1 /* SPDX-License-Identifier: GPL-2.0 */ 2 /* XDP user-space ring structure 3 * Copyright(c) 2018 Intel Corporation. 4 */ 5 6 #ifndef _LINUX_XSK_QUEUE_H 7 #define _LINUX_XSK_QUEUE_H 8 9 #include <linux/types.h> 10 #include <linux/if_xdp.h> 11 #include <net/xdp_sock.h> 12 #include <net/xsk_buff_pool.h> 13 14 #include "xsk.h" 15 16 struct xdp_ring { 17 u32 producer ____cacheline_aligned_in_smp; 18 /* Hinder the adjacent cache prefetcher to prefetch the consumer 19 * pointer if the producer pointer is touched and vice versa. 20 */ 21 u32 pad1 ____cacheline_aligned_in_smp; 22 u32 consumer ____cacheline_aligned_in_smp; 23 u32 pad2 ____cacheline_aligned_in_smp; 24 u32 flags; 25 u32 pad3 ____cacheline_aligned_in_smp; 26 }; 27 28 /* Used for the RX and TX queues for packets */ 29 struct xdp_rxtx_ring { 30 struct xdp_ring ptrs; 31 struct xdp_desc desc[] ____cacheline_aligned_in_smp; 32 }; 33 34 /* Used for the fill and completion queues for buffers */ 35 struct xdp_umem_ring { 36 struct xdp_ring ptrs; 37 u64 desc[] ____cacheline_aligned_in_smp; 38 }; 39 40 struct xsk_queue { 41 u32 ring_mask; 42 u32 nentries; 43 u32 cached_prod; 44 u32 cached_cons; 45 struct xdp_ring *ring; 46 u64 invalid_descs; 47 u64 queue_empty_descs; 48 size_t ring_vmalloc_size; 49 }; 50 51 struct parsed_desc { 52 u32 mb; 53 u32 valid; 54 }; 55 56 /* The structure of the shared state of the rings are a simple 57 * circular buffer, as outlined in 58 * Documentation/core-api/circular-buffers.rst. For the Rx and 59 * completion ring, the kernel is the producer and user space is the 60 * consumer. For the Tx and fill rings, the kernel is the consumer and 61 * user space is the producer. 62 * 63 * producer consumer 64 * 65 * if (LOAD ->consumer) { (A) LOAD.acq ->producer (C) 66 * STORE $data LOAD $data 67 * STORE.rel ->producer (B) STORE.rel ->consumer (D) 68 * } 69 * 70 * (A) pairs with (D), and (B) pairs with (C). 71 * 72 * Starting with (B), it protects the data from being written after 73 * the producer pointer. If this barrier was missing, the consumer 74 * could observe the producer pointer being set and thus load the data 75 * before the producer has written the new data. The consumer would in 76 * this case load the old data. 77 * 78 * (C) protects the consumer from speculatively loading the data before 79 * the producer pointer actually has been read. If we do not have this 80 * barrier, some architectures could load old data as speculative loads 81 * are not discarded as the CPU does not know there is a dependency 82 * between ->producer and data. 83 * 84 * (A) is a control dependency that separates the load of ->consumer 85 * from the stores of $data. In case ->consumer indicates there is no 86 * room in the buffer to store $data we do not. The dependency will 87 * order both of the stores after the loads. So no barrier is needed. 88 * 89 * (D) protects the load of the data to be observed to happen after the 90 * store of the consumer pointer. If we did not have this memory 91 * barrier, the producer could observe the consumer pointer being set 92 * and overwrite the data with a new value before the consumer got the 93 * chance to read the old value. The consumer would thus miss reading 94 * the old entry and very likely read the new entry twice, once right 95 * now and again after circling through the ring. 96 */ 97 98 /* The operations on the rings are the following: 99 * 100 * producer consumer 101 * 102 * RESERVE entries PEEK in the ring for entries 103 * WRITE data into the ring READ data from the ring 104 * SUBMIT entries RELEASE entries 105 * 106 * The producer reserves one or more entries in the ring. It can then 107 * fill in these entries and finally submit them so that they can be 108 * seen and read by the consumer. 