1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Wireless utility functions 4 * 5 * Copyright 2007-2009 Johannes Berg <johannes@sipsolutions.net> 6 * Copyright 2013-2014 Intel Mobile Communications GmbH 7 * Copyright 2017 Intel Deutschland GmbH 8 * Copyright (C) 2018-2020 Intel Corporation 9 */ 10 #include <linux/export.h> 11 #include <linux/bitops.h> 12 #include <linux/etherdevice.h> 13 #include <linux/slab.h> 14 #include <linux/ieee80211.h> 15 #include <net/cfg80211.h> 16 #include <net/ip.h> 17 #include <net/dsfield.h> 18 #include <linux/if_vlan.h> 19 #include <linux/mpls.h> 20 #include <linux/gcd.h> 21 #include <linux/bitfield.h> 22 #include <linux/nospec.h> 23 #include "core.h" 24 #include "rdev-ops.h" 25 26 27 struct ieee80211_rate * 28 ieee80211_get_response_rate(struct ieee80211_supported_band *sband, 29 u32 basic_rates, int bitrate) 30 { 31 struct ieee80211_rate *result = &sband->bitrates[0]; 32 int i; 33 34 for (i = 0; i < sband->n_bitrates; i++) { 35 if (!(basic_rates & BIT(i))) 36 continue; 37 if (sband->bitrates[i].bitrate > bitrate) 38 continue; 39 result = &sband->bitrates[i]; 40 } 41 42 return result; 43 } 44 EXPORT_SYMBOL(ieee80211_get_response_rate); 45 46 u32 ieee80211_mandatory_rates(struct ieee80211_supported_band *sband, 47 enum nl80211_bss_scan_width scan_width) 48 { 49 struct ieee80211_rate *bitrates; 50 u32 mandatory_rates = 0; 51 enum ieee80211_rate_flags mandatory_flag; 52 int i; 53 54 if (WARN_ON(!sband)) 55 return 1; 56 57 if (sband->band == NL80211_BAND_2GHZ) { 58 if (scan_width == NL80211_BSS_CHAN_WIDTH_5 || 59 scan_width == NL80211_BSS_CHAN_WIDTH_10) 60 mandatory_flag = IEEE80211_RATE_MANDATORY_G; 61 else 62 mandatory_flag = IEEE80211_RATE_MANDATORY_B; 63 } else { 64 mandatory_flag = IEEE80211_RATE_MANDATORY_A; 65 } 66 67 bitrates = sband->bitrates; 68 for (i = 0; i < sband->n_bitrates; i++) 69 if (bitrates[i].flags & mandatory_flag) 70 mandatory_rates |= BIT(i); 71 return mandatory_rates; 72 } 73 EXPORT_SYMBOL(ieee80211_mandatory_rates); 74 75 u32 ieee80211_channel_to_freq_khz(int chan, enum nl80211_band band) 76 { 77 /* see 802.11 17.3.8.3.2 and Annex J 78 * there are overlapping channel numbers in 5GHz and 2GHz bands */ 79 if (chan <= 0) 80 return 0; /* not supported */ 81 switch (band) { 82 case NL80211_BAND_2GHZ: 83 if (chan == 14) 84 return MHZ_TO_KHZ(2484); 85 else if (chan < 14) 86 return MHZ_TO_KHZ(2407 + chan * 5); 87 break; 88 case NL80211_BAND_5GHZ: 89 if (chan >= 182 && chan <= 196) 90 return MHZ_TO_KHZ(4000 + chan * 5); 91 else 92 return MHZ_TO_KHZ(5000 + chan * 5); 93 break; 94 case NL80211_BAND_6GHZ: 95 /* see 802.11ax D6.1 27.3.23.2 */ 96 if (chan == 2) 97 return MHZ_TO_KHZ(5935); 98 if (chan <= 233) 99 return MHZ_TO_KHZ(5950 + chan * 5); 100 break; 101 case NL80211_BAND_60GHZ: 102 if (chan < 7) 103 return MHZ_TO_KHZ(56160 + chan * 2160); 104 break; 105 case NL80211_BAND_S1GHZ: 106 return 902000 + chan * 500; 107 default: 108 ; 109 } 110 return 0; /* not supported */ 111 } 112 EXPORT_SYMBOL(ieee80211_channel_to_freq_khz); 113 114 enum nl80211_chan_width 115 ieee80211_s1g_channel_width(const struct ieee80211_channel *chan) 116 { 117 if (WARN_ON(!chan || chan->band != NL80211_BAND_S1GHZ)) 118 return NL80211_CHAN_WIDTH_20_NOHT; 119 120 /*S1G defines a single allowed channel width per channel. 121 * Extract that width here. 122 */ 123 if (chan->flags & IEEE80211_CHAN_1MHZ) 124 return NL80211_CHAN_WIDTH_1; 125 else if (chan->flags & IEEE80211_CHAN_2MHZ) 126 return NL80211_CHAN_WIDTH_2; 127 else if (chan->flags & IEEE80211_CHAN_4MHZ) 128 return NL80211_CHAN_WIDTH_4; 129 else if (chan->flags & IEEE80211_CHAN_8MHZ) 130 return NL80211_CHAN_WIDTH_8; 131 else if (chan->flags & IEEE80211_CHAN_16MHZ) 132 return NL80211_CHAN_WIDTH_16; 133 134 pr_err("unknown channel width for channel at %dKHz?\n", 135 ieee80211_channel_to_khz(chan)); 136 137 return NL80211_CHAN_WIDTH_1; 138 } 139 EXPORT_SYMBOL(ieee80211_s1g_channel_width); 140 141 int ieee80211_freq_khz_to_channel(u32 freq) 142 { 143 /* TODO: just handle MHz for now */ 144 freq = KHZ_TO_MHZ(freq); 145 146 /* see 802.11 17.3.8.3.2 and Annex J */ 147 if (freq == 2484) 148 return 14; 149 else if (freq < 2484) 150 return (freq - 2407) / 5; 151 else if (freq >= 4910 && freq <= 4980) 152 return (freq - 4000) / 5; 153 else if (freq < 5925) 154 return (freq - 5000) / 5; 155 else if (freq == 5935) 156 return 2; 157 else if (freq <= 45000) /* DMG band lower limit */ 158 /* see 802.11ax D6.1 27.3.22.2 */ 159 return (freq - 5950) / 5; 160 else if (freq >= 58320 && freq <= 70200) 161 return (freq - 56160) / 2160; 162 else 163 return 0; 164 } 165 EXPORT_SYMBOL(ieee80211_freq_khz_to_channel); 166 167 struct ieee80211_channel *ieee80211_get_channel_khz(struct wiphy *wiphy, 168 u32 freq) 169 { 170 enum nl80211_band band; 171 struct ieee80211_supported_band *sband; 172 int i; 173 174 for (band = 0; band < NUM_NL80211_BANDS; band++) { 175 sband = wiphy->bands[band]; 176 177 if (!sband) 178 continue; 179 180 for (i = 0; i < sband->n_channels; i++) { 181 struct ieee80211_channel *chan = &sband->channels[i]; 182 183 if (ieee80211_channel_to_khz(chan) == freq) 184 return chan; 185 } 186 } 187 188 return NULL; 189 } 190 EXPORT_SYMBOL(ieee80211_get_channel_khz); 191 192 static void set_mandatory_flags_band(struct ieee80211_supported_band *sband) 193 { 194 int i, want; 195 196 switch (sband->band) { 197 case NL80211_BAND_5GHZ: 198 case NL80211_BAND_6GHZ: 199 want = 3; 200 for (i = 0; i < sband->n_bitrates; i++) { 201 if (sband->bitrates[i].bitrate == 60 || 202 sband->bitrates[i].bitrate == 120 || 203 sband->bitrates[i].bitrate == 240) { 204 sband->bitrates[i].flags |= 205 IEEE80211_RATE_MANDATORY_A; 206 want--; 207 } 208 } 209 WARN_ON(want); 210 break; 211 case NL80211_BAND_2GHZ: 212 want = 7; 213 for (i = 0; i < sband->n_bitrates; i++) { 214 switch (sband->bitrates[i].bitrate) { 215 case 10: 216 case 20: 217 case 55: 218 case 110: 219 sband->bitrates[i].flags |= 220 IEEE80211_RATE_MANDATORY_B | 221 IEEE80211_RATE_MANDATORY_G; 222 want--; 223 break; 224 case 60: 225 case 120: 226 case 240: 227 sband->bitrates[i].flags |= 228 IEEE80211_RATE_MANDATORY_G; 229 want--; 230 fallthrough; 231 default: 232 sband->bitrates[i].flags |= 233 IEEE80211_RATE_ERP_G; 234 break; 235 } 236 } 237 WARN_ON(want != 0 && want != 3); 238 break; 239 case NL80211_BAND_60GHZ: 240 /* check for mandatory HT MCS 1..4 */ 241 WARN_ON(!sband->ht_cap.ht_supported); 242 WARN_ON((sband->ht_cap.mcs.rx_mask[0] & 0x1e) != 0x1e); 243 break; 244 case NL80211_BAND_S1GHZ: 245 /* Figure 9-589bd: 3 means unsupported, so != 3 means at least 246 * mandatory is ok. 247 */ 248 WARN_ON((sband->s1g_cap.nss_mcs[0] & 0x3) == 0x3); 249 break; 250 case NUM_NL80211_BANDS: 251 default: 252 WARN_ON(1); 253 break; 254 } 255 } 256 257 void ieee80211_set_bitrate_flags(struct wiphy *wiphy) 258 { 259 enum nl80211_band band; 260 261 for (band = 0; band < NUM_NL80211_BANDS; band++) 262 if (wiphy->bands[band]) 263 set_mandatory_flags_band(wiphy->bands[band]); 264 } 265 266 bool cfg80211_supported_cipher_suite(struct wiphy *wiphy, u32 cipher) 267 { 268 int i; 269 for (i = 0; i < wiphy->n_cipher_suites; i++) 270 if (cipher == wiphy->cipher_suites[i]) 271 return true; 272 return false; 273 } 274 275 static bool 276 cfg80211_igtk_cipher_supported(struct cfg80211_registered_device *rdev) 277 { 278 struct wiphy *wiphy = &rdev->wiphy; 279 int i; 280 281 for (i = 0; i < wiphy->n_cipher_suites; i++) { 282 switch (wiphy->cipher_suites[i]) { 283 case WLAN_CIPHER_SUITE_AES_CMAC: 284 case WLAN_CIPHER_SUITE_BIP_CMAC_256: 285 case WLAN_CIPHER_SUITE_BIP_GMAC_128: 286 case WLAN_CIPHER_SUITE_BIP_GMAC_256: 287 return true; 288 } 289 } 290 291 return false; 292 } 293 294 bool cfg80211_valid_key_idx(struct cfg80211_registered_device *rdev, 295 int key_idx, bool pairwise) 296 { 297 int max_key_idx; 298 299 if (pairwise) 300 max_key_idx = 3; 301 else if (wiphy_ext_feature_isset(&rdev->wiphy, 302 NL80211_EXT_FEATURE_BEACON_PROTECTION) || 303 wiphy_ext_feature_isset(&rdev->wiphy, 304 NL80211_EXT_FEATURE_BEACON_PROTECTION_CLIENT)) 305 max_key_idx = 7; 306 else if (cfg80211_igtk_cipher_supported(rdev)) 307 max_key_idx = 5; 308 else 309 max_key_idx = 3; 310 311 if (key_idx < 0 || key_idx > max_key_idx) 312 return false; 313 314 return true; 315 } 316 317 int cfg80211_validate_key_settings(struct cfg80211_registered_device *rdev, 318 struct key_params *params, int key_idx, 319 bool pairwise, const u8 *mac_addr) 320 { 321 if (!cfg80211_valid_key_idx(rdev, key_idx, pairwise)) 322 return -EINVAL; 323 324 if (!pairwise && mac_addr && !