1 /* SPDX-License-Identifier: GPL-2.0 */ 2 /* XDP user-space ring structure 3 * Copyright(c) 2018 Intel Corporation. 4 */ 5 6 #ifndef _LINUX_XSK_QUEUE_H 7 #define _LINUX_XSK_QUEUE_H 8 9 #include <linux/types.h> 10 #include <linux/if_xdp.h> 11 #include <net/xdp_sock.h> 12 #include <net/xsk_buff_pool.h> 13 14 #include "xsk.h" 15 16 struct xdp_ring { 17 u32 producer ____cacheline_aligned_in_smp; 18 /* Hinder the adjacent cache prefetcher to prefetch the consumer 19 * pointer if the producer pointer is touched and vice versa. 20 */ 21 u32 pad1 ____cacheline_aligned_in_smp; 22 u32 consumer ____cacheline_aligned_in_smp; 23 u32 pad2 ____cacheline_aligned_in_smp; 24 u32 flags; 25 u32 pad3 ____cacheline_aligned_in_smp; 26 }; 27 28 /* Used for the RX and TX queues for packets */ 29 struct xdp_rxtx_ring { 30 struct xdp_ring ptrs; 31 struct xdp_desc desc[] ____cacheline_aligned_in_smp; 32 }; 33 34 /* Used for the fill and completion queues for buffers */ 35 struct xdp_umem_ring { 36 struct xdp_ring ptrs; 37 u64 desc[] ____cacheline_aligned_in_smp; 38 }; 39 40 struct xsk_queue { 41 u32 ring_mask; 42 u32 nentries; 43 u32 cached_prod; 44 u32 cached_cons; 45 struct xdp_ring *ring; 46 u64 invalid_descs; 47 u64 queue_empty_descs; 48 }; 49 50 /* The structure of the shared state of the rings are a simple 51 * circular buffer, as outlined in 52 * Documentation/core-api/circular-buffers.rst. For the Rx and 53 * completion ring, the kernel is the producer and user space is the 54 * consumer. For the Tx and fill rings, the kernel is the consumer and 55 * user space is the producer. 56 * 57 * producer consumer 58 * 59 * if (LOAD ->consumer) { (A) LOAD.acq ->producer (C) 60 * STORE $data LOAD $data 61 * STORE.rel ->producer (B) STORE.rel ->consumer (D) 62 * } 63 * 64 * (A) pairs with (D), and (B) pairs with (C). 65 * 66 * Starting with (B), it protects the data from being written after 67 * the producer pointer. If this barrier was missing, the consumer 68 * could observe the producer pointer being set and thus load the data 69 * before the producer has written the new data. The consumer would in 70 * this case load the old data. 71 * 72 * (C) protects the consumer from speculatively loading the data before 73 * the producer pointer actually has been read. If we do not have this 74 * barrier, some architectures could load old data as speculative loads 75 * are not discarded as the CPU does not know there is a dependency 76 * between ->producer and data. 77 * 78 * (A) is a control dependency that separates the load of ->consumer 79 * from the stores of $data. In case ->consumer indicates there is no 80 * room in the buffer to store $data we do not. The dependency will 81 * order both of the stores after the loads. So no barrier is needed. 82 * 83 * (D) protects the load of the data to be observed to happen after the 84 * store of the consumer pointer. If we did not have this memory 85 * barrier, the producer could observe the consumer pointer being set 86 * and overwrite the data with a new value before the consumer got the 87 * chance to read the old value. The consumer would thus miss reading 88 * the old entry and very likely read the new entry twice, once right 89 * now and again after circling through the ring. 90 */ 91 92 /* The operations on the rings are the following: 93 * 94 * producer consumer 95 * 96 * RESERVE entries PEEK in the ring for entries 97 * WRITE data into the ring READ data from the ring 98 * SUBMIT entries RELEASE entries 99 * 100 * The producer reserves one or more entries in the ring. It can then 101 * fill in these entries and finally submit them so that they can be 102 * seen and read by the consumer. 