109 * 110 * The consumer peeks into the ring to see if the producer has written 111 * any new entries. If so, the consumer can then read these entries 112 * and when it is done reading them release them back to the producer 113 * so that the producer can use these slots to fill in new entries. 114 * 115 * The function names below reflect these operations. 116 */ 117 118 /* Functions that read and validate content from consumer rings. */ 119 120 static inline void __xskq_cons_read_addr_unchecked(struct xsk_queue *q, u32 cached_cons, u64 *addr) 121 { 122 struct xdp_umem_ring *ring = (struct xdp_umem_ring *)q->ring; 123 u32 idx = cached_cons & q->ring_mask; 124 125 *addr = ring->desc[idx]; 126 } 127 128 static inline bool xskq_cons_read_addr_unchecked(struct xsk_queue *q, u64 *addr) 129 { 130 if (q->cached_cons != q->cached_prod) { 131 __xskq_cons_read_addr_unchecked(q, q->cached_cons, addr); 132 return true; 133 } 134 135 return false; 136 } 137 138 static inline bool xp_unused_options_set(u32 options) 139 { 140 return options & ~XDP_PKT_CONTD; 141 } 142 143 static inline bool xp_aligned_validate_desc(struct xsk_buff_pool *pool, 144 struct xdp_desc *desc) 145 { 146 u64 offset = desc->addr & (pool->chunk_size - 1); 147 148 if (!desc->len) 149 return false; 150 151 if (offset + desc->len > pool->chunk_size) 152 return false; 153 154 if (desc->addr >= pool->addrs_cnt) 155 return false; 156 157 if (xp_unused_options_set(desc->options)) 158 return false; 159 return true; 160 } 161 162 static inline bool xp_unaligned_validate_desc(struct xsk_buff_pool *pool, 163 struct xdp_desc *desc) 164 { 165 u64 addr = xp_unaligned_add_offset_to_addr(desc->addr); 166 167 if (!desc->len) 168 return false; 169 170 if (desc->len > pool->chunk_size) 171 return false; 172 173 if (addr >= pool->addrs_cnt || addr + desc->len > pool->addrs_cnt || 174 xp_desc_crosses_non_contig_pg(pool, addr, desc->len)) 175 return false; 176 177 if (xp_unused_options_set(desc->options)) 178 return false; 179 return true; 180 } 181 182 static inline bool xp_validate_desc(struct xsk_buff_pool *pool, 183 struct xdp_desc *desc) 184 { 185 return pool->unaligned ? xp_unaligned_validate_desc(pool, desc) : 186 xp_aligned_validate_desc(pool, desc); 187 } 188 189 static inline bool xskq_has_descs(struct xsk_queue *q) 190 { 191 return q->cached_cons != q->cached_prod; 192 } 193 194 static inline bool xskq_cons_is_valid_desc(struct xsk_queue *q, 195 struct xdp_desc *d, 196 struct xsk_buff_pool *pool) 197 { 198 if (!xp_validate_desc(pool, d)) { 199 q->invalid_descs++; 200 return false; 201 } 202 return true; 203 } 204 205 static inline bool xskq_cons_read_desc(struct xsk_queue *q, 206 struct xdp_desc *desc, 207 struct xsk_buff_pool *pool) 208 { 209 if (q->cached_cons != q->cached_prod) { 210 struct xdp_rxtx_ring *ring = (struct xdp_rxtx_ring *)q->ring; 211 u32 idx = q->cached_cons & q->ring_mask; 212 213 *desc = ring->desc[idx]; 214 return xskq_cons_is_valid_desc(q, desc, pool); 215 } 216 217 q->queue_empty_descs++; 218 return false; 219 } 220 221 static inline void