xref: /linux/net/wireless/util.c (revision f3a8b6645dc2e60d11f20c1c23afd964ff4e55ae)
1 /*
2  * Wireless utility functions
3  *
4  * Copyright 2007-2009	Johannes Berg <johannes@sipsolutions.net>
5  * Copyright 2013-2014  Intel Mobile Communications GmbH
6  */
7 #include <linux/export.h>
8 #include <linux/bitops.h>
9 #include <linux/etherdevice.h>
10 #include <linux/slab.h>
11 #include <net/cfg80211.h>
12 #include <net/ip.h>
13 #include <net/dsfield.h>
14 #include <linux/if_vlan.h>
15 #include <linux/mpls.h>
16 #include "core.h"
17 #include "rdev-ops.h"
18 
19 
20 struct ieee80211_rate *
21 ieee80211_get_response_rate(struct ieee80211_supported_band *sband,
22 			    u32 basic_rates, int bitrate)
23 {
24 	struct ieee80211_rate *result = &sband->bitrates[0];
25 	int i;
26 
27 	for (i = 0; i < sband->n_bitrates; i++) {
28 		if (!(basic_rates & BIT(i)))
29 			continue;
30 		if (sband->bitrates[i].bitrate > bitrate)
31 			continue;
32 		result = &sband->bitrates[i];
33 	}
34 
35 	return result;
36 }
37 EXPORT_SYMBOL(ieee80211_get_response_rate);
38 
39 u32 ieee80211_mandatory_rates(struct ieee80211_supported_band *sband,
40 			      enum nl80211_bss_scan_width scan_width)
41 {
42 	struct ieee80211_rate *bitrates;
43 	u32 mandatory_rates = 0;
44 	enum ieee80211_rate_flags mandatory_flag;
45 	int i;
46 
47 	if (WARN_ON(!sband))
48 		return 1;
49 
50 	if (sband->band == NL80211_BAND_2GHZ) {
51 		if (scan_width == NL80211_BSS_CHAN_WIDTH_5 ||
52 		    scan_width == NL80211_BSS_CHAN_WIDTH_10)
53 			mandatory_flag = IEEE80211_RATE_MANDATORY_G;
54 		else
55 			mandatory_flag = IEEE80211_RATE_MANDATORY_B;
56 	} else {
57 		mandatory_flag = IEEE80211_RATE_MANDATORY_A;
58 	}
59 
60 	bitrates = sband->bitrates;
61 	for (i = 0; i < sband->n_bitrates; i++)
62 		if (bitrates[i].flags & mandatory_flag)
63 			mandatory_rates |= BIT(i);
64 	return mandatory_rates;
65 }
66 EXPORT_SYMBOL(ieee80211_mandatory_rates);
67 
68 int ieee80211_channel_to_frequency(int chan, enum nl80211_band band)
69 {
70 	/* see 802.11 17.3.8.3.2 and Annex J
71 	 * there are overlapping channel numbers in 5GHz and 2GHz bands */
72 	if (chan <= 0)
73 		return 0; /* not supported */
74 	switch (band) {
75 	case NL80211_BAND_2GHZ:
76 		if (chan == 14)
77 			return 2484;
78 		else if (chan < 14)
79 			return 2407 + chan * 5;
80 		break;
81 	case NL80211_BAND_5GHZ:
82 		if (chan >= 182 && chan <= 196)
83 			return 4000 + chan * 5;
84 		else
85 			return 5000 + chan * 5;
86 		break;
87 	case NL80211_BAND_60GHZ:
88 		if (chan < 5)
89 			return 56160 + chan * 2160;
90 		break;
91 	default:
92 		;
93 	}
94 	return 0; /* not supported */
95 }
96 EXPORT_SYMBOL(ieee80211_channel_to_frequency);
97 
98 int ieee80211_frequency_to_channel(int freq)
99 {
100 	/* see 802.11 17.3.8.3.2 and Annex J */
101 	if (freq == 2484)
102 		return 14;
103 	else if (freq < 2484)
104 		return (freq - 2407) / 5;
105 	else if (freq >= 4910 && freq <= 4980)
106 		return (freq - 4000) / 5;
107 	else if (freq <= 45000) /* DMG band lower limit */
108 		return (freq - 5000) / 5;
109 	else if (freq >= 58320 && freq <= 64800)
110 		return (freq - 56160) / 2160;
111 	else
112 		return 0;
113 }
114 EXPORT_SYMBOL(ieee80211_frequency_to_channel);
115 
116 struct ieee80211_channel *__ieee80211_get_channel(struct wiphy *wiphy,
117 						  int freq)
118 {
119 	enum nl80211_band band;
120 	struct ieee80211_supported_band *sband;
121 	int i;
122 
123 	for (band = 0; band < NUM_NL80211_BANDS; band++) {
124 		sband = wiphy->bands[band];
125 
126 		if (!sband)
127 			continue;
128 
129 		for (i = 0; i < sband->n_channels; i++) {
130 			if (sband->channels[i].center_freq == freq)
131 				return &sband->channels[i];
132 		}
133 	}
134 
135 	return NULL;
136 }
137 EXPORT_SYMBOL(__ieee80211_get_channel);
138 
139 static void set_mandatory_flags_band(struct ieee80211_supported_band *sband,
140 				     enum nl80211_band band)
141 {
142 	int i, want;
143 
144 	switch (band) {
145 	case NL80211_BAND_5GHZ:
146 		want = 3;
147 		for (i = 0; i < sband->n_bitrates; i++) {
148 			if (sband->bitrates[i].bitrate == 60 ||
149 			    sband->bitrates[i].bitrate == 120 ||
150 			    sband->bitrates[i].bitrate == 240) {
151 				sband->bitrates[i].flags |=
152 					IEEE80211_RATE_MANDATORY_A;
153 				want--;
154 			}
155 		}
156 		WARN_ON(want);
157 		break;
158 	case NL80211_BAND_2GHZ:
159 		want = 7;
160 		for (i = 0; i < sband->n_bitrates; i++) {
161 			if (sband->bitrates[i].bitrate == 10) {
162 				sband->bitrates[i].flags |=
163 					IEEE80211_RATE_MANDATORY_B |
164 					IEEE80211_RATE_MANDATORY_G;
165 				want--;
166 			}
167 
168 			if (sband->bitrates[i].bitrate == 20 ||
169 			    sband->bitrates[i].bitrate == 55 ||
170 			    sband->bitrates[i].bitrate == 110 ||
171 			    sband->bitrates[i].bitrate == 60 ||
172 			    sband->bitrates[i].bitrate == 120 ||
173 			    sband->bitrates[i].bitrate == 240) {
174 				sband->bitrates[i].flags |=
175 					IEEE80211_RATE_MANDATORY_G;
176 				want--;
177 			}
178 
179 			if (sband->bitrates[i].bitrate != 10 &&
180 			    sband->bitrates[i].bitrate != 20 &&
181 			    sband->bitrates[i].bitrate != 55 &&
182 			    sband->bitrates[i].bitrate != 110)
183 				sband->bitrates[i].flags |=
184 					IEEE80211_RATE_ERP_G;
185 		}
186 		WARN_ON(want != 0 && want != 3 && want != 6);
187 		break;
188 	case NL80211_BAND_60GHZ:
189 		/* check for mandatory HT MCS 1..4 */
190 		WARN_ON(!sband->ht_cap.ht_supported);
191 		WARN_ON((sband->ht_cap.mcs.rx_mask[0] & 0x1e) != 0x1e);
192 		break;
193 	case NUM_NL80211_BANDS:
194 		WARN_ON(1);
195 		break;
196 	}
197 }
198 
199 void ieee80211_set_bitrate_flags(struct wiphy *wiphy)
200 {
201 	enum nl80211_band band;
202 
203 	for (band = 0; band < NUM_NL80211_BANDS; band++)
204 		if (wiphy->bands[band])
205 			set_mandatory_flags_band(wiphy->bands[band], band);
206 }
207 
208 bool cfg80211_supported_cipher_suite(struct wiphy *wiphy, u32 cipher)
209 {
210 	int i;
211 	for (i = 0; i < wiphy->n_cipher_suites; i++)
212 		if (cipher == wiphy->cipher_suites[i])
213 			return true;
214 	return false;
215 }
216 
217 int cfg80211_validate_key_settings(struct cfg80211_registered_device *rdev,
218 				   struct key_params *params, int key_idx,
