1 /* 2 * Wireless utility functions 3 * 4 * Copyright 2007-2009 Johannes Berg <johannes@sipsolutions.net> 5 * Copyright 2013-2014 Intel Mobile Communications GmbH 6 */ 7 #include <linux/export.h> 8 #include <linux/bitops.h> 9 #include <linux/etherdevice.h> 10 #include <linux/slab.h> 11 #include <net/cfg80211.h> 12 #include <net/ip.h> 13 #include <net/dsfield.h> 14 #include <linux/if_vlan.h> 15 #include <linux/mpls.h> 16 #include "core.h" 17 #include "rdev-ops.h" 18 19 20 struct ieee80211_rate * 21 ieee80211_get_response_rate(struct ieee80211_supported_band *sband, 22 u32 basic_rates, int bitrate) 23 { 24 struct ieee80211_rate *result = &sband->bitrates[0]; 25 int i; 26 27 for (i = 0; i < sband->n_bitrates; i++) { 28 if (!(basic_rates & BIT(i))) 29 continue; 30 if (sband->bitrates[i].bitrate > bitrate) 31 continue; 32 result = &sband->bitrates[i]; 33 } 34 35 return result; 36 } 37 EXPORT_SYMBOL(ieee80211_get_response_rate); 38 39 u32 ieee80211_mandatory_rates(struct ieee80211_supported_band *sband, 40 enum nl80211_bss_scan_width scan_width) 41 { 42 struct ieee80211_rate *bitrates; 43 u32 mandatory_rates = 0; 44 enum ieee80211_rate_flags mandatory_flag; 45 int i; 46 47 if (WARN_ON(!sband)) 48 return 1; 49 50 if (sband->band == NL80211_BAND_2GHZ) { 51 if (scan_width == NL80211_BSS_CHAN_WIDTH_5 || 52 scan_width == NL80211_BSS_CHAN_WIDTH_10) 53 mandatory_flag = IEEE80211_RATE_MANDATORY_G; 54 else 55 mandatory_flag = IEEE80211_RATE_MANDATORY_B; 56 } else { 57 mandatory_flag = IEEE80211_RATE_MANDATORY_A; 58 } 59 60 bitrates = sband->bitrates; 61 for (i = 0; i < sband->n_bitrates; i++) 62 if (bitrates[i].flags & mandatory_flag) 63 mandatory_rates |= BIT(i); 64 return mandatory_rates; 65 } 66 EXPORT_SYMBOL(ieee80211_mandatory_rates); 67 68 int ieee80211_channel_to_frequency(int chan, enum nl80211_band band) 69 { 70 /* see 802.11 17.3.8.3.2 and Annex J 71 * there are overlapping channel numbers in 5GHz and 2GHz bands */ 72 if (chan <= 0) 73 return 0; /* not supported */ 74 switch (band) { 75 case NL80211_BAND_2GHZ: 76 if (chan == 14) 77 return 2484; 78 else if (chan < 14) 79 return 2407 + chan * 5; 80 break; 81 case NL80211_BAND_5GHZ: 82 if (chan >= 182 && chan <= 196) 83 return 4000 + chan * 5; 84 else 85 return 5000 + chan * 5; 86 break; 87 case NL80211_BAND_60GHZ: 88 if (chan < 5) 89 return 56160 + chan * 2160; 90 break; 91 default: 92 ; 93 } 94 return 0; /* not supported */ 95 } 96 EXPORT_SYMBOL(ieee80211_channel_to_frequency); 97 98 int ieee80211_frequency_to_channel(int freq) 99 { 100 /* see 802.11 17.3.8.3.2 and Annex J */ 101 if (freq == 2484) 102 return 14; 103 else if (freq < 2484) 104 return (freq - 2407) / 5; 105 else if (freq >= 4910 && freq <= 4980) 106 return (freq - 4000) / 5; 107 else if (freq <= 45000) /* DMG band lower limit */ 108 return (freq - 5000) / 5; 109 else if (freq >= 58320 && freq <= 64800) 110 return (freq - 56160) / 2160; 111 else 112 return 0; 113 } 114 EXPORT_SYMBOL(ieee80211_frequency_to_channel); 115 116 struct ieee80211_channel *__ieee80211_get_channel(struct wiphy *wiphy, 117 int freq) 118 { 119 enum nl80211_band band; 120 struct ieee80211_supported_band *sband; 121 int i; 122 123 for (band = 0; band < NUM_NL80211_BANDS; band++) { 124 sband = wiphy->bands[band]; 125 126 if (!sband) 127 continue; 128 129 for (i = 0; i < sband->n_channels; i++) { 130 if (sband->channels[i].center_freq == freq) 131 return &sband->channels[i]; 132 } 133 } 134 135 return NULL; 136 } 137 EXPORT_SYMBOL(__ieee80211_get_channel); 138 139 static void set_mandatory_flags_band(struct ieee80211_supported_band *sband, 140 enum nl80211_band band) 141 { 142 int i, want; 143 144 switch (band) { 145 case NL80211_BAND_5GHZ: 146 want = 3; 147 for (i = 0; i < sband->n_bitrates; i++) { 148 if (sband->bitrates[i].bitrate == 60 || 149 sband->bitrates[i].bitrate == 120 || 150 sband->bitrates[i].bitrate == 240) { 151 sband->bitrates[i].flags |= 152 IEEE80211_RATE_MANDATORY_A; 153 want--; 154 } 155 } 156 WARN_ON(want); 157 break; 158 case NL80211_BAND_2GHZ: 159 want = 7; 160 for (i = 0; i < sband->n_bitrates; i++) { 161 if (sband->bitrates[i].bitrate == 10) { 162 sband->bitrates[i].flags |= 163 IEEE80211_RATE_MANDATORY_B | 164 IEEE80211_RATE_MANDATORY_G; 165 want--; 166 } 167 168 if (sband->bitrates[i].bitrate == 20 || 169 sband->bitrates[i].bitrate == 55 || 170 sband->bitrates[i].bitrate == 110 || 171 sband->bitrates[i].bitrate == 60 || 172 sband->bitrates[i].bitrate == 120 || 173 sband->bitrates[i].bitrate == 240) { 174 sband->bitrates[i].flags |= 175 IEEE80211_RATE_MANDATORY_G; 176 want--; 177 } 178 179 if (sband->bitrates[i].bitrate != 10 && 180 sband->bitrates[i].bitrate != 20 && 181 sband->bitrates[i].bitrate != 55 && 182 sband->bitrates[i].bitrate != 110) 183 sband->bitrates[i].flags |= 184 IEEE80211_RATE_ERP_G; 185 } 186 WARN_ON(want != 0 && want != 3 && want != 6); 187 break; 188 case NL80211_BAND_60GHZ: 189 /* check for mandatory HT MCS 1..4 */ 190 WARN_ON(!sband->ht_cap.ht_supported); 191 WARN_ON((sband->ht_cap.mcs.rx_mask[0] & 0x1e) != 0x1e); 192 break; 193 case NUM_NL80211_BANDS: 194 WARN_ON(1); 195 break; 196 } 197 } 198 199 void ieee80211_set_bitrate_flags(struct wiphy *wiphy) 200 { 201 enum nl80211_band band; 202 203 for (band = 0; band < NUM_NL80211_BANDS; band++) 204 if (wiphy->bands[band]) 205 set_mandatory_flags_band(wiphy->bands[band], band); 206 } 207 208 bool cfg80211_supported_cipher_suite(struct wiphy *wiphy, u32 cipher) 209 { 210 int i; 211 for (i = 0; i < wiphy->n_cipher_suites; i++) 212 if (cipher == wiphy->cipher_suites[i]) 213 return true; 214 return false; 215 } 216 217 int cfg80211_validate_key_settings(struct cfg80211_registered_device *rdev, 218 struct key_params *params, int key_idx, 219 bool pairwise, const u8 *mac_addr) 220 { 221 if (key_idx < 0 || key_idx > 5) 222 return -EINVAL; 223 224 if (!pairwise && mac_addr && !