103 * 104 * The consumer peeks into the ring to see if the producer has written 105 * any new entries. If so, the consumer can then read these entries 106 * and when it is done reading them release them back to the producer 107 * so that the producer can use these slots to fill in new entries. 108 * 109 * The function names below reflect these operations. 110 */ 111 112 /* Functions that read and validate content from consumer rings. */ 113 114 static inline bool xskq_cons_read_addr_unchecked(struct xsk_queue *q, u64 *addr) 115 { 116 struct xdp_umem_ring *ring = (struct xdp_umem_ring *)q->ring; 117 118 if (q->cached_cons != q->cached_prod) { 119 u32 idx = q->cached_cons & q->ring_mask; 120 121 *addr = ring->desc[idx]; 122 return true; 123 } 124 125 return false; 126 } 127 128 static inline bool xp_aligned_validate_desc(struct xsk_buff_pool *pool, 129 struct xdp_desc *desc) 130 { 131 u64 chunk; 132 133 if (desc->len > pool->chunk_size) 134 return false; 135 136 chunk = xp_aligned_extract_addr(pool, desc->addr); 137 if (chunk >= pool->addrs_cnt) 138 return false; 139 140 if (desc->options) 141 return false; 142 return true; 143 } 144 145 static inline bool xp_unaligned_validate_desc(struct xsk_buff_pool *pool, 146 struct xdp_desc *desc) 147 { 148 u64 addr, base_addr; 149 150 base_addr = xp_unaligned_extract_addr(desc->addr); 151 addr = xp_unaligned_add_offset_to_addr(desc->addr); 152 153 if (desc->len > pool->chunk_size) 154 return false; 155 156 if (base_addr >= pool->addrs_cnt || addr >= pool->addrs_cnt || 157 xp_desc_crosses_non_contig_pg(pool, addr, desc->len)) 158 return false; 159 160 if (desc->options) 161 return false; 162 return true; 163 } 164 165 static inline bool xp_validate_desc(struct xsk_buff_pool *pool, 166 struct xdp_desc *desc) 167 { 168 return pool->unaligned ? xp_unaligned_validate_desc(pool, desc) : 169 xp_aligned_validate_desc(pool, desc); 170 } 171 172 static inline bool xskq_cons_is_valid_desc(struct xsk_queue *q, 173 struct xdp_desc *d, 174 struct xsk_buff_pool *pool) 175 { 176 if (!xp_validate_desc(pool, d)) { 177 q->invalid_descs++; 178 return false; 179 } 180 return true; 181 } 182 183 static inline bool xskq_cons_read_desc(struct xsk_queue *q, 184 struct xdp_desc *desc, 185 struct xsk_buff_pool *pool) 186 { 187 while (q->cached_cons != q->cached_prod) { 188 struct xdp_rxtx_ring *ring = (struct xdp_rxtx_ring *)q->ring; 189 u32 idx = q->cached_cons & q->ring_mask; 190 191 *desc = ring->desc[idx]; 192 if (xskq_cons_is_valid_desc(q, desc, pool)) 193 return true; 194 195 q->cached_cons++; 196 } 197 198 return false; 199 } 200 201 static inline u32 xskq_cons_read_desc_batch(struct xsk_queue *q, 202 struct xdp_desc *descs, 203 struct xsk_buff_pool *pool, u32 max) 204 { 205 u32 cached_cons = q->cached_cons, nb_entries = 0; 206 207 while (cached_cons != q->cached_prod && nb_entries < max) { 208 struct xdp_rxtx_ring *ring = (struct xdp_rxtx_ring *)q->ring; 209 u32 idx = cached_cons & q->ring_mask; 210 211 descs[nb_entries] = ring->desc[idx]; 212 if (unlikely(!xskq_cons_is_valid_desc(q, &descs[nb_entries], pool))) { 213 /* Skip the entry */ 214 cached_cons++; 215 continue; 216 } 217 218 nb_entries++; 219 cached_cons++; 220 } 221 222 return nb_entries; 223 } 224 225 /* Functions for consumers */ 226 227 static inline void __xskq_cons_release(struct xsk_queue *q) 228 { 229 smp_store_release(&q->ring->consumer, q->cached_cons); /* D, matchees A */ 230 } 231 232 static inline void __xskq_cons_peek(struct xsk_queue *q) 233 { 234 /* Refresh the local pointer */ 235 q->cached_prod = smp_load_acquire(&q->ring->producer); /* C, matches B */ 236 } 237 238 static inline void xskq_cons_get_entries(struct xsk_queue *q) 239 { 240 __xskq_cons_release(q); 241 __xskq_cons_peek(q); 242 } 243 244 static inline u32 xskq_cons_nb_entries(struct xsk_queue *q, u32 max) 245 { 246 u32 entries = q->cached_prod - q->cached_cons; 247 248 if (entries >= max) 249 return max; 250 251 __xskq_cons_peek(q); 252 entries = q->cached_prod - q->cached_cons; 253 254 return entries >= max ? max : entries; 255 } 256 257 static inline bool xskq_cons_has_entries(struct xsk_queue *q, u32 cnt) 258 { 259 return xskq_cons_nb_entries(q, cnt) >= cnt ? true : false; 260 } 261 262 static inline bool xskq_cons_peek_addr_unchecked(struct xsk_queue *q, u64 *addr) 263 { 264 if (q->cached_prod == q->cached_cons) 265 xskq_cons_get_entries(q); 266 return xskq_cons_read_addr_unchecked(q, addr); 267 } 268 269 static inline bool xskq_cons_peek_desc(struct xsk_queue *q, 270 struct xdp_desc *desc, 271 struct xsk_buff_pool *pool) 272 { 273 if (q->cached_prod == q->cached_cons) 274 xskq_cons_get_entries(q); 275 return xskq_cons_read_desc(q, desc, pool); 276 } 277 278 static inline u32 xskq_cons_peek_desc_batch(struct xsk_queue *q, struct xdp_desc *descs, 279 struct xsk_buff_pool *pool, u32 max) 280 { 281 u32 entries = xskq_cons_nb_entries(q, max); 282 283 return xskq_cons_read_desc_batch(q, descs, pool, entries); 284 } 285 286 /* To improve performance in the xskq_cons_release functions, only update local state here. 287 * Reflect this to global state when we get new entries from the ring in 288 * xskq_cons_get_entries() and whenever Rx or Tx processing are completed in the NAPI loop. 289 */ 290 static inline void xskq_cons_release(struct xsk_queue *q) 291 { 292 q->cached_cons++; 293 } 294 295 static inline void xskq_cons_release_n(struct xsk_queue *q, u32 cnt) 296 { 297 q->cached_cons += cnt; 298 } 299 300 static inline bool xskq_cons_is_full(struct xsk_queue *q) 301 { 302 /* No barriers needed since data is not accessed */ 303 return READ_ONCE(q->ring->producer) - READ_ONCE(q->ring->consumer) == 304 q->nentries; 305 } 306 307 static inline u32 xskq_cons_present_entries(struct xsk_queue *q) 308 { 309 /* No barriers needed since data is not accessed */ 310 return READ_ONCE(q->ring->producer) - READ_ONCE(q->ring->consumer); 311 } 312 313 /* Functions for producers */ 314 315 static inline u32 xskq_prod_nb_free(struct xsk_queue *q, u32 max) 316 { 317 u32 free_entries = q->nentries - (q->cached_prod - q->cached_cons); 