219 				   bool pairwise, const u8 *mac_addr)
220 {
221 	if (key_idx < 0 || key_idx > 5)
222 		return -EINVAL;
223 
224 	if (!pairwise && mac_addr && !(rdev->wiphy.flags & WIPHY_FLAG_IBSS_RSN))
225 		return -EINVAL;
226 
227 	if (pairwise && !mac_addr)
228 		return -EINVAL;
229 
230 	switch (params->cipher) {
231 	case WLAN_CIPHER_SUITE_TKIP:
232 	case WLAN_CIPHER_SUITE_CCMP:
233 	case WLAN_CIPHER_SUITE_CCMP_256:
234 	case WLAN_CIPHER_SUITE_GCMP:
235 	case WLAN_CIPHER_SUITE_GCMP_256:
236 		/* Disallow pairwise keys with non-zero index unless it's WEP
237 		 * or a vendor specific cipher (because current deployments use
238 		 * pairwise WEP keys with non-zero indices and for vendor
239 		 * specific ciphers this should be validated in the driver or
240 		 * hardware level - but 802.11i clearly specifies to use zero)
241 		 */
242 		if (pairwise && key_idx)
243 			return -EINVAL;
244 		break;
245 	case WLAN_CIPHER_SUITE_AES_CMAC:
246 	case WLAN_CIPHER_SUITE_BIP_CMAC_256:
247 	case WLAN_CIPHER_SUITE_BIP_GMAC_128:
248 	case WLAN_CIPHER_SUITE_BIP_GMAC_256:
249 		/* Disallow BIP (group-only) cipher as pairwise cipher */
250 		if (pairwise)
251 			return -EINVAL;
252 		if (key_idx < 4)
253 			return -EINVAL;
254 		break;
255 	case WLAN_CIPHER_SUITE_WEP40:
256 	case WLAN_CIPHER_SUITE_WEP104:
257 		if (key_idx > 3)
258 			return -EINVAL;
259 	default:
260 		break;
261 	}
262 
263 	switch (params->cipher) {
264 	case WLAN_CIPHER_SUITE_WEP40:
265 		if (params->key_len != WLAN_KEY_LEN_WEP40)
266 			return -EINVAL;
267 		break;
268 	case WLAN_CIPHER_SUITE_TKIP:
269 		if (params->key_len != WLAN_KEY_LEN_TKIP)
270 			return -EINVAL;
271 		break;
272 	case WLAN_CIPHER_SUITE_CCMP:
273 		if (params->key_len != WLAN_KEY_LEN_CCMP)
274 			return -EINVAL;
275 		break;
276 	case WLAN_CIPHER_SUITE_CCMP_256:
277 		if (params->key_len != WLAN_KEY_LEN_CCMP_256)
278 			return -EINVAL;
279 		break;
280 	case WLAN_CIPHER_SUITE_GCMP:
281 		if (params->key_len != WLAN_KEY_LEN_GCMP)
282 			return -EINVAL;
283 		break;
284 	case WLAN_CIPHER_SUITE_GCMP_256:
285 		if (params->key_len != WLAN_KEY_LEN_GCMP_256)
286 			return -EINVAL;
287 		break;
288 	case WLAN_CIPHER_SUITE_WEP104:
289 		if (params->key_len != WLAN_KEY_LEN_WEP104)
290 			return -EINVAL;
291 		break;
292 	case WLAN_CIPHER_SUITE_AES_CMAC:
293 		if (params->key_len != WLAN_KEY_LEN_AES_CMAC)
294 			return -EINVAL;
295 		break;
296 	case WLAN_CIPHER_SUITE_BIP_CMAC_256:
297 		if (params->key_len != WLAN_KEY_LEN_BIP_CMAC_256)
298 			return -EINVAL;
299 		break;
300 	case WLAN_CIPHER_SUITE_BIP_GMAC_128:
301 		if (params->key_len != WLAN_KEY_LEN_BIP_GMAC_128)
302 			return -EINVAL;
303 		break;
304 	case WLAN_CIPHER_SUITE_BIP_GMAC_256:
305 		if (params->key_len != WLAN_KEY_LEN_BIP_GMAC_256)
306 			return -EINVAL;
307 		break;
308 	default:
309 		/*
310 		 * We don't know anything about this algorithm,
311 		 * allow using it -- but the driver must check
312 		 * all parameters! We still check below whether
313 		 * or not the driver supports this algorithm,
314 		 * of course.
315 		 */
316 		break;
317 	}
318 
319 	if (params->seq) {
320 		switch (params->cipher) {
321 		case WLAN_CIPHER_SUITE_WEP40:
322 		case WLAN_CIPHER_SUITE_WEP104:
323 			/* These ciphers do not use key sequence */
324 			return -EINVAL;
325 		case WLAN_CIPHER_SUITE_TKIP:
326 		case WLAN_CIPHER_SUITE_CCMP:
327 		case WLAN_CIPHER_SUITE_CCMP_256:
328 		case WLAN_CIPHER_SUITE_GCMP:
329 		case WLAN_CIPHER_SUITE_GCMP_256:
330 		case WLAN_CIPHER_SUITE_AES_CMAC:
331 		case WLAN_CIPHER_SUITE_BIP_CMAC_256:
332 		case WLAN_CIPHER_SUITE_BIP_GMAC_128:
333 		case WLAN_CIPHER_SUITE_BIP_GMAC_256:
334 			if (params->seq_len != 6)
335 				return -EINVAL;
336 			break;
337 		}
338 	}
339 
340 	if (!cfg80211_supported_cipher_suite(&rdev->wiphy, params->cipher))
341 		return -EINVAL;
342 
343 	return 0;
344 }
345 
346 unsigned int __attribute_const__ ieee80211_hdrlen(__le16 fc)
347 {
348 	unsigned int hdrlen = 24;
349 
350 	if (ieee80211_is_data(fc)) {
351 		if (ieee80211_has_a4(fc))
352 			hdrlen = 30;
353 		if (ieee80211_is_data_qos(fc)) {
354 			hdrlen += IEEE80211_QOS_CTL_LEN;
355 			if (ieee80211_has_order(fc))
356 				hdrlen += IEEE80211_HT_CTL_LEN;
357 		}
358 		goto out;
359 	}
360 
361 	if (ieee80211_is_mgmt(fc)) {
362 		if (ieee80211_has_order(fc))
363 			hdrlen += IEEE80211_HT_CTL_LEN;
364 		goto out;
365 	}
366 
367 	if (ieee80211_is_ctl(fc)) {
368 		/*
369 		 * ACK and CTS are 10 bytes, all others 16. To see how
370 		 * to get this condition consider
371 		 *   subtype mask:   0b0000000011110000 (0x00F0)
372 		 *   ACK subtype:    0b0000000011010000 (0x00D0)
373 		 *   CTS subtype:    0b0000000011000000 (0x00C0)
374 		 *   bits that matter:         ^^^      (0x00E0)
375 		 *   value of those: 0b0000000011000000 (0x00C0)
376 		 */
377 		if ((fc & cpu_to_le16(0x00E0)) == cpu_to_le16(0x00C0))
378 			hdrlen = 10;
379 		else
380 			hdrlen = 16;
381 	}
382 out:
383 	return hdrlen;
384 }
385 EXPORT_SYMBOL(ieee80211_hdrlen);
386 
387 unsigned int ieee80211_get_hdrlen_from_skb(const struct sk_buff *skb)
388 {
389 	const struct ieee80211_hdr *hdr =
390 			(const struct ieee80211_hdr *)skb->data;
391 	unsigned int hdrlen;
392 
393 	if (unlikely(skb->len < 10))
394 		return 0;
395 	hdrlen = ieee80211_hdrlen(hdr->frame_control);
396 	if (unlikely(hdrlen > skb->len))
397 		return 0;
398 	return hdrlen;
399 }
400 EXPORT_SYMBOL(ieee80211_get_hdrlen_from_skb);
401 
402 static unsigned int __ieee80211_get_mesh_hdrlen(u8 flags)
403 {
404 	int ae = flags & MESH_FLAGS_AE;
405 	/* 802.11-2012, 8.2.4.7.3 */
406 	switch (ae) {
407 	default:
408 	case 0:
409 		return 6;
410 	case MESH_FLAGS_AE_A4:
411 		return 12;
412 	case MESH_FLAGS_AE_A5_A6:
413 		return 18;
414 	}
415 }
416 
417 unsigned int ieee80211_get_mesh_hdrlen(struct ieee80211s_hdr *meshhdr)
418 {
419 	return __ieee80211_get_mesh_hdrlen(meshhdr->flags);
420 }
421 EXPORT_SYMBOL(ieee80211_get_mesh_hdrlen);
422 
423 int ieee80211_data_to_8023_exthdr(struct sk_buff *skb, struct ethhdr *ehdr,
424 				  const u8 *addr, enum nl80211_iftype iftype)
425 {
426 	struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data;
427 	struct {
428 		u8 hdr[ETH_ALEN] __aligned(2);
429 		__be16 proto;