(rdev->wiphy.flags & WIPHY_FLAG_IBSS_RSN)) 225 return -EINVAL; 226 227 if (pairwise && !mac_addr) 228 return -EINVAL; 229 230 switch (params->cipher) { 231 case WLAN_CIPHER_SUITE_TKIP: 232 case WLAN_CIPHER_SUITE_CCMP: 233 case WLAN_CIPHER_SUITE_CCMP_256: 234 case WLAN_CIPHER_SUITE_GCMP: 235 case WLAN_CIPHER_SUITE_GCMP_256: 236 /* Disallow pairwise keys with non-zero index unless it's WEP 237 * or a vendor specific cipher (because current deployments use 238 * pairwise WEP keys with non-zero indices and for vendor 239 * specific ciphers this should be validated in the driver or 240 * hardware level - but 802.11i clearly specifies to use zero) 241 */ 242 if (pairwise && key_idx) 243 return -EINVAL; 244 break; 245 case WLAN_CIPHER_SUITE_AES_CMAC: 246 case WLAN_CIPHER_SUITE_BIP_CMAC_256: 247 case WLAN_CIPHER_SUITE_BIP_GMAC_128: 248 case WLAN_CIPHER_SUITE_BIP_GMAC_256: 249 /* Disallow BIP (group-only) cipher as pairwise cipher */ 250 if (pairwise) 251 return -EINVAL; 252 if (key_idx < 4) 253 return -EINVAL; 254 break; 255 case WLAN_CIPHER_SUITE_WEP40: 256 case WLAN_CIPHER_SUITE_WEP104: 257 if (key_idx > 3) 258 return -EINVAL; 259 default: 260 break; 261 } 262 263 switch (params->cipher) { 264 case WLAN_CIPHER_SUITE_WEP40: 265 if (params->key_len != WLAN_KEY_LEN_WEP40) 266 return -EINVAL; 267 break; 268 case WLAN_CIPHER_SUITE_TKIP: 269 if (params->key_len != WLAN_KEY_LEN_TKIP) 270 return -EINVAL; 271 break; 272 case WLAN_CIPHER_SUITE_CCMP: 273 if (params->key_len != WLAN_KEY_LEN_CCMP) 274 return -EINVAL; 275 break; 276 case WLAN_CIPHER_SUITE_CCMP_256: 277 if (params->key_len != WLAN_KEY_LEN_CCMP_256) 278 return -EINVAL; 279 break; 280 case WLAN_CIPHER_SUITE_GCMP: 281 if (params->key_len != WLAN_KEY_LEN_GCMP) 282 return -EINVAL; 283 break; 284 case WLAN_CIPHER_SUITE_GCMP_256: 285 if (params->key_len != WLAN_KEY_LEN_GCMP_256) 286 return -EINVAL; 287 break; 288 case WLAN_CIPHER_SUITE_WEP104: 289 if (params->key_len != WLAN_KEY_LEN_WEP104) 290 return -EINVAL; 291 break; 292 case WLAN_CIPHER_SUITE_AES_CMAC: 293 if (params->key_len != WLAN_KEY_LEN_AES_CMAC) 294 return -EINVAL; 295 break; 296 case WLAN_CIPHER_SUITE_BIP_CMAC_256: 297 if (params->key_len != WLAN_KEY_LEN_BIP_CMAC_256) 298 return -EINVAL; 299 break; 300 case WLAN_CIPHER_SUITE_BIP_GMAC_128: 301 if (params->key_len != WLAN_KEY_LEN_BIP_GMAC_128) 302 return -EINVAL; 303 break; 304 case WLAN_CIPHER_SUITE_BIP_GMAC_256: 305 if (params->key_len != WLAN_KEY_LEN_BIP_GMAC_256) 306 return -EINVAL; 307 break; 308 default: 309 /* 310 * We don't know anything about this algorithm, 311 * allow using it -- but the driver must check 312 * all parameters! We still check below whether 313 * or not the driver supports this algorithm, 314 * of course. 315 */ 316 break; 317 } 318 319 if (params->seq) { 320 switch (params->cipher) { 321 case WLAN_CIPHER_SUITE_WEP40: 322 case WLAN_CIPHER_SUITE_WEP104: 323 /* These ciphers do not use key sequence */ 324 return -EINVAL; 325 case WLAN_CIPHER_SUITE_TKIP: 326 case WLAN_CIPHER_SUITE_CCMP: 327 case WLAN_CIPHER_SUITE_CCMP_256: 328 case WLAN_CIPHER_SUITE_GCMP: 329 case WLAN_CIPHER_SUITE_GCMP_256: 330 case WLAN_CIPHER_SUITE_AES_CMAC: 331 case WLAN_CIPHER_SUITE_BIP_CMAC_256: 332 case WLAN_CIPHER_SUITE_BIP_GMAC_128: 333 case WLAN_CIPHER_SUITE_BIP_GMAC_256: 334 if (params->seq_len != 6) 335 return -EINVAL; 336 break; 337 } 338 } 339 340 if (!cfg80211_supported_cipher_suite(&rdev->wiphy, params->cipher)) 341 return -EINVAL; 342 343 return 0; 344 } 345 346 unsigned int __attribute_const__ ieee80211_hdrlen(__le16 fc) 347 { 348 unsigned int hdrlen = 24; 349 350 if (ieee80211_is_data(fc)) { 351 if (ieee80211_has_a4(fc)) 352 hdrlen = 30; 353 if (ieee80211_is_data_qos(fc)) { 354 hdrlen += IEEE80211_QOS_CTL_LEN; 355 if (ieee80211_has_order(fc)) 356 hdrlen += IEEE80211_HT_CTL_LEN; 357 } 358 goto out; 359 } 360 361 if (ieee80211_is_mgmt(fc)) { 362 if (ieee80211_has_order(fc)) 363 hdrlen += IEEE80211_HT_CTL_LEN; 364 goto out; 365 } 366 367 if (ieee80211_is_ctl(fc)) { 368 /* 369 * ACK and CTS are 10 bytes, all others 16. To see how 370 * to get this condition consider 371 * subtype mask: 0b0000000011110000 (0x00F0) 372 * ACK subtype: 0b0000000011010000 (0x00D0) 373 * CTS subtype: 0b0000000011000000 (0x00C0) 374 * bits that matter: ^^^ (0x00E0) 375 * value of those: 0b0000000011000000 (0x00C0) 376 */ 377 if ((fc & cpu_to_le16(0x00E0)) == cpu_to_le16(0x00C0)) 378 hdrlen = 10; 379 else 380 hdrlen = 16; 381 } 382 out: 383 return hdrlen; 384 } 385 EXPORT_SYMBOL(ieee80211_hdrlen); 386 387 unsigned int ieee80211_get_hdrlen_from_skb(const struct sk_buff *skb) 388 { 389 const struct ieee80211_hdr *hdr = 390 (const struct ieee80211_hdr *)skb->data; 391 unsigned int hdrlen; 392 393 if (unlikely(skb->len < 10)) 394 return 0; 395 hdrlen = ieee80211_hdrlen(hdr->frame_control); 396 if (unlikely(hdrlen > skb->len)) 397 return 0; 398 return hdrlen; 399 } 400 EXPORT_SYMBOL(ieee80211_get_hdrlen_from_skb); 401 402 static unsigned int __ieee80211_get_mesh_hdrlen(u8 flags) 403 { 404 int ae = flags & MESH_FLAGS_AE; 405 /* 802.11-2012, 8.2.4.7.3 */ 406 switch (ae) { 407 default: 408 case 0: 409 return 6; 410 case MESH_FLAGS_AE_A4: 411 return 12; 412 case MESH_FLAGS_AE_A5_A6: 413 return 18; 414 } 415 } 416 417 unsigned int ieee80211_get_mesh_hdrlen(struct ieee80211s_hdr *meshhdr) 418 { 419 return __ieee80211_get_mesh_hdrlen(meshhdr->flags); 420 } 421 EXPORT_SYMBOL(ieee80211_get_mesh_hdrlen); 422 423 int ieee80211_data_to_8023_exthdr(struct sk_buff *skb, struct ethhdr *ehdr, 424 const u8 *addr, enum nl80211_iftype iftype) 425 { 426 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data; 427 struct { 428 u8 hdr[ETH_ALEN] __aligned(2); 429 __be16 proto; 430 } payload; 431 struct ethhdr tmp; 432 u16 hdrlen; 433 u8 mesh_flags = 0; 434 435 if (unlikely(!ieee80211_is_data_present(hdr->frame_control))) 436 return -1; 437 438 hdrlen = ieee80211_hdrlen(hdr->frame_control); 439 if (skb->len < hdrlen + 8) 440 return -1; 441 442 /* convert IEEE 802.11 header + possible LLC headers into Ethernet 443 * header 444 * IEEE 802.11 address fields: 445 * ToDS FromDS Addr1 Addr2 Addr3 Addr4 446 * 0 0 DA SA BSSID n/a 447 * 0 1 DA BSSID SA n/a 448 * 1 0 BSSID SA DA n/a 449 * 1 1 RA TA DA SA 450 */ 451 memcpy(tmp.h_dest, ieee80211_get_DA(hdr), ETH_ALEN); 452 memcpy(tmp.h_source, ieee80211_get_SA(hdr), ETH_ALEN); 453 454 if (iftype == NL80211_IFTYPE_MESH_POINT) 455 skb_copy_bits(skb, hdrlen, &mesh_flags, 1); 456 457 switch (hdr->frame_control & 458 cpu_to_le16(IEEE80211_FCTL_TODS | IEEE80211_FCTL_FROMDS)) { 459 case cpu_to_le16(IEEE80211_FCTL_TODS): 460 if (unlikely(iftype != NL80211_IFTYPE_AP && 461 iftype != NL80211_IFTYPE_AP_VLAN && 462 iftype != NL80211_IFTYPE_P2P_GO)) 463 return -1; 464 break; 465 case cpu_to_le16(IEEE80211_FCTL_TODS | IEEE80211_FCTL_FROMDS): 466 if (unlikely(iftype != NL80211_IFTYPE_WDS && 467 iftype != NL80211_IFTYPE_MESH_POINT && 468 iftype != NL80211_IFTYPE_AP_VLAN && 469 iftype != NL80211_IFTYPE_STATION)) 470 return -1; 471 if (iftype == NL80211_IFTYPE_MESH_POINT) { 472 if (mesh_flags & MESH_FLAGS_AE_A4) 473 return -1; 474 if (mesh_flags & MESH_FLAGS_AE_A5_A6) { 475 skb_copy_bits(skb, hdrlen + 476 offsetof(struct ieee80211s_hdr, eaddr1), 477 tmp.h_dest, 2 * ETH_ALEN); 478 } 479 hdrlen += __ieee80211_get_mesh_hdrlen(mesh_flags); 480 } 481 break; 482 case cpu_to_le16(IEEE80211_FCTL_FROMDS): 483 if ((iftype != NL80211_IFTYPE_STATION && 484 iftype != NL80211_IFTYPE_P2P_CLIENT && 485 iftype != NL80211_IFTYPE_MESH_POINT) || 486 (is_multicast_ether_addr(tmp.h_dest) && 487 ether_addr_equal(tmp.h_source, addr))) 488 return -1; 489 if (iftype == NL80211_IFTYPE_MESH_POINT) { 490 if (mesh_flags & MESH_FLAGS_AE_A5_A6) 491 return -1; 492 if (mesh_flags & MESH_FLAGS_AE_A4) 493 skb_copy_bits(skb, hdrlen + 494 offsetof(struct ieee80211s_hdr, eaddr1), 495 tmp.h_source, ETH_ALEN); 496 hdrlen += __ieee80211_get_mesh_hdrlen(mesh_flags); 497 } 498 break; 499 case cpu_to_le16(0): 500 if (iftype != NL80211_IFTYPE_ADHOC && 501 iftype != NL80211_IFTYPE_STATION && 502 iftype != NL80211_IFTYPE_OCB) 503 return -1; 504 break; 505 } 506 507 skb_copy_bits(skb, hdrlen, &payload, sizeof(payload)); 508 tmp.h_proto = payload.proto; 509 510 if (likely((ether_addr_equal(payload.hdr, rfc1042_header) && 511 tmp.h_proto != htons(ETH_P_AARP) && 512 tmp.h_proto != htons(ETH_P_IPX)) || 513 ether_addr_equal(payload.hdr, bridge_tunnel_header))) 514 /* remove RFC1042 or Bridge-Tunnel encapsulation and 515 * replace EtherType */ 516 hdrlen += ETH_ALEN + 2; 517 else 518 tmp.h_proto = htons(skb->len - hdrlen); 519 520 pskb_pull(skb, hdrlen); 521 522 if (!ehdr) 523 ehdr = (struct ethhdr *) skb_push(skb, sizeof(struct ethhdr)); 524 memcpy(ehdr, &tmp, sizeof(tmp)); 525 526 return 0; 527 } 528 EXPORT_SYMBOL(ieee80211_data_to_8023_exthdr); 529 530 int ieee80211_data_from_8023(struct sk_buff *skb, const u8 *addr, 531 enum nl80211_iftype iftype, 532 const u8 *bssid, bool qos) 533 { 534 struct ieee80211_hdr hdr; 535 u16 hdrlen, ethertype; 536 __le16 fc; 537 const u8 *encaps_data; 538 int encaps_len, skip_header_bytes; 539 int nh_pos, h_pos; 540 int head_need; 541 542 if (unlikely(skb->len < ETH_HLEN)) 543 return -EINVAL; 544 545 nh_pos = skb_network_header(skb) - skb->data; 546 h_pos = skb_transport_header(skb) - skb->data; 547 548 /* convert Ethernet header to proper 802.11 header (based on 549 * operation mode) */ 550 ethertype = (skb->data[12] << 8) | skb->data[13]; 551 fc = cpu_to_le16(IEEE80211_FTYPE_DATA | IEEE80211_STYPE_DATA); 552 553 switch (iftype) { 554 case NL80211_IFTYPE_AP: 555 case NL80211_IFTYPE_AP_VLAN: 556 case NL80211_IFTYPE_P2P_GO: 557 fc |= cpu_to_le16(IEEE80211_FCTL_FROMDS); 558 /* DA BSSID SA */ 559 memcpy(hdr.addr1, skb->data, ETH_ALEN); 560 memcpy(hdr.addr2, addr, ETH_ALEN); 561 memcpy(hdr.addr3, skb->data + ETH_ALEN, ETH_ALEN); 562 hdrlen = 24; 563 break; 564 case NL80211_IFTYPE_STATION: 565 case NL80211_IFTYPE_P2P_CLIENT: 566 fc |= cpu_to_le16(IEEE80211_FCTL_TODS); 567 /* BSSID SA DA */ 568 memcpy(hdr.addr1, bssid, ETH_ALEN); 569 memcpy(hdr.addr2, skb->data + ETH_ALEN, ETH_ALEN); 570 memcpy(hdr.addr3, skb->data, ETH_ALEN); 571 hdrlen = 24; 572 break; 573 case NL80211_IFTYPE_OCB: 574 case NL80211_IFTYPE_ADHOC: 575 /* DA SA BSSID */ 576 memcpy(hdr.addr1, skb->data, ETH_ALEN); 577 memcpy(hdr.addr2, skb->data + ETH_ALEN, ETH_ALEN); 578 memcpy(hdr.addr3, bssid, ETH_ALEN); 579 hdrlen = 24; 580 break; 581 default: 582 return -EOPNOTSUPP; 583 } 584 585 if (qos) { 586 fc |= cpu_to_le16(IEEE80211_STYPE_QOS_DATA); 587 hdrlen += 2; 588 } 589 590 hdr.frame_control = fc; 591 hdr.duration_id = 0; 592 hdr.seq_ctrl = 0; 593 594 skip_header_bytes = ETH_HLEN; 595 if (ethertype == ETH_P_AARP || ethertype == ETH_P_IPX) { 596 encaps_data = bridge_tunnel_header; 597 encaps_len = sizeof(bridge_tunnel_header); 598 skip_header_bytes -= 2; 599 } else if (ethertype >= ETH_P_802_3_MIN) { 600 encaps_data = rfc1042_header; 601 encaps_len = sizeof(rfc1042_header); 602 skip_header_bytes -= 2; 603 } else { 604 encaps_data = NULL; 605 encaps_len = 0; 606 } 607 608 skb_pull(skb, skip_header_bytes); 609 nh_pos -= skip_header_bytes; 610 h_pos -= skip_header_bytes; 611 612 head_need = hdrlen + encaps_len - skb_headroom(skb); 613 614 if (head_need > 0 || skb_cloned(skb)) { 615 head_need = max(head_need, 0); 616 if (head_need) 617 skb_orphan(skb); 618 619 if (pskb_expand_head(skb, head_need, 0, GFP_ATOMIC)) 620 return -ENOMEM; 621 622 skb->truesize += head_need; 623 } 624 625 if (encaps_data) { 626 memcpy(skb_push(skb, encaps_len), encaps_data, encaps_len); 627 nh_pos += encaps_len; 628 h_pos += encaps_len; 629 } 630 631 memcpy(skb_push(skb, hdrlen), &hdr, hdrlen); 632 633 nh_pos += hdrlen; 634 h_pos += hdrlen; 635 636 /* Update skb pointers to various