1 /* 2 * Wireless utility functions 3 * 4 * Copyright 2007-2009 Johannes Berg <johannes@sipsolutions.net> 5 */ 6 #include <linux/export.h> 7 #include <linux/bitops.h> 8 #include <linux/etherdevice.h> 9 #include <linux/slab.h> 10 #include <linux/crc32.h> 11 #include <net/cfg80211.h> 12 #include <net/ip.h> 13 #include "core.h" 14 15 struct ieee80211_rate * 16 ieee80211_get_response_rate(struct ieee80211_supported_band *sband, 17 u32 basic_rates, int bitrate) 18 { 19 struct ieee80211_rate *result = &sband->bitrates[0]; 20 int i; 21 22 for (i = 0; i < sband->n_bitrates; i++) { 23 if (!(basic_rates & BIT(i))) 24 continue; 25 if (sband->bitrates[i].bitrate > bitrate) 26 continue; 27 result = &sband->bitrates[i]; 28 } 29 30 return result; 31 } 32 EXPORT_SYMBOL(ieee80211_get_response_rate); 33 34 int ieee80211_channel_to_frequency(int chan, enum ieee80211_band band) 35 { 36 /* see 802.11 17.3.8.3.2 and Annex J 37 * there are overlapping channel numbers in 5GHz and 2GHz bands */ 38 if (band == IEEE80211_BAND_5GHZ) { 39 if (chan >= 182 && chan <= 196) 40 return 4000 + chan * 5; 41 else 42 return 5000 + chan * 5; 43 } else { /* IEEE80211_BAND_2GHZ */ 44 if (chan == 14) 45 return 2484; 46 else if (chan < 14) 47 return 2407 + chan * 5; 48 else 49 return 0; /* not supported */ 50 } 51 } 52 EXPORT_SYMBOL(ieee80211_channel_to_frequency); 53 54 int ieee80211_frequency_to_channel(int freq) 55 { 56 /* see 802.11 17.3.8.3.2 and Annex J */ 57 if (freq == 2484) 58 return 14; 59 else if (freq < 2484) 60 return (freq - 2407) / 5; 61 else if (freq >= 4910 && freq <= 4980) 62 return (freq - 4000) / 5; 63 else 64 return (freq - 5000) / 5; 65 } 66 EXPORT_SYMBOL(ieee80211_frequency_to_channel); 67 68 struct ieee80211_channel *__ieee80211_get_channel(struct wiphy *wiphy, 69 int freq) 70 { 71 enum ieee80211_band band; 72 struct ieee80211_supported_band *sband; 73 int i; 74 75 for (band = 0; band < IEEE80211_NUM_BANDS; band++) { 76 sband = wiphy->bands[band]; 77 78 if (!sband) 79 continue; 80 81 for (i = 0; i < sband->n_channels; i++) { 82 if (sband->channels[i].center_freq == freq) 83 return &sband->channels[i]; 84 } 85 } 86 87 return NULL; 88 } 89 EXPORT_SYMBOL(__ieee80211_get_channel); 90 91 static void set_mandatory_flags_band(struct ieee80211_supported_band *sband, 92 enum ieee80211_band band) 93 { 94 int i, want; 95 96 switch (band) { 97 case IEEE80211_BAND_5GHZ: 98 want = 3; 99 for (i = 0; i < sband->n_bitrates; i++) { 100 if (sband->bitrates[i].bitrate == 60 || 101 sband->bitrates[i].bitrate == 120 || 102 sband->bitrates[i].bitrate == 240) { 103 sband->bitrates[i].flags |= 104 IEEE80211_RATE_MANDATORY_A; 105 want--; 106 } 107 } 108 WARN_ON(want); 109 break; 110 case IEEE80211_BAND_2GHZ: 111 want = 7; 112 for (i = 0; i < sband->n_bitrates; i++) { 113 if (sband->bitrates[i].bitrate == 10) { 114 sband->bitrates[i].flags |= 115 IEEE80211_RATE_MANDATORY_B | 116 IEEE80211_RATE_MANDATORY_G; 117 want--; 118 } 119 120 if (sband->bitrates[i].bitrate == 20 || 121 sband->bitrates[i].bitrate == 55 || 122 sband->bitrates[i].bitrate == 110 || 123 sband->bitrates[i].bitrate == 60 || 124 sband->bitrates[i].bitrate == 120 || 125 sband->bitrates[i].bitrate == 240) { 126 sband->bitrates[i].flags |= 127 IEEE80211_RATE_MANDATORY_G; 128 want--; 129 } 130 131 if (sband->bitrates[i].bitrate != 10 && 132 sband->bitrates[i].bitrate != 20 && 133 sband->bitrates[i].bitrate != 55 && 134 sband->bitrates[i].bitrate != 110) 135 sband->bitrates[i].flags |= 136 IEEE80211_RATE_ERP_G; 137 } 138 WARN_ON(want != 0 && want != 3 && want != 6); 139 break; 140 case IEEE80211_NUM_BANDS: 141 WARN_ON(1); 142 break; 143 } 144 } 145 146 void ieee80211_set_bitrate_flags(struct wiphy *wiphy) 147 { 148 enum ieee80211_band band; 149 150 for (band = 0; band < IEEE80211_NUM_BANDS; band++) 151 if (wiphy->bands[band]) 152 set_mandatory_flags_band(wiphy->bands[band], band); 153 } 154 155 bool cfg80211_supported_cipher_suite(struct wiphy *wiphy, u32 cipher) 156 { 157 int i; 158 for (i = 0; i < wiphy->n_cipher_suites; i++) 159 if (cipher == wiphy->cipher_suites[i]) 160 return true; 161 return false; 162 } 163 164 int cfg80211_validate_key_settings(struct cfg80211_registered_device *rdev, 165 struct key_params *params, int key_idx, 166 bool pairwise, const u8 *mac_addr) 167 { 168 if (key_idx > 5) 169 return -EINVAL; 170 171 if (!pairwise && mac_addr && !