(rdev->wiphy.flags & WIPHY_FLAG_IBSS_RSN)) 325 return -EINVAL; 326 327 if (pairwise && !mac_addr) 328 return -EINVAL; 329 330 switch (params->cipher) { 331 case WLAN_CIPHER_SUITE_TKIP: 332 /* Extended Key ID can only be used with CCMP/GCMP ciphers */ 333 if ((pairwise && key_idx) || 334 params->mode != NL80211_KEY_RX_TX) 335 return -EINVAL; 336 break; 337 case WLAN_CIPHER_SUITE_CCMP: 338 case WLAN_CIPHER_SUITE_CCMP_256: 339 case WLAN_CIPHER_SUITE_GCMP: 340 case WLAN_CIPHER_SUITE_GCMP_256: 341 /* IEEE802.11-2016 allows only 0 and - when supporting 342 * Extended Key ID - 1 as index for pairwise keys. 343 * @NL80211_KEY_NO_TX is only allowed for pairwise keys when 344 * the driver supports Extended Key ID. 345 * @NL80211_KEY_SET_TX can't be set when installing and 346 * validating a key. 347 */ 348 if ((params->mode == NL80211_KEY_NO_TX && !pairwise) || 349 params->mode == NL80211_KEY_SET_TX) 350 return -EINVAL; 351 if (wiphy_ext_feature_isset(&rdev->wiphy, 352 NL80211_EXT_FEATURE_EXT_KEY_ID)) { 353 if (pairwise && (key_idx < 0 || key_idx > 1)) 354 return -EINVAL; 355 } else if (pairwise && key_idx) { 356 return -EINVAL; 357 } 358 break; 359 case WLAN_CIPHER_SUITE_AES_CMAC: 360 case WLAN_CIPHER_SUITE_BIP_CMAC_256: 361 case WLAN_CIPHER_SUITE_BIP_GMAC_128: 362 case WLAN_CIPHER_SUITE_BIP_GMAC_256: 363 /* Disallow BIP (group-only) cipher as pairwise cipher */ 364 if (pairwise) 365 return -EINVAL; 366 if (key_idx < 4) 367 return -EINVAL; 368 break; 369 case WLAN_CIPHER_SUITE_WEP40: 370 case WLAN_CIPHER_SUITE_WEP104: 371 if (key_idx > 3) 372 return -EINVAL; 373 break; 374 default: 375 break; 376 } 377 378 switch (params->cipher) { 379 case WLAN_CIPHER_SUITE_WEP40: 380 if (params->key_len != WLAN_KEY_LEN_WEP40) 381 return -EINVAL; 382 break; 383 case WLAN_CIPHER_SUITE_TKIP: 384 if (params->key_len != WLAN_KEY_LEN_TKIP) 385 return -EINVAL; 386 break; 387 case WLAN_CIPHER_SUITE_CCMP: 388 if (params->key_len != WLAN_KEY_LEN_CCMP) 389 return -EINVAL; 390 break; 391 case WLAN_CIPHER_SUITE_CCMP_256: 392 if (params->key_len != WLAN_KEY_LEN_CCMP_256) 393 return -EINVAL; 394 break; 395 case WLAN_CIPHER_SUITE_GCMP: 396 if (params->key_len != WLAN_KEY_LEN_GCMP) 397 return -EINVAL; 398 break; 399 case WLAN_CIPHER_SUITE_GCMP_256: 400 if (params->key_len != WLAN_KEY_LEN_GCMP_256) 401 return -EINVAL; 402 break; 403 case WLAN_CIPHER_SUITE_WEP104: 404 if (params->key_len != WLAN_KEY_LEN_WEP104) 405 return -EINVAL; 406 break; 407 case WLAN_CIPHER_SUITE_AES_CMAC: 408 if (params->key_len != WLAN_KEY_LEN_AES_CMAC) 409 return -EINVAL; 410 break; 411 case WLAN_CIPHER_SUITE_BIP_CMAC_256: 412 if (params->key_len != WLAN_KEY_LEN_BIP_CMAC_256) 413 return -EINVAL; 414 break; 415 case WLAN_CIPHER_SUITE_BIP_GMAC_128: 416 if (params->key_len != WLAN_KEY_LEN_BIP_GMAC_128) 417 return -EINVAL; 418 break; 419 case WLAN_CIPHER_SUITE_BIP_GMAC_256: 420 if (params->key_len != WLAN_KEY_LEN_BIP_GMAC_256) 421 return -EINVAL; 422 break; 423 default: 424 /* 425 * We don't know anything about this algorithm, 426 * allow using it -- but the driver must check 427 * all parameters! We still check below whether 428 * or not the driver supports this algorithm, 429 * of course. 430 */ 431 break; 432 } 433 434 if (params->seq) { 435 switch (params->cipher) { 436 case WLAN_CIPHER_SUITE_WEP40: 437 case WLAN_CIPHER_SUITE_WEP104: 438 /* These ciphers do not use key sequence */ 439 return -EINVAL; 440 case WLAN_CIPHER_SUITE_TKIP: 441 case WLAN_CIPHER_SUITE_CCMP: 442 case WLAN_CIPHER_SUITE_CCMP_256: 443 case WLAN_CIPHER_SUITE_GCMP: 444 case WLAN_CIPHER_SUITE_GCMP_256: 445 case WLAN_CIPHER_SUITE_AES_CMAC: 446 case WLAN_CIPHER_SUITE_BIP_CMAC_256: 447 case WLAN_CIPHER_SUITE_BIP_GMAC_128: 448 case WLAN_CIPHER_SUITE_BIP_GMAC_256: 449 if (params->seq_len != 6) 450 return -EINVAL; 451 break; 452 } 453 } 454 455 if (!cfg80211_supported_cipher_suite(&rdev->wiphy, params->cipher)) 456 return -EINVAL; 457 458 return 0; 459 } 460 461 unsigned int __attribute_const__ ieee80211_hdrlen(__le16 fc) 462 { 463 unsigned int hdrlen = 24; 464 465 if (ieee80211_is_ext(fc)) { 466 hdrlen = 4; 467 goto out; 468 } 469 470 if (ieee80211_is_data(fc)) { 471 if (ieee80211_has_a4(fc)) 472 hdrlen = 30; 473 if (ieee80211_is_data_qos(fc)) { 474 hdrlen += IEEE80211_QOS_CTL_LEN; 475 if (ieee80211_has_order(fc)) 476 hdrlen += IEEE80211_HT_CTL_LEN; 477 } 478 goto out; 479 } 480 481 if (ieee80211_is_mgmt(fc)) { 482 if (ieee80211_has_order(fc)) 483 hdrlen += IEEE80211_HT_CTL_LEN; 484 goto out; 485 } 486 487 if (ieee80211_is_ctl(fc)) { 488 /* 489 * ACK and CTS are 10 bytes, all others 16. To see how 490 * to get this condition consider 491 * subtype mask: 0b0000000011110000 (0x00F0) 492 * ACK subtype: 0b0000000011010000 (0x00D0) 493 * CTS subtype: 0b0000000011000000 (0x00C0) 494 * bits that matter: ^^^ (0x00E0) 495 * value of those: 0b0000000011000000 (0x00C0) 496 */ 497 if ((fc & cpu_to_le16(0x00E0)) == cpu_to_le16(0x00C0)) 498 hdrlen = 10; 499 else 500 hdrlen = 16; 501 } 502 out: 503 return hdrlen; 504 } 505 EXPORT_SYMBOL(ieee80211_hdrlen); 506 507 unsigned int ieee80211_get_hdrlen_from_skb(const struct sk_buff *skb) 508 { 509 const struct ieee80211_hdr *hdr = 510 (const struct ieee80211_hdr *)skb->data; 511 unsigned int hdrlen; 512 513 if (unlikely(skb->len < 10)) 514 return 0; 515 hdrlen = ieee80211_hdrlen(hdr->frame_control); 516 if (unlikely(hdrlen > skb->len)) 517 return 0; 518 return hdrlen; 519 } 520 EXPORT_SYMBOL(ieee80211_get_hdrlen_from_skb); 521 522 static unsigned int __ieee80211_get_mesh_hdrlen(u8 flags) 523 { 524 int ae = flags & MESH_FLAGS_AE; 525 /* 802.11-2012, 8.2.4.7.3 */ 526 switch (ae) { 527 default: 528 case 0: 529 return 6; 530 case MESH_FLAGS_AE_A4: 531 return 12; 532 case MESH_FLAGS_AE_A5_A6: 533 return 18; 534 } 535 } 536 537 unsigned int ieee80211_get_mesh_hdrlen(struct ieee80211s_hdr *meshhdr) 538 { 539 return __ieee80211_get_mesh_hdrlen(meshhdr->flags); 540 } 541 EXPORT_SYMBOL(ieee80211_get_mesh_hdrlen); 542 543 int ieee80211_data_to_8023_exthdr(struct sk_buff *skb, struct ethhdr *ehdr, 544 const u8 *addr, enum nl80211_iftype iftype, 545 u8 data_offset) 546 { 547 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data; 548 struct { 549 u8 hdr[ETH_ALEN] __aligned(2); 550 __be16 proto; 551 } payload; 552 struct ethhdr tmp; 553 u16 hdrlen; 554 u8 mesh_flags = 0; 555 556 if (unlikely(!ieee80211_is_data_present(hdr->frame_control))) 557 return -1; 558 559 hdrlen = ieee80211_hdrlen(hdr->frame_control) + data_offset; 560 if (skb->len < hdrlen + 8) 561 return -1; 562 563 /* convert IEEE 802.11 header + possible LLC headers into Ethernet 564 * header 565 * IEEE 802.11 address fields: 566 * ToDS FromDS Addr1 Addr2 Addr3 Addr4 567 * 0 0 DA SA BSSID n/a 568 * 0 1 DA BSSID SA n/a 569 * 1 0 BSSID SA DA n/a 570 * 1 1 RA TA DA SA 571 */ 572 memcpy(tmp.h_dest, ieee80211_get_DA(hdr), ETH_ALEN); 573 memcpy(tmp.h_source, ieee80211_get_SA(hdr), ETH_ALEN); 574 575 if (iftype == NL80211_IFTYPE_MESH_POINT) 576 skb_copy_bits(skb, hdrlen, &mesh_flags, 1); 577 578 mesh_flags &= MESH_FLAGS_AE; 579 580 switch (hdr->frame_control & 581 cpu_to_le16(IEEE80211_FCTL_TODS | IEEE80211_FCTL_FROMDS)) { 582 case cpu_to_le16(IEEE80211_FCTL_TODS): 583 if (unlikely(iftype != NL80211_IFTYPE_AP && 584 iftype != NL80211_IFTYPE_AP_VLAN && 585 iftype != NL80211_IFTYPE_P2P_GO)) 586 return -1; 587 break; 588 case cpu_to_le16(IEEE80211_FCTL_TODS | IEEE80211_FCTL_FROMDS): 589 if (unlikely(iftype != NL80211_IFTYPE_MESH_POINT && 590 iftype != NL80211_IFTYPE_AP_VLAN && 591 iftype != NL80211_IFTYPE_STATION)) 592 return -1; 593 if (iftype == NL80211_IFTYPE_MESH_POINT) { 594 if (mesh_flags == MESH_FLAGS_AE_A4) 595 return -1; 596 if (mesh_flags == MESH_FLAGS_AE_A5_A6) { 597 skb_copy_bits(skb, hdrlen + 598 offsetof(struct ieee80211s_hdr, eaddr1), 599 tmp.h_dest, 2 * ETH_ALEN); 600 } 601 hdrlen += __ieee80211_get_mesh_hdrlen(mesh_flags); 602 } 603 break; 604 case cpu_to_le16(IEEE80211_FCTL_FROMDS): 605 if ((iftype != NL80211_IFTYPE_STATION && 606 iftype != NL80211_IFTYPE_P2P_CLIENT && 607 iftype != NL80211_IFTYPE_MESH_POINT) || 608 (is_multicast_ether_addr(tmp.h_dest) && 609 ether_addr_equal(tmp.h_source, addr))) 610 return -1; 611 if (iftype == NL80211_IFTYPE_MESH_POINT) { 612 if (mesh_flags == MESH_FLAGS_AE_A5_A6) 613 return -1; 614 if (mesh_flags == MESH_FLAGS_AE_A4) 615 skb_copy_bits(skb, hdrlen + 616 offsetof(struct ieee80211s_hdr, eaddr1), 617 tmp.h_source, ETH_ALEN); 618 hdrlen += __ieee80211_get_mesh_hdrlen(mesh_flags); 619 } 620 break; 621 case cpu_to_le16(0): 622 if (iftype != NL80211_IFTYPE_ADHOC && 623 iftype != NL80211_IFTYPE_STATION && 624 iftype != NL80211_IFTYPE_OCB) 625 return -1; 626 break; 627 } 628 629 skb_copy_bits(skb, hdrlen, &payload, sizeof(payload)); 630 tmp.h_proto = payload.proto; 631 632 if (likely((ether_addr_equal(payload.hdr, rfc1042_header) && 633 tmp.h_proto != htons(ETH_P_AARP) && 634 tmp.h_proto != htons(ETH_P_IPX)) || 635 ether_addr_equal(payload.hdr, bridge_tunnel_header))) 636 /* remove RFC1042 or Bridge-Tunnel encapsulation and 637 * replace EtherType */ 638 hdrlen += ETH_ALEN + 2; 639 else 640 tmp.h_proto = htons(skb->len - hdrlen); 641 642 pskb_pull(skb, hdrlen); 643 644 if (!ehdr) 645 ehdr = skb_push(skb, sizeof(struct ethhdr)); 646 memcpy(ehdr, &tmp, sizeof(tmp)); 647 648 return 0; 649 } 650 EXPORT_SYMBOL(ieee80211_data_to_8023_exthdr); 651 652 static void 653 __frame_add_frag(struct sk_buff *skb, struct page *page, 654 void *ptr, int len, int size) 655 { 656 struct skb_shared_info *sh = skb_shinfo(skb); 657 int page_offset; 658 659 get_page(page); 660 page_offset = ptr - page_address(page); 661 skb_add_rx_frag(skb, sh->nr_frags, page, page_offset, len, size); 662 } 663 664 static void 665 __ieee80211_amsdu_copy_frag(struct sk_buff *skb, struct sk_buff *frame, 666 int offset, int len) 667 { 668 struct skb_shared_info *sh = skb_shinfo(skb); 669 const skb_frag_t *frag = &sh->frags[0]; 670 struct page *frag_page; 671 void *frag_ptr; 672 int frag_len, frag_size; 673 int head_size = skb->len - skb->data_len; 674 int cur_len; 675 676 frag_page = virt_to_head_page(skb->head); 677 frag_ptr = skb->data; 678 frag_size = head_size; 679 680 while (offset >= frag_size) { 681 offset -= frag_size; 682 frag_page = skb_frag_page(frag); 683 frag_ptr = skb_frag_address(frag); 684 frag_size = skb_frag_size(frag); 685 frag++; 686 } 687 688 frag_ptr += offset; 689 frag_len = frag_size - offset; 690 691 cur_len = min(len, frag_len); 692 693 __frame_add_frag(frame, frag_page, frag_ptr, cur_len, frag_size); 694 len -= cur_len; 695 696 while (len > 0) { 697 frag_len = skb_frag_size(frag); 698 cur_len = min(len, frag_len); 699 __frame_add_frag(frame, skb_frag_page(frag), 700 skb_frag_address(frag), cur_len, frag_len); 701 len -= cur_len; 702 frag++; 703 } 704 } 705 706 static struct sk_buff * 707 __ieee80211_amsdu_copy(struct sk_buff *skb, unsigned int hlen, 708 int offset, int len, bool reuse_frag) 709 { 710 struct sk_buff *frame; 711 int cur_len = len; 712 713 if (skb->len - offset < len) 714 return NULL; 715 716 /* 717 * When reusing framents, copy some data to the head to simplify 718 * ethernet header handling and speed up protocol header processing 719 * in the stack later. 720 */ 721 if (reuse_frag) 722 cur_len = min_t(int, len, 32); 723 724 /* 725 * Allocate and reserve two bytes more for payload 726 * alignment since sizeof(struct ethhdr) is 14. 727 */ 728 frame = dev_alloc_skb(hlen + sizeof(struct ethhdr) + 2 + cur_len); 729 if (!frame) 730 return NULL; 731 732 skb_reserve(frame, hlen + sizeof(struct ethhdr) + 2); 733 skb_copy_bits(skb, offset, skb_put(frame, cur_len), cur_len); 734 735 len -= cur_len; 736 if (!len) 737 return frame; 738 739 offset += cur_len; 740 __ieee80211_amsdu_copy_frag(skb, frame, offset, len); 741 742 return frame; 743 } 744 745 void ieee80211_amsdu_to_8023s(struct sk_buff *skb, struct sk_buff_head *list, 746 const u8 *addr, enum nl80211_iftype iftype, 747 const unsigned int extra_headroom, 748 const u8 *check_da, const u8 *check_sa) 749 { 750 unsigned int hlen = ALIGN(extra_headroom, 4); 751 struct sk_buff *frame = NULL; 752 u16 ethertype; 753 u8 *payload; 754 int offset = 0, remaining; 755 struct ethhdr eth; 756 bool reuse_frag = skb->head_frag && !skb_has_frag_list(skb); 757 bool reuse_skb = false; 758 bool last = false; 759 760 while (!last) { 761 unsigned int subframe_len; 762 int len; 763 u8 padding; 764 765 skb_copy_bits(skb, offset, ð, sizeof(eth)); 766 len = ntohs(eth.h_proto); 767 subframe_len = sizeof(struct ethhdr) + len; 768 padding = (4 - subframe_len) & 0x3; 769 770 /* the last MSDU has no padding */ 771 remaining = skb->len - offset; 772 if (subframe_len > remaining) 773 goto purge; 774 775 offset += sizeof(struct ethhdr); 776 last = remaining <= subframe_len + padding; 777 778 /* FIXME: should we really accept multicast DA? */ 779 if ((check_da && !is_multicast_ether_addr(eth.h_dest) && 780 !ether_addr_equal(check_da, eth.h_dest)) || 781 (check_sa && !ether_addr_equal(check_sa, eth.h_source))) { 782 offset += len + padding; 783 continue; 784 } 785 786 /* reuse skb for the last subframe */ 787 if (!skb_is_nonlinear(skb) && !reuse_frag && last) { 788 skb_pull(skb, offset); 789 frame = skb; 790 reuse_skb = true; 791 } else { 792 frame = __ieee80211_amsdu_copy(skb, hlen, offset, len, 793 reuse_frag); 794 if (!frame) 795 goto purge; 796 797 offset += len + padding; 798 } 799 800 skb_reset_network_header(frame); 801 frame->dev = skb->dev; 802 frame->priority = skb->priority; 803 804 payload = frame->data; 805 ethertype = (payload[6] << 8) | payload[7]; 806 if (likely((ether_addr_equal(payload, rfc1042_header) && 807 ethertype != ETH_P_AARP && ethertype != ETH_P_IPX) || 808 ether_addr_equal(payload, bridge_tunnel_header))) { 809 eth.h_proto = htons(ethertype); 810 skb_pull(frame, ETH_ALEN + 2); 811 } 812 813 memcpy(skb_push(frame, sizeof(eth)), ð, sizeof(eth)); 814 __skb_queue_tail(list, frame); 815 } 816 817 if (!reuse_skb) 818 dev_kfree_skb(skb); 819 820 return; 821 822 purge: 823 __skb_queue_purge(list); 824 dev_kfree_skb(skb); 825 } 826 EXPORT_SYMBOL(ieee80211_amsdu_to_8023s); 827 828 /* Given a data frame determine the 802.1p/1d tag to use. */ 829 unsigned int cfg80211_classify8021d(struct sk_buff *skb, 830 struct cfg80211_qos_map *qos_map) 831 { 832 unsigned int dscp; 833 unsigned char vlan_priority; 834 unsigned int ret; 835 836 /* skb->priority values from 256->263 are magic values to 837 * directly indicate a specific 802.1d priority. This is used 838 * to allow 802.1d priority to be passed directly in from VLAN 839 * tags, etc. 840 */ 841 if (skb->priority >= 256 && skb->priority <= 263) { 842 ret = skb->priority - 256; 843 goto out; 844 } 845 846 if (skb_vlan_tag_present(skb)) { 847 vlan_priority = (skb_vlan_tag_get(skb) & VLAN_PRIO_MASK) 848 >> VLAN_PRIO_SHIFT; 849 if (vlan_priority > 0) { 850 ret = vlan_priority; 851 goto out; 852 } 853 } 854 855 switch (skb->protocol) { 856 case htons(ETH_P_IP): 857 dscp = ipv4_get_dsfield(ip_hdr(skb)) & 0xfc; 858 break; 859 case htons(ETH_P_IPV6): 860 dscp = ipv6_get_dsfield(ipv6_hdr(skb)) & 0xfc; 861 break; 862 case htons(ETH_P_MPLS_UC): 863 case htons(ETH_P_MPLS_MC): { 864 struct mpls_label mpls_tmp, *mpls; 865 866 mpls = skb_header_pointer(skb, sizeof(struct ethhdr), 867 sizeof(*mpls), &mpls_tmp); 868 if (!mpls) 869 return 0; 870 871 ret = (ntohl(mpls->entry) & MPLS_LS_TC_MASK) 872 >> MPLS_LS_TC_SHIFT; 873 goto out; 874 } 875 case htons(ETH_P_80221): 876 /* 802.21 is always network control traffic */ 877 return 7; 878 default: 879 return 0; 880 } 881 882 if (qos_map) { 883 unsigned int i, tmp_dscp = dscp >> 2; 884 885 for (i = 0; i < qos_map->num_des; i++) { 886 if (tmp_dscp == qos_map->dscp_exception[i].dscp) { 887 ret = qos_map->dscp_exception[i].up; 888 goto out; 889 } 890 } 891 892 for (i = 0; i < 8; i++) { 893 if (tmp_dscp >= qos_map->up[i].low && 894 tmp_dscp <= qos_map->up[i].high) { 895 ret = i; 896 goto out; 897 } 898 } 899 } 900 901 ret = dscp >> 5; 902 out: 903 return array_index_nospec(ret, IEEE80211_NUM_TIDS); 904 } 905 EXPORT_SYMBOL(cfg80211_classify8021d); 906 907 const struct element *ieee80211_bss_get_elem(struct cfg80211_bss *bss, u8 id) 908 { 909 const struct cfg80211_bss_ies *ies; 910 911 ies = rcu_dereference(bss->ies); 912 if (!ies) 913 return NULL; 914 915 return cfg80211_find_elem(id, ies->data, ies->len); 916 } 917 EXPORT_SYMBOL(ieee80211_bss_get_elem); 918 919 void cfg80211_upload_connect_keys(struct wireless_dev *wdev) 920 { 921 struct cfg80211_registered_device *rdev = wiphy_to_rdev(wdev->wiphy); 922 struct net_device *dev = wdev->netdev; 923 int i; 924 925 if (!wdev->connect_keys) 926 return; 927 928 for (i = 0; i < CFG80211_MAX_WEP_KEYS; i++) { 929 if (!wdev->connect_keys->params[i].cipher) 930 continue; 931 if (rdev_add_key(rdev, dev, i, false, NULL, 932 &wdev->connect_keys->params[i])) { 933 netdev_err(dev, "failed to set key %d\n", i); 934 continue; 935 } 936 if (wdev->connect_keys->def == i && 937 rdev_set_default_key(rdev, dev, i, true, true)) { 938 netdev_err(dev, "failed to set defkey %d\n", i); 939 continue; 940 } 941 } 942 943 kfree_sensitive(wdev->connect_keys); 944 wdev->connect_keys = NULL; 945 } 946 947 void cfg80211_process_wdev_events(struct wireless_dev *wdev) 948 { 949 struct cfg80211_event *ev; 950 unsigned long flags; 951 952 spin_lock_irqsave(&wdev->event_lock, flags); 953 while (!list_empty(&wdev->event_list)) { 954 ev = list_first_entry(&wdev->event_list, 955 struct cfg80211_event, list); 956 list_del(&ev->list); 957 spin_unlock_irqrestore(&wdev->event_lock, flags); 958 959 wdev_lock(wdev); 960 switch (ev->type) { 961 case EVENT_CONNECT_RESULT: 962 __cfg80211_connect_result( 963 wdev->netdev, 964 &ev->cr, 965 ev->cr.status == WLAN_STATUS_SUCCESS); 966 break; 967 case EVENT_ROAMED: 968 __cfg80211_roamed(wdev, &ev->rm); 969 break; 970 case EVENT_DISCONNECTED: 971 __cfg80211_disconnected(wdev->netdev, 972 ev->dc.ie, ev->dc.ie_len, 973 ev->dc.reason, 974 !ev->dc.locally_generated); 975 break; 976 case EVENT_IBSS_JOINED: 977 __cfg80211_ibss_joined(wdev->netdev, ev->ij.bssid, 978 ev->ij.channel); 979 break; 980 case EVENT_STOPPED: 981 __cfg80211_leave(wiphy_to_rdev(wdev->wiphy), wdev); 982 break; 983 case EVENT_PORT_AUTHORIZED: 984 __cfg80211_port_authorized(wdev, ev->pa.bssid); 985 break; 986 } 987 wdev_unlock(wdev); 988 989 kfree(ev); 990 991 spin_lock_irqsave(&wdev->event_lock, flags); 992 } 993 spin_unlock_irqrestore(&wdev->event_lock, flags); 994 } 995 996 void cfg80211_process_rdev_events(struct cfg80211_registered_device *rdev) 997 { 998 struct wireless_dev *wdev; 999 1000 ASSERT_RTNL(); 1001 1002 list_for_each_entry(wdev, &rdev->wiphy.wdev_list, list) 1003 cfg80211_process_wdev_events(wdev); 1004 } 1005 1006 int cfg80211_change_iface(struct cfg80211_registered_device *rdev, 1007 struct net_device *dev, enum nl80211_iftype ntype, 1008 struct vif_params *params) 1009 { 1010 int err; 1011 enum nl80211_iftype otype = dev->ieee80211_ptr->iftype; 1012 1013 ASSERT_RTNL(); 1014 1015 /* don't support changing VLANs, you just re-create them */ 1016 if (otype == NL80211_IFTYPE_AP_VLAN) 1017 return -EOPNOTSUPP; 1018 1019 /* cannot change into P2P device or NAN */ 1020 if (ntype == NL80211_IFTYPE_P2P_DEVICE || 1021 ntype == NL80211_IFTYPE_NAN) 1022 return -EOPNOTSUPP; 1023 1024 if (!rdev->ops->change_virtual_intf || 1025 !(rdev->wiphy.interface_modes & (1 << ntype))) 1026 return -EOPNOTSUPP; 1027 1028 /* if it's part of a bridge, reject changing type to station/ibss */ 1029 if (netif_is_bridge_port(dev) && 1030 (ntype == NL80211_IFTYPE_ADHOC || 1031 ntype == NL80211_IFTYPE_STATION || 1032 ntype == NL80211_IFTYPE_P2P_CLIENT)) 1033 return -EBUSY; 1034 1035 if (ntype != otype) { 1036 dev->ieee80211_ptr->use_4addr = false; 1037 dev->ieee80211_ptr->mesh_id_up_len = 0; 1038 wdev_lock(dev->ieee80211_ptr); 1039 rdev_set_qos_map(rdev, dev, NULL); 1040 wdev_unlock(dev->ieee80211_ptr); 1041 1042 switch (otype) { 1043 case NL80211_IFTYPE_AP: 1044 cfg80211_stop_ap(rdev, dev, true); 1045 break; 1046 case NL80211_IFTYPE_ADHOC: 1047 cfg80211_leave_ibss(rdev, dev, false); 1048 break; 1049 case NL80211_IFTYPE_STATION: 1050 case NL80211_IFTYPE_P2P_CLIENT: 1051 wdev_lock(dev->ieee80211_ptr); 1052 cfg80211_disconnect(rdev, dev, 1053 WLAN_REASON_DEAUTH_LEAVING, true); 1054 wdev_unlock(dev->ieee80211_ptr); 1055 break; 1056 case NL80211_IFTYPE_MESH_POINT: 1057 /* mesh should be handled? */ 1058 break; 1059 default: 1060 break; 1061 } 1062 1063 cfg80211_process_rdev_events(rdev); 1064 cfg80211_mlme_purge_registrations(dev->ieee80211_ptr); 1065 } 1066 1067 err = rdev_change_virtual_intf(rdev, dev, ntype, params); 1068 1069 WARN_ON(!err && dev->ieee80211_ptr->iftype != ntype); 1070 1071 if (!err && params && params->use_4addr != -1) 1072 dev->ieee80211_ptr->use_4addr = params->use_4addr; 1073 1074 if (!err) { 1075 dev->priv_flags &= ~IFF_DONT_BRIDGE; 1076 switch (ntype) { 1077 case NL80211_IFTYPE_STATION: 1078 if (dev->ieee80211_ptr->use_4addr) 1079 break; 1080 fallthrough; 1081 case NL80211_IFTYPE_OCB: 1082 case NL80211_IFTYPE_P2P_CLIENT: 1083 case NL80211_IFTYPE_ADHOC: 1084 dev->priv_flags |= IFF_DONT_BRIDGE; 1085 break; 1086 case NL80211_IFTYPE_P2P_GO: 1087 case NL80211_IFTYPE_AP: 1088 case NL80211_IFTYPE_AP_VLAN: 1089 case NL80211_IFTYPE_MESH_POINT: 1090 /* bridging OK */ 1091 break; 1092 case NL80211_IFTYPE_MONITOR: 1093 /* monitor can't bridge anyway */ 1094 break; 1095 case NL80211_IFTYPE_UNSPECIFIED: 1096 case NUM_NL80211_IFTYPES: 1097 /* not happening */ 1098 break; 1099 case NL80211_IFTYPE_P2P_DEVICE: 1100 case NL80211_IFTYPE_WDS: 1101 case NL80211_IFTYPE_NAN: 1102 WARN_ON(1); 1103 break; 1104 } 1105 } 1106 1107 if (!err && ntype != otype && netif_running(dev)) { 1108 cfg80211_update_iface_num(rdev, ntype, 1); 1109 cfg80211_update_iface_num(rdev, otype, -1); 1110 } 1111 1112 return err; 1113 } 1114 1115 static u32 cfg80211_calculate_bitrate_ht(struct rate_info *rate) 1116 { 1117 int modulation, streams, bitrate; 1118 1119 /* the formula below does only work for MCS values smaller than 32 */ 1120 if (WARN_ON_ONCE(rate->mcs >= 32)) 1121 return 0; 1122 1123 modulation = rate->mcs & 7; 1124 streams = (rate->mcs >> 3) + 1; 1125 1126 bitrate = (rate->bw == RATE_INFO_BW_40) ? 