headers since this modified frame 637 * is going to go through Linux networking code that may potentially 638 * need things like pointer to IP header. */ 639 skb_reset_mac_header(skb); 640 skb_set_network_header(skb, nh_pos); 641 skb_set_transport_header(skb, h_pos); 642 643 return 0; 644 } 645 EXPORT_SYMBOL(ieee80211_data_from_8023); 646 647 static void 648 __frame_add_frag(struct sk_buff *skb, struct page *page, 649 void *ptr, int len, int size) 650 { 651 struct skb_shared_info *sh = skb_shinfo(skb); 652 int page_offset; 653 654 page_ref_inc(page); 655 page_offset = ptr - page_address(page); 656 skb_add_rx_frag(skb, sh->nr_frags, page, page_offset, len, size); 657 } 658 659 static void 660 __ieee80211_amsdu_copy_frag(struct sk_buff *skb, struct sk_buff *frame, 661 int offset, int len) 662 { 663 struct skb_shared_info *sh = skb_shinfo(skb); 664 const skb_frag_t *frag = &sh->frags[-1]; 665 struct page *frag_page; 666 void *frag_ptr; 667 int frag_len, frag_size; 668 int head_size = skb->len - skb->data_len; 669 int cur_len; 670 671 frag_page = virt_to_head_page(skb->head); 672 frag_ptr = skb->data; 673 frag_size = head_size; 674 675 while (offset >= frag_size) { 676 offset -= frag_size; 677 frag++; 678 frag_page = skb_frag_page(frag); 679 frag_ptr = skb_frag_address(frag); 680 frag_size = skb_frag_size(frag); 681 } 682 683 frag_ptr += offset; 684 frag_len = frag_size - offset; 685 686 cur_len = min(len, frag_len); 687 688 __frame_add_frag(frame, frag_page, frag_ptr, cur_len, frag_size); 689 len -= cur_len; 690 691 while (len > 0) { 692 frag++; 693 frag_len = skb_frag_size(frag); 694 cur_len = min(len, frag_len); 695 __frame_add_frag(frame, skb_frag_page(frag), 696 skb_frag_address(frag), cur_len, frag_len); 697 len -= cur_len; 698 } 699 } 700 701 static struct sk_buff * 702 __ieee80211_amsdu_copy(struct sk_buff *skb, unsigned int hlen, 703 int offset, int len, bool reuse_frag) 704 { 705 struct sk_buff *frame; 706 int cur_len = len; 707 708 if (skb->len - offset < len) 709 return NULL; 710 711 /* 712 * When reusing framents, copy some data to the head to simplify 713 * ethernet header handling and speed up protocol header processing 714 * in the stack later. 715 */ 716 if (reuse_frag) 717 cur_len = min_t(int, len, 32); 718 719 /* 720 * Allocate and reserve two bytes more for payload 721 * alignment since sizeof(struct ethhdr) is 14. 722 */ 723 frame = dev_alloc_skb(hlen + sizeof(struct ethhdr) + 2 + cur_len); 724 if (!frame) 725 return NULL; 726 727 skb_reserve(frame, hlen + sizeof(struct ethhdr) + 2); 728 skb_copy_bits(skb, offset, skb_put(frame, cur_len), cur_len); 729 730 len -= cur_len; 731 if (!len) 732 return frame; 733 734 offset += cur_len; 735 __ieee80211_amsdu_copy_frag(skb, frame, offset, len); 736 737 return frame; 738 } 739 740 void ieee80211_amsdu_to_8023s(struct sk_buff *skb, struct sk_buff_head *list, 741 const u8 *addr, enum nl80211_iftype iftype, 742 const unsigned int extra_headroom, 743 const u8 *check_da, const u8 *check_sa) 744 { 745 unsigned int hlen = ALIGN(extra_headroom, 4); 746 struct sk_buff *frame = NULL; 747 u16 ethertype; 748 u8 *payload; 749 int offset = 0, remaining; 750 struct ethhdr eth; 751 bool reuse_frag = skb->head_frag && !skb_has_frag_list(skb); 752 bool reuse_skb = false; 753 bool last = false; 754 755 while (!last) { 756 unsigned int subframe_len; 757 int len; 758 u8 padding; 759 760 skb_copy_bits(skb, offset, ð, sizeof(eth)); 761 len = ntohs(eth.h_proto); 762 subframe_len = sizeof(struct ethhdr) + len; 763 padding = (4 - subframe_len) & 0x3; 764 765 /* the last MSDU has no padding */ 766 remaining = skb->len - offset; 767 if (subframe_len > remaining) 768 goto purge; 769 770 offset += sizeof(struct ethhdr); 771 last = remaining <= subframe_len + padding; 772 773 /* FIXME: should we really accept multicast DA? */ 774 if ((check_da && !is_multicast_ether_addr(eth.h_dest) && 775 !ether_addr_equal(check_da, eth.h_dest)) || 776 (check_sa && !ether_addr_equal(check_sa, eth.h_source))) { 777 offset += len + padding; 778 continue; 779 } 780 781 /* reuse skb for the last subframe */ 782 if (!skb_is_nonlinear(skb) && !reuse_frag && last) { 783 skb_pull(skb, offset); 784 frame = skb; 785 reuse_skb = true; 786 } else { 787 frame = __ieee80211_amsdu_copy(skb, hlen, offset, len, 788 reuse_frag); 789 if (!frame) 790 goto purge; 791 792 offset += len + padding; 793 } 794 795 skb_reset_network_header(frame); 796 frame->dev = skb->dev; 797 frame->priority = skb->priority; 798 799 payload = frame->data; 800 ethertype = (payload[6] << 8) | payload[7]; 801 if (likely((ether_addr_equal(payload, rfc1042_header) && 802 ethertype != ETH_P_AARP && ethertype != ETH_P_IPX) || 803 ether_addr_equal(payload, bridge_tunnel_header))) { 804 eth.h_proto = htons(ethertype); 805 skb_pull(frame, ETH_ALEN + 2); 806 } 807 808 memcpy(skb_push(frame, sizeof(eth)), ð, sizeof(eth)); 809 __skb_queue_tail(list, frame); 810 } 811 812 if (!reuse_skb) 813 dev_kfree_skb(skb); 814 815 return; 816 817 purge: 818 __skb_queue_purge(list); 819 dev_kfree_skb(skb); 820 } 821 EXPORT_SYMBOL(ieee80211_amsdu_to_8023s); 822 823 /* Given a data frame determine the 802.1p/1d tag to use. */ 824 unsigned int cfg80211_classify8021d(struct sk_buff *skb, 825 struct cfg80211_qos_map *qos_map) 826 { 827 unsigned int dscp; 828 unsigned char vlan_priority; 829 830 /* skb->priority values from 256->263 are magic values to 831 * directly indicate a specific 802.1d priority. This is used 832 * to allow 802.1d priority to be passed directly in from VLAN 833 * tags, etc. 834 */ 835 if (skb->priority >= 256 && skb->priority <= 263) 836 return skb->priority - 256; 837 838 if (skb_vlan_tag_present(skb)) { 839 vlan_priority = (skb_vlan_tag_get(skb) & VLAN_PRIO_MASK) 840 >> VLAN_PRIO_SHIFT; 841 if (vlan_priority > 0) 842 return vlan_priority; 843 } 844 845 switch (skb->protocol) { 846 case