1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Wireless utility functions 4 * 5 * Copyright 2007-2009 Johannes Berg <johannes@sipsolutions.net> 6 * Copyright 2013-2014 Intel Mobile Communications GmbH 7 * Copyright 2017 Intel Deutschland GmbH 8 * Copyright (C) 2018-2023 Intel Corporation 9 */ 10 #include <linux/export.h> 11 #include <linux/bitops.h> 12 #include <linux/etherdevice.h> 13 #include <linux/slab.h> 14 #include <linux/ieee80211.h> 15 #include <net/cfg80211.h> 16 #include <net/ip.h> 17 #include <net/dsfield.h> 18 #include <linux/if_vlan.h> 19 #include <linux/mpls.h> 20 #include <linux/gcd.h> 21 #include <linux/bitfield.h> 22 #include <linux/nospec.h> 23 #include "core.h" 24 #include "rdev-ops.h" 25 26 27 const struct ieee80211_rate * 28 ieee80211_get_response_rate(struct ieee80211_supported_band *sband, 29 u32 basic_rates, int bitrate) 30 { 31 struct ieee80211_rate *result = &sband->bitrates[0]; 32 int i; 33 34 for (i = 0; i < sband->n_bitrates; i++) { 35 if (!(basic_rates & BIT(i))) 36 continue; 37 if (sband->bitrates[i].bitrate > bitrate) 38 continue; 39 result = &sband->bitrates[i]; 40 } 41 42 return result; 43 } 44 EXPORT_SYMBOL(ieee80211_get_response_rate); 45 46 u32 ieee80211_mandatory_rates(struct ieee80211_supported_band *sband, 47 enum nl80211_bss_scan_width scan_width) 48 { 49 struct ieee80211_rate *bitrates; 50 u32 mandatory_rates = 0; 51 enum ieee80211_rate_flags mandatory_flag; 52 int i; 53 54 if (WARN_ON(!sband)) 55 return 1; 56 57 if (sband->band == NL80211_BAND_2GHZ) { 58 if (scan_width == NL80211_BSS_CHAN_WIDTH_5 || 59 scan_width == NL80211_BSS_CHAN_WIDTH_10) 60 mandatory_flag = IEEE80211_RATE_MANDATORY_G; 61 else 62 mandatory_flag = IEEE80211_RATE_MANDATORY_B; 63 } else { 64 mandatory_flag = IEEE80211_RATE_MANDATORY_A; 65 } 66 67 bitrates = sband->bitrates; 68 for (i = 0; i < sband->n_bitrates; i++) 69 if (bitrates[i].flags & mandatory_flag) 70 mandatory_rates |= BIT(i); 71 return mandatory_rates; 72 } 73 EXPORT_SYMBOL(ieee80211_mandatory_rates); 74 75 u32 ieee80211_channel_to_freq_khz(int chan, enum nl80211_band band) 76 { 77 /* see 802.11 17.3.8.3.2 and Annex J 78 * there are overlapping channel numbers in 5GHz and 2GHz bands */ 79 if (chan <= 0) 80 return 0; /* not supported */ 81 switch (band) { 82 case NL80211_BAND_2GHZ: 83 case NL80211_BAND_LC: 84 if (chan == 14) 85 return MHZ_TO_KHZ(2484); 86 else if (chan < 14) 87 return MHZ_TO_KHZ(2407 + chan * 5); 88 break; 89 case NL80211_BAND_5GHZ: 90 if (chan >= 182 && chan <= 196) 91 return MHZ_TO_KHZ(4000 + chan * 5); 92 else 93 return MHZ_TO_KHZ(5000 + chan * 5); 94 break; 95 case NL80211_BAND_6GHZ: 96 /* see 802.11ax D6.1 27.3.23.2 */ 97 if (chan == 2) 98 return MHZ_TO_KHZ(5935); 99 if (chan <= 233) 100 return MHZ_TO_KHZ(5950 + chan * 5); 101 break; 102 case NL80211_BAND_60GHZ: 103 if (chan < 7) 104 return MHZ_TO_KHZ(56160 + chan * 2160); 105 break; 106 case NL80211_BAND_S1GHZ: 107 return 902000 + chan * 500; 108 default: 109 ; 110 } 111 return 0; /* not supported */ 112 } 113 EXPORT_SYMBOL(ieee80211_channel_to_freq_khz); 114 115 enum nl80211_chan_width 116 ieee80211_s1g_channel_width(const struct ieee80211_channel *chan) 117 { 118 if (WARN_ON(!chan || chan->band != NL80211_BAND_S1GHZ)) 119 return NL80211_CHAN_WIDTH_20_NOHT; 120 121 /*S1G defines a single allowed channel width per channel. 122 * Extract that width here. 123 */ 124 if (chan->flags & IEEE80211_CHAN_1MHZ) 125 return NL80211_CHAN_WIDTH_1; 126 else if (chan->flags & IEEE80211_CHAN_2MHZ) 127 return NL80211_CHAN_WIDTH_2; 128 else if (chan->flags & IEEE80211_CHAN_4MHZ) 129 return NL80211_CHAN_WIDTH_4; 130 else if (chan->flags & IEEE80211_CHAN_8MHZ) 131 return NL80211_CHAN_WIDTH_8; 132 else if (chan->flags & IEEE80211_CHAN_16MHZ) 133 return NL80211_CHAN_WIDTH_16; 134 135 pr_err("unknown channel width for channel at %dKHz?\n", 136 ieee80211_channel_to_khz(chan)); 137 138 return NL80211_CHAN_WIDTH_1; 139 } 140 EXPORT_SYMBOL(ieee80211_s1g_channel_width); 141 142 int ieee80211_freq_khz_to_channel(u32 freq) 143 { 144 /* TODO: just handle MHz for now */ 145 freq = KHZ_TO_MHZ(freq); 146 147 /* see 802.11 17.3.8.3.2 and Annex J */ 148 if (freq == 2484) 149 return 14; 150 else if (freq < 2484) 151 return (freq - 2407) / 5; 152 else if (freq >= 4910 && freq <= 4980) 153 return (freq - 4000) / 5; 154 else if (freq < 5925) 155 return (freq - 5000) / 5; 156 else if (freq == 5935) 157 return 2; 158 else if (freq <= 45000) /* DMG band lower limit */ 159 /* see 802.11ax D6.1 27.3.22.2 */ 160 return (freq - 5950) / 5; 161 else if (freq >= 58320 && freq <= 70200) 162 return (freq - 56160) / 2160; 163 else 164 return 0; 165 } 166 EXPORT_SYMBOL(ieee80211_freq_khz_to_channel); 167 168 struct ieee80211_channel *ieee80211_get_channel_khz(struct wiphy *wiphy, 169 u32 freq) 170 { 171 enum nl80211_band band; 172 struct ieee80211_supported_band *sband; 173 int i; 174 175 for (band = 0; band < NUM_NL80211_BANDS; band++) { 176 sband = wiphy->bands[band]; 177 178 if (!sband) 179 continue; 180 181 for (i = 0; i < sband->n_channels; i++) { 182 struct ieee80211_channel *chan = &sband->channels[i]; 183 184 if (ieee80211_channel_to_khz(chan) == freq) 185 return chan; 186 } 187 } 188 189 return NULL; 190 } 191 EXPORT_SYMBOL(ieee80211_get_channel_khz); 192 193 static void set_mandatory_flags_band(struct ieee80211_supported_band *sband) 194 { 195 int i, want; 196 197 switch (sband->band) { 198 case NL80211_BAND_5GHZ: 199 case NL80211_BAND_6GHZ: 200 want = 3; 201 for (i = 0; i < sband->n_bitrates; i++) { 202 if (sband->bitrates[i].bitrate == 60 || 203 sband->bitrates[i].bitrate == 120 || 204 sband->bitrates[i].bitrate == 240) { 205 sband->bitrates[i].flags |= 206 IEEE80211_RATE_MANDATORY_A; 207 want--; 208 } 209 } 210 WARN_ON(want); 211 break; 212 case NL80211_BAND_2GHZ: 213 case NL80211_BAND_LC: 214 want = 7; 215 for (i = 0; i < sband->n_bitrates; i++) { 216 switch (sband->bitrates[i].bitrate) { 217 case 10: 218 case 20: 219 case 55: 220 case 110: 221 sband->bitrates[i].flags |= 222 IEEE80211_RATE_MANDATORY_B | 223 IEEE80211_RATE_MANDATORY_G; 224 want--; 225 break; 226 case 60: 227 case 120: 228 case 240: 229 sband->bitrates[i].flags |= 230 IEEE80211_RATE_MANDATORY_G; 231 want--; 232 fallthrough; 233 default: 234 sband->bitrates[i].flags |= 235 IEEE80211_RATE_ERP_G; 236 break; 237 } 238 } 239 WARN_ON(want != 0 && want != 3); 240 break; 241 case NL80211_BAND_60GHZ: 242 /* check for mandatory HT MCS 1..4 */ 243 WARN_ON(!sband->ht_cap.ht_supported); 244 WARN_ON((sband->ht_cap.mcs.rx_mask[0] & 0x1e) != 0x1e); 245 break; 246 case NL80211_BAND_S1GHZ: 247 /* Figure 9-589bd: 3 means unsupported, so != 3 means at least 248 * mandatory is ok. 249 */ 250 WARN_ON((sband->s1g_cap.nss_mcs[0] & 0x3) == 0x3); 251 break; 252 case NUM_NL80211_BANDS: 253 default: 254 WARN_ON(1); 255 break; 256 } 257 } 258 259 void ieee80211_set_bitrate_flags(struct wiphy *wiphy) 260 { 261 enum nl80211_band band; 262 263 for (band = 0; band < NUM_NL80211_BANDS; band++) 264 if (wiphy->bands[band]) 265 set_mandatory_flags_band(wiphy->bands[band]); 266 } 267 268 bool cfg80211_supported_cipher_suite(struct wiphy *wiphy, u32 cipher) 269 { 270 int i; 271 for (i = 0; i < wiphy->n_cipher_suites; i++) 272 if (cipher == wiphy->cipher_suites[i]) 273 return true; 274 return false; 275 } 276 277 static bool 278 cfg80211_igtk_cipher_supported(struct cfg80211_registered_device *rdev) 279 { 280 struct wiphy *wiphy = &rdev->wiphy; 281 int i; 282 283 for (i = 0; i < wiphy->n_cipher_suites; i++) { 284 switch (wiphy->cipher_suites[i]) { 285 case WLAN_CIPHER_SUITE_AES_CMAC: 286 case WLAN_CIPHER_SUITE_BIP_CMAC_256: 287 case WLAN_CIPHER_SUITE_BIP_GMAC_128: 288 case WLAN_CIPHER_SUITE_BIP_GMAC_256: 289 return true; 290 } 291 } 292 293 return false; 294 } 295 296 bool cfg80211_valid_key_idx(struct cfg80211_registered_device *rdev, 297 int key_idx, bool pairwise) 298 { 299 int max_key_idx; 300 301 if (pairwise) 302 max_key_idx = 3; 303 else if (wiphy_ext_feature_isset(&rdev->wiphy, 304 NL80211_EXT_FEATURE_BEACON_PROTECTION) || 305 wiphy_ext_feature_isset(&rdev->wiphy, 306 NL80211_EXT_FEATURE_BEACON_PROTECTION_CLIENT)) 307 max_key_idx = 7; 308 else if (cfg80211_igtk_cipher_supported(rdev)) 309 max_key_idx = 5; 310 else 311 max_key_idx = 3; 312 313 if (key_idx < 0 || key_idx > max_key_idx) 314 return false; 315 316 return true; 317 } 318 319 int cfg80211_validate_key_settings(struct cfg80211_registered_device *rdev, 320 struct key_params *params, int key_idx, 321 bool pairwise, const u8 *mac_addr) 322 { 323 if (!cfg80211_valid_key_idx(rdev, key_idx, pairwise)) 324 return -EINVAL; 325 326 if (!pairwise && mac_addr && !