1 /* 2 * Wireless utility functions 3 * 4 * Copyright 2007-2009 Johannes Berg <johannes@sipsolutions.net> 5 */ 6 #include <linux/export.h> 7 #include <linux/bitops.h> 8 #include <linux/etherdevice.h> 9 #include <linux/slab.h> 10 #include <net/cfg80211.h> 11 #include <net/ip.h> 12 #include <net/dsfield.h> 13 #include "core.h" 14 15 struct ieee80211_rate * 16 ieee80211_get_response_rate(struct ieee80211_supported_band *sband, 17 u32 basic_rates, int bitrate) 18 { 19 struct ieee80211_rate *result = &sband->bitrates[0]; 20 int i; 21 22 for (i = 0; i < sband->n_bitrates; i++) { 23 if (!(basic_rates & BIT(i))) 24 continue; 25 if (sband->bitrates[i].bitrate > bitrate) 26 continue; 27 result = &sband->bitrates[i]; 28 } 29 30 return result; 31 } 32 EXPORT_SYMBOL(ieee80211_get_response_rate); 33 34 int ieee80211_channel_to_frequency(int chan, enum ieee80211_band band) 35 { 36 /* see 802.11 17.3.8.3.2 and Annex J 37 * there are overlapping channel numbers in 5GHz and 2GHz bands */ 38 if (chan <= 0) 39 return 0; /* not supported */ 40 switch (band) { 41 case IEEE80211_BAND_2GHZ: 42 if (chan == 14) 43 return 2484; 44 else if (chan < 14) 45 return 2407 + chan * 5; 46 break; 47 case IEEE80211_BAND_5GHZ: 48 if (chan >= 182 && chan <= 196) 49 return 4000 + chan * 5; 50 else 51 return 5000 + chan * 5; 52 break; 53 case IEEE80211_BAND_60GHZ: 54 if (chan < 5) 55 return 56160 + chan * 2160; 56 break; 57 default: 58 ; 59 } 60 return 0; /* not supported */ 61 } 62 EXPORT_SYMBOL(ieee80211_channel_to_frequency); 63 64 int ieee80211_frequency_to_channel(int freq) 65 { 66 /* see 802.11 17.3.8.3.2 and Annex J */ 67 if (freq == 2484) 68 return 14; 69 else if (freq < 2484) 70 return (freq - 2407) / 5; 71 else if (freq >= 4910 && freq <= 4980) 72 return (freq - 4000) / 5; 73 else if (freq <= 45000) /* DMG band lower limit */ 74 return (freq - 5000) / 5; 75 else if (freq >= 58320 && freq <= 64800) 76 return (freq - 56160) / 2160; 77 else 78 return 0; 79 } 80 EXPORT_SYMBOL(ieee80211_frequency_to_channel); 81 82 struct ieee80211_channel *__ieee80211_get_channel(struct wiphy *wiphy, 83 int freq) 84 { 85 enum ieee80211_band band; 86 struct ieee80211_supported_band *sband; 87 int i; 88 89 for (band = 0; band < IEEE80211_NUM_BANDS; band++) { 90 sband = wiphy->bands[band]; 91 92 if (!sband) 93 continue; 94 95 for (i = 0; i < sband->n_channels; i++) { 96 if (sband->channels[i].center_freq == freq) 97 return &sband->channels[i]; 98 } 99 } 100 101 return NULL; 102 } 103 EXPORT_SYMBOL(__ieee80211_get_channel); 104 105 static void set_mandatory_flags_band(struct ieee80211_supported_band *sband, 106 enum ieee80211_band band) 107 { 108 int i, want; 109 110 switch (band) { 111 case IEEE80211_BAND_5GHZ: 112 want = 3; 113 for (i = 0; i < sband->n_bitrates; i++) { 114 if (sband->bitrates[i].bitrate == 60 || 115 sband->bitrates[i].bitrate == 120 || 116 sband->bitrates[i].bitrate == 240) { 117 sband->bitrates[i].flags |= 118 IEEE80211_RATE_MANDATORY_A; 119 want--; 120 } 121 } 122 WARN_ON(want); 123 break; 124 case IEEE80211_BAND_2GHZ: 125 want = 7; 126 for (i = 0; i < sband->n_bitrates; i++) { 127 if (sband->bitrates[i].bitrate == 10) { 128 sband->bitrates[i].flags |= 129 IEEE80211_RATE_MANDATORY_B | 130 IEEE80211_RATE_MANDATORY_G; 131 want--; 132 } 133 134 if (sband->bitrates[i].bitrate == 20 || 135 sband->bitrates[i].bitrate == 55 || 136 sband->bitrates[i].bitrate == 110 || 137 sband->bitrates[i].bitrate == 60 || 138 sband->bitrates[i].bitrate == 120 || 139 sband->bitrates[i].bitrate == 240) { 140 sband->bitrates[i].flags |= 141 IEEE80211_RATE_MANDATORY_G; 142 want--; 143 } 144 145 if (sband->bitrates[i].bitrate != 10 && 146 sband->bitrates[i].bitrate != 20 && 147 sband->bitrates[i].bitrate != 55 && 148 sband->bitrates[i].bitrate != 110) 149 sband->bitrates[i].flags |= 150 IEEE80211_RATE_ERP_G; 151 } 152 WARN_ON(want != 0 && want != 3 && want != 6); 153 break; 154 case IEEE80211_BAND_60GHZ: 155 /* check for mandatory HT MCS 1..4 */ 156 WARN_ON(!sband->ht_cap.ht_supported); 157 WARN_ON((sband->ht_cap.mcs.rx_mask[0] & 0x1e) != 0x1e); 158 break; 159 case