(rdev->wiphy.flags & WIPHY_FLAG_IBSS_RSN)) 172 return -EINVAL; 173 174 if (pairwise && !mac_addr) 175 return -EINVAL; 176 177 /* 178 * Disallow pairwise keys with non-zero index unless it's WEP 179 * or a vendor specific cipher (because current deployments use 180 * pairwise WEP keys with non-zero indices and for vendor specific 181 * ciphers this should be validated in the driver or hardware level 182 * - but 802.11i clearly specifies to use zero) 183 */ 184 if (pairwise && key_idx && 185 ((params->cipher == WLAN_CIPHER_SUITE_TKIP) || 186 (params->cipher == WLAN_CIPHER_SUITE_CCMP) || 187 (params->cipher == WLAN_CIPHER_SUITE_AES_CMAC))) 188 return -EINVAL; 189 190 switch (params->cipher) { 191 case WLAN_CIPHER_SUITE_WEP40: 192 if (params->key_len != WLAN_KEY_LEN_WEP40) 193 return -EINVAL; 194 break; 195 case WLAN_CIPHER_SUITE_TKIP: 196 if (params->key_len != WLAN_KEY_LEN_TKIP) 197 return -EINVAL; 198 break; 199 case WLAN_CIPHER_SUITE_CCMP: 200 if (params->key_len != WLAN_KEY_LEN_CCMP) 201 return -EINVAL; 202 break; 203 case WLAN_CIPHER_SUITE_WEP104: 204 if (params->key_len != WLAN_KEY_LEN_WEP104) 205 return -EINVAL; 206 break; 207 case WLAN_CIPHER_SUITE_AES_CMAC: 208 if (params->key_len != WLAN_KEY_LEN_AES_CMAC) 209 return -EINVAL; 210 break; 211 default: 212 /* 213 * We don't know anything about this algorithm, 214 * allow using it -- but the driver must check 215 * all parameters! We still check below whether 216 * or not the driver supports this algorithm, 217 * of course. 218 */ 219 break; 220 } 221 222 if (params->seq) { 223 switch (params->cipher) { 224 case WLAN_CIPHER_SUITE_WEP40: 225 case WLAN_CIPHER_SUITE_WEP104: 226 /* These ciphers do not use key sequence */ 227 return -EINVAL; 228 case WLAN_CIPHER_SUITE_TKIP: 229 case WLAN_CIPHER_SUITE_CCMP: 230 case WLAN_CIPHER_SUITE_AES_CMAC: 231 if (params->seq_len != 6) 232 return -EINVAL; 233 break; 234 } 235 } 236 237 if (!cfg80211_supported_cipher_suite(&rdev->wiphy, params->cipher)) 238 return -EINVAL; 239 240 return 0; 241 } 242 243 /* See IEEE 802.1H for LLC/SNAP encapsulation/decapsulation */ 244 /* Ethernet-II snap header (RFC1042 for most EtherTypes) */ 245 const unsigned char rfc1042_header[] __aligned(2) = 246 { 0xaa, 0xaa, 0x03, 0x00, 0x00, 0x00 }; 247 EXPORT_SYMBOL(rfc1042_header); 248 249 /* Bridge-Tunnel header (for EtherTypes ETH_P_AARP and ETH_P_IPX) */ 250 const unsigned char bridge_tunnel_header[] __aligned(2) = 251 { 0xaa, 0xaa, 0x03, 0x00, 0x00, 0xf8 }; 252 EXPORT_SYMBOL(bridge_tunnel_header); 253 254 unsigned int __attribute_const__ ieee80211_hdrlen(__le16 fc) 255 { 256 unsigned int hdrlen = 24; 257 258 if (ieee80211_is_data(fc)) { 259 if (ieee80211_has_a4(fc)) 260 hdrlen = 30; 261 if (ieee80211_is_data_qos(fc)) { 262 hdrlen += IEEE80211_QOS_CTL_LEN; 263 if (ieee80211_has_order(fc)) 264 hdrlen += IEEE80211_HT_CTL_LEN; 265 } 266 goto out; 267 } 268 269 if (ieee80211_is_ctl(fc)) { 270 /* 271 * ACK and CTS are 10 bytes, all others 16. To see how 272 * to get this condition consider 273 * subtype mask: 0b0000000011110000 (0x00F0) 274 * ACK subtype: 0b0000000011010000 (0x00D0) 275 * CTS subtype: 0b0000000011000000 (0x00C0) 276 * bits that matter: ^^^ (0x00E0) 277 * value of those: 0b0000000011000000 (0x00C0) 278 */ 279 if ((fc & cpu_to_le16(0x00E0)) == cpu_to_le16(0x00C0)) 280 hdrlen = 10; 281 else 282 hdrlen = 16; 283 } 284 out: 285 return hdrlen; 286 } 287 EXPORT_SYMBOL(ieee80211_hdrlen); 288 289 unsigned int ieee80211_get_hdrlen_from_skb(const struct sk_buff *skb) 290 { 291 const struct ieee80211_hdr *hdr = 292 (const struct ieee80211_hdr *)skb->data; 293 unsigned int hdrlen; 294 295 if (unlikely(skb->len < 10)) 296 return 0; 297 hdrlen = ieee80211_hdrlen(hdr->frame_control); 298 if (unlikely(hdrlen > skb->len)) 299 return 0; 300 return hdrlen; 301 } 302 