htons(ETH_P_IP): 847 dscp = ipv4_get_dsfield(ip_hdr(skb)) & 0xfc; 848 break; 849 case htons(ETH_P_IPV6): 850 dscp = ipv6_get_dsfield(ipv6_hdr(skb)) & 0xfc; 851 break; 852 case htons(ETH_P_MPLS_UC): 853 case htons(ETH_P_MPLS_MC): { 854 struct mpls_label mpls_tmp, *mpls; 855 856 mpls = skb_header_pointer(skb, sizeof(struct ethhdr), 857 sizeof(*mpls), &mpls_tmp); 858 if (!mpls) 859 return 0; 860 861 return (ntohl(mpls->entry) & MPLS_LS_TC_MASK) 862 >> MPLS_LS_TC_SHIFT; 863 } 864 case htons(ETH_P_80221): 865 /* 802.21 is always network control traffic */ 866 return 7; 867 default: 868 return 0; 869 } 870 871 if (qos_map) { 872 unsigned int i, tmp_dscp = dscp >> 2; 873 874 for (i = 0; i < qos_map->num_des; i++) { 875 if (tmp_dscp == qos_map->dscp_exception[i].dscp) 876 return qos_map->dscp_exception[i].up; 877 } 878 879 for (i = 0; i < 8; i++) { 880 if (tmp_dscp >= qos_map->up[i].low && 881 tmp_dscp <= qos_map->up[i].high) 882 return i; 883 } 884 } 885 886 return dscp >> 5; 887 } 888 EXPORT_SYMBOL(cfg80211_classify8021d); 889 890 const u8 *ieee80211_bss_get_ie(struct cfg80211_bss *bss, u8 ie) 891 { 892 const struct cfg80211_bss_ies *ies; 893 894 ies = rcu_dereference(bss->ies); 895 if (!ies) 896 return NULL; 897 898 return cfg80211_find_ie(ie, ies->data, ies->len); 899 } 900 EXPORT_SYMBOL(ieee80211_bss_get_ie); 901 902 void cfg80211_upload_connect_keys(struct wireless_dev *wdev) 903 { 904 struct cfg80211_registered_device *rdev = wiphy_to_rdev(wdev->wiphy); 905 struct net_device *dev = wdev->netdev; 906 int i; 907 908 if (!wdev->connect_keys) 909 return; 910 911 for (i = 0; i < CFG80211_MAX_WEP_KEYS; i++) { 912 if (!wdev->connect_keys->params[i].cipher) 913 continue; 914 if (rdev_add_key(rdev, dev, i, false, NULL, 915 &wdev->connect_keys->params[i])) { 916 netdev_err(dev, "failed to set key %d\n", i); 917 continue; 918 } 919 if (wdev->connect_keys->def == i) 920 if (rdev_set_default_key(rdev, dev, i, true, true)) { 921 netdev_err(dev, "failed to set defkey %d\n", i); 922 continue; 923 } 924 } 925 926 kzfree(wdev->connect_keys); 927 wdev->connect_keys = NULL; 928 } 929 930 void cfg80211_process_wdev_events(struct wireless_dev *wdev) 931 { 932 struct cfg80211_event *ev; 933 unsigned long flags; 934 const u8 *bssid = NULL; 935 936 spin_lock_irqsave(&wdev->event_lock, flags); 937 while (!list_empty(&wdev->event_list)) { 938 ev = list_first_entry(&wdev->event_list, 939 struct cfg80211_event, list); 940 list_del(&ev->list); 941 spin_unlock_irqrestore(&wdev->event_lock, flags); 942 943 wdev_lock(wdev); 944 switch (ev->type) { 945 case EVENT_CONNECT_RESULT: 946 if (!is_zero_ether_addr(ev->cr.bssid)) 947 bssid = ev->cr.bssid; 948 __cfg80211_connect_result( 949 wdev->netdev, bssid, 950 ev->cr.req_ie, ev->cr.req_ie_len, 951 ev->cr.resp_ie, ev->cr.resp_ie_len, 952 ev->cr.status, 953 ev->cr.status == WLAN_STATUS_SUCCESS, 954 ev->cr.bss); 955 break; 956 case EVENT_ROAMED: 957 __cfg80211_roamed(wdev, ev->rm.bss, ev->rm.req_ie, 958 ev->rm.req_ie_len, ev->rm.resp_ie, 959 ev->rm.resp_ie_len); 960 break; 961 case EVENT_DISCONNECTED: 962 __cfg80211_disconnected(wdev->netdev, 963 ev->dc.ie, ev->dc.ie_len, 964 ev->dc.reason, 965 !ev->dc.locally_generated); 966 break; 967 case EVENT_IBSS_JOINED: 968 __cfg80211_ibss_joined(wdev->netdev, ev->ij.bssid, 969 ev->ij.channel); 970 break; 971 case EVENT_STOPPED: 972 __cfg80211_leave(wiphy_to_rdev(wdev->wiphy), wdev); 973 break; 974 } 975 wdev_unlock(wdev); 976 977 kfree(ev); 978 979 spin_lock_irqsave(&wdev->event_lock, flags); 980 } 981 spin_unlock_irqrestore(&wdev->event_lock, flags); 982 } 983 984 void cfg80211_process_rdev_events(struct cfg80211_registered_device *rdev) 985 { 986 struct wireless_dev *wdev; 987 988 ASSERT_RTNL(); 989 990 list_for_each_entry(wdev, &rdev->wiphy.wdev_list, list) 991 cfg80211_process_wdev_events(wdev); 992 } 993 994 int cfg80211_change_iface(struct cfg80211_registered_device *rdev, 995 struct net_device *dev, enum nl80211_iftype ntype, 996 u32 *flags, struct vif_params *params) 997 { 998 int err; 999 enum nl80211_iftype otype = dev->ieee80211_ptr->iftype; 1000 1001 ASSERT_RTNL(); 1002 1003 /* don't support changing VLANs, you just re-create them */ 1004 if (otype == NL80211_IFTYPE_AP_VLAN) 1005 return -EOPNOTSUPP; 1006 1007 /* cannot change into P2P device or NAN */ 1008 if (ntype == NL80211_IFTYPE_P2P_DEVICE || 1009 ntype == NL80211_IFTYPE_NAN) 1010 return -EOPNOTSUPP; 1011 1012 if (!rdev->ops->change_virtual_intf || 1013 !(rdev->wiphy.interface_modes & (1 << ntype))) 1014 return -EOPNOTSUPP; 1015 1016 /* if it's part of a bridge, reject changing type to station/ibss */ 1017 if ((dev->priv_flags & IFF_BRIDGE_PORT) && 1018 (ntype == NL80211_IFTYPE_ADHOC || 1019 ntype == NL80211_IFTYPE_STATION || 1020 ntype == NL80211_IFTYPE_P2P_CLIENT)) 1021 return -EBUSY; 1022 1023 if (ntype != otype) { 1024 dev->ieee80211_ptr->use_4addr = false; 1025 dev->ieee80211_ptr->mesh_id_up_len = 0; 1026 wdev_lock(dev->ieee80211_ptr); 1027 rdev_set_qos_map(rdev, dev, NULL); 1028 wdev_unlock(dev->ieee80211_ptr); 1029 1030 switch (otype) { 1031 case NL80211_IFTYPE_AP: 1032 cfg80211_stop_ap(rdev, dev, true); 1033 break; 1034 case NL80211_IFTYPE_ADHOC: 1035 cfg80211_leave_ibss(rdev, dev, false); 1036 break; 1037 case NL80211_IFTYPE_STATION: 1038 case NL80211_IFTYPE_P2P_CLIENT: 1039 wdev_lock(dev->ieee80211_ptr); 1040 cfg80211_disconnect(rdev, dev, 1041 WLAN_REASON_DEAUTH_LEAVING, true); 1042 wdev_unlock(dev->ieee80211_ptr); 1043 break; 1044 case NL80211_IFTYPE_MESH_POINT: 1045 /* mesh should be handled? */ 1046 break; 1047 default: 1048 break; 1049 } 1050 1051 cfg80211_process_rdev_events(rdev); 1052 } 1053 1054 err = rdev_change_virtual_intf(rdev, dev, ntype, flags, params); 1055 1056 WARN_ON(!err && dev->ieee80211_ptr->iftype != ntype); 1057 1058 if (!err && params && params->use_4addr != -1) 1059 dev->ieee80211_ptr->use_4addr = params->use_4addr; 1060 1061 if (!err) { 1062 dev->priv_flags &= ~IFF_DONT_BRIDGE; 1063 switch (ntype) { 1064 case NL80211_IFTYPE_STATION: 1065 if (dev->ieee80211_ptr->use_4addr) 1066 break; 1067 /* fall through */ 1068 case NL80211_IFTYPE_OCB: 1069 case NL80211_IFTYPE_P2P_CLIENT: 1070 case NL80211_IFTYPE_ADHOC: 1071 dev->priv_flags |= IFF_DONT_BRIDGE; 1072 break; 1073 case NL80211_IFTYPE_P2P_GO: 1074 case NL80211_IFTYPE_AP: 1075 case NL80211_IFTYPE_AP_VLAN: 1076 case NL80211_IFTYPE_WDS: 1077 case NL80211_IFTYPE_MESH_POINT: 1078 /* bridging OK */ 1079 break; 1080 case NL80211_IFTYPE_MONITOR: 1081 /* monitor can't bridge anyway */ 1082 break; 1083 case NL80211_IFTYPE_UNSPECIFIED: 1084 case NUM_NL80211_IFTYPES: 1085 /* not happening */ 1086 break; 1087 case NL80211_IFTYPE_P2P_DEVICE: 1088 case NL80211_IFTYPE_NAN: 1089 WARN_ON(1); 1090 break; 1091 } 1092 } 1093 1094 if (!err && ntype != otype && netif_running(dev)) { 1095 cfg80211_update_iface_num(rdev, ntype, 1); 1096 cfg80211_update_iface_num(rdev, otype, -1); 1097 } 1098 1099 return err; 1100 } 1101 1102 static u32 cfg80211_calculate_bitrate_60g(struct rate_info *rate) 1103 { 1104 static const u32 __mcs2bitrate[] = { 1105 /* control PHY */ 1106 [0] = 275, 1107 /* SC PHY */ 1108 [1] = 3850, 1109 [2] = 7700, 1110 [3] = 9625, 1111 [4] = 11550, 1112 [5] = 12512, /* 1251.25 mbps */ 1113 [6] = 15400, 1114 [7] = 19250, 1115 [8] = 23100, 1116 [9] = 25025, 1117 [10] = 30800, 1118 [11] = 38500, 1119 [12] = 46200, 1120 /* OFDM PHY */ 1121 [13] = 6930, 1122 [14] = 8662, /* 866.25 mbps */ 1123 [15] = 13860, 1124 [16] = 17325, 1125 [17] = 20790, 1126 [18] = 27720, 1127 [19] = 34650, 1128 [20] = 41580, 1129 [21] = 45045, 1130 [22] = 51975, 1131 [23] = 62370, 1132 [24] = 67568, /* 6756.75 mbps */ 1133 /* LP-SC PHY */ 1134 [25] = 6260, 1135 [26] = 8340, 1136 [27] = 11120, 1137 [28] = 12510, 1138 [29] = 16680, 1139 [30] = 22240, 1140 [31] = 25030, 1141 }; 1142 1143 if (WARN_ON_ONCE(rate->mcs >= ARRAY_SIZE(__mcs2bitrate))) 1144 return 0; 1145 1146 return __mcs2bitrate[rate->mcs]; 1147 } 1148 1149 static u32 cfg80211_calculate_bitrate_vht(struct rate_info *rate) 1150 { 1151 static const u32 base[4][10] = { 1152 { 6500000, 1153 13000000, 1154 19500000, 1155 26000000, 1156 39000000, 1157 52000000, 1158 58500000, 1159 65000000, 1160 78000000, 1161 0, 1162 }, 1163 { 13500000, 1164 27000000, 1165 40500000, 1166 54000000, 1167 81000000, 1168 108000000, 1169 121500000, 1170 135000000, 1171 162000000, 1172 180000000, 1173 }, 1174 { 29300000, 1175 58500000, 1176 87800000, 1177 117000000, 1178 175500000, 1179 234000000, 1180 263300000, 1181 292500000, 1182 351000000, 1183 390000000, 1184 }, 1185 { 58500000, 1186 117000000, 1187 175500000, 1188 234000000, 1189 351000000, 1190 468000000, 1191 526500000, 1192 585000000, 1193 702000000, 1194 780000000, 1195 }, 1196 }; 1197 u32 bitrate; 1198 int idx; 1199 1200 if (WARN_ON_ONCE(rate->mcs > 9)) 1201 return 0; 1202 1203 switch (rate->bw) { 1204 case RATE_INFO_BW_160: 1205 idx = 3; 1206 break; 1207 case RATE_INFO_BW_80: 1208 idx = 2; 1209 break; 1210 case RATE_INFO_BW_40: 1211 idx = 1; 1212 break; 1213 case RATE_INFO_BW_5: 1214 case RATE_INFO_BW_10: 1215 default: 1216 WARN_ON(1); 1217 /* fall through */ 1218 case RATE_INFO_BW_20: 1219 idx = 0; 1220 } 1221 1222 bitrate = base[idx][rate->mcs]; 1223 bitrate *= rate->nss; 1224 1225 if (rate->flags & RATE_INFO_FLAGS_SHORT_GI) 1226 bitrate = (bitrate / 9) * 10; 1227 1228 /* do NOT round down here */ 1229 return (bitrate + 50000) / 100000; 1230 } 1231 1232 u32 cfg80211_calculate_bitrate(struct rate_info *rate) 1233 { 1234 int modulation, streams, bitrate; 1235 1236 if (!(rate->flags & RATE_INFO_FLAGS_MCS) && 1237 !(rate->flags & RATE_INFO_FLAGS_VHT_MCS)) 1238 return rate->legacy; 1239 if (rate->flags & RATE_INFO_FLAGS_60G) 1240 return cfg80211_calculate_bitrate_60g(rate); 1241 if (rate->flags & RATE_INFO_FLAGS_VHT_MCS) 1242 return cfg80211_calculate_bitrate_vht(rate); 1243 1244 /* the formula below does only work for MCS values smaller than 32 */ 1245 if (WARN_ON_ONCE(rate->mcs >= 32)) 1246 return 0; 1247 1248 modulation = rate->mcs & 7; 1249 streams = (rate->mcs >> 3) + 1; 1250 1251 bitrate = (rate->bw == RATE_INFO_BW_40) ? 13500000 : 6500000; 1252 1253 if (modulation < 4) 1254 bitrate *= (modulation + 1); 1255 else if (modulation == 4) 1256 bitrate *= (modulation + 2); 1257 else 1258 bitrate *= (modulation + 3); 1259 1260 bitrate *= streams; 1261 1262 if (rate->flags & RATE_INFO_FLAGS_SHORT_GI) 1263 bitrate = (bitrate / 9) * 10; 1264 1265 /* do NOT round down here */ 1266 return (bitrate + 50000) / 100000; 1267 } 1268 EXPORT_SYMBOL(cfg80211_calculate_bitrate); 1269 1270 int cfg80211_get_p2p_attr(const u8 *ies, unsigned int len, 1271 enum ieee80211_p2p_attr_id attr, 1272 u8 *buf, unsigned int bufsize) 1273 { 1274 u8 *out = buf; 1275 u16 attr_remaining = 0; 1276 bool desired_attr = false; 1277 u16 desired_len = 0; 1278 1279 while (len > 0) { 1280 unsigned int iedatalen; 1281 unsigned int copy; 1282 const u8 *iedata; 1283 1284 if (len < 2) 1285 return -EILSEQ; 1286 iedatalen = ies[1]; 1287 if (iedatalen + 2 > len) 1288 return -EILSEQ; 1289 1290 if (ies[0] != WLAN_EID_VENDOR_SPECIFIC) 1291 goto cont; 1292 1293 if (iedatalen < 4) 1294 goto cont; 1295 1296 iedata = ies + 2; 1297 1298 /* check WFA OUI, P2P subtype */ 1299 if (iedata[0] != 0x50 || iedata[1] != 0x6f || 1300 iedata[2] != 0x9a || iedata[3] != 0x09) 1301 goto cont; 1302 1303 iedatalen -= 4; 1304 iedata += 4; 1305 1306 /* check attribute continuation into this IE */ 1307 copy = min_t(unsigned int, attr_remaining, iedatalen); 1308 if (copy && desired_attr) { 1309 desired_len += copy; 1310 if (out) { 1311 memcpy(out, iedata, min(bufsize, copy)); 1312 out += min(bufsize, copy); 1313 bufsize -= min(bufsize, copy); 1314 } 1315 1316 1317 if (copy == attr_remaining) 1318 return desired_len; 1319 } 1320 1321 