318 319 if (free_entries >= max) 320 return max; 321 322 /* Refresh the local tail pointer */ 323 q->cached_cons = READ_ONCE(q->ring->consumer); 324 free_entries = q->nentries - (q->cached_prod - q->cached_cons); 325 326 return free_entries >= max ? max : free_entries; 327 } 328 329 static inline bool xskq_prod_is_full(struct xsk_queue *q) 330 { 331 return xskq_prod_nb_free(q, 1) ? false : true; 332 } 333 334 static inline void xskq_prod_cancel(struct xsk_queue *q) 335 { 336 q->cached_prod--; 337 } 338 339 static inline int xskq_prod_reserve(struct xsk_queue *q) 340 { 341 if (xskq_prod_is_full(q)) 342 return -ENOSPC; 343 344 /* A, matches D */ 345 q->cached_prod++; 346 return 0; 347 } 348 349 static inline int xskq_prod_reserve_addr(struct xsk_queue *q, u64 addr) 350 { 351 struct xdp_umem_ring *ring = (struct xdp_umem_ring *)q->ring; 352 353 if (xskq_prod_is_full(q)) 354 return -ENOSPC; 355 356 /* A, matches D */ 357 ring->desc[q->cached_prod++ & q->ring_mask] = addr; 358 return 0; 359 } 360 361 static inline u32 xskq_prod_reserve_addr_batch(struct xsk_queue *q, struct xdp_desc *descs, 362 u32 max) 363 { 364 struct xdp_umem_ring *ring = (struct xdp_umem_ring *)q->ring; 365 u32 nb_entries, i, cached_prod; 366 367 nb_entries = xskq_prod_nb_free(q, max); 368 369 /* A, matches D */ 370 cached_prod = q->cached_prod; 371 for (i = 0; i < nb_entries; i++) 372 ring->desc[cached_prod++ & q->ring_mask] = descs[i].addr; 373 q->cached_prod = cached_prod; 374 375 return nb_entries; 376 } 377 378 static inline int xskq_prod_reserve_desc(struct xsk_queue *q, 379 u64 addr, u32 len) 380 { 381 struct xdp_rxtx_ring *ring = (struct xdp_rxtx_ring *)q->ring; 382 u32 idx; 383 384 if (xskq_prod_is_full(q)) 385 return -ENOSPC; 386 387 /* A, matches D */ 388 idx = q->cached_prod++ & q->ring_mask; 389 ring->desc[idx].addr = addr; 390 ring->desc[idx].len = len; 391 392 return 0; 393 } 394 395 static inline void __xskq_prod_submit(struct xsk_queue *q, u32 idx) 396 { 397 smp_store_release(&q->ring->producer, idx); /* B, matches C */ 398 } 399 400 static inline void xskq_prod_submit(struct xsk_queue *q) 401 { 402 __xskq_prod_submit(q, q->cached_prod); 403 } 404 405 static inline void xskq_prod_submit_addr(struct xsk_queue *q, u64 addr) 406 { 407 struct xdp_umem_ring *ring = (struct xdp_umem_ring *)q->ring; 408 u32 idx = q->ring->producer; 409 410 ring->desc[idx++ & q->ring_mask] = addr; 411 412 __xskq_prod_submit(q, idx); 413 } 414 415 static inline void xskq_prod_submit_n(struct xsk_queue *q, u32 nb_entries) 416 { 417 __xskq_prod_submit(q, q->ring->producer + nb_entries); 418 } 419 420 static inline bool xskq_prod_is_empty(struct xsk_queue *q) 421 { 422 /* No barriers needed since data is not accessed */ 423 return READ_ONCE(q->ring->consumer) == READ_ONCE(q->ring->producer); 424 } 425 426 /* For both producers and consumers */ 427 428 static inline u64 xskq_nb_invalid_descs(struct xsk_queue *q) 429 { 430 return q ? q->invalid_descs : 0; 431 } 432 433 static inline u64 xskq_nb_queue_empty_descs(struct xsk_queue *q) 434 { 435 return q ? q->queue_empty_descs : 0; 436 } 437 438 struct xsk_queue *xskq_create(u32 nentries, bool umem_queue); 439 void xskq_destroy(struct xsk_queue *q_ops); 440 441 #endif /* _LINUX_XSK_QUEUE_H */ 442