1 /* SPDX-License-Identifier: GPL-2.0 */ 2 /* XDP user-space ring structure 3 * Copyright(c) 2018 Intel Corporation. 4 */ 5 6 #ifndef _LINUX_XSK_QUEUE_H 7 #define _LINUX_XSK_QUEUE_H 8 9 #include <linux/types.h> 10 #include <linux/if_xdp.h> 11 #include <net/xdp_sock.h> 12 #include <net/xsk_buff_pool.h> 13 14 #include "xsk.h" 15 16 struct xdp_ring { 17 u32 producer ____cacheline_aligned_in_smp; 18 /* Hinder the adjacent cache prefetcher to prefetch the consumer 19 * pointer if the producer pointer is touched and vice versa. 20 */ 21 u32 pad1 ____cacheline_aligned_in_smp; 22 u32 consumer ____cacheline_aligned_in_smp; 23 u32 pad2 ____cacheline_aligned_in_smp; 24 u32 flags; 25 u32 pad3 ____cacheline_aligned_in_smp; 26 }; 27 28 /* Used for the RX and TX queues for packets */ 29 struct xdp_rxtx_ring { 30 struct xdp_ring ptrs; 31 struct xdp_desc desc[] ____cacheline_aligned_in_smp; 32 }; 33 34 /* Used for the fill and completion queues for buffers */ 35 struct xdp_umem_ring { 36 struct xdp_ring ptrs; 37 u64 desc[] ____cacheline_aligned_in_smp; 38 }; 39 40 struct xsk_queue { 41 u32 ring_mask; 42 u32 nentries; 43 u32 cached_prod; 44 u32 cached_cons; 45 struct xdp_ring *ring; 46 u64 invalid_descs; 47 u64 queue_empty_descs; 48 size_t ring_vmalloc_size; 49 }; 50 51 struct parsed_desc { 52 u32 mb; 53 u32 valid; 54 }; 55 56 /* The structure of the shared state of the rings are a simple 57 * circular buffer, as outlined in 58 * Documentation/core-api/circular-buffers.rst. For the Rx and 59 * completion ring, the kernel is the producer and user space is the 60 * consumer. For the Tx and fill rings, the kernel is the consumer and 61 * user space is the producer. 62 * 63 * producer consumer 64 * 65 * if (LOAD ->consumer) { (A) LOAD.acq ->producer (C) 66 * STORE $data LOAD $data 67 * STORE.rel ->producer (B) STORE.rel ->consumer (D) 68 * } 69 * 70 * (A) pairs with (D), and (B) pairs with (C). 71 * 72 * Starting with (B), it protects the data from being written after 73 * the producer pointer. If this barrier was missing, the consumer 74 * could observe the producer pointer being set and thus load the data 75 * before the producer has written the new data. The consumer would in 76 * this case load the old data. 77 * 78 * (C) protects the consumer from speculatively loading the data before 79 * the producer pointer actually has been read. If we do not have this 80 * barrier, some architectures could load old data as speculative loads 81 * are not discarded as the CPU does not know there is a dependency 82 * between ->producer and data. 83 * 84 * (A) is a control dependency that separates the load of ->consumer 85 * from the stores of $data. In case ->consumer indicates there is no 86 * room in the buffer to store $data we do not. The dependency will 87 * order both of the stores after the loads. So no barrier is needed. 88 * 89 * (D) protects the load of the data to be observed to happen after the 90 * store of the consumer pointer. If we did not have this memory 91 * barrier, the producer could observe the consumer pointer being set 92 * and overwrite the data with a new value before the consumer got the 93 * chance to read the old value. The consumer would thus miss reading 94 * the old entry and very likely read the new entry twice, once right 95 * now and again after circling through the ring. 96 */ 97 98 /* The operations on the rings are the following: 99 * 100 * producer consumer 101 * 102 * RESERVE entries PEEK in the ring for entries 103 * WRITE data into the ring READ data from the ring 104 * SUBMIT entries RELEASE entries 105 * 106 * The producer reserves one or more entries in the ring. It can then 107 * fill in these entries and finally submit them so that they can be 108 * seen and read by the consumer. 