430 	} payload;
431 	struct ethhdr tmp;
432 	u16 hdrlen;
433 	u8 mesh_flags = 0;
434 
435 	if (unlikely(!ieee80211_is_data_present(hdr->frame_control)))
436 		return -1;
437 
438 	hdrlen = ieee80211_hdrlen(hdr->frame_control);
439 	if (skb->len < hdrlen + 8)
440 		return -1;
441 
442 	/* convert IEEE 802.11 header + possible LLC headers into Ethernet
443 	 * header
444 	 * IEEE 802.11 address fields:
445 	 * ToDS FromDS Addr1 Addr2 Addr3 Addr4
446 	 *   0     0   DA    SA    BSSID n/a
447 	 *   0     1   DA    BSSID SA    n/a
448 	 *   1     0   BSSID SA    DA    n/a
449 	 *   1     1   RA    TA    DA    SA
450 	 */
451 	memcpy(tmp.h_dest, ieee80211_get_DA(hdr), ETH_ALEN);
452 	memcpy(tmp.h_source, ieee80211_get_SA(hdr), ETH_ALEN);
453 
454 	if (iftype == NL80211_IFTYPE_MESH_POINT)
455 		skb_copy_bits(skb, hdrlen, &mesh_flags, 1);
456 
457 	switch (hdr->frame_control &
458 		cpu_to_le16(IEEE80211_FCTL_TODS | IEEE80211_FCTL_FROMDS)) {
459 	case cpu_to_le16(IEEE80211_FCTL_TODS):
460 		if (unlikely(iftype != NL80211_IFTYPE_AP &&
461 			     iftype != NL80211_IFTYPE_AP_VLAN &&
462 			     iftype != NL80211_IFTYPE_P2P_GO))
463 			return -1;
464 		break;
465 	case cpu_to_le16(IEEE80211_FCTL_TODS | IEEE80211_FCTL_FROMDS):
466 		if (unlikely(iftype != NL80211_IFTYPE_WDS &&
467 			     iftype != NL80211_IFTYPE_MESH_POINT &&
468 			     iftype != NL80211_IFTYPE_AP_VLAN &&
469 			     iftype != NL80211_IFTYPE_STATION))
470 			return -1;
471 		if (iftype == NL80211_IFTYPE_MESH_POINT) {
472 			if (mesh_flags & MESH_FLAGS_AE_A4)
473 				return -1;
474 			if (mesh_flags & MESH_FLAGS_AE_A5_A6) {
475 				skb_copy_bits(skb, hdrlen +
476 					offsetof(struct ieee80211s_hdr, eaddr1),
477 					tmp.h_dest, 2 * ETH_ALEN);
478 			}
479 			hdrlen += __ieee80211_get_mesh_hdrlen(mesh_flags);
480 		}
481 		break;
482 	case cpu_to_le16(IEEE80211_FCTL_FROMDS):
483 		if ((iftype != NL80211_IFTYPE_STATION &&
484 		     iftype != NL80211_IFTYPE_P2P_CLIENT &&
485 		     iftype != NL80211_IFTYPE_MESH_POINT) ||
486 		    (is_multicast_ether_addr(tmp.h_dest) &&
487 		     ether_addr_equal(tmp.h_source, addr)))
488 			return -1;
489 		if (iftype == NL80211_IFTYPE_MESH_POINT) {
490 			if (mesh_flags & MESH_FLAGS_AE_A5_A6)
491 				return -1;
492 			if (mesh_flags & MESH_FLAGS_AE_A4)
493 				skb_copy_bits(skb, hdrlen +
494 					offsetof(struct ieee80211s_hdr, eaddr1),
495 					tmp.h_source, ETH_ALEN);
496 			hdrlen += __ieee80211_get_mesh_hdrlen(mesh_flags);
497 		}
498 		break;
499 	case cpu_to_le16(0):
500 		if (iftype != NL80211_IFTYPE_ADHOC &&
501 		    iftype != NL80211_IFTYPE_STATION &&
502 		    iftype != NL80211_IFTYPE_OCB)
503 				return -1;
504 		break;
505 	}
506 
507 	skb_copy_bits(skb, hdrlen, &payload, sizeof(payload));
508 	tmp.h_proto = payload.proto;
509 
510 	if (likely((ether_addr_equal(payload.hdr, rfc1042_header) &&
511 		    tmp.h_proto != htons(ETH_P_AARP) &&
512 		    tmp.h_proto != htons(ETH_P_IPX)) ||
513 		   ether_addr_equal(payload.hdr, bridge_tunnel_header)))
514 		/* remove RFC1042 or Bridge-Tunnel encapsulation and
515 		 * replace EtherType */
516 		hdrlen += ETH_ALEN + 2;
517 	else
518 		tmp.h_proto = htons(skb->len - hdrlen);
519 
520 	pskb_pull(skb, hdrlen);
521 
522 	if (!ehdr)
523 		ehdr = (struct ethhdr *) skb_push(skb, sizeof(struct ethhdr));
524 	memcpy(ehdr, &tmp, sizeof(tmp));
525 
526 	return 0;
527 }
528 EXPORT_SYMBOL(ieee80211_data_to_8023_exthdr);
529 
530 int ieee80211_data_from_8023(struct sk_buff *skb, const u8 *addr,
531 			     enum nl80211_iftype iftype,
532 			     const u8 *bssid, bool qos)
533 {
534 	struct ieee80211_hdr hdr;
535 	u16 hdrlen, ethertype;
536 	__le16 fc;
537 	const u8 *encaps_data;
538 	int encaps_len, skip_header_bytes;
539 	int nh_pos, h_pos;
540 	int head_need;
541 
542 	if (unlikely(skb->len < ETH_HLEN))
543 		return -EINVAL;
544 
545 	nh_pos = skb_network_header(skb) - skb->data;
546 	h_pos = skb_transport_header(skb) - skb->data;
547 
548 	/* convert Ethernet header to proper 802.11 header (based on
549 	 * operation mode) */
550 	ethertype = (skb->data[12] << 8) | skb->data[13];
551 	fc = cpu_to_le16(IEEE80211_FTYPE_DATA | IEEE80211_STYPE_DATA);
552 
553 	switch (iftype) {
554 	case NL80211_IFTYPE_AP:
555 	case NL80211_IFTYPE_AP_VLAN:
556 	case NL80211_IFTYPE_P2P_GO:
557 		fc |= cpu_to_le16(IEEE80211_FCTL_FROMDS);
558 		/* DA BSSID SA */
559 		memcpy(hdr.addr1, skb->data, ETH_ALEN);
560 		memcpy(hdr.addr2, addr, ETH_ALEN);
561 		memcpy(hdr.addr3, skb->data + ETH_ALEN, ETH_ALEN);
562 		hdrlen = 24;
563 		break;
564 	case NL80211_IFTYPE_STATION:
565 	case NL80211_IFTYPE_P2P_CLIENT:
566 		fc |= cpu_to_le16(IEEE80211_FCTL_TODS);
567 		/* BSSID SA DA */
568 		memcpy(hdr.addr1, bssid, ETH_ALEN);
569 		memcpy(hdr.addr2, skb->data + ETH_ALEN, ETH_ALEN);
570 		memcpy(hdr.addr3, skb->data, ETH_ALEN);
571 		hdrlen = 24;
572 		break;
573 	case NL80211_IFTYPE_OCB:
574 	case NL80211_IFTYPE_ADHOC:
575 		/* DA SA BSSID */
576 		memcpy(hdr.addr1, skb->data, ETH_ALEN);
577 		memcpy(hdr.addr2, skb->data + ETH_ALEN, ETH_ALEN);
578 		memcpy(hdr.addr3, bssid, ETH_ALEN);
579 		hdrlen = 24;
580 		break;
581 	default:
582 		return -EOPNOTSUPP;
583 	}
584 
585 	if (qos) {
586 		fc |= cpu_to_le16(IEEE80211_STYPE_QOS_DATA);
587 		hdrlen += 2;
588 	}
589 
590 	hdr.frame_control = fc;
591 	hdr.duration_id = 0;
592 	hdr.seq_ctrl = 0;
593 
594 	skip_header_bytes = ETH_HLEN;
595 	if (ethertype == ETH_P_AARP || ethertype == ETH_P_IPX) {
596 		encaps_data = bridge_tunnel_header;
597 		encaps_len = sizeof(bridge_tunnel_header);
598 		skip_header_bytes -= 2;
599 	} else if (ethertype >= ETH_P_802_3_MIN) {
600 		encaps_data = rfc1042_header;
601 		encaps_len = sizeof(rfc1042_header);
602 		skip_header_bytes -= 2;
603 	} else {
604 		encaps_data = NULL;
605 		encaps_len = 0;
606 	}
607 
608 	skb_pull(skb, skip_header_bytes);
609 	nh_pos -= skip_header_bytes;
610 	h_pos -= skip_header_bytes;
611 
612 	head_need = hdrlen + encaps_len - skb_headroom(skb);
613 
614 	if (head_need > 0 || skb_cloned(skb)) {
615 		head_need = max(head_need, 0);
616 		if (head_need)
617 			skb_orphan(skb);
618 
619 		if (pskb_expand_head(skb, head_need, 0, GFP_ATOMIC))
620 			return -ENOMEM;
621 
622 		skb->truesize += head_need;
