1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Wireless utility functions 4 * 5 * Copyright 2007-2009 Johannes Berg <johannes@sipsolutions.net> 6 * Copyright 2013-2014 Intel Mobile Communications GmbH 7 * Copyright 2017 Intel Deutschland GmbH 8 * Copyright (C) 2018-2020 Intel Corporation 9 */ 10 #include <linux/export.h> 11 #include <linux/bitops.h> 12 #include <linux/etherdevice.h> 13 #include <linux/slab.h> 14 #include <linux/ieee80211.h> 15 #include <net/cfg80211.h> 16 #include <net/ip.h> 17 #include <net/dsfield.h> 18 #include <linux/if_vlan.h> 19 #include <linux/mpls.h> 20 #include <linux/gcd.h> 21 #include <linux/bitfield.h> 22 #include <linux/nospec.h> 23 #include "core.h" 24 #include "rdev-ops.h" 25 26 27 const struct ieee80211_rate * 28 ieee80211_get_response_rate(struct ieee80211_supported_band *sband, 29 u32 basic_rates, int bitrate) 30 { 31 struct ieee80211_rate *result = &sband->bitrates[0]; 32 int i; 33 34 for (i = 0; i < sband->n_bitrates; i++) { 35 if (!(basic_rates & BIT(i))) 36 continue; 37 if (sband->bitrates[i].bitrate > bitrate) 38 continue; 39 result = &sband->bitrates[i]; 40 } 41 42 return result; 43 } 44 EXPORT_SYMBOL(ieee80211_get_response_rate); 45 46 u32 ieee80211_mandatory_rates(struct ieee80211_supported_band *sband, 47 enum nl80211_bss_scan_width scan_width) 48 { 49 struct ieee80211_rate *bitrates; 50 u32 mandatory_rates = 0; 51 enum ieee80211_rate_flags mandatory_flag; 52 int i; 53 54 if (WARN_ON(!sband)) 55 return 1; 56 57 if (sband->band == NL80211_BAND_2GHZ) { 58 if (scan_width == NL80211_BSS_CHAN_WIDTH_5 || 59 scan_width == NL80211_BSS_CHAN_WIDTH_10) 60 mandatory_flag = IEEE80211_RATE_MANDATORY_G; 61 else 62 mandatory_flag = IEEE80211_RATE_MANDATORY_B; 63 } else { 64 mandatory_flag = IEEE80211_RATE_MANDATORY_A; 65 } 66 67 bitrates = sband->bitrates; 68 for (i = 0; i < sband->n_bitrates; i++) 69 if (bitrates[i].flags & mandatory_flag) 70 mandatory_rates |= BIT(i); 71 return mandatory_rates; 72 } 73 EXPORT_SYMBOL(ieee80211_mandatory_rates); 74 75 u32 ieee80211_channel_to_freq_khz(int chan, enum nl80211_band band) 76 { 77 /* see 802.11 17.3.8.3.2 and Annex J 78 * there are overlapping channel numbers in 5GHz and 2GHz bands */ 79 if (chan <= 0) 80 return 0; /* not supported */ 81 switch (band) { 82 case NL80211_BAND_2GHZ: 83 if (chan == 14) 84 return MHZ_TO_KHZ(2484); 85 else if (chan < 14) 86 return MHZ_TO_KHZ(2407 + chan * 5); 87 break; 88 case NL80211_BAND_5GHZ: 89 if (chan >= 182 && chan <= 196) 90 return MHZ_TO_KHZ(4000 + chan * 5); 91 else 92 return MHZ_TO_KHZ(5000 + chan * 5); 93 break; 94 case NL80211_BAND_6GHZ: 95 /* see 802.11ax D6.1 27.3.23.2 */ 96 if (chan == 2) 97 return MHZ_TO_KHZ(5935); 98 if (chan <= 233) 99 return MHZ_TO_KHZ(5950 + chan * 5); 100 break; 101 case NL80211_BAND_60GHZ: 102 if (chan < 7) 103 return MHZ_TO_KHZ(56160 + chan * 2160); 104 break; 105 case NL80211_BAND_S1GHZ: 106 return 902000 + chan * 500; 107 default: 108 ; 109 } 110 return 0; /* not supported */ 111 } 112 EXPORT_SYMBOL(ieee80211_channel_to_freq_khz); 113 114 enum nl80211_chan_width 115 ieee80211_s1g_channel_width(const struct ieee80211_channel *chan) 116 { 117 if (WARN_ON(!chan || chan->band != NL80211_BAND_S1GHZ)) 118 return NL80211_CHAN_WIDTH_20_NOHT; 119 120 /*S1G defines a single allowed channel width per channel. 121 * Extract that width here. 122 */ 123 if (chan->flags & IEEE80211_CHAN_1MHZ) 124 return NL80211_CHAN_WIDTH_1; 125 else if (chan->flags & IEEE80211_CHAN_2MHZ) 126 return NL80211_CHAN_WIDTH_2; 127 else if (chan->flags & IEEE80211_CHAN_4MHZ) 128 return NL80211_CHAN_WIDTH_4; 129 else if (chan->flags & IEEE80211_CHAN_8MHZ) 130 return NL80211_CHAN_WIDTH_8; 131 else if (chan->flags & IEEE80211_CHAN_16MHZ) 132 return NL80211_CHAN_WIDTH_16; 133 134 pr_err("unknown channel width for channel at %dKHz?\n", 135 ieee80211_channel_to_khz(chan)); 136 137 return NL80211_CHAN_WIDTH_1; 138 } 139 EXPORT_SYMBOL(ieee80211_s1g_channel_width); 140 141 int ieee80211_freq_khz_to_channel(u32 freq) 142 { 143 /* TODO: just handle MHz for now */ 144 freq = KHZ_TO_MHZ(freq); 145 146 /* see 802.11 17.3.8.3.2 and Annex J */ 147 if (freq == 2484) 148 return 14; 149 else if (freq < 2484) 150 return (freq - 2407) / 5; 151 else if (freq >= 4910 && freq <= 4980) 152 return (freq - 4000) / 5; 153 else if (freq < 5925) 154 return (freq - 5000) / 5; 155 else if (freq == 5935) 156 return 2; 157 else if (freq <= 45000) /* DMG band lower limit */ 158 /* see 802.11ax D6.1 27.3.22.2 */ 159 return (freq - 5950) / 5; 160 else if (freq >= 58320 && freq <= 70200) 161 return (freq - 56160) / 2160; 162 else 163 return 0; 164 } 165 EXPORT_SYMBOL(ieee80211_freq_khz_to_channel); 166 167 struct ieee80211_channel *ieee80211_get_channel_khz(struct wiphy *wiphy, 168 u32 freq) 169 { 170 enum nl80211_band band; 171 struct ieee80211_supported_band *sband; 172 int i; 173 174 for (band = 0; band < NUM_NL80211_BANDS; band++) { 175 sband = wiphy->bands[band]; 176 177 if (!sband) 178 continue; 179 180 for (i = 0; i < sband->n_channels; i++) { 181 struct ieee80211_channel *chan = &sband->channels[i]; 182 183 if (ieee80211_channel_to_khz(chan) == freq) 184 return chan; 185 } 186 } 187 188 return NULL; 189 } 190 EXPORT_SYMBOL(ieee80211_get_channel_khz); 191 192 static void set_mandatory_flags_band(struct ieee80211_supported_band *sband) 193 { 194 int i, want; 195 196 switch (sband->band) { 197 case NL80211_BAND_5GHZ: 198 case NL80211_BAND_6GHZ: 199 want = 3; 200 for (i = 0; i < sband->n_bitrates; i++) { 201 if (sband->bitrates[i].bitrate == 60 || 202 sband->bitrates[i].bitrate == 120 || 203 sband->bitrates[i].bitrate == 240) { 204 sband->bitrates[i].flags |= 205 IEEE80211_RATE_MANDATORY_A; 206 want--; 207 } 208 } 209 WARN_ON(want); 210 break; 211 case NL80211_BAND_2GHZ: 212 want = 7; 213 for (i = 0; i < sband->n_bitrates; i++) { 214 switch (sband->bitrates[i].bitrate) { 215 case 10: 216 case 20: 217 case 55: 218 case 110: 219 sband->bitrates[i].flags |= 220 IEEE80211_RATE_MANDATORY_B | 221 IEEE80211_RATE_MANDATORY_G; 222 want--; 223 break; 224 case 60: 225 case 120: 226 case 240: 227 sband->bitrates[i].flags |= 228 IEEE80211_RATE_MANDATORY_G; 229 want--; 230 fallthrough; 231 default: 232 sband->bitrates[i].flags |= 233 IEEE80211_RATE_ERP_G; 234 break; 235 } 236 } 237 WARN_ON(want != 0 && want != 3); 238 break; 239 case NL80211_BAND_60GHZ: 240 /* check for mandatory HT MCS 1..4 */ 241 WARN_ON(!sband->ht_cap.ht_supported); 242 WARN_ON((sband->ht_cap.mcs.rx_mask[0] & 0x1e) != 0x1e); 243 break; 244 case NL80211_BAND_S1GHZ: 245 /* Figure 9-589bd: 3 means unsupported, so != 3 means at least 246 * mandatory is ok. 247 */ 248 WARN_ON((sband->s1g_cap.nss_mcs[0] & 0x3) == 0x3); 249 break; 250 case NUM_NL80211_BANDS: 251 default: 252 WARN_ON(1); 253 break; 254 } 255 } 256 257 void ieee80211_set_bitrate_flags(struct wiphy *wiphy) 258 { 259 enum nl80211_band band; 260 261 for (band = 0; band < NUM_NL80211_BANDS; band++) 262 if (wiphy->bands[band]) 263 set_mandatory_flags_band(wiphy->bands[band]); 264 } 265 266 bool cfg80211_supported_cipher_suite(struct wiphy *wiphy, u32 cipher) 267 { 268 int i; 269 for (i = 0; i < wiphy->n_cipher_suites; i++) 270 if (cipher == wiphy->cipher_suites[i]) 271 return true; 272 return false; 273 } 274 275 static bool 276 cfg80211_igtk_cipher_supported(struct cfg80211_registered_device *rdev) 277 { 278 struct wiphy *wiphy = &rdev->wiphy; 279 int i; 280 281 for (i = 0; i < wiphy->n_cipher_suites; i++) { 282 switch (wiphy->cipher_suites[i]) { 283 case WLAN_CIPHER_SUITE_AES_CMAC: 284 case WLAN_CIPHER_SUITE_BIP_CMAC_256: 285 case WLAN_CIPHER_SUITE_BIP_GMAC_128: 286 case WLAN_CIPHER_SUITE_BIP_GMAC_256: 287 return true; 288 } 289 } 290 291 return false; 292 } 293 294 bool cfg80211_valid_key_idx(struct cfg80211_registered_device *rdev, 295 int key_idx, bool pairwise) 296 { 297 int max_key_idx; 298 299 if (pairwise) 300 max_key_idx = 3; 301 else if (wiphy_ext_feature_isset(&rdev->wiphy, 302 NL80211_EXT_FEATURE_BEACON_PROTECTION) || 303 wiphy_ext_feature_isset(&rdev->wiphy, 304 NL80211_EXT_FEATURE_BEACON_PROTECTION_CLIENT)) 305 max_key_idx = 7; 306 else if (cfg80211_igtk_cipher_supported(rdev)) 307 max_key_idx = 5; 308 else 309 max_key_idx = 3; 310 311 if (key_idx < 0 || key_idx > max_key_idx) 312 return false; 313 314 return true; 315 } 316 317 int cfg80211_validate_key_settings(struct cfg80211_registered_device *rdev, 318 struct key_params *params, int key_idx, 319 bool pairwise, const u8 *mac_addr) 320 { 321 if (!cfg80211_valid_key_idx(rdev, key_idx, pairwise)) 322 return -EINVAL; 323 324 if (!pairwise && mac_addr && !