13500000 : 6500000; 1127 1128 if (modulation < 4) 1129 bitrate *= (modulation + 1); 1130 else if (modulation == 4) 1131 bitrate *= (modulation + 2); 1132 else 1133 bitrate *= (modulation + 3); 1134 1135 bitrate *= streams; 1136 1137 if (rate->flags & RATE_INFO_FLAGS_SHORT_GI) 1138 bitrate = (bitrate / 9) * 10; 1139 1140 /* do NOT round down here */ 1141 return (bitrate + 50000) / 100000; 1142 } 1143 1144 static u32 cfg80211_calculate_bitrate_dmg(struct rate_info *rate) 1145 { 1146 static const u32 __mcs2bitrate[] = { 1147 /* control PHY */ 1148 [0] = 275, 1149 /* SC PHY */ 1150 [1] = 3850, 1151 [2] = 7700, 1152 [3] = 9625, 1153 [4] = 11550, 1154 [5] = 12512, /* 1251.25 mbps */ 1155 [6] = 15400, 1156 [7] = 19250, 1157 [8] = 23100, 1158 [9] = 25025, 1159 [10] = 30800, 1160 [11] = 38500, 1161 [12] = 46200, 1162 /* OFDM PHY */ 1163 [13] = 6930, 1164 [14] = 8662, /* 866.25 mbps */ 1165 [15] = 13860, 1166 [16] = 17325, 1167 [17] = 20790, 1168 [18] = 27720, 1169 [19] = 34650, 1170 [20] = 41580, 1171 [21] = 45045, 1172 [22] = 51975, 1173 [23] = 62370, 1174 [24] = 67568, /* 6756.75 mbps */ 1175 /* LP-SC PHY */ 1176 [25] = 6260, 1177 [26] = 8340, 1178 [27] = 11120, 1179 [28] = 12510, 1180 [29] = 16680, 1181 [30] = 22240, 1182 [31] = 25030, 1183 }; 1184 1185 if (WARN_ON_ONCE(rate->mcs >= ARRAY_SIZE(__mcs2bitrate))) 1186 return 0; 1187 1188 return __mcs2bitrate[rate->mcs]; 1189 } 1190 1191 static u32 cfg80211_calculate_bitrate_edmg(struct rate_info *rate) 1192 { 1193 static const u32 __mcs2bitrate[] = { 1194 /* control PHY */ 1195 [0] = 275, 1196 /* SC PHY */ 1197 [1] = 3850, 1198 [2] = 7700, 1199 [3] = 9625, 1200 [4] = 11550, 1201 [5] = 12512, /* 1251.25 mbps */ 1202 [6] = 13475, 1203 [7] = 15400, 1204 [8] = 19250, 1205 [9] = 23100, 1206 [10] = 25025, 1207 [11] = 26950, 1208 [12] = 30800, 1209 [13] = 38500, 1210 [14] = 46200, 1211 [15] = 50050, 1212 [16] = 53900, 1213 [17] = 57750, 1214 [18] = 69300, 1215 [19] = 75075, 1216 [20] = 80850, 1217 }; 1218 1219 if (WARN_ON_ONCE(rate->mcs >= ARRAY_SIZE(__mcs2bitrate))) 1220 return 0; 1221 1222 return __mcs2bitrate[rate->mcs] * rate->n_bonded_ch; 1223 } 1224 1225 static u32 cfg80211_calculate_bitrate_vht(struct rate_info *rate) 1226 { 1227 static const u32 base[4][10] = { 1228 { 6500000, 1229 13000000, 1230 19500000, 1231 26000000, 1232 39000000, 1233 52000000, 1234 58500000, 1235 65000000, 1236 78000000, 1237 /* not in the spec, but some devices use this: */ 1238 86500000, 1239 }, 1240 { 13500000, 1241 27000000, 1242 40500000, 1243 54000000, 1244 81000000, 1245 108000000, 1246 121500000, 1247 135000000, 1248 162000000, 1249 180000000, 1250 }, 1251 { 29300000, 1252 58500000, 1253 87800000, 1254 117000000, 1255 175500000, 1256 234000000, 1257 263300000, 1258 292500000, 1259 351000000, 1260 390000000, 1261 }, 1262 { 58500000, 1263 117000000, 1264 175500000, 1265 234000000, 1266 351000000, 1267 468000000, 1268 526500000, 1269 585000000, 1270 702000000, 1271 780000000, 1272 }, 1273 }; 1274 u32 bitrate; 1275 int idx; 1276 1277 if (rate->mcs > 9) 1278 goto warn; 1279 1280 switch (rate->bw) { 1281 case RATE_INFO_BW_160: 1282 idx = 3; 1283 break; 1284 case RATE_INFO_BW_80: 1285 idx = 2; 1286 break; 1287 case RATE_INFO_BW_40: 1288 idx = 1; 1289 break; 1290 case RATE_INFO_BW_5: 1291 case RATE_INFO_BW_10: 1292 default: 1293 goto warn; 1294 case RATE_INFO_BW_20: 1295 idx = 0; 1296 } 1297 1298 bitrate = base[idx][rate->mcs]; 1299 bitrate *= rate->nss; 1300 1301 if (rate->flags & RATE_INFO_FLAGS_SHORT_GI) 1302 bitrate = (bitrate / 9) * 10; 1303 1304 /* do NOT round down here */ 1305 return (bitrate + 50000) / 100000; 1306 warn: 1307 WARN_ONCE(1, "invalid rate bw=%d, mcs=%d, nss=%d\n", 1308 rate->bw, rate->mcs, rate->nss); 1309 return 0; 1310 } 1311 1312 static u32 cfg80211_calculate_bitrate_he(struct rate_info *rate) 1313 { 1314 #define SCALE 6144 1315 u32 mcs_divisors[14] = { 1316 102399, /* 16.666666... */ 1317 51201, /* 8.333333... */ 1318 34134, /* 5.555555... */ 1319 25599, /* 4.166666... */ 1320 17067, /* 2.777777... */ 1321 12801, /* 2.083333... */ 1322 11769, /* 1.851851... */ 1323 10239, /* 1.666666... */ 1324 8532, /* 1.388888... */ 1325 7680, /* 1.250000... */ 1326 6828, /* 1.111111... */ 1327 6144, /* 1.000000... */ 1328 5690, /* 0.926106... */ 1329 5120, /* 0.833333... */ 1330 }; 1331 u32 rates_160M[3] = { 960777777, 907400000, 816666666 }; 1332 u32 rates_969[3] = { 480388888, 453700000, 408333333 }; 1333 u32 rates_484[3] = { 229411111, 216666666, 195000000 }; 1334 u32 rates_242[3] = { 114711111, 108333333, 97500000 }; 1335 u32 rates_106[3] = { 40000000, 37777777, 34000000 }; 1336 u32 rates_52[3] = { 18820000, 17777777, 16000000 }; 1337 u32 rates_26[3] = { 9411111, 8888888, 8000000 }; 1338 u64 tmp; 1339 u32 result; 1340 1341 if (WARN_ON_ONCE(rate->mcs > 13)) 1342 return 0; 1343 1344 if (WARN_ON_ONCE(rate->he_gi > NL80211_RATE_INFO_HE_GI_3_2)) 1345 return 0; 1346 if (WARN_ON_ONCE(rate->he_ru_alloc > 1347 NL80211_RATE_INFO_HE_RU_ALLOC_2x996)) 1348 return 0; 1349 if (WARN_ON_ONCE(rate->nss < 1 || rate->nss > 8)) 1350 return 0; 1351 1352 if (rate->bw == RATE_INFO_BW_160) 1353 result = rates_160M[rate->he_gi]; 1354 else if (rate->bw == RATE_INFO_BW_80 || 1355 (rate->bw == RATE_INFO_BW_HE_RU && 1356 rate->he_ru_alloc == NL80211_RATE_INFO_HE_RU_ALLOC_996)) 1357 result = rates_969[rate->he_gi]; 1358 else if (rate->bw == RATE_INFO_BW_40 || 1359 (rate->bw == RATE_INFO_BW_HE_RU && 1360 rate->he_ru_alloc == NL80211_RATE_INFO_HE_RU_ALLOC_484)) 1361 result = rates_484[rate->he_gi]; 1362 else if (rate->bw == RATE_INFO_BW_20 || 1363 (rate->bw == RATE_INFO_BW_HE_RU && 1364 rate->he_ru_alloc == NL80211_RATE_INFO_HE_RU_ALLOC_242)) 1365 result = rates_242[rate->he_gi]; 1366 else if (rate->bw == RATE_INFO_BW_HE_RU && 1367 rate->he_ru_alloc == NL80211_RATE_INFO_HE_RU_ALLOC_106) 1368 result = rates_106[rate->he_gi]; 1369 else if (rate->bw == RATE_INFO_BW_HE_RU && 1370 rate->he_ru_alloc == NL80211_RATE_INFO_HE_RU_ALLOC_52) 1371 result = rates_52[rate->he_gi]; 1372 else if (rate->bw == RATE_INFO_BW_HE_RU && 1373 rate->he_ru_alloc == NL80211_RATE_INFO_HE_RU_ALLOC_26) 1374 result = rates_26[rate->he_gi]; 1375 else { 1376 WARN(1, "invalid HE MCS: bw:%d, ru:%d\n", 1377 rate->bw, rate->he_ru_alloc); 1378 return 0; 1379 } 1380 1381 /* now scale to the appropriate MCS */ 1382 tmp = result; 1383 tmp *= SCALE; 1384 do_div(tmp, mcs_divisors[rate->mcs]); 1385 result = tmp; 1386 1387 /* and take NSS, DCM into account */ 1388 result = (result * rate->nss) / 8; 1389 if (rate->he_dcm) 1390 result /= 2; 1391 1392 return result / 10000; 1393 } 1394 1395 u32 cfg80211_calculate_bitrate(struct