xref: /linux/net/xfrm/xfrm_policy.c (revision 13abf8130139c2ccd4962a7e5a8902be5e6cb5a7)
1 /*
2  * xfrm_policy.c
3  *
4  * Changes:
5  *	Mitsuru KANDA @USAGI
6  * 	Kazunori MIYAZAWA @USAGI
7  * 	Kunihiro Ishiguro <kunihiro@ipinfusion.com>
8  * 		IPv6 support
9  * 	Kazunori MIYAZAWA @USAGI
10  * 	YOSHIFUJI Hideaki
11  * 		Split up af-specific portion
12  *	Derek Atkins <derek@ihtfp.com>		Add the post_input processor
13  *
14  */
15 
16 #include <asm/bug.h>
17 #include <linux/config.h>
18 #include <linux/slab.h>
19 #include <linux/kmod.h>
20 #include <linux/list.h>
21 #include <linux/spinlock.h>
22 #include <linux/workqueue.h>
23 #include <linux/notifier.h>
24 #include <linux/netdevice.h>
25 #include <linux/module.h>
26 #include <net/xfrm.h>
27 #include <net/ip.h>
28 
29 DECLARE_MUTEX(xfrm_cfg_sem);
30 EXPORT_SYMBOL(xfrm_cfg_sem);
31 
32 static DEFINE_RWLOCK(xfrm_policy_lock);
33 
34 struct xfrm_policy *xfrm_policy_list[XFRM_POLICY_MAX*2];
35 EXPORT_SYMBOL(xfrm_policy_list);
36 
37 static DEFINE_RWLOCK(xfrm_policy_afinfo_lock);
38 static struct xfrm_policy_afinfo *xfrm_policy_afinfo[NPROTO];
39 
40 static kmem_cache_t *xfrm_dst_cache __read_mostly;
41 
42 static struct work_struct xfrm_policy_gc_work;
43 static struct list_head xfrm_policy_gc_list =
44 	LIST_HEAD_INIT(xfrm_policy_gc_list);
45 static DEFINE_SPINLOCK(xfrm_policy_gc_lock);
46 
47 static struct xfrm_policy_afinfo *xfrm_policy_get_afinfo(unsigned short family);
48 static void xfrm_policy_put_afinfo(struct xfrm_policy_afinfo *afinfo);
49 
50 int xfrm_register_type(struct xfrm_type *type, unsigned short family)
51 {
52 	struct xfrm_policy_afinfo *afinfo = xfrm_policy_get_afinfo(family);
53 	struct xfrm_type_map *typemap;
54 	int err = 0;
55 
56 	if (unlikely(afinfo == NULL))
57 		return -EAFNOSUPPORT;
58 	typemap = afinfo->type_map;
59 
60 	write_lock(&typemap->lock);
61 	if (likely(typemap->map[type->proto] == NULL))
62 		typemap->map[type->proto] = type;
63 	else
64 		err = -EEXIST;
65 	write_unlock(&typemap->lock);
66 	xfrm_policy_put_afinfo(afinfo);
67 	return err;
68 }
69 EXPORT_SYMBOL(xfrm_register_type);
70 
71 int xfrm_unregister_type(struct xfrm_type *type, unsigned short family)
72 {
73 	struct xfrm_policy_afinfo *afinfo = xfrm_policy_get_afinfo(family);
74 	struct xfrm_type_map *typemap;
75 	int err = 0;
76 
77 	if (unlikely(afinfo == NULL))
78 		return -EAFNOSUPPORT;
79 	typemap = afinfo->type_map;
80 
81 	write_lock(&typemap->lock);
82 	if (unlikely(typemap->map[type->proto] != type))
83 		err = -ENOENT;
84 	else
85 		typemap->map[type->proto] = NULL;
86 	write_unlock(&typemap->lock);
87 	xfrm_policy_put_afinfo(afinfo);
88 	return err;
89 }
90 EXPORT_SYMBOL(xfrm_unregister_type);
91 
92 struct xfrm_type *xfrm_get_type(u8 proto, unsigned short family)
93 {
94 	struct xfrm_policy_afinfo *afinfo;
95 	struct xfrm_type_map *typemap;
96 	struct xfrm_type *type;
97 	int modload_attempted = 0;
98 
99 retry:
100 	afinfo = xfrm_policy_get_afinfo(family);
101 	if (unlikely(afinfo == NULL))
102 		return NULL;
103 	typemap = afinfo->type_map;
104 
105 	read_lock(&typemap->lock);
106 	type = typemap->map[proto];
107 	if (unlikely(type && !try_module_get(type->owner)))
108 		type = NULL;
109 	read_unlock(&typemap->lock);
110 	if (!type && !modload_attempted) {
111 		xfrm_policy_put_afinfo(afinfo);
112 		request_module("xfrm-type-%d-%d",
113 			       (int) family, (int) proto);
114 		modload_attempted = 1;
115 		goto retry;
116 	}
117 
118 	xfrm_policy_put_afinfo(afinfo);
119 	return type;
120 }
121 
122 int xfrm_dst_lookup(struct xfrm_dst **dst, struct flowi *fl,
123 		    unsigned short family)
124 {
125 	struct xfrm_policy_afinfo *afinfo = xfrm_policy_get_afinfo(family);
126 	int err = 0;
127 
128 	if (unlikely(afinfo == NULL))
129 		return -EAFNOSUPPORT;
130 
131 	if (likely(afinfo->dst_lookup != NULL))
132 		err = afinfo->dst_lookup(dst, fl);
133 	else
134 		err = -EINVAL;
135 	xfrm_policy_put_afinfo(afinfo);
136 	return err;
137 }
138 EXPORT_SYMBOL(xfrm_dst_lookup);
139 
140 void xfrm_put_type(struct xfrm_type *type)