(rdev->wiphy.flags & WIPHY_FLAG_IBSS_RSN)) 327 return -EINVAL; 328 329 if (pairwise && !mac_addr) 330 return -EINVAL; 331 332 switch (params->cipher) { 333 case WLAN_CIPHER_SUITE_TKIP: 334 /* Extended Key ID can only be used with CCMP/GCMP ciphers */ 335 if ((pairwise && key_idx) || 336 params->mode != NL80211_KEY_RX_TX) 337 return -EINVAL; 338 break; 339 case WLAN_CIPHER_SUITE_CCMP: 340 case WLAN_CIPHER_SUITE_CCMP_256: 341 case WLAN_CIPHER_SUITE_GCMP: 342 case WLAN_CIPHER_SUITE_GCMP_256: 343 /* IEEE802.11-2016 allows only 0 and - when supporting 344 * Extended Key ID - 1 as index for pairwise keys. 345 * @NL80211_KEY_NO_TX is only allowed for pairwise keys when 346 * the driver supports Extended Key ID. 347 * @NL80211_KEY_SET_TX can't be set when installing and 348 * validating a key. 349 */ 350 if ((params->mode == NL80211_KEY_NO_TX && !pairwise) || 351 params->mode == NL80211_KEY_SET_TX) 352 return -EINVAL; 353 if (wiphy_ext_feature_isset(&rdev->wiphy, 354 NL80211_EXT_FEATURE_EXT_KEY_ID)) { 355 if (pairwise && (key_idx < 0 || key_idx > 1)) 356 return -EINVAL; 357 } else if (pairwise && key_idx) { 358 return -EINVAL; 359 } 360 break; 361 case WLAN_CIPHER_SUITE_AES_CMAC: 362 case WLAN_CIPHER_SUITE_BIP_CMAC_256: 363 case WLAN_CIPHER_SUITE_BIP_GMAC_128: 364 case WLAN_CIPHER_SUITE_BIP_GMAC_256: 365 /* Disallow BIP (group-only) cipher as pairwise cipher */ 366 if (pairwise) 367 return -EINVAL; 368 if (key_idx < 4) 369 return -EINVAL; 370 break; 371 case WLAN_CIPHER_SUITE_WEP40: 372 case WLAN_CIPHER_SUITE_WEP104: 373 if (key_idx > 3) 374 return -EINVAL; 375 break; 376 default: 377 break; 378 } 379 380 switch (params->cipher) { 381 case WLAN_CIPHER_SUITE_WEP40: 382 if (params->key_len != WLAN_KEY_LEN_WEP40) 383 return -EINVAL; 384 break; 385 case WLAN_CIPHER_SUITE_TKIP: 386 if (params->key_len != WLAN_KEY_LEN_TKIP) 387 return -EINVAL; 388 break; 389 case WLAN_CIPHER_SUITE_CCMP: 390 if (params->key_len != WLAN_KEY_LEN_CCMP) 391 return -EINVAL; 392 break; 393 case WLAN_CIPHER_SUITE_CCMP_256: 394 if (params->key_len != WLAN_KEY_LEN_CCMP_256) 395 return -EINVAL; 396 break; 397 case WLAN_CIPHER_SUITE_GCMP: 398 if (params->key_len != WLAN_KEY_LEN_GCMP) 399 return -EINVAL; 400 break; 401 case WLAN_CIPHER_SUITE_GCMP_256: 402 if (params->key_len != WLAN_KEY_LEN_GCMP_256) 403 return -EINVAL; 404 break; 405 case WLAN_CIPHER_SUITE_WEP104: 406 if (params->key_len != WLAN_KEY_LEN_WEP104) 407 return -EINVAL; 408 break; 409 case WLAN_CIPHER_SUITE_AES_CMAC: 410 if (params->key_len != WLAN_KEY_LEN_AES_CMAC) 411 return -EINVAL; 412 break; 413 case WLAN_CIPHER_SUITE_BIP_CMAC_256: 414 if (params->key_len != WLAN_KEY_LEN_BIP_CMAC_256) 415 return -EINVAL; 416 break; 417 case WLAN_CIPHER_SUITE_BIP_GMAC_128: 418 if (params->key_len != WLAN_KEY_LEN_BIP_GMAC_128) 419 return -EINVAL; 420 break; 421 case WLAN_CIPHER_SUITE_BIP_GMAC_256: 422 if (params->key_len != WLAN_KEY_LEN_BIP_GMAC_256) 423 return -EINVAL; 424 break; 425 default: 426 /* 427 * We don't know anything about this algorithm, 428 * allow using it -- but the driver must check 429 * all parameters! We still check below whether 430 * or not the driver supports this algorithm, 431 * of course. 432 */ 433 break; 434 } 435 436 if (params->seq) { 437 switch (params->cipher) { 438 case WLAN_CIPHER_SUITE_WEP40: 439 case WLAN_CIPHER_SUITE_WEP104: 440 /* These ciphers do not use key sequence */ 441 return -EINVAL; 442 case WLAN_CIPHER_SUITE_TKIP: 443 case WLAN_CIPHER_SUITE_CCMP: 444 case WLAN_CIPHER_SUITE_CCMP_256: 445 case WLAN_CIPHER_SUITE_GCMP: 446 case WLAN_CIPHER_SUITE_GCMP_256: 447 case WLAN_CIPHER_SUITE_AES_CMAC: 448 case WLAN_CIPHER_SUITE_BIP_CMAC_256: 449 case WLAN_CIPHER_SUITE_BIP_GMAC_128: 450 case WLAN_CIPHER_SUITE_BIP_GMAC_256: 451 if (params->seq_len != 6) 452 return -EINVAL; 453 break; 454 } 455 } 456 457 if (!cfg80211_supported_cipher_suite(&rdev->wiphy, params->cipher)) 458 return -EINVAL; 459 460 return 0; 461 } 462 463 unsigned int __attribute_const__ ieee80211_hdrlen(__le16 fc) 464 { 465 unsigned int hdrlen = 24; 466 467 if (ieee80211_is_ext(fc)) { 468 hdrlen = 4; 469 goto out; 470 } 471 472 if (ieee80211_is_data(fc)) { 473 if (ieee80211_has_a4(fc)) 474 hdrlen = 30; 475 if (ieee80211_is_data_qos(fc)) { 476 hdrlen += IEEE80211_QOS_CTL_LEN; 477 if (ieee80211_has_order(fc)) 478 hdrlen += IEEE80211_HT_CTL_LEN; 479 } 480 goto out; 481 } 482 483 if (ieee80211_is_mgmt(fc)) { 484 if (ieee80211_has_order(fc)) 485 hdrlen += IEEE80211_HT_CTL_LEN; 486 goto out; 487 } 488 489 if (ieee80211_is_ctl(fc)) { 490 /* 491 * ACK and CTS are 10 bytes, all others 16. To see how 492 * to get this condition consider 493 * subtype mask: 0b0000000011110000 (0x00F0) 494 * ACK subtype: 0b0000000011010000 (0x00D0) 495 * CTS subtype: 0b0000000011000000 (0x00C0) 496 * bits that matter: ^^^ (0x00E0) 497 * value of those: 0b0000000011000000 (0x00C0) 498 */ 499 if ((fc & cpu_to_le16(0x00E0)) == cpu_to_le16(0x00C0)) 500 hdrlen = 10; 501 else 502 hdrlen = 16; 503 } 504 out: 505 return hdrlen; 506 } 507 EXPORT_SYMBOL(ieee80211_hdrlen); 508 509 unsigned int ieee80211_get_hdrlen_from_skb(const struct sk_buff *skb) 510 { 511 const struct ieee80211_hdr *hdr = 512 (const struct ieee80211_hdr *)skb->data; 513 unsigned int hdrlen; 514 515 if (unlikely(skb->len < 10)) 516 return 0; 517 hdrlen = ieee80211_hdrlen(hdr->frame_control); 518 if (unlikely(hdrlen > skb->len)) 519 return 0; 520 return hdrlen; 521 } 522 EXPORT_SYMBOL(ieee80211_get_hdrlen_from_skb); 523 524 static unsigned int __ieee80211_get_mesh_hdrlen(u8 flags) 525 { 526 int ae = flags & MESH_FLAGS_AE; 527 /* 802.11-2012, 8.2.4.7.3 */ 528 switch (ae) { 529 default: 530 case 0: 531 return 6; 532 case MESH_FLAGS_AE_A4: 533 return 12; 534 case MESH_FLAGS_AE_A5_A6: 535 return 18; 536 } 537 } 538 539 unsigned int ieee80211_get_mesh_hdrlen(struct ieee80211s_hdr *meshhdr) 540 { 541 return __ieee80211_get_mesh_hdrlen(meshhdr->flags); 542 } 543 EXPORT_SYMBOL(ieee80211_get_mesh_hdrlen); 544 545 bool ieee80211_get_8023_tunnel_proto(const void *hdr, __be16 *proto) 546 { 547 const __be16 *hdr_proto = hdr + ETH_ALEN; 548 549 if (!(ether_addr_equal(hdr, rfc1042_header) && 550 *hdr_proto != htons(ETH_P_AARP) && 551 *hdr_proto != htons(ETH_P_IPX)) && 552 !ether_addr_equal(hdr, bridge_tunnel_header)) 553 return false; 554 555 *proto = *hdr_proto; 556 557 return true; 558 } 559 EXPORT_SYMBOL(ieee80211_get_8023_tunnel_proto); 560 561 int ieee80211_strip_8023_mesh_hdr(struct sk_buff *skb) 562 { 563 const void *mesh_addr; 564 struct { 565 struct ethhdr eth; 566 u8 flags; 567 } payload; 568 int hdrlen; 569 int ret; 570 571 ret = skb_copy_bits(skb, 0, &payload, sizeof(payload)); 572 if (ret) 573 return ret; 574 575 hdrlen = sizeof(payload.eth) + __ieee80211_get_mesh_hdrlen(payload.flags); 576 577 if (likely(pskb_may_pull(skb, hdrlen + 8) && 578 ieee80211_get_8023_tunnel_proto(skb->data + hdrlen, 579 &payload.eth.h_proto))) 580 hdrlen += ETH_ALEN + 2; 581 else if (!pskb_may_pull(skb, hdrlen)) 582 return -EINVAL; 583 else 584 payload.eth.h_proto = htons(skb->len - hdrlen); 585 586 mesh_addr = skb->data + sizeof(payload.eth) + ETH_ALEN; 587 switch (payload.flags & MESH_FLAGS_AE) { 588 case MESH_FLAGS_AE_A4: 589 memcpy(&payload.eth.h_source, mesh_addr, ETH_ALEN); 590 break; 591 case MESH_FLAGS_AE_A5_A6: 592 memcpy(&payload.eth, mesh_addr, 2 * ETH_ALEN); 593 break; 594 default: 595 break; 596 } 597 598 pskb_pull(skb, hdrlen - sizeof(payload.eth)); 599 memcpy(skb->data, &payload.eth, sizeof(payload.eth)); 600 601 return 0; 602 } 603 EXPORT_SYMBOL(ieee80211_strip_8023_mesh_hdr); 604 605 int ieee80211_data_to_8023_exthdr(struct sk_buff *skb, struct ethhdr *ehdr, 606 const u8 *addr, enum nl80211_iftype iftype, 607 u8 data_offset, bool is_amsdu) 608 { 609 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data; 610 struct { 611 u8 hdr[ETH_ALEN] __aligned(2); 612 __be16 proto; 613 } payload; 614 struct ethhdr tmp; 615 u16 hdrlen; 616 617 if (unlikely(!ieee80211_is_data_present(hdr->frame_control))) 618 return -1; 619 620 hdrlen = ieee80211_hdrlen(hdr->frame_control) + data_offset; 621 if (skb->len < hdrlen) 622 return -1; 623 624 /* convert IEEE 802.11 header + possible LLC headers into Ethernet 625 * header 626 * IEEE 802.11 address fields: 627 * ToDS FromDS Addr1 Addr2 Addr3 Addr4 628 * 0 0 DA SA BSSID n/a 629 * 0 1 DA BSSID SA n/a 630 * 1 0 BSSID SA DA n/a 631 * 1 1 RA TA DA SA 632 */ 633 memcpy(tmp.h_dest, ieee80211_get_DA(hdr), ETH_ALEN); 634 memcpy(tmp.h_source, ieee80211_get_SA(hdr), ETH_ALEN); 635 636 switch (hdr->frame_control & 637 cpu_to_le16(IEEE80211_FCTL_TODS | IEEE80211_FCTL_FROMDS)) { 638 case cpu_to_le16(IEEE80211_FCTL_TODS): 639 if (unlikely(iftype != NL80211_IFTYPE_AP && 640 iftype != NL80211_IFTYPE_AP_VLAN && 641 iftype != NL80211_IFTYPE_P2P_GO)) 642 return -1; 643 break; 644 case cpu_to_le16(IEEE80211_FCTL_TODS | IEEE80211_FCTL_FROMDS): 645 if (unlikely(iftype != NL80211_IFTYPE_MESH_POINT && 646 iftype != NL80211_IFTYPE_AP_VLAN && 647 iftype != NL80211_IFTYPE_STATION)) 648 return -1; 649 break; 650 case cpu_to_le16(IEEE80211_FCTL_FROMDS): 651 if ((iftype != NL80211_IFTYPE_STATION && 652 iftype != NL80211_IFTYPE_P2P_CLIENT && 653 iftype != NL80211_IFTYPE_MESH_POINT) || 654 (is_multicast_ether_addr(tmp.h_dest) && 655 ether_addr_equal(tmp.h_source, addr))) 656 return -1; 657 break; 658 case cpu_to_le16(0): 659 if (iftype != NL80211_IFTYPE_ADHOC && 660 iftype != NL80211_IFTYPE_STATION && 661 iftype != NL80211_IFTYPE_OCB) 662 return -1; 663 break; 664 } 665 666 if (likely(!is_amsdu && iftype != NL80211_IFTYPE_MESH_POINT && 667 skb_copy_bits(skb, hdrlen, &payload, sizeof(payload)) == 0 && 668 