IEEE80211_NUM_BANDS: 160 WARN_ON(1); 161 break; 162 } 163 } 164 165 void ieee80211_set_bitrate_flags(struct wiphy *wiphy) 166 { 167 enum ieee80211_band band; 168 169 for (band = 0; band < IEEE80211_NUM_BANDS; band++) 170 if (wiphy->bands[band]) 171 set_mandatory_flags_band(wiphy->bands[band], band); 172 } 173 174 bool cfg80211_supported_cipher_suite(struct wiphy *wiphy, u32 cipher) 175 { 176 int i; 177 for (i = 0; i < wiphy->n_cipher_suites; i++) 178 if (cipher == wiphy->cipher_suites[i]) 179 return true; 180 return false; 181 } 182 183 int cfg80211_validate_key_settings(struct cfg80211_registered_device *rdev, 184 struct key_params *params, int key_idx, 185 bool pairwise, const u8 *mac_addr) 186 { 187 if (key_idx > 5) 188 return -EINVAL; 189 190 if (!pairwise && mac_addr && !(rdev->wiphy.flags & WIPHY_FLAG_IBSS_RSN)) 191 return -EINVAL; 192 193 if (pairwise && !mac_addr) 194 return -EINVAL; 195 196 /* 197 * Disallow pairwise keys with non-zero index unless it's WEP 198 * or a vendor specific cipher (because current deployments use 199 * pairwise WEP keys with non-zero indices and for vendor specific 200 * ciphers this should be validated in the driver or hardware level 201 * - but 802.11i clearly specifies to use zero) 202 */ 203 if (pairwise && key_idx && 204 ((params->cipher == WLAN_CIPHER_SUITE_TKIP) || 205 (params->cipher == WLAN_CIPHER_SUITE_CCMP) || 206 (params->cipher == WLAN_CIPHER_SUITE_AES_CMAC))) 207 return -EINVAL; 208 209 switch (params->cipher) { 210 case WLAN_CIPHER_SUITE_WEP40: 211 if (params->key_len != WLAN_KEY_LEN_WEP40) 212 return -EINVAL; 213 break; 214 case WLAN_CIPHER_SUITE_TKIP: 215 if (params->key_len != WLAN_KEY_LEN_TKIP) 216 return -EINVAL; 217 break; 218 case WLAN_CIPHER_SUITE_CCMP: 219 if (params->key_len != WLAN_KEY_LEN_CCMP) 220 return -EINVAL; 221 break; 222 case WLAN_CIPHER_SUITE_WEP104: 223 if (params->key_len != WLAN_KEY_LEN_WEP104) 224 return -EINVAL; 225 break; 226 case WLAN_CIPHER_SUITE_AES_CMAC: 227 if (params->key_len != WLAN_KEY_LEN_AES_CMAC) 228 return -EINVAL; 229 break; 230 default: 231 /* 232 * We don't know anything about this algorithm, 233 * allow using it -- but the driver must check 234 * all parameters! We still check below whether 235 * or not the driver supports this algorithm, 236 * of course. 237 */ 238 break; 239 } 240 241 if (params->seq) { 242 switch (params->cipher) { 243 case WLAN_CIPHER_SUITE_WEP40: 244 case WLAN_CIPHER_SUITE_WEP104: 245 /* These ciphers do not use key sequence */ 246 return -EINVAL; 247 case WLAN_CIPHER_SUITE_TKIP: 248 case WLAN_CIPHER_SUITE_CCMP: 249 case WLAN_CIPHER_SUITE_AES_CMAC: 250 if (params->seq_len != 6) 251 return -EINVAL; 252 break; 253 } 254 } 255 256 if (!cfg80211_supported_cipher_suite(&rdev->wiphy, params->cipher)) 257 return -EINVAL; 258 259 return 0; 260 } 261 262 unsigned int __attribute_const__ ieee80211_hdrlen(__le16 fc) 263 { 264 unsigned int hdrlen = 24; 265 266 if (ieee80211_is_data(fc)) { 267 if (ieee80211_has_a4(fc)) 268 hdrlen = 30; 269 if (ieee80211_is_data_qos(fc)) { 270 hdrlen += IEEE80211_QOS_CTL_LEN; 271 if (ieee80211_has_order(fc)) 272 hdrlen += IEEE80211_HT_CTL_LEN; 273 } 274 goto out; 275 } 276 277 if (ieee80211_is_ctl(fc)) { 278 /* 279 * ACK and CTS are 10 bytes, all others 16. To see how 280 * to get this condition consider 281 * subtype mask: 0b0000000011110000 (0x00F0) 282 * ACK subtype: 0b0000000011010000 (0x00D0) 283 * CTS subtype: 0b0000000011000000 (0x00C0) 284 * bits that matter: ^^^ (0x00E0) 285 * value of those: 0b0000000011000000 (0x00C0) 286 */ 287 if ((fc & cpu_to_le16(0x00E0)) == cpu_to_le16(0x00C0)) 288 hdrlen = 10; 289 else 290 hdrlen = 16; 291 } 292 out: 293 return hdrlen; 294 } 295 EXPORT_SYMBOL(ieee80211_hdrlen); 296 297 unsigned int ieee80211_get_hdrlen_from_skb(const struct sk_buff *skb) 298 { 299 const struct ieee80211_hdr *hdr = 300 (const struct ieee80211_hdr *)skb->data; 301 unsigned int hdrlen; 302 303 if (unlikely(skb->len < 10)) 304 return 0; 305 hdrlen = ieee80211_hdrlen(hdr->frame_control); 306 if (unlikely(hdrlen > skb->len)) 307 return 0; 308 return hdrlen; 309 } 