(rdev->wiphy.flags & WIPHY_FLAG_IBSS_RSN)) 325 return -EINVAL; 326 327 if (pairwise && !mac_addr) 328 return -EINVAL; 329 330 switch (params->cipher) { 331 case WLAN_CIPHER_SUITE_TKIP: 332 /* Extended Key ID can only be used with CCMP/GCMP ciphers */ 333 if ((pairwise && key_idx) || 334 params->mode != NL80211_KEY_RX_TX) 335 return -EINVAL; 336 break; 337 case WLAN_CIPHER_SUITE_CCMP: 338 case WLAN_CIPHER_SUITE_CCMP_256: 339 case WLAN_CIPHER_SUITE_GCMP: 340 case WLAN_CIPHER_SUITE_GCMP_256: 341 /* IEEE802.11-2016 allows only 0 and - when supporting 342 * Extended Key ID - 1 as index for pairwise keys. 343 * @NL80211_KEY_NO_TX is only allowed for pairwise keys when 344 * the driver supports Extended Key ID. 345 * @NL80211_KEY_SET_TX can't be set when installing and 346 * validating a key. 347 */ 348 if ((params->mode == NL80211_KEY_NO_TX && !pairwise) || 349 params->mode == NL80211_KEY_SET_TX) 350 return -EINVAL; 351 if (wiphy_ext_feature_isset(&rdev->wiphy, 352 NL80211_EXT_FEATURE_EXT_KEY_ID)) { 353 if (pairwise && (key_idx < 0 || key_idx > 1)) 354 return -EINVAL; 355 } else if (pairwise && key_idx) { 356 return -EINVAL; 357 } 358 break; 359 case WLAN_CIPHER_SUITE_AES_CMAC: 360 case WLAN_CIPHER_SUITE_BIP_CMAC_256: 361 case WLAN_CIPHER_SUITE_BIP_GMAC_128: 362 case WLAN_CIPHER_SUITE_BIP_GMAC_256: 363 /* Disallow BIP (group-only) cipher as pairwise cipher */ 364 if (pairwise) 365 return -EINVAL; 366 if (key_idx < 4) 367 return -EINVAL; 368 break; 369 case WLAN_CIPHER_SUITE_WEP40: 370 case WLAN_CIPHER_SUITE_WEP104: 371 if (key_idx > 3) 372 return -EINVAL; 373 break; 374 default: 375 break; 376 } 377 378 switch (params->cipher) { 379 case WLAN_CIPHER_SUITE_WEP40: 380 if (params->key_len != WLAN_KEY_LEN_WEP40) 381 return -EINVAL; 382 break; 383 case WLAN_CIPHER_SUITE_TKIP: 384 if (params->key_len != WLAN_KEY_LEN_TKIP) 385 return -EINVAL; 386 break; 387 case WLAN_CIPHER_SUITE_CCMP: 388 if (params->key_len != WLAN_KEY_LEN_CCMP) 389 return -EINVAL; 390 break; 391 case WLAN_CIPHER_SUITE_CCMP_256: 392 if (params->key_len != WLAN_KEY_LEN_CCMP_256) 393 return -EINVAL; 394 break; 395 case WLAN_CIPHER_SUITE_GCMP: 396 if (params->key_len != WLAN_KEY_LEN_GCMP) 397 return -EINVAL; 398 break; 399 case WLAN_CIPHER_SUITE_GCMP_256: 400 if (params->key_len != WLAN_KEY_LEN_GCMP_256) 401 return -EINVAL; 402 break; 403 case WLAN_CIPHER_SUITE_WEP104: 404 if (params->key_len != WLAN_KEY_LEN_WEP104) 405 return -EINVAL; 406 break; 407 case WLAN_CIPHER_SUITE_AES_CMAC: 408 if (params->key_len != WLAN_KEY_LEN_AES_CMAC) 409 return -EINVAL; 410 break; 411 case WLAN_CIPHER_SUITE_BIP_CMAC_256: 412 if (params->key_len != WLAN_KEY_LEN_BIP_CMAC_256) 413 return -EINVAL; 414 break; 415 case WLAN_CIPHER_SUITE_BIP_GMAC_128: 416 if (params->key_len != WLAN_KEY_LEN_BIP_GMAC_128) 417 return -EINVAL; 418 break; 419 case WLAN_CIPHER_SUITE_BIP_GMAC_256: 420 if (params->key_len != WLAN_KEY_LEN_BIP_GMAC_256) 421 return -EINVAL; 422 break; 423 default: 424 /* 425 * We don't know anything about this algorithm, 426 * allow using it -- but the driver must check 427 * all parameters! We still check below whether 428 * or not the driver supports this algorithm, 429 * of course. 430 */ 431 break; 432 } 433 434 if (params->seq) { 435 switch (params->cipher) { 436 case WLAN_CIPHER_SUITE_WEP40: 437 case WLAN_CIPHER_SUITE_WEP104: 438 /* These ciphers do not use key sequence */ 439 return -EINVAL; 440 case WLAN_CIPHER_SUITE_TKIP: 441 case WLAN_CIPHER_SUITE_CCMP: 442 case WLAN_CIPHER_SUITE_CCMP_256: 443 case WLAN_CIPHER_SUITE_GCMP: 444 case WLAN_CIPHER_SUITE_GCMP_256: 445 case WLAN_CIPHER_SUITE_AES_CMAC: 446 case WLAN_CIPHER_SUITE_BIP_CMAC_256: 447 case WLAN_CIPHER_SUITE_BIP_GMAC_128: 448 case WLAN_CIPHER_SUITE_BIP_GMAC_256: 449 if (params->seq_len != 6) 450 return -EINVAL; 451 break; 452 } 453 } 454 455 if (!cfg80211_supported_cipher_suite(&rdev->wiphy, params->cipher)) 456 return -EINVAL; 457 458 return 0; 459 } 460 461 unsigned int __attribute_const__ ieee80211_hdrlen(__le16 fc) 462 { 463 unsigned int hdrlen = 24; 464 465 if (ieee80211_is_ext(fc)) { 466 hdrlen = 4; 467 goto out; 468 } 469 470 if (ieee80211_is_data(fc)) { 471 if (ieee80211_has_a4(fc)) 472 hdrlen = 30; 473 if (ieee80211_is_data_qos(fc)) { 474 hdrlen += IEEE80211_QOS_CTL_LEN; 475 if (ieee80211_has_order(fc)) 476 hdrlen += IEEE80211_HT_CTL_LEN; 477 } 478 goto out; 479 } 480 481 if (ieee80211_is_mgmt(fc)) { 482 if (ieee80211_has_order(fc)) 483 hdrlen += IEEE80211_HT_CTL_LEN; 484 goto out; 485 } 486 487 if (ieee80211_is_ctl(fc)) { 488 /* 489 * ACK and CTS are 10 bytes, all others 16. To see how 490 * to get this condition consider 491 * subtype mask: 0b0000000011110000 (0x00F0) 492 * ACK subtype: 0b0000000011010000 (0x00D0) 493 * CTS subtype: 0b0000000011000000 (0x00C0) 494 * bits that matter: ^^^ (0x00E0) 495 * value of those: 0b0000000011000000 (0x00C0) 496 */ 497 if ((fc & cpu_to_le16(0x00E0)) == cpu_to_le16(0x00C0)) 498 hdrlen = 10; 499 else 500 hdrlen = 16; 501 } 502 out: 503 return hdrlen; 504 } 505 EXPORT_SYMBOL(ieee80211_hdrlen); 506 507 unsigned int ieee80211_get_hdrlen_from_skb(const struct sk_buff *skb) 508 { 509 const struct ieee80211_hdr *hdr = 510 (const struct ieee80211_hdr *)skb->data; 511 unsigned int hdrlen; 512 513 if (unlikely(skb->len < 10)) 514 return 0; 515 hdrlen = ieee80211_hdrlen(hdr->frame_control); 516 if (unlikely(hdrlen > skb->len)) 517 return 0; 518 return hdrlen; 519 } 520 EXPORT_SYMBOL(ieee80211_get_hdrlen_from_skb); 521 522 static unsigned int __ieee80211_get_mesh_hdrlen(u8 flags) 523 { 524 int ae = flags & MESH_FLAGS_AE; 525 /* 802.11-2012, 8.2.4.7.3 */ 526 switch (ae) { 527 default: 528 case 0: 529 return 6; 530 case MESH_FLAGS_AE_A4: 531 return 12; 532 case MESH_FLAGS_AE_A5_A6: 533 return 18; 534 } 535 } 536 537 unsigned int ieee80211_get_mesh_hdrlen(struct ieee80211s_hdr *meshhdr) 538 { 539 return __ieee80211_get_mesh_hdrlen(meshhdr->flags); 540 } 541 EXPORT_SYMBOL(ieee80211_get_mesh_hdrlen); 542 543 int ieee80211_data_to_8023_exthdr(struct sk_buff *skb, struct ethhdr *ehdr, 544 const u8 *addr, enum nl80211_iftype iftype, 545 u8 data_offset, bool is_amsdu) 546 { 547 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data; 548 struct { 549 u8 hdr[ETH_ALEN] __aligned(2); 550 __be16 proto; 551 } payload; 552 struct ethhdr tmp; 553 u16 hdrlen; 554 u8 mesh_flags = 0; 555 556 if (unlikely(!ieee80211_is_data_present(hdr->frame_control))) 557 return -1; 558 559 hdrlen = ieee80211_hdrlen(hdr->frame_control) + data_offset; 560 if (skb->len < hdrlen + 8) 561 return -1; 562 563 /* convert IEEE 802.11 header + possible LLC headers into Ethernet 564 * header 565 * IEEE 802.11 address fields: 566 * ToDS