141 {
142 	module_put(type->owner);
143 }
144 
145 static inline unsigned long make_jiffies(long secs)
146 {
147 	if (secs >= (MAX_SCHEDULE_TIMEOUT-1)/HZ)
148 		return MAX_SCHEDULE_TIMEOUT-1;
149 	else
150 	        return secs*HZ;
151 }
152 
153 static void xfrm_policy_timer(unsigned long data)
154 {
155 	struct xfrm_policy *xp = (struct xfrm_policy*)data;
156 	unsigned long now = (unsigned long)xtime.tv_sec;
157 	long next = LONG_MAX;
158 	int warn = 0;
159 	int dir;
160 
161 	read_lock(&xp->lock);
162 
163 	if (xp->dead)
164 		goto out;
165 
166 	dir = xp->index & 7;
167 
168 	if (xp->lft.hard_add_expires_seconds) {
169 		long tmo = xp->lft.hard_add_expires_seconds +
170 			xp->curlft.add_time - now;
171 		if (tmo <= 0)
172 			goto expired;
173 		if (tmo < next)
174 			next = tmo;
175 	}
176 	if (xp->lft.hard_use_expires_seconds) {
177 		long tmo = xp->lft.hard_use_expires_seconds +
178 			(xp->curlft.use_time ? : xp->curlft.add_time) - now;
179 		if (tmo <= 0)
180 			goto expired;
181 		if (tmo < next)
182 			next = tmo;
183 	}
184 	if (xp->lft.soft_add_expires_seconds) {
185 		long tmo = xp->lft.soft_add_expires_seconds +
186 			xp->curlft.add_time - now;
187 		if (tmo <= 0) {
188 			warn = 1;
189 			tmo = XFRM_KM_TIMEOUT;
190 		}
191 		if (tmo < next)
192 			next = tmo;
193 	}
194 	if (xp->lft.soft_use_expires_seconds) {
195 		long tmo = xp->lft.soft_use_expires_seconds +
196 			(xp->curlft.use_time ? : xp->curlft.add_time) - now;
197 		if (tmo <= 0) {
198 			warn = 1;
199 			tmo = XFRM_KM_TIMEOUT;
200 		}
201 		if (tmo < next)
202 			next = tmo;
203 	}
204 
205 	if (warn)
206 		km_policy_expired(xp, dir, 0);
207 	if (next != LONG_MAX &&
208 	    !mod_timer(&xp->timer, jiffies + make_jiffies(next)))
209 		xfrm_pol_hold(xp);
210 
211 out:
212 	read_unlock(&xp->lock);
213 	xfrm_pol_put(xp);
214 	return;
215 
216 expired:
217 	read_unlock(&xp->lock);
218 	if (!xfrm_policy_delete(xp, dir))
219 		km_policy_expired(xp, dir, 1);
220 	xfrm_pol_put(xp);
221 }
222 
223 
224 /* Allocate xfrm_policy. Not used here, it is supposed to be used by pfkeyv2
225  * SPD calls.
226  */
227 
228 struct xfrm_policy *xfrm_policy_alloc(int gfp)
229 {
230 	struct xfrm_policy *policy;
231 
232 	policy = kmalloc(sizeof(struct xfrm_policy), gfp);
233 
234 	if (policy) {
235 		memset(policy, 0, sizeof(struct xfrm_policy));
236 		atomic_set(&policy->refcnt, 1);
237 		rwlock_init(&policy->lock);
238 		init_timer(&policy->timer);
239 		policy->timer.data = (unsigned long)policy;
240 		policy->timer.function = xfrm_policy_timer;
241 	}
242 	return policy;
243 }
244 EXPORT_SYMBOL(xfrm_policy_alloc);
245 
246 /* Destroy xfrm_policy: descendant resources must be released to this moment. */
247 
248 void __xfrm_policy_destroy(struct xfrm_policy *policy)
249 {
250 	if (!policy->dead)
251 		BUG();
252 
253 	if (policy->bundles)
254 		BUG();
255 
256 	if (del_timer(&policy->timer))
257 		BUG();
258 
259 	kfree(policy);
260 }
261 EXPORT_SYMBOL(__xfrm_policy_destroy);
262 
263 static void xfrm_policy_gc_kill(struct xfrm_policy *policy)
264 {
265 	struct dst_entry *dst;
266 
267 	while ((dst = policy->bundles) != NULL) {
268 		policy->bundles = dst->next;
269 		dst_free(dst);
270 	}
271 
272 	if (del_timer(&policy->timer))
273 		atomic_dec(&policy->refcnt);
274 
275 	if (atomic_read(&policy->refcnt) > 1)
276 		flow_cache_flush();
277 
278 	xfrm_pol_put(policy);
279 }
280 
281 static void xfrm_policy_gc_task(void *data)
282 {
283 	struct xfrm_policy *policy;
284 	struct list_head *entry, *tmp;
285 	struct list_head gc_list = LIST_HEAD_INIT(gc_list);
286 
287 	spin_lock_bh(&xfrm_policy_gc_lock);
288 	list_splice_init(&xfrm_policy_gc_list, &gc_list);
289 	spin_unlock_bh(&xfrm_policy_gc_lock);
290 
291 	list_for_each_safe(entry, tmp, &gc_list) {
292 		policy = list_entry(entry, struct xfrm_policy, list);
293 		xfrm_policy_gc_kill(policy);
294 	}
295 }
296 
297 /* Rule must be locked. Release descentant resources, announce
298  * entry dead. The rule must be unlinked from lists to the moment.