310 EXPORT_SYMBOL(ieee80211_get_hdrlen_from_skb); 311 312 static int ieee80211_get_mesh_hdrlen(struct ieee80211s_hdr *meshhdr) 313 { 314 int ae = meshhdr->flags & MESH_FLAGS_AE; 315 /* 7.1.3.5a.2 */ 316 switch (ae) { 317 case 0: 318 return 6; 319 case MESH_FLAGS_AE_A4: 320 return 12; 321 case MESH_FLAGS_AE_A5_A6: 322 return 18; 323 case (MESH_FLAGS_AE_A4 | MESH_FLAGS_AE_A5_A6): 324 return 24; 325 default: 326 return 6; 327 } 328 } 329 330 int ieee80211_data_to_8023(struct sk_buff *skb, const u8 *addr, 331 enum nl80211_iftype iftype) 332 { 333 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data; 334 u16 hdrlen, ethertype; 335 u8 *payload; 336 u8 dst[ETH_ALEN]; 337 u8 src[ETH_ALEN] __aligned(2); 338 339 if (unlikely(!ieee80211_is_data_present(hdr->frame_control))) 340 return -1; 341 342 hdrlen = ieee80211_hdrlen(hdr->frame_control); 343 344 /* convert IEEE 802.11 header + possible LLC headers into Ethernet 345 * header 346 * IEEE 802.11 address fields: 347 * ToDS FromDS Addr1 Addr2 Addr3 Addr4 348 * 0 0 DA SA BSSID n/a 349 * 0 1 DA BSSID SA n/a 350 * 1 0 BSSID SA DA n/a 351 * 1 1 RA TA DA SA 352 */ 353 memcpy(dst, ieee80211_get_DA(hdr), ETH_ALEN); 354 memcpy(src, ieee80211_get_SA(hdr), ETH_ALEN); 355 356 switch (hdr->frame_control & 357 cpu_to_le16(IEEE80211_FCTL_TODS | IEEE80211_FCTL_FROMDS)) { 358 case cpu_to_le16(IEEE80211_FCTL_TODS): 359 if (unlikely(iftype != NL80211_IFTYPE_AP && 360 iftype != NL80211_IFTYPE_AP_VLAN && 361 iftype != NL80211_IFTYPE_P2P_GO)) 362 return -1; 363 break; 364 case cpu_to_le16(IEEE80211_FCTL_TODS | IEEE80211_FCTL_FROMDS): 365 if (unlikely(iftype != NL80211_IFTYPE_WDS && 366 iftype != NL80211_IFTYPE_MESH_POINT && 367 iftype != NL80211_IFTYPE_AP_VLAN && 368 iftype != NL80211_IFTYPE_STATION)) 369 return -1; 370 if (iftype == NL80211_IFTYPE_MESH_POINT) { 371 struct ieee80211s_hdr *meshdr = 372 (struct ieee80211s_hdr *) (skb->data + hdrlen); 373 /* make sure meshdr->flags is on the linear part */ 374 if (!pskb_may_pull(skb, hdrlen + 1)) 375 return -1; 376 if (meshdr->flags & MESH_FLAGS_AE_A5_A6) { 377 skb_copy_bits(skb, hdrlen + 378 offsetof(struct ieee80211s_hdr, eaddr1), 379 dst, ETH_ALEN); 380 skb_copy_bits(skb, hdrlen + 381 offsetof(struct ieee80211s_hdr, eaddr2), 382 src, ETH_ALEN); 383 } 384 hdrlen += ieee80211_get_mesh_hdrlen(meshdr); 385 } 386 break; 387 case cpu_to_le16(IEEE80211_FCTL_FROMDS): 388 if ((iftype != NL80211_IFTYPE_STATION && 389 iftype != NL80211_IFTYPE_P2P_CLIENT && 390 iftype != NL80211_IFTYPE_MESH_POINT) || 391 (is_multicast_ether_addr(dst) && 392 ether_addr_equal(src, addr))) 393 return -1; 394 if (iftype == NL80211_IFTYPE_MESH_POINT) { 395 struct ieee80211s_hdr *meshdr = 396 (struct ieee80211s_hdr *) (skb->data + hdrlen); 397 /* make sure meshdr->flags is on the linear part */ 398 if (!pskb_may_pull(skb, hdrlen + 1)) 399 return -1; 400 if (meshdr->flags & MESH_FLAGS_AE_A4) 401 skb_copy_bits(skb, hdrlen + 402 offsetof(struct ieee80211s_hdr, eaddr1), 403 src, ETH_ALEN); 404 hdrlen += ieee80211_get_mesh_hdrlen(meshdr); 405 } 406 break; 407 case cpu_to_le16(0): 408 if (iftype != NL80211_IFTYPE_ADHOC && 409 iftype != NL80211_IFTYPE_STATION) 410 return -1; 411 break; 412 } 413 414 if (!pskb_may_pull(skb, hdrlen + 8)) 415 return -1; 416 417 payload = skb->data + hdrlen; 418 ethertype = (payload[6] << 8) | payload[7]; 419 420 if (likely((ether_addr_equal(payload, rfc1042_header) && 421 ethertype != ETH_P_AARP && ethertype != ETH_P_IPX) || 422 ether_addr_equal(payload, bridge_tunnel_header))) { 423 /* remove RFC1042 or Bridge-Tunnel encapsulation and 424 * replace EtherType */ 425 skb_pull(skb, hdrlen + 6); 426 memcpy(skb_push(skb, ETH_ALEN), src, ETH_ALEN); 427 memcpy(skb_push(skb, ETH_ALEN), dst, ETH_ALEN); 428 } else { 429 struct ethhdr *ehdr; 430 __be16 len; 431 432 skb_pull(skb, hdrlen); 433 len = htons(skb->len); 434 ehdr = (struct ethhdr *) skb_push(skb, sizeof(struct ethhdr)); 435 memcpy(ehdr->h_dest, dst, ETH_ALEN); 436 memcpy(ehdr->h_source, src, ETH_ALEN); 437 ehdr->h_proto = len; 438 } 439 return 0; 440 } 441 EXPORT_SYMBOL(ieee80211_data_to_8023); 