623 	}
624 
625 	if (encaps_data) {
626 		memcpy(skb_push(skb, encaps_len), encaps_data, encaps_len);
627 		nh_pos += encaps_len;
628 		h_pos += encaps_len;
629 	}
630 
631 	memcpy(skb_push(skb, hdrlen), &hdr, hdrlen);
632 
633 	nh_pos += hdrlen;
634 	h_pos += hdrlen;
635 
636 	/* Update skb pointers to various headers since this modified frame
637 	 * is going to go through Linux networking code that may potentially
638 	 * need things like pointer to IP header. */
639 	skb_reset_mac_header(skb);
640 	skb_set_network_header(skb, nh_pos);
641 	skb_set_transport_header(skb, h_pos);
642 
643 	return 0;
644 }
645 EXPORT_SYMBOL(ieee80211_data_from_8023);
646 
647 static void
648 __frame_add_frag(struct sk_buff *skb, struct page *page,
649 		 void *ptr, int len, int size)
650 {
651 	struct skb_shared_info *sh = skb_shinfo(skb);
652 	int page_offset;
653 
654 	page_ref_inc(page);
655 	page_offset = ptr - page_address(page);
656 	skb_add_rx_frag(skb, sh->nr_frags, page, page_offset, len, size);
657 }
658 
659 static void
660 __ieee80211_amsdu_copy_frag(struct sk_buff *skb, struct sk_buff *frame,
661 			    int offset, int len)
662 {
663 	struct skb_shared_info *sh = skb_shinfo(skb);
664 	const skb_frag_t *frag = &sh->frags[-1];
665 	struct page *frag_page;
666 	void *frag_ptr;
667 	int frag_len, frag_size;
668 	int head_size = skb->len - skb->data_len;
669 	int cur_len;
670 
671 	frag_page = virt_to_head_page(skb->head);
672 	frag_ptr = skb->data;
673 	frag_size = head_size;
674 
675 	while (offset >= frag_size) {
676 		offset -= frag_size;
677 		frag++;
678 		frag_page = skb_frag_page(frag);
679 		frag_ptr = skb_frag_address(frag);
680 		frag_size = skb_frag_size(frag);
681 	}
682 
683 	frag_ptr += offset;
684 	frag_len = frag_size - offset;
685 
686 	cur_len = min(len, frag_len);
687 
688 	__frame_add_frag(frame, frag_page, frag_ptr, cur_len, frag_size);
689 	len -= cur_len;
690 
691 	while (len > 0) {
692 		frag++;
693 		frag_len = skb_frag_size(frag);
694 		cur_len = min(len, frag_len);
695 		__frame_add_frag(frame, skb_frag_page(frag),
696 				 skb_frag_address(frag), cur_len, frag_len);
697 		len -= cur_len;
698 	}
699 }
700 
701 static struct sk_buff *
702 __ieee80211_amsdu_copy(struct sk_buff *skb, unsigned int hlen,
703 		       int offset, int len, bool reuse_frag)
704 {
705 	struct sk_buff *frame;
706 	int cur_len = len;
707 
708 	if (skb->len - offset < len)
709 		return NULL;
710 
711 	/*
712 	 * When reusing framents, copy some data to the head to simplify
713 	 * ethernet header handling and speed up protocol header processing
714 	 * in the stack later.
715 	 */
716 	if (reuse_frag)
717 		cur_len = min_t(int, len, 32);
718 
719 	/*
720 	 * Allocate and reserve two bytes more for payload
721 	 * alignment since sizeof(struct ethhdr) is 14.
722 	 */
723 	frame = dev_alloc_skb(hlen + sizeof(struct ethhdr) + 2 + cur_len);
724 	if (!frame)
725 		return NULL;
726 
727 	skb_reserve(frame, hlen + sizeof(struct ethhdr) + 2);
728 	skb_copy_bits(skb, offset, skb_put(frame, cur_len), cur_len);
729 
730 	len -= cur_len;
731 	if (!len)
732 		return frame;
733 
734 	offset += cur_len;
735 	__ieee80211_amsdu_copy_frag(skb, frame, offset, len);
736 
737 	return frame;
738 }
739 
740 void ieee80211_amsdu_to_8023s(struct sk_buff *skb, struct sk_buff_head *list,
741 			      const u8 *addr, enum nl80211_iftype iftype,
742 			      const unsigned int extra_headroom,
743 			      const u8 *check_da, const u8 *check_sa)
744 {
745 	unsigned int hlen = ALIGN(extra_headroom, 4);
746 	struct sk_buff *frame = NULL;
747 	u16 ethertype;
748 	u8 *payload;
749 	int offset = 0, remaining;
750 	struct ethhdr eth;
751 	bool reuse_frag = skb->head_frag && !skb_has_frag_list(skb);
752 	bool reuse_skb = false;
753 	bool last = false;
754 
755 	while (!last) {
756 		unsigned int subframe_len;
757 		int len;
758 		u8 padding;
759 
760 		skb_copy_bits(skb, offset, &eth, sizeof(eth));
761 		len = ntohs(eth.h_proto);
762 		subframe_len = sizeof(struct ethhdr) + len;
763 		padding = (4 - subframe_len) & 0x3;
764 
765 		/* the last MSDU has no padding */
766 		remaining = skb->len - offset;
767 		if (subframe_len > remaining)
768 			goto purge;
769 
770 		offset += sizeof(struct ethhdr);
771 		last = remaining <= subframe_len + padding;
772 
773 		/* FIXME: should we really accept multicast DA? */
774 		if ((check_da && !is_multicast_ether_addr(eth.h_dest) &&
775 		     !ether_addr_equal(check_da, eth.h_dest)) ||
776 		    (check_sa && !ether_addr_equal(check_sa, eth.h_source))) {
777 			offset += len + padding;
778 			continue;
779 		}
780 
781 		/* reuse skb for the last subframe */
782 		if (!skb_is_nonlinear(skb) && !reuse_frag && last) {
783 			skb_pull(skb, offset);
784 			frame = skb;
785 			reuse_skb = true;
786 		} else {
787 			frame = __ieee80211_amsdu_copy(skb, hlen, offset, len,
788 						       reuse_frag);
789 			if (!frame)
790 				goto purge;
791 
792 			offset += len + padding;
793 		}
794 
795 		skb_reset_network_header(frame);
796 		frame->dev = skb->dev;
797 		frame->priority = skb->priority;
798 
799 		payload = frame->data;
800 		ethertype = (payload[6] << 8) | payload[7];
801 		if (likely((ether_addr_equal(payload, rfc1042_header) &&
802 			    ethertype != ETH_P_AARP && ethertype != ETH_P_IPX) ||
803 			   ether_addr_equal(payload, bridge_tunnel_header))) {
804 			eth.h_proto = htons(ethertype);
805 			skb_pull(frame, ETH_ALEN + 2);
806 		}
807 
808 		memcpy(skb_push(frame, sizeof(eth)), &eth, sizeof(eth));
809 		__skb_queue_tail(list, frame);
810 	}
811 
812 	if (!reuse_skb)
813 		dev_kfree_skb(skb);
814 
815 	return;
816 
817  purge:
818 	__skb_queue_purge(list);
819 	dev_kfree_skb(skb);
820 }
821 EXPORT_SYMBOL(ieee80211_amsdu_to_8023s);
822 
823 /* Given a data frame determine the 802.1p/1d tag to use. */
824 unsigned int cfg80211_classify8021d(struct sk_buff *skb,
825 				    struct cfg80211_qos_map *qos_map)
826 {
827 	unsigned int dscp;
828 	unsigned char vlan_priority;
829 
830 	/* skb->priority values from 256->263 are magic values to
831 	 * directly indicate a specific 802.1d priority.  This is used
832 	 * to allow 802.1d priority to be passed directly in from VLAN
833 	 * tags, etc.