ieee80211_get_8023_tunnel_proto(&payload, &tmp.h_proto))) { 669 /* remove RFC1042 or Bridge-Tunnel encapsulation */ 670 hdrlen += ETH_ALEN + 2; 671 skb_postpull_rcsum(skb, &payload, ETH_ALEN + 2); 672 } else { 673 tmp.h_proto = htons(skb->len - hdrlen); 674 } 675 676 pskb_pull(skb, hdrlen); 677 678 if (!ehdr) 679 ehdr = skb_push(skb, sizeof(struct ethhdr)); 680 memcpy(ehdr, &tmp, sizeof(tmp)); 681 682 return 0; 683 } 684 EXPORT_SYMBOL(ieee80211_data_to_8023_exthdr); 685 686 static void 687 __frame_add_frag(struct sk_buff *skb, struct page *page, 688 void *ptr, int len, int size) 689 { 690 struct skb_shared_info *sh = skb_shinfo(skb); 691 int page_offset; 692 693 get_page(page); 694 page_offset = ptr - page_address(page); 695 skb_add_rx_frag(skb, sh->nr_frags, page, page_offset, len, size); 696 } 697 698 static void 699 __ieee80211_amsdu_copy_frag(struct sk_buff *skb, struct sk_buff *frame, 700 int offset, int len) 701 { 702 struct skb_shared_info *sh = skb_shinfo(skb); 703 const skb_frag_t *frag = &sh->frags[0]; 704 struct page *frag_page; 705 void *frag_ptr; 706 int frag_len, frag_size; 707 int head_size = skb->len - skb->data_len; 708 int cur_len; 709 710 frag_page = virt_to_head_page(skb->head); 711 frag_ptr = skb->data; 712 frag_size = head_size; 713 714 while (offset >= frag_size) { 715 offset -= frag_size; 716 frag_page = skb_frag_page(frag); 717 frag_ptr = skb_frag_address(frag); 718 frag_size = skb_frag_size(frag); 719 frag++; 720 } 721 722 frag_ptr += offset; 723 frag_len = frag_size - offset; 724 725 cur_len = min(len, frag_len); 726 727 __frame_add_frag(frame, frag_page, frag_ptr, cur_len, frag_size); 728 len -= cur_len; 729 730 while (len > 0) { 731 frag_len = skb_frag_size(frag); 732 cur_len = min(len, frag_len); 733 __frame_add_frag(frame, skb_frag_page(frag), 734 skb_frag_address(frag), cur_len, frag_len); 735 len -= cur_len; 736 frag++; 737 } 738 } 739 740 static struct sk_buff * 741 __ieee80211_amsdu_copy(struct sk_buff *skb, unsigned int hlen, 742 int offset, int len, bool reuse_frag, 743 int min_len) 744 { 745 struct sk_buff *frame; 746 int cur_len = len; 747 748 if (skb->len - offset < len) 749 return NULL; 750 751 /* 752 * When reusing framents, copy some data to the head to simplify 753 * ethernet header handling and speed up protocol header processing 754 * in the stack later. 755 */ 756 if (reuse_frag) 757 cur_len = min_t(int, len, min_len); 758 759 /* 760 * Allocate and reserve two bytes more for payload 761 * alignment since sizeof(struct ethhdr) is 14. 762 */ 763 frame = dev_alloc_skb(hlen + sizeof(struct ethhdr) + 2 + cur_len); 764 if (!frame) 765 return NULL; 766 767 frame->priority = skb->priority; 768 skb_reserve(frame, hlen + sizeof(struct ethhdr) + 2); 769 skb_copy_bits(skb, offset, skb_put(frame, cur_len), cur_len); 770 771 len -= cur_len; 772 if (!len) 773 return frame; 774 775 offset += cur_len; 776 __ieee80211_amsdu_copy_frag(skb, frame, offset, len); 777 778 return frame; 779 } 780 781 static u16 782 ieee80211_amsdu_subframe_length(void *field, u8 mesh_flags, u8 hdr_type) 783 { 784 __le16 *field_le = field; 785 __be16 *field_be = field; 786 u16 len; 787 788 if (hdr_type >= 2) 789 len = le16_to_cpu(*field_le); 790 else 791 len = be16_to_cpu(*field_be); 792 if (hdr_type) 793 len += __ieee80211_get_mesh_hdrlen(mesh_flags); 794 795 return len; 796 } 797 798 bool ieee80211_is_valid_amsdu(struct sk_buff *skb, u8 mesh_hdr) 799 { 800 int offset = 0, remaining, subframe_len, padding; 801 802 for (offset = 0; offset < skb->len; offset += subframe_len + padding) { 803 struct { 804 __be16 len; 805 u8 mesh_flags; 806 } hdr; 807 u16 len; 808 809 if (skb_copy_bits(skb, offset + 2 * ETH_ALEN, &hdr, sizeof(hdr)) < 0) 810 return false; 811 812 len = ieee80211_amsdu_subframe_length(&hdr.len, hdr.mesh_flags, 813 mesh_hdr); 814 subframe_len = sizeof(struct ethhdr) + len; 815 padding = (4 - subframe_len) & 0x3; 816 remaining = skb->len - offset; 817 818 if (subframe_len > remaining) 819 return false; 820 } 821 822 return true; 823 } 824 EXPORT_SYMBOL(ieee80211_is_valid_amsdu); 825 826 void ieee80211_amsdu_to_8023s(struct sk_buff *skb, struct sk_buff_head *list, 827 const u8 *addr, enum nl80211_iftype iftype, 828 const unsigned int extra_headroom, 829 const u8 *check_da, const u8 *check_sa, 830 u8 mesh_control) 831 { 832 unsigned int hlen = ALIGN(extra_headroom, 4); 833 struct sk_buff *frame = NULL; 834 int offset = 0, remaining; 835 struct { 836 struct ethhdr eth; 837 uint8_t flags; 838 } hdr; 839 bool reuse_frag = skb->head_frag && !skb_has_frag_list(skb); 840 bool reuse_skb = false; 841 bool last = false; 842 int copy_len = sizeof(hdr.eth); 843 844 if (iftype == NL80211_IFTYPE_MESH_POINT) 845 copy_len = sizeof(hdr); 846 847 while (!last) { 848 unsigned int subframe_len; 849 int len, mesh_len = 0; 850 u8 padding; 851 852 skb_copy_bits(skb, offset, &hdr, copy_len); 853 if (iftype == NL80211_IFTYPE_MESH_POINT) 854 mesh_len = __ieee80211_get_mesh_hdrlen(hdr.flags); 855 len = ieee80211_amsdu_subframe_length(&hdr.eth.h_proto, hdr.flags, 856 mesh_control); 857 subframe_len = sizeof(struct ethhdr) + len; 858 padding = (4 - subframe_len) & 0x3; 859 860 /* the last MSDU has no padding */ 861 remaining = skb->len - offset; 862 if (subframe_len > remaining) 863 goto purge; 864 /* mitigate A-MSDU aggregation injection attacks */ 865 if (ether_addr_equal(hdr.eth.h_dest, rfc1042_header)) 866 goto purge; 867 868 offset += sizeof(struct ethhdr); 869 last = remaining <= subframe_len + padding; 870 871 /* FIXME: should we really accept multicast DA? */ 872 if ((check_da && !is_multicast_ether_addr(hdr.eth.h_dest) && 873 !ether_addr_equal(check_da, hdr.eth.h_dest)) || 874 (check_sa && !ether_addr_equal(check_sa, hdr.eth.h_source))) { 875 offset += len + padding; 876 continue; 877 } 878 879 /* reuse skb for the last subframe */ 880 if (!skb_is_nonlinear(skb) && !reuse_frag && last) { 881 skb_pull(skb, offset); 882 frame = skb; 883 reuse_skb = true; 884 } else { 885 frame = __ieee80211_amsdu_copy(skb, hlen, offset, len, 886 reuse_frag, 32 + mesh_len); 887 if (!frame) 888 goto purge; 889 890 offset += len + padding; 891 } 892 893 skb_reset_network_header(frame); 894 frame->dev = skb->dev; 895 frame->priority = skb->priority; 896 897 if (likely(iftype != NL80211_IFTYPE_MESH_POINT && 898 ieee80211_get_8023_tunnel_proto(frame->data, &hdr.eth.h_proto))) 899 skb_pull(frame, ETH_ALEN + 2); 900 901 memcpy(skb_push(frame, sizeof(hdr.eth)), &hdr.eth, sizeof(hdr.eth)); 902 __skb_queue_tail(list, frame); 903 } 904 905 if (!reuse_skb) 906 dev_kfree_skb(skb); 907 908 return; 909 910 purge: 911 __skb_queue_purge(list); 912 dev_kfree_skb(skb); 913 } 914 EXPORT_SYMBOL(ieee80211_amsdu_to_8023s); 915 916 /* Given a data frame determine the 802.1p/1d tag to use. */ 917 unsigned int cfg80211_classify8021d(struct sk_buff *skb, 918 struct cfg80211_qos_map *qos_map) 919 { 920 unsigned int dscp; 921 unsigned char vlan_priority; 922 unsigned int ret; 923 924 /* skb->priority values from 256->263 are magic values to 925 * directly indicate a specific 802.1d priority. This is used 926 * to allow 802.1d priority to be passed directly in from VLAN 927 * tags, etc. 928 */ 929 if (skb->priority >= 256 && skb->priority <= 263) { 930 ret = skb->priority - 256; 931 goto out; 932 } 933 934 if (skb_vlan_tag_present(skb)) { 935 vlan_priority = (skb_vlan_tag_get(skb) & VLAN_PRIO_MASK) 936 >> VLAN_PRIO_SHIFT; 937 if (vlan_priority > 0) { 938 ret = vlan_priority; 939 goto out; 940 } 941 } 942 943 switch (skb->protocol) { 944 case htons(ETH_P_IP): 945 dscp = ipv4_get_dsfield(ip_hdr(skb)) & 0xfc; 946 break; 947 case htons(ETH_P_IPV6): 948 dscp = ipv6_get_dsfield(ipv6_hdr(skb)) & 0xfc; 949 break; 950 case htons(ETH_P_MPLS_UC): 951 case htons(ETH_P_MPLS_MC): { 952 struct mpls_label mpls_tmp, *mpls; 953 954 mpls = skb_header_pointer(skb, sizeof(struct ethhdr), 955 sizeof(*mpls), &mpls_tmp); 956 if (!mpls) 957 return 0; 958 959 ret = (ntohl(mpls->entry) & MPLS_LS_TC_MASK) 960 >> MPLS_LS_TC_SHIFT; 961 goto out; 962 } 963 case htons(ETH_P_80221): 964 /* 802.21 is always network control traffic */ 965 return 7; 966 default: 967 return 0; 968 } 969 970 if (qos_map) { 971 unsigned int i, tmp_dscp = dscp >> 2; 972 973 for (i = 0; i < qos_map->num_des; i++) { 974 if (tmp_dscp == qos_map->dscp_exception[i].dscp) { 975 ret = qos_map->dscp_exception[i].up; 976 goto out; 977 } 978 } 979 980 for (i = 0; i < 8; i++) { 981 if (tmp_dscp >= qos_map->up[i].low && 982 tmp_dscp <= qos_map->up[i].high) { 983 ret = i; 984 goto out; 985 } 986 } 987 } 988 989 ret = dscp >> 5; 990 out: 991 return array_index_nospec(ret, IEEE80211_NUM_TIDS); 992 } 993 EXPORT_SYMBOL(cfg80211_classify8021d); 994 995 const struct element *ieee80211_bss_get_elem(struct cfg80211_bss *bss, u8 id) 996 { 997 const struct cfg80211_bss_ies *ies; 998 999 ies = rcu_dereference(bss->ies); 1000 if (!ies) 1001 return NULL; 1002 1003 return cfg80211_find_elem(id, ies->data, ies->len); 1004 } 1005 EXPORT_SYMBOL(ieee80211_bss_get_elem); 1006 1007 void cfg80211_upload_connect_keys(struct wireless_dev *wdev) 1008 { 1009 struct cfg80211_registered_device *rdev = wiphy_to_rdev(wdev->wiphy); 1010 struct net_device *dev = wdev->netdev; 1011 int i; 1012 1013 if (!wdev->connect_keys) 1014 return; 1015 1016 for (i = 0; i < 4; i++) { 1017 if (!wdev->connect_keys->params[i].cipher) 1018 continue; 1019 if (rdev_add_key(rdev, dev, -1, i, false, NULL, 1020 &wdev->connect_keys->params[i])) { 1021 netdev_err(dev, "failed to set key %d\n", i); 1022 continue; 1023 } 1024 if (wdev->connect_keys->def == i && 1025 rdev_set_default_key(rdev, dev, -1, i, true, true)) { 1026 netdev_err(dev, "failed to set defkey %d\n", i); 1027 continue; 1028 } 1029 } 1030 1031 kfree_sensitive(wdev->connect_keys); 1032 wdev->connect_keys = NULL; 1033 } 1034 1035 void cfg80211_process_wdev_events(struct wireless_dev *wdev) 1036 { 1037 struct cfg80211_event *ev; 1038 unsigned long flags; 1039 1040 spin_lock_irqsave(&wdev->event_lock, flags); 1041 while (!list_empty(&wdev->event_list)) { 1042 ev = list_first_entry(&wdev->event_list, 1043 struct cfg80211_event, list); 1044 list_del(&ev->list); 1045 spin_unlock_irqrestore(&wdev->event_lock, flags); 1046 1047 wdev_lock(wdev); 1048 switch (ev->type) { 1049 case EVENT_CONNECT_RESULT: 1050 __cfg80211_connect_result( 1051 wdev->netdev, 1052 &ev->cr, 1053 ev->cr.status == WLAN_STATUS_SUCCESS); 1054 break; 1055 case EVENT_ROAMED: 1056 __cfg80211_roamed(wdev, &ev->rm); 1057 break; 1058 case EVENT_DISCONNECTED: 1059 __cfg80211_disconnected(wdev->netdev, 1060 ev->dc.ie, ev->dc.ie_len, 1061 ev->dc.reason, 1062 !ev->dc.locally_generated); 1063 break; 1064 case EVENT_IBSS_JOINED: 1065 __cfg80211_ibss_joined(wdev->netdev, ev->ij.bssid, 1066 ev->ij.channel); 1067 break; 1068 case EVENT_STOPPED: 1069 __cfg80211_leave(wiphy_to_rdev(wdev->wiphy), wdev); 1070 break; 1071 case EVENT_PORT_AUTHORIZED: 1072 __cfg80211_port_authorized(wdev, ev->pa.bssid, 1073 ev->pa.td_bitmap, 1074 ev->pa.td_bitmap_len); 1075 break; 1076 } 1077 wdev_unlock(wdev); 1078 1079 kfree(ev); 1080 1081 spin_lock_irqsave(&wdev->event_lock, flags); 1082 } 1083 spin_unlock_irqrestore(&wdev->event_lock, flags); 1084 } 1085 1086 void cfg80211_process_rdev_events(struct cfg80211_registered_device *rdev) 1087 { 1088 struct wireless_dev *wdev; 1089 1090 lockdep_assert_held(&rdev->wiphy.mtx); 1091 1092 list_for_each_entry(wdev, &rdev->wiphy.wdev_list, list) 1093 cfg80211_process_wdev_events(wdev); 1094 } 1095 1096 int cfg80211_change_iface(struct cfg80211_registered_device *rdev, 1097 struct net_device *dev, enum nl80211_iftype ntype, 1098 struct vif_params *params) 1099 { 1100 int err; 1101 enum nl80211_iftype otype = dev->ieee80211_ptr->iftype; 1102 1103 lockdep_assert_held(&rdev->wiphy.mtx); 1104 1105 /* don't support changing VLANs, you just re-create them */ 1106 if (otype == NL80211_IFTYPE_AP_VLAN) 1107 return -EOPNOTSUPP; 1108 1109 /* cannot change into P2P device or NAN */ 1110 if (ntype == NL80211_IFTYPE_P2P_DEVICE || 1111 ntype == NL80211_IFTYPE_NAN) 1112 return -EOPNOTSUPP; 1113 1114 if (!rdev->ops->change_virtual_intf || 1115 !(rdev->wiphy.interface_modes & (1 << ntype))) 1116 return -EOPNOTSUPP; 1117 1118 if (ntype != otype) { 1119 /* if it's part of a bridge, reject changing type to station/ibss */ 1120 if (netif_is_bridge_port(dev) && 1121 (ntype == NL80211_IFTYPE_ADHOC || 1122 ntype == NL80211_IFTYPE_STATION || 1123 ntype == NL80211_IFTYPE_P2P_CLIENT)) 1124 return -EBUSY; 1125 1126 dev->ieee80211_ptr->use_4addr = false; 1127 wdev_lock(dev->ieee80211_ptr); 1128 rdev_set_qos_map(rdev, dev, NULL); 1129 wdev_unlock(dev->ieee80211_ptr); 1130 1131 switch (otype) { 1132 case NL80211_IFTYPE_AP: 1133 case NL80211_IFTYPE_P2P_GO: 1134 cfg80211_stop_ap(rdev, dev, -1, true); 1135 break; 1136 case NL80211_IFTYPE_ADHOC: 1137 cfg80211_leave_ibss(rdev, dev, false); 1138 break; 1139 case NL80211_IFTYPE_STATION: 1140 case NL80211_IFTYPE_P2P_CLIENT: 1141 wdev_lock(dev->ieee80211_ptr); 1142 cfg80211_disconnect(rdev, dev, 1143 WLAN_REASON_DEAUTH_LEAVING, true); 1144 wdev_unlock(dev->ieee80211_ptr); 1145 break; 1146 case NL80211_IFTYPE_MESH_POINT: 1147 /* mesh should be handled? */ 1148 break; 1149 case NL80211_IFTYPE_OCB: 1150 cfg80211_leave_ocb(rdev, dev); 1151 break; 1152 default: 1153 break; 1154 } 1155 1156 cfg80211_process_rdev_events(rdev); 1157 cfg80211_mlme_purge_registrations(dev->ieee80211_ptr); 1158 1159 memset(&dev->ieee80211_ptr->u, 0, 1160 sizeof(dev->ieee80211_ptr->u)); 1161 memset(&dev->ieee80211_ptr->links, 0, 1162 sizeof(dev->ieee80211_ptr->links)); 1163 } 1164 1165 err = rdev_change_virtual_intf(rdev, dev, ntype, params); 1166 1167 WARN_ON(!err && dev->ieee80211_ptr->iftype != ntype); 1168 1169 if (!err && params && params->use_4addr != -1) 1170 dev->ieee80211_ptr->use_4addr = params->use_4addr; 1171 1172 if (!err) { 1173 dev->priv_flags &= ~IFF_DONT_BRIDGE; 1174 switch (ntype) { 1175 case NL80211_IFTYPE_STATION: 1176 if (dev->ieee80211_ptr->use_4addr) 1177 break; 1178 fallthrough; 1179 case NL80211_IFTYPE_OCB: 1180 case NL80211_IFTYPE_P2P_CLIENT: 1181 case NL80211_IFTYPE_ADHOC: 1182 dev->priv_flags |= IFF_DONT_BRIDGE; 1183 break; 1184 case NL80211_IFTYPE_P2P_GO: 1185 case NL80211_IFTYPE_AP: 1186 case NL80211_IFTYPE_AP_VLAN: 1187 case NL80211_IFTYPE_MESH_POINT: 1188 /* bridging OK */ 1189 break; 1190 case NL80211_IFTYPE_MONITOR: 1191 /* monitor can't bridge anyway */ 1192 break; 1193 case NL80211_IFTYPE_UNSPECIFIED: 1194 case NUM_NL80211_IFTYPES: 1195 /* not happening */ 1196 break; 1197 case NL80211_IFTYPE_P2P_DEVICE: 1198 case NL80211_IFTYPE_WDS: 1199 case NL80211_IFTYPE_NAN: 1200 WARN_ON(1); 1201 break; 1202 } 1203 } 1204 1205 if (!err && ntype != otype && netif_running(dev)) { 1206 cfg80211_update_iface_num(rdev, ntype, 1); 1207 cfg80211_update_iface_num(rdev, otype, -1); 1208 } 1209 1210 return err; 1211 } 1212 1213 static u32 cfg80211_calculate_bitrate_ht(struct rate_info *rate) 1214 { 1215 int modulation, streams, bitrate; 1216 1217 /* the formula below does only work for MCS values smaller than 32 */ 1218 if (WARN_ON_ONCE(rate->mcs >= 32)) 1219 return 0; 1220 1221 modulation = rate->mcs & 7; 1222 streams = (rate->mcs >> 3) + 1; 1223 1224 bitrate = (rate->bw == RATE_INFO_BW_40) ? 13500000 : 6500000; 1225 1226 if (modulation < 4) 1227 bitrate *= (modulation + 1); 1228 else if (modulation == 4) 1229 bitrate *= (modulation + 2); 1230 else 1231 bitrate *= (modulation + 3); 1232 1233 bitrate *= streams; 1234 1235 if (rate->flags & RATE_INFO_FLAGS_SHORT_GI) 1236 bitrate = (bitrate / 9) * 10; 1237 1238 /* do NOT round down here */ 1239 return (bitrate + 50000) / 100000; 1240 } 1241 1242 static u32 cfg80211_calculate_bitrate_dmg(struct rate_info *rate) 1243 { 1244 static const u32 __mcs2bitrate[] = { 1245 /* control PHY */ 1246 [0] = 275, 1247 /* SC PHY */ 1248 [1] = 3850, 1249 [2] = 7700, 1250 [3] = 9625, 1251 [4] = 11550, 1252 [5] = 12512, /* 1251.25 mbps */ 1253 [6] = 15400, 1254 [7] = 19250, 1255 [8] = 23100, 1256 [9] = 25025, 1257 [10] = 30800, 1258 [11] = 38500, 1259 [12] = 46200, 1260 /* OFDM PHY */ 1261 [13] = 6930, 1262 [14] = 8662, /* 866.25 mbps */ 1263 [15] = 13860, 1264 [16] = 17325, 1265 [17] = 20790, 1266 [18] = 27720, 1267 [19] = 34650, 1268 [20] = 41580, 1269 [21] = 45045, 1270 [22] = 51975, 1271 [23] = 62370, 1272 [24] = 67568, /* 6756.75 mbps */ 1273 /* LP-SC PHY */ 1274 [25] = 6260, 1275 [26] = 8340, 1276 [27] = 11120, 1277 [28] = 12510, 1278 [29] = 16680, 1279 [30] = 22240, 1280 [31] = 25030, 1281 }; 1282 1283 if (WARN_ON_ONCE(rate->mcs >= ARRAY_SIZE(__mcs2bitrate))) 1284 return 0; 1285 1286 return __mcs2bitrate[rate->mcs]; 1287 } 1288 1289 static u32 cfg80211_calculate_bitrate_extended_sc_dmg(struct rate_info *rate) 1290 { 1291 static const u32 __mcs2bitrate[] = { 1292 [6 - 6] = 26950, /* MCS 9.1 : 2695.0 mbps */ 1293 [7 - 6] = 50050, /* MCS 12.1 */ 1294 [8 - 6] = 53900, 1295 [9 - 6] = 57750, 1296 [10 - 6] = 63900, 1297 [11 - 6] = 75075, 1298 [12 - 6] = 80850, 1299 }; 1300 1301 /* Extended SC MCS not defined for base MCS below 6 or above 12 */ 1302 if (WARN_ON_ONCE(rate->mcs < 6 || rate->mcs > 12)) 1303 return 0; 1304 1305 return __mcs2bitrate[rate->mcs - 6]; 1306 } 1307 1308 static u32 cfg80211_calculate_bitrate_edmg(struct rate_info *rate) 1309 { 1310 static const u32 __mcs2bitrate[] = { 1311 /* control PHY */ 1312 [0] = 275, 1313 /* SC PHY */ 1314 [1] = 3850, 1315 [2] = 7700, 1316 [3] = 9625, 1317 [4] = 11550, 1318 [5] = 12512, /* 1251.25 mbps */ 1319 [6] = 13475, 1320 [7] = 15400, 1321 [8] = 19250, 1322 [9] = 23100, 1323 [10] = 25025, 1324 [11] = 26950, 1325 [12] = 30800, 1326 [13] = 38500, 1327 [14] = 46200, 1328 [15] = 50050, 1329 [16] = 53900, 1330 [17] = 57750, 1331 [18] = 69300, 1332 [19] = 75075, 1333 [20] = 80850, 1334 }; 1335 1336 if (WARN_ON_ONCE(rate->mcs >= ARRAY_SIZE(__mcs2bitrate))) 1337 return 0; 1338 1339 return __mcs2bitrate[rate->mcs] * rate->n_bonded_ch; 1340 } 1341 1342 static u32 cfg80211_calculate_bitrate_vht(struct rate_info *rate) 1343 { 1344 static const u32 base[4][12] = { 1345 { 6500000, 1346 13000000, 1347 19500000, 1348 26000000, 1349 39000000, 1350 52000000, 1351 58500000, 1352 65000000, 1353 78000000, 1354 /* not in the spec, but some devices use this: */ 1355 86700000, 1356 97500000, 1357 