xref: /linux/net/xdp/xsk_queue.h (revision 37744feebc086908fd89760650f458ab19071750)
1 /* SPDX-License-Identifier: GPL-2.0 */
2 /* XDP user-space ring structure
3  * Copyright(c) 2018 Intel Corporation.
4  */
5 
6 #ifndef _LINUX_XSK_QUEUE_H
7 #define _LINUX_XSK_QUEUE_H
8 
9 #include <linux/types.h>
10 #include <linux/if_xdp.h>
11 #include <net/xdp_sock.h>
12 
13 struct xdp_ring {
14 	u32 producer ____cacheline_aligned_in_smp;
15 	u32 consumer ____cacheline_aligned_in_smp;
16 	u32 flags;
17 };
18 
19 /* Used for the RX and TX queues for packets */
20 struct xdp_rxtx_ring {
21 	struct xdp_ring ptrs;
22 	struct xdp_desc desc[] ____cacheline_aligned_in_smp;
23 };
24 
25 /* Used for the fill and completion queues for buffers */
26 struct xdp_umem_ring {
27 	struct xdp_ring ptrs;
28 	u64 desc[] ____cacheline_aligned_in_smp;
29 };
30 
31 struct xsk_queue {
32 	u64 chunk_mask;
33 	u64 size;
34 	u32 ring_mask;
35 	u32 nentries;
36 	u32 cached_prod;
37 	u32 cached_cons;
38 	struct xdp_ring *ring;
39 	u64 invalid_descs;
40 };
41 
42 /* The structure of the shared state of the rings are the same as the
43  * ring buffer in kernel/events/ring_buffer.c. For the Rx and completion
44  * ring, the kernel is the producer and user space is the consumer. For
45  * the Tx and fill rings, the kernel is the consumer and user space is
46  * the producer.
47  *
48  * producer                         consumer
49  *
50  * if (LOAD ->consumer) {           LOAD ->producer
51  *                    (A)           smp_rmb()       (C)
52  *    STORE $data                   LOAD $data
53  *    smp_wmb()       (B)           smp_mb()        (D)
54  *    STORE ->producer              STORE ->consumer
55  * }
56  *
57  * (A) pairs with (D), and (B) pairs with (C).
58  *
59  * Starting with (B), it protects the data from being written after
60  * the producer pointer. If this barrier was missing, the consumer
61  * could observe the producer pointer being set and thus load the data
62  * before the producer has written the new data. The consumer would in
63  * this case load the old data.
64  *
65  * (C) protects the consumer from speculatively loading the data before
66  * the producer pointer actually has been read. If we do not have this
67  * barrier, some architectures could load old data as speculative loads
68  * are not discarded as the CPU does not know there is a dependency
69  * between ->producer and data.
70  *
71  * (A) is a control dependency that separates the load of ->consumer
72  * from the stores of $data. In case ->consumer indicates there is no
73  * room in the buffer to store $data we do not. So no barrier is needed.
74  *
75  * (D) protects the load of the data to be observed to happen after the
76  * store of the consumer pointer. If we did not have this memory
77  * barrier, the producer could observe the consumer pointer being set
78  * and overwrite the data with a new value before the consumer got the
79  * chance to read the old value. The consumer would thus miss reading
80  * the old entry and very likely read the new entry twice, once right
81  * now and again after circling through the ring.
82  */
83 
84 /* The operations on the rings are the following:
85  *
86  * producer                           consumer
87  *
88  * RESERVE entries                    PEEK in the ring for entries
89  * WRITE data into the ring           READ data from the ring
90  * SUBMIT entries                     RELEASE entries
91  *
92  * The producer reserves one or more entries in the ring. It can then
93  * fill in these entries and finally submit them so that they can be
94  * seen and read by the consumer.
95  *
96  * The consumer peeks into the ring to see if the producer has written
97  * any new entries. If so, the producer can then read these entries
98  * and when it is done reading them release them back to the producer
99  * so that the producer can use these slots to fill in new entries.
100  *
101  * The function names below reflect these operations.