EXPORT_SYMBOL(ieee80211_get_hdrlen_from_skb); 303 304 static int ieee80211_get_mesh_hdrlen(struct ieee80211s_hdr *meshhdr) 305 { 306 int ae = meshhdr->flags & MESH_FLAGS_AE; 307 /* 7.1.3.5a.2 */ 308 switch (ae) { 309 case 0: 310 return 6; 311 case MESH_FLAGS_AE_A4: 312 return 12; 313 case MESH_FLAGS_AE_A5_A6: 314 return 18; 315 case (MESH_FLAGS_AE_A4 | MESH_FLAGS_AE_A5_A6): 316 return 24; 317 default: 318 return 6; 319 } 320 } 321 322 int ieee80211_data_to_8023(struct sk_buff *skb, const u8 *addr, 323 enum nl80211_iftype iftype) 324 { 325 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data; 326 u16 hdrlen, ethertype; 327 u8 *payload; 328 u8 dst[ETH_ALEN]; 329 u8 src[ETH_ALEN] __aligned(2); 330 331 if (unlikely(!ieee80211_is_data_present(hdr->frame_control))) 332 return -1; 333 334 hdrlen = ieee80211_hdrlen(hdr->frame_control); 335 336 /* convert IEEE 802.11 header + possible LLC headers into Ethernet 337 * header 338 * IEEE 802.11 address fields: 339 * ToDS FromDS Addr1 Addr2 Addr3 Addr4 340 * 0 0 DA SA BSSID n/a 341 * 0 1 DA BSSID SA n/a 342 * 1 0 BSSID SA DA n/a 343 * 1 1 RA TA DA SA 344 */ 345 memcpy(dst, ieee80211_get_DA(hdr), ETH_ALEN); 346 memcpy(src, ieee80211_get_SA(hdr), ETH_ALEN); 347 348 switch (hdr->frame_control & 349 cpu_to_le16(IEEE80211_FCTL_TODS | IEEE80211_FCTL_FROMDS)) { 350 case cpu_to_le16(IEEE80211_FCTL_TODS): 351 if (unlikely(iftype != NL80211_IFTYPE_AP && 352 iftype != NL80211_IFTYPE_AP_VLAN && 353 iftype != NL80211_IFTYPE_P2P_GO)) 354 return -1; 355 break; 356 case cpu_to_le16(IEEE80211_FCTL_TODS | IEEE80211_FCTL_FROMDS): 357 if (unlikely(iftype != NL80211_IFTYPE_WDS && 358 iftype != NL80211_IFTYPE_MESH_POINT && 359 iftype != NL80211_IFTYPE_AP_VLAN && 360 iftype != NL80211_IFTYPE_STATION)) 361 return -1; 362 if (iftype == NL80211_IFTYPE_MESH_POINT) { 363 struct ieee80211s_hdr *meshdr = 364 (struct ieee80211s_hdr *) (skb->data + hdrlen); 365 /* make sure meshdr->flags is on the linear part */ 366 if (!pskb_may_pull(skb, hdrlen + 1)) 367 return -1; 368 if (meshdr->flags & MESH_FLAGS_AE_A5_A6) { 369 skb_copy_bits(skb, hdrlen + 370 offsetof(struct ieee80211s_hdr, eaddr1), 371 dst, ETH_ALEN); 372 skb_copy_bits(skb, hdrlen + 373 offsetof(struct ieee80211s_hdr, eaddr2), 374 src, ETH_ALEN); 375 } 376 hdrlen += ieee80211_get_mesh_hdrlen(meshdr); 377 } 378 break; 379 case cpu_to_le16(IEEE80211_FCTL_FROMDS): 380 if ((iftype != NL80211_IFTYPE_STATION && 381 iftype != NL80211_IFTYPE_P2P_CLIENT && 382 iftype != NL80211_IFTYPE_MESH_POINT) || 383 (is_multicast_ether_addr(dst) && 384 !compare_ether_addr(src, addr))) 385 return -1; 386 if (iftype == NL80211_IFTYPE_MESH_POINT) { 387 struct ieee80211s_hdr *meshdr = 388 (struct ieee80211s_hdr *) (skb->data + hdrlen); 389 /* make sure meshdr->flags is on the linear part */ 390 if (!pskb_may_pull(skb, hdrlen + 1)) 391 return -1; 392 if (meshdr->flags & MESH_FLAGS_AE_A4) 393 skb_copy_bits(skb, hdrlen + 394 offsetof(struct ieee80211s_hdr, eaddr1), 395 src, ETH_ALEN); 396 hdrlen += ieee80211_get_mesh_hdrlen(meshdr); 397 } 398 break; 399 case cpu_to_le16(0): 400 if (iftype != NL80211_IFTYPE_ADHOC && 401 iftype != NL80211_IFTYPE_STATION) 402 return -1; 403 break; 404 } 405 406 if (!pskb_may_pull(skb, hdrlen + 8)) 407 return -1; 408 409 payload = skb->data + hdrlen; 410 ethertype = (payload[6] << 8) | payload[7]; 411 412 if (likely((compare_ether_addr(payload, rfc1042_header) == 0 && 413 ethertype != ETH_P_AARP && ethertype != ETH_P_IPX) || 414 compare_ether_addr(payload, bridge_tunnel_header) == 0)) { 415 /* remove RFC1042 or Bridge-Tunnel encapsulation and 416 * replace EtherType */ 417 skb_pull(skb, hdrlen + 6); 418 memcpy(skb_push(skb, ETH_ALEN), src, ETH_ALEN); 419 memcpy(skb_push(skb, ETH_ALEN), dst, ETH_ALEN); 420 } else { 421 struct ethhdr *ehdr; 422 __be16 len; 423 424 skb_pull(skb, hdrlen); 425 len = htons(skb->len); 426 ehdr = (struct ethhdr *) skb_push(skb, sizeof(struct ethhdr)); 427 memcpy(ehdr->h_dest, dst, ETH_ALEN); 428 memcpy(ehdr->h_source, src, ETH_ALEN); 429 ehdr->h_proto = len; 430 } 431 return 0; 432 } 433 EXPORT_SYMBOL(ieee80211_data_to_8023); 