442 443 int ieee80211_data_from_8023(struct sk_buff *skb, const u8 *addr, 444 enum nl80211_iftype iftype, u8 *bssid, bool qos) 445 { 446 struct ieee80211_hdr hdr; 447 u16 hdrlen, ethertype; 448 __le16 fc; 449 const u8 *encaps_data; 450 int encaps_len, skip_header_bytes; 451 int nh_pos, h_pos; 452 int head_need; 453 454 if (unlikely(skb->len < ETH_HLEN)) 455 return -EINVAL; 456 457 nh_pos = skb_network_header(skb) - skb->data; 458 h_pos = skb_transport_header(skb) - skb->data; 459 460 /* convert Ethernet header to proper 802.11 header (based on 461 * operation mode) */ 462 ethertype = (skb->data[12] << 8) | skb->data[13]; 463 fc = cpu_to_le16(IEEE80211_FTYPE_DATA | IEEE80211_STYPE_DATA); 464 465 switch (iftype) { 466 case NL80211_IFTYPE_AP: 467 case NL80211_IFTYPE_AP_VLAN: 468 case NL80211_IFTYPE_P2P_GO: 469 fc |= cpu_to_le16(IEEE80211_FCTL_FROMDS); 470 /* DA BSSID SA */ 471 memcpy(hdr.addr1, skb->data, ETH_ALEN); 472 memcpy(hdr.addr2, addr, ETH_ALEN); 473 memcpy(hdr.addr3, skb->data + ETH_ALEN, ETH_ALEN); 474 hdrlen = 24; 475 break; 476 case NL80211_IFTYPE_STATION: 477 case NL80211_IFTYPE_P2P_CLIENT: 478 fc |= cpu_to_le16(IEEE80211_FCTL_TODS); 479 /* BSSID SA DA */ 480 memcpy(hdr.addr1, bssid, ETH_ALEN); 481 memcpy(hdr.addr2, skb->data + ETH_ALEN, ETH_ALEN); 482 memcpy(hdr.addr3, skb->data, ETH_ALEN); 483 hdrlen = 24; 484 break; 485 case NL80211_IFTYPE_ADHOC: 486 /* DA SA BSSID */ 487 memcpy(hdr.addr1, skb->data, ETH_ALEN); 488 memcpy(hdr.addr2, skb->data + ETH_ALEN, ETH_ALEN); 489 memcpy(hdr.addr3, bssid, ETH_ALEN); 490 hdrlen = 24; 491 break; 492 default: 493 return -EOPNOTSUPP; 494 } 495 496 if (qos) { 497 fc |= cpu_to_le16(IEEE80211_STYPE_QOS_DATA); 498 hdrlen += 2; 499 } 500 501 hdr.frame_control = fc; 502 hdr.duration_id = 0; 503 hdr.seq_ctrl = 0; 504 505 skip_header_bytes = ETH_HLEN; 506 if (ethertype == ETH_P_AARP || ethertype == ETH_P_IPX) { 507 encaps_data = bridge_tunnel_header; 508 encaps_len = sizeof(bridge_tunnel_header); 509 skip_header_bytes -= 2; 510 } else if (ethertype > 0x600) { 511 encaps_data = rfc1042_header; 512 encaps_len = sizeof(rfc1042_header); 513 skip_header_bytes -= 2; 514 } else { 515 encaps_data = NULL; 516 encaps_len = 0; 517 } 518 519 skb_pull(skb, skip_header_bytes); 520 nh_pos -= skip_header_bytes; 521 h_pos -= skip_header_bytes; 522 523 head_need = hdrlen + encaps_len - skb_headroom(skb); 524 525 if (head_need > 0 || skb_cloned(skb)) { 526 head_need = max(head_need, 0); 527 if (head_need) 528 skb_orphan(skb); 529 530 if (pskb_expand_head(skb, head_need, 0, GFP_ATOMIC)) 531 return -ENOMEM; 532 533 skb->truesize += head_need; 534 } 535 536 if (encaps_data) { 537 memcpy(skb_push(skb, encaps_len), encaps_data, encaps_len); 538 nh_pos += encaps_len; 539 h_pos += encaps_len; 540 } 541 542 memcpy(skb_push(skb, hdrlen), &hdr, hdrlen); 543 544 nh_pos += hdrlen; 545 h_pos += hdrlen; 546 547 /* Update skb pointers to various headers since this modified frame 548 * is going to go through Linux networking code that may potentially 549 * need things like pointer to IP header. */ 550 skb_set_mac_header(skb, 0); 551 skb_set_network_header(skb, nh_pos); 552 skb_set_transport_header(skb, h_pos); 553 554 return 0; 555 } 556 EXPORT_SYMBOL(ieee80211_data_from_8023); 557 558 559 void ieee80211_amsdu_to_8023s(struct sk_buff *skb, struct sk_buff_head *list, 560 const u8 *addr, enum nl80211_iftype iftype, 561 const unsigned int extra_headroom, 562 bool has_80211_header) 563 { 564 struct sk_buff *frame = NULL; 565 u16 ethertype; 566 u8 *payload; 567 const struct ethhdr *eth; 568 int remaining, err; 569 u8 dst[ETH_ALEN], src[ETH_ALEN]; 570 571 if (has_80211_header) { 572 err = ieee80211_data_to_8023(skb, addr, iftype); 573 if (err) 574 goto out; 575 576 /* skip the wrapping header */ 577 eth = (struct ethhdr *) skb_pull(skb, sizeof(struct ethhdr)); 578 if (!eth) 579 goto out; 580 } else { 581 eth = (struct ethhdr *) skb->data; 582 } 583 584 while (skb != frame) { 585 u8 padding; 586 __be16 len = eth->h_proto; 587 unsigned int subframe_len = sizeof(struct ethhdr) + ntohs(len); 588 589 remaining = skb->len; 590 memcpy(dst, eth->h_dest, ETH_ALEN); 591 memcpy(src, eth->h_source, ETH_ALEN); 592 593 padding = (4 - subframe_len) & 0x3; 594 /* the last MSDU has no padding */ 595 if (subframe_len > remaining) 596 goto purge; 597 598 skb_pull(skb, sizeof(struct ethhdr)); 599 /* reuse skb for the last subframe */ 600 if (remaining <= subframe_len + padding) 601 frame = skb; 602 else { 603 unsigned int hlen = ALIGN(extra_headroom, 4); 604 /* 605 * Allocate and reserve two bytes more for payload 606 * alignment since sizeof(struct ethhdr) is 14. 