FromDS Addr1 Addr2 Addr3 Addr4 567 * 0 0 DA SA BSSID n/a 568 * 0 1 DA BSSID SA n/a 569 * 1 0 BSSID SA DA n/a 570 * 1 1 RA TA DA SA 571 */ 572 memcpy(tmp.h_dest, ieee80211_get_DA(hdr), ETH_ALEN); 573 memcpy(tmp.h_source, ieee80211_get_SA(hdr), ETH_ALEN); 574 575 if (iftype == NL80211_IFTYPE_MESH_POINT) 576 skb_copy_bits(skb, hdrlen, &mesh_flags, 1); 577 578 mesh_flags &= MESH_FLAGS_AE; 579 580 switch (hdr->frame_control & 581 cpu_to_le16(IEEE80211_FCTL_TODS | IEEE80211_FCTL_FROMDS)) { 582 case cpu_to_le16(IEEE80211_FCTL_TODS): 583 if (unlikely(iftype != NL80211_IFTYPE_AP && 584 iftype != NL80211_IFTYPE_AP_VLAN && 585 iftype != NL80211_IFTYPE_P2P_GO)) 586 return -1; 587 break; 588 case cpu_to_le16(IEEE80211_FCTL_TODS | IEEE80211_FCTL_FROMDS): 589 if (unlikely(iftype != NL80211_IFTYPE_MESH_POINT && 590 iftype != NL80211_IFTYPE_AP_VLAN && 591 iftype != NL80211_IFTYPE_STATION)) 592 return -1; 593 if (iftype == NL80211_IFTYPE_MESH_POINT) { 594 if (mesh_flags == MESH_FLAGS_AE_A4) 595 return -1; 596 if (mesh_flags == MESH_FLAGS_AE_A5_A6) { 597 skb_copy_bits(skb, hdrlen + 598 offsetof(struct ieee80211s_hdr, eaddr1), 599 tmp.h_dest, 2 * ETH_ALEN); 600 } 601 hdrlen += __ieee80211_get_mesh_hdrlen(mesh_flags); 602 } 603 break; 604 case cpu_to_le16(IEEE80211_FCTL_FROMDS): 605 if ((iftype != NL80211_IFTYPE_STATION && 606 iftype != NL80211_IFTYPE_P2P_CLIENT && 607 iftype != NL80211_IFTYPE_MESH_POINT) || 608 (is_multicast_ether_addr(tmp.h_dest) && 609 ether_addr_equal(tmp.h_source, addr))) 610 return -1; 611 if (iftype == NL80211_IFTYPE_MESH_POINT) { 612 if (mesh_flags == MESH_FLAGS_AE_A5_A6) 613 return -1; 614 if (mesh_flags == MESH_FLAGS_AE_A4) 615 skb_copy_bits(skb, hdrlen + 616 offsetof(struct ieee80211s_hdr, eaddr1), 617 tmp.h_source, ETH_ALEN); 618 hdrlen += __ieee80211_get_mesh_hdrlen(mesh_flags); 619 } 620 break; 621 case cpu_to_le16(0): 622 if (iftype != NL80211_IFTYPE_ADHOC && 623 iftype != NL80211_IFTYPE_STATION && 624 iftype != NL80211_IFTYPE_OCB) 625 return -1; 626 break; 627 } 628 629 skb_copy_bits(skb, hdrlen, &payload, sizeof(payload)); 630 tmp.h_proto = payload.proto; 631 632 if (likely((!is_amsdu && ether_addr_equal(payload.hdr, rfc1042_header) && 633 tmp.h_proto != htons(ETH_P_AARP) && 634 tmp.h_proto != htons(ETH_P_IPX)) || 635 ether_addr_equal(payload.hdr, bridge_tunnel_header))) 636 /* remove RFC1042 or Bridge-Tunnel encapsulation and 637 * replace EtherType */ 638 hdrlen += ETH_ALEN + 2; 639 else 640 tmp.h_proto = htons(skb->len - hdrlen); 641 642 pskb_pull(skb, hdrlen); 643 644 if (!ehdr) 645 ehdr = skb_push(skb, sizeof(struct ethhdr)); 646 memcpy(ehdr, &tmp, sizeof(tmp)); 647 648 return 0; 649 } 650 EXPORT_SYMBOL(ieee80211_data_to_8023_exthdr); 651 652 static void 653 __frame_add_frag(struct sk_buff *skb, struct page *page, 654 void *ptr, int len, int size) 655 { 656 struct skb_shared_info *sh = skb_shinfo(skb); 657 int page_offset; 658 659 get_page(page); 660 page_offset = ptr - page_address(page); 661 skb_add_rx_frag(skb, sh->nr_frags, page, page_offset, len, size); 662 } 663 664 static void 665 __ieee80211_amsdu_copy_frag(struct sk_buff *skb, struct sk_buff *frame, 666 int offset, int len) 667 { 668 struct skb_shared_info *sh = skb_shinfo(skb); 669 const skb_frag_t *frag = &sh->frags[0]; 670 struct page *frag_page; 671 void *frag_ptr; 672 int frag_len, frag_size; 673 int head_size = skb->len - skb->data_len; 674 int cur_len; 675 676 frag_page = virt_to_head_page(skb->head); 677 frag_ptr = skb->data; 678 frag_size = head_size; 679 680 while (offset >= frag_size) { 681 offset -= frag_size; 682 frag_page = skb_frag_page(frag); 683 frag_ptr = skb_frag_address(frag); 684 frag_size = skb_frag_size(frag); 685 frag++; 686 } 687 688 frag_ptr += offset; 689 frag_len = frag_size - offset; 690 691 cur_len = min(len, frag_len); 692 693 __frame_add_frag(frame, frag_page, frag_ptr, cur_len, frag_size); 694 len -= cur_len; 695 696 while (len > 0) { 697 frag_len = skb_frag_size(frag); 698 cur_len = min(len, frag_len); 699 __frame_add_frag(frame, skb_frag_page(frag), 700 skb_frag_address(frag), cur_len, frag_len); 701 len -= cur_len; 702 frag++; 703 } 704 } 705 706 static struct sk_buff * 707 __ieee80211_amsdu_copy(struct sk_buff *skb, unsigned int hlen, 708 int offset, int len, bool reuse_frag) 709 { 710 struct sk_buff *frame; 711 int cur_len = len; 712 713 if (skb->len - offset < len) 714 return NULL; 715 716 /* 717 * When reusing framents, copy some data to the head to simplify 718 * ethernet header handling and speed up protocol header processing 719 * in the stack later. 720 */ 721 if (reuse_frag) 722 cur_len = min_t(int, len, 32); 723 724 /* 725 * Allocate and reserve two bytes more for payload 726 * alignment since sizeof(struct ethhdr) is 14. 727 */ 728 frame = dev_alloc_skb(hlen + sizeof(struct ethhdr) + 2 + cur_len); 729 if (!frame) 730 return NULL; 731 732 skb_reserve(frame, hlen + sizeof(struct ethhdr) + 2); 733 skb_copy_bits(skb, offset, skb_put(frame, cur_len), cur_len); 734 735 len -= cur_len; 736 if (!len) 737 return frame; 738 739 offset += cur_len; 740 __ieee80211_amsdu_copy_frag(skb, frame, offset, len); 741 742 return frame; 743 } 744 745 void ieee80211_amsdu_to_8023s(struct sk_buff *skb, struct sk_buff_head *list, 746 const u8 *addr, enum nl80211_iftype iftype, 747 const unsigned int extra_headroom, 748 const u8 *check_da, const u8 *check_sa) 749 { 750 unsigned int hlen = ALIGN(extra_headroom, 4); 751 struct sk_buff *frame = NULL; 752 u16 ethertype; 753 u8 *payload; 754 int offset = 0, remaining; 755 struct ethhdr eth; 756 bool reuse_frag = skb->head_frag && !skb_has_frag_list(skb); 757 bool reuse_skb = false; 758 bool last = false; 759 760 while (!last) { 761 unsigned int subframe_len; 762 int len; 763 u8 padding; 764 765 skb_copy_bits(skb, offset, ð, sizeof(eth)); 766 len = ntohs(eth.h_proto); 767 subframe_len = sizeof(struct ethhdr) + len; 768 padding = (4 - subframe_len) & 0x3; 769 770 /* the last MSDU has no padding */ 771 remaining = skb->len - offset; 772 if (subframe_len > remaining) 773 goto purge; 774 /* mitigate A-MSDU aggregation injection attacks */ 775 if (ether_addr_equal(eth.h_dest, rfc1042_header)) 776 goto purge; 777 778 offset += sizeof(struct ethhdr); 779 last = remaining <= subframe_len + padding; 780 781 /* FIXME: should we really accept multicast DA? */ 782 if ((check_da && !is_multicast_ether_addr(eth.h_dest) && 783 !ether_addr_equal(check_da, eth.h_dest)) || 784 (check_sa && !ether_addr_equal(check_sa, eth.h_source))) { 785 offset += len + padding; 786 continue; 787 } 788 789 /* reuse skb for the last subframe */ 790 if (!skb_is_nonlinear(skb) && !reuse_frag && last) { 791 skb_pull(skb, offset); 792 frame = skb; 793 reuse_skb = true; 794 } else { 795 frame = __ieee80211_amsdu_copy(skb, hlen, offset, len, 796 reuse_frag); 797 if (!frame) 798 goto purge; 799 800 offset += len + padding; 801 } 802 803 skb_reset_network_header(frame); 804 frame->dev = skb->dev; 805 frame->priority = skb->priority; 806 807 payload = frame->data; 808 ethertype = (payload[6] << 8) | payload[7]; 809 if (likely((ether_addr_equal(payload, rfc1042_header) && 810 ethertype != ETH_P_AARP && ethertype != ETH_P_IPX) || 811 ether_addr_equal(payload, bridge_tunnel_header))) { 812 eth.h_proto = htons(ethertype); 813 skb_pull(frame, ETH_ALEN + 2); 814 } 815 816 memcpy(skb_push(frame, sizeof(eth)), ð, sizeof(eth)); 817 __skb_queue_tail(list, frame); 818 } 819 820 if (!reuse_skb) 821 dev_kfree_skb(skb); 822 823 return; 824 825 purge: 826 __skb_queue_purge(list); 827 dev_kfree_skb(skb); 828 } 829 EXPORT_SYMBOL(ieee80211_amsdu_to_8023s); 830 831 /* Given a data