attr_remaining -= copy; 1322 if (attr_remaining) 1323 goto cont; 1324 1325 iedatalen -= copy; 1326 iedata += copy; 1327 1328 while (iedatalen > 0) { 1329 u16 attr_len; 1330 1331 /* P2P attribute ID & size must fit */ 1332 if (iedatalen < 3) 1333 return -EILSEQ; 1334 desired_attr = iedata[0] == attr; 1335 attr_len = get_unaligned_le16(iedata + 1); 1336 iedatalen -= 3; 1337 iedata += 3; 1338 1339 copy = min_t(unsigned int, attr_len, iedatalen); 1340 1341 if (desired_attr) { 1342 desired_len += copy; 1343 if (out) { 1344 memcpy(out, iedata, min(bufsize, copy)); 1345 out += min(bufsize, copy); 1346 bufsize -= min(bufsize, copy); 1347 } 1348 1349 if (copy == attr_len) 1350 return desired_len; 1351 } 1352 1353 iedata += copy; 1354 iedatalen -= copy; 1355 attr_remaining = attr_len - copy; 1356 } 1357 1358 cont: 1359 len -= ies[1] + 2; 1360 ies += ies[1] + 2; 1361 } 1362 1363 if (attr_remaining && desired_attr) 1364 return -EILSEQ; 1365 1366 return -ENOENT; 1367 } 1368 EXPORT_SYMBOL(cfg80211_get_p2p_attr); 1369 1370 static bool ieee80211_id_in_list(const u8 *ids, int n_ids, u8 id) 1371 { 1372 int i; 1373 1374 for (i = 0; i < n_ids; i++) 1375 if (ids[i] == id) 1376 return true; 1377 return false; 1378 } 1379 1380 size_t ieee80211_ie_split_ric(const u8 *ies, size_t ielen, 1381 const u8 *ids, int n_ids, 1382 const u8 *after_ric, int n_after_ric, 1383 size_t offset) 1384 { 1385 size_t pos = offset; 1386 1387 while (pos < ielen && ieee80211_id_in_list(ids, n_ids, ies[pos])) { 1388 if (ies[pos] == WLAN_EID_RIC_DATA && n_after_ric) { 1389 pos += 2 + ies[pos + 1]; 1390 1391 while (pos < ielen && 1392 !ieee80211_id_in_list(after_ric, n_after_ric, 1393 ies[pos])) 1394 pos += 2 + ies[pos + 1]; 1395 } else { 1396 pos += 2 + ies[pos + 1]; 1397 } 1398 } 1399 1400 return pos; 1401 } 1402 EXPORT_SYMBOL(ieee80211_ie_split_ric); 1403 1404 bool ieee80211_operating_class_to_band(u8 operating_class, 1405 enum nl80211_band *band) 1406 { 1407 switch (operating_class) { 1408 case 112: 1409 case 115 ... 127: 1410 case 128 ... 130: 1411 *band = NL80211_BAND_5GHZ; 1412 return true; 1413 case 81: 1414 case 82: 1415 case 83: 1416 case 84: 1417 *band = NL80211_BAND_2GHZ; 1418 return true; 1419 case 180: 1420 *band = NL80211_BAND_60GHZ; 1421 return true; 1422 } 1423 1424 return false; 1425 } 1426 EXPORT_SYMBOL(ieee80211_operating_class_to_band); 1427 1428 bool ieee80211_chandef_to_operating_class(struct cfg80211_chan_def *chandef, 1429 u8 *op_class) 1430 { 1431 u8 vht_opclass; 1432 u16 freq = chandef->center_freq1; 1433 1434 if (freq >= 2412 && freq <= 2472) { 1435 if (chandef->width > NL80211_CHAN_WIDTH_40) 1436 return false; 1437 1438 /* 2.407 GHz, channels 1..13 */ 1439 if (chandef->width == NL80211_CHAN_WIDTH_40) { 1440 if (freq > chandef->chan->center_freq) 1441 *op_class = 83; /* HT40+ */ 1442 else 1443 *op_class = 84; /* HT40- */ 1444 } else { 1445 *op_class = 81; 1446 } 1447 1448 return true; 1449 } 1450 1451 if (freq == 2484) { 1452 if (chandef->width > NL80211_CHAN_WIDTH_40) 1453 return false; 1454 1455 *op_class = 82; /* channel 14 */ 1456 return true; 1457 } 1458 1459 switch (chandef->width) { 1460 case NL80211_CHAN_WIDTH_80: 1461 vht_opclass = 128; 1462 break; 1463 case NL80211_CHAN_WIDTH_160: 1464 vht_opclass = 129; 1465 break; 1466 case NL80211_CHAN_WIDTH_80P80: 1467 vht_opclass = 130; 1468 break; 1469 case NL80211_CHAN_WIDTH_10: 1470 case NL80211_CHAN_WIDTH_5: 1471 return false; /* unsupported for now */ 1472 default: 1473 vht_opclass = 0; 1474 break; 1475 } 1476 1477 /* 5 GHz, channels 36..48 */ 1478 if (freq >= 5180 && freq <= 5240) { 1479 if (vht_opclass) { 1480 *op_class = vht_opclass; 1481 } else if (chandef->width == NL80211_CHAN_WIDTH_40) { 1482 if (freq > chandef->chan->center_freq) 1483 *op_class = 116; 1484 else 1485 *op_class = 117; 1486 } else { 1487 *op_class = 115; 1488 } 1489 1490 return true; 1491 } 1492 1493 /* 5 GHz, channels 52..64 */ 1494 if (freq >= 5260 && freq <= 5320) { 1495 if (vht_opclass) { 1496 *op_class = vht_opclass; 1497 } else if (chandef->width == NL80211_CHAN_WIDTH_40) { 1498 if (freq > chandef->chan->center_freq) 1499 *op_class = 119; 1500 else 1501 *op_class = 120; 1502 } else { 1503 *op_class = 118; 1504 } 1505 1506 return true; 1507 } 1508 1509 /* 5 GHz, channels 100..144 */ 1510 if (freq >= 5500 && freq <= 5720) { 1511 if (vht_opclass) { 1512 *op_class = vht_opclass; 1513 } else if (chandef->width == NL80211_CHAN_WIDTH_40) { 1514 if (freq > chandef->chan->center_freq) 1515 *op_class = 122; 1516 else 1517 *op_class = 123; 1518 } else { 1519 *op_class = 121; 1520 } 1521 1522 return true; 1523 } 1524 1525 /* 5 GHz, channels 149..169 */ 1526 if (freq >= 5745 && freq <= 5845) { 1527 if (vht_opclass) { 1528 *op_class = vht_opclass; 1529 } else if (chandef->width == NL80211_CHAN_WIDTH_40) { 1530 if (freq > chandef->chan->center_freq) 1531 *op_class = 126; 1532 else 1533 *op_class = 127; 1534 } else if (freq <= 5805) { 1535 *op_class = 124; 1536 } else { 1537 *op_class = 125; 1538 } 1539 1540 return true; 1541 } 1542 1543 /* 56.16 GHz, channel 1..4 */ 1544 if (freq >= 56160 + 2160 * 1 && freq <= 56160 + 2160 * 4) { 1545 if (chandef->width >= NL80211_CHAN_WIDTH_40) 1546 return false; 1547 1548 *op_class = 180; 1549 return true; 1550 } 1551 1552 /* not supported yet */ 1553 return false; 1554 } 1555 EXPORT_SYMBOL(ieee80211_chandef_to_operating_class); 1556 1557 int cfg80211_validate_beacon_int(struct cfg80211_registered_device *rdev, 1558 u32 beacon_int) 1559 { 1560 struct wireless_dev *wdev; 1561 int res = 0; 1562 1563 if (beacon_int < 10 || beacon_int > 10000) 1564 return -EINVAL; 1565 1566 list_for_each_entry(wdev, &rdev->wiphy.wdev_list, list) { 1567 if (!wdev->beacon_interval) 1568 continue; 1569 if (wdev->beacon_interval != beacon_int) { 1570 res = -EINVAL; 1571 break; 1572 } 1573 } 1574 1575 return res; 1576 } 1577 1578 int cfg80211_iter_combinations(struct wiphy *wiphy, 1579 const int num_different_channels, 1580 const u8 radar_detect, 1581 const int iftype_num[NUM_NL80211_IFTYPES], 1582 void (*iter)(const struct ieee80211_iface_combination *c, 1583 void *data), 1584 void *data) 1585 { 1586 const struct ieee80211_regdomain *regdom; 1587 enum nl80211_dfs_regions region = 0; 1588 int i, j, iftype; 1589 int num_interfaces = 0; 1590 u32 used_iftypes = 0; 1591 1592 if (radar_detect) { 1593 rcu_read_lock(); 1594 regdom = rcu_dereference(cfg80211_regdomain); 1595 if (regdom) 1596 region = regdom->dfs_region; 1597 rcu_read_unlock(); 1598 } 1599 1600 for (iftype = 0; iftype < NUM_NL80211_IFTYPES; iftype++) { 1601 num_interfaces += iftype_num[iftype]; 1602 if (iftype_num[iftype] > 0 && 1603 !