434 435 int ieee80211_data_from_8023(struct sk_buff *skb, const u8 *addr, 436 enum nl80211_iftype iftype, u8 *bssid, bool qos) 437 { 438 struct ieee80211_hdr hdr; 439 u16 hdrlen, ethertype; 440 __le16 fc; 441 const u8 *encaps_data; 442 int encaps_len, skip_header_bytes; 443 int nh_pos, h_pos; 444 int head_need; 445 446 if (unlikely(skb->len < ETH_HLEN)) 447 return -EINVAL; 448 449 nh_pos = skb_network_header(skb) - skb->data; 450 h_pos = skb_transport_header(skb) - skb->data; 451 452 /* convert Ethernet header to proper 802.11 header (based on 453 * operation mode) */ 454 ethertype = (skb->data[12] << 8) | skb->data[13]; 455 fc = cpu_to_le16(IEEE80211_FTYPE_DATA | IEEE80211_STYPE_DATA); 456 457 switch (iftype) { 458 case NL80211_IFTYPE_AP: 459 case NL80211_IFTYPE_AP_VLAN: 460 case NL80211_IFTYPE_P2P_GO: 461 fc |= cpu_to_le16(IEEE80211_FCTL_FROMDS); 462 /* DA BSSID SA */ 463 memcpy(hdr.addr1, skb->data, ETH_ALEN); 464 memcpy(hdr.addr2, addr, ETH_ALEN); 465 memcpy(hdr.addr3, skb->data + ETH_ALEN, ETH_ALEN); 466 hdrlen = 24; 467 break; 468 case NL80211_IFTYPE_STATION: 469 case NL80211_IFTYPE_P2P_CLIENT: 470 fc |= cpu_to_le16(IEEE80211_FCTL_TODS); 471 /* BSSID SA DA */ 472 memcpy(hdr.addr1, bssid, ETH_ALEN); 473 memcpy(hdr.addr2, skb->data + ETH_ALEN, ETH_ALEN); 474 memcpy(hdr.addr3, skb->data, ETH_ALEN); 475 hdrlen = 24; 476 break; 477 case NL80211_IFTYPE_ADHOC: 478 /* DA SA BSSID */ 479 memcpy(hdr.addr1, skb->data, ETH_ALEN); 480 memcpy(hdr.addr2, skb->data + ETH_ALEN, ETH_ALEN); 481 memcpy(hdr.addr3, bssid, ETH_ALEN); 482 hdrlen = 24; 483 break; 484 default: 485 return -EOPNOTSUPP; 486 } 487 488 if (qos) { 489 fc |= cpu_to_le16(IEEE80211_STYPE_QOS_DATA); 490 hdrlen += 2; 491 } 492 493 hdr.frame_control = fc; 494 hdr.duration_id = 0; 495 hdr.seq_ctrl = 0; 496 497 skip_header_bytes = ETH_HLEN; 498 if (ethertype == ETH_P_AARP || ethertype == ETH_P_IPX) { 499 encaps_data = bridge_tunnel_header; 500 encaps_len = sizeof(bridge_tunnel_header); 501 skip_header_bytes -= 2; 502 } else if (ethertype > 0x600) { 503 encaps_data = rfc1042_header; 504 encaps_len = sizeof(rfc1042_header); 505 skip_header_bytes -= 2; 506 } else { 507 encaps_data = NULL; 508 encaps_len = 0; 509 } 510 511 skb_pull(skb, skip_header_bytes); 512 nh_pos -= skip_header_bytes; 513 h_pos -= skip_header_bytes; 514 515 head_need = hdrlen + encaps_len - skb_headroom(skb); 516 517 if (head_need > 0 || skb_cloned(skb)) { 518 head_need = max(head_need, 0); 519 if (head_need) 520 skb_orphan(skb); 521 522 if (pskb_expand_head(skb, head_need, 0, GFP_ATOMIC)) 523 return -ENOMEM; 524 525 skb->truesize += head_need; 526 } 527 528 if (encaps_data) { 529 memcpy(skb_push(skb, encaps_len), encaps_data, encaps_len); 530 nh_pos += encaps_len; 531 h_pos += encaps_len; 532 } 533 534 memcpy(skb_push(skb, hdrlen), &hdr, hdrlen); 535 536 nh_pos += hdrlen; 537 h_pos += hdrlen; 538 539 /* Update skb pointers to various headers since this modified frame 540 * is going to go through Linux networking code that may potentially 541 * need things like pointer to IP header. */ 542 skb_set_mac_header(skb, 0); 543 skb_set_network_header(skb, nh_pos); 544 skb_set_transport_header(skb, h_pos); 545 546 return 0; 547 } 548 EXPORT_SYMBOL(ieee80211_data_from_8023); 549 550 551 void ieee80211_amsdu_to_8023s(struct sk_buff *skb, struct sk_buff_head *list, 552 const u8 *addr, enum nl80211_iftype iftype, 553 const unsigned int extra_headroom, 554 bool has_80211_header) 555 { 556 struct sk_buff *frame = NULL; 557 u16 ethertype; 558 u8 *payload; 559 const struct ethhdr *eth; 560 int remaining, err; 561 u8 dst[ETH_ALEN], src[ETH_ALEN]; 562 563 if (has_80211_header) { 564 err = ieee80211_data_to_8023(skb, addr, iftype); 565 if (err) 566 goto out; 567 568 /* skip the wrapping header */ 569 eth = (struct ethhdr *) skb_pull(skb, sizeof(struct ethhdr)); 570 if (!eth) 571 goto out; 572 } else { 573 eth = (struct ethhdr *) skb->data; 574 } 575 576 while (skb != frame) { 577 u8 padding; 578 __be16 len = eth->h_proto; 579 unsigned int subframe_len = sizeof(struct ethhdr) + ntohs(len); 580 581 remaining = skb->len; 582 memcpy(dst, eth->h_dest, ETH_ALEN); 583 memcpy(src, eth->h_source, ETH_ALEN); 584 585 padding = (4 - subframe_len) & 0x3; 586 /* the last MSDU has no padding */ 587 if (subframe_len > remaining) 588 goto purge; 589 590 skb_pull(skb, sizeof(struct ethhdr)); 591 /* reuse skb for the last subframe */ 592 if (remaining <= subframe_len + padding) 593 frame = skb; 594 else { 595 unsigned int hlen = ALIGN(extra_headroom, 4); 596 /* 597 * Allocate and reserve two bytes more for payload 598 * alignment since sizeof(struct ethhdr) is 14. 