834 	 */
835 	if (skb->priority >= 256 && skb->priority <= 263)
836 		return skb->priority - 256;
837 
838 	if (skb_vlan_tag_present(skb)) {
839 		vlan_priority = (skb_vlan_tag_get(skb) & VLAN_PRIO_MASK)
840 			>> VLAN_PRIO_SHIFT;
841 		if (vlan_priority > 0)
842 			return vlan_priority;
843 	}
844 
845 	switch (skb->protocol) {
846 	case htons(ETH_P_IP):
847 		dscp = ipv4_get_dsfield(ip_hdr(skb)) & 0xfc;
848 		break;
849 	case htons(ETH_P_IPV6):
850 		dscp = ipv6_get_dsfield(ipv6_hdr(skb)) & 0xfc;
851 		break;
852 	case htons(ETH_P_MPLS_UC):
853 	case htons(ETH_P_MPLS_MC): {
854 		struct mpls_label mpls_tmp, *mpls;
855 
856 		mpls = skb_header_pointer(skb, sizeof(struct ethhdr),
857 					  sizeof(*mpls), &mpls_tmp);
858 		if (!mpls)
859 			return 0;
860 
861 		return (ntohl(mpls->entry) & MPLS_LS_TC_MASK)
862 			>> MPLS_LS_TC_SHIFT;
863 	}
864 	case htons(ETH_P_80221):
865 		/* 802.21 is always network control traffic */
866 		return 7;
867 	default:
868 		return 0;
869 	}
870 
871 	if (qos_map) {
872 		unsigned int i, tmp_dscp = dscp >> 2;
873 
874 		for (i = 0; i < qos_map->num_des; i++) {
875 			if (tmp_dscp == qos_map->dscp_exception[i].dscp)
876 				return qos_map->dscp_exception[i].up;
877 		}
878 
879 		for (i = 0; i < 8; i++) {
880 			if (tmp_dscp >= qos_map->up[i].low &&
881 			    tmp_dscp <= qos_map->up[i].high)
882 				return i;
883 		}
884 	}
885 
886 	return dscp >> 5;
887 }
888 EXPORT_SYMBOL(cfg80211_classify8021d);
889 
890 const u8 *ieee80211_bss_get_ie(struct cfg80211_bss *bss, u8 ie)
891 {
892 	const struct cfg80211_bss_ies *ies;
893 
894 	ies = rcu_dereference(bss->ies);
895 	if (!ies)
896 		return NULL;
897 
898 	return cfg80211_find_ie(ie, ies->data, ies->len);
899 }
900 EXPORT_SYMBOL(ieee80211_bss_get_ie);
901 
902 void cfg80211_upload_connect_keys(struct wireless_dev *wdev)
903 {
904 	struct cfg80211_registered_device *rdev = wiphy_to_rdev(wdev->wiphy);
905 	struct net_device *dev = wdev->netdev;
906 	int i;
907 
908 	if (!wdev->connect_keys)
909 		return;
910 
911 	for (i = 0; i < CFG80211_MAX_WEP_KEYS; i++) {
912 		if (!wdev->connect_keys->params[i].cipher)
913 			continue;
914 		if (rdev_add_key(rdev, dev, i, false, NULL,
915 				 &wdev->connect_keys->params[i])) {
916 			netdev_err(dev, "failed to set key %d\n", i);
917 			continue;
918 		}
919 		if (wdev->connect_keys->def == i)
920 			if (rdev_set_default_key(rdev, dev, i, true, true)) {
921 				netdev_err(dev, "failed to set defkey %d\n", i);
922 				continue;
923 			}
924 	}
925 
926 	kzfree(wdev->connect_keys);
927 	wdev->connect_keys = NULL;
928 }
929 
930 void cfg80211_process_wdev_events(struct wireless_dev *wdev)
931 {
932 	struct cfg80211_event *ev;
933 	unsigned long flags;
934 	const u8 *bssid = NULL;
935 
936 	spin_lock_irqsave(&wdev->event_lock, flags);
937 	while (!list_empty(&wdev->event_list)) {
938 		ev = list_first_entry(&wdev->event_list,
939 				      struct cfg80211_event, list);
940 		list_del(&ev->list);
941 		spin_unlock_irqrestore(&wdev->event_lock, flags);
942 
943 		wdev_lock(wdev);
944 		switch (ev->type) {
945 		case EVENT_CONNECT_RESULT:
946 			if (!is_zero_ether_addr(ev->cr.bssid))
947 				bssid = ev->cr.bssid;
948 			__cfg80211_connect_result(
949 				wdev->netdev, bssid,
950 				ev->cr.req_ie, ev->cr.req_ie_len,
951 				ev->cr.resp_ie, ev->cr.resp_ie_len,
952 				ev->cr.status,
953 				ev->cr.status == WLAN_STATUS_SUCCESS,
954 				ev->cr.bss);
955 			break;
956 		case EVENT_ROAMED:
957 			__cfg80211_roamed(wdev, ev->rm.bss, ev->rm.req_ie,
958 					  ev->rm.req_ie_len, ev->rm.resp_ie,
959 					  ev->rm.resp_ie_len);
960 			break;
961 		case EVENT_DISCONNECTED:
962 			__cfg80211_disconnected(wdev->netdev,
963 						ev->dc.ie, ev->dc.ie_len,
964 						ev->dc.reason,
965 						!ev->dc.locally_generated);
966 			break;
967 		case EVENT_IBSS_JOINED:
968 			__cfg80211_ibss_joined(wdev->netdev, ev->ij.bssid,
969 					       ev->ij.channel);
970 			break;
971 		case EVENT_STOPPED:
972 			__cfg80211_leave(wiphy_to_rdev(wdev->wiphy), wdev);
973 			break;
974 		}
975 		wdev_unlock(wdev);
976 
977 		kfree(ev);
978 
979 		spin_lock_irqsave(&wdev->event_lock, flags);
980 	}
981 	spin_unlock_irqrestore(&wdev->event_lock, flags);
982 }
983 
984 void cfg80211_process_rdev_events(struct cfg80211_registered_device *rdev)
985 {
986 	struct wireless_dev *wdev;
987 
988 	ASSERT_RTNL();
989 
990 	list_for_each_entry(wdev, &rdev->wiphy.wdev_list, list)
991 		cfg80211_process_wdev_events(wdev);
992 }
993 
994 int cfg80211_change_iface(struct cfg80211_registered_device *rdev,
995 			  struct net_device *dev, enum nl80211_iftype ntype,
996 			  u32 *flags, struct vif_params *params)
997 {
998 	int err;
999 	enum nl80211_iftype otype = dev->ieee80211_ptr->iftype;
1000 
1001 	ASSERT_RTNL();
1002 
1003 	/* don't support changing VLANs, you just re-create them */
1004 	if (otype == NL80211_IFTYPE_AP_VLAN)
1005 		return -EOPNOTSUPP;
1006 
1007 	/* cannot change into P2P device or NAN */
1008 	if (ntype == NL80211_IFTYPE_P2P_DEVICE ||
1009 	    ntype == NL80211_IFTYPE_NAN)
1010 		return -EOPNOTSUPP;
1011 
1012 	if (!rdev->ops->change_virtual_intf ||
1013 	    !(rdev->wiphy.interface_modes & (1 << ntype)))
1014 		return -EOPNOTSUPP;
1015 
1016 	/* if it's part of a bridge, reject changing type to station/ibss */
1017 	if ((dev->priv_flags & IFF_BRIDGE_PORT) &&
1018 	    (ntype == NL80211_IFTYPE_ADHOC ||
1019 	     ntype == NL80211_IFTYPE_STATION ||
1020 	     ntype == NL80211_IFTYPE_P2P_CLIENT))
1021 		return -EBUSY;
1022 
1023 	if (ntype != otype) {
1024 		dev->ieee80211_ptr->use_4addr = false;
1025 		dev->ieee80211_ptr->mesh_id_up_len = 0;
1026 		wdev_lock(dev->ieee80211_ptr);
1027 		rdev_set_qos_map(rdev, dev, NULL);
1028 		wdev_unlock(dev->ieee80211_ptr);
1029 
1030 		switch (otype) {
1031 		case NL80211_IFTYPE_AP:
1032 			cfg80211_stop_ap(rdev, dev, true);
1033 			break;
1034 		case NL80211_IFTYPE_ADHOC:
1035 			cfg80211_leave_ibss(rdev, dev, false);
1036 			break;
1037 		case NL80211_IFTYPE_STATION:
1038 		case NL80211_IFTYPE_P2P_CLIENT:
1039 			wdev_lock(dev->ieee80211_ptr);
1040 			cfg80211_disconnect(rdev, dev,
1041 					    WLAN_REASON_DEAUTH_LEAVING, true);
1042 			wdev_unlock(dev->ieee80211_ptr);
1043 			break;
1044 		case NL80211_IFTYPE_MESH_POINT:
1045 			/* mesh should be handled? */
1046 			break;
1047 		default:
1048 			break;
1049 		}
1050 
1051 		cfg80211_process_rdev_events(rdev);
1052 	}
1053 