108300000, 1358 }, 1359 { 13500000, 1360 27000000, 1361 40500000, 1362 54000000, 1363 81000000, 1364 108000000, 1365 121500000, 1366 135000000, 1367 162000000, 1368 180000000, 1369 202500000, 1370 225000000, 1371 }, 1372 { 29300000, 1373 58500000, 1374 87800000, 1375 117000000, 1376 175500000, 1377 234000000, 1378 263300000, 1379 292500000, 1380 351000000, 1381 390000000, 1382 438800000, 1383 487500000, 1384 }, 1385 { 58500000, 1386 117000000, 1387 175500000, 1388 234000000, 1389 351000000, 1390 468000000, 1391 526500000, 1392 585000000, 1393 702000000, 1394 780000000, 1395 877500000, 1396 975000000, 1397 }, 1398 }; 1399 u32 bitrate; 1400 int idx; 1401 1402 if (rate->mcs > 11) 1403 goto warn; 1404 1405 switch (rate->bw) { 1406 case RATE_INFO_BW_160: 1407 idx = 3; 1408 break; 1409 case RATE_INFO_BW_80: 1410 idx = 2; 1411 break; 1412 case RATE_INFO_BW_40: 1413 idx = 1; 1414 break; 1415 case RATE_INFO_BW_5: 1416 case RATE_INFO_BW_10: 1417 default: 1418 goto warn; 1419 case RATE_INFO_BW_20: 1420 idx = 0; 1421 } 1422 1423 bitrate = base[idx][rate->mcs]; 1424 bitrate *= rate->nss; 1425 1426 if (rate->flags & RATE_INFO_FLAGS_SHORT_GI) 1427 bitrate = (bitrate / 9) * 10; 1428 1429 /* do NOT round down here */ 1430 return (bitrate + 50000) / 100000; 1431 warn: 1432 WARN_ONCE(1, "invalid rate bw=%d, mcs=%d, nss=%d\n", 1433 rate->bw, rate->mcs, rate->nss); 1434 return 0; 1435 } 1436 1437 static u32 cfg80211_calculate_bitrate_he(struct rate_info *rate) 1438 { 1439 #define SCALE 6144 1440 u32 mcs_divisors[14] = { 1441 102399, /* 16.666666... */ 1442 51201, /* 8.333333... */ 1443 34134, /* 5.555555... */ 1444 25599, /* 4.166666... */ 1445 17067, /* 2.777777... */ 1446 12801, /* 2.083333... */ 1447 11377, /* 1.851725... */ 1448 10239, /* 1.666666... */ 1449 8532, /* 1.388888... */ 1450 7680, /* 1.250000... */ 1451 6828, /* 1.111111... */ 1452 6144, /* 1.000000... */ 1453 5690, /* 0.926106... */ 1454 5120, /* 0.833333... */ 1455 }; 1456 u32 rates_160M[3] = { 960777777, 907400000, 816666666 }; 1457 u32 rates_969[3] = { 480388888, 453700000, 408333333 }; 1458 u32 rates_484[3] = { 229411111, 216666666, 195000000 }; 1459 u32 rates_242[3] = { 114711111, 108333333, 97500000 }; 1460 u32 rates_106[3] = { 40000000, 37777777, 34000000 }; 1461 u32 rates_52[3] = { 18820000, 17777777, 16000000 }; 1462 u32 rates_26[3] = { 9411111, 8888888, 8000000 }; 1463 u64 tmp; 1464 u32 result; 1465 1466 if (WARN_ON_ONCE(rate->mcs > 13)) 1467 return 0; 1468 1469 if (WARN_ON_ONCE(rate->he_gi > NL80211_RATE_INFO_HE_GI_3_2)) 1470 return 0; 1471 if (WARN_ON_ONCE(rate->he_ru_alloc > 1472 NL80211_RATE_INFO_HE_RU_ALLOC_2x996)) 1473 return 0; 1474 if (WARN_ON_ONCE(rate->nss < 1 || rate->nss > 8)) 1475 return 0; 1476 1477 if (rate->bw == RATE_INFO_BW_160) 1478 result = rates_160M[rate->he_gi]; 1479 else if (rate->bw == RATE_INFO_BW_80 || 1480 (rate->bw == RATE_INFO_BW_HE_RU && 1481 rate->he_ru_alloc == NL80211_RATE_INFO_HE_RU_ALLOC_996)) 1482 result = rates_969[rate->he_gi]; 1483 else if (rate->bw == RATE_INFO_BW_40 || 1484 (rate->bw == RATE_INFO_BW_HE_RU && 1485 rate->he_ru_alloc == NL80211_RATE_INFO_HE_RU_ALLOC_484)) 1486 result = rates_484[rate->he_gi]; 1487 else if (rate->bw == RATE_INFO_BW_20 || 1488 (rate->bw == RATE_INFO_BW_HE_RU && 1489 rate->he_ru_alloc == NL80211_RATE_INFO_HE_RU_ALLOC_242)) 1490 result = rates_242[rate->he_gi]; 1491 else if (rate->bw == RATE_INFO_BW_HE_RU && 1492 rate->he_ru_alloc == NL80211_RATE_INFO_HE_RU_ALLOC_106) 1493 result = rates_106[rate->he_gi]; 1494 else if (rate->bw == RATE_INFO_BW_HE_RU && 1495 rate->he_ru_alloc == NL80211_RATE_INFO_HE_RU_ALLOC_52) 1496 result = rates_52[rate->he_gi]; 1497 else if (rate->bw == RATE_INFO_BW_HE_RU && 1498 rate->he_ru_alloc == NL80211_RATE_INFO_HE_RU_ALLOC_26) 1499 result = rates_26[rate->he_gi]; 1500 else { 1501 WARN(1, "invalid HE MCS: bw:%d, ru:%d\n", 1502 rate->bw, rate->he_ru_alloc); 1503 return 0; 1504 } 1505 1506 /* now scale to the appropriate MCS */ 1507 tmp = result; 1508 tmp *= SCALE; 1509 do_div(tmp, mcs_divisors[rate->mcs]); 1510 result = tmp; 1511 1512 /* and take NSS, DCM into account */ 1513 result = (result * rate->nss) / 8; 1514 if (rate->he_dcm) 1515 result /= 2; 1516 1517 return result / 10000; 1518 } 1519 1520 static u32 cfg80211_calculate_bitrate_eht(struct rate_info *rate) 1521 { 1522 #define SCALE 6144 1523 static const u32 mcs_divisors[16] = { 1524 102399, /* 16.666666... */ 1525 51201, /* 8.333333... */ 1526 34134, /* 5.555555... */ 1527 25599, /* 4.166666... */ 1528 17067, /* 2.777777... */ 1529 12801, /* 2.083333... */ 1530 11377, /* 1.851725... */ 1531 10239, /* 1.666666... */ 1532 8532, /* 1.388888... */ 1533 7680, /* 1.250000... */ 1534 6828, /* 1.111111... */ 1535 6144, /* 1.000000... */ 1536 5690, /* 0.926106... */ 1537 5120, /* 0.833333... */ 1538 409600, /* 66.666666... */ 1539 204800, /* 33.333333... */ 1540 }; 1541 static const u32 rates_996[3] = { 480388888, 453700000, 408333333 }; 1542 static const u32 rates_484[3] = { 229411111, 216666666, 195000000 }; 1543 static const u32 rates_242[3] = { 114711111, 108333333, 97500000 }; 1544 static const u32 rates_106[3] = { 40000000, 37777777, 34000000 }; 1545 static const u32 rates_52[3] = { 18820000, 17777777, 16000000 }; 1546 static const u32 rates_26[3] = { 9411111, 8888888, 8000000 }; 1547 u64 tmp; 1548 u32 result; 1549 1550 if (WARN_ON_ONCE(rate->mcs > 15)) 1551 return 0; 1552 if (WARN_ON_ONCE(rate->eht_gi > NL80211_RATE_INFO_EHT_GI_3_2)) 1553 return 0; 1554 if (WARN_ON_ONCE(rate->eht_ru_alloc > 1555 NL80211_RATE_INFO_EHT_RU_ALLOC_4x996)) 1556 return 0; 1557 if (WARN_ON_ONCE(rate->nss < 1 || rate->nss > 8)) 1558 return 0; 1559 1560 /* Bandwidth checks for MCS 14 */ 1561 if (rate->mcs == 14) { 1562 if ((rate->bw != RATE_INFO_BW_EHT_RU && 1563 rate->bw != RATE_INFO_BW_80 && 1564 rate->bw != RATE_INFO_BW_160 && 1565 rate->bw != RATE_INFO_BW_320) || 1566 (rate->bw == RATE_INFO_BW_EHT_RU && 1567 rate->eht_ru_alloc != NL80211_RATE_INFO_EHT_RU_ALLOC_996 && 1568 rate->eht_ru_alloc != NL80211_RATE_INFO_EHT_RU_ALLOC_2x996 && 1569 rate->eht_ru_alloc != NL80211_RATE_INFO_EHT_RU_ALLOC_4x996)) { 1570 WARN(1, "invalid EHT BW for MCS 14: bw:%d, ru:%d\n", 1571 rate->bw, rate->eht_ru_alloc); 1572 return 0; 1573 } 1574 } 1575 1576 if (rate->bw == RATE_INFO_BW_320 || 1577 (rate->bw == RATE_INFO_BW_EHT_RU && 1578 rate->eht_ru_alloc == NL80211_RATE_INFO_EHT_RU_ALLOC_4x996)) 1579 result = 4 * rates_996[rate->eht_gi]; 1580 else if (rate->bw == RATE_INFO_BW_EHT_RU && 1581 rate->eht_ru_alloc == NL80211_RATE_INFO_EHT_RU_ALLOC_3x996P484) 1582 result = 3 * rates_996[rate->eht_gi] + rates_484[rate->eht_gi]; 1583 else if (rate->bw == RATE_INFO_BW_EHT_RU && 1584 rate->eht_ru_alloc == NL80211_RATE_INFO_EHT_RU_ALLOC_3x996) 1585 result = 3 * rates_996[rate->eht_gi]; 1586 else if (rate->bw == RATE_INFO_BW_EHT_RU && 1587 rate->eht_ru_alloc == NL80211_RATE_INFO_EHT_RU_ALLOC_2x996P484) 1588 result = 2 * rates_996[rate->eht_gi] + rates_484[rate->eht_gi]; 1589 else if (rate->bw == RATE_INFO_BW_160 || 1590 (rate->bw == RATE_INFO_BW_EHT_RU && 1591 rate->eht_ru_alloc == NL80211_RATE_INFO_EHT_RU_ALLOC_2x996)) 1592 result = 2 * rates_996[rate->eht_gi]; 1593 else if (rate->bw == RATE_INFO_BW_EHT_RU && 1594 rate->eht_ru_alloc == 1595 NL80211_RATE_INFO_EHT_RU_ALLOC_996P484P242) 1596 result = rates_996[rate->eht_gi] + rates_484[rate->eht_gi] 1597 + rates_242[rate->eht_gi]; 1598 else if (rate->bw == RATE_INFO_BW_EHT_RU && 1599 rate->eht_ru_alloc == NL80211_RATE_INFO_EHT_RU_ALLOC_996P484) 1600 result = rates_996[rate->eht_gi] + rates_484[rate->eht_gi]; 1601 else if (rate->bw == RATE_INFO_BW_80 || 1602 (rate->bw == RATE_INFO_BW_EHT_RU && 1603 rate->eht_ru_alloc == NL80211_RATE_INFO_EHT_RU_ALLOC_996)) 1604 result = rates_996[rate->eht_gi]; 1605 else if (rate->bw == RATE_INFO_BW_EHT_RU && 1606 rate->eht_ru_alloc == NL80211_RATE_INFO_EHT_RU_ALLOC_484P242) 1607 result = rates_484[rate->eht_gi] + rates_242[rate->eht_gi]; 1608 else if (rate->bw == RATE_INFO_BW_40 || 1609 (rate->bw == RATE_INFO_BW_EHT_RU && 1610 rate->eht_ru_alloc == NL80211_RATE_INFO_EHT_RU_ALLOC_484)) 1611 result = rates_484[rate->eht_gi]; 1612 else if (rate->bw == RATE_INFO_BW_20 || 1613 (rate->bw == RATE_INFO_BW_EHT_RU && 1614 rate->eht_ru_alloc == NL80211_RATE_INFO_EHT_RU_ALLOC_242)) 1615 result = rates_242[rate->eht_gi]; 1616 else if (rate->bw == RATE_INFO_BW_EHT_RU && 1617 rate->eht_ru_alloc == NL80211_RATE_INFO_EHT_RU_ALLOC_106P26) 1618 result = rates_106[rate->eht_gi] + rates_26[rate->eht_gi]; 1619 else if (rate->bw == RATE_INFO_BW_EHT_RU && 1620 rate->eht_ru_alloc == NL80211_RATE_INFO_EHT_RU_ALLOC_106) 1621 result = rates_106[rate->eht_gi]; 1622 else if (rate->bw == RATE_INFO_BW_EHT_RU && 1623 rate->eht_ru_alloc == NL80211_RATE_INFO_EHT_RU_ALLOC_52P26) 1624 result = rates_52[rate->eht_gi] + rates_26[rate->eht_gi]; 1625 else if (rate->bw == RATE_INFO_BW_EHT_RU && 1626 rate->eht_ru_alloc == NL80211_RATE_INFO_EHT_RU_ALLOC_52) 1627 result = rates_52[rate->eht_gi]; 1628 else if (rate->bw == RATE_INFO_BW_EHT_RU && 1629 rate->eht_ru_alloc == NL80211_RATE_INFO_EHT_RU_ALLOC_26) 1630 result = rates_26[rate->eht_gi]; 1631 else { 1632 