102  */
103 
104 /* Functions that read and validate content from consumer rings. */
105 
106 static inline bool xskq_cons_crosses_non_contig_pg(struct xdp_umem *umem,
107 						   u64 addr,
108 						   u64 length)
109 {
110 	bool cross_pg = (addr & (PAGE_SIZE - 1)) + length > PAGE_SIZE;
111 	bool next_pg_contig =
112 		(unsigned long)umem->pages[(addr >> PAGE_SHIFT)].addr &
113 			XSK_NEXT_PG_CONTIG_MASK;
114 
115 	return cross_pg && !next_pg_contig;
116 }
117 
118 static inline bool xskq_cons_is_valid_unaligned(struct xsk_queue *q,
119 						u64 addr,
120 						u64 length,
121 						struct xdp_umem *umem)
122 {
123 	u64 base_addr = xsk_umem_extract_addr(addr);
124 
125 	addr = xsk_umem_add_offset_to_addr(addr);
126 	if (base_addr >= q->size || addr >= q->size ||
127 	    xskq_cons_crosses_non_contig_pg(umem, addr, length)) {
128 		q->invalid_descs++;
129 		return false;
130 	}
131 
132 	return true;
133 }
134 
135 static inline bool xskq_cons_is_valid_addr(struct xsk_queue *q, u64 addr)
136 {
137 	if (addr >= q->size) {
138 		q->invalid_descs++;
139 		return false;
140 	}
141 
142 	return true;
143 }
144 
145 static inline bool xskq_cons_read_addr(struct xsk_queue *q, u64 *addr,
146 				       struct xdp_umem *umem)
147 {
148 	struct xdp_umem_ring *ring = (struct xdp_umem_ring *)q->ring;
149 
150 	while (q->cached_cons != q->cached_prod) {
151 		u32 idx = q->cached_cons & q->ring_mask;
152 
153 		*addr = ring->desc[idx] & q->chunk_mask;
154 
155 		if (umem->flags & XDP_UMEM_UNALIGNED_CHUNK_FLAG) {
156 			if (xskq_cons_is_valid_unaligned(q, *addr,
157 							 umem->chunk_size_nohr,
158 							 umem))
159 				return true;
160 			goto out;
161 		}
162 
163 		if (xskq_cons_is_valid_addr(q, *addr))
164 			return true;
165 
166 out:
167 		q->cached_cons++;
168 	}
169 
170 	return false;
171 }
172 
173 static inline bool xskq_cons_is_valid_desc(struct xsk_queue *q,
174 					   struct xdp_desc *d,
175 					   struct xdp_umem *umem)
176 {
177 	if (umem->flags & XDP_UMEM_UNALIGNED_CHUNK_FLAG) {
178 		if (!xskq_cons_is_valid_unaligned(q, d->addr, d->len, umem))
179 			return false;
180 
181 		if (d->len > umem->chunk_size_nohr || d->options) {
182 			q->invalid_descs++;
183 			return false;
184 		}
185 
186 		return true;
187 	}
188 
189 	if (!xskq_cons_is_valid_addr(q, d->addr))
190 		return false;
191 
192 	if (((d->addr + d->len) & q->chunk_mask) != (d->addr & q->chunk_mask) ||
193 	    d->options) {
194 		q->invalid_descs++;
195 		return false;
196 	}
197 
198 	return true;
199 }
200 
201 static inline bool xskq_cons_read_desc(struct xsk_queue *q,
202 				       struct xdp_desc *desc,
203 				       struct xdp_umem *umem)
204 {
205 	while (q->cached_cons != q->cached_prod) {
206 		struct xdp_rxtx_ring *ring = (struct xdp_rxtx_ring *)q->ring;
207 		u32 idx = q->cached_cons & q->ring_mask;
208 
209 		*desc = ring->desc[idx];
210 		if (xskq_cons_is_valid_desc(q, desc, umem))
211 			return true;
212 
213 		q->cached_cons++;
214 	}
215 
216 	return false;
217 }
218 
219 /* Functions for consumers */
220 
221 static inline void __xskq_cons_release(struct xsk_queue *q)
222 {
223 	smp_mb(); /* D, matches A */
224 	WRITE_ONCE(q->ring->consumer, q->cached_cons);
225 }
226 
227 static inline void __xskq_cons_peek(struct xsk_queue *q)
228 {
229 	/* Refresh the local pointer */
230 	q->cached_prod = READ_ONCE(q->ring->producer);
231 	smp_rmb(); /* C, matches B */
232 }
233 
234 static inline void xskq_cons_get_entries(struct xsk_queue *q)
235 {
236 	__xskq_cons_release(q);
237 	__xskq_cons_peek(q);
238 }
239 
240 static inline bool xskq_cons_has_entries(struct xsk_queue *q, u32 cnt)
241 {
242 	u32 entries = q->cached_prod - q->cached_cons;
243 
244 	if (entries >= cnt)
245 		return true;
246 
247 	__xskq_cons_peek(q);
248 	entries = q->cached_prod - q->cached_cons;
249 
250 	return entries >= cnt;
251 }
252 
253 static inline bool xskq_cons_peek_addr(struct xsk_queue *q, u64 *addr,
254 				       struct xdp_umem *umem)
255 {
256 	if (q->cached_prod == q->cached_cons)
257 		xskq_cons_get_entries(q);
258 	return xskq_cons_read_addr(q, addr, umem);
259 }
260 
261 static inline bool xskq_cons_peek_desc(struct xsk_queue *q,
262 				       struct xdp_desc *desc,
263 				       struct xdp_umem *umem)
264 {
265 	if (q->cached_prod == q->cached_cons)
266 		xskq_cons_get_entries(q);
267 	return xskq_cons_read_desc(q, desc, umem);
268 }
269 
270 static inline void xskq_cons_release(struct xsk_queue *q)
271 {
272 	/* To improve performance, only update local state here.