1054 	err = rdev_change_virtual_intf(rdev, dev, ntype, flags, params);
1055 
1056 	WARN_ON(!err && dev->ieee80211_ptr->iftype != ntype);
1057 
1058 	if (!err && params && params->use_4addr != -1)
1059 		dev->ieee80211_ptr->use_4addr = params->use_4addr;
1060 
1061 	if (!err) {
1062 		dev->priv_flags &= ~IFF_DONT_BRIDGE;
1063 		switch (ntype) {
1064 		case NL80211_IFTYPE_STATION:
1065 			if (dev->ieee80211_ptr->use_4addr)
1066 				break;
1067 			/* fall through */
1068 		case NL80211_IFTYPE_OCB:
1069 		case NL80211_IFTYPE_P2P_CLIENT:
1070 		case NL80211_IFTYPE_ADHOC:
1071 			dev->priv_flags |= IFF_DONT_BRIDGE;
1072 			break;
1073 		case NL80211_IFTYPE_P2P_GO:
1074 		case NL80211_IFTYPE_AP:
1075 		case NL80211_IFTYPE_AP_VLAN:
1076 		case NL80211_IFTYPE_WDS:
1077 		case NL80211_IFTYPE_MESH_POINT:
1078 			/* bridging OK */
1079 			break;
1080 		case NL80211_IFTYPE_MONITOR:
1081 			/* monitor can't bridge anyway */
1082 			break;
1083 		case NL80211_IFTYPE_UNSPECIFIED:
1084 		case NUM_NL80211_IFTYPES:
1085 			/* not happening */
1086 			break;
1087 		case NL80211_IFTYPE_P2P_DEVICE:
1088 		case NL80211_IFTYPE_NAN:
1089 			WARN_ON(1);
1090 			break;
1091 		}
1092 	}
1093 
1094 	if (!err && ntype != otype && netif_running(dev)) {
1095 		cfg80211_update_iface_num(rdev, ntype, 1);
1096 		cfg80211_update_iface_num(rdev, otype, -1);
1097 	}
1098 
1099 	return err;
1100 }
1101 
1102 static u32 cfg80211_calculate_bitrate_60g(struct rate_info *rate)
1103 {
1104 	static const u32 __mcs2bitrate[] = {
1105 		/* control PHY */
1106 		[0] =   275,
1107 		/* SC PHY */
1108 		[1] =  3850,
1109 		[2] =  7700,
1110 		[3] =  9625,
1111 		[4] = 11550,
1112 		[5] = 12512, /* 1251.25 mbps */
1113 		[6] = 15400,
1114 		[7] = 19250,
1115 		[8] = 23100,
1116 		[9] = 25025,
1117 		[10] = 30800,
1118 		[11] = 38500,
1119 		[12] = 46200,
1120 		/* OFDM PHY */
1121 		[13] =  6930,
1122 		[14] =  8662, /* 866.25 mbps */
1123 		[15] = 13860,
1124 		[16] = 17325,
1125 		[17] = 20790,
1126 		[18] = 27720,
1127 		[19] = 34650,
1128 		[20] = 41580,
1129 		[21] = 45045,
1130 		[22] = 51975,
1131 		[23] = 62370,
1132 		[24] = 67568, /* 6756.75 mbps */
1133 		/* LP-SC PHY */
1134 		[25] =  6260,
1135 		[26] =  8340,
1136 		[27] = 11120,
1137 		[28] = 12510,
1138 		[29] = 16680,
1139 		[30] = 22240,
1140 		[31] = 25030,
1141 	};
1142 
1143 	if (WARN_ON_ONCE(rate->mcs >= ARRAY_SIZE(__mcs2bitrate)))
1144 		return 0;
1145 
1146 	return __mcs2bitrate[rate->mcs];
1147 }
1148 
1149 static u32 cfg80211_calculate_bitrate_vht(struct rate_info *rate)
1150 {
1151 	static const u32 base[4][10] = {
1152 		{   6500000,
1153 		   13000000,
1154 		   19500000,
1155 		   26000000,
1156 		   39000000,
1157 		   52000000,
1158 		   58500000,
1159 		   65000000,
1160 		   78000000,
1161 		   0,
1162 		},
1163 		{  13500000,
1164 		   27000000,
1165 		   40500000,
1166 		   54000000,
1167 		   81000000,
1168 		  108000000,
1169 		  121500000,
1170 		  135000000,
1171 		  162000000,
1172 		  180000000,
1173 		},
1174 		{  29300000,
1175 		   58500000,
1176 		   87800000,
1177 		  117000000,
1178 		  175500000,
1179 		  234000000,
1180 		  263300000,
1181 		  292500000,
1182 		  351000000,
1183 		  390000000,
1184 		},
1185 		{  58500000,
1186 		  117000000,
1187 		  175500000,
1188 		  234000000,
1189 		  351000000,
1190 		  468000000,
1191 		  526500000,
1192 		  585000000,
1193 		  702000000,
1194 		  780000000,
1195 		},
1196 	};
1197 	u32 bitrate;
1198 	int idx;
1199 
1200 	if (WARN_ON_ONCE(rate->mcs > 9))
1201 		return 0;
1202 
1203 	switch (rate->bw) {
1204 	case RATE_INFO_BW_160:
1205 		idx = 3;
1206 		break;
1207 	case RATE_INFO_BW_80:
1208 		idx = 2;
1209 		break;
1210 	case RATE_INFO_BW_40:
1211 		idx = 1;
1212 		break;
1213 	case RATE_INFO_BW_5:
1214 	case RATE_INFO_BW_10:
1215 	default:
1216 		WARN_ON(1);
1217 		/* fall through */
1218 	case RATE_INFO_BW_20:
1219 		idx = 0;
1220 	}
1221 
1222 	bitrate = base[idx][rate->mcs];
1223 	bitrate *= rate->nss;
1224 
1225 	if (rate->flags & RATE_INFO_FLAGS_SHORT_GI)
1226 		bitrate = (bitrate / 9) * 10;
1227 
1228 	/* do NOT round down here */
1229 	return (bitrate + 50000) / 100000;
1230 }
1231 
1232 u32 cfg80211_calculate_bitrate(struct rate_info *rate)
1233 {
1234 	int modulation, streams, bitrate;
1235 
1236 	if (!(rate->flags & RATE_INFO_FLAGS_MCS) &&
1237 	    !(rate->flags & RATE_INFO_FLAGS_VHT_MCS))
1238 		return rate->legacy;
1239 	if (rate->flags & RATE_INFO_FLAGS_60G)
1240 		return cfg80211_calculate_bitrate_60g(rate);
1241 	if (rate->flags & RATE_INFO_FLAGS_VHT_MCS)
1242 		return cfg80211_calculate_bitrate_vht(rate);
1243 
1244 	/* the formula below does only work for MCS values smaller than 32 */
1245 	if (WARN_ON_ONCE(rate->mcs >= 32))
1246 		return 0;
1247 
1248 	modulation = rate->mcs & 7;
1249 	streams = (rate->mcs >> 3) + 1;
1250 
1251 	bitrate = (rate->bw == RATE_INFO_BW_40) ? 13500000 : 6500000;
1252 
1253 	if (modulation < 4)
1254 		bitrate *= (modulation + 1);
1255 	else if (modulation == 4)
1256 		bitrate *= (modulation + 2);
1257 	else
1258 		bitrate *= (modulation + 3);
1259 
1260 	bitrate *= streams;
1261 
1262 	if (rate->flags & RATE_INFO_FLAGS_SHORT_GI)
1263 		bitrate = (bitrate / 9) * 10;
1264 
1265 	/* do NOT round down here */
1266 	return (bitrate + 50000) / 100000;
1267 }
1268 EXPORT_SYMBOL(cfg80211_calculate_bitrate);
1269 
1270 int cfg80211_get_p2p_attr(const u8 *ies, unsigned int len,
1271 			  enum ieee80211_p2p_attr_id attr,
1272 			  u8 *buf, unsigned int bufsize)
1273 {
1274 	u8 *out = buf;
1275 	u16 attr_remaining = 0;
1276 	bool desired_attr = false;
1277 	u16 desired_len = 0;
1278 
1279 	while (len > 0) {
1280 		unsigned int iedatalen;
1281 		unsigned int copy;
1282 		const u8 *iedata;
1283 
1284 		if (len < 2)
1285 			return -EILSEQ;
1286 		iedatalen = ies[1];
1287 		if (iedatalen + 2 > len)
1288 			return -EILSEQ;
1289 
1290 		if (ies[0] != WLAN_EID_VENDOR_SPECIFIC)
1291 			goto cont;
1292 
1293 		if (iedatalen < 4)
1294 			goto cont;
1295 
1296 		iedata = ies + 2;
1297 
1298 		/* check WFA OUI, P2P subtype */
1299 		if (iedata[0] != 0x50 || iedata[1] != 0x6f ||
1300 		    iedata[2] != 0x9a || iedata[3] != 0x09)
1301 			goto cont;
1302 
1303 		iedatalen -= 4;
1304 		iedata += 4;
1305 
1306 		/* check attribute continuation into this IE */
1307 		copy = min_t(unsigned int, attr_remaining, iedatalen);
1308 		if (copy && desired_attr) {
1309 			desired_len += copy;
1310 			if (out) {
