *xp;
442 	int dir;
443 
444 	write_lock_bh(&xfrm_policy_lock);
445 	for (dir = 0; dir < XFRM_POLICY_MAX; dir++) {
446 		while ((xp = xfrm_policy_list[dir]) != NULL) {
447 			xfrm_policy_list[dir] = xp->next;
448 			write_unlock_bh(&xfrm_policy_lock);
449 
450 			xfrm_policy_kill(xp);
451 
452 			write_lock_bh(&xfrm_policy_lock);
453 		}
454 	}
455 	atomic_inc(&flow_cache_genid);
456 	write_unlock_bh(&xfrm_policy_lock);
457 }
458 EXPORT_SYMBOL(xfrm_policy_flush);
459 
460 int xfrm_policy_walk(int (*func)(struct xfrm_policy *, int, int, void*),
461 		     void *data)
462 {
463 	struct xfrm_policy *xp;
464 	int dir;
465 	int count = 0;
466 	int error = 0;
467 
468 	read_lock_bh(&xfrm_policy_lock);
469 	for (dir = 0; dir < 2*XFRM_POLICY_MAX; dir++) {
470 		for (xp = xfrm_policy_list[dir]; xp; xp = xp->next)
471 			count++;
472 	}
473 
474 	if (count == 0) {
475 		error = -ENOENT;
476 		goto out;
477 	}
478 
479 	for (dir = 0; dir < 2*XFRM_POLICY_MAX; dir++) {
480 		for (xp = xfrm_policy_list[dir]; xp; xp = xp->next) {
481 			error = func(xp, dir%XFRM_POLICY_MAX, --count, data);
482 			if (error)
483 				goto out;
484 		}
485 	}
486 
487 out:
488 	read_unlock_bh(&xfrm_policy_lock);
489 	return error;
490 }
491 EXPORT_SYMBOL(xfrm_policy_walk);
492 
493 /* Find policy to apply to this flow. */
494 
495 static void xfrm_policy_lookup(struct flowi *fl, u16 family, u8 dir,
496 			       void **objp, atomic_t **obj_refp)
497 {
498 	struct xfrm_policy *pol;
499 
500 	read_lock_bh(&xfrm_policy_lock);
501 	for (pol = xfrm_policy_list[dir]; pol; pol = pol->next) {
502 		struct xfrm_selector *sel = &pol->selector;
503 		int match;
504 
505 		if (pol->family != family)
506 			continue;
507 
508 		match = xfrm_selector_match(sel, fl, family);
509 		if (match) {
510 			xfrm_pol_hold(pol);
511 			break;
512 		}
513 	}
514 	read_unlock_bh(&xfrm_policy_lock);
515 	if ((*objp = (void *) pol) != NULL)
516 		*obj_refp = &pol->refcnt;
517 }
518 
519 static struct xfrm_policy *xfrm_sk_policy_lookup(struct sock *sk, int dir, struct flowi *fl)
520 {
521 	struct xfrm_policy *pol;
522 
523 	read_lock_bh(&xfrm_policy_lock);
524 	if ((pol = sk->sk_policy[dir]) != NULL) {
525 		int match = xfrm_selector_match(&pol->selector, fl,
526 						sk->sk_family);
527 		if (match)
528 			xfrm_pol_hold(pol);
529 		else
530 			pol = NULL;
531 	}
532 	read_unlock_bh(&xfrm_policy_lock);
533 	return pol;
534 }
535 
536 static void __xfrm_policy_link(struct xfrm_policy *pol, int dir)
537 {
538 	pol->next = xfrm_policy_list[dir];
539 	xfrm_policy_list[dir] = pol;
540 	xfrm_pol_hold(pol);
541 }
542 
543 static struct xfrm_policy *__xfrm_policy_unlink(struct xfrm_policy *pol,
544 						int dir)
545 {
546 	struct xfrm_policy **polp;
547 
548 	for (polp = &xfrm_policy_list[dir];
549 	     *polp != NULL; polp = &(*polp)->next) {
550 		if (*polp == pol) {
551 			*polp = pol->next;
552 			return pol;
553 		}
554 	}
555 	return NULL;
556 }
557 
558 void xfrm_policy_delete(struct xfrm_policy *pol, int dir)