299  */
300 
301 static void xfrm_policy_kill(struct xfrm_policy *policy)
302 {
303 	int dead;
304 
305 	write_lock_bh(&policy->lock);
306 	dead = policy->dead;
307 	policy->dead = 1;
308 	write_unlock_bh(&policy->lock);
309 
310 	if (unlikely(dead)) {
311 		WARN_ON(1);
312 		return;
313 	}
314 
315 	spin_lock(&xfrm_policy_gc_lock);
316 	list_add(&policy->list, &xfrm_policy_gc_list);
317 	spin_unlock(&xfrm_policy_gc_lock);
318 
319 	schedule_work(&xfrm_policy_gc_work);
320 }
321 
322 /* Generate new index... KAME seems to generate them ordered by cost
323  * of an absolute inpredictability of ordering of rules. This will not pass. */
324 static u32 xfrm_gen_index(int dir)
325 {
326 	u32 idx;
327 	struct xfrm_policy *p;
328 	static u32 idx_generator;
329 
330 	for (;;) {
331 		idx = (idx_generator | dir);
332 		idx_generator += 8;
333 		if (idx == 0)
334 			idx = 8;
335 		for (p = xfrm_policy_list[dir]; p; p = p->next) {
336 			if (p->index == idx)
337 				break;
338 		}
339 		if (!p)
340 			return idx;
341 	}
342 }
343 
344 int xfrm_policy_insert(int dir, struct xfrm_policy *policy, int excl)
345 {
346 	struct xfrm_policy *pol, **p;
347 	struct xfrm_policy *delpol = NULL;
348 	struct xfrm_policy **newpos = NULL;
349 
350 	write_lock_bh(&xfrm_policy_lock);
351 	for (p = &xfrm_policy_list[dir]; (pol=*p)!=NULL;) {
352 		if (!delpol && memcmp(&policy->selector, &pol->selector, sizeof(pol->selector)) == 0) {
353 			if (excl) {
354 				write_unlock_bh(&xfrm_policy_lock);
355 				return -EEXIST;
356 			}
357 			*p = pol->next;
358 			delpol = pol;
359 			if (policy->priority > pol->priority)
360 				continue;
361 		} else if (policy->priority >= pol->priority) {
362 			p = &pol->next;
363 			continue;
364 		}
365 		if (!newpos)
366 			newpos = p;
367 		if (delpol)
368 			break;
369 		p = &pol->next;
370 	}
371 	if (newpos)
372 		p = newpos;
373 	xfrm_pol_hold(policy);
374 	policy->next = *p;
375 	*p = policy;
376 	atomic_inc(&flow_cache_genid);
377 	policy->index = delpol ? delpol->index : xfrm_gen_index(dir);
378 	policy->curlft.add_time = (unsigned long)xtime.tv_sec;
379 	policy->curlft.use_time = 0;
380 	if (!mod_timer(&policy->timer, jiffies + HZ))
381 		xfrm_pol_hold(policy);
382 	write_unlock_bh(&xfrm_policy_lock);
383 
384 	if (delpol) {
385 		xfrm_policy_kill(delpol);
386 	}
387 	return 0;
388 }
389 EXPORT_SYMBOL(xfrm_policy_insert);
390 
391 struct xfrm_policy *xfrm_policy_bysel(int dir, struct xfrm_selector *sel,
392 				      int delete)
393 {
394 	struct xfrm_policy *pol, **p;
395 
396 	write_lock_bh(&xfrm_policy_lock);
397 	for (p = &xfrm_policy_list[dir]; (pol=*p)!=NULL; p = &pol->next) {
398 		if (memcmp(sel, &pol->selector, sizeof(*sel)) == 0) {
399 			xfrm_pol_hold(pol);
400 			if (delete)
401 				*p = pol->next;
402 			break;
403 		}
404 	}
405 	write_unlock_bh(&xfrm_policy_lock);
406 
407 	if (pol && delete) {
408 		atomic_inc(&flow_cache_genid);
409 		xfrm_policy_kill(pol);
410 	}
411 	return pol;
412 }
413 EXPORT_SYMBOL(xfrm_policy_bysel);
414 
415 struct xfrm_policy *xfrm_policy_byid(int dir, u32 id, int delete)
416 {
417 	struct xfrm_policy *pol, **p;
418 
419 	write_lock_bh(&xfrm_policy_lock);
420 	for (p = &xfrm_policy_list[id & 7]; (pol=*p)!=NULL; p = &pol->next) {
421 		if (pol->index == id) {
422 			xfrm_pol_hold(pol);
423 			if (delete)
424 				*p = pol->next;
425 			break;
426 		}
427 	}
428 	write_unlock_bh(&xfrm_policy_lock);
429 
430 	if (pol && delete) {
431 		atomic_inc(&flow_cache_genid);
432 		xfrm_policy_kill(pol);
433 	}
434 	return pol;
435 }
436 EXPORT_SYMBOL(xfrm_policy_byid);
437 
438 void xfrm_policy_flush(void)
439 {
440 	struct xfrm_policy *xp;
441 	int dir;
442 
443 	write_lock_bh(&xfrm_policy_lock);
444 	for (dir = 0; dir < XFRM_POLICY_MAX; dir++) {
445 		while ((xp = xfrm_policy_list[dir]) != NULL) {
446 			xfrm_policy_list[dir] = xp->next;
447 			write_unlock_bh(&xfrm_policy_lock);
448 
449 			xfrm_policy_kill(xp);
450 
451 			write_lock_bh(&xfrm_policy_lock);
452 		}
453 	}
454 	atomic_inc(&flow_cache_genid);
455 	write_unlock_bh(&xfrm_policy_lock);
456 }
457 EXPORT_SYMBOL(xfrm_policy_flush);
458 
459 int xfrm_policy_walk(int (*func)(struct xfrm_policy *, int, int, void*),
460 		     void *data)
461 {
462 	struct xfrm_policy *xp;
463 	int dir;
464 	int count = 0;
465 	int error = 0;
466 
467 	read_lock_bh(&xfrm_policy_lock);
468 	for (dir = 0; dir < 2*XFRM_POLICY_MAX; dir++) {
469 		for (xp = xfrm_policy_list[dir]; xp; xp = xp->next)
470 			count++;
471 	}
472 
473 	if (count == 0) {
474 		error = -ENOENT;
475 		goto out;
476 	}
477 
478 	for (dir = 0; dir < 2*XFRM_POLICY_MAX; dir++) {
479 		for (xp = xfrm_policy_list[dir]; xp; xp = xp->next) {
480 			error = func(xp, dir%XFRM_POLICY_MAX, --count, data);
481 			if (error)
482 				goto out;
483 		}
484 	}
485 
486 out:
487 	read_unlock_bh(&xfrm_policy_lock);
488 	return error;
489 }
490 EXPORT_SYMBOL(xfrm_policy_walk);
491 
492 /* Find policy to apply to this flow. */
493 