273 	 * Reflect this to global state when we get new entries
274 	 * from the ring in xskq_cons_get_entries() and whenever
275 	 * Rx or Tx processing are completed in the NAPI loop.
276 	 */
277 	q->cached_cons++;
278 }
279 
280 static inline bool xskq_cons_is_full(struct xsk_queue *q)
281 {
282 	/* No barriers needed since data is not accessed */
283 	return READ_ONCE(q->ring->producer) - READ_ONCE(q->ring->consumer) ==
284 		q->nentries;
285 }
286 
287 /* Functions for producers */
288 
289 static inline bool xskq_prod_is_full(struct xsk_queue *q)
290 {
291 	u32 free_entries = q->nentries - (q->cached_prod - q->cached_cons);
292 
293 	if (free_entries)
294 		return false;
295 
296 	/* Refresh the local tail pointer */
297 	q->cached_cons = READ_ONCE(q->ring->consumer);
298 	free_entries = q->nentries - (q->cached_prod - q->cached_cons);
299 
300 	return !free_entries;
301 }
302 
303 static inline int xskq_prod_reserve(struct xsk_queue *q)
304 {
305 	if (xskq_prod_is_full(q))
306 		return -ENOSPC;
307 
308 	/* A, matches D */
309 	q->cached_prod++;
310 	return 0;
311 }
312 
313 static inline int xskq_prod_reserve_addr(struct xsk_queue *q, u64 addr)
314 {
315 	struct xdp_umem_ring *ring = (struct xdp_umem_ring *)q->ring;
316 
317 	if (xskq_prod_is_full(q))
318 		return -ENOSPC;
319 
320 	/* A, matches D */
321 	ring->desc[q->cached_prod++ & q->ring_mask] = addr;
322 	return 0;
323 }
324 
325 static inline int xskq_prod_reserve_desc(struct xsk_queue *q,
326 					 u64 addr, u32 len)
327 {
328 	struct xdp_rxtx_ring *ring = (struct xdp_rxtx_ring *)q->ring;
329 	u32 idx;
330 
331 	if (xskq_prod_is_full(q))
332 		return -ENOSPC;
333 
334 	/* A, matches D */
335 	idx = q->cached_prod++ & q->ring_mask;
336 	ring->desc[idx].addr = addr;
337 	ring->desc[idx].len = len;
338 
339 	return 0;
340 }
341 
342 static inline void __xskq_prod_submit(struct xsk_queue *q, u32 idx)
343 {
344 	smp_wmb(); /* B, matches C */
345 
346 	WRITE_ONCE(q->ring->producer, idx);
347 }
348 
349 static inline void xskq_prod_submit(struct xsk_queue *q)
350 {
351 	__xskq_prod_submit(q, q->cached_prod);
352 }
353 
354 static inline void xskq_prod_submit_addr(struct xsk_queue *q, u64 addr)
355 {
356 	struct xdp_umem_ring *ring = (struct xdp_umem_ring *)q->ring;
357 	u32 idx = q->ring->producer;
358 
359 	ring->desc[idx++ & q->ring_mask] = addr;
360 
361 	__xskq_prod_submit(q, idx);
362 }
363 
364 static inline void xskq_prod_submit_n(struct xsk_queue *q, u32 nb_entries)
365 {
366 	__xskq_prod_submit(q, q->ring->producer + nb_entries);
367 }
368 
369 static inline bool xskq_prod_is_empty(struct xsk_queue *q)
370 {
371 	/* No barriers needed since data is not accessed */
372 	return READ_ONCE(q->ring->consumer) == READ_ONCE(q->ring->producer);
373 }
374 
375 /* For both producers and consumers */
376 
377 static inline u64 xskq_nb_invalid_descs(struct xsk_queue *q)
378 {
379 	return q ? q->invalid_descs : 0;
380 }
381 
382 void xskq_set_umem(struct xsk_queue *q, u64 size, u64 chunk_mask);
383 struct xsk_queue *xskq_create(u32 nentries, bool umem_queue);
384 void xskq_destroy(struct xsk_queue *q_ops);
385 
386 /* Executed by the core when the entire UMEM gets freed */
387 void xsk_reuseq_destroy(struct xdp_umem *umem);
388 
389 #endif /* _LINUX_XSK_QUEUE_H */
390