(wiphy->software_iftypes & BIT(iftype))) 1604 used_iftypes |= BIT(iftype); 1605 } 1606 1607 for (i = 0; i < wiphy->n_iface_combinations; i++) { 1608 const struct ieee80211_iface_combination *c; 1609 struct ieee80211_iface_limit *limits; 1610 u32 all_iftypes = 0; 1611 1612 c = &wiphy->iface_combinations[i]; 1613 1614 if (num_interfaces > c->max_interfaces) 1615 continue; 1616 if (num_different_channels > c->num_different_channels) 1617 continue; 1618 1619 limits = kmemdup(c->limits, sizeof(limits[0]) * c->n_limits, 1620 GFP_KERNEL); 1621 if (!limits) 1622 return -ENOMEM; 1623 1624 for (iftype = 0; iftype < NUM_NL80211_IFTYPES; iftype++) { 1625 if (wiphy->software_iftypes & BIT(iftype)) 1626 continue; 1627 for (j = 0; j < c->n_limits; j++) { 1628 all_iftypes |= limits[j].types; 1629 if (!(limits[j].types & BIT(iftype))) 1630 continue; 1631 if (limits[j].max < iftype_num[iftype]) 1632 goto cont; 1633 limits[j].max -= iftype_num[iftype]; 1634 } 1635 } 1636 1637 if (radar_detect != (c->radar_detect_widths & radar_detect)) 1638 goto cont; 1639 1640 if (radar_detect && c->radar_detect_regions && 1641 !(c->radar_detect_regions & BIT(region))) 1642 goto cont; 1643 1644 /* Finally check that all iftypes that we're currently 1645 * using are actually part of this combination. If they 1646 * aren't then we can't use this combination and have 1647 * to continue to the next. 1648 */ 1649 if ((all_iftypes & used_iftypes) != used_iftypes) 1650 goto cont; 1651 1652 /* This combination covered all interface types and 1653 * supported the requested numbers, so we're good. 1654 */ 1655 1656 (*iter)(c, data); 1657 cont: 1658 kfree(limits); 1659 } 1660 1661 return 0; 1662 } 1663 EXPORT_SYMBOL(cfg80211_iter_combinations); 1664 1665 static void 1666 cfg80211_iter_sum_ifcombs(const struct ieee80211_iface_combination *c, 1667 void *data) 1668 { 1669 int *num = data; 1670 (*num)++; 1671 } 1672 1673 int cfg80211_check_combinations(struct wiphy *wiphy, 1674 const int num_different_channels, 1675 const u8 radar_detect, 1676 const int iftype_num[NUM_NL80211_IFTYPES]) 1677 { 1678 int err, num = 0; 1679 1680 err = cfg80211_iter_combinations(wiphy, num_different_channels, 1681 radar_detect, iftype_num, 1682 cfg80211_iter_sum_ifcombs, &num); 1683 if (err) 1684 return err; 1685 if (num == 0) 1686 return -EBUSY; 1687 1688 return 0; 1689 } 1690 EXPORT_SYMBOL(cfg80211_check_combinations); 1691 1692 int ieee80211_get_ratemask(struct ieee80211_supported_band *sband, 1693 const u8 *rates, unsigned int n_rates, 1694 u32 *mask) 1695 { 1696 int i, j; 1697 1698 if (!sband) 1699 return -EINVAL; 1700 1701 if (n_rates == 0 || n_rates > NL80211_MAX_SUPP_RATES) 1702 return -EINVAL; 1703 1704 *mask = 0; 1705 1706 for (i = 0; i < n_rates; i++) { 1707 int rate = (rates[i] & 0x7f) * 5; 1708 bool found = false; 1709 1710 for (j = 0; j < sband->n_bitrates; j++) { 1711 if (sband->bitrates[j].bitrate == rate) { 1712 found = true; 1713 *mask |= BIT(j); 1714 break; 1715 } 1716 } 1717 if (!found) 1718 return -EINVAL; 1719 } 1720 1721 /* 1722 * mask must have at least one bit set here since we 1723 * didn't accept a 0-length rates array nor allowed 1724 * entries in the array that didn't exist 1725 */ 1726 1727 return 0; 1728 } 1729 1730 unsigned int ieee80211_get_num_supported_channels(struct wiphy *wiphy) 1731 { 1732 enum nl80211_band band; 1733 unsigned int n_channels = 0; 1734 1735 for (band = 0; band < NUM_NL80211_BANDS; band++) 1736 if (wiphy->bands[band]) 1737 n_channels += wiphy->bands[band]->n_channels; 1738 1739 return n_channels; 1740 } 1741 EXPORT_SYMBOL(ieee80211_get_num_supported_channels); 1742 1743 int cfg80211_get_station(struct net_device *dev, const u8 *mac_addr, 1744 struct station_info *sinfo) 1745 { 1746 struct cfg80211_registered_device *rdev; 1747 struct wireless_dev *wdev; 1748 1749 wdev = dev->ieee80211_ptr; 1750 if (!wdev) 1751 return -EOPNOTSUPP; 1752 1753 rdev = wiphy_to_rdev(wdev->wiphy); 1754 if (!rdev->ops->get_station) 1755 return -EOPNOTSUPP; 1756 1757 return rdev_get_station(rdev, dev, mac_addr, sinfo); 1758 } 1759 EXPORT_SYMBOL(cfg80211_get_station); 1760 1761 void cfg80211_free_nan_func(struct cfg80211_nan_func *f) 1762 { 1763 int i; 1764 1765 if (!f) 1766 return; 1767 1768 kfree(f->serv_spec_info); 1769 kfree(f->srf_bf); 1770 kfree(f->srf_macs); 1771 for (i = 0; i < f->num_rx_filters; i++) 1772 kfree(f->rx_filters[i].filter); 1773 1774 for (i = 0; i < f->num_tx_filters; i++) 1775 kfree(f->tx_filters[i].filter); 1776 1777 kfree(f->rx_filters); 1778 kfree(f->tx_filters); 1779 kfree(f); 1780 } 1781 EXPORT_SYMBOL(cfg80211_free_nan_func); 1782 1783 /* See IEEE 802.1H for LLC/SNAP encapsulation/decapsulation */ 1784 /* Ethernet-II snap header (RFC1042 for most EtherTypes) */ 1785 const unsigned char rfc1042_header[] __aligned(2) = 1786 { 0xaa, 0xaa, 0x03, 0x00, 0x00, 0x00 }; 1787 EXPORT_SYMBOL(rfc1042_header); 1788 1789 /* Bridge-Tunnel header (for EtherTypes ETH_P_AARP and ETH_P_IPX) */ 1790 const unsigned char bridge_tunnel_header[] __aligned(2) = 1791 { 0xaa, 0xaa, 0x03, 0x00, 0x00, 0xf8 }; 1792 EXPORT_SYMBOL(bridge_tunnel_header); 1793