494 static void xfrm_policy_lookup(struct flowi *fl, u16 family, u8 dir,
495 			       void **objp, atomic_t **obj_refp)
496 {
497 	struct xfrm_policy *pol;
498 
499 	read_lock_bh(&xfrm_policy_lock);
500 	for (pol = xfrm_policy_list[dir]; pol; pol = pol->next) {
501 		struct xfrm_selector *sel = &pol->selector;
502 		int match;
503 
504 		if (pol->family != family)
505 			continue;
506 
507 		match = xfrm_selector_match(sel, fl, family);
508 		if (match) {
509 			xfrm_pol_hold(pol);
510 			break;
511 		}
512 	}
513 	read_unlock_bh(&xfrm_policy_lock);
514 	if ((*objp = (void *) pol) != NULL)
515 		*obj_refp = &pol->refcnt;
516 }
517 
518 static struct xfrm_policy *xfrm_sk_policy_lookup(struct sock *sk, int dir, struct flowi *fl)
519 {
520 	struct xfrm_policy *pol;
521 
522 	read_lock_bh(&xfrm_policy_lock);
523 	if ((pol = sk->sk_policy[dir]) != NULL) {
524 		int match = xfrm_selector_match(&pol->selector, fl,
525 						sk->sk_family);
526 		if (match)
527 			xfrm_pol_hold(pol);
528 		else
529 			pol = NULL;
530 	}
531 	read_unlock_bh(&xfrm_policy_lock);
532 	return pol;
533 }
534 
535 static void __xfrm_policy_link(struct xfrm_policy *pol, int dir)
536 {
537 	pol->next = xfrm_policy_list[dir];
538 	xfrm_policy_list[dir] = pol;
539 	xfrm_pol_hold(pol);
540 }
541 
542 static struct xfrm_policy *__xfrm_policy_unlink(struct xfrm_policy *pol,
543 						int dir)
544 {
545 	struct xfrm_policy **polp;
546 
547 	for (polp = &xfrm_policy_list[dir];
548 	     *polp != NULL; polp = &(*polp)->next) {
549 		if (*polp == pol) {
550 			*polp = pol->next;
551 			return pol;
552 		}
553 	}
554 	return NULL;
555 }
556 
557 int xfrm_policy_delete(struct xfrm_policy *pol, int dir)
558 {
559 	write_lock_bh(&xfrm_policy_lock);
560 	pol = __xfrm_policy_unlink(pol, dir);
561 	write_unlock_bh(&xfrm_policy_lock);
562 	if (pol) {
563 		if (dir < XFRM_POLICY_MAX)
564 			atomic_inc(&flow_cache_genid);
565 		xfrm_policy_kill(pol);
566 		return 0;
567 	}
568 	return -ENOENT;
569 }
570 
571 int xfrm_sk_policy_insert(struct sock *sk, int dir, struct xfrm_policy *pol)
572 {
573 	struct xfrm_policy *old_pol;
574 
575 	write_lock_bh(&xfrm_policy_lock);
576 	old_pol = sk->sk_policy[dir];
577 	sk->sk_policy[dir] = pol;
578 	if (pol) {
579 		pol->curlft.add_time = (unsigned long)xtime.tv_sec;
580 		pol->index = xfrm_gen_index(XFRM_POLICY_MAX+dir);
581 		__xfrm_policy_link(pol, XFRM_POLICY_MAX+dir);
582 	}
583 	if (old_pol)
584 		__xfrm_policy_unlink(old_pol, XFRM_POLICY_MAX+dir);
585 	write_unlock_bh(&xfrm_policy_lock);
586 
587 	if (old_pol) {
588 		xfrm_policy_kill(old_pol);
589 	}
590 	return 0;
591 }
592 
593 static struct xfrm_policy *clone_policy(struct xfrm_policy *old, int dir)
594 {
595 	struct xfrm_policy *newp = xfrm_policy_alloc(GFP_ATOMIC);
596 
597 	if (newp) {
598 		newp->selector = old->selector;
599 		newp->lft = old->lft;
600 		newp->curlft = old->curlft;
601 		newp->action = old->action;
602 		newp->flags = old->flags;
603 		newp->xfrm_nr = old->xfrm_nr;
604 		newp->index = old->index;
605 		memcpy(newp->xfrm_vec, old->xfrm_vec,
606 		       newp->xfrm_nr*sizeof(struct xfrm_tmpl));
607 		write_lock_bh(&xfrm_policy_lock);
608 		__xfrm_policy_link(newp, XFRM_POLICY_MAX+dir);
609 		write_unlock_bh(&xfrm_policy_lock);
610 		xfrm_pol_put(newp);
611 	}
612 	return newp;
613 }
614 
615 int __xfrm_sk_clone_policy(struct sock *sk)
616 {
617 	struct xfrm_policy *p0 = sk->sk_policy[0],
618 			   *p1 = sk->sk_policy[1];
619 
620 	sk->sk_policy[0] = sk->sk_policy[1] = NULL;
621 	if (p0 && (sk->sk_policy[0] = clone_policy(p0, 0)) == NULL)
622 		return -ENOMEM;
623 	if (p1 && (sk->sk_policy[1] = clone_policy(p1, 1)) == NULL)
624 		return -ENOMEM;
625 	return 0;
626 }
627 
628 /* Resolve list of templates for the flow, given policy. */
629 
630 static int
631 xfrm_tmpl_resolve(struct xfrm_policy *policy, struct flowi *fl,
632 		  struct xfrm_state **xfrm,
633 		  unsigned short family)
634 {
635 	int nx;
636 	int i, error;
637 	xfrm_address_t *daddr = xfrm_flowi_daddr(fl, family);
638 	xfrm_address_t *saddr = xfrm_flowi_saddr(fl, family);
639 
640 	for (nx=0, i = 0; i < policy->xfrm_nr; i++) {
641 		struct xfrm_state *x;
642 		xfrm_address_t *remote = daddr;
643 		xfrm_address_t *local  = saddr;
644 		struct xfrm_tmpl *tmpl = &policy->xfrm_vec[i];
645 
646 		if (tmpl->mode) {
647 			remote = &tmpl->id.daddr;
648 			local = &tmpl->saddr;
649 		}
650 
651 		x = xfrm_state_find(remote, local, fl, tmpl, policy, &error, family);
652 
653 		if (x && x->km.state == XFRM_STATE_VALID) {
654 			xfrm[nx++] = x;
655 			daddr = remote;
656 			saddr = local;
657 			continue;
658 		}
659 		if (x) {
660 			error = (x->km.state == XFRM_STATE_ERROR ?
661 				 -EINVAL : -EAGAIN);
662 			xfrm_state_put(x);
663 		}
664 
665 		if (!tmpl->optional)
666 			goto fail;
667 	}
668 	return nx;
669 
670 fail:
671 	for (nx--; nx>=0; nx--)
672 		xfrm_state_put(xfrm[nx]);
673 	return error;
674 }
675 
676 /* Check that the bundle accepts the flow and its components are
677  * still valid.