xskq_cons_release_n(struct xsk_queue *q, u32 cnt) 222 { 223 q->cached_cons += cnt; 224 } 225 226 static inline void parse_desc(struct xsk_queue *q, struct xsk_buff_pool *pool, 227 struct xdp_desc *desc, struct parsed_desc *parsed) 228 { 229 parsed->valid = xskq_cons_is_valid_desc(q, desc, pool); 230 parsed->mb = xp_mb_desc(desc); 231 } 232 233 static inline 234 u32 xskq_cons_read_desc_batch(struct xsk_queue *q, struct xsk_buff_pool *pool, 235 u32 max) 236 { 237 u32 cached_cons = q->cached_cons, nb_entries = 0; 238 struct xdp_desc *descs = pool->tx_descs; 239 u32 total_descs = 0, nr_frags = 0; 240 241 /* track first entry, if stumble upon *any* invalid descriptor, rewind 242 * current packet that consists of frags and stop the processing 243 */ 244 while (cached_cons != q->cached_prod && nb_entries < max) { 245 struct xdp_rxtx_ring *ring = (struct xdp_rxtx_ring *)q->ring; 246 u32 idx = cached_cons & q->ring_mask; 247 struct parsed_desc parsed; 248 249 descs[nb_entries] = ring->desc[idx]; 250 cached_cons++; 251 parse_desc(q, pool, &descs[nb_entries], &parsed); 252 if (unlikely(!parsed.valid)) 253 break; 254 255 if (likely(!parsed.mb)) { 256 total_descs += (nr_frags + 1); 257 nr_frags = 0; 258 } else { 259 nr_frags++; 260 if (nr_frags == pool->netdev->xdp_zc_max_segs) { 261 nr_frags = 0; 262 break; 263 } 264 } 265 nb_entries++; 266 } 267 268 cached_cons -= nr_frags; 269 /* Release valid plus any invalid entries */ 270 xskq_cons_release_n(q, cached_cons - q->cached_cons); 271 return total_descs; 272 } 273 274 /* Functions for consumers */ 275 276 static inline void __xskq_cons_release(struct xsk_queue *q) 277 { 278 smp_store_release(&q->ring->consumer, q->cached_cons); /* D, matchees A */ 279 } 280 281 static inline void __xskq_cons_peek(struct xsk_queue *q) 282 { 283 /* Refresh the local pointer */ 284 q->cached_prod = smp_load_acquire(&q->ring->producer); /* C, matches B */ 285 } 286 287 static inline void xskq_cons_get_entries(struct xsk_queue *q) 288 { 289 __xskq_cons_release(q); 290 __xskq_cons_peek(q); 291 } 292 293 static inline u32 xskq_cons_nb_entries(struct xsk_queue *q, u32 max) 294 { 295 u32 entries = q->cached_prod - q->cached_cons; 296 297 if (entries >= max) 298 return max; 299 300 __xskq_cons_peek(q); 301 entries = q->cached_prod - q->cached_cons; 302 303 return entries >= max ? max : entries; 304 } 305 306 static inline bool xskq_cons_has_entries(struct xsk_queue *q, u32 cnt) 307 { 308 return xskq_cons_nb_entries(q, cnt) >= cnt; 309 } 310 311 static inline bool xskq_cons_peek_addr_unchecked(struct xsk_queue *q, u64 *addr) 312 { 313 if (q->cached_prod == q->cached_cons) 314 xskq_cons_get_entries(q); 315 return xskq_cons_read_addr_unchecked(q, addr); 316 } 317 318 static inline bool xskq_cons_peek_desc(struct xsk_queue *q, 319 struct xdp_desc *desc, 320 struct xsk_buff_pool *pool) 321 { 322 if (q->cached_prod == q->cached_cons) 323 xskq_cons_get_entries(q); 324 return xskq_cons_read_desc(q, desc, pool); 325 } 326 327 /* To improve performance in the xskq_cons_release functions, only update local state here. 328 * Reflect this to global state when we get new entries from the ring in 329 * xskq_cons_get_entries() and whenever Rx or Tx processing are completed in the NAPI loop. 330 */ 331 static inline void xskq_cons_release(struct xsk_queue *q) 332 { 333 q->cached_cons++; 334 } 335 336 static inline void xskq_cons_cancel_n(struct xsk_queue *q, u32 cnt) 337 { 338 q->cached_cons -= cnt; 339 } 340 341 static inline u32 xskq_cons_present_entries(struct xsk_queue *q) 342 { 343 /* No barriers needed since data is not accessed */ 344 return READ_ONCE(q->ring->producer) - READ_ONCE(q->ring->consumer); 345 } 346 347 /* Functions for producers */ 348 349 static inline u32 xskq_prod_nb_free(struct xsk_queue *q, u32 max) 350 { 351 u32 free_entries = q->nentries - (q->cached_prod - q->cached_cons); 352 353 if (free_entries >= max) 354 return max; 355 356 /* Refresh the local tail pointer */ 357 q->cached_cons = READ_ONCE(q->ring->consumer); 358 free_entries = q->nentries - (q->cached_prod - q->cached_cons); 359 360 return free_entries >= max ? max : free_entries; 361 } 362 363 static inline bool xskq_prod_is_full(struct xsk_queue *q) 364 { 365 return xskq_prod_nb_free(q, 1) ? false : true; 366 } 367 368 static inline void xskq_prod_cancel_n(struct xsk_queue *q, u32 cnt) 369 { 370 q->cached_prod -= cnt; 371 } 372 373 static inline int xskq_prod_reserve(struct xsk_queue *q) 374 { 375 if (xskq_prod_is_full(q)) 376 return -ENOSPC; 377 378 /* A, matches D */ 379 q->cached_prod++; 380 return 0; 381 } 382 383 static inline int xskq_prod_reserve_addr(struct xsk_queue *q, u64 addr) 384 { 385 struct xdp_umem_ring *ring = (struct xdp_umem_ring *)q->ring; 386 387 if (xskq_prod_is_full(q)) 388 return -ENOSPC; 389 390 /* A, matches D */ 391 ring->desc[q->cached_prod++ & q->ring_mask] = addr; 392 return 0; 393 } 394 395 static inline void xskq_prod_write_addr_batch(struct xsk_queue *q, struct xdp_desc *descs, 396 u32 nb_entries) 397 { 398 struct xdp_umem_ring *ring = (struct xdp_umem_ring *)q->ring; 399 u32 i, cached_prod; 400 401 /* A, matches D */ 402 cached_prod = q->cached_prod; 403 for (i = 0; i < nb_entries; i++) 404 ring->desc[cached_prod++ & q->ring_mask] = descs[i].addr; 405 q->cached_prod = cached_prod; 406 } 407 408 static inline int xskq_prod_reserve_desc(struct xsk_queue *q, 409 u64 addr, u32 len, u32 flags) 410 { 411 struct xdp_rxtx_ring *ring = (struct xdp_rxtx_ring *)q->ring; 412 u32 idx; 413 414 if (xskq_prod_is_full(q)) 415 return -ENOBUFS; 416 417 /* A, matches D */ 418 idx = q->cached_prod++ & q->ring_mask; 419 ring->desc[idx].addr = addr; 420 ring->desc[idx].len = len; 421 ring->desc[idx].options = flags; 422 423 return 0; 424 } 425 426 static inline void __xskq_prod_submit(struct xsk_queue *q, u32 idx) 427 { 428 smp_store_release(&q->ring->producer, idx); /* B, matches C */ 429 } 430 431 static inline void xskq_prod_submit(struct xsk_queue *q) 432 { 433 __xskq_prod_submit(q, q->cached_prod); 434 } 435 436 static inline void xskq_prod_submit_n(struct xsk_queue *q, u32 nb_entries) 437 { 438 __xskq_prod_submit(q, q->ring->producer + nb_entries); 439 } 440 441 static inline bool xskq_prod_is_empty(struct xsk_queue *q) 442 { 443 /* No barriers needed since data is not accessed */ 444 return READ_ONCE(q->ring->consumer) == READ_ONCE(q->ring->producer); 445 } 446 447 /* For both producers and consumers */ 448 449 static inline u64 xskq_nb_invalid_descs(struct xsk_queue *q) 450 { 451 return q ? q->invalid_descs : 0; 452 } 453 454 static inline u64 xskq_nb_queue_empty_descs(struct xsk_queue *q) 455 { 456 return q ? q->queue_empty_descs : 0; 457 } 458 459 struct xsk_queue *xskq_create(u32 nentries, bool umem_queue); 460 void xskq_destroy(struct xsk_queue *q_ops); 461 462 #endif /* _LINUX_XSK_QUEUE_H */ 463