607 */ 608 frame = dev_alloc_skb(hlen + subframe_len + 2); 609 if (!frame) 610 goto purge; 611 612 skb_reserve(frame, hlen + sizeof(struct ethhdr) + 2); 613 memcpy(skb_put(frame, ntohs(len)), skb->data, 614 ntohs(len)); 615 616 eth = (struct ethhdr *)skb_pull(skb, ntohs(len) + 617 padding); 618 if (!eth) { 619 dev_kfree_skb(frame); 620 goto purge; 621 } 622 } 623 624 skb_reset_network_header(frame); 625 frame->dev = skb->dev; 626 frame->priority = skb->priority; 627 628 payload = frame->data; 629 ethertype = (payload[6] << 8) | payload[7]; 630 631 if (likely((ether_addr_equal(payload, rfc1042_header) && 632 ethertype != ETH_P_AARP && ethertype != ETH_P_IPX) || 633 ether_addr_equal(payload, bridge_tunnel_header))) { 634 /* remove RFC1042 or Bridge-Tunnel 635 * encapsulation and replace EtherType */ 636 skb_pull(frame, 6); 637 memcpy(skb_push(frame, ETH_ALEN), src, ETH_ALEN); 638 memcpy(skb_push(frame, ETH_ALEN), dst, ETH_ALEN); 639 } else { 640 memcpy(skb_push(frame, sizeof(__be16)), &len, 641 sizeof(__be16)); 642 memcpy(skb_push(frame, ETH_ALEN), src, ETH_ALEN); 643 memcpy(skb_push(frame, ETH_ALEN), dst, ETH_ALEN); 644 } 645 __skb_queue_tail(list, frame); 646 } 647 648 return; 649 650 purge: 651 __skb_queue_purge(list); 652 out: 653 dev_kfree_skb(skb); 654 } 655 EXPORT_SYMBOL(ieee80211_amsdu_to_8023s); 656 657 /* Given a data frame determine the 802.1p/1d tag to use. */ 658 unsigned int cfg80211_classify8021d(struct sk_buff *skb) 659 { 660 unsigned int dscp; 661 662 /* skb->priority values from 256->263 are magic values to 663 * directly indicate a specific 802.1d priority. This is used 664 * to allow 802.1d priority to be passed directly in from VLAN 665 * tags, etc. 666 */ 667 if (skb->priority >= 256 && skb->priority <= 263) 668 return skb->priority - 256; 669 670 switch (skb->protocol) { 671 case htons(ETH_P_IP): 672 dscp = ipv4_get_dsfield(ip_hdr(skb)) & 0xfc; 673 break; 674 case htons(ETH_P_IPV6): 675 dscp = ipv6_get_dsfield(ipv6_hdr(skb)) & 0xfc; 676 break; 677 default: 678 return 0; 679 } 680 681 return dscp >> 5; 682 } 683 EXPORT_SYMBOL(cfg80211_classify8021d); 684 685 const u8 *ieee80211_bss_get_ie(struct cfg80211_bss *bss, u8 ie) 686 { 687 if (bss->information_elements == NULL) 688 return NULL; 689 return cfg80211_find_ie(ie, bss->information_elements, 690 bss->len_information_elements); 691 } 692 EXPORT_SYMBOL(ieee80211_bss_get_ie); 693 694 void cfg80211_upload_connect_keys(struct wireless_dev *wdev) 695 { 696 struct cfg80211_registered_device *rdev = wiphy_to_dev(wdev->wiphy); 697 struct net_device *dev = wdev->netdev; 698 int i; 699 700 if (!wdev->connect_keys) 701 return; 702 703 for (i = 0; i < 6; i++) { 704 if (!wdev->connect_keys->params[i].cipher) 705 continue; 706 if (rdev->ops->add_key(wdev->wiphy, dev, i, false, NULL, 707 &wdev->connect_keys->params[i])) { 708 netdev_err(dev, "failed to set key %d\n", i); 709 continue; 710 } 711 if (wdev->connect_keys->def == i) 712 if (rdev->ops->set_default_key(wdev->wiphy, dev, 713 i, true, true)) { 714 netdev_err(dev, "failed to set defkey %d\n", i); 715 continue; 716 } 717 if (wdev->connect_keys->defmgmt == i) 718 if (rdev->ops->set_default_mgmt_key(wdev->wiphy, dev, i)) 719 netdev_err(dev, "failed to set mgtdef %d\n", i); 720 } 721 722 kfree(wdev->connect_keys); 723 wdev->connect_keys = NULL; 724 } 725 726 void cfg80211_process_wdev_events(struct wireless_dev *wdev) 727 { 728 struct cfg80211_event *ev; 729 unsigned long flags; 730 const u8 *bssid = NULL; 731 732 spin_lock_irqsave(&wdev->event_lock, flags); 