rate_info *rate) 1396 { 1397 if (rate->flags & RATE_INFO_FLAGS_MCS) 1398 return cfg80211_calculate_bitrate_ht(rate); 1399 if (rate->flags & RATE_INFO_FLAGS_DMG) 1400 return cfg80211_calculate_bitrate_dmg(rate); 1401 if (rate->flags & RATE_INFO_FLAGS_EDMG) 1402 return cfg80211_calculate_bitrate_edmg(rate); 1403 if (rate->flags & RATE_INFO_FLAGS_VHT_MCS) 1404 return cfg80211_calculate_bitrate_vht(rate); 1405 if (rate->flags & RATE_INFO_FLAGS_HE_MCS) 1406 return cfg80211_calculate_bitrate_he(rate); 1407 1408 return rate->legacy; 1409 } 1410 EXPORT_SYMBOL(cfg80211_calculate_bitrate); 1411 1412 int cfg80211_get_p2p_attr(const u8 *ies, unsigned int len, 1413 enum ieee80211_p2p_attr_id attr, 1414 u8 *buf, unsigned int bufsize) 1415 { 1416 u8 *out = buf; 1417 u16 attr_remaining = 0; 1418 bool desired_attr = false; 1419 u16 desired_len = 0; 1420 1421 while (len > 0) { 1422 unsigned int iedatalen; 1423 unsigned int copy; 1424 const u8 *iedata; 1425 1426 if (len < 2) 1427 return -EILSEQ; 1428 iedatalen = ies[1]; 1429 if (iedatalen + 2 > len) 1430 return -EILSEQ; 1431 1432 if (ies[0] != WLAN_EID_VENDOR_SPECIFIC) 1433 goto cont; 1434 1435 if (iedatalen < 4) 1436 goto cont; 1437 1438 iedata = ies + 2; 1439 1440 /* check WFA OUI, P2P subtype */ 1441 if (iedata[0] != 0x50 || iedata[1] != 0x6f || 1442 iedata[2] != 0x9a || iedata[3] != 0x09) 1443 goto cont; 1444 1445 iedatalen -= 4; 1446 iedata += 4; 1447 1448 /* check attribute continuation into this IE */ 1449 copy = min_t(unsigned int, attr_remaining, iedatalen); 1450 if (copy && desired_attr) { 1451 desired_len += copy; 1452 if (out) { 1453 memcpy(out, iedata, min(bufsize, copy)); 1454 out += min(bufsize, copy); 1455 bufsize -= min(bufsize, copy); 1456 } 1457 1458 1459 if (copy == attr_remaining) 1460 return desired_len; 1461 } 1462 1463 attr_remaining -= copy; 1464 if (attr_remaining) 1465 goto cont; 1466 1467 iedatalen -= copy; 1468 iedata += copy; 1469 1470 while (iedatalen > 0) { 1471 u16 attr_len; 1472 1473 /* P2P attribute ID & size must fit */ 1474 if (iedatalen < 3) 1475 return -EILSEQ; 1476 desired_attr = iedata[0] == attr; 1477 attr_len = get_unaligned_le16(iedata + 1); 1478 iedatalen -= 3; 1479 iedata += 3; 1480 1481 copy = min_t(unsigned int, attr_len, iedatalen); 1482 1483 if (desired_attr) { 1484 desired_len += copy; 1485 if (out) { 1486 memcpy(out, iedata, min(bufsize, copy)); 1487 out += min(bufsize, copy); 1488 bufsize -= min(bufsize, copy); 1489 } 1490 1491 if (copy == attr_len) 1492 return desired_len; 1493 } 1494 1495 iedata += copy; 1496 iedatalen -= copy; 1497 attr_remaining = attr_len - copy; 1498 } 1499 1500 cont: 1501 len -= ies[1] + 2; 1502 ies += ies[1] + 2; 1503 } 1504 1505 if (attr_remaining && desired_attr) 1506 return -EILSEQ; 1507 1508 return -ENOENT; 1509 } 1510 EXPORT_SYMBOL(cfg80211_get_p2p_attr); 1511 1512 static bool ieee80211_id_in_list(const u8 *ids, int n_ids, u8 id, bool id_ext) 1513 { 1514 int i; 1515 1516 /* Make sure array values are legal */ 1517 if (WARN_ON(ids[n_ids - 1] == WLAN_EID_EXTENSION)) 1518 return false; 1519 1520 i = 0; 1521 while (i < n_ids) { 1522 if (ids[i] == WLAN_EID_EXTENSION) { 1523 if (id_ext && (ids[i + 1] == id)) 1524 return true; 1525 1526 i += 2; 1527 continue; 1528 } 1529 1530 if (ids[i] == id && !id_ext) 1531 return true; 1532 1533 i++; 1534 } 1535 return false; 1536 } 1537 1538 static size_t skip_ie(const u8 *ies, size_t ielen, size_t pos) 1539 { 1540 /* we assume a validly formed IEs buffer */ 1541 u8 len = ies[pos + 1]; 1542 1543 pos += 2 + len; 1544 1545 /* the IE itself must have 255 bytes for fragments to follow */ 1546 if (len < 255) 1547 return pos; 1548 1549 while (pos < ielen && ies[pos] == WLAN_EID_FRAGMENT) { 1550 len = ies[pos + 1]; 1551 pos += 2 + len; 1552 } 1553 1554 return pos; 1555 } 1556 1557 size_t ieee80211_ie_split_ric(const u8 *ies, size_t ielen, 1558 const u8 *ids, int n_ids, 1559 const u8 *after_ric, int n_after_ric, 1560 size_t offset) 1561 { 1562 size_t pos = offset; 1563 1564 while (pos < ielen) { 1565 u8 ext = 0; 1566 1567 if (ies[pos] == WLAN_EID_EXTENSION) 1568 ext = 2; 1569 if ((pos + ext) >= ielen) 1570 break; 1571 1572 if (!ieee80211_id_in_list(ids, n_ids, ies[pos + ext], 1573 ies[pos] == WLAN_EID_EXTENSION)) 1574 break; 1575 1576 if (ies[pos] == WLAN_EID_RIC_DATA && n_after_ric) { 1577 pos = skip_ie(ies, ielen, pos); 1578 1579 while (pos < ielen) { 1580 if (ies[pos] == WLAN_EID_EXTENSION) 1581 ext = 2; 1582 else 1583 ext = 0; 1584 1585 if ((pos + ext) >= ielen) 1586 break; 1587 1588 if (!ieee80211_id_in_list(after_ric, 1589 n_after_ric, 1590 ies[pos + ext], 1591 ext == 2)) 1592 pos = skip_ie(ies, ielen, pos); 1593 else 1594 break; 1595 } 1596 } else { 1597 pos = skip_ie(ies, ielen, pos); 1598 } 1599 } 1600 1601 return pos; 1602 } 1603 EXPORT_SYMBOL(ieee80211_ie_split_ric); 1604 1605 bool ieee80211_operating_class_to_band(u8 operating_class, 1606 enum nl80211_band *band) 1607 { 1608 switch (operating_class) { 1609 case 112: 1610 case 115 ... 127: 1611 case 128 ... 130: 1612 *band = NL80211_BAND_5GHZ; 1613 return true; 1614 case 131 ... 135: 1615 *band = NL80211_BAND_6GHZ; 1616 return true; 1617 case 81: 1618 case 82: 1619 case 83: 1620 case 84: 1621 *band = NL80211_BAND_2GHZ; 1622 return true; 1623 case 180: 1624 *band = NL80211_BAND_60GHZ; 1625 return true; 1626 } 1627 1628 return false; 1629 } 1630 EXPORT_SYMBOL(ieee80211_operating_class_to_band); 1631 1632 bool ieee80211_chandef_to_operating_class(struct cfg80211_chan_def *chandef, 1633 u8 *op_class) 1634 { 1635 u8 vht_opclass; 1636 u32 freq = chandef->center_freq1; 1637 1638 if (freq >= 2412 && freq <= 2472) { 1639 if (chandef->width > NL80211_CHAN_WIDTH_40) 1640 return false; 1641 1642 /* 2.407 GHz, channels 1..13 */ 1643 if (chandef->width == NL80211_CHAN_WIDTH_40) { 1644 if (freq > chandef->chan->center_freq) 1645 *op_class = 83; /* HT40+ */ 1646 else 1647 *op_class = 84; /* HT40- */ 1648 } else { 1649 *op_class = 81; 1650 } 1651 1652 return true; 1653 } 1654 1655 if (freq == 2484) { 1656 /* channel 14 is only for IEEE 802.11b */ 1657 if (chandef->width != NL80211_CHAN_WIDTH_20_NOHT) 1658 return false; 1659 1660 *op_class = 82; /* channel 14 */ 1661 return true; 1662 } 1663 1664 switch (chandef->width) { 1665 case NL80211_CHAN_WIDTH_80: 1666 vht_opclass = 128; 1667 break; 1668 case NL80211_CHAN_WIDTH_160: 1669 vht_opclass = 129; 1670 break; 1671 case NL80211_CHAN_WIDTH_80P80: 1672 vht_opclass = 130; 1673 break; 1674 case NL80211_CHAN_WIDTH_10: 1675 case NL80211_CHAN_WIDTH_5: 1676 return false; /* unsupported for now */ 1677 default: 1678 vht_opclass = 0; 1679 break; 1680 } 1681 1682 /* 5 GHz, channels 36..48 */ 1683 if (freq >= 5180 && freq <= 5240) { 1684 if (vht_opclass) { 1685 *op_class = vht_opclass; 1686 } else if (chandef->width == NL80211_CHAN_WIDTH_40) { 1687 if (freq > chandef->chan->center_freq) 1688 *op_class = 116; 1689 else 1690 *op_class = 117; 1691 } else { 1692 *op_class = 115; 1693 } 1694 1695 return true; 1696 } 1697 1698 /* 5 GHz, channels 52..64 */ 1699 if (freq >= 5260 && freq <= 5320) { 1700 if (vht_opclass) { 1701 *op_class = vht_opclass; 1702 } else if (chandef->width == NL80211_CHAN_WIDTH_40) { 1703 if (freq > chandef->chan->center_freq) 1704 *op_class = 119; 1705 else 1706 *op_class = 120; 1707 } else { 1708 *op_class = 118; 1709 } 1710 1711 return true; 1712 } 1713 1714 /* 5 GHz, channels 100..144 */ 1715 if (freq >= 5500 && freq <= 5720) { 1716 if (vht_opclass) { 1717 *op_class = vht_opclass; 1718 } else if (chandef->width == NL80211_CHAN_WIDTH_40) { 1719 if (freq > chandef->chan->center_freq) 1720 *op_class = 122; 1721 else 1722 *op_class = 123; 1723 } else { 1724 *op_class = 121; 1725 } 1726 1727 return true; 1728 } 1729 1730 /* 5 GHz, channels 149..169 */ 1731 if (freq >= 5745 && freq <= 5845) { 1732 if (vht_opclass) { 1733 *op_class = vht_opclass; 1734 } else if (chandef->width == NL80211_CHAN_WIDTH_40) { 1735 if (freq > chandef->chan->center_freq) 1736 *op_class = 126; 1737 else 1738 *op_class = 127; 1739 } else if (freq <= 5805) { 1740 *op_class = 124; 1741 } else { 1742 *op_class = 125; 1743 } 1744 1745 return true; 1746 } 1747 1748 /* 56.16 GHz, channel 1..4 */ 1749 if (freq >= 56160 + 2160 * 1 && freq <= 56160 + 2160 * 6) { 1750 if (chandef->width >= NL80211_CHAN_WIDTH_40) 1751 return false; 1752 1753 *op_class = 180; 1754 return true; 1755 } 1756 1757 /* not supported yet */ 1758 return false; 1759 } 1760 EXPORT_SYMBOL(ieee80211_chandef_to_operating_class); 1761 1762 static void cfg80211_calculate_bi_data(struct wiphy *wiphy, u32 new_beacon_int, 1763 u32 *beacon_int_gcd, 1764 bool *beacon_int_different) 1765 { 1766 struct wireless_dev *wdev; 1767 1768 *beacon_int_gcd = 0; 1769 *beacon_int_different = false; 1770 1771 list_for_each_entry(wdev, &wiphy->wdev_list, list) { 1772 if (!wdev->beacon_interval) 1773 continue; 1774 1775 if (!*beacon_int_gcd) { 1776 *beacon_int_gcd = wdev->beacon_interval; 1777 continue; 1778 } 1779 1780 if (wdev->beacon_interval == *beacon_int_gcd) 1781 continue; 1782 1783 *beacon_int_different = true; 1784 *beacon_int_gcd = gcd(*beacon_int_gcd, wdev->beacon_interval); 1785 } 1786 1787 if (new_beacon_int && *beacon_int_gcd != new_beacon_int) { 1788 if (*beacon_int_gcd) 1789 *beacon_int_different = true; 1790 *beacon_int_gcd = gcd(*beacon_int_gcd, new_beacon_int); 1791 } 1792 } 1793 1794 int cfg80211_validate_beacon_int(struct cfg80211_registered_device *rdev, 1795 enum nl80211_iftype iftype, u32 beacon_int) 1796 { 1797 /* 1798 * This is just a basic pre-condition check; if interface combinations 1799 * are possible the driver must already be checking those with a call 1800 * to cfg80211_check_combinations(), in which case we'll validate more 1801 * through the cfg80211_calculate_bi_data() call and code in 1802 * cfg80211_iter_combinations(). 1803 */ 1804 1805 if (beacon_int < 10 || beacon_int > 10000) 1806 return -EINVAL; 1807 1808 return 0; 1809 } 1810 1811 int cfg80211_iter_combinations(struct wiphy *wiphy, 1812 struct iface_combination_params *params, 1813 void (*iter)(const struct ieee80211_iface_combination *c, 1814 void *data), 1815 void *data) 1816 { 1817 const struct ieee80211_regdomain *regdom; 1818 enum nl80211_dfs_regions region = 0; 1819 int i, j, iftype; 1820 int num_interfaces = 0; 1821 u32 used_iftypes = 0; 1822 u32 beacon_int_gcd; 1823 bool beacon_int_different; 1824 1825 /* 1826 * This is a bit strange, since the iteration used to rely only on 1827 * the data given by the driver, but here it now relies on context, 1828 * in form of the currently operating interfaces. 1829 * This is OK for all current users, and saves us from having to 1830 * push the GCD calculations into all the drivers. 1831 * In the future, this should probably rely more on data that's in 1832 * cfg80211 already - the only thing not would appear to be any new 1833 * interfaces (while being brought up) and channel/radar data. 1834 */ 1835 cfg80211_calculate_bi_data(wiphy, params->new_beacon_int, 1836 &beacon_int_gcd, &beacon_int_different); 1837 1838 if (params->radar_detect) { 1839 rcu_read_lock(); 1840 regdom = rcu_dereference(cfg80211_regdomain); 1841 if (regdom) 1842 region = regdom->dfs_region; 1843 rcu_read_unlock(); 1844 } 1845 1846 for (iftype = 0; iftype < NUM_NL80211_IFTYPES; iftype++) { 1847 num_interfaces += params->iftype_num[iftype]; 1848 if (params->iftype_num[iftype] > 0 && 1849 !cfg80211_iftype_allowed(wiphy, iftype, 0, 1)) 1850 used_iftypes |= BIT(iftype); 1851 } 1852 1853 for (i = 0; i < wiphy->n_iface_combinations; i++) { 1854 const struct ieee80211_iface_combination *c; 1855 struct ieee80211_iface_limit *limits; 1856 u32 all_iftypes = 0; 1857 1858 c = &wiphy->iface_combinations[i]; 1859 1860 if (num_interfaces > c->max_interfaces) 1861 continue; 1862 if (params->num_different_channels > c->num_different_channels) 1863 continue; 1864 1865 limits = kmemdup(c->limits, sizeof(limits[0]) * c->n_limits, 1866 GFP_KERNEL); 1867 if (!limits) 1868 return -ENOMEM; 1869 1870 for (iftype = 0; iftype < NUM_NL80211_IFTYPES; iftype++) { 1871 if (cfg80211_iftype_allowed(wiphy, iftype, 0, 1)) 1872 continue; 1873 for (j = 0; j < c->n_limits; j++) { 1874 all_iftypes |= limits[j].types; 1875 if (!(limits[j].types & BIT(iftype))) 1876 continue; 1877 if (limits[j].max < params->iftype_num[iftype]) 1878 goto cont; 1879 limits[j].max -= params->iftype_num[iftype]; 1880 } 1881 } 1882 1883 if (params->radar_detect != 1884 (c->radar_detect_widths & params->radar_detect)) 1885 goto cont; 1886 1887 if (params->radar_detect && c->radar_detect_regions && 1888 !(c->radar_detect_regions & BIT(region))) 1889 goto cont; 1890 1891 /* Finally check that all iftypes that we're currently 1892 * using are actually part of this combination. If they 1893 * aren't then we can't use this combination and have 1894 * to continue to the next. 1895 */ 1896 if ((all_iftypes & used_iftypes) != used_iftypes) 1897 goto cont; 1898 1899 if (beacon_int_gcd) { 1900 if (c->beacon_int_min_gcd && 1901 beacon_int_gcd < c->beacon_int_min_gcd) 1902 goto cont; 1903 if (!c->beacon_int_min_gcd && beacon_int_different) 1904 goto cont; 1905 } 1906 1907 /* This combination covered all interface types and 1908 * supported the requested numbers, so we're good. 1909 */ 1910 1911 (*iter)(c, data); 1912 cont: 1913 kfree(limits); 1914 } 1915 1916 return 0; 1917 } 1918 EXPORT_SYMBOL(cfg80211_iter_combinations); 1919 1920 static void 1921 cfg80211_iter_sum_ifcombs(const struct ieee80211_iface_combination *c, 1922 void *data) 1923 { 1924 int *num = data; 1925 (*num)++; 1926 } 1927 1928 int cfg80211_check_combinations(struct wiphy *wiphy, 1929 struct iface_combination_params *params) 1930 { 1931 int err, num = 0; 1932 1933 err = cfg80211_iter_combinations(wiphy, params, 1934 cfg80211_iter_sum_ifcombs, &num); 1935 if (err) 1936 return err; 1937 if (num == 0) 1938 return -EBUSY; 1939 1940 return 0; 1941 } 1942 EXPORT_SYMBOL(cfg80211_check_combinations); 1943 1944 int ieee80211_get_ratemask(struct ieee80211_supported_band *sband, 1945 const u8 *rates, unsigned int n_rates, 1946 u32 *mask) 1947 { 1948 int i, j; 1949 1950 if (!sband) 1951 return -EINVAL; 1952 1953 if (n_rates == 0 || n_rates > NL80211_MAX_SUPP_RATES) 1954 return -EINVAL; 1955 1956 *mask = 0; 1957 1958 for (i = 0; i < n_rates; i++) { 1959 int rate = (rates[i] & 0x7f) * 5; 1960 bool found = false; 1961 1962 for (j = 0; j < sband->n_bitrates; j++) { 1963 if (sband->bitrates[j].bitrate == rate) { 1964 found = true; 1965 *mask |= BIT(j); 1966 break; 1967 } 1968 } 1969 if (!found) 1970 return -EINVAL; 1971 } 1972 1973 /* 1974 * mask must have at least one bit set here since we 1975 * didn't accept a 0-length rates array nor allowed 1976 * entries in the array that didn't exist 1977 */ 1978 1979 return 0; 1980 } 1981 1982 unsigned int ieee80211_get_num_supported_channels(struct wiphy *wiphy) 1983 { 1984 enum nl80211_band band; 1985 unsigned int n_channels = 0; 1986 1987 for (band = 0; band < NUM_NL80211_BANDS; band++) 1988 