559 {
560 	write_lock_bh(&xfrm_policy_lock);
561 	pol = __xfrm_policy_unlink(pol, dir);
562 	write_unlock_bh(&xfrm_policy_lock);
563 	if (pol) {
564 		if (dir < XFRM_POLICY_MAX)
565 			atomic_inc(&flow_cache_genid);
566 		xfrm_policy_kill(pol);
567 	}
568 }
569 
570 int xfrm_sk_policy_insert(struct sock *sk, int dir, struct xfrm_policy *pol)
571 {
572 	struct xfrm_policy *old_pol;
573 
574 	write_lock_bh(&xfrm_policy_lock);
575 	old_pol = sk->sk_policy[dir];
576 	sk->sk_policy[dir] = pol;
577 	if (pol) {
578 		pol->curlft.add_time = (unsigned long)xtime.tv_sec;
579 		pol->index = xfrm_gen_index(XFRM_POLICY_MAX+dir);
580 		__xfrm_policy_link(pol, XFRM_POLICY_MAX+dir);
581 	}
582 	if (old_pol)
583 		__xfrm_policy_unlink(old_pol, XFRM_POLICY_MAX+dir);
584 	write_unlock_bh(&xfrm_policy_lock);
585 
586 	if (old_pol) {
587 		xfrm_policy_kill(old_pol);
588 	}
589 	return 0;
590 }
591 
592 static struct xfrm_policy *clone_policy(struct xfrm_policy *old, int dir)
593 {
594 	struct xfrm_policy *newp = xfrm_policy_alloc(GFP_ATOMIC);
595 
596 	if (newp) {
597 		newp->selector = old->selector;
598 		newp->lft = old->lft;
599 		newp->curlft = old->curlft;
600 		newp->action = old->action;
601 		newp->flags = old->flags;
602 		newp->xfrm_nr = old->xfrm_nr;
603 		newp->index = old->index;
604 		memcpy(newp->xfrm_vec, old->xfrm_vec,
605 		       newp->xfrm_nr*sizeof(struct xfrm_tmpl));
606 		write_lock_bh(&xfrm_policy_lock);
607 		__xfrm_policy_link(newp, XFRM_POLICY_MAX+dir);
608 		write_unlock_bh(&xfrm_policy_lock);
609 		xfrm_pol_put(newp);
610 	}
611 	return newp;
612 }
613 
614 int __xfrm_sk_clone_policy(struct sock *sk)
615 {
616 	struct xfrm_policy *p0 = sk->sk_policy[0],
617 			   *p1 = sk->sk_policy[1];
618 
619 	sk->sk_policy[0] = sk->sk_policy[1] = NULL;
620 	if (p0 && (sk->sk_policy[0] = clone_policy(p0, 0)) == NULL)
621 		return -ENOMEM;
622 	if (p1 && (sk->sk_policy[1] = clone_policy(p1, 1)) == NULL)
623 		return -ENOMEM;
624 	return 0;
625 }
626 
627 /* Resolve list of templates for the flow, given policy. */
628 
629 static int
630 xfrm_tmpl_resolve(struct xfrm_policy *policy, struct flowi *fl,
631 		  struct xfrm_state **xfrm,
632 		  unsigned short family)
633 {
634 	int nx;
635 	int i, error;
636 	xfrm_address_t *daddr = xfrm_flowi_daddr(fl, family);
637 	xfrm_address_t *saddr = xfrm_flowi_saddr(fl, family);
638 
639 	for (nx=0, i = 0; i < policy->xfrm_nr; i++) {
640 		struct xfrm_state *x;
641 		xfrm_address_t *remote = daddr;
642 		xfrm_address_t *local  = saddr;
643 		struct xfrm_tmpl *tmpl = &policy->xfrm_vec[i];
644 
645 		if (tmpl->mode) {
646 			remote = &tmpl->id.daddr;
647 			local = &tmpl->saddr;
648 		}
649 
650 		x = xfrm_state_find(remote, local, fl, tmpl, policy, &error, family);
651 
652 		if (x && x->km.state == XFRM_STATE_VALID) {
653 			xfrm[nx++] = x;
654 			daddr = remote;
655 			saddr = local;
656 			continue;
657 		}
658 		if (x) {
659 			error = (x->km.state == XFRM_STATE_ERROR ?