599 */ 600 frame = dev_alloc_skb(hlen + subframe_len + 2); 601 if (!frame) 602 goto purge; 603 604 skb_reserve(frame, hlen + sizeof(struct ethhdr) + 2); 605 memcpy(skb_put(frame, ntohs(len)), skb->data, 606 ntohs(len)); 607 608 eth = (struct ethhdr *)skb_pull(skb, ntohs(len) + 609 padding); 610 if (!eth) { 611 dev_kfree_skb(frame); 612 goto purge; 613 } 614 } 615 616 skb_reset_network_header(frame); 617 frame->dev = skb->dev; 618 frame->priority = skb->priority; 619 620 payload = frame->data; 621 ethertype = (payload[6] << 8) | payload[7]; 622 623 if (likely((compare_ether_addr(payload, rfc1042_header) == 0 && 624 ethertype != ETH_P_AARP && ethertype != ETH_P_IPX) || 625 compare_ether_addr(payload, 626 bridge_tunnel_header) == 0)) { 627 /* remove RFC1042 or Bridge-Tunnel 628 * encapsulation and replace EtherType */ 629 skb_pull(frame, 6); 630 memcpy(skb_push(frame, ETH_ALEN), src, ETH_ALEN); 631 memcpy(skb_push(frame, ETH_ALEN), dst, ETH_ALEN); 632 } else { 633 memcpy(skb_push(frame, sizeof(__be16)), &len, 634 sizeof(__be16)); 635 memcpy(skb_push(frame, ETH_ALEN), src, ETH_ALEN); 636 memcpy(skb_push(frame, ETH_ALEN), dst, ETH_ALEN); 637 } 638 __skb_queue_tail(list, frame); 639 } 640 641 return; 642 643 purge: 644 __skb_queue_purge(list); 645 out: 646 dev_kfree_skb(skb); 647 } 648 EXPORT_SYMBOL(ieee80211_amsdu_to_8023s); 649 650 /* Given a data frame determine the 802.1p/1d tag to use. */ 651 unsigned int cfg80211_classify8021d(struct sk_buff *skb) 652 { 653 unsigned int dscp; 654 655 /* skb->priority values from 256->263 are magic values to 656 * directly indicate a specific 802.1d priority. This is used 657 * to allow 802.1d priority to be passed directly in from VLAN 658 * tags, etc. 659 */ 660 if (skb->priority >= 256 && skb->priority <= 263) 661 return skb->priority - 256; 662 663 switch (skb->protocol) { 664 case htons(ETH_P_IP): 665 dscp = ip_hdr(skb)->tos & 0xfc; 666 break; 667 default: 668 return 0; 669 } 670 671 return dscp >> 5; 672 } 673 EXPORT_SYMBOL(cfg80211_classify8021d); 674 675 const u8 *ieee80211_bss_get_ie(struct cfg80211_bss *bss, u8 ie) 676 { 677 u8 *end, *pos; 678 679 pos = bss->information_elements; 680 if (pos == NULL) 681 return NULL; 682 end = pos + bss->len_information_elements; 683 684 while (pos + 1 < end) { 685 if (pos + 2 + pos[1] > end) 686 break; 687 if (pos[0] == ie) 688 return pos; 689 pos += 2 + pos[1]; 690 } 691 692 return NULL; 693 } 694 EXPORT_SYMBOL(ieee80211_bss_get_ie); 695 696 void cfg80211_upload_connect_keys(struct wireless_dev *wdev) 697 { 698 struct cfg80211_registered_device *rdev = wiphy_to_dev(wdev->wiphy); 699 struct net_device *dev = wdev->netdev; 700 int i; 701 702 if (!wdev->connect_keys) 703 return; 704 705 for (i = 0; i < 6; i++) { 706 if (!wdev->connect_keys->params[i].cipher) 707 continue; 708 if (rdev->ops->add_key(wdev->wiphy, dev, i, false, NULL, 709 &wdev->connect_keys->params[i])) { 710 netdev_err(dev, "failed to set key %d\n", i); 711 continue; 712 } 713 if (wdev->connect_keys->def == i) 714 if (rdev->ops->set_default_key(wdev->wiphy, dev, 715 i, true, true)) { 716 netdev_err(dev, "failed to set defkey %d\n", i); 717 continue; 718 } 719 if (wdev->connect_keys->defmgmt == i) 720 if (rdev->ops->set_default_mgmt_key(wdev->wiphy, dev, i)) 721 netdev_err(dev, "failed to set mgtdef %d\n", i); 722 } 723 724 kfree(wdev->connect_keys); 725 wdev->connect_keys = NULL; 726 } 727 728 static void cfg80211_process_wdev_events(struct wireless_dev *wdev) 729 { 730 struct cfg80211_event *ev; 731 unsigned long flags; 732 const