678  */
679 
680 static struct dst_entry *
681 xfrm_find_bundle(struct flowi *fl, struct xfrm_policy *policy, unsigned short family)
682 {
683 	struct dst_entry *x;
684 	struct xfrm_policy_afinfo *afinfo = xfrm_policy_get_afinfo(family);
685 	if (unlikely(afinfo == NULL))
686 		return ERR_PTR(-EINVAL);
687 	x = afinfo->find_bundle(fl, policy);
688 	xfrm_policy_put_afinfo(afinfo);
689 	return x;
690 }
691 
692 /* Allocate chain of dst_entry's, attach known xfrm's, calculate
693  * all the metrics... Shortly, bundle a bundle.
694  */
695 
696 static int
697 xfrm_bundle_create(struct xfrm_policy *policy, struct xfrm_state **xfrm, int nx,
698 		   struct flowi *fl, struct dst_entry **dst_p,
699 		   unsigned short family)
700 {
701 	int err;
702 	struct xfrm_policy_afinfo *afinfo = xfrm_policy_get_afinfo(family);
703 	if (unlikely(afinfo == NULL))
704 		return -EINVAL;
705 	err = afinfo->bundle_create(policy, xfrm, nx, fl, dst_p);
706 	xfrm_policy_put_afinfo(afinfo);
707 	return err;
708 }
709 
710 static inline int policy_to_flow_dir(int dir)
711 {
712 	if (XFRM_POLICY_IN == FLOW_DIR_IN &&
713 	    XFRM_POLICY_OUT == FLOW_DIR_OUT &&
714 	    XFRM_POLICY_FWD == FLOW_DIR_FWD)
715 		return dir;
716 	switch (dir) {
717 	default:
718 	case XFRM_POLICY_IN:
719 		return FLOW_DIR_IN;
720 	case XFRM_POLICY_OUT:
721 		return FLOW_DIR_OUT;
722 	case XFRM_POLICY_FWD:
723 		return FLOW_DIR_FWD;
724 	};
725 }
726 
727 static int stale_bundle(struct dst_entry *dst);
728 
729 /* Main function: finds/creates a bundle for given flow.
730  *
731  * At the moment we eat a raw IP route. Mostly to speed up lookups
732  * on interfaces with disabled IPsec.
733  */
734 int xfrm_lookup(struct dst_entry **dst_p, struct flowi *fl,
735 		struct sock *sk, int flags)
736 {
737 	struct xfrm_policy *policy;
738 	struct xfrm_state *xfrm[XFRM_MAX_DEPTH];
739 	struct dst_entry *dst, *dst_orig = *dst_p;
740 	int nx = 0;
741 	int err;
742 	u32 genid;
743 	u16 family = dst_orig->ops->family;
744 restart:
745 	genid = atomic_read(&flow_cache_genid);
746 	policy = NULL;
747 	if (sk && sk->sk_policy[1])
748 		policy = xfrm_sk_policy_lookup(sk, XFRM_POLICY_OUT, fl);
749 
750 	if (!policy) {
751 		/* To accelerate a bit...  */
752 		if ((dst_orig->flags & DST_NOXFRM) || !xfrm_policy_list[XFRM_POLICY_OUT])
753 			return 0;
754 
755 		policy = flow_cache_lookup(fl, family,
756 					   policy_to_flow_dir(XFRM_POLICY_OUT),
757 					   xfrm_policy_lookup);
758 	}
759 
760 	if (!policy)
761 		return 0;
762 
763 	policy->curlft.use_time = (unsigned long)xtime.tv_sec;
764 
765 	switch (policy->action) {
766 	case XFRM_POLICY_BLOCK:
767 		/* Prohibit the flow */
768 		xfrm_pol_put(policy);
769 		return -EPERM;
770 
771 	case XFRM_POLICY_ALLOW:
772 		if (policy->xfrm_nr == 0) {
773 			/* Flow passes not transformed. */
774 			xfrm_pol_put(policy);
775 			return 0;
776 		}
777 
778 		/* Try to find matching bundle.
779 		 *
780 		 * LATER: help from flow cache. It is optional, this
781 		 * is required only for output policy.
782 		 */
783 		dst = xfrm_find_bundle(fl, policy, family);
784 		if (IS_ERR(dst)) {
785 			xfrm_pol_put(policy);
786 			return PTR_ERR(dst);
787 		}
788 
789 		if (dst)
790 			break;
791 
792 		nx = xfrm_tmpl_resolve(policy, fl, xfrm, family);
793 
794 		if (unlikely(nx<0)) {
795 			err = nx;
796 			if (err == -EAGAIN && flags) {
797 				DECLARE_WAITQUEUE(wait, current);
798 
799 				add_wait_queue(&km_waitq, &wait);
800 				set_current_state(TASK_INTERRUPTIBLE);
801 				schedule();
802 				set_current_state(TASK_RUNNING);
803 				remove_wait_queue(&km_waitq, &wait);
804 
805 				nx = xfrm_tmpl_resolve(policy, fl, xfrm, family);
806 
807 				if (nx == -EAGAIN && signal_pending(current)) {
808 					err = -ERESTART;
809 					goto error;
810 				}
811 				if (nx == -EAGAIN ||
812 				    genid != atomic_read(&flow_cache_genid)) {
813 					xfrm_pol_put(policy);
814 					goto restart;
815 				}
816 				err = nx;
817 			}
818 			if (err < 0)
819 				goto error;
820 		}
821 		if (nx == 0) {
822 			/* Flow passes not transformed. */
823 			xfrm_pol_put(policy);
824 			return 0;
825 		}
826 
827 		dst = dst_orig;
828 		err = xfrm_bundle_create(policy, xfrm, nx, fl, &dst, family);
829 
830 		if (unlikely(err)) {
831 			int i;
832 			for (i=0; i<nx; i++)
833 				xfrm_state_put(xfrm[i]);
834 			goto error;
835 		}
836 
837 		write_lock_bh(&policy->lock);
838 		if (unlikely(policy->dead || stale_bundle(dst))) {
839 			/* Wow! While we worked on resolving, this
840 			 * policy has gone. Retry. It is not paranoia,
841 			 * we just cannot enlist new bundle to dead object.
842 			 * We can't enlist stable bundles either.