if (wiphy->bands[band]) 1989 n_channels += wiphy->bands[band]->n_channels; 1990 1991 return n_channels; 1992 } 1993 EXPORT_SYMBOL(ieee80211_get_num_supported_channels); 1994 1995 int cfg80211_get_station(struct net_device *dev, const u8 *mac_addr, 1996 struct station_info *sinfo) 1997 { 1998 struct cfg80211_registered_device *rdev; 1999 struct wireless_dev *wdev; 2000 2001 wdev = dev->ieee80211_ptr; 2002 if (!wdev) 2003 return -EOPNOTSUPP; 2004 2005 rdev = wiphy_to_rdev(wdev->wiphy); 2006 if (!rdev->ops->get_station) 2007 return -EOPNOTSUPP; 2008 2009 memset(sinfo, 0, sizeof(*sinfo)); 2010 2011 return rdev_get_station(rdev, dev, mac_addr, sinfo); 2012 } 2013 EXPORT_SYMBOL(cfg80211_get_station); 2014 2015 void cfg80211_free_nan_func(struct cfg80211_nan_func *f) 2016 { 2017 int i; 2018 2019 if (!f) 2020 return; 2021 2022 kfree(f->serv_spec_info); 2023 kfree(f->srf_bf); 2024 kfree(f->srf_macs); 2025 for (i = 0; i < f->num_rx_filters; i++) 2026 kfree(f->rx_filters[i].filter); 2027 2028 for (i = 0; i < f->num_tx_filters; i++) 2029 kfree(f->tx_filters[i].filter); 2030 2031 kfree(f->rx_filters); 2032 kfree(f->tx_filters); 2033 kfree(f); 2034 } 2035 EXPORT_SYMBOL(cfg80211_free_nan_func); 2036 2037 bool cfg80211_does_bw_fit_range(const struct ieee80211_freq_range *freq_range, 2038 u32 center_freq_khz, u32 bw_khz) 2039 { 2040 u32 start_freq_khz, end_freq_khz; 2041 2042 start_freq_khz = center_freq_khz - (bw_khz / 2); 2043 end_freq_khz = center_freq_khz + (bw_khz / 2); 2044 2045 if (start_freq_khz >= freq_range->start_freq_khz && 2046 end_freq_khz <= freq_range->end_freq_khz) 2047 return true; 2048 2049 return false; 2050 } 2051 2052 int cfg80211_sinfo_alloc_tid_stats(struct station_info *sinfo, gfp_t gfp) 2053 { 2054 sinfo->pertid = kcalloc(IEEE80211_NUM_TIDS + 1, 2055 sizeof(*(sinfo->pertid)), 2056 gfp); 2057 if (!sinfo->pertid) 2058 return -ENOMEM; 2059 2060 return 0; 2061 } 2062 EXPORT_SYMBOL(cfg80211_sinfo_alloc_tid_stats); 2063 2064 /* See IEEE 802.1H for LLC/SNAP encapsulation/decapsulation */ 2065 /* Ethernet-II snap header (RFC1042 for most EtherTypes) */ 2066 const unsigned char rfc1042_header[] __aligned(2) = 2067 { 0xaa, 0xaa, 0x03, 0x00, 0x00, 0x00 }; 2068 EXPORT_SYMBOL(rfc1042_header); 2069 2070 /* Bridge-Tunnel header (for EtherTypes ETH_P_AARP and ETH_P_IPX) */ 2071 const unsigned char bridge_tunnel_header[] __aligned(2) = 2072 { 0xaa, 0xaa, 0x03, 0x00, 0x00, 0xf8 }; 2073 EXPORT_SYMBOL(bridge_tunnel_header); 2074 2075 /* Layer 2 Update frame (802.2 Type 1 LLC XID Update response) */ 2076 struct iapp_layer2_update { 2077 u8 da[ETH_ALEN]; /* broadcast */ 2078 u8 sa[ETH_ALEN]; /* STA addr */ 2079 __be16 len; /* 6 */ 2080 u8 dsap; /* 0 */ 2081 u8 ssap; /* 0 */ 2082 u8 control; 2083 u8 xid_info[3]; 2084 } __packed; 2085 2086 void cfg80211_send_layer2_update(struct net_device *dev, const u8 *addr) 2087 { 2088 struct iapp_layer2_update *msg; 2089 struct sk_buff *skb; 2090 2091 /* Send Level 2 Update Frame to update forwarding tables in layer 2 2092 * bridge devices */ 2093 2094 skb = dev_alloc_skb(sizeof(*msg)); 2095 if (!skb) 2096 return; 2097 msg = skb_put(skb, sizeof(*msg)); 2098 2099 /* 802.2 Type 1 Logical Link Control (LLC) Exchange Identifier (XID) 2100 * Update response frame; IEEE Std 802.2-1998, 5.4.1.2.1 */ 2101 2102 eth_broadcast_addr(msg->da); 2103 ether_addr_copy(msg->sa, addr); 2104 msg->len = htons(6); 2105 msg->dsap = 0; 2106 msg->ssap = 0x01; /* NULL LSAP, CR Bit: Response */ 2107 msg->control = 0xaf; /* XID response lsb.1111F101. 2108 * F=0 (no poll command; unsolicited frame) */ 2109 msg->xid_info[0] = 0x81; /* XID format identifier */ 2110 msg->xid_info[1] = 1; /* LLC types/classes: Type 1 LLC */ 2111 msg->xid_info[2] = 0; /* XID sender's receive window size (RW) */ 2112 2113 skb->dev = dev; 2114 skb->protocol = eth_type_trans(skb, dev); 2115 memset(skb->cb, 0, sizeof(skb->cb)); 2116 netif_rx_ni(skb); 2117 } 2118 EXPORT_SYMBOL(cfg80211_send_layer2_update); 2119 2120 int ieee80211_get_vht_max_nss(struct ieee80211_vht_cap *cap, 2121 enum ieee80211_vht_chanwidth bw, 2122 int mcs, bool ext_nss_bw_capable, 2123 unsigned int max_vht_nss) 2124 { 2125 u16 map = le16_to_cpu(cap->supp_mcs.rx_mcs_map); 2126 int ext_nss_bw; 2127 int supp_width; 2128 int i, mcs_encoding; 2129 2130 if (map == 0xffff) 2131 return 0; 2132 2133 if (WARN_ON(mcs > 9 || max_vht_nss > 8)) 2134 return 0; 2135 if (mcs <= 7) 2136 mcs_encoding = 0; 2137 else if (mcs == 8) 2138 mcs_encoding = 1; 2139 else 2140 mcs_encoding = 2; 2141 2142 if (!max_vht_nss) { 2143 /* find max_vht_nss for the given MCS */ 2144 for (i = 7; i >= 0; i--) { 2145 int supp = (map >> (2 * i)) & 3; 2146 2147 if (supp == 3) 2148 continue; 2149 2150 if (supp >= mcs_encoding) { 2151 max_vht_nss = i + 1; 2152 break; 2153 } 2154 } 2155 } 2156 2157 if (!(cap->supp_mcs.tx_mcs_map & 2158 cpu_to_le16(IEEE80211_VHT_EXT_NSS_BW_CAPABLE))) 2159 return max_vht_nss; 2160 2161 ext_nss_bw = le32_get_bits(cap->vht_cap_info, 2162 IEEE80211_VHT_CAP_EXT_NSS_BW_MASK); 2163 supp_width = le32_get_bits(cap->vht_cap_info, 2164 IEEE80211_VHT_CAP_SUPP_CHAN_WIDTH_MASK); 2165 2166 /* if not capable, treat ext_nss_bw as 0 */ 2167 if (!ext_nss_bw_capable) 2168 ext_nss_bw = 0; 2169 2170 /* This is invalid */ 2171 if (supp_width == 3) 2172 return 0; 2173 2174 /* This is an invalid combination so pretend nothing is supported */ 2175 if (supp_width == 2 && (ext_nss_bw == 1 || ext_nss_bw == 2)) 2176 return 0; 2177 2178 /* 2179 * Cover all the special cases according to IEEE 802.11-2016 2180 * Table 9-250. All other cases are either factor of 1 or not 2181 * valid/supported. 2182 */ 2183 switch (bw) { 2184 case IEEE80211_VHT_CHANWIDTH_USE_HT: 2185 case IEEE80211_VHT_CHANWIDTH_80MHZ: 2186 if ((supp_width == 1 || supp_width == 2) && 2187 ext_nss_bw == 3) 2188 return 2 * max_vht_nss; 2189 break; 2190 case IEEE80211_VHT_CHANWIDTH_160MHZ: 2191 if (supp_width == 0 && 2192 (ext_nss_bw == 1 || ext_nss_bw == 2)) 2193 return max_vht_nss / 2; 2194 if (supp_width == 0 && 2195 ext_nss_bw == 3) 2196 return (3 * max_vht_nss) / 4; 2197 if (supp_width == 1 && 2198 ext_nss_bw == 3) 2199 return 2 * max_vht_nss; 2200 break; 2201 case IEEE80211_VHT_CHANWIDTH_80P80MHZ: 2202 if (supp_width == 0 && ext_nss_bw == 1) 2203 return 0; /* not possible */ 2204 if (supp_width == 0 && 2205 ext_nss_bw == 2) 2206 return max_vht_nss / 2; 2207 if (supp_width == 0 && 2208 ext_nss_bw == 3) 2209 return (3 * max_vht_nss) / 4; 2210 if (supp_width == 1 && 2211 ext_nss_bw == 0) 2212 return 0; /* not possible */ 2213 if (supp_width == 1 && 2214 ext_nss_bw == 1) 2215 return max_vht_nss / 2; 2216 if (supp_width == 1 && 2217 ext_nss_bw == 2) 2218 return (3 * max_vht_nss) / 4; 2219 break; 2220 } 2221 2222 /* not covered or invalid combination received */ 2223 return max_vht_nss; 2224 } 2225 EXPORT_SYMBOL(ieee80211_get_vht_max_nss); 2226 2227 bool cfg80211_iftype_allowed(struct wiphy *wiphy, enum nl80211_iftype iftype, 2228 bool is_4addr, u8 check_swif) 2229 2230 { 2231 bool is_vlan = iftype == NL80211_IFTYPE_AP_VLAN; 2232 2233 switch (check_swif) { 2234 case 0: 2235 if (is_vlan && is_4addr) 2236 return wiphy->flags & WIPHY_FLAG_4ADDR_AP; 2237 return wiphy->interface_modes & BIT(iftype); 2238 case 1: 2239 if (!(wiphy->software_iftypes & BIT(iftype)) && is_vlan) 2240 return wiphy->flags & WIPHY_FLAG_4ADDR_AP; 2241 return wiphy->software_iftypes & BIT(iftype); 2242 default: 2243 break; 2244 } 2245 2246 return false; 2247 } 2248 EXPORT_SYMBOL(cfg80211_iftype_allowed); 2249