u8 *bssid = NULL; 733 734 spin_lock_irqsave(&wdev->event_lock, flags); 735 while (!list_empty(&wdev->event_list)) { 736 ev = list_first_entry(&wdev->event_list, 737 struct cfg80211_event, list); 738 list_del(&ev->list); 739 spin_unlock_irqrestore(&wdev->event_lock, flags); 740 741 wdev_lock(wdev); 742 switch (ev->type) { 743 case EVENT_CONNECT_RESULT: 744 if (!is_zero_ether_addr(ev->cr.bssid)) 745 bssid = ev->cr.bssid; 746 __cfg80211_connect_result( 747 wdev->netdev, bssid, 748 ev->cr.req_ie, ev->cr.req_ie_len, 749 ev->cr.resp_ie, ev->cr.resp_ie_len, 750 ev->cr.status, 751 ev->cr.status == WLAN_STATUS_SUCCESS, 752 NULL); 753 break; 754 case EVENT_ROAMED: 755 __cfg80211_roamed(wdev, ev->rm.channel, ev->rm.bssid, 756 ev->rm.req_ie, ev->rm.req_ie_len, 757 ev->rm.resp_ie, ev->rm.resp_ie_len); 758 break; 759 case EVENT_DISCONNECTED: 760 __cfg80211_disconnected(wdev->netdev, 761 ev->dc.ie, ev->dc.ie_len, 762 ev->dc.reason, true); 763 break; 764 case EVENT_IBSS_JOINED: 765 __cfg80211_ibss_joined(wdev->netdev, ev->ij.bssid); 766 break; 767 } 768 wdev_unlock(wdev); 769 770 kfree(ev); 771 772 spin_lock_irqsave(&wdev->event_lock, flags); 773 } 774 spin_unlock_irqrestore(&wdev->event_lock, flags); 775 } 776 777 void cfg80211_process_rdev_events(struct cfg80211_registered_device *rdev) 778 { 779 struct wireless_dev *wdev; 780 781 ASSERT_RTNL(); 782 ASSERT_RDEV_LOCK(rdev); 783 784 mutex_lock(&rdev->devlist_mtx); 785 786 list_for_each_entry(wdev, &rdev->netdev_list, list) 787 cfg80211_process_wdev_events(wdev); 788 789 mutex_unlock(&rdev->devlist_mtx); 790 } 791 792 int cfg80211_change_iface(struct cfg80211_registered_device *rdev, 793 struct net_device *dev, enum nl80211_iftype ntype, 794 u32 *flags, struct vif_params *params) 795 { 796 int err; 797 enum nl80211_iftype otype = dev->ieee80211_ptr->iftype; 798 799 ASSERT_RDEV_LOCK(rdev); 800 801 /* don't support changing VLANs, you just re-create them */ 802 if (otype == NL80211_IFTYPE_AP_VLAN) 803 return -EOPNOTSUPP; 804 805 if (!rdev->ops->change_virtual_intf || 806 !(rdev->wiphy.interface_modes & (1 << ntype))) 807 return -EOPNOTSUPP; 808 809 /* if it's part of a bridge, reject changing type to station/ibss */ 810 if ((dev->priv_flags & IFF_BRIDGE_PORT) && 811 (ntype == NL80211_IFTYPE_ADHOC || 812 ntype == NL80211_IFTYPE_STATION || 813 ntype == NL80211_IFTYPE_P2P_CLIENT)) 814 return -EBUSY; 815 816 if (ntype != otype) { 817 err = cfg80211_can_change_interface(rdev, dev->ieee80211_ptr, 818 ntype); 819 if (err) 820 return err; 821 822 dev->ieee80211_ptr->use_4addr = false; 823 dev->ieee80211_ptr->mesh_id_up_len = 0; 824 825 switch (otype) { 826 case NL80211_IFTYPE_ADHOC: 827 cfg80211_leave_ibss(rdev, dev, false); 828 break; 829 case NL80211_IFTYPE_STATION: 830 case NL80211_IFTYPE_P2P_CLIENT: 831 cfg80211_disconnect(rdev, dev, 832 WLAN_REASON_DEAUTH_LEAVING, true); 833 break; 834 case NL80211_IFTYPE_MESH_POINT: 835 /* mesh should be handled? */ 836 break; 837 default: 838 break; 839 } 840 841 cfg80211_process_rdev_events(rdev); 842 } 843 844 err = rdev->ops->change_virtual_intf(&rdev->wiphy, dev, 845 ntype, flags, params); 846 847 WARN_ON(!err && dev->ieee80211_ptr->iftype != ntype); 848 849 if (!err && params && params->use_4addr != -1) 850 dev->ieee80211_ptr->use_4addr = params->use_4addr; 851 852 if (!err) { 853 dev->priv_flags &= ~IFF_DONT_BRIDGE; 854 switch (ntype) { 855 case NL80211_IFTYPE_STATION: 856 if (dev->ieee80211_ptr->use_4addr) 857 break; 858 /* fall through */ 859 case NL80211_IFTYPE_P2P_CLIENT: 860 case NL80211_IFTYPE_ADHOC: 861 dev->priv_flags |= IFF_DONT_BRIDGE; 862 break; 863 case NL80211_IFTYPE_P2P_GO: 864 case NL80211_IFTYPE_AP: 865 case NL80211_IFTYPE_AP_VLAN: 866 case NL80211_IFTYPE_WDS: 867 case NL80211_IFTYPE_MESH_POINT: 868 /* bridging OK */ 869 break; 870 case NL80211_IFTYPE_MONITOR: 871 /* monitor can't bridge anyway */ 872 break; 873 case NL80211_IFTYPE_UNSPECIFIED: 874 case NUM_NL80211_IFTYPES: 875 /* not happening */ 876 break; 877 } 878 } 879 880 return err; 881 } 882 883 u16 cfg80211_calculate_bitrate(struct rate_info *rate) 884 { 885 int modulation, streams, bitrate; 886 887 if (!