1311 				memcpy(out, iedata, min(bufsize, copy));
1312 				out += min(bufsize, copy);
1313 				bufsize -= min(bufsize, copy);
1314 			}
1315 
1316 
1317 			if (copy == attr_remaining)
1318 				return desired_len;
1319 		}
1320 
1321 		attr_remaining -= copy;
1322 		if (attr_remaining)
1323 			goto cont;
1324 
1325 		iedatalen -= copy;
1326 		iedata += copy;
1327 
1328 		while (iedatalen > 0) {
1329 			u16 attr_len;
1330 
1331 			/* P2P attribute ID & size must fit */
1332 			if (iedatalen < 3)
1333 				return -EILSEQ;
1334 			desired_attr = iedata[0] == attr;
1335 			attr_len = get_unaligned_le16(iedata + 1);
1336 			iedatalen -= 3;
1337 			iedata += 3;
1338 
1339 			copy = min_t(unsigned int, attr_len, iedatalen);
1340 
1341 			if (desired_attr) {
1342 				desired_len += copy;
1343 				if (out) {
1344 					memcpy(out, iedata, min(bufsize, copy));
1345 					out += min(bufsize, copy);
1346 					bufsize -= min(bufsize, copy);
1347 				}
1348 
1349 				if (copy == attr_len)
1350 					return desired_len;
1351 			}
1352 
1353 			iedata += copy;
1354 			iedatalen -= copy;
1355 			attr_remaining = attr_len - copy;
1356 		}
1357 
1358  cont:
1359 		len -= ies[1] + 2;
1360 		ies += ies[1] + 2;
1361 	}
1362 
1363 	if (attr_remaining && desired_attr)
1364 		return -EILSEQ;
1365 
1366 	return -ENOENT;
1367 }
1368 EXPORT_SYMBOL(cfg80211_get_p2p_attr);
1369 
1370 static bool ieee80211_id_in_list(const u8 *ids, int n_ids, u8 id)
1371 {
1372 	int i;
1373 
1374 	for (i = 0; i < n_ids; i++)
1375 		if (ids[i] == id)
1376 			return true;
1377 	return false;
1378 }
1379 
1380 size_t ieee80211_ie_split_ric(const u8 *ies, size_t ielen,
1381 			      const u8 *ids, int n_ids,
1382 			      const u8 *after_ric, int n_after_ric,
1383 			      size_t offset)
1384 {
1385 	size_t pos = offset;
1386 
1387 	while (pos < ielen && ieee80211_id_in_list(ids, n_ids, ies[pos])) {
1388 		if (ies[pos] == WLAN_EID_RIC_DATA && n_after_ric) {
1389 			pos += 2 + ies[pos + 1];
1390 
1391 			while (pos < ielen &&
1392 			       !ieee80211_id_in_list(after_ric, n_after_ric,
1393 						     ies[pos]))
1394 				pos += 2 + ies[pos + 1];
1395 		} else {
1396 			pos += 2 + ies[pos + 1];
1397 		}
1398 	}
1399 
1400 	return pos;
1401 }
1402 EXPORT_SYMBOL(ieee80211_ie_split_ric);
1403 
1404 bool ieee80211_operating_class_to_band(u8 operating_class,
1405 				       enum nl80211_band *band)
1406 {
1407 	switch (operating_class) {
1408 	case 112:
1409 	case 115 ... 127:
1410 	case 128 ... 130:
1411 		*band = NL80211_BAND_5GHZ;
1412 		return true;
1413 	case 81:
1414 	case 82:
1415 	case 83:
1416 	case 84:
1417 		*band = NL80211_BAND_2GHZ;
1418 		return true;
1419 	case 180:
1420 		*band = NL80211_BAND_60GHZ;
1421 		return true;
1422 	}
1423 
1424 	return false;
1425 }
1426 EXPORT_SYMBOL(ieee80211_operating_class_to_band);
1427 
1428 bool ieee80211_chandef_to_operating_class(struct cfg80211_chan_def *chandef,
1429 					  u8 *op_class)
1430 {
1431 	u8 vht_opclass;
1432 	u16 freq = chandef->center_freq1;
1433 
1434 	if (freq >= 2412 && freq <= 2472) {
1435 		if (chandef->width > NL80211_CHAN_WIDTH_40)
1436 			return false;
1437 
1438 		/* 2.407 GHz, channels 1..13 */
1439 		if (chandef->width == NL80211_CHAN_WIDTH_40) {
1440 			if (freq > chandef->chan->center_freq)
1441 				*op_class = 83; /* HT40+ */
1442 			else
1443 				*op_class = 84; /* HT40- */
1444 		} else {
1445 			*op_class = 81;
1446 		}
1447 
1448 		return true;
1449 	}
1450 
1451 	if (freq == 2484) {
1452 		if (chandef->width > NL80211_CHAN_WIDTH_40)
1453 			return false;
1454 
1455 		*op_class = 82; /* channel 14 */
1456 		return true;
1457 	}
1458 
1459 	switch (chandef->width) {
1460 	case NL80211_CHAN_WIDTH_80:
1461 		vht_opclass = 128;
1462 		break;
1463 	case NL80211_CHAN_WIDTH_160:
1464 		vht_opclass = 129;
1465 		break;
1466 	case NL80211_CHAN_WIDTH_80P80:
1467 		vht_opclass = 130;
1468 		break;
1469 	case NL80211_CHAN_WIDTH_10:
1470 	case NL80211_CHAN_WIDTH_5:
1471 		return false; /* unsupported for now */
1472 	default:
1473 		vht_opclass = 0;
1474 		break;
1475 	}
1476 
1477 	/* 5 GHz, channels 36..48 */
1478 	if (freq >= 5180 && freq <= 5240) {
1479 		if (vht_opclass) {
1480 			*op_class = vht_opclass;
1481 		} else if (chandef->width == NL80211_CHAN_WIDTH_40) {
1482 			if (freq > chandef->chan->center_freq)
1483 				*op_class = 116;
1484 			else
1485 				*op_class = 117;
1486 		} else {
1487 			*op_class = 115;
1488 		}
1489 
1490 		return true;
1491 	}
1492 
1493 	/* 5 GHz, channels 52..64 */
1494 	if (freq >= 5260 && freq <= 5320) {
1495 		if (vht_opclass) {
1496 			*op_class = vht_opclass;
1497 		} else if (chandef->width == NL80211_CHAN_WIDTH_40) {
1498 			if (freq > chandef->chan->center_freq)
1499 				*op_class = 119;
1500 			else
1501 				*op_class = 120;
1502 		} else {
1503 			*op_class = 118;
1504 		}
1505 
1506 		return true;
1507 	}
1508 
1509 	/* 5 GHz, channels 100..144 */
1510 	if (freq >= 5500 && freq <= 5720) {
1511 		if (vht_opclass) {
1512 			*op_class = vht_opclass;
1513 		} else if (chandef->width == NL80211_CHAN_WIDTH_40) {
1514 			if (freq > chandef->chan->center_freq)
1515 				*op_class = 122;
1516 			else
1517 				*op_class = 123;
1518 		} else {
1519 			*op_class = 121;
1520 		}
1521 
1522 		return true;
1523 	}
1524 
1525 	/* 5 GHz, channels 149..169 */
1526 	if (freq >= 5745 && freq <= 5845) {
1527 		if (vht_opclass) {
1528 			*op_class = vht_opclass;
1529 		} else if (chandef->width == NL80211_CHAN_WIDTH_40) {
1530 			if (freq > chandef->chan->center_freq)
1531 				*op_class = 126;
1532 			else
1533 				*op_class = 127;
1534 		} else if (freq <= 5805) {
1535 			*op_class = 124;
1536 		} else {
1537 			*op_class = 125;
1538 		}
1539 
1540 		return true;
1541 	}
1542 
1543 	/* 56.16 GHz, channel 1..4 */
1544 	if (freq >= 56160 + 2160 * 1 && freq <= 56160 + 2160 * 4) {
1545 		if (chandef->width >= NL80211_CHAN_WIDTH_40)
1546 			return false;
1547 
1548 		*op_class = 180;
1549 		return true;
1550 	}
1551 
1552 	/* not supported yet */
1553 	return false;
1554 }
1555 EXPORT_SYMBOL(ieee80211_chandef_to_operating_class);
1556 
1557 int cfg80211_validate_beacon_int(struct cfg80211_registered_device *rdev,
1558 				 u32 beacon_int)
1559 {
1560 	struct wireless_dev *wdev;
1561 	int res = 0;
1562 
1563 	if (beacon_int < 10 || beacon_int > 10000)
1564 		return -EINVAL;
1565 
1566 	list_for_each_entry(wdev, &rdev->wiphy.wdev_list, list) {
1567 		if (!wdev->beacon_interval)
1568 			continue;