frame determine the 802.1p/1d tag to use. */ 832 unsigned int cfg80211_classify8021d(struct sk_buff *skb, 833 struct cfg80211_qos_map *qos_map) 834 { 835 unsigned int dscp; 836 unsigned char vlan_priority; 837 unsigned int ret; 838 839 /* skb->priority values from 256->263 are magic values to 840 * directly indicate a specific 802.1d priority. This is used 841 * to allow 802.1d priority to be passed directly in from VLAN 842 * tags, etc. 843 */ 844 if (skb->priority >= 256 && skb->priority <= 263) { 845 ret = skb->priority - 256; 846 goto out; 847 } 848 849 if (skb_vlan_tag_present(skb)) { 850 vlan_priority = (skb_vlan_tag_get(skb) & VLAN_PRIO_MASK) 851 >> VLAN_PRIO_SHIFT; 852 if (vlan_priority > 0) { 853 ret = vlan_priority; 854 goto out; 855 } 856 } 857 858 switch (skb->protocol) { 859 case htons(ETH_P_IP): 860 dscp = ipv4_get_dsfield(ip_hdr(skb)) & 0xfc; 861 break; 862 case htons(ETH_P_IPV6): 863 dscp = ipv6_get_dsfield(ipv6_hdr(skb)) & 0xfc; 864 break; 865 case htons(ETH_P_MPLS_UC): 866 case htons(ETH_P_MPLS_MC): { 867 struct mpls_label mpls_tmp, *mpls; 868 869 mpls = skb_header_pointer(skb, sizeof(struct ethhdr), 870 sizeof(*mpls), &mpls_tmp); 871 if (!mpls) 872 return 0; 873 874 ret = (ntohl(mpls->entry) & MPLS_LS_TC_MASK) 875 >> MPLS_LS_TC_SHIFT; 876 goto out; 877 } 878 case htons(ETH_P_80221): 879 /* 802.21 is always network control traffic */ 880 return 7; 881 default: 882 return 0; 883 } 884 885 if (qos_map) { 886 unsigned int i, tmp_dscp = dscp >> 2; 887 888 for (i = 0; i < qos_map->num_des; i++) { 889 if (tmp_dscp == qos_map->dscp_exception[i].dscp) { 890 ret = qos_map->dscp_exception[i].up; 891 goto out; 892 } 893 } 894 895 for (i = 0; i < 8; i++) { 896 if (tmp_dscp >= qos_map->up[i].low && 897 tmp_dscp <= qos_map->up[i].high) { 898 ret = i; 899 goto out; 900 } 901 } 902 } 903 904 ret = dscp >> 5; 905 out: 906 return array_index_nospec(ret, IEEE80211_NUM_TIDS); 907 } 908 EXPORT_SYMBOL(cfg80211_classify8021d); 909 910 const struct element *ieee80211_bss_get_elem(struct cfg80211_bss *bss, u8 id) 911 { 912 const struct cfg80211_bss_ies *ies; 913 914 ies = rcu_dereference(bss->ies); 915 if (!ies) 916 return NULL; 917 918 return cfg80211_find_elem(id, ies->data, ies->len); 919 } 920 EXPORT_SYMBOL(ieee80211_bss_get_elem); 921 922 void cfg80211_upload_connect_keys(struct wireless_dev *wdev) 923 { 924 struct cfg80211_registered_device *rdev = wiphy_to_rdev(wdev->wiphy); 925 struct net_device *dev = wdev->netdev; 926 int i; 927 928 if (!wdev->connect_keys) 929 return; 930 931 for (i = 0; i < CFG80211_MAX_WEP_KEYS; i++) { 932 if (!wdev->connect_keys->params[i].cipher) 933 continue; 934 if (rdev_add_key(rdev, dev, i, false, NULL, 935 &wdev->connect_keys->params[i])) { 936 netdev_err(dev, "failed to set key %d\n", i); 937 continue; 938 } 939 if (wdev->connect_keys->def == i && 940 rdev_set_default_key(rdev, dev, i, true, true)) { 941 netdev_err(dev, "failed to set defkey %d\n", i); 942 continue; 943 } 944 } 945 946 kfree_sensitive(wdev->connect_keys); 947 wdev->connect_keys = NULL; 948 } 949 950 void cfg80211_process_wdev_events(struct wireless_dev *wdev) 951 { 952 struct cfg80211_event *ev; 953 unsigned long flags; 954 955 spin_lock_irqsave(&wdev->event_lock, flags); 956 while (!list_empty(&wdev->event_list)) { 957 ev = list_first_entry(&wdev->event_list, 958 struct cfg80211_event, list); 959 list_del(&ev->list); 960 spin_unlock_irqrestore(&wdev->event_lock, flags); 961 962 wdev_lock(wdev); 963 switch (ev->type) { 964 case EVENT_CONNECT_RESULT: 965 __cfg80211_connect_result( 966 wdev->netdev, 967 &ev->cr, 968 ev->cr.status == WLAN_STATUS_SUCCESS); 969 break; 970 case EVENT_ROAMED: 971 __cfg80211_roamed(wdev, &ev->rm); 972 break; 973 case EVENT_DISCONNECTED: 974 __cfg80211_disconnected(wdev->netdev, 975 ev->dc.ie, ev->dc.ie_len, 976 ev->dc.reason, 977 !ev->dc.locally_generated); 978 break; 979 case EVENT_IBSS_JOINED: 980 __cfg80211_ibss_joined(wdev->netdev, ev->ij.bssid, 981 ev->ij.channel); 982 break; 983 case EVENT_STOPPED: 984 __cfg80211_leave(wiphy_to_rdev(wdev->wiphy), wdev); 985 break; 986 case EVENT_PORT_AUTHORIZED: 987 __cfg80211_port_authorized(wdev, ev->pa.bssid); 988 break; 989 } 990 wdev_unlock(wdev); 991 992 kfree(ev); 993 994 spin_lock_irqsave(&wdev->event_lock, flags); 995 } 996 spin_unlock_irqrestore(&wdev->event_lock, flags); 997 } 998 999 void cfg80211_process_rdev_events(struct cfg80211_registered_device *rdev) 1000 { 1001 struct wireless_dev *wdev; 1002 1003 lockdep_assert_held(&rdev->wiphy.mtx); 1004 1005 list_for_each_entry(wdev, &rdev->wiphy.wdev_list, list) 1006 cfg80211_process_wdev_events(wdev); 1007 } 1008 1009 int cfg80211_change_iface(struct cfg80211_registered_device *rdev, 1010 struct net_device *dev, enum nl80211_iftype ntype, 1011 struct vif_params *params) 1012 { 1013 int err; 1014 enum nl80211_iftype otype = dev->ieee80211_ptr->iftype; 1015 1016 lockdep_assert_held(&rdev->wiphy.mtx); 1017 1018 /* don't support changing VLANs, you just re-create them */ 1019 if (otype == NL80211_IFTYPE_AP_VLAN) 1020 return -EOPNOTSUPP; 1021 1022 /* cannot change into P2P device or NAN */ 1023 if (ntype == NL80211_IFTYPE_P2P_DEVICE || 1024 ntype == NL80211_IFTYPE_NAN) 1025 return -EOPNOTSUPP; 1026 1027 if (!rdev->ops->change_virtual_intf || 1028 !(rdev->wiphy.interface_modes & (1 << ntype))) 1029 return -EOPNOTSUPP; 1030 1031 /* if it's part of a bridge, reject changing type to station/ibss */ 1032 if (netif_is_bridge_port(dev) && 1033 (ntype == NL80211_IFTYPE_ADHOC || 1034 ntype == NL80211_IFTYPE_STATION || 1035 ntype == NL80211_IFTYPE_P2P_CLIENT)) 1036 return -EBUSY; 1037 1038 if (ntype != otype) { 1039 dev->ieee80211_ptr->use_4addr = false; 1040 dev->ieee80211_ptr->mesh_id_up_len = 0; 1041 wdev_lock(dev->ieee80211_ptr); 1042 rdev_set_qos_map(rdev, dev, NULL); 1043 wdev_unlock(dev->ieee80211_ptr); 1044 1045 switch (otype) { 1046 case NL80211_IFTYPE_AP: 1047 cfg80211_stop_ap(rdev, dev, true); 1048 break; 1049 case NL80211_IFTYPE_ADHOC: 1050 cfg80211_leave_ibss(rdev, dev, false); 1051 break; 1052 case NL80211_IFTYPE_STATION: 1053 case NL80211_IFTYPE_P2P_CLIENT: 1054 wdev_lock(dev->ieee80211_ptr); 1055 cfg80211_disconnect(rdev, dev, 1056 WLAN_REASON_DEAUTH_LEAVING, true); 1057 wdev_unlock(dev->ieee80211_ptr); 1058 break; 1059 case NL80211_IFTYPE_MESH_POINT: 1060 /* mesh should be handled? */ 1061 break; 1062 case NL80211_IFTYPE_OCB: 1063 cfg80211_leave_ocb(rdev, dev); 1064 break; 1065 default: 1066 break; 1067 } 1068 1069 cfg80211_process_rdev_events(rdev); 1070 cfg80211_mlme_purge_registrations(dev->ieee80211_ptr); 1071 } 1072 1073 err = rdev_change_virtual_intf(rdev, dev, ntype, params); 1074 1075 WARN_ON(!err && dev->ieee80211_ptr->iftype != ntype); 1076 1077 if (!err && params && params->use_4addr != -1) 1078 dev->ieee80211_ptr->use_4addr = params->use_4addr; 1079 1080 if (!err) { 1081 dev->priv_flags &= ~IFF_DONT_BRIDGE; 1082 switch (ntype) { 1083 case NL80211_IFTYPE_STATION: 1084 if (dev->ieee80211_ptr->use_4addr) 1085 break; 1086 fallthrough; 1087 case NL80211_IFTYPE_OCB: 1088 case NL80211_IFTYPE_P2P_CLIENT: 1089 case NL80211_IFTYPE_ADHOC: 1090 dev->priv_flags |= IFF_DONT_BRIDGE; 1091 break; 1092 case NL80211_IFTYPE_P2P_GO: 1093 case NL80211_IFTYPE_AP: 1094 case NL80211_IFTYPE_AP_VLAN: 1095 case NL80211_IFTYPE_MESH_POINT: 1096 /* bridging OK */ 1097 break; 1098 case NL80211_IFTYPE_MONITOR: 1099 /* monitor can't bridge anyway */ 1100 break; 1101 case NL80211_IFTYPE_UNSPECIFIED: 1102 case NUM_NL80211_IFTYPES: 1103 /* not happening */ 1104 break; 1105 case NL80211_IFTYPE_P2P_DEVICE: 1106 case NL80211_IFTYPE_WDS: 1107 case NL80211_IFTYPE_NAN: 1108 WARN_ON(1); 1109 break; 1110 } 1111 } 1112 1113 if (!err && ntype != otype && netif_running(dev)) { 1114 cfg80211_update_iface_num(rdev, ntype, 1); 1115 cfg80211_update_iface_num(rdev, otype, -1); 1116 } 1117 1118 return err; 1119 } 1120 1121 static u32 cfg80211_calculate_bitrate_ht(struct rate_info *rate) 1122 { 1123 int modulation, streams, bitrate; 1124 1125 /* the formula below does only work for MCS values smaller than 32 */ 1126 if (WARN_ON_ONCE(rate->mcs >= 32)) 1127 return 0; 1128 1129 modulation = rate->mcs & 7; 1130 streams = (rate->mcs >> 3) + 1; 1131 1132 bitrate = (rate->bw == RATE_INFO_BW_40) ? 