660 				 -EINVAL : -EAGAIN);
661 			xfrm_state_put(x);
662 		}
663 
664 		if (!tmpl->optional)
665 			goto fail;
666 	}
667 	return nx;
668 
669 fail:
670 	for (nx--; nx>=0; nx--)
671 		xfrm_state_put(xfrm[nx]);
672 	return error;
673 }
674 
675 /* Check that the bundle accepts the flow and its components are
676  * still valid.
677  */
678 
679 static struct dst_entry *
680 xfrm_find_bundle(struct flowi *fl, struct xfrm_policy *policy, unsigned short family)
681 {
682 	struct dst_entry *x;
683 	struct xfrm_policy_afinfo *afinfo = xfrm_policy_get_afinfo(family);
684 	if (unlikely(afinfo == NULL))
685 		return ERR_PTR(-EINVAL);
686 	x = afinfo->find_bundle(fl, policy);
687 	xfrm_policy_put_afinfo(afinfo);
688 	return x;
689 }
690 
691 /* Allocate chain of dst_entry's, attach known xfrm's, calculate
692  * all the metrics... Shortly, bundle a bundle.
693  */
694 
695 static int
696 xfrm_bundle_create(struct xfrm_policy *policy, struct xfrm_state **xfrm, int nx,
697 		   struct flowi *fl, struct dst_entry **dst_p,
698 		   unsigned short family)
699 {
700 	int err;
701 	struct xfrm_policy_afinfo *afinfo = xfrm_policy_get_afinfo(family);
702 	if (unlikely(afinfo == NULL))
703 		return -EINVAL;
704 	err = afinfo->bundle_create(policy, xfrm, nx, fl, dst_p);
705 	xfrm_policy_put_afinfo(afinfo);
706 	return err;
707 }
708 
709 static inline int policy_to_flow_dir(int dir)
710 {
711 	if (XFRM_POLICY_IN == FLOW_DIR_IN &&
712 	    XFRM_POLICY_OUT == FLOW_DIR_OUT &&
713 	    XFRM_POLICY_FWD == FLOW_DIR_FWD)
714 		return dir;
715 	switch (dir) {
716 	default:
717 	case XFRM_POLICY_IN:
718 		return FLOW_DIR_IN;
719 	case XFRM_POLICY_OUT:
720 		return FLOW_DIR_OUT;
721 	case XFRM_POLICY_FWD:
722 		return FLOW_DIR_FWD;
723 	};
724 }
725 
726 static int stale_bundle(struct dst_entry *dst);
727 
728 /* Main function: finds/creates a bundle for given flow.
729  *
730  * At the moment we eat a raw IP route. Mostly to speed up lookups
731  * on interfaces with disabled IPsec.
732  */
733 int xfrm_lookup(struct dst_entry **dst_p, struct flowi *fl,
734 		struct sock *sk, int flags)
735 {
736 	struct xfrm_policy *policy;
737 	struct xfrm_state *xfrm[XFRM_MAX_DEPTH];
738 	struct dst_entry *dst, *dst_orig = *dst_p;
739 	int nx = 0;
740 	int err;
741 	u32 genid;
742 	u16 family = dst_orig->ops->family;
743 restart:
744 	genid = atomic_read(&flow_cache_genid);
745 	policy = NULL;
746 	if (sk && sk->sk_policy[1])
747 		policy = xfrm_sk_policy_lookup(sk, XFRM_POLICY_OUT, fl);
748 
749 	if (!policy) {
750 		/* To accelerate a bit...  */
751 		if ((dst_orig->flags & DST_NOXFRM) || !xfrm_policy_list[XFRM_POLICY_OUT])
752 			return 0;
753 
754 		policy = flow_cache_lookup(fl, family,
755 					   policy_to_flow_dir(XFRM_POLICY_OUT),
756 					   xfrm_policy_lookup);
757 	}
758 
759 	if (!policy)
760 		return 0;
761 
762 	policy->curlft.use_time = (unsigned long)xtime.tv_sec;
763 
764 	switch (policy->action) {
765 	case XFRM_POLICY_BLOCK:
766 		/* Prohibit the flow */
767 		xfrm_pol_put(policy);
768 		return -EPERM;
769 
770 	case XFRM_POLICY_ALLOW:
771 		if (policy->xfrm_nr == 0) {
772 			/* Flow passes not transformed. */
773 			xfrm_pol_put(policy);
774 			return 0;
775 		}
776 
777 		/* Try to find matching bundle.