WARN(1, "invalid EHT MCS: bw:%d, ru:%d\n", 1633 rate->bw, rate->eht_ru_alloc); 1634 return 0; 1635 } 1636 1637 /* now scale to the appropriate MCS */ 1638 tmp = result; 1639 tmp *= SCALE; 1640 do_div(tmp, mcs_divisors[rate->mcs]); 1641 1642 /* and take NSS */ 1643 tmp *= rate->nss; 1644 do_div(tmp, 8); 1645 1646 result = tmp; 1647 1648 return result / 10000; 1649 } 1650 1651 static u32 cfg80211_calculate_bitrate_s1g(struct rate_info *rate) 1652 { 1653 /* For 1, 2, 4, 8 and 16 MHz channels */ 1654 static const u32 base[5][11] = { 1655 { 300000, 1656 600000, 1657 900000, 1658 1200000, 1659 1800000, 1660 2400000, 1661 2700000, 1662 3000000, 1663 3600000, 1664 4000000, 1665 /* MCS 10 supported in 1 MHz only */ 1666 150000, 1667 }, 1668 { 650000, 1669 1300000, 1670 1950000, 1671 2600000, 1672 3900000, 1673 5200000, 1674 5850000, 1675 6500000, 1676 7800000, 1677 /* MCS 9 not valid */ 1678 }, 1679 { 1350000, 1680 2700000, 1681 4050000, 1682 5400000, 1683 8100000, 1684 10800000, 1685 12150000, 1686 13500000, 1687 16200000, 1688 18000000, 1689 }, 1690 { 2925000, 1691 5850000, 1692 8775000, 1693 11700000, 1694 17550000, 1695 23400000, 1696 26325000, 1697 29250000, 1698 35100000, 1699 39000000, 1700 }, 1701 { 8580000, 1702 11700000, 1703 17550000, 1704 23400000, 1705 35100000, 1706 46800000, 1707 52650000, 1708 58500000, 1709 70200000, 1710 78000000, 1711 }, 1712 }; 1713 u32 bitrate; 1714 /* default is 1 MHz index */ 1715 int idx = 0; 1716 1717 if (rate->mcs >= 11) 1718 goto warn; 1719 1720 switch (rate->bw) { 1721 case RATE_INFO_BW_16: 1722 idx = 4; 1723 break; 1724 case RATE_INFO_BW_8: 1725 idx = 3; 1726 break; 1727 case RATE_INFO_BW_4: 1728 idx = 2; 1729 break; 1730 case RATE_INFO_BW_2: 1731 idx = 1; 1732 break; 1733 case RATE_INFO_BW_1: 1734 idx = 0; 1735 break; 1736 case RATE_INFO_BW_5: 1737 case RATE_INFO_BW_10: 1738 case RATE_INFO_BW_20: 1739 case RATE_INFO_BW_40: 1740 case RATE_INFO_BW_80: 1741 case RATE_INFO_BW_160: 1742 default: 1743 goto warn; 1744 } 1745 1746 bitrate = base[idx][rate->mcs]; 1747 bitrate *= rate->nss; 1748 1749 if (rate->flags & RATE_INFO_FLAGS_SHORT_GI) 1750 bitrate = (bitrate / 9) * 10; 1751 /* do NOT round down here */ 1752 return (bitrate + 50000) / 100000; 1753 warn: 1754 WARN_ONCE(1, "invalid rate bw=%d, mcs=%d, nss=%d\n", 1755 rate->bw, rate->mcs, rate->nss); 1756 return 0; 1757 } 1758 1759 u32 cfg80211_calculate_bitrate(struct rate_info *rate) 1760 { 1761 if (rate->flags & RATE_INFO_FLAGS_MCS) 1762 return cfg80211_calculate_bitrate_ht(rate); 1763 if (rate->flags & RATE_INFO_FLAGS_DMG) 1764 return cfg80211_calculate_bitrate_dmg(rate); 1765 if (rate->flags & RATE_INFO_FLAGS_EXTENDED_SC_DMG) 1766 return cfg80211_calculate_bitrate_extended_sc_dmg(rate); 1767 if (rate->flags & RATE_INFO_FLAGS_EDMG) 1768 return cfg80211_calculate_bitrate_edmg(rate); 1769 if (rate->flags & RATE_INFO_FLAGS_VHT_MCS) 1770 return cfg80211_calculate_bitrate_vht(rate); 1771 if (rate->flags & RATE_INFO_FLAGS_HE_MCS) 1772 return cfg80211_calculate_bitrate_he(rate); 1773 if (rate->flags & RATE_INFO_FLAGS_EHT_MCS) 1774 return cfg80211_calculate_bitrate_eht(rate); 1775 if (rate->flags & RATE_INFO_FLAGS_S1G_MCS) 1776 return cfg80211_calculate_bitrate_s1g(rate); 1777 1778 return rate->legacy; 1779 } 1780 EXPORT_SYMBOL(cfg80211_calculate_bitrate); 1781 1782 int cfg80211_get_p2p_attr(const u8 *ies, unsigned int len, 1783 enum ieee80211_p2p_attr_id attr, 1784 u8 *buf, unsigned int bufsize) 1785 { 1786 u8 *out = buf; 1787 u16 attr_remaining = 0; 1788 bool desired_attr = false; 1789 u16 desired_len = 0; 1790 1791 while (len > 0) { 1792 unsigned int iedatalen; 1793 unsigned int copy; 1794 const u8 *iedata; 1795 1796 if (len < 2) 1797 return -EILSEQ; 1798 iedatalen = ies[1]; 1799 if (iedatalen + 2 > len) 1800 return -EILSEQ; 1801 1802 if (ies[0] != WLAN_EID_VENDOR_SPECIFIC) 1803 goto cont; 1804 1805 if (iedatalen < 4) 1806 goto cont; 1807 1808 iedata = ies + 2; 1809 1810 /* check WFA OUI, P2P subtype */ 1811 if (iedata[0] != 0x50 || iedata[1] != 0x6f || 1812 iedata[2] != 0x9a || iedata[3] != 0x09) 1813 goto cont; 1814 1815 iedatalen -= 4; 1816 iedata += 4; 1817 1818 /* check attribute continuation into this IE */ 1819 copy = min_t(unsigned int, attr_remaining, iedatalen); 1820 if (copy && desired_attr) { 1821 desired_len += copy; 1822 if (out) { 1823 memcpy(out, iedata, min(bufsize, copy)); 1824 out += min(bufsize, copy); 1825 bufsize -= min(bufsize, copy); 1826 } 1827 1828 1829 if (copy == attr_remaining) 1830 return desired_len; 1831 } 1832 1833 attr_remaining -= copy; 1834 if (attr_remaining) 1835 goto cont; 1836 1837 iedatalen -= copy; 1838 iedata += copy; 1839 1840 while (iedatalen > 0) { 1841 u16 attr_len; 1842 1843 /* P2P attribute ID & size must fit */ 1844 if (iedatalen < 3) 1845 return -EILSEQ; 1846 desired_attr = iedata[0] == attr; 1847 attr_len = get_unaligned_le16(iedata + 1); 1848 iedatalen -= 3; 1849 iedata += 3; 1850 1851 copy = min_t(unsigned int, attr_len, iedatalen); 1852 1853 if (desired_attr) { 1854 desired_len += copy; 1855 if (out) { 1856 memcpy(out, iedata, min(bufsize, copy)); 1857 out += min(bufsize, copy); 1858 bufsize -= min(bufsize, copy); 1859 } 1860 1861 if (copy == attr_len) 1862 return desired_len; 1863 } 1864 1865 iedata += copy; 1866 iedatalen -= copy; 1867 attr_remaining = attr_len - copy; 1868 } 1869 1870 cont: 1871 len -= ies[1] + 2; 1872 ies += ies[1] + 2; 1873 } 1874 1875 if (attr_remaining && desired_attr) 1876 return -EILSEQ; 1877 1878 return -ENOENT; 1879 } 1880 EXPORT_SYMBOL(cfg80211_get_p2p_attr); 1881 1882 static bool ieee80211_id_in_list(const u8 *ids, int n_ids, u8 id, bool id_ext) 1883 { 1884 int i; 1885 1886 /* Make sure array values are legal */ 1887 if (WARN_ON(ids[n_ids - 1] == WLAN_EID_EXTENSION)) 1888 return false; 1889 1890 i = 0; 1891 while (i < n_ids) { 1892 if (ids[i] == WLAN_EID_EXTENSION) { 1893 if (id_ext && (ids[i + 1] == id)) 1894 return true; 1895 1896 i += 2; 1897 continue; 1898 } 1899 1900 if (ids[i] == id && !id_ext) 1901 return true; 1902 1903 i++; 1904 } 1905 return false; 1906 } 1907 1908 static size_t skip_ie(const u8 *ies, size_t ielen, size_t pos) 1909 { 1910 /* we assume a validly formed IEs buffer */ 1911 u8 len = ies[pos + 1]; 1912 1913 pos += 2 + len; 1914 1915 /* the IE itself must have 255 bytes for fragments to follow */ 1916 if (len < 255) 1917 return pos; 1918 1919 while (pos < ielen && ies[pos] == WLAN_EID_FRAGMENT) { 1920 len = ies[pos + 1]; 1921 pos += 2 + len; 1922 } 1923 1924 return pos; 1925 } 1926 1927 size_t ieee80211_ie_split_ric(const u8 *ies, size_t ielen, 1928 const u8 *ids, int n_ids, 1929 const u8 *after_ric, int n_after_ric, 1930 size_t offset) 1931 { 1932 size_t pos = offset; 1933 1934 while (pos < ielen) { 1935 u8 ext = 0; 1936 1937 if (ies[pos] == WLAN_EID_EXTENSION) 1938 ext = 2; 1939 if ((pos + ext) >= ielen) 1940 break; 1941 1942 if (!ieee80211_id_in_list(ids, n_ids, ies[pos + ext], 1943 ies[pos] == WLAN_EID_EXTENSION)) 1944 break; 1945 1946 if (ies[pos] == WLAN_EID_RIC_DATA && n_after_ric) { 1947 pos = skip_ie(ies, ielen, pos); 1948 1949 while (pos < ielen) { 1950 if (ies[pos] == WLAN_EID_EXTENSION) 1951 ext = 2; 1952 else 1953 ext = 0; 1954 1955 if ((pos + ext) >= ielen) 1956 break; 1957 1958 if (!ieee80211_id_in_list(after_ric, 1959 n_after_ric, 1960 ies[pos + ext], 1961 ext == 2)) 1962 pos = skip_ie(ies, ielen, pos); 1963 else 1964 break; 1965 } 1966 } else { 1967 pos = skip_ie(ies, ielen, pos); 1968 } 1969 } 1970 1971 return pos; 1972 } 1973 EXPORT_SYMBOL(ieee80211_ie_split_ric); 1974 1975 bool ieee80211_operating_class_to_band(u8 operating_class, 1976 enum nl80211_band *band) 1977 { 1978 switch (operating_class) { 1979 case 112: 1980 case 115 ... 127: 1981 case 128 ... 130: 1982 *band = NL80211_BAND_5GHZ; 1983 return true; 1984 case 131 ... 