109 * 110 * The consumer peeks into the ring to see if the producer has written 111 * any new entries. If so, the consumer can then read these entries 112 * and when it is done reading them release them back to the producer 113 * so that the producer can use these slots to fill in new entries. 114 * 115 * The function names below reflect these operations. 116 */ 117 118 /* Functions that read and validate content from consumer rings. */ 119 120 static inline void __xskq_cons_read_addr_unchecked(struct xsk_queue *q, u32 cached_cons, u64 *addr) 121 { 122 struct xdp_umem_ring *ring = (struct xdp_umem_ring *)q->ring; 123 u32 idx = cached_cons & q->ring_mask; 124 125 *addr = ring->desc[idx]; 126 } 127 128 static inline bool xskq_cons_read_addr_unchecked(struct xsk_queue *q, u64 *addr) 129 { 130 if (q->cached_cons != q->cached_prod) { 131 __xskq_cons_read_addr_unchecked(q, q->cached_cons, addr); 132 return true; 133 } 134 135 return false; 136 } 137 138 static inline bool xp_unused_options_set(u32 options) 139 { 140 return options & ~(XDP_PKT_CONTD | XDP_TX_METADATA); 141 } 142 143 static inline bool xp_aligned_validate_desc(struct xsk_buff_pool *pool, 144 struct xdp_desc *desc) 145 { 146 u64 len = desc->len; 147 u64 addr, offset; 148 149 if (!len) 150 return false; 151 152 /* Can overflow if desc->addr < pool->tx_metadata_len */ 153 if (check_sub_overflow(desc->addr, pool->tx_metadata_len, &addr)) 154 return false; 155 156 offset = addr & (pool->chunk_size - 1); 157 158 /* 159 * Can't overflow: @offset is guaranteed to be < ``U32_MAX`` 160 * (pool->chunk_size is ``u32``), @len is guaranteed 161 * to be <= ``U32_MAX``. 162 */ 163 if (offset + len + pool->tx_metadata_len > pool->chunk_size) 164 return false; 165 166 if (addr >= pool->addrs_cnt) 167 return false; 168 169 if (xp_unused_options_set(desc->options)) 170 return false; 171 172 return true; 173 } 174 175 static inline bool xp_unaligned_validate_desc(struct xsk_buff_pool *pool, 176 struct xdp_desc *desc) 177 { 178 u64 len = desc->len; 179 u64 addr, end; 180 181 if (!len) 182 return false; 183 184 /* Can't overflow: @len is guaranteed to be <= ``U32_MAX`` */ 185 len += pool->tx_metadata_len; 186 if (len > pool->chunk_size) 187 return false; 188 189 /* Can overflow if desc->addr is close to 0 */ 190 if (check_sub_overflow(xp_unaligned_add_offset_to_addr(desc->addr), 191 pool->tx_metadata_len, &addr)) 192 return false; 193 194 if (addr >= pool->addrs_cnt) 195 return false; 196 197 /* Can overflow if pool->addrs_cnt is high enough */ 198 if (check_add_overflow(addr, len, &end) || end > pool->addrs_cnt) 199 return false; 200 201 if (xp_desc_crosses_non_contig_pg(pool, addr, len)) 202 return false; 203 204 if (xp_unused_options_set(desc->options)) 205 return false; 206 207 return true; 208 } 209 210 static inline bool xp_validate_desc(struct xsk_buff_pool *pool, 211 struct xdp_desc *desc) 212 { 213 return pool->unaligned ? xp_unaligned_validate_desc(pool, desc) : 214 xp_aligned_validate_desc(pool, desc); 215 } 216 217 static inline bool xskq_has_descs(struct xsk_queue *q) 218 { 219 return q->cached_cons != q->cached_prod; 220 } 221 222 static inline bool xskq_cons_is_valid_desc(struct xsk_queue *q, 223 struct xdp_desc *d, 224 struct xsk_buff_pool *pool) 225 { 226 if (!xp_validate_desc(pool, d)) { 227 q->invalid_descs++; 228 return false; 229 } 230 return true; 231 } 232 233 static inline bool xskq_cons_read_desc(struct xsk_queue *q, 234 struct xdp_desc *desc, 235 struct xsk_buff_pool *pool) 236 { 237 if (q->cached_cons != q->cached_prod) { 238 struct xdp_rxtx_ring *ring = (struct xdp_rxtx_ring *)q->ring; 239 u32 idx = q->cached_cons & q->ring_mask; 240 241 *desc = ring->desc[idx]; 242 return xskq_cons_is_valid_desc(q, desc, pool); 243 } 244 245 q->queue_empty_descs++; 246 return false; 247 } 248 249 static inline void xskq_cons_release_n(struct xsk_queue *q, u32 cnt) 250 { 251 q->cached_cons += cnt; 252 } 253 254 static inline void parse_desc(struct xsk_queue *q, struct xsk_buff_pool *pool, 255 struct xdp_desc *desc, struct parsed_desc *parsed) 256 { 257 parsed->valid = xskq_cons_is_valid_desc(q, desc, pool); 258 parsed->mb = xp_mb_desc(desc); 259 } 260 261 static inline 262 u32 xskq_cons_read_desc_batch(struct xsk_queue *q, struct xsk_buff_pool *pool, 263 u32 max) 264 { 265 u32 cached_cons = q->cached_cons, nb_entries = 0; 266 struct xdp_desc *descs = pool->tx_descs; 267 u32 total_descs = 0, nr_frags = 0; 268 269 /* track first entry, if stumble upon *any* invalid descriptor, rewind 270 * current packet that consists of frags and stop the processing 271 */ 272 while (cached_cons != q->cached_prod && nb_entries < max) { 273 struct xdp_rxtx_ring *ring = (struct xdp_rxtx_ring *)q->ring; 274 u32 idx = cached_cons & q->ring_mask; 275 struct parsed_desc parsed; 276 277 descs[nb_entries] = ring->desc[idx]; 278 cached_cons++; 279 parse_desc(q, pool, &descs[nb_entries], &parsed); 280 if (unlikely(!parsed.valid)) 281 break; 282 283 if (likely(!parsed.mb)) { 284 total_descs += (nr_frags + 1); 285 nr_frags = 0; 286 } else { 287 nr_frags++; 288 if (nr_frags == pool->xdp_zc_max_segs) { 289 nr_frags = 0; 290 break; 291 } 292 } 293 nb_entries++; 294 } 295 296 cached_cons -= nr_frags; 297 /* Release valid plus any invalid entries */ 298 xskq_cons_release_n(q, cached_cons - q->cached_cons); 299 return total_descs; 300 } 301 302 /* Functions for consumers */ 303 304 static inline void __xskq_cons_release(struct xsk_queue *q) 305 { 306 smp_store_release(&q->ring->consumer, q->cached_cons); /* D, matchees A */ 307 } 308 309 static inline void __xskq_cons_peek(struct xsk_queue *q) 310 { 311 /* Refresh the local pointer */ 312 q->cached_prod = smp_load_acquire(&q->ring->producer); /* C, matches B */ 313 } 314 315 static inline void xskq_cons_get_entries(struct xsk_queue *q) 316 { 317 __xskq_cons_release(q); 318 __xskq_cons_peek(q); 319 } 320 321 static inline u32 xskq_cons_nb_entries(struct xsk_queue *q, u32 max) 322 { 323 u32 entries = q->cached_prod - q->cached_cons; 324 325 if (entries >= max) 326 return max; 327 328 __xskq_cons_peek(q); 329 entries = q->cached_prod - q->cached_cons; 330 331 return entries >= max ? max : entries; 332 } 333 334 static inline bool xskq_cons_peek_addr_unchecked(struct xsk_queue *q, u64 *addr) 335 { 336 if (q->cached_prod == q->cached_cons) 337 xskq_cons_get_entries(q); 338 return xskq_cons_read_addr_unchecked(q, addr); 339 } 340 341 static inline bool xskq_cons_peek_desc(struct xsk_queue *q, 342 struct xdp_desc *desc, 343 struct xsk_buff_pool *pool) 344 { 345 if (q->cached_prod == q->cached_cons) 346 xskq_cons_get_entries(q); 347 return xskq_cons_read_desc(q, desc, pool); 348 } 349 350 /* To improve performance in the xskq_cons_release functions, only update local state here. 351 * Reflect this to global state when we get new entries from the ring in 352 * xskq_cons_get_entries() and whenever Rx or Tx processing are completed in the NAPI loop. 353 */ 354 static inline void xskq_cons_release(struct xsk_queue *q) 355 { 356 q->cached_cons++; 357 } 358 359 static inline void xskq_cons_cancel_n(struct xsk_queue *q, u32 cnt) 360 { 361 q->cached_cons -= cnt; 362 } 363 364 static inline u32 