13500000 : 6500000; 1133 1134 if (modulation < 4) 1135 bitrate *= (modulation + 1); 1136 else if (modulation == 4) 1137 bitrate *= (modulation + 2); 1138 else 1139 bitrate *= (modulation + 3); 1140 1141 bitrate *= streams; 1142 1143 if (rate->flags & RATE_INFO_FLAGS_SHORT_GI) 1144 bitrate = (bitrate / 9) * 10; 1145 1146 /* do NOT round down here */ 1147 return (bitrate + 50000) / 100000; 1148 } 1149 1150 static u32 cfg80211_calculate_bitrate_dmg(struct rate_info *rate) 1151 { 1152 static const u32 __mcs2bitrate[] = { 1153 /* control PHY */ 1154 [0] = 275, 1155 /* SC PHY */ 1156 [1] = 3850, 1157 [2] = 7700, 1158 [3] = 9625, 1159 [4] = 11550, 1160 [5] = 12512, /* 1251.25 mbps */ 1161 [6] = 15400, 1162 [7] = 19250, 1163 [8] = 23100, 1164 [9] = 25025, 1165 [10] = 30800, 1166 [11] = 38500, 1167 [12] = 46200, 1168 /* OFDM PHY */ 1169 [13] = 6930, 1170 [14] = 8662, /* 866.25 mbps */ 1171 [15] = 13860, 1172 [16] = 17325, 1173 [17] = 20790, 1174 [18] = 27720, 1175 [19] = 34650, 1176 [20] = 41580, 1177 [21] = 45045, 1178 [22] = 51975, 1179 [23] = 62370, 1180 [24] = 67568, /* 6756.75 mbps */ 1181 /* LP-SC PHY */ 1182 [25] = 6260, 1183 [26] = 8340, 1184 [27] = 11120, 1185 [28] = 12510, 1186 [29] = 16680, 1187 [30] = 22240, 1188 [31] = 25030, 1189 }; 1190 1191 if (WARN_ON_ONCE(rate->mcs >= ARRAY_SIZE(__mcs2bitrate))) 1192 return 0; 1193 1194 return __mcs2bitrate[rate->mcs]; 1195 } 1196 1197 static u32 cfg80211_calculate_bitrate_extended_sc_dmg(struct rate_info *rate) 1198 { 1199 static const u32 __mcs2bitrate[] = { 1200 [6 - 6] = 26950, /* MCS 9.1 : 2695.0 mbps */ 1201 [7 - 6] = 50050, /* MCS 12.1 */ 1202 [8 - 6] = 53900, 1203 [9 - 6] = 57750, 1204 [10 - 6] = 63900, 1205 [11 - 6] = 75075, 1206 [12 - 6] = 80850, 1207 }; 1208 1209 /* Extended SC MCS not defined for base MCS below 6 or above 12 */ 1210 if (WARN_ON_ONCE(rate->mcs < 6 || rate->mcs > 12)) 1211 return 0; 1212 1213 return __mcs2bitrate[rate->mcs - 6]; 1214 } 1215 1216 static u32 cfg80211_calculate_bitrate_edmg(struct rate_info *rate) 1217 { 1218 static const u32 __mcs2bitrate[] = { 1219 /* control PHY */ 1220 [0] = 275, 1221 /* SC PHY */ 1222 [1] = 3850, 1223 [2] = 7700, 1224 [3] = 9625, 1225 [4] = 11550, 1226 [5] = 12512, /* 1251.25 mbps */ 1227 [6] = 13475, 1228 [7] = 15400, 1229 [8] = 19250, 1230 [9] = 23100, 1231 [10] = 25025, 1232 [11] = 26950, 1233 [12] = 30800, 1234 [13] = 38500, 1235 [14] = 46200, 1236 [15] = 50050, 1237 [16] = 53900, 1238 [17] = 57750, 1239 [18] = 69300, 1240 [19] = 75075, 1241 [20] = 80850, 1242 }; 1243 1244 if (WARN_ON_ONCE(rate->mcs >= ARRAY_SIZE(__mcs2bitrate))) 1245 return 0; 1246 1247 return __mcs2bitrate[rate->mcs] * rate->n_bonded_ch; 1248 } 1249 1250 static u32 cfg80211_calculate_bitrate_vht(struct rate_info *rate) 1251 { 1252 static const u32 base[4][12] = { 1253 { 6500000, 1254 13000000, 1255 19500000, 1256 26000000, 1257 39000000, 1258 52000000, 1259 58500000, 1260 65000000, 1261 78000000, 1262 /* not in the spec, but some devices use this: */ 1263 86700000, 1264 97500000, 1265 108300000, 1266 }, 1267 { 13500000, 1268 27000000, 1269 40500000, 1270 54000000, 1271 81000000, 1272 108000000, 1273 121500000, 1274 135000000, 1275 162000000, 1276 180000000, 1277 202500000, 1278 225000000, 1279 }, 1280 { 29300000, 1281 58500000, 1282 87800000, 1283 117000000, 1284 175500000, 1285 234000000, 1286 263300000, 1287 292500000, 1288 351000000, 1289 390000000, 1290 438800000, 1291 487500000, 1292 }, 1293 { 58500000, 1294 117000000, 1295 175500000, 1296 234000000, 1297 351000000, 1298 468000000, 1299 526500000, 1300 585000000, 1301 702000000, 1302 780000000, 1303 877500000, 1304 975000000, 1305 }, 1306 }; 1307 u32 bitrate; 1308 int idx; 1309 1310 if (rate->mcs > 11) 1311 goto warn; 1312 1313 switch (rate->bw) { 1314 case RATE_INFO_BW_160: 1315 idx = 3; 1316 break; 1317 case RATE_INFO_BW_80: 1318 idx = 2; 1319 break; 1320 case RATE_INFO_BW_40: 1321 idx = 1; 1322 break; 1323 case RATE_INFO_BW_5: 1324 case RATE_INFO_BW_10: 1325 default: 1326 goto warn; 1327 case RATE_INFO_BW_20: 1328 idx = 0; 1329 } 1330 1331 bitrate = base[idx][rate->mcs]; 1332 bitrate *= rate->nss; 1333 1334 if (rate->flags & RATE_INFO_FLAGS_SHORT_GI) 1335 bitrate = (bitrate / 9) * 10; 1336 1337 /* do NOT round down here */ 1338 return (bitrate + 50000) / 100000; 1339 warn: 1340 WARN_ONCE(1, "invalid rate bw=%d, mcs=%d, nss=%d\n", 1341 rate->bw, rate->mcs, rate->nss); 1342 return 0; 1343 } 1344 1345 static u32 cfg80211_calculate_bitrate_he(struct rate_info *rate) 1346 { 1347 #define SCALE 6144 1348 u32 mcs_divisors[14] = { 1349 102399, /* 16.666666... */ 1350 51201, /* 8.333333... */ 1351 34134, /* 5.555555... */ 1352 25599, /* 4.166666... */ 1353 17067, /* 2.777777... */ 1354 12801, /* 2.083333... */ 1355 11769, /* 1.851851... */ 1356 10239, /* 1.666666... */ 1357 8532, /* 1.388888... */ 1358 7680, /* 1.250000... */ 1359 6828, /* 1.111111... */ 1360 6144, /* 1.000000... */ 1361 5690, /* 0.926106... */ 1362 5120, /* 0.833333... */ 1363 }; 1364 u32 rates_160M[3] = { 960777777, 907400000, 816666666 }; 1365 u32 rates_969[3] = { 480388888, 453700000, 408333333 }; 1366 u32 rates_484[3] = { 229411111, 216666666, 195000000 }; 1367 u32 rates_242[3] = { 114711111, 108333333, 97500000 }; 1368 u32 rates_106[3] = { 40000000, 37777777, 34000000 }; 1369 u32 rates_52[3] = { 18820000, 17777777, 16000000 }; 1370 u32 rates_26[3] = { 9411111, 8888888, 8000000 }; 1371 u64 tmp; 1372 u32 result; 1373 1374 if (WARN_ON_ONCE(rate->mcs > 13)) 1375 return 0; 1376 1377 if (WARN_ON_ONCE(rate->he_gi > NL80211_RATE_INFO_HE_GI_3_2)) 1378 return 0; 1379 if (WARN_ON_ONCE(rate->he_ru_alloc > 1380 NL80211_RATE_INFO_HE_RU_ALLOC_2x996)) 1381 return 0; 1382 if (WARN_ON_ONCE(rate->nss < 1 || rate->nss > 8)) 1383 return 0; 1384 1385 if (rate->bw == RATE_INFO_BW_160) 1386 result = rates_160M[rate->he_gi]; 1387 else if (rate->bw == RATE_INFO_BW_80 || 1388 (rate->bw == RATE_INFO_BW_HE_RU && 1389 rate->he_ru_alloc == NL80211_RATE_INFO_HE_RU_ALLOC_996)) 1390 result = rates_969[rate->he_gi]; 1391 else if (rate->bw == RATE_INFO_BW_40 || 1392 (rate->bw == RATE_INFO_BW_HE_RU && 1393 rate->he_ru_alloc == NL80211_RATE_INFO_HE_RU_ALLOC_484)) 1394 result = rates_484[rate->he_gi]; 1395 else if (rate->bw == RATE_INFO_BW_20 || 1396 (rate->bw == RATE_INFO_BW_HE_RU && 1397 rate->he_ru_alloc == NL80211_RATE_INFO_HE_RU_ALLOC_242)) 1398 result = rates_242[rate->he_gi]; 1399 else if (rate->bw == RATE_INFO_BW_HE_RU && 1400 rate->he_ru_alloc == NL80211_RATE_INFO_HE_RU_ALLOC_106) 1401 result = rates_106[rate->he_gi]; 1402 else if (rate->bw == RATE_INFO_BW_HE_RU && 1403 rate->he_ru_alloc == NL80211_RATE_INFO_HE_RU_ALLOC_52) 1404 result = rates_52[rate->he_gi]; 1405 else if (rate->bw == RATE_INFO_BW_HE_RU && 1406 rate->he_ru_alloc == NL80211_RATE_INFO_HE_RU_ALLOC_26) 1407 result = rates_26[rate->he_gi]; 1408 else { 1409 WARN(1, "invalid HE MCS: bw:%d, ru:%d\n", 1410 rate->bw, rate->he_ru_alloc); 1411 return 0; 1412 } 1413 1414 /* now scale to the appropriate MCS */ 1415 tmp = result; 1416 tmp *= SCALE; 1417 do_div(tmp, mcs_divisors[rate->mcs]); 1418 result = tmp; 1419 1420 /* and take NSS, DCM into account */ 1421 result = (result * rate->nss) / 8; 1422 if (rate->he_dcm) 1423 result /= 2; 1424 1425 return result / 10000; 1426 } 1427 1428 u32 cfg80211_calculate_bitrate(struct rate_info *rate) 1429 { 1430 if (rate->flags & RATE_INFO_FLAGS_MCS) 1431 return cfg80211_calculate_bitrate_ht(rate); 1432 if (rate->flags & RATE_INFO_FLAGS_DMG) 1433 return cfg80211_calculate_bitrate_dmg(rate); 1434 if (rate->flags & RATE_INFO_FLAGS_EXTENDED_SC_DMG) 1435 return cfg80211_calculate_bitrate_extended_sc_dmg(rate); 1436 if (rate->flags & RATE_INFO_FLAGS_EDMG) 1437 return cfg80211_calculate_bitrate_edmg(rate); 1438 if (rate->flags & RATE_INFO_FLAGS_VHT_MCS) 1439 return cfg80211_calculate_bitrate_vht(rate); 1440 if (rate->flags & RATE_INFO_FLAGS_HE_MCS) 1441 return cfg80211_calculate_bitrate_he(rate); 1442 1443 return rate->legacy; 1444 } 1445 EXPORT_SYMBOL(cfg80211_calculate_bitrate); 1446 1447 int cfg80211_get_p2p_attr(const u8 *ies, unsigned int len, 1448 enum ieee80211_p2p_attr_id attr, 1449 u8 *buf, unsigned int bufsize) 1450 { 1451 u8 *out = buf; 1452 u16 attr_remaining = 0; 1453 bool desired_attr = false; 1454 u16 desired_len = 0; 1455 1456 while (len > 0) { 1457 unsigned int iedatalen; 1458 unsigned int copy; 1459 const u8 *iedata; 1460 1461 if (len < 2) 1462 return -EILSEQ; 1463 iedatalen = ies[1]; 1464 if (iedatalen + 2 > len) 1465 return -EILSEQ; 1466 1467 if (ies[0] != WLAN_EID_VENDOR_SPECIFIC) 1468 goto cont; 1469 1470 if (iedatalen < 4) 1471 goto cont; 1472 1473 iedata = ies + 2; 1474 1475 /* check WFA OUI, P2P subtype */ 1476 if (iedata[0] != 0x50 || iedata[1] != 0x6f || 1477 iedata[2] != 0x9a || iedata[3] != 0x09) 1478 goto cont; 1479 1480 iedatalen -= 4; 1481 iedata += 4; 1482 1483 /* check attribute continuation into this IE */ 1484 copy = min_t(unsigned int, attr_remaining, iedatalen); 1485 if (copy && desired_attr) { 1486 desired_len += copy; 1487 if (out) { 1488 memcpy(out, iedata, min(bufsize, copy)); 1489 out += min(bufsize, copy); 1490 bufsize -= min(bufsize, copy); 1491 } 1492 1493 1494 if (copy == attr_remaining) 1495 return desired_len; 1496 } 1497 1498 attr_remaining -= copy; 1499 if (attr_remaining) 1500 goto cont; 1501 1502 iedatalen -= copy; 1503 iedata += copy; 1504 1505 while (iedatalen > 0) { 1506 u16 attr_len; 1507 1508 /* P2P attribute ID & size must fit */ 1509 if (iedatalen < 3) 1510 return -EILSEQ; 1511 desired_attr = iedata[0] == attr; 1512 attr_len = get_unaligned_le16(iedata + 1); 1513 iedatalen -= 3; 1514 iedata += 3; 1515 1516 copy = min_t(unsigned int, attr_len, iedatalen); 1517 1518 if (desired_attr) { 1519 desired_len += copy; 1520 if (out) { 1521 memcpy(out, iedata, min(bufsize, copy)); 1522 out += min(bufsize, copy); 1523 bufsize -= min(bufsize, copy); 1524 } 1525 1526 if (copy == attr_len) 1527 return desired_len; 1528 } 1529 1530 iedata += copy; 1531 iedatalen -= copy; 1532 attr_remaining = attr_len - copy; 1533 } 1534 1535 cont: 1536 len -= ies[1] + 2; 1537 ies += ies[1] + 2; 1538 } 1539 1540 if (attr_remaining && desired_attr) 1541 return -EILSEQ; 1542 1543 return -ENOENT; 1544 } 1545 EXPORT_SYMBOL(cfg80211_get_p2p_attr); 1546 1547 static bool ieee80211_id_in_list(const u8 *ids, int n_ids, u8 id, bool id_ext) 1548 { 1549 int i; 1550 1551 /* Make sure array values are legal */ 1552 if (WARN_ON(ids[n_ids - 1] == WLAN_EID_EXTENSION)) 1553 return false; 1554 1555 i = 0; 1556 while (i < n_ids) { 1557 if (ids[i] == WLAN_EID_EXTENSION) { 1558 if (id_ext && (ids[i + 1] == id)) 1559 return true; 1560 1561 i += 2; 1562 continue; 1563 } 1564 1565 if (ids[i] == id && !id_ext) 1566 return true; 1567 1568 i++; 1569 } 1570 return false; 1571 } 1572 1573 static size_t skip_ie(const u8 *ies, size_t ielen, size_t pos) 1574 { 1575 /* we assume a validly formed IEs buffer */ 1576 u8 len = ies[pos + 1]; 1577 1578 pos += 2 + len; 1579 1580 /* the IE itself must have 255 bytes for fragments to follow */ 1581 if (len < 255) 1582 return pos; 1583 1584 while (pos < ielen && ies[pos] == WLAN_EID_FRAGMENT) { 1585 len = ies[pos + 1]; 1586 pos += 2 + len; 1587 } 1588 1589 return pos; 1590 } 1591 1592 size_t ieee80211_ie_split_ric(const u8 *ies, size_t ielen, 1593 const u8 *ids, int n_ids, 1594 const u8 *after_ric, int n_after_ric, 1595 size_t offset) 1596 { 1597 size_t pos = offset; 1598 1599 while (pos < ielen) { 1600 u8 ext = 0; 1601 1602 if (ies[pos] == WLAN_EID_EXTENSION) 1603 ext = 2; 1604 if ((pos + ext) >= ielen) 1605 break; 1606 1607 if (!ieee80211_id_in_list(ids, n_ids, ies[pos + ext], 1608 ies[pos] == WLAN_EID_EXTENSION)) 1609 break; 1610 1611 if (ies[pos] == WLAN_EID_RIC_DATA && n_after_ric) { 1612 pos = skip_ie(ies, ielen, pos); 1613 1614 while (pos < ielen) { 1615 if (ies[pos] == WLAN_EID_EXTENSION) 1616 ext = 2; 1617 else 1618 ext = 0; 1619 1620 if ((pos + ext) >= ielen) 1621 break; 1622 1623 if (!ieee80211_id_in_list(after_ric, 1624 n_after_ric, 1625 ies[pos + ext], 1626 ext == 2)) 1627 pos = skip_ie(ies, ielen, pos); 1628 else 1629 break; 1630 } 1631 } else { 1632 pos = skip_ie(ies, ielen, pos); 1633 } 1634 } 1635 1636 return pos; 1637 } 1638 EXPORT_SYMBOL(ieee80211_ie_split_ric); 1639 1640 bool ieee80211_operating_class_to_band(u8 operating_class, 1641 enum nl80211_band *band) 1642 { 1643 switch (operating_class) { 1644 case 112: 1645 case 115 ... 127: 1646 case 128 ... 130: 1647 *band = NL80211_BAND_5GHZ; 1648 return true; 1649 case 131 ... 135: 1650 *band = NL80211_BAND_6GHZ; 1651 return true; 1652 case 81: 1653 case 82: 1654 case 83: 1655 case 84: 1656 *band = NL80211_BAND_2GHZ; 1657 return true; 1658 case 180: 1659 *band = NL80211_BAND_60GHZ; 1660 return true; 1661 } 1662 1663 return false; 1664 } 1665 EXPORT_SYMBOL(ieee80211_operating_class_to_band); 1666 1667 bool ieee80211_chandef_to_operating_class(struct cfg80211_chan_def *chandef, 1668 u8 *op_class) 1669 { 1670 u8 vht_opclass; 1671 u32 freq = chandef->center_freq1; 1672 1673 if (freq >= 2412 && freq <= 2472) { 1674 if (chandef->width > NL80211_CHAN_WIDTH_40) 1675 return false; 1676 1677 /* 2.407 GHz, channels 1..13 */ 1678 if (chandef->width == NL80211_CHAN_WIDTH_40) { 1679 if (freq > chandef->chan->center_freq) 1680 *op_class = 83; /* HT40+ */ 1681 else 1682 *op_class = 84; /* HT40- */ 1683 } else { 1684 *op_class = 81; 1685 } 1686 1687 return true; 1688 } 1689 1690 if (freq == 2484) { 1691 /* channel 14 is only for IEEE 802.11b */ 1692 if (chandef->width != NL80211_CHAN_WIDTH_20_NOHT) 1693 return false; 1694 1695 *op_class = 82; /* channel 14 */ 1696 return true; 1697 } 1698 1699 switch (chandef->width) { 1700 case NL80211_CHAN_WIDTH_80: 1701 vht_opclass = 128; 1702 break; 1703 case NL80211_CHAN_WIDTH_160: 1704 vht_opclass = 129; 1705 break; 1706 case NL80211_CHAN_WIDTH_80P80: 1707 vht_opclass = 130; 1708 break; 1709 case NL80211_CHAN_WIDTH_10: 1710 case NL80211_CHAN_WIDTH_5: 1711 return false; /* unsupported for now */ 1712 default: 1713 vht_opclass = 0; 1714 break; 1715 } 1716 1717 /* 5 GHz, channels 36..48 */ 1718 if (freq >= 5180 && freq <= 5240) { 1719 if (vht_opclass) { 1720 *op_class = vht_opclass; 1721 } else if (chandef->width == NL80211_CHAN_WIDTH_40) { 1722 if (freq > chandef->chan->center_freq) 1723 *op_class = 116; 1724 else 1725 *op_class = 117; 1726 } else { 1727 *op_class = 115; 1728 } 1729 1730 return true; 1731 } 1732 1733 /* 5 GHz, channels 52..64 */ 1734 if (freq >= 5260 && freq <= 5320) { 1735 if (vht_opclass) { 1736 *op_class = vht_opclass; 1737 } else if (chandef->width == NL80211_CHAN_WIDTH_40) { 1738 if (freq > chandef->chan->center_freq) 1739 *op_class = 119; 1740 else 1741 *op_class = 120; 1742 } else { 1743 *op_class = 118; 1744 } 1745 1746 return true; 1747 } 1748 1749 /* 5 GHz, channels 100..144 */ 1750 if (freq >= 5500 && freq <= 5720) { 1751 if (vht_opclass) { 1752 *op_class = vht_opclass; 1753 } else if (chandef->width == NL80211_CHAN_WIDTH_40) { 1754 if (freq > chandef->chan->center_freq) 1755 *op_class = 122; 1756 else 1757 *op_class = 123; 1758 } else { 1759 *op_class = 121; 1760 } 1761 1762 return true; 1763 } 1764 1765 /* 5 GHz, channels 149..169 */ 1766 if (freq >= 5745 && freq <= 5845) { 1767 if (vht_opclass) { 1768 *op_class = vht_opclass; 1769 } else if (chandef->width == NL80211_CHAN_WIDTH_40) { 1770 if (freq > chandef->chan->center_freq) 1771 *op_class = 126; 1772 else 1773 *op_class = 127; 1774 } else if (freq <= 5805) { 1775 *op_class = 124; 1776 } else { 1777 *op_class = 125; 1778 } 1779 1780 return true; 1781 } 1782 1783 /* 56.16 GHz, channel 1..4 */ 1784 if (freq >= 56160 + 2160 * 1 && freq <= 56160 + 2160 * 6) { 1785 if (chandef->width >= NL80211_CHAN_WIDTH_40) 1786 return false; 1787 1788 *op_class = 180; 1789 return true; 1790 } 1791 1792 /* not supported yet */ 1793 return false; 1794 } 1795 EXPORT_SYMBOL(ieee80211_chandef_to_operating_class); 1796 1797 static void cfg80211_calculate_bi_data(struct wiphy *wiphy, u32 new_beacon_int, 1798 u32 *beacon_int_gcd, 1799 bool *beacon_int_different) 1800 { 1801 struct wireless_dev *wdev; 1802 1803 *beacon_int_gcd = 0; 1804 *beacon_int_different = false; 1805 1806 list_for_each_entry(wdev, &wiphy->wdev_list, list) { 1807 if (!wdev->beacon_interval) 1808 continue; 1809 1810 if (!*beacon_int_gcd) { 1811 *beacon_int_gcd = wdev->beacon_interval; 1812 continue; 1813 } 1814 1815 if (wdev->beacon_interval == *beacon_int_gcd) 1816 continue; 1817 1818 *beacon_int_different = true; 1819 *beacon_int_gcd = gcd(*beacon_int_gcd, wdev->beacon_interval); 1820 } 1821 1822 if (new_beacon_int && *beacon_int_gcd != new_beacon_int) { 1823 if (*beacon_int_gcd) 1824 *beacon_int_different = true; 1825 *beacon_int_gcd = gcd(*beacon_int_gcd, new_beacon_int); 1826 } 1827 } 1828 1829 int cfg80211_validate_beacon_int(struct cfg80211_registered_device *rdev, 1830 enum nl80211_iftype iftype, u32 beacon_int) 1831 { 1832 /* 1833 * This is just a basic pre-condition check; if interface combinations 1834 * are possible the driver must already be checking those with a call 1835 * to cfg80211_check_combinations(), in which case we'll validate more 1836 * through the cfg80211_calculate_bi_data() call and code in 1837 * cfg80211_iter_combinations(). 1838 */ 1839 1840 if (beacon_int < 10 || beacon_int > 10000) 1841 return -EINVAL; 1842 1843 return 0; 1844 } 1845 1846 int cfg80211_iter_combinations(struct wiphy *wiphy, 1847 struct iface_combination_params *params, 1848 void (*iter)(const struct ieee80211_iface_combination *c, 1849 void *data), 1850 void *data) 1851 { 1852 const struct ieee80211_regdomain *regdom; 1853 enum nl80211_dfs_regions region = 0; 1854 int i, j, iftype; 1855 int num_interfaces = 0; 1856 u32 used_iftypes = 0; 1857 u32 beacon_int_gcd; 1858 bool beacon_int_different; 1859 1860 /* 1861 * This is a bit strange, since the iteration used to rely only on 1862 * the data given by the driver, but here it now relies on context, 1863 * in form of the currently operating interfaces. 1864 * This is OK for all current users, and saves us from having to 1865 * push the GCD calculations into all the drivers. 1866 * In the future, this should probably rely more on data that's in 1867 * cfg80211 already - the only thing not would appear to be any new 1868 * interfaces (while being brought up) and channel/radar data. 1869 */ 1870 cfg80211_calculate_bi_data(wiphy, params->new_beacon_int, 1871 &beacon_int_gcd, &beacon_int_different); 1872 1873 if (params->radar_detect) { 1874 rcu_read_lock(); 1875 regdom = rcu_dereference(cfg80211_regdomain); 1876 if (regdom) 1877 region = regdom->dfs_region; 1878 rcu_read_unlock(); 1879 } 1880 1881 for (iftype = 0; iftype < NUM_NL80211_IFTYPES; iftype++) { 1882 num_interfaces += params->iftype_num[iftype]; 1883 if (params->iftype_num[iftype] > 0 && 1884 !cfg80211_iftype_allowed(wiphy, iftype, 0, 1)) 1885 used_iftypes |= BIT(iftype); 1886 } 1887 1888 for (i = 0; i < wiphy->n_iface_combinations; i++) { 1889 const struct ieee80211_iface_combination *c; 1890 struct ieee80211_iface_limit *limits; 1891 u32 all_iftypes = 0; 1892 1893 c = &wiphy->iface_combinations[i]; 1894 1895 if (num_interfaces > c->max_interfaces) 1896 continue; 1897 if (params->num_different_channels > c->num_different_channels) 1898 continue; 1899 1900 limits = kmemdup(c->limits, sizeof(limits[0]) * c->n_limits, 1901 GFP_KERNEL); 1902 if (!limits) 1903 return -ENOMEM; 1904 1905 for (iftype = 0; iftype < NUM_NL80211_IFTYPES; iftype++) { 1906 if (cfg80211_iftype_allowed(wiphy, iftype, 0, 1)) 1907 continue; 1908 for (j = 0; j < c->n_limits; j++) { 1909 all_iftypes |= limits[j].types; 1910 if (!(limits[j].types & BIT(iftype))) 1911 continue; 1912 if (limits[j].max < params->iftype_num[iftype]) 1913 goto cont; 1914 limits[j].max -= params->iftype_num[iftype]; 1915 } 1916 } 1917 1918 if (params->radar_detect != 1919 (c->radar_detect_widths & params->radar_detect)) 1920 goto cont; 1921 1922 if (params->radar_detect && c->radar_detect_regions && 1923 !(c->radar_detect_regions & BIT(region))) 1924 goto cont; 1925 1926 /* Finally check that all iftypes that we're currently 1927 * using are actually part of this combination. If they 1928 * aren't then we can't use this combination and have 1929 * to continue to the next. 1930 */ 1931 if ((all_iftypes & used_iftypes) != used_iftypes) 1932 goto cont; 1933 1934 if (beacon_int_gcd) { 1935 if (c->beacon_int_min_gcd && 1936 beacon_int_gcd < c->beacon_int_min_gcd) 1937 goto cont; 1938 if (!c->beacon_int_min_gcd && beacon_int_different) 1939 goto cont; 1940 } 1941 1942 /* This combination covered all interface types and 1943 * supported the requested numbers, so we're good. 1944 */ 1945 1946 (*iter)(c, data); 1947 cont: 1948 kfree(limits); 1949 } 1950 1951 return 0; 1952 } 1953 EXPORT_SYMBOL(cfg80211_iter_combinations); 1954 1955 static void 1956 cfg80211_iter_sum_ifcombs(const struct ieee80211_iface_combination *c, 1957 void *data) 1958 { 1959 int *num = data; 1960 (*num)++; 1961 } 1962 1963 int cfg80211_check_combinations(struct wiphy *wiphy, 1964 struct iface_combination_params *params) 1965 { 1966 int err, num = 0; 1967 1968 err = cfg80211_iter_combinations(wiphy, params, 1969 cfg80211_iter_sum_ifcombs, &num); 1970 if (err) 1971 return err; 1972 if (num == 0) 1973 return -EBUSY; 1974 1975 return 0; 1976 } 1977 EXPORT_SYMBOL(cfg80211_check_combinations); 1978 1979 int ieee80211_get_ratemask(struct ieee80211_supported_band *sband, 1980 const u8 *rates, unsigned int n_rates, 1981 u32 *mask) 1982 { 1983 int i, j; 1984 1985 if (!sband) 1986 return -EINVAL; 1987 1988 if (n_rates == 0 || n_rates > NL80211_MAX_SUPP_RATES) 1989 return -EINVAL; 1990 1991 *mask = 0; 1992 1993 for (i = 0; i < n_rates; i++) { 1994 int rate = (rates[i] & 0x7f) * 5; 1995 bool found = false; 1996 1997 for (j = 0; j < sband->n_bitrates; j++) { 1998 if (sband->bitrates[j].bitrate == rate) { 1999 found = true; 2000 *mask |= BIT(j); 2001 break; 2002 } 2003 } 2004 if (!found) 2005 return -EINVAL; 2006 } 2007 2008 /* 2009 * mask must have at least one bit set here since we 2010 * didn't accept a 0-length rates array nor allowed 2011 * entries in the array that didn't exist 2012 */ 2013 2014 return 0; 2015 } 2016 2017 unsigned int ieee80211_get_num_supported_channels(struct wiphy *wiphy) 