778 		 *
779 		 * LATER: help from flow cache. It is optional, this
780 		 * is required only for output policy.
781 		 */
782 		dst = xfrm_find_bundle(fl, policy, family);
783 		if (IS_ERR(dst)) {
784 			xfrm_pol_put(policy);
785 			return PTR_ERR(dst);
786 		}
787 
788 		if (dst)
789 			break;
790 
791 		nx = xfrm_tmpl_resolve(policy, fl, xfrm, family);
792 
793 		if (unlikely(nx<0)) {
794 			err = nx;
795 			if (err == -EAGAIN && flags) {
796 				DECLARE_WAITQUEUE(wait, current);
797 
798 				add_wait_queue(&km_waitq, &wait);
799 				set_current_state(TASK_INTERRUPTIBLE);
800 				schedule();
801 				set_current_state(TASK_RUNNING);
802 				remove_wait_queue(&km_waitq, &wait);
803 
804 				nx = xfrm_tmpl_resolve(policy, fl, xfrm, family);
805 
806 				if (nx == -EAGAIN && signal_pending(current)) {
807 					err = -ERESTART;
808 					goto error;
809 				}
810 				if (nx == -EAGAIN ||
811 				    genid != atomic_read(&flow_cache_genid)) {
812 					xfrm_pol_put(policy);
813 					goto restart;
814 				}
815 				err = nx;
816 			}
817 			if (err < 0)
818 				goto error;
819 		}
820 		if (nx == 0) {
821 			/* Flow passes not transformed. */
822 			xfrm_pol_put(policy);
823 			return 0;
824 		}
825 
826 		dst = dst_orig;
827 		err = xfrm_bundle_create(policy, xfrm, nx, fl, &dst, family);
828 
829 		if (unlikely(err)) {
830 			int i;
831 			for (i=0; i<nx; i++)
832 				xfrm_state_put(xfrm[i]);
833 			goto error;
834 		}
835 
836 		write_lock_bh(&policy->lock);
837 		if (unlikely(policy->dead || stale_bundle(dst))) {
838 			/* Wow! While we worked on resolving, this
839 			 * policy has gone. Retry. It is not paranoia,
840 			 * we just cannot enlist new bundle to dead object.
841 			 * We can't enlist stable bundles either.
842 			 */
843 			write_unlock_bh(&policy->lock);
844 
845 			xfrm_pol_put(policy);
846 			if (dst)
847 				dst_free(dst);
848 			goto restart;
849 		}
850 		dst->next = policy->bundles;
851 		policy->bundles = dst;
852 		dst_hold(dst);
853 		write_unlock_bh(&policy->lock);
854 	}
855 	*dst_p = dst;
856 	dst_release(dst_orig);
857 	xfrm_pol_put(policy);
858 	return 0;
859 
860 error:
861 	dst_release(dst_orig);
862 	xfrm_pol_put(policy);
863 	*dst_p = NULL;
864 	return err;
865 }
866 EXPORT_SYMBOL(xfrm_lookup);
867 
868 /* When skb is transformed back to its "native" form, we have to
869  * check policy restrictions. At the moment we make this in maximally
870  * stupid way. Shame on me. :-) Of course, connected sockets must
871  * have policy cached at them.