135: 1985 *band = NL80211_BAND_6GHZ; 1986 return true; 1987 case 81: 1988 case 82: 1989 case 83: 1990 case 84: 1991 *band = NL80211_BAND_2GHZ; 1992 return true; 1993 case 180: 1994 *band = NL80211_BAND_60GHZ; 1995 return true; 1996 } 1997 1998 return false; 1999 } 2000 EXPORT_SYMBOL(ieee80211_operating_class_to_band); 2001 2002 bool ieee80211_chandef_to_operating_class(struct cfg80211_chan_def *chandef, 2003 u8 *op_class) 2004 { 2005 u8 vht_opclass; 2006 u32 freq = chandef->center_freq1; 2007 2008 if (freq >= 2412 && freq <= 2472) { 2009 if (chandef->width > NL80211_CHAN_WIDTH_40) 2010 return false; 2011 2012 /* 2.407 GHz, channels 1..13 */ 2013 if (chandef->width == NL80211_CHAN_WIDTH_40) { 2014 if (freq > chandef->chan->center_freq) 2015 *op_class = 83; /* HT40+ */ 2016 else 2017 *op_class = 84; /* HT40- */ 2018 } else { 2019 *op_class = 81; 2020 } 2021 2022 return true; 2023 } 2024 2025 if (freq == 2484) { 2026 /* channel 14 is only for IEEE 802.11b */ 2027 if (chandef->width != NL80211_CHAN_WIDTH_20_NOHT) 2028 return false; 2029 2030 *op_class = 82; /* channel 14 */ 2031 return true; 2032 } 2033 2034 switch (chandef->width) { 2035 case NL80211_CHAN_WIDTH_80: 2036 vht_opclass = 128; 2037 break; 2038 case NL80211_CHAN_WIDTH_160: 2039 vht_opclass = 129; 2040 break; 2041 case NL80211_CHAN_WIDTH_80P80: 2042 vht_opclass = 130; 2043 break; 2044 case NL80211_CHAN_WIDTH_10: 2045 case NL80211_CHAN_WIDTH_5: 2046 return false; /* unsupported for now */ 2047 default: 2048 vht_opclass = 0; 2049 break; 2050 } 2051 2052 /* 5 GHz, channels 36..48 */ 2053 if (freq >= 5180 && freq <= 5240) { 2054 if (vht_opclass) { 2055 *op_class = vht_opclass; 2056 } else if (chandef->width == NL80211_CHAN_WIDTH_40) { 2057 if (freq > chandef->chan->center_freq) 2058 *op_class = 116; 2059 else 2060 *op_class = 117; 2061 } else { 2062 *op_class = 115; 2063 } 2064 2065 return true; 2066 } 2067 2068 /* 5 GHz, channels 52..64 */ 2069 if (freq >= 5260 && freq <= 5320) { 2070 if (vht_opclass) { 2071 *op_class = vht_opclass; 2072 } else if (chandef->width == NL80211_CHAN_WIDTH_40) { 2073 if (freq > chandef->chan->center_freq) 2074 *op_class = 119; 2075 else 2076 *op_class = 120; 2077 } else { 2078 *op_class = 118; 2079 } 2080 2081 return true; 2082 } 2083 2084 /* 5 GHz, channels 100..144 */ 2085 if (freq >= 5500 && freq <= 5720) { 2086 if (vht_opclass) { 2087 *op_class = vht_opclass; 2088 } else if (chandef->width == NL80211_CHAN_WIDTH_40) { 2089 if (freq > chandef->chan->center_freq) 2090 *op_class = 122; 2091 else 2092 *op_class = 123; 2093 } else { 2094 *op_class = 121; 2095 } 2096 2097 return true; 2098 } 2099 2100 /* 5 GHz, channels 149..169 */ 2101 if (freq >= 5745 && freq <= 5845) { 2102 if (vht_opclass) { 2103 *op_class = vht_opclass; 2104 } else if (chandef->width == NL80211_CHAN_WIDTH_40) { 2105 if (freq > chandef->chan->center_freq) 2106 *op_class = 126; 2107 else 2108 *op_class = 127; 2109 } else if (freq <= 5805) { 2110 *op_class = 124; 2111 } else { 2112 *op_class = 125; 2113 } 2114 2115 return true; 2116 } 2117 2118 /* 56.16 GHz, channel 1..4 */ 2119 if (freq >= 56160 + 2160 * 1 && freq <= 56160 + 2160 * 6) { 2120 if (chandef->width >= NL80211_CHAN_WIDTH_40) 2121 return false; 2122 2123 *op_class = 180; 2124 return true; 2125 } 2126 2127 /* not supported yet */ 2128 return false; 2129 } 2130 EXPORT_SYMBOL(ieee80211_chandef_to_operating_class); 2131 2132 static int cfg80211_wdev_bi(struct wireless_dev *wdev) 2133 { 2134 switch (wdev->iftype) { 2135 case NL80211_IFTYPE_AP: 2136 case NL80211_IFTYPE_P2P_GO: 2137 WARN_ON(wdev->valid_links); 2138 return wdev->links[0].ap.beacon_interval; 2139 case NL80211_IFTYPE_MESH_POINT: 2140 return wdev->u.mesh.beacon_interval; 2141 case NL80211_IFTYPE_ADHOC: 2142 return wdev->u.ibss.beacon_interval; 2143 default: 2144 break; 2145 } 2146 2147 return 0; 2148 } 2149 2150 static void cfg80211_calculate_bi_data(struct wiphy *wiphy, u32 new_beacon_int, 2151 u32 *beacon_int_gcd, 2152 bool *beacon_int_different) 2153 { 2154 struct wireless_dev *wdev; 2155 2156 *beacon_int_gcd = 0; 2157 *beacon_int_different = false; 2158 2159 list_for_each_entry(wdev, &wiphy->wdev_list, list) { 2160 int wdev_bi; 2161 2162 /* this feature isn't supported with MLO */ 2163 if (wdev->valid_links) 2164 continue; 2165 2166 wdev_bi = cfg80211_wdev_bi(wdev); 2167 2168 if (!wdev_bi) 2169 continue; 2170 2171 if (!*beacon_int_gcd) { 2172 *beacon_int_gcd = wdev_bi; 2173 continue; 2174 } 2175 2176 if (wdev_bi == *beacon_int_gcd) 2177 continue; 2178 2179 *beacon_int_different = true; 2180 *beacon_int_gcd = gcd(*beacon_int_gcd, wdev_bi); 2181 } 2182 2183 if (new_beacon_int && *beacon_int_gcd != new_beacon_int) { 2184 if (*beacon_int_gcd) 2185 *beacon_int_different = true; 2186 *beacon_int_gcd = gcd(*beacon_int_gcd, new_beacon_int); 2187 } 2188 } 2189 2190 int cfg80211_validate_beacon_int(struct cfg80211_registered_device *rdev, 2191 enum nl80211_iftype iftype, u32 beacon_int) 2192 { 2193 /* 2194 * This is just a basic pre-condition check; if interface combinations 2195 * are possible the driver must already be checking those with a call 2196 * to cfg80211_check_combinations(), in which case we'll validate more 2197 * through the cfg80211_calculate_bi_data() call and code in 2198 * cfg80211_iter_combinations(). 2199 */ 2200 2201 if (beacon_int < 10 || beacon_int > 10000) 2202 return -EINVAL; 2203 2204 return 0; 2205 } 2206 2207 int cfg80211_iter_combinations(struct wiphy *wiphy, 2208 struct iface_combination_params *params, 2209 void (*iter)(const struct ieee80211_iface_combination *c, 2210 void *data), 2211 void *data) 2212 { 2213 const struct ieee80211_regdomain *regdom; 2214 enum nl80211_dfs_regions region = 0; 2215 int i, j, iftype; 2216 int num_interfaces = 0; 2217 u32 used_iftypes = 0; 2218 u32 beacon_int_gcd; 2219 bool beacon_int_different; 2220 2221 /* 2222 * This is a bit strange, since the iteration used to rely only on 2223 * the data given by the driver, but here it now relies on context, 2224 * in form of the currently operating interfaces. 2225 * This is OK for all current users, and saves us from having to 2226 * push the GCD calculations into all the drivers. 2227 * In the future, this should probably rely more on data that's in 2228 * cfg80211 already - the only thing not would appear to be any new 2229 * interfaces (while being brought up) and channel/radar data. 2230 */ 2231 cfg80211_calculate_bi_data(wiphy, params->new_beacon_int, 2232 &beacon_int_gcd, &beacon_int_different); 2233 2234 if (params->radar_detect) { 2235 rcu_read_lock(); 2236 regdom = rcu_dereference(cfg80211_regdomain); 2237 if (regdom) 2238 region = regdom->dfs_region; 2239 rcu_read_unlock(); 2240 } 2241 2242 for (iftype = 0; iftype < NUM_NL80211_IFTYPES; iftype++) { 2243 num_interfaces += params->iftype_num[iftype]; 2244 if (params->iftype_num[iftype] > 0 && 2245 !cfg80211_iftype_allowed(wiphy, iftype, 0, 1)) 2246 used_iftypes |= BIT(iftype); 2247 } 2248 2249 for (i = 0; i < wiphy->n_iface_combinations; i++) { 2250 const struct ieee80211_iface_combination *c; 2251 struct ieee80211_iface_limit *limits; 2252 u32 all_iftypes = 0; 2253 2254 c = &wiphy->iface_combinations[i]; 2255 2256 if (num_interfaces > c->max_interfaces) 2257 continue; 2258 if (params->num_different_channels > c->num_different_channels) 2259 continue; 2260 2261 limits = kmemdup(c->limits, sizeof(limits[0]) * c->n_limits, 2262 GFP_KERNEL); 2263 if (!limits) 2264 return -ENOMEM; 2265 2266 for (iftype = 0; iftype < NUM_NL80211_IFTYPES; iftype++) { 2267 if (cfg80211_iftype_allowed(wiphy, iftype, 0, 1)) 2268 continue; 2269 for (j = 0; j < c->n_limits; j++) { 2270 all_iftypes |= limits[j].types; 2271 if (!(limits[j].types & BIT(iftype))) 2272 continue; 2273 if (limits[j].max < params->iftype_num[iftype]) 2274 goto cont; 2275 limits[j].max -= params->iftype_num[iftype]; 2276 } 2277 } 2278 2279 if (params->radar_detect != 2280 (c->radar_detect_widths & params->radar_detect)) 2281 goto cont; 2282 2283 if (params->radar_detect && c->radar_detect_regions && 2284 !(c->radar_detect_regions & BIT(region))) 2285 goto cont; 2286 2287 /* Finally check that all iftypes that we're currently 2288 * using are actually part of this combination. If they 2289 * aren't then we can't use this combination and have 2290 * to continue to the next. 2291 */ 2292 if ((all_iftypes & used_iftypes) != used_iftypes) 2293 goto cont; 2294 2295 if (beacon_int_gcd) { 2296 if (c->beacon_int_min_gcd && 2297 beacon_int_gcd < c->beacon_int_min_gcd) 2298 goto cont; 2299 if (!c->beacon_int_min_gcd && beacon_int_different) 2300 goto cont; 2301 } 2302 2303 /* This combination covered all interface types and 2304 * supported the requested numbers, so we're good. 2305 */ 2306 2307 (*iter)(c, data); 2308 cont: 2309 kfree(limits); 2310 } 2311 2312 return 0; 2313 } 2314 EXPORT_SYMBOL(cfg80211_iter_combinations); 2315 2316 static void 2317 cfg80211_iter_sum_ifcombs(const struct ieee80211_iface_combination *c, 2318 void *data) 2319 { 2320 int *num = data; 2321 (*num)++; 2322 } 2323 2324 int cfg80211_check_combinations(struct wiphy *wiphy, 2325 struct iface_combination_params *params) 2326 { 2327 int err, num = 0; 2328 2329 err = cfg80211_iter_combinations(wiphy, params, 2330 cfg80211_iter_sum_ifcombs, &num); 2331 if (err) 2332 return err; 2333 if (num == 0) 2334 return -EBUSY; 2335 2336 return 0; 2337 } 2338 EXPORT_SYMBOL(cfg80211_check_combinations); 2339 2340 int ieee80211_get_ratemask(struct ieee80211_supported_band *sband, 2341 const u8 *rates, unsigned int n_rates, 2342 u32 *mask) 2343 { 2344 int i, j; 2345 2346 if (!sband) 2347 return -EINVAL; 2348 2349 if (n_rates == 0 || n_rates > NL80211_MAX_SUPP_RATES) 2350 return -EINVAL; 2351 2352 *mask = 0; 2353 2354 for (i = 0; i < n_rates; i++) { 2355 int rate = (rates[i] & 0x7f) * 5; 2356 bool found = false; 2357 2358 for (j = 0; j < sband->n_bitrates; j++) { 2359 if (sband->bitrates[j].bitrate == rate) { 2360 found = true; 2361 *mask |= BIT(j); 2362 break; 2363 } 2364 } 2365 if (!found) 2366 return -EINVAL; 2367 } 2368 2369 /* 2370 * mask must have at least one bit set here since we 2371 * didn't accept a 0-length rates array nor allowed 2372 * entries in the array that didn't exist 2373 */ 2374 2375 return 0; 2376 } 2377 2378 unsigned int ieee80211_get_num_supported_channels(struct wiphy *wiphy) 2379 { 2380 enum nl80211_band band; 2381 unsigned int n_channels = 0; 2382 2383 for (band = 0; band < NUM_NL80211_BANDS; band++) 2384 if (wiphy->bands[band]) 