733 while (!list_empty(&wdev->event_list)) { 734 ev = list_first_entry(&wdev->event_list, 735 struct cfg80211_event, list); 736 list_del(&ev->list); 737 spin_unlock_irqrestore(&wdev->event_lock, flags); 738 739 wdev_lock(wdev); 740 switch (ev->type) { 741 case EVENT_CONNECT_RESULT: 742 if (!is_zero_ether_addr(ev->cr.bssid)) 743 bssid = ev->cr.bssid; 744 __cfg80211_connect_result( 745 wdev->netdev, bssid, 746 ev->cr.req_ie, ev->cr.req_ie_len, 747 ev->cr.resp_ie, ev->cr.resp_ie_len, 748 ev->cr.status, 749 ev->cr.status == WLAN_STATUS_SUCCESS, 750 NULL); 751 break; 752 case EVENT_ROAMED: 753 __cfg80211_roamed(wdev, ev->rm.bss, ev->rm.req_ie, 754 ev->rm.req_ie_len, ev->rm.resp_ie, 755 ev->rm.resp_ie_len); 756 break; 757 case EVENT_DISCONNECTED: 758 __cfg80211_disconnected(wdev->netdev, 759 ev->dc.ie, ev->dc.ie_len, 760 ev->dc.reason, true); 761 break; 762 case EVENT_IBSS_JOINED: 763 __cfg80211_ibss_joined(wdev->netdev, ev->ij.bssid); 764 break; 765 } 766 wdev_unlock(wdev); 767 768 kfree(ev); 769 770 spin_lock_irqsave(&wdev->event_lock, flags); 771 } 772 spin_unlock_irqrestore(&wdev->event_lock, flags); 773 } 774 775 void cfg80211_process_rdev_events(struct cfg80211_registered_device *rdev) 776 { 777 struct wireless_dev *wdev; 778 779 ASSERT_RTNL(); 780 ASSERT_RDEV_LOCK(rdev); 781 782 mutex_lock(&rdev->devlist_mtx); 783 784 list_for_each_entry(wdev, &rdev->wdev_list, list) 785 cfg80211_process_wdev_events(wdev); 786 787 mutex_unlock(&rdev->devlist_mtx); 788 } 789 790 int cfg80211_change_iface(struct cfg80211_registered_device *rdev, 791 struct net_device *dev, enum nl80211_iftype ntype, 792 u32 *flags, struct vif_params *params) 793 { 794 int err; 795 enum nl80211_iftype otype = dev->ieee80211_ptr->iftype; 796 797 ASSERT_RDEV_LOCK(rdev); 798 799 /* don't support changing VLANs, you just re-create them */ 800 if (otype == NL80211_IFTYPE_AP_VLAN) 801 return -EOPNOTSUPP; 802 803 /* cannot change into P2P device type */ 804 if (ntype == NL80211_IFTYPE_P2P_DEVICE) 805 return -EOPNOTSUPP; 806 807 if (!rdev->ops->change_virtual_intf || 808 !(rdev->wiphy.interface_modes & (1 << ntype))) 809 return -EOPNOTSUPP; 810 811 /* if it's part of a bridge, reject changing type to station/ibss */ 812 if ((dev->priv_flags & IFF_BRIDGE_PORT) && 813 (ntype == NL80211_IFTYPE_ADHOC || 814 ntype == NL80211_IFTYPE_STATION || 815 ntype == NL80211_IFTYPE_P2P_CLIENT)) 816 return -EBUSY; 817 818 if (ntype != otype && netif_running(dev)) { 819 mutex_lock(&rdev->devlist_mtx); 820 err = cfg80211_can_change_interface(rdev, dev->ieee80211_ptr, 821 ntype); 822 mutex_unlock(&rdev->devlist_mtx); 823 if (err) 824 return err; 825 826 dev->ieee80211_ptr->use_4addr = false; 827 dev->ieee80211_ptr->mesh_id_up_len = 0; 828 829 switch (otype) { 830 case NL80211_IFTYPE_AP: 831 cfg80211_stop_ap(rdev, dev); 832 break; 833 case NL80211_IFTYPE_ADHOC: 834 cfg80211_leave_ibss(rdev, dev, false); 835 break; 836 case NL80211_IFTYPE_STATION: 837 case NL80211_IFTYPE_P2P_CLIENT: 838 cfg80211_disconnect(rdev, dev, 839 WLAN_REASON_DEAUTH_LEAVING, true); 840 break; 841 case NL80211_IFTYPE_MESH_POINT: 842 /* mesh should be handled? */ 843 break; 844 default: 845 break; 846 } 847 848 cfg80211_process_rdev_events(rdev); 849 } 850 851 err = rdev->ops->change_virtual_intf(&rdev->wiphy, dev, 852 ntype, flags, params); 853 854 WARN_ON(!err && dev->ieee80211_ptr->iftype != ntype); 855 856 if (!err && params && params->use_4addr != -1) 857 dev->ieee80211_ptr->use_4addr = params->use_4addr; 858 859 if (!err) { 860 dev->priv_flags &= ~IFF_DONT_BRIDGE; 861 switch (ntype) { 862 case NL80211_IFTYPE_STATION: 863 if (dev->ieee80211_ptr->use_4addr) 864 break; 865 /* fall through */ 866 case NL80211_IFTYPE_P2P_CLIENT: 867 case NL80211_IFTYPE_ADHOC: 868 dev->priv_flags |= IFF_DONT_BRIDGE; 869 break; 870 case NL80211_IFTYPE_P2P_GO: 871 case NL80211_IFTYPE_AP: 872 case NL80211_IFTYPE_AP_VLAN: 873 case NL80211_IFTYPE_WDS: 874 case NL80211_IFTYPE_MESH_POINT: 875 /* bridging OK */ 876 break; 877 case NL80211_IFTYPE_MONITOR: 878 /* monitor can't bridge anyway */ 879 break; 880 case