872  */
873 
874 static inline int
875 xfrm_state_ok(struct xfrm_tmpl *tmpl, struct xfrm_state *x,
876 	      unsigned short family)
877 {
878 	if (xfrm_state_kern(x))
879 		return tmpl->optional && !xfrm_state_addr_cmp(tmpl, x, family);
880 	return	x->id.proto == tmpl->id.proto &&
881 		(x->id.spi == tmpl->id.spi || !tmpl->id.spi) &&
882 		(x->props.reqid == tmpl->reqid || !tmpl->reqid) &&
883 		x->props.mode == tmpl->mode &&
884 		(tmpl->aalgos & (1<<x->props.aalgo)) &&
885 		!(x->props.mode && xfrm_state_addr_cmp(tmpl, x, family));
886 }
887 
888 static inline int
889 xfrm_policy_ok(struct xfrm_tmpl *tmpl, struct sec_path *sp, int start,
890 	       unsigned short family)
891 {
892 	int idx = start;
893 
894 	if (tmpl->optional) {
895 		if (!tmpl->mode)
896 			return start;
897 	} else
898 		start = -1;
899 	for (; idx < sp->len; idx++) {
900 		if (xfrm_state_ok(tmpl, sp->x[idx].xvec, family))
901 			return ++idx;
902 		if (sp->x[idx].xvec->props.mode)
903 			break;
904 	}
905 	return start;
906 }
907 
908 static int
909 _decode_session(struct sk_buff *skb, struct flowi *fl, unsigned short family)
910 {
911 	struct xfrm_policy_afinfo *afinfo = xfrm_policy_get_afinfo(family);
912 
913 	if (unlikely(afinfo == NULL))
914 		return -EAFNOSUPPORT;
915 
916 	afinfo->decode_session(skb, fl);
917 	xfrm_policy_put_afinfo(afinfo);
918 	return 0;
919 }
920 
921 static inline int secpath_has_tunnel(struct sec_path *sp, int k)
922 {
923 	for (; k < sp->len; k++) {
924 		if (sp->x[k].xvec->props.mode)
925 			return 1;
926 	}
927 
928 	return 0;
929 }
930 
931 int __xfrm_policy_check(struct sock *sk, int dir, struct sk_buff *skb,
932 			unsigned short family)
933 {
934 	struct xfrm_policy *pol;
935 	struct flowi fl;
936 
937 	if (_decode_session(skb, &fl, family) < 0)
938 		return 0;
939 
940 	/* First, check used SA against their selectors. */
941 	if (skb->sp) {
942 		int i;
943 
944 		for (i=skb->sp->len-1; i>=0; i--) {
945 		  struct sec_decap_state *xvec = &(skb->sp->x[i]);
946 			if (!xfrm_selector_match(&xvec->xvec->sel, &fl, family))
947 				return 0;
948 
949 			/* If there is a post_input processor, try running it */
950 			if (xvec->xvec->type->post_input &&
951 			    (xvec->xvec->type->post_input)(xvec->xvec,
952 							   &(xvec->decap),
953 							   skb) != 0)
954 				return 0;
955 		}
956 	}
957 
958 	pol = NULL;
959 	if (sk && sk->sk_policy[dir])
960 		pol = xfrm_sk_policy_lookup(sk, dir, &fl);
961 
962 	if (!pol)
963 		pol = flow_cache_lookup(&fl, family,
964 					policy_to_flow_dir(dir),
965 					xfrm_policy_lookup);
966 
967 	if (!pol)
968 		return !skb->sp || !secpath_has_tunnel(skb->sp, 0);
969 
970 	pol->curlft.use_time = (unsigned long)xtime.tv_sec;
971 
972 	if (pol->action == XFRM_POLICY_ALLOW) {
973 		struct sec_path *sp;
974 		static struct sec_path dummy;
975 		int i, k;
976 
977 		if ((sp = skb->sp) == NULL)
978 			sp = &dummy;
979 
980 		/* For each tunnel xfrm, find the first matching tmpl.
981 		 * For each tmpl before that, find corresponding xfrm.
982 		 * Order is _important_. Later we will implement
983 		 * some barriers, but at the moment barriers
984 		 * are implied between each two transformations.