xskq_cons_present_entries(struct xsk_queue *q) 365 { 366 /* No barriers needed since data is not accessed */ 367 return READ_ONCE(q->ring->producer) - READ_ONCE(q->ring->consumer); 368 } 369 370 /* Functions for producers */ 371 372 static inline u32 xskq_get_prod(struct xsk_queue *q) 373 { 374 return READ_ONCE(q->ring->producer); 375 } 376 377 static inline u32 xskq_prod_nb_free(struct xsk_queue *q, u32 max) 378 { 379 u32 free_entries = q->nentries - (q->cached_prod - q->cached_cons); 380 381 if (free_entries >= max) 382 return max; 383 384 /* Refresh the local tail pointer */ 385 q->cached_cons = READ_ONCE(q->ring->consumer); 386 free_entries = q->nentries - (q->cached_prod - q->cached_cons); 387 388 return free_entries >= max ? max : free_entries; 389 } 390 391 static inline bool xskq_prod_is_full(struct xsk_queue *q) 392 { 393 return xskq_prod_nb_free(q, 1) ? false : true; 394 } 395 396 static inline void xskq_prod_cancel_n(struct xsk_queue *q, u32 cnt) 397 { 398 q->cached_prod -= cnt; 399 } 400 401 static inline int xskq_prod_reserve(struct xsk_queue *q) 402 { 403 if (xskq_prod_is_full(q)) 404 return -ENOSPC; 405 406 /* A, matches D */ 407 q->cached_prod++; 408 return 0; 409 } 410 411 static inline int xskq_prod_reserve_addr(struct xsk_queue *q, u64 addr) 412 { 413 struct xdp_umem_ring *ring = (struct xdp_umem_ring *)q->ring; 414 415 if (xskq_prod_is_full(q)) 416 return -ENOSPC; 417 418 /* A, matches D */ 419 ring->desc[q->cached_prod++ & q->ring_mask] = addr; 420 return 0; 421 } 422 423 static inline void xskq_prod_write_addr(struct xsk_queue *q, u32 idx, u64 addr) 424 { 425 struct xdp_umem_ring *ring = (struct xdp_umem_ring *)q->ring; 426 427 ring->desc[idx & q->ring_mask] = addr; 428 } 429 430 static inline void xskq_prod_write_addr_batch(struct xsk_queue *q, struct xdp_desc *descs, 431 u32 nb_entries) 432 { 433 struct xdp_umem_ring *ring = (struct xdp_umem_ring *)q->ring; 434 u32 i, cached_prod; 435 436 /* A, matches D */ 437 cached_prod = q->cached_prod; 438 for (i = 0; i < nb_entries; i++) 439 ring->desc[cached_prod++ & q->ring_mask] = descs[i].addr; 440 q->cached_prod = cached_prod; 441 } 442 443 static inline int xskq_prod_reserve_desc(struct xsk_queue *q, 444 u64 addr, u32 len, u32 flags) 445 { 446 struct xdp_rxtx_ring *ring = (struct xdp_rxtx_ring *)q->ring; 447 u32 idx; 448 449 if (xskq_prod_is_full(q)) 450 return -ENOBUFS; 451 452 /* A, matches D */ 453 idx = q->cached_prod++ & q->ring_mask; 454 ring->desc[idx].addr = addr; 455 ring->desc[idx].len = len; 456 ring->desc[idx].options = flags; 457 458 return 0; 459 } 460 461 static inline void __xskq_prod_submit(struct xsk_queue *q, u32 idx) 462 { 463 smp_store_release(&q->ring->producer, idx); /* B, matches C */ 464 } 465 466 static inline void xskq_prod_submit(struct xsk_queue *q) 467 { 468 __xskq_prod_submit(q, q->cached_prod); 469 } 470 471 static inline void xskq_prod_submit_n(struct xsk_queue *q, u32 nb_entries) 472 { 473 __xskq_prod_submit(q, q->ring->producer + nb_entries); 474 } 475 476 static inline bool xskq_prod_is_empty(struct xsk_queue *q) 477 { 478 /* No barriers needed since data is not accessed */ 479 return READ_ONCE(q->ring->consumer) == READ_ONCE(q->ring->producer); 480 } 481 482 /* For both producers and consumers */ 483 484 static inline u64 xskq_nb_invalid_descs(struct xsk_queue *q) 485 { 486 return q ? q->invalid_descs : 0; 487 } 488 489 static inline u64 xskq_nb_queue_empty_descs(struct xsk_queue *q) 490 { 491 return q ? q->queue_empty_descs : 0; 492 } 493 494 struct xsk_queue *xskq_create(u32 nentries, bool umem_queue); 495 void xskq_destroy(struct xsk_queue *q_ops); 496 497 #endif /* _LINUX_XSK_QUEUE_H */ 498