2385 n_channels += wiphy->bands[band]->n_channels; 2386 2387 return n_channels; 2388 } 2389 EXPORT_SYMBOL(ieee80211_get_num_supported_channels); 2390 2391 int cfg80211_get_station(struct net_device *dev, const u8 *mac_addr, 2392 struct station_info *sinfo) 2393 { 2394 struct cfg80211_registered_device *rdev; 2395 struct wireless_dev *wdev; 2396 2397 wdev = dev->ieee80211_ptr; 2398 if (!wdev) 2399 return -EOPNOTSUPP; 2400 2401 rdev = wiphy_to_rdev(wdev->wiphy); 2402 if (!rdev->ops->get_station) 2403 return -EOPNOTSUPP; 2404 2405 memset(sinfo, 0, sizeof(*sinfo)); 2406 2407 return rdev_get_station(rdev, dev, mac_addr, sinfo); 2408 } 2409 EXPORT_SYMBOL(cfg80211_get_station); 2410 2411 void cfg80211_free_nan_func(struct cfg80211_nan_func *f) 2412 { 2413 int i; 2414 2415 if (!f) 2416 return; 2417 2418 kfree(f->serv_spec_info); 2419 kfree(f->srf_bf); 2420 kfree(f->srf_macs); 2421 for (i = 0; i < f->num_rx_filters; i++) 2422 kfree(f->rx_filters[i].filter); 2423 2424 for (i = 0; i < f->num_tx_filters; i++) 2425 kfree(f->tx_filters[i].filter); 2426 2427 kfree(f->rx_filters); 2428 kfree(f->tx_filters); 2429 kfree(f); 2430 } 2431 EXPORT_SYMBOL(cfg80211_free_nan_func); 2432 2433 bool cfg80211_does_bw_fit_range(const struct ieee80211_freq_range *freq_range, 2434 u32 center_freq_khz, u32 bw_khz) 2435 { 2436 u32 start_freq_khz, end_freq_khz; 2437 2438 start_freq_khz = center_freq_khz - (bw_khz / 2); 2439 end_freq_khz = center_freq_khz + (bw_khz / 2); 2440 2441 if (start_freq_khz >= freq_range->start_freq_khz && 2442 end_freq_khz <= freq_range->end_freq_khz) 2443 return true; 2444 2445 return false; 2446 } 2447 2448 int cfg80211_sinfo_alloc_tid_stats(struct station_info *sinfo, gfp_t gfp) 2449 { 2450 sinfo->pertid = kcalloc(IEEE80211_NUM_TIDS + 1, 2451 sizeof(*(sinfo->pertid)), 2452 gfp); 2453 if (!sinfo->pertid) 2454 return -ENOMEM; 2455 2456 return 0; 2457 } 2458 EXPORT_SYMBOL(cfg80211_sinfo_alloc_tid_stats); 2459 2460 /* See IEEE 802.1H for LLC/SNAP encapsulation/decapsulation */ 2461 /* Ethernet-II snap header (RFC1042 for most EtherTypes) */ 2462 const unsigned char rfc1042_header[] __aligned(2) = 2463 { 0xaa, 0xaa, 0x03, 0x00, 0x00, 0x00 }; 2464 EXPORT_SYMBOL(rfc1042_header); 2465 2466 /* Bridge-Tunnel header (for EtherTypes ETH_P_AARP and ETH_P_IPX) */ 2467 const unsigned char bridge_tunnel_header[] __aligned(2) = 2468 { 0xaa, 0xaa, 0x03, 0x00, 0x00, 0xf8 }; 2469 EXPORT_SYMBOL(bridge_tunnel_header); 2470 2471 /* Layer 2 Update frame (802.2 Type 1 LLC XID Update response) */ 2472 struct iapp_layer2_update { 2473 u8 da[ETH_ALEN]; /* broadcast */ 2474 u8 sa[ETH_ALEN]; /* STA addr */ 2475 __be16 len; /* 6 */ 2476 u8 dsap; /* 0 */ 2477 u8 ssap; /* 0 */ 2478 u8 control; 2479 u8 xid_info[3]; 2480 } __packed; 2481 2482 void cfg80211_send_layer2_update(struct net_device *dev, const u8 *addr) 2483 { 2484 struct iapp_layer2_update *msg; 2485 struct sk_buff *skb; 2486 2487 /* Send Level 2 Update Frame to update forwarding tables in layer 2 2488 * bridge devices */ 2489 2490 skb = dev_alloc_skb(sizeof(*msg)); 2491 if (!skb) 2492 return; 2493 msg = skb_put(skb, sizeof(*msg)); 2494 2495 /* 802.2 Type 1 Logical Link Control (LLC) Exchange Identifier (XID) 2496 * Update response frame; IEEE Std 802.2-1998, 5.4.1.2.1 */ 2497 2498 eth_broadcast_addr(msg->da); 2499 ether_addr_copy(msg->sa, addr); 2500 msg->len = htons(6); 2501 msg->dsap = 0; 2502 msg->ssap = 0x01; /* NULL LSAP, CR Bit: Response */ 2503 msg->control = 0xaf; /* XID response lsb.1111F101. 2504 * F=0 (no poll command; unsolicited frame) */ 2505 msg->xid_info[0] = 0x81; /* XID format identifier */ 2506 msg->xid_info[1] = 1; /* LLC types/classes: Type 1 LLC */ 2507 msg->xid_info[2] = 0; /* XID sender's receive window size (RW) */ 2508 2509 skb->dev = dev; 2510 skb->protocol = eth_type_trans(skb, dev); 2511 memset(skb->cb, 0, sizeof(skb->cb)); 2512 netif_rx(skb); 2513 } 2514 EXPORT_SYMBOL(cfg80211_send_layer2_update); 2515 2516 int ieee80211_get_vht_max_nss(struct ieee80211_vht_cap *cap, 2517 enum ieee80211_vht_chanwidth bw, 2518 int mcs, bool ext_nss_bw_capable, 2519 unsigned int max_vht_nss) 2520 { 2521 u16 map = le16_to_cpu(cap->supp_mcs.rx_mcs_map); 2522 int ext_nss_bw; 2523 int supp_width; 2524 int i, mcs_encoding; 2525 2526 if (map == 0xffff) 2527 return 0; 2528 2529 if (WARN_ON(mcs > 9 || max_vht_nss > 8)) 2530 return 0; 2531 if (mcs <= 7) 2532 mcs_encoding = 0; 2533 else if (mcs == 8) 2534 mcs_encoding = 1; 2535 else 2536 mcs_encoding = 2; 2537 2538 if (!max_vht_nss) { 2539 /* find max_vht_nss for the given MCS */ 2540 for (i = 7; i >= 0; i--) { 2541 int supp = (map >> (2 * i)) & 3; 2542 2543 if (supp == 3) 2544 continue; 2545 2546 if (supp >= mcs_encoding) { 2547 max_vht_nss = i + 1; 2548 break; 2549 } 2550 } 2551 } 2552 2553 if (!(cap->supp_mcs.tx_mcs_map & 2554 cpu_to_le16(IEEE80211_VHT_EXT_NSS_BW_CAPABLE))) 2555 return max_vht_nss; 2556 2557 ext_nss_bw = le32_get_bits(cap->vht_cap_info, 2558 IEEE80211_VHT_CAP_EXT_NSS_BW_MASK); 2559 supp_width = le32_get_bits(cap->vht_cap_info, 2560 IEEE80211_VHT_CAP_SUPP_CHAN_WIDTH_MASK); 2561 2562 /* if not capable, treat ext_nss_bw as 0 */ 2563 if (!ext_nss_bw_capable) 2564 ext_nss_bw = 0; 2565 2566 /* This is invalid */ 2567 if (supp_width == 3) 2568 return 0; 2569 2570 /* This is an invalid combination so pretend nothing is supported */ 2571 if (supp_width == 2 && (ext_nss_bw == 1 || ext_nss_bw == 2)) 2572 return 0; 2573 2574 /* 2575 * Cover all the special cases according to IEEE 802.11-2016 2576 * Table 9-250. All other cases are either factor of 1 or not 2577 * valid/supported. 2578 */ 2579 switch (bw) { 2580 case IEEE80211_VHT_CHANWIDTH_USE_HT: 2581 case IEEE80211_VHT_CHANWIDTH_80MHZ: 2582 if ((supp_width == 1 || supp_width == 2) && 2583 ext_nss_bw == 3) 2584 return 2 * max_vht_nss; 2585 break; 2586 case IEEE80211_VHT_CHANWIDTH_160MHZ: 2587 if (supp_width == 0 && 2588 (ext_nss_bw == 1 || ext_nss_bw == 2)) 2589 return max_vht_nss / 2; 2590 if (supp_width == 0 && 2591 ext_nss_bw == 3) 2592 return (3 * max_vht_nss) / 4; 2593 if (supp_width == 1 && 2594 ext_nss_bw == 3) 2595 return 2 * max_vht_nss; 2596 break; 2597 case IEEE80211_VHT_CHANWIDTH_80P80MHZ: 2598 if (supp_width == 0 && ext_nss_bw == 1) 2599 return 0; /* not possible */ 2600 if (supp_width == 0 && 2601 ext_nss_bw == 2) 2602 return max_vht_nss / 2; 2603 if (supp_width == 0 && 2604 ext_nss_bw == 3) 2605 return (3 * max_vht_nss) / 4; 2606 if (supp_width == 1 && 2607 ext_nss_bw == 0) 2608 return 0; /* not possible */ 2609 if (supp_width == 1 && 2610 ext_nss_bw == 1) 2611 return max_vht_nss / 2; 2612 if (supp_width == 1 && 2613 ext_nss_bw == 2) 2614 return (3 * max_vht_nss) / 4; 2615 break; 2616 } 2617 2618 /* not covered or invalid combination received */ 2619 return max_vht_nss; 2620 } 2621 EXPORT_SYMBOL(ieee80211_get_vht_max_nss); 2622 2623 bool cfg80211_iftype_allowed(struct wiphy *wiphy, enum nl80211_iftype iftype, 2624 bool is_4addr, u8 check_swif) 2625 2626 { 2627 bool is_vlan = iftype == NL80211_IFTYPE_AP_VLAN; 2628 2629 switch (check_swif) { 2630 case 0: 2631 if (is_vlan && is_4addr) 2632 return wiphy->flags & WIPHY_FLAG_4ADDR_AP; 2633 return wiphy->interface_modes & BIT(iftype); 2634 case 1: 2635 if (!(wiphy->software_iftypes & BIT(iftype)) && is_vlan) 2636 return wiphy->flags & WIPHY_FLAG_4ADDR_AP; 2637 return wiphy->software_iftypes & BIT(iftype); 2638 default: 2639 break; 2640 } 2641 2642 return false; 2643 } 2644 EXPORT_SYMBOL(cfg80211_iftype_allowed); 2645 2646 void cfg80211_remove_link(struct wireless_dev *wdev, unsigned int link_id) 2647 { 2648 struct cfg80211_registered_device *rdev = wiphy_to_rdev(wdev->wiphy); 2649 2650 ASSERT_WDEV_LOCK(wdev); 2651 2652 switch (wdev->iftype) { 2653 case NL80211_IFTYPE_AP: 2654 case NL80211_IFTYPE_P2P_GO: 2655 __cfg80211_stop_ap(rdev, wdev->netdev, link_id, true); 2656 break; 2657 default: 2658 /* per-link not relevant */ 2659 break; 2660 } 2661 2662 wdev->valid_links &= ~BIT(link_id); 2663 2664 rdev_del_intf_link(rdev, wdev, link_id); 2665 2666 eth_zero_addr(wdev->links[link_id].addr); 2667 } 2668 2669 void cfg80211_remove_links(struct wireless_dev *wdev) 2670 { 2671 unsigned int link_id; 2672 2673 /* 2674 * links are controlled by upper layers (userspace/cfg) 2675 * only for AP mode, so only remove them here for AP 2676 */ 2677 if (wdev->iftype != NL80211_IFTYPE_AP) 2678 return; 2679 2680 wdev_lock(wdev); 2681 if (wdev->valid_links) { 2682 for_each_valid_link(wdev, link_id) 2683 cfg80211_remove_link(wdev, link_id); 2684 } 2685 wdev_unlock(wdev); 2686 } 2687 2688 int cfg80211_remove_virtual_intf(struct cfg80211_registered_device *rdev, 2689 struct wireless_dev *wdev) 2690 { 2691 cfg80211_remove_links(wdev); 2692 2693 return rdev_del_virtual_intf(rdev, wdev); 2694 } 2695 2696 const struct wiphy_iftype_ext_capab * 2697 cfg80211_get_iftype_ext_capa(struct wiphy *wiphy, enum nl80211_iftype type) 2698 { 2699 int i; 2700 2701 for (i = 0; i < wiphy->num_iftype_ext_capab; i++) { 2702 if (wiphy->iftype_ext_capab[i].iftype == type) 2703 return &wiphy->iftype_ext_capab[i]; 2704 } 2705 2706 return NULL; 2707 } 2708 EXPORT_SYMBOL(cfg80211_get_iftype_ext_capa); 2709