985 		 */
986 		for (i = pol->xfrm_nr-1, k = 0; i >= 0; i--) {
987 			k = xfrm_policy_ok(pol->xfrm_vec+i, sp, k, family);
988 			if (k < 0)
989 				goto reject;
990 		}
991 
992 		if (secpath_has_tunnel(sp, k))
993 			goto reject;
994 
995 		xfrm_pol_put(pol);
996 		return 1;
997 	}
998 
999 reject:
1000 	xfrm_pol_put(pol);
1001 	return 0;
1002 }
1003 EXPORT_SYMBOL(__xfrm_policy_check);
1004 
1005 int __xfrm_route_forward(struct sk_buff *skb, unsigned short family)
1006 {
1007 	struct flowi fl;
1008 
1009 	if (_decode_session(skb, &fl, family) < 0)
1010 		return 0;
1011 
1012 	return xfrm_lookup(&skb->dst, &fl, NULL, 0) == 0;
1013 }
1014 EXPORT_SYMBOL(__xfrm_route_forward);
1015 
1016 /* Optimize later using cookies and generation ids. */
1017 
1018 static struct dst_entry *xfrm_dst_check(struct dst_entry *dst, u32 cookie)
1019 {
1020 	if (!stale_bundle(dst))
1021 		return dst;
1022 
1023 	return NULL;
1024 }
1025 
1026 static int stale_bundle(struct dst_entry *dst)
1027 {
1028 	return !xfrm_bundle_ok((struct xfrm_dst *)dst, NULL, AF_UNSPEC);
1029 }
1030 
1031 void xfrm_dst_ifdown(struct dst_entry *dst, struct net_device *dev)
1032 {
1033 	while ((dst = dst->child) && dst->xfrm && dst->dev == dev) {
1034 		dst->dev = &loopback_dev;
1035 		dev_hold(&loopback_dev);
1036 		dev_put(dev);
1037 	}
1038 }
1039 EXPORT_SYMBOL(xfrm_dst_ifdown);
1040 
1041 static void xfrm_link_failure(struct sk_buff *skb)
1042 {
1043 	/* Impossible. Such dst must be popped before reaches point of failure. */
1044 	return;
1045 }
1046 
1047 static struct dst_entry *xfrm_negative_advice(struct dst_entry *dst)
1048 {
1049 	if (dst) {
1050 		if (dst->obsolete) {
1051 			dst_release(dst);
1052 			dst = NULL;
1053 		}
1054 	}
1055 	return dst;
1056 }
1057 
1058 static void xfrm_prune_bundles(int (*func)(struct dst_entry *))
1059 {
1060 	int i;
1061 	struct xfrm_policy *pol;
1062 	struct dst_entry *dst, **dstp, *gc_list = NULL;
1063 
1064 	read_lock_bh(&xfrm_policy_lock);
1065 	for (i=0; i<2*XFRM_POLICY_MAX; i++) {
1066 		for (pol = xfrm_policy_list[i]; pol; pol = pol->next) {
1067 			write_lock(&pol->lock);
1068 			dstp = &pol->bundles;
1069 			while ((dst=*dstp) != NULL) {
1070 				if (func(dst)) {
1071 					*dstp = dst->next;
1072 					dst->next = gc_list;
1073 					gc_list = dst;
1074 				} else {
1075 					dstp = &dst->next;
1076 				}
1077 			}
1078 			write_unlock(&pol->lock);
1079 		}
1080 	}
1081 	read_unlock_bh(&xfrm_policy_lock);
1082 
1083 	while (gc_list) {
1084 		dst = gc_list;
1085 		gc_list = dst->next;
1086 		dst_free(dst);
1087 	}
1088 }
1089 
1090 static int unused_bundle(struct dst_entry *dst)
1091 {
1092 	return !atomic_read(&dst->__refcnt);
1093 }
1094 
1095 static void __xfrm_garbage_collect(void)
1096 {
1097 	xfrm_prune_bundles(unused_bundle);
1098 }
1099 
1100 int xfrm_flush_bundles(void)
1101 {
1102 	xfrm_prune_bundles(stale_bundle);
1103 	return 0;
1104 }
1105 
1106 void xfrm_init_pmtu(struct dst_entry *dst)
1107 {
1108 	do {
1109 		struct xfrm_dst *xdst = (struct xfrm_dst *)dst;
1110 		u32 pmtu, route_mtu_cached;
1111 
1112 		pmtu = dst_mtu(dst->child);
1113 		xdst->child_mtu_cached = pmtu;
1114 
1115 		pmtu = xfrm_state_mtu(dst->xfrm, pmtu);
1116 
1117 		route_mtu_cached = dst_mtu(xdst->route);
1118 		xdst->route_mtu_cached = route_mtu_cached;
1119 
1120 		if (pmtu > route_mtu_cached)
1121 			pmtu = route_mtu_cached;
1122 
1123 		dst->metrics[RTAX_MTU-1] = pmtu;
1124 	} while ((dst = dst->next));
1125 }
1126 
1127 EXPORT_SYMBOL(xfrm_init_pmtu);
1128 
1129 /* Check that the bundle accepts the flow and its components are
1130  * still valid.