2018 { 2019 enum nl80211_band band; 2020 unsigned int n_channels = 0; 2021 2022 for (band = 0; band < NUM_NL80211_BANDS; band++) 2023 if (wiphy->bands[band]) 2024 n_channels += wiphy->bands[band]->n_channels; 2025 2026 return n_channels; 2027 } 2028 EXPORT_SYMBOL(ieee80211_get_num_supported_channels); 2029 2030 int cfg80211_get_station(struct net_device *dev, const u8 *mac_addr, 2031 struct station_info *sinfo) 2032 { 2033 struct cfg80211_registered_device *rdev; 2034 struct wireless_dev *wdev; 2035 2036 wdev = dev->ieee80211_ptr; 2037 if (!wdev) 2038 return -EOPNOTSUPP; 2039 2040 rdev = wiphy_to_rdev(wdev->wiphy); 2041 if (!rdev->ops->get_station) 2042 return -EOPNOTSUPP; 2043 2044 memset(sinfo, 0, sizeof(*sinfo)); 2045 2046 return rdev_get_station(rdev, dev, mac_addr, sinfo); 2047 } 2048 EXPORT_SYMBOL(cfg80211_get_station); 2049 2050 void cfg80211_free_nan_func(struct cfg80211_nan_func *f) 2051 { 2052 int i; 2053 2054 if (!f) 2055 return; 2056 2057 kfree(f->serv_spec_info); 2058 kfree(f->srf_bf); 2059 kfree(f->srf_macs); 2060 for (i = 0; i < f->num_rx_filters; i++) 2061 kfree(f->rx_filters[i].filter); 2062 2063 for (i = 0; i < f->num_tx_filters; i++) 2064 kfree(f->tx_filters[i].filter); 2065 2066 kfree(f->rx_filters); 2067 kfree(f->tx_filters); 2068 kfree(f); 2069 } 2070 EXPORT_SYMBOL(cfg80211_free_nan_func); 2071 2072 bool cfg80211_does_bw_fit_range(const struct ieee80211_freq_range *freq_range, 2073 u32 center_freq_khz, u32 bw_khz) 2074 { 2075 u32 start_freq_khz, end_freq_khz; 2076 2077 start_freq_khz = center_freq_khz - (bw_khz / 2); 2078 end_freq_khz = center_freq_khz + (bw_khz / 2); 2079 2080 if (start_freq_khz >= freq_range->start_freq_khz && 2081 end_freq_khz <= freq_range->end_freq_khz) 2082 return true; 2083 2084 return false; 2085 } 2086 2087 int cfg80211_sinfo_alloc_tid_stats(struct station_info *sinfo, gfp_t gfp) 2088 { 2089 sinfo->pertid = kcalloc(IEEE80211_NUM_TIDS + 1, 2090 sizeof(*(sinfo->pertid)), 2091 gfp); 2092 if (!sinfo->pertid) 2093 return -ENOMEM; 2094 2095 return 0; 2096 } 2097 EXPORT_SYMBOL(cfg80211_sinfo_alloc_tid_stats); 2098 2099 /* See IEEE 802.1H for LLC/SNAP encapsulation/decapsulation */ 2100 /* Ethernet-II snap header (RFC1042 for most EtherTypes) */ 2101 const unsigned char rfc1042_header[] __aligned(2) = 2102 { 0xaa, 0xaa, 0x03, 0x00, 0x00, 0x00 }; 2103 EXPORT_SYMBOL(rfc1042_header); 2104 2105 /* Bridge-Tunnel header (for EtherTypes ETH_P_AARP and ETH_P_IPX) */ 2106 const unsigned char bridge_tunnel_header[] __aligned(2) = 2107 { 0xaa, 0xaa, 0x03, 0x00, 0x00, 0xf8 }; 2108 EXPORT_SYMBOL(bridge_tunnel_header); 2109 2110 /* Layer 2 Update frame (802.2 Type 1 LLC XID Update response) */ 2111 struct iapp_layer2_update { 2112 u8 da[ETH_ALEN]; /* broadcast */ 2113 u8 sa[ETH_ALEN]; /* STA addr */ 2114 __be16 len; /* 6 */ 2115 u8 dsap; /* 0 */ 2116 u8 ssap; /* 0 */ 2117 u8 control; 2118 u8 xid_info[3]; 2119 } __packed; 2120 2121 void cfg80211_send_layer2_update(struct net_device *dev, const u8 *addr) 2122 { 2123 struct iapp_layer2_update *msg; 2124 struct sk_buff *skb; 2125 2126 /* Send Level 2 Update Frame to update forwarding tables in layer 2 2127 * bridge devices */ 2128 2129 skb = dev_alloc_skb(sizeof(*msg)); 2130 if (!skb) 2131 return; 2132 msg = skb_put(skb, sizeof(*msg)); 2133 2134 /* 802.2 Type 1 Logical Link Control (LLC) Exchange Identifier (XID) 2135 * Update response frame; IEEE Std 802.2-1998, 5.4.1.2.1 */ 2136 2137 eth_broadcast_addr(msg->da); 2138 ether_addr_copy(msg->sa, addr); 2139 msg->len = htons(6); 2140 msg->dsap = 0; 2141 msg->ssap = 0x01; /* NULL LSAP, CR Bit: Response */ 2142 msg->control = 0xaf; /* XID response lsb.1111F101. 2143 * F=0 (no poll command; unsolicited frame) */ 2144 msg->xid_info[0] = 0x81; /* XID format identifier */ 2145 msg->xid_info[1] = 1; /* LLC types/classes: Type 1 LLC */ 2146 msg->xid_info[2] = 0; /* XID sender's receive window size (RW) */ 2147 2148 skb->dev = dev; 2149 skb->protocol = eth_type_trans(skb, dev); 2150 memset(skb->cb, 0, sizeof(skb->cb)); 2151 netif_rx_ni(skb); 2152 } 2153 EXPORT_SYMBOL(cfg80211_send_layer2_update); 2154 2155 int ieee80211_get_vht_max_nss(struct ieee80211_vht_cap *cap, 2156 enum ieee80211_vht_chanwidth bw, 2157 int mcs, bool ext_nss_bw_capable, 2158 unsigned int max_vht_nss) 2159 { 2160 u16 map = le16_to_cpu(cap->supp_mcs.rx_mcs_map); 2161 int ext_nss_bw; 2162 int supp_width; 2163 int i, mcs_encoding; 2164 2165 if (map == 0xffff) 2166 return 0; 2167 2168 if (WARN_ON(mcs > 9 || max_vht_nss > 8)) 2169 return 0; 2170 if (mcs <= 7) 2171 mcs_encoding = 0; 2172 else if (mcs == 8) 2173 mcs_encoding = 1; 2174 else 2175 mcs_encoding = 2; 2176 2177 if (!max_vht_nss) { 2178 /* find max_vht_nss for the given MCS */ 2179 for (i = 7; i >= 0; i--) { 2180 int supp = (map >> (2 * i)) & 3; 2181 2182 if (supp == 3) 2183 continue; 2184 2185 if (supp >= mcs_encoding) { 2186 max_vht_nss = i + 1; 2187 break; 2188 } 2189 } 2190 } 2191 2192 if (!(cap->supp_mcs.tx_mcs_map & 2193 cpu_to_le16(IEEE80211_VHT_EXT_NSS_BW_CAPABLE))) 2194 return max_vht_nss; 2195 2196 ext_nss_bw = le32_get_bits(cap->vht_cap_info, 2197 IEEE80211_VHT_CAP_EXT_NSS_BW_MASK); 2198 supp_width = le32_get_bits(cap->vht_cap_info, 2199 IEEE80211_VHT_CAP_SUPP_CHAN_WIDTH_MASK); 2200 2201 /* if not capable, treat ext_nss_bw as 0 */ 2202 if (!ext_nss_bw_capable) 2203 ext_nss_bw = 0; 2204 2205 /* This is invalid */ 2206 if (supp_width == 3) 2207 return 0; 2208 2209 /* This is an invalid combination so pretend nothing is supported */ 2210 if (supp_width == 2 && (ext_nss_bw == 1 || ext_nss_bw == 2)) 2211 return 0; 2212 2213 /* 2214 * Cover all the special cases according to IEEE 802.11-2016 2215 * Table 9-250. All other cases are either factor of 1 or not 2216 * valid/supported. 2217 */ 2218 switch (bw) { 2219 case IEEE80211_VHT_CHANWIDTH_USE_HT: 2220 case IEEE80211_VHT_CHANWIDTH_80MHZ: 2221 if ((supp_width == 1 || supp_width == 2) && 2222 ext_nss_bw == 3) 2223 return 2 * max_vht_nss; 2224 break; 2225 case IEEE80211_VHT_CHANWIDTH_160MHZ: 2226 if (supp_width == 0 && 2227 (ext_nss_bw == 1 || ext_nss_bw == 2)) 2228 return max_vht_nss / 2; 2229 if (supp_width == 0 && 2230 ext_nss_bw == 3) 2231 return (3 * max_vht_nss) / 4; 2232 if (supp_width == 1 && 2233 ext_nss_bw == 3) 2234 return 2 * max_vht_nss; 2235 break; 2236 case IEEE80211_VHT_CHANWIDTH_80P80MHZ: 2237 if (supp_width == 0 && ext_nss_bw == 1) 2238 return 0; /* not possible */ 2239 if (supp_width == 0 && 2240 ext_nss_bw == 2) 2241 return max_vht_nss / 2; 2242 if (supp_width == 0 && 2243 ext_nss_bw == 3) 2244 return (3 * max_vht_nss) / 4; 2245 if (supp_width == 1 && 2246 ext_nss_bw == 0) 2247 return 0; /* not possible */ 2248 if (supp_width == 1 && 2249 ext_nss_bw == 1) 2250 return max_vht_nss / 2; 2251 if (supp_width == 1 && 2252 ext_nss_bw == 2) 2253 return (3 * max_vht_nss) / 4; 2254 break; 2255 } 2256 2257 /* not covered or invalid combination received */ 2258 return max_vht_nss; 2259 } 2260 EXPORT_SYMBOL(ieee80211_get_vht_max_nss); 2261 2262 bool cfg80211_iftype_allowed(struct wiphy *wiphy, enum nl80211_iftype iftype, 2263 bool is_4addr, u8 check_swif) 2264 2265 { 2266 bool is_vlan = iftype == NL80211_IFTYPE_AP_VLAN; 2267 2268 switch (check_swif) { 2269 case 0: 2270 if (is_vlan && is_4addr) 2271 return wiphy->flags & WIPHY_FLAG_4ADDR_AP; 2272 return wiphy->interface_modes & BIT(iftype); 2273 case 1: 2274 if (!(wiphy->software_iftypes & BIT(iftype)) && is_vlan) 2275 return wiphy->flags & WIPHY_FLAG_4ADDR_AP; 2276 return wiphy->software_iftypes & BIT(iftype); 2277 default: 2278 break; 2279 } 2280 2281 return false; 2282 } 2283 EXPORT_SYMBOL(cfg80211_iftype_allowed); 2284