843 			 */
844 			write_unlock_bh(&policy->lock);
845 
846 			xfrm_pol_put(policy);
847 			if (dst)
848 				dst_free(dst);
849 			goto restart;
850 		}
851 		dst->next = policy->bundles;
852 		policy->bundles = dst;
853 		dst_hold(dst);
854 		write_unlock_bh(&policy->lock);
855 	}
856 	*dst_p = dst;
857 	dst_release(dst_orig);
858 	xfrm_pol_put(policy);
859 	return 0;
860 
861 error:
862 	dst_release(dst_orig);
863 	xfrm_pol_put(policy);
864 	*dst_p = NULL;
865 	return err;
866 }
867 EXPORT_SYMBOL(xfrm_lookup);
868 
869 /* When skb is transformed back to its "native" form, we have to
870  * check policy restrictions. At the moment we make this in maximally
871  * stupid way. Shame on me. :-) Of course, connected sockets must
872  * have policy cached at them.
873  */
874 
875 static inline int
876 xfrm_state_ok(struct xfrm_tmpl *tmpl, struct xfrm_state *x,
877 	      unsigned short family)
878 {
879 	if (xfrm_state_kern(x))
880 		return tmpl->optional && !xfrm_state_addr_cmp(tmpl, x, family);
881 	return	x->id.proto == tmpl->id.proto &&
882 		(x->id.spi == tmpl->id.spi || !tmpl->id.spi) &&
883 		(x->props.reqid == tmpl->reqid || !tmpl->reqid) &&
884 		x->props.mode == tmpl->mode &&
885 		(tmpl->aalgos & (1<<x->props.aalgo)) &&
886 		!(x->props.mode && xfrm_state_addr_cmp(tmpl, x, family));
887 }
888 
889 static inline int
890 xfrm_policy_ok(struct xfrm_tmpl *tmpl, struct sec_path *sp, int start,
891 	       unsigned short family)
892 {
893 	int idx = start;
894 
895 	if (tmpl->optional) {
896 		if (!tmpl->mode)
897 			return start;
898 	} else
899 		start = -1;
900 	for (; idx < sp->len; idx++) {
901 		if (xfrm_state_ok(tmpl, sp->x[idx].xvec, family))
902 			return ++idx;
903 		if (sp->x[idx].xvec->props.mode)
904 			break;
905 	}
906 	return start;
907 }
908 
909 static int
910 _decode_session(struct sk_buff *skb, struct flowi *fl, unsigned short family)
911 {
912 	struct xfrm_policy_afinfo *afinfo = xfrm_policy_get_afinfo(family);
913 
914 	if (unlikely(afinfo == NULL))
915 		return -EAFNOSUPPORT;
916 
917 	afinfo->decode_session(skb, fl);
918 	xfrm_policy_put_afinfo(afinfo);
919 	return 0;
920 }
921 
922 static inline int secpath_has_tunnel(struct sec_path *sp, int k)
923 {
924 	for (; k < sp->len; k++) {
925 		if (sp->x[k].xvec->props.mode)
926 			return 1;
927 	}
928 
929 	return 0;
930 }
931 
932 int __xfrm_policy_check(struct sock *sk, int dir, struct sk_buff *skb,
933 			unsigned short family)
934 {
935 	struct xfrm_policy *pol;
936 	struct flowi fl;
937 
938 	if (_decode_session(skb, &fl, family) < 0)
939 		return 0;
940 
941 	/* First, check used SA against their selectors. */
942 	if (skb->sp) {
943 		int i;
944 
945 		for (i=skb->sp->len-1; i>=0; i--) {
946 		  struct sec_decap_state *xvec = &(skb->sp->x[i]);
947 			if (!xfrm_selector_match(&xvec->xvec->sel, &fl, family))
948 				return 0;
949 
950 			/* If there is a post_input processor, try running it */
951 			if (xvec->xvec->type->post_input &&
952 			    (xvec->xvec->type->post_input)(xvec->xvec,
953 							   &(xvec->decap),
954 							   skb) != 0)
955 				return 0;
956 		}
957 	}
958 
959 	pol = NULL;
960 	if (sk && sk->sk_policy[dir])
961 		pol = xfrm_sk_policy_lookup(sk, dir, &fl);
962 
963 	if (!pol)
964 		pol = flow_cache_lookup(&fl, family,
965 					policy_to_flow_dir(dir),
966 					xfrm_policy_lookup);
967 
968 	if (!pol)
969 		return !skb->sp || !secpath_has_tunnel(skb->sp, 0);
970 
971 	pol->curlft.use_time = (unsigned long)xtime.tv_sec;
972 
973 	if (pol->action == XFRM_POLICY_ALLOW) {
974 		struct sec_path *sp;
975 		static struct sec_path dummy;
976 		int i, k;
977 
978 		if ((sp = skb->sp) == NULL)
979 			sp = &dummy;
980 
981 		/* For each tunnel xfrm, find the first matching tmpl.
982 		 * For each tmpl before that, find corresponding xfrm.
983 		 * Order is _important_. Later we will implement
984 		 * some barriers, but at the moment barriers
985 		 * are implied between each two transformations.