NL80211_IFTYPE_UNSPECIFIED: 881 case NUM_NL80211_IFTYPES: 882 /* not happening */ 883 break; 884 case NL80211_IFTYPE_P2P_DEVICE: 885 WARN_ON(1); 886 break; 887 } 888 } 889 890 if (!err && ntype != otype && netif_running(dev)) { 891 cfg80211_update_iface_num(rdev, ntype, 1); 892 cfg80211_update_iface_num(rdev, otype, -1); 893 } 894 895 return err; 896 } 897 898 static u32 cfg80211_calculate_bitrate_60g(struct rate_info *rate) 899 { 900 static const u32 __mcs2bitrate[] = { 901 /* control PHY */ 902 [0] = 275, 903 /* SC PHY */ 904 [1] = 3850, 905 [2] = 7700, 906 [3] = 9625, 907 [4] = 11550, 908 [5] = 12512, /* 1251.25 mbps */ 909 [6] = 15400, 910 [7] = 19250, 911 [8] = 23100, 912 [9] = 25025, 913 [10] = 30800, 914 [11] = 38500, 915 [12] = 46200, 916 /* OFDM PHY */ 917 [13] = 6930, 918 [14] = 8662, /* 866.25 mbps */ 919 [15] = 13860, 920 [16] = 17325, 921 [17] = 20790, 922 [18] = 27720, 923 [19] = 34650, 924 [20] = 41580, 925 [21] = 45045, 926 [22] = 51975, 927 [23] = 62370, 928 [24] = 67568, /* 6756.75 mbps */ 929 /* LP-SC PHY */ 930 [25] = 6260, 931 [26] = 8340, 932 [27] = 11120, 933 [28] = 12510, 934 [29] = 16680, 935 [30] = 22240, 936 [31] = 25030, 937 }; 938 939 if (WARN_ON_ONCE(rate->mcs >= ARRAY_SIZE(__mcs2bitrate))) 940 return 0; 941 942 return __mcs2bitrate[rate->mcs]; 943 } 944 945 u32 cfg80211_calculate_bitrate(struct rate_info *rate) 946 { 947 int modulation, streams, bitrate; 948 949 if (!(rate->flags & RATE_INFO_FLAGS_MCS)) 950 return rate->legacy; 951 if (rate->flags & RATE_INFO_FLAGS_60G) 952 return cfg80211_calculate_bitrate_60g(rate); 953 954 /* the formula below does only work for MCS values smaller than 32 */ 955 if (WARN_ON_ONCE(rate->mcs >= 32)) 956 return 0; 957 958 modulation = rate->mcs & 7; 959 streams = (rate->mcs >> 3) + 1; 960 961 bitrate = (rate->flags & RATE_INFO_FLAGS_40_MHZ_WIDTH) ? 962 13500000 : 6500000; 963 964 if (modulation < 4) 965 bitrate *= (modulation + 1); 966 else if (modulation == 4) 967 bitrate *= (modulation + 2); 968 else 969 bitrate *= (modulation + 3); 970 971 bitrate *= streams; 972 973 if (rate->flags & RATE_INFO_FLAGS_SHORT_GI) 974 bitrate = (bitrate / 9) * 10; 975 976 /* do NOT round down here */ 977 return (bitrate + 50000) / 100000; 978 } 979 EXPORT_SYMBOL(cfg80211_calculate_bitrate); 980 981 int cfg80211_validate_beacon_int(struct cfg80211_registered_device *rdev, 982 u32 beacon_int) 983 { 984 struct wireless_dev *wdev; 985 int res = 0; 986 987 if (!beacon_int) 988 return -EINVAL; 989 990 mutex_lock(&rdev->devlist_mtx); 991 992 list_for_each_entry(wdev, &rdev->wdev_list, list) { 993 if (!wdev->beacon_interval) 994 continue; 995 if (wdev->beacon_interval != beacon_int) { 996 res = -EINVAL; 997 break; 998 } 999 } 1000 1001 mutex_unlock(&rdev->devlist_mtx); 1002 1003 return res; 1004 } 1005 1006 int cfg80211_can_use_iftype_chan(struct cfg80211_registered_device *rdev, 1007 struct wireless_dev *wdev, 1008 enum nl80211_iftype iftype, 1009 struct ieee80211_channel *chan, 1010 enum cfg80211_chan_mode chanmode) 1011 { 1012 struct wireless_dev *wdev_iter; 1013 u32 used_iftypes = BIT(iftype); 1014 int num[NUM_NL80211_IFTYPES]; 1015 struct ieee80211_channel 1016 *used_channels[CFG80211_MAX_NUM_DIFFERENT_CHANNELS]; 1017 struct ieee80211_channel *ch; 1018 enum cfg80211_chan_mode chmode; 1019 int num_different_channels = 0; 1020 int total = 1; 1021 int i, j; 1022 1023 ASSERT_RTNL(); 1024 lockdep_assert_held(&rdev->devlist_mtx); 1025 1026 /* Always allow software iftypes */ 1027 if (rdev->wiphy.software_iftypes & BIT(iftype)) 1028 return 0; 1029 1030 memset(num, 0, sizeof(num)); 1031 memset(used_channels, 0, sizeof(used_channels)); 1032 1033 num[iftype] = 1; 1034 1035 switch (chanmode) { 1036 case CHAN_MODE_UNDEFINED: 1037 break; 1038 case CHAN_MODE_SHARED: 1039 WARN_ON(!chan); 1040 used_channels[0] = chan; 1041 num_different_channels++; 1042 break; 1043 case CHAN_MODE_EXCLUSIVE: 1044 num_different_channels++; 1045 break; 1046 } 1047 1048 list_for_each_entry(wdev_iter, &rdev->wdev_list, list) { 1049 if (wdev_iter == wdev) 1050 continue; 1051 if (wdev_iter->netdev) { 1052 if (!netif_running(wdev_iter->netdev)) 1053 continue; 1054 } else if (wdev_iter->iftype == NL80211_IFTYPE_P2P_DEVICE) { 1055 if (!wdev_iter->p2p_started) 1056 continue; 1057 } else { 1058 WARN_ON(1); 1059 } 1060 1061 if (rdev->wiphy.software_iftypes & BIT(wdev_iter->iftype)) 1062 continue; 1063 1064 /* 1065 * We may be holding the "wdev" mutex, but now need to lock 1066 * wdev_iter. This is OK because once we get here wdev_iter 1067 * is not wdev (tested above), but we need to use the nested 1068 * locking for lockdep. 