(rate->flags & RATE_INFO_FLAGS_MCS)) 888 return rate->legacy; 889 890 /* the formula below does only work for MCS values smaller than 32 */ 891 if (rate->mcs >= 32) 892 return 0; 893 894 modulation = rate->mcs & 7; 895 streams = (rate->mcs >> 3) + 1; 896 897 bitrate = (rate->flags & RATE_INFO_FLAGS_40_MHZ_WIDTH) ? 898 13500000 : 6500000; 899 900 if (modulation < 4) 901 bitrate *= (modulation + 1); 902 else if (modulation == 4) 903 bitrate *= (modulation + 2); 904 else 905 bitrate *= (modulation + 3); 906 907 bitrate *= streams; 908 909 if (rate->flags & RATE_INFO_FLAGS_SHORT_GI) 910 bitrate = (bitrate / 9) * 10; 911 912 /* do NOT round down here */ 913 return (bitrate + 50000) / 100000; 914 } 915 916 int cfg80211_validate_beacon_int(struct cfg80211_registered_device *rdev, 917 u32 beacon_int) 918 { 919 struct wireless_dev *wdev; 920 int res = 0; 921 922 if (!beacon_int) 923 return -EINVAL; 924 925 mutex_lock(&rdev->devlist_mtx); 926 927 list_for_each_entry(wdev, &rdev->netdev_list, list) { 928 if (!wdev->beacon_interval) 929 continue; 930 if (wdev->beacon_interval != beacon_int) { 931 res = -EINVAL; 932 break; 933 } 934 } 935 936 mutex_unlock(&rdev->devlist_mtx); 937 938 return res; 939 } 940 941 int cfg80211_can_change_interface(struct cfg80211_registered_device *rdev, 942 struct wireless_dev *wdev, 943 enum nl80211_iftype iftype) 944 { 945 struct wireless_dev *wdev_iter; 946 int num[NUM_NL80211_IFTYPES]; 947 int total = 1; 948 int i, j; 949 950 ASSERT_RTNL(); 951 952 /* Always allow software iftypes */ 953 if (rdev->wiphy.software_iftypes & BIT(iftype)) 954 return 0; 955 956 /* 957 * Drivers will gradually all set this flag, until all 958 * have it we only enforce for those that set it. 959 */ 960 if (!(rdev->wiphy.flags & WIPHY_FLAG_ENFORCE_COMBINATIONS)) 961 return 0; 962 963 memset(num, 0, sizeof(num)); 964 965 num[iftype] = 1; 966 967 mutex_lock(&rdev->devlist_mtx); 968 list_for_each_entry(wdev_iter, &rdev->netdev_list, list) { 969 if (wdev_iter == wdev) 970 continue; 971 if (!netif_running(wdev_iter->netdev)) 972 continue; 973 974 if (rdev->wiphy.software_iftypes & BIT(wdev_iter->iftype)) 975 continue; 976 977 num[wdev_iter->iftype]++; 978 total++; 979 } 980 mutex_unlock(&rdev->devlist_mtx); 981 982 for (i = 0; i < rdev->wiphy.n_iface_combinations; i++) { 983 const struct ieee80211_iface_combination *c; 984 struct ieee80211_iface_limit *limits; 985 986 c = &rdev->wiphy.iface_combinations[i]; 987 988 limits = kmemdup(c->limits, sizeof(limits[0]) * c->n_limits, 989 GFP_KERNEL); 990 if (!limits) 991 return -ENOMEM; 992 if (total > c->max_interfaces) 993 goto cont; 994 995 for (iftype = 0; iftype < NUM_NL80211_IFTYPES; iftype++) { 996 if (rdev->wiphy.software_iftypes & BIT(iftype)) 997 continue; 998 for (j = 0; j < c->n_limits; j++) { 999 if (!(limits[j].types & iftype)) 1000 continue; 1001 if (limits[j].max < num[iftype]) 1002 goto cont; 1003 limits[j].max -= num[iftype]; 1004 } 1005 } 1006 /* yay, it fits */ 1007 kfree(limits); 1008 return 0; 1009 cont: 1010 kfree(limits); 1011 } 1012 1013 return -EBUSY; 1014 } 1015 1016 int ieee80211_get_ratemask(struct ieee80211_supported_band *sband, 1017 const u8 *rates, unsigned int n_rates, 1018 u32 *mask) 1019 { 1020 int i, j; 1021 1022 if (!sband) 1023 return -EINVAL; 1024 1025 if (n_rates == 0 || n_rates > NL80211_MAX_SUPP_RATES) 1026 return -EINVAL; 1027 1028 *mask = 0; 1029 1030 for (i = 0; i < n_rates; i++) { 1031 int rate = (rates[i] & 0x7f) * 5; 1032 bool found = false; 1033 1034 for (j = 0; j < sband->n_bitrates; j++) { 1035 if (sband->bitrates[j].bitrate == rate) { 1036 found = true; 1037 *mask |= BIT(j); 1038 break; 1039 } 1040 } 1041 if (!found) 1042 return -EINVAL; 1043 } 1044 1045 /* 1046 * mask must have at least one bit set here since we 1047 * didn't accept a 0-length rates array nor allowed 1048 * entries in the array that didn't exist 1049 */ 1050 1051 return 0; 1052 } 1053 1054 u32 ieee802_11_parse_elems_crc(u8 *start, size_t len, 1055 struct ieee802_11_elems *elems, 1056 u64 filter, u32 crc) 1057 { 1058 size_t left = len; 1059 u8 *pos = start; 1060 bool calc_crc = filter != 0; 1061 1062 memset(elems, 0, sizeof(*elems)); 1063 elems->ie_start = start; 1064 elems->total_len = len; 1065 1066 while (left >= 2) { 1067 u8 id, elen; 1068 1069 id = *pos++; 1070 elen = *pos++; 1071 left -= 2; 1072 1073 if (elen > left) 1074 break; 1075 1076 if (calc_crc && id < 64 && (filter & (1ULL << id))) 1077 crc = crc32_be(crc, pos - 2, elen + 2); 1078 1079 switch (id) { 1080 case WLAN_EID_SSID: 1081 elems->ssid = pos; 1082 elems->ssid_len = elen; 1083 break; 1084 case WLAN_EID_SUPP_RATES: 1085 elems->supp_rates = pos; 1086 elems->supp_rates_len = elen; 1087 break; 1088 case WLAN_EID_FH_PARAMS: 1089 elems->fh_params = pos; 1090 elems->fh_params_len = elen; 1091 break; 1092 case WLAN_EID_DS_PARAMS: 1093 elems->ds_params = pos; 1094 elems->ds_params_len = elen; 1095 break; 1096 case WLAN_EID_CF_PARAMS: 1097 elems->cf_params = pos; 1098 elems->cf_params_len = elen; 1099 break; 1100 case WLAN_EID_TIM: 1101 if (elen >= sizeof(struct ieee80211_tim_ie)) { 1102 elems->tim = (void *)pos; 1103 elems->tim_len = elen; 1104 } 1105 break; 1106 case WLAN_EID_IBSS_PARAMS: 1107 elems->ibss_params = pos; 1108 elems->ibss_params_len = elen; 1109 break; 1110 case WLAN_EID_CHALLENGE: 1111 elems->challenge = pos; 1112 elems->challenge_len = elen; 1113 break; 1114 case WLAN_EID_VENDOR_SPECIFIC: 1115 if (elen >= 4 && pos[0] == 0x00 && pos[1] == 0x50 && 1116 pos[2] == 0xf2) { 1117 /* Microsoft OUI (00:50:F2) */ 1118 1119 if (calc_crc) 1120 crc = crc32_be(crc, pos - 2, elen + 2); 1121 1122 if (pos[3] == 1) { 1123 /* OUI Type 1 - WPA IE */ 1124 elems->wpa = pos; 1125 elems->wpa_len = elen; 1126 } else if (elen >= 5 && pos[3] == 2) { 1127 /* OUI Type 2 - WMM IE */ 1128 if (pos[4] == 0) { 1129 elems->wmm_info = pos; 1130 elems->wmm_info_len = elen; 1131 } else if (pos[4] == 1) { 1132 elems->wmm_param = pos; 1133 elems->wmm_param_len = elen; 1134 } 1135 } 1136 } 1137 break; 1138 case WLAN_EID_RSN: 1139 elems->rsn = pos; 1140 elems->rsn_len = elen; 1141 break; 1142 case WLAN_EID_ERP_INFO: 1143 elems->erp_info = pos; 1144 elems->erp_info_len = elen; 1145 break; 1146 case WLAN_EID_EXT_SUPP_RATES: 1147 elems->ext_supp_rates = pos; 1148 elems->ext_supp_rates_len = elen; 1149 break; 1150 case WLAN_EID_HT_CAPABILITY: 1151 if (elen >= sizeof(struct ieee80211_ht_cap)) 1152 elems->ht_cap_elem = (void *)pos; 1153 break; 1154 case WLAN_EID_HT_INFORMATION: 1155 if (elen >= sizeof(struct ieee80211_ht_info)) 1156 elems->ht_info_elem = (void *)pos; 1157 break; 1158 case WLAN_EID_MESH_ID: 1159 elems->mesh_id = pos; 1160 elems->mesh_id_len = elen; 1161 break; 1162 case WLAN_EID_MESH_CONFIG: 1163 if (elen >= sizeof(struct ieee80211_meshconf_ie)) 1164 elems->mesh_config = (void *)pos; 1165 break; 1166 case WLAN_EID_PEER_MGMT: 1167 elems->peering = pos; 1168 elems->peering_len = elen; 1169 break; 1170 case WLAN_EID_PREQ: 1171 elems->preq = pos; 1172 elems->preq_len = elen; 1173 break; 1174 case WLAN_EID_PREP: 1175 elems->prep = pos; 1176 elems->prep_len = elen; 1177 break; 1178 case WLAN_EID_PERR: 1179 elems->perr = pos; 1180 elems->perr_len = elen; 1181 break; 1182 case WLAN_EID_RANN: 1183 if (elen >= sizeof(struct ieee80211_rann_ie)) 1184 elems->rann = (void *)pos; 1185 break; 1186 case WLAN_EID_CHANNEL_SWITCH: 1187 elems->ch_switch_elem = pos; 1188 elems->ch_switch_elem_len = elen; 1189 break; 1190 case WLAN_EID_QUIET: 1191 if (!elems->quiet_elem) { 1192 elems->quiet_elem = pos; 1193 elems->quiet_elem_len = elen; 1194 } 1195 elems->num_of_quiet_elem++; 1196 break; 1197 case WLAN_EID_COUNTRY: 1198 elems->country_elem = pos; 1199 elems->country_elem_len = elen; 1200 break; 1201 case WLAN_EID_PWR_CONSTRAINT: 1202 elems->pwr_constr_elem = pos; 1203 elems->pwr_constr_elem_len = elen; 1204 break; 1205 case WLAN_EID_TIMEOUT_INTERVAL: 1206 elems->timeout_int = pos; 1207 elems->timeout_int_len = elen; 1208 break; 1209 default: 1210 break; 1211 } 1212 1213 left -= elen; 1214 pos += elen; 1215 } 1216 1217 return crc; 1218 } 1219 EXPORT_SYMBOL(ieee802_11_parse_elems_crc); 1220