986 		 */
987 		for (i = pol->xfrm_nr-1, k = 0; i >= 0; i--) {
988 			k = xfrm_policy_ok(pol->xfrm_vec+i, sp, k, family);
989 			if (k < 0)
990 				goto reject;
991 		}
992 
993 		if (secpath_has_tunnel(sp, k))
994 			goto reject;
995 
996 		xfrm_pol_put(pol);
997 		return 1;
998 	}
999 
1000 reject:
1001 	xfrm_pol_put(pol);
1002 	return 0;
1003 }
1004 EXPORT_SYMBOL(__xfrm_policy_check);
1005 
1006 int __xfrm_route_forward(struct sk_buff *skb, unsigned short family)
1007 {
1008 	struct flowi fl;
1009 
1010 	if (_decode_session(skb, &fl, family) < 0)
1011 		return 0;
1012 
1013 	return xfrm_lookup(&skb->dst, &fl, NULL, 0) == 0;
1014 }
1015 EXPORT_SYMBOL(__xfrm_route_forward);
1016 
1017 /* Optimize later using cookies and generation ids. */
1018 
1019 static struct dst_entry *xfrm_dst_check(struct dst_entry *dst, u32 cookie)
1020 {
1021 	if (!stale_bundle(dst))
1022 		return dst;
1023 
1024 	return NULL;
1025 }
1026 
1027 static int stale_bundle(struct dst_entry *dst)
1028 {
1029 	return !xfrm_bundle_ok((struct xfrm_dst *)dst, NULL, AF_UNSPEC);
1030 }
1031 
1032 void xfrm_dst_ifdown(struct dst_entry *dst, struct net_device *dev)
1033 {
1034 	while ((dst = dst->child) && dst->xfrm && dst->dev == dev) {
1035 		dst->dev = &loopback_dev;
1036 		dev_hold(&loopback_dev);
1037 		dev_put(dev);
1038 	}
1039 }
1040 EXPORT_SYMBOL(xfrm_dst_ifdown);
1041 
1042 static void xfrm_link_failure(struct sk_buff *skb)
1043 {
1044 	/* Impossible. Such dst must be popped before reaches point of failure. */
1045 	return;
1046 }
1047 
1048 static struct dst_entry *xfrm_negative_advice(struct dst_entry *dst)
1049 {
1050 	if (dst) {
1051 		if (dst->obsolete) {
1052 			dst_release(dst);
1053 			dst = NULL;
1054 		}
1055 	}
1056 	return dst;
1057 }
1058 
1059 static void xfrm_prune_bundles(int (*func)(struct dst_entry *))
1060 {
1061 	int i;
1062 	struct xfrm_policy *pol;
1063 	struct dst_entry *dst, **dstp, *gc_list = NULL;
1064 
1065 	read_lock_bh(&xfrm_policy_lock);
1066 	for (i=0; i<2*XFRM_POLICY_MAX; i++) {
1067 		for (pol = xfrm_policy_list[i]; pol; pol = pol->next) {
1068 			write_lock(&pol->lock);
1069 			dstp = &pol->bundles;
1070 			while ((dst=*dstp) != NULL) {
1071 				if (func(dst)) {
1072 					*dstp = dst->next;
1073 					dst->next = gc_list;
1074 					gc_list = dst;
1075 				} else {
1076 					dstp = &dst->next;
1077 				}
1078 			}
1079 			write_unlock(&pol->lock);
1080 		}
1081 	}
1082 	read_unlock_bh(&xfrm_policy_lock);
1083 
1084 	while (gc_list) {
1085 		dst = gc_list;
1086 		gc_list = dst->next;
1087 		dst_free(dst);
1088 	}
1089 }
1090 
1091 static int unused_bundle(struct dst_entry *dst)
1092 {
1093 	return !atomic_read(&dst->__refcnt);
1094 }
1095 
1096 static void __xfrm_garbage_collect(void)
1097 {
1098 	xfrm_prune_bundles(unused_bundle);
1099 }
1100 
1101 int xfrm_flush_bundles(void)
1102 {
1103 	xfrm_prune_bundles(stale_bundle);
1104 	return 0;
1105 }
1106 
1107 void xfrm_init_pmtu(struct dst_entry *dst)
1108 {
1109 	do {
1110 		struct xfrm_dst *xdst = (struct xfrm_dst *)dst;
1111 		u32 pmtu, route_mtu_cached;
1112 
1113 		pmtu = dst_mtu(dst->child);
1114 		xdst->child_mtu_cached = pmtu;
1115 
1116 		pmtu = xfrm_state_mtu(dst->xfrm, pmtu);
1117 
1118 		route_mtu_cached = dst_mtu(xdst->route);
1119 		xdst->route_mtu_cached = route_mtu_cached;
1120 
1121 		if (pmtu > route_mtu_cached)
1122 			pmtu = route_mtu_cached;
1123 
1124 		dst->metrics[RTAX_MTU-1] = pmtu;
1125 	} while ((dst = dst->next));
1126 }
1127 
1128 EXPORT_SYMBOL(xfrm_init_pmtu);
1129 
1130 /* Check that the bundle accepts the flow and its components are
1131  * still valid.
1132  */
1133 
1134 int xfrm_bundle_ok(struct xfrm_dst *first, struct flowi *fl, int family)
1135 {
1136 	struct dst_entry *dst = &first->u.dst;
1137 	struct xfrm_dst *last;
1138 	u32 mtu;
1139 
1140 	if (!dst_check(dst->path, ((struct xfrm_dst *)dst)->path_cookie) ||
1141 	    (dst->dev && !netif_running(dst->dev)))
1142 		return 0;
1143 
1144 	last = NULL;
1145 
1146 	do {
1147 		struct xfrm_dst *xdst = (struct xfrm_dst *)dst;
1148 
1149 		if (fl && !xfrm_selector_match(&dst->xfrm->sel, fl, family))
1150 			return 0;
1151 		if (dst->xfrm->km.state != XFRM_STATE_VALID)
1152 			return 0;
1153 
1154 		mtu = dst_mtu(dst->child);
1155 		if (xdst->child_mtu_cached != mtu) {
1156 			last = xdst;
1157 			xdst->child_mtu_cached = mtu;
1158 		}
1159 
1160 		if (!dst_check(xdst->route, xdst->route_cookie))
1161 			return 0;
1162 		mtu = dst_mtu(xdst->route);
1163 		if (xdst->route_mtu_cached != mtu) {
1164 			last = xdst;
1165 			xdst->route_mtu_cached = mtu;
1166 		}
1167 
1168 		dst = dst->child;
1169 	} while (dst->xfrm);
1170 
1171 	if (likely(!last))
1172 		return 1;
1173 
1174 	mtu = last->child_mtu_cached;
1175 	for (;;) {
1176 		dst = &last->u.dst;
1177 
1178 		mtu = xfrm_state_mtu(dst->xfrm, mtu);
1179 		if (mtu > last->route_mtu_cached)
1180 			mtu = last->route_mtu_cached;
1181 		dst->metrics[RTAX_MTU-1] = mtu;
1182 
1183 		if (last == first)
1184 			break;
1185 
1186 		last = last->u.next;
1187 		last->child_mtu_cached = mtu;
1188 	}
1189 
1190 	return 1;
1191 }
1192 
1193 EXPORT_SYMBOL(xfrm_bundle_ok);
1194 
1195 /* Well... that's _TASK_. We need to scan through transformation
1196  * list and figure out what mss tcp should generate in order to
1197  * final datagram fit to mtu. Mama mia... :-)
1198  *
1199  * Apparently, some easy way exists, but we used to choose the most
1200  * bizarre ones. :-) So, raising Kalashnikov... tra-ta-ta.