1069 */ 1070 mutex_lock_nested(&wdev_iter->mtx, 1); 1071 __acquire(wdev_iter->mtx); 1072 cfg80211_get_chan_state(wdev_iter, &ch, &chmode); 1073 wdev_unlock(wdev_iter); 1074 1075 switch (chmode) { 1076 case CHAN_MODE_UNDEFINED: 1077 break; 1078 case CHAN_MODE_SHARED: 1079 for (i = 0; i < CFG80211_MAX_NUM_DIFFERENT_CHANNELS; i++) 1080 if (!used_channels[i] || used_channels[i] == ch) 1081 break; 1082 1083 if (i == CFG80211_MAX_NUM_DIFFERENT_CHANNELS) 1084 return -EBUSY; 1085 1086 if (used_channels[i] == NULL) { 1087 used_channels[i] = ch; 1088 num_different_channels++; 1089 } 1090 break; 1091 case CHAN_MODE_EXCLUSIVE: 1092 num_different_channels++; 1093 break; 1094 } 1095 1096 num[wdev_iter->iftype]++; 1097 total++; 1098 used_iftypes |= BIT(wdev_iter->iftype); 1099 } 1100 1101 if (total == 1) 1102 return 0; 1103 1104 for (i = 0; i < rdev->wiphy.n_iface_combinations; i++) { 1105 const struct ieee80211_iface_combination *c; 1106 struct ieee80211_iface_limit *limits; 1107 u32 all_iftypes = 0; 1108 1109 c = &rdev->wiphy.iface_combinations[i]; 1110 1111 if (total > c->max_interfaces) 1112 continue; 1113 if (num_different_channels > c->num_different_channels) 1114 continue; 1115 1116 limits = kmemdup(c->limits, sizeof(limits[0]) * c->n_limits, 1117 GFP_KERNEL); 1118 if (!limits) 1119 return -ENOMEM; 1120 1121 for (iftype = 0; iftype < NUM_NL80211_IFTYPES; iftype++) { 1122 if (rdev->wiphy.software_iftypes & BIT(iftype)) 1123 continue; 1124 for (j = 0; j < c->n_limits; j++) { 1125 all_iftypes |= limits[j].types; 1126 if (!(limits[j].types & BIT(iftype))) 1127 continue; 1128 if (limits[j].max < num[iftype]) 1129 goto cont; 1130 limits[j].max -= num[iftype]; 1131 } 1132 } 1133 1134 /* 1135 * Finally check that all iftypes that we're currently 1136 * using are actually part of this combination. If they 1137 * aren't then we can't use this combination and have 1138 * to continue to the next. 1139 */ 1140 if ((all_iftypes & used_iftypes) != used_iftypes) 1141 goto cont; 1142 1143 /* 1144 * This combination covered all interface types and 1145 * supported the requested numbers, so we're good. 1146 */ 1147 kfree(limits); 1148 return 0; 1149 cont: 1150 kfree(limits); 1151 } 1152 1153 return -EBUSY; 1154 } 1155 1156 int ieee80211_get_ratemask(struct ieee80211_supported_band *sband, 1157 const u8 *rates, unsigned int n_rates, 1158 u32 *mask) 1159 { 1160 int i, j; 1161 1162 if (!sband) 1163 return -EINVAL; 1164 1165 if (n_rates == 0 || n_rates > NL80211_MAX_SUPP_RATES) 1166 return -EINVAL; 1167 1168 *mask = 0; 1169 1170 for (i = 0; i < n_rates; i++) { 1171 int rate = (rates[i] & 0x7f) * 5; 1172 bool found = false; 1173 1174 for (j = 0; j < sband->n_bitrates; j++) { 1175 if (sband->bitrates[j].bitrate == rate) { 1176 found = true; 1177 *mask |= BIT(j); 1178 break; 1179 } 1180 } 1181 if (!found) 1182 return -EINVAL; 1183 } 1184 1185 /* 1186 * mask must have at least one bit set here since we 1187 * didn't accept a 0-length rates array nor allowed 1188 * entries in the array that didn't exist 1189 */ 1190 1191 return 0; 1192 } 1193 1194 /* See IEEE 802.1H for LLC/SNAP encapsulation/decapsulation */ 1195 /* Ethernet-II snap header (RFC1042 for most EtherTypes) */ 1196 const unsigned char rfc1042_header[] __aligned(2) = 1197 { 0xaa, 0xaa, 0x03, 0x00, 0x00, 0x00 }; 1198 EXPORT_SYMBOL(rfc1042_header); 1199 1200 /* Bridge-Tunnel header (for EtherTypes ETH_P_AARP and ETH_P_IPX) */ 1201 const unsigned char bridge_tunnel_header[] __aligned(2) = 1202 { 0xaa, 0xaa, 0x03, 0x00, 0x00, 0xf8 }; 1203 EXPORT_SYMBOL(bridge_tunnel_header); 1204