1569 		if (wdev->beacon_interval != beacon_int) {
1570 			res = -EINVAL;
1571 			break;
1572 		}
1573 	}
1574 
1575 	return res;
1576 }
1577 
1578 int cfg80211_iter_combinations(struct wiphy *wiphy,
1579 			       const int num_different_channels,
1580 			       const u8 radar_detect,
1581 			       const int iftype_num[NUM_NL80211_IFTYPES],
1582 			       void (*iter)(const struct ieee80211_iface_combination *c,
1583 					    void *data),
1584 			       void *data)
1585 {
1586 	const struct ieee80211_regdomain *regdom;
1587 	enum nl80211_dfs_regions region = 0;
1588 	int i, j, iftype;
1589 	int num_interfaces = 0;
1590 	u32 used_iftypes = 0;
1591 
1592 	if (radar_detect) {
1593 		rcu_read_lock();
1594 		regdom = rcu_dereference(cfg80211_regdomain);
1595 		if (regdom)
1596 			region = regdom->dfs_region;
1597 		rcu_read_unlock();
1598 	}
1599 
1600 	for (iftype = 0; iftype < NUM_NL80211_IFTYPES; iftype++) {
1601 		num_interfaces += iftype_num[iftype];
1602 		if (iftype_num[iftype] > 0 &&
1603 		    !(wiphy->software_iftypes & BIT(iftype)))
1604 			used_iftypes |= BIT(iftype);
1605 	}
1606 
1607 	for (i = 0; i < wiphy->n_iface_combinations; i++) {
1608 		const struct ieee80211_iface_combination *c;
1609 		struct ieee80211_iface_limit *limits;
1610 		u32 all_iftypes = 0;
1611 
1612 		c = &wiphy->iface_combinations[i];
1613 
1614 		if (num_interfaces > c->max_interfaces)
1615 			continue;
1616 		if (num_different_channels > c->num_different_channels)
1617 			continue;
1618 
1619 		limits = kmemdup(c->limits, sizeof(limits[0]) * c->n_limits,
1620 				 GFP_KERNEL);
1621 		if (!limits)
1622 			return -ENOMEM;
1623 
1624 		for (iftype = 0; iftype < NUM_NL80211_IFTYPES; iftype++) {
1625 			if (wiphy->software_iftypes & BIT(iftype))
1626 				continue;
1627 			for (j = 0; j < c->n_limits; j++) {
1628 				all_iftypes |= limits[j].types;
1629 				if (!(limits[j].types & BIT(iftype)))
1630 					continue;
1631 				if (limits[j].max < iftype_num[iftype])
1632 					goto cont;
1633 				limits[j].max -= iftype_num[iftype];
1634 			}
1635 		}
1636 
1637 		if (radar_detect != (c->radar_detect_widths & radar_detect))
1638 			goto cont;
1639 
1640 		if (radar_detect && c->radar_detect_regions &&
1641 		    !(c->radar_detect_regions & BIT(region)))
1642 			goto cont;
1643 
1644 		/* Finally check that all iftypes that we're currently
1645 		 * using are actually part of this combination. If they
1646 		 * aren't then we can't use this combination and have
1647 		 * to continue to the next.
1648 		 */
1649 		if ((all_iftypes & used_iftypes) != used_iftypes)
1650 			goto cont;
1651 
1652 		/* This combination covered all interface types and
1653 		 * supported the requested numbers, so we're good.
1654 		 */
1655 
1656 		(*iter)(c, data);
1657  cont:
1658 		kfree(limits);
1659 	}
1660 
1661 	return 0;
1662 }
1663 EXPORT_SYMBOL(cfg80211_iter_combinations);
1664 
1665 static void
1666 cfg80211_iter_sum_ifcombs(const struct ieee80211_iface_combination *c,
1667 			  void *data)
1668 {
1669 	int *num = data;
1670 	(*num)++;
1671 }
1672 
1673 int cfg80211_check_combinations(struct wiphy *wiphy,
1674 				const int num_different_channels,
1675 				const u8 radar_detect,
1676 				const int iftype_num[NUM_NL80211_IFTYPES])
1677 {
1678 	int err, num = 0;
1679 
1680 	err = cfg80211_iter_combinations(wiphy, num_different_channels,
1681 					 radar_detect, iftype_num,
1682 					 cfg80211_iter_sum_ifcombs, &num);
1683 	if (err)
1684 		return err;
1685 	if (num == 0)
1686 		return -EBUSY;
1687 
1688 	return 0;
1689 }
1690 EXPORT_SYMBOL(cfg80211_check_combinations);
1691 
1692 int ieee80211_get_ratemask(struct ieee80211_supported_band *sband,
1693 			   const u8 *rates, unsigned int n_rates,
1694 			   u32 *mask)
1695 {
1696 	int i, j;
1697 
1698 	if (!sband)
1699 		return -EINVAL;
1700 
1701 	if (n_rates == 0 || n_rates > NL80211_MAX_SUPP_RATES)
1702 		return -EINVAL;
1703 
1704 	*mask = 0;
1705 
1706 	for (i = 0; i < n_rates; i++) {
1707 		int rate = (rates[i] & 0x7f) * 5;
1708 		bool found = false;
1709 
1710 		for (j = 0; j < sband->n_bitrates; j++) {
1711 			if (sband->bitrates[j].bitrate == rate) {
1712 				found = true;
1713 				*mask |= BIT(j);
1714 				break;
1715 			}
1716 		}
1717 		if (!found)
1718 			return -EINVAL;
1719 	}
1720 
1721 	/*
1722 	 * mask must have at least one bit set here since we
1723 	 * didn't accept a 0-length rates array nor allowed
1724 	 * entries in the array that didn't exist
1725 	 */
1726 
1727 	return 0;
1728 }
1729 
1730 unsigned int ieee80211_get_num_supported_channels(struct wiphy *wiphy)
1731 {
1732 	enum nl80211_band band;
1733 	unsigned int n_channels = 0;
1734 
1735 	for (band = 0; band < NUM_NL80211_BANDS; band++)
1736 		if (wiphy->bands[band])
1737 			n_channels += wiphy->bands[band]->n_channels;
1738 
1739 	return n_channels;
1740 }
1741 EXPORT_SYMBOL(ieee80211_get_num_supported_channels);
1742 
1743 int cfg80211_get_station(struct net_device *dev, const u8 *mac_addr,
1744 			 struct station_info *sinfo)
1745 {
1746 	struct cfg80211_registered_device *rdev;
1747 	struct wireless_dev *wdev;
1748 
1749 	wdev = dev->ieee80211_ptr;
1750 	if (!wdev)
1751 		return -EOPNOTSUPP;
1752 
1753 	rdev = wiphy_to_rdev(wdev->wiphy);
1754 	if (!rdev->ops->get_station)
1755 		return -EOPNOTSUPP;
1756 
1757 	return rdev_get_station(rdev, dev, mac_addr, sinfo);
1758 }
1759 EXPORT_SYMBOL(cfg80211_get_station);
1760 
1761 void cfg80211_free_nan_func(struct cfg80211_nan_func *f)
1762 {
1763 	int i;
1764 
1765 	if (!f)
1766 		return;
1767 
1768 	kfree(f->serv_spec_info);
1769 	kfree(f->srf_bf);
1770 	kfree(f->srf_macs);
1771 	for (i = 0; i < f->num_rx_filters; i++)
1772 		kfree(f->rx_filters[i].filter);
1773 
1774 	for (i = 0; i < f->num_tx_filters; i++)
1775 		kfree(f->tx_filters[i].filter);
1776 
1777 	kfree(f->rx_filters);
1778 	kfree(f->tx_filters);
1779 	kfree(f);
1780 }
1781 EXPORT_SYMBOL(cfg80211_free_nan_func);
1782 
1783 /* See IEEE 802.1H for LLC/SNAP encapsulation/decapsulation */
1784 /* Ethernet-II snap header (RFC1042 for most EtherTypes) */
1785 const unsigned char rfc1042_header[] __aligned(2) =
1786 	{ 0xaa, 0xaa, 0x03, 0x00, 0x00, 0x00 };
1787 EXPORT_SYMBOL(rfc1042_header);
1788 
1789 /* Bridge-Tunnel header (for EtherTypes ETH_P_AARP and ETH_P_IPX) */
1790 const unsigned char bridge_tunnel_header[] __aligned(2) =
1791 	{ 0xaa, 0xaa, 0x03, 0x00, 0x00, 0xf8 };
1792 EXPORT_SYMBOL(bridge_tunnel_header);
1793