1201  *
1202  * Consider this function as something like dark humour. :-)
1203  */
1204 static int xfrm_get_mss(struct dst_entry *dst, u32 mtu)
1205 {
1206 	int res = mtu - dst->header_len;
1207 
1208 	for (;;) {
1209 		struct dst_entry *d = dst;
1210 		int m = res;
1211 
1212 		do {
1213 			struct xfrm_state *x = d->xfrm;
1214 			if (x) {
1215 				spin_lock_bh(&x->lock);
1216 				if (x->km.state == XFRM_STATE_VALID &&
1217 				    x->type && x->type->get_max_size)
1218 					m = x->type->get_max_size(d->xfrm, m);
1219 				else
1220 					m += x->props.header_len;
1221 				spin_unlock_bh(&x->lock);
1222 			}
1223 		} while ((d = d->child) != NULL);
1224 
1225 		if (m <= mtu)
1226 			break;
1227 		res -= (m - mtu);
1228 		if (res < 88)
1229 			return mtu;
1230 	}
1231 
1232 	return res + dst->header_len;
1233 }
1234 
1235 int xfrm_policy_register_afinfo(struct xfrm_policy_afinfo *afinfo)
1236 {
1237 	int err = 0;
1238 	if (unlikely(afinfo == NULL))
1239 		return -EINVAL;
1240 	if (unlikely(afinfo->family >= NPROTO))
1241 		return -EAFNOSUPPORT;
1242 	write_lock(&xfrm_policy_afinfo_lock);
1243 	if (unlikely(xfrm_policy_afinfo[afinfo->family] != NULL))
1244 		err = -ENOBUFS;
1245 	else {
1246 		struct dst_ops *dst_ops = afinfo->dst_ops;
1247 		if (likely(dst_ops->kmem_cachep == NULL))
1248 			dst_ops->kmem_cachep = xfrm_dst_cache;
1249 		if (likely(dst_ops->check == NULL))
1250 			dst_ops->check = xfrm_dst_check;
1251 		if (likely(dst_ops->negative_advice == NULL))
1252 			dst_ops->negative_advice = xfrm_negative_advice;
1253 		if (likely(dst_ops->link_failure == NULL))
1254 			dst_ops->link_failure = xfrm_link_failure;
1255 		if (likely(dst_ops->get_mss == NULL))
1256 			dst_ops->get_mss = xfrm_get_mss;
1257 		if (likely(afinfo->garbage_collect == NULL))
1258 			afinfo->garbage_collect = __xfrm_garbage_collect;
1259 		xfrm_policy_afinfo[afinfo->family] = afinfo;
1260 	}
1261 	write_unlock(&xfrm_policy_afinfo_lock);
1262 	return err;
1263 }
1264 EXPORT_SYMBOL(xfrm_policy_register_afinfo);
1265 
1266 int xfrm_policy_unregister_afinfo(struct xfrm_policy_afinfo *afinfo)
1267 {
1268 	int err = 0;
1269 	if (unlikely(afinfo == NULL))
1270 		return -EINVAL;
1271 	if (unlikely(afinfo->family >= NPROTO))
1272 		return -EAFNOSUPPORT;
1273 	write_lock(&xfrm_policy_afinfo_lock);
1274 	if (likely(xfrm_policy_afinfo[afinfo->family] != NULL)) {
1275 		if (unlikely(xfrm_policy_afinfo[afinfo->family] != afinfo))
1276 			err = -EINVAL;
1277 		else {
1278 			struct dst_ops *dst_ops = afinfo->dst_ops;
1279 			xfrm_policy_afinfo[afinfo->family] = NULL;
1280 			dst_ops->kmem_cachep = NULL;
1281 			dst_ops->check = NULL;
1282 			dst_ops->negative_advice = NULL;
1283 			dst_ops->link_failure = NULL;
1284 			dst_ops->get_mss = NULL;
1285 			afinfo->garbage_collect = NULL;
1286 		}
1287 	}
1288 	write_unlock(&xfrm_policy_afinfo_lock);
1289 	return err;
1290 }
1291 EXPORT_SYMBOL(xfrm_policy_unregister_afinfo);
1292 
1293 static struct xfrm_policy_afinfo *xfrm_policy_get_afinfo(unsigned short family)
1294 {
1295 	struct xfrm_policy_afinfo *afinfo;
1296 	if (unlikely(family >= NPROTO))
1297 		return NULL;
1298 	read_lock(&xfrm_policy_afinfo_lock);
1299 	afinfo = xfrm_policy_afinfo[family];
1300 	if (likely(afinfo != NULL))
1301 		read_lock(&afinfo->lock);
1302 	read_unlock(&xfrm_policy_afinfo_lock);
1303 	return afinfo;
1304 }
1305 
1306 static void xfrm_policy_put_afinfo(struct xfrm_policy_afinfo *afinfo)
1307 {
1308 	if (unlikely(afinfo == NULL))
1309 		return;
1310 	read_unlock(&afinfo->lock);
1311 }
1312 
1313 static int xfrm_dev_event(struct notifier_block *this, unsigned long event, void *ptr)
1314 {
1315 	switch (event) {
1316 	case NETDEV_DOWN:
1317 		xfrm_flush_bundles();
1318 	}
1319 	return NOTIFY_DONE;
1320 }
1321 
1322 static struct notifier_block xfrm_dev_notifier = {
1323 	xfrm_dev_event,
1324 	NULL,
1325 	0
1326 };
1327 
1328 static void __init xfrm_policy_init(void)
1329 {
1330 	xfrm_dst_cache = kmem_cache_create("xfrm_dst_cache",
1331 					   sizeof(struct xfrm_dst),
1332 					   0, SLAB_HWCACHE_ALIGN,
1333 					   NULL, NULL);
1334 	if (!xfrm_dst_cache)
1335 		panic("XFRM: failed to allocate xfrm_dst_cache\n");
1336 
1337 	INIT_WORK(&xfrm_policy_gc_work, xfrm_policy_gc_task, NULL);
1338 	register_netdevice_notifier(&xfrm_dev_notifier);
1339 }
1340 
1341 void __init xfrm_init(void)
1342 {
1343 	xfrm_state_init();
1344 	xfrm_policy_init();
1345 	xfrm_input_init();
1346 }
1347 
1348