1131  */
1132 
1133 int xfrm_bundle_ok(struct xfrm_dst *first, struct flowi *fl, int family)
1134 {
1135 	struct dst_entry *dst = &first->u.dst;
1136 	struct xfrm_dst *last;
1137 	u32 mtu;
1138 
1139 	if (!dst_check(dst->path, ((struct xfrm_dst *)dst)->path_cookie) ||
1140 	    (dst->dev && !netif_running(dst->dev)))
1141 		return 0;
1142 
1143 	last = NULL;
1144 
1145 	do {
1146 		struct xfrm_dst *xdst = (struct xfrm_dst *)dst;
1147 
1148 		if (fl && !xfrm_selector_match(&dst->xfrm->sel, fl, family))
1149 			return 0;
1150 		if (dst->xfrm->km.state != XFRM_STATE_VALID)
1151 			return 0;
1152 
1153 		mtu = dst_mtu(dst->child);
1154 		if (xdst->child_mtu_cached != mtu) {
1155 			last = xdst;
1156 			xdst->child_mtu_cached = mtu;
1157 		}
1158 
1159 		if (!dst_check(xdst->route, xdst->route_cookie))
1160 			return 0;
1161 		mtu = dst_mtu(xdst->route);
1162 		if (xdst->route_mtu_cached != mtu) {
1163 			last = xdst;
1164 			xdst->route_mtu_cached = mtu;
1165 		}
1166 
1167 		dst = dst->child;
1168 	} while (dst->xfrm);
1169 
1170 	if (likely(!last))
1171 		return 1;
1172 
1173 	mtu = last->child_mtu_cached;
1174 	for (;;) {
1175 		dst = &last->u.dst;
1176 
1177 		mtu = xfrm_state_mtu(dst->xfrm, mtu);
1178 		if (mtu > last->route_mtu_cached)
1179 			mtu = last->route_mtu_cached;
1180 		dst->metrics[RTAX_MTU-1] = mtu;
1181 
1182 		if (last == first)
1183 			break;
1184 
1185 		last = last->u.next;
1186 		last->child_mtu_cached = mtu;
1187 	}
1188 
1189 	return 1;
1190 }
1191 
1192 EXPORT_SYMBOL(xfrm_bundle_ok);
1193 
1194 /* Well... that's _TASK_. We need to scan through transformation
1195  * list and figure out what mss tcp should generate in order to
1196  * final datagram fit to mtu. Mama mia... :-)
1197  *
1198  * Apparently, some easy way exists, but we used to choose the most
1199  * bizarre ones. :-) So, raising Kalashnikov... tra-ta-ta.
1200  *
1201  * Consider this function as something like dark humour. :-)
1202  */
1203 static int xfrm_get_mss(struct dst_entry *dst, u32 mtu)
1204 {
1205 	int res = mtu - dst->header_len;
1206 
1207 	for (;;) {
1208 		struct dst_entry *d = dst;
1209 		int m = res;
1210 
1211 		do {
1212 			struct xfrm_state *x = d->xfrm;
1213 			if (x) {
1214 				spin_lock_bh(&x->lock);
1215 				if (x->km.state == XFRM_STATE_VALID &&
1216 				    x->type && x->type->get_max_size)
1217 					m = x->type->get_max_size(d->xfrm, m);
1218 				else
1219 					m += x->props.header_len;
1220 				spin_unlock_bh(&x->lock);
1221 			}
1222 		} while ((d = d->child) != NULL);
1223 
1224 		if (m <= mtu)
1225 			break;
1226 		res -= (m - mtu);
1227 		if (res < 88)
1228 			return mtu;
1229 	}
1230 
1231 	return res + dst->header_len;
1232 }
1233 
1234 int xfrm_policy_register_afinfo(struct xfrm_policy_afinfo *afinfo)
1235 {
1236 	int err = 0;
1237 	if (unlikely(afinfo == NULL))
1238 		return -EINVAL;
1239 	if (unlikely(afinfo->family >= NPROTO))
1240 		return -EAFNOSUPPORT;
1241 	write_lock(&xfrm_policy_afinfo_lock);
1242 	if (unlikely(xfrm_policy_afinfo[afinfo->family] != NULL))
1243 		err = -ENOBUFS;
1244 	else {
1245 		struct dst_ops *dst_ops = afinfo->dst_ops;
1246 		if (likely(dst_ops->kmem_cachep == NULL))
1247 			dst_ops->kmem_cachep = xfrm_dst_cache;
1248 		if (likely(dst_ops->check == NULL))
1249 			dst_ops->check = xfrm_dst_check;
1250 		if (likely(dst_ops->negative_advice == NULL))
1251 			dst_ops->negative_advice = xfrm_negative_advice;
1252 		if (likely(dst_ops->link_failure == NULL))
1253 			dst_ops->link_failure = xfrm_link_failure;
1254 		if (likely(dst_ops->get_mss == NULL))
1255 			dst_ops->get_mss = xfrm_get_mss;
1256 		if (likely(afinfo->garbage_collect == NULL))
1257 			afinfo->garbage_collect = __xfrm_garbage_collect;
1258 		xfrm_policy_afinfo[afinfo->family] = afinfo;
1259 	}
1260 	write_unlock(&xfrm_policy_afinfo_lock);
1261 	return err;
1262 }
1263 EXPORT_SYMBOL(xfrm_policy_register_afinfo);
1264 
1265 int xfrm_policy_unregister_afinfo(struct xfrm_policy_afinfo *afinfo)
1266 {
1267 	int err = 0;
1268 	if (unlikely(afinfo == NULL))
1269 		return -EINVAL;
1270 	if (unlikely(afinfo->family >= NPROTO))
1271 		return -EAFNOSUPPORT;
1272 	write_lock(&xfrm_policy_afinfo_lock);
1273 	if (likely(xfrm_policy_afinfo[afinfo->family] != NULL)) {
1274 		if (unlikely(xfrm_policy_afinfo[afinfo->family] != afinfo))
1275 			err = -EINVAL;
1276 		else {
1277 			struct dst_ops *dst_ops = afinfo->dst_ops;
1278 			xfrm_policy_afinfo[afinfo->family] = NULL;
1279 			dst_ops->kmem_cachep = NULL;
1280 			dst_ops->check = NULL;
1281 			dst_ops->negative_advice = NULL;
1282 			dst_ops->link_failure = NULL;
1283 			dst_ops->get_mss = NULL;
1284 			afinfo->garbage_collect = NULL;
1285 		}
1286 	}
1287 	write_unlock(&xfrm_policy_afinfo_lock);
1288 	return err;
1289 }
1290 EXPORT_SYMBOL(xfrm_policy_unregister_afinfo);
1291 
1292 static struct xfrm_policy_afinfo *xfrm_policy_get_afinfo(unsigned short family)
1293 {
1294 	struct xfrm_policy_afinfo *afinfo;
1295 	if (unlikely(family >= NPROTO))
1296 		return NULL;
1297 	read_lock(&xfrm_policy_afinfo_lock);
1298 	afinfo = xfrm_policy_afinfo[family];
1299 	if (likely(afinfo != NULL))
1300 		read_lock(&afinfo->lock);
1301 	read_unlock(&xfrm_policy_afinfo_lock);
1302 	return afinfo;
1303 }
1304 
1305 static void xfrm_policy_put_afinfo(struct xfrm_policy_afinfo *afinfo)
1306 {
1307 	if (unlikely(afinfo == NULL))
1308 		return;
1309 	read_unlock(&afinfo->lock);
1310 }
1311 
1312 static int xfrm_dev_event(struct notifier_block *this, unsigned long event, void *ptr)
1313 {
1314 	switch (event) {
1315 	case NETDEV_DOWN:
1316 		xfrm_flush_bundles();
1317 	}
1318 	return NOTIFY_DONE;
1319 }
1320 
1321 static struct notifier_block xfrm_dev_notifier = {
1322 	xfrm_dev_event,
1323 	NULL,
1324 	0
1325 };
1326 
1327 static void __init xfrm_policy_init(void)
1328 {
1329 	xfrm_dst_cache = kmem_cache_create("xfrm_dst_cache",
1330 					   sizeof(struct xfrm_dst),
1331 					   0, SLAB_HWCACHE_ALIGN,
1332 					   NULL, NULL);
1333 	if (!xfrm_dst_cache)
1334 		panic("XFRM: failed to allocate xfrm_dst_cache\n");
1335 
1336 	INIT_WORK(&xfrm_policy_gc_work, xfrm_policy_gc_task, NULL);
1337 	register_netdevice_notifier(&xfrm_dev_notifier);
1338 }
1339 
1340 void __init xfrm_init(void)
1341 {
1342 	xfrm_state_init();
1343 	xfrm_policy_init();
1344 	xfrm_input_init();
1345 }
1346 
1347