xref: /linux/net/wireless/util.c (revision b889fcf63cb62e7fdb7816565e28f44dbe4a76a5)
1 /*
2  * Wireless utility functions
3  *
4  * Copyright 2007-2009	Johannes Berg <johannes@sipsolutions.net>
5  */
6 #include <linux/export.h>
7 #include <linux/bitops.h>
8 #include <linux/etherdevice.h>
9 #include <linux/slab.h>
10 #include <net/cfg80211.h>
11 #include <net/ip.h>
12 #include <net/dsfield.h>
13 #include "core.h"
14 #include "rdev-ops.h"
15 
16 
17 struct ieee80211_rate *
18 ieee80211_get_response_rate(struct ieee80211_supported_band *sband,
19 			    u32 basic_rates, int bitrate)
20 {
21 	struct ieee80211_rate *result = &sband->bitrates[0];
22 	int i;
23 
24 	for (i = 0; i < sband->n_bitrates; i++) {
25 		if (!(basic_rates & BIT(i)))
26 			continue;
27 		if (sband->bitrates[i].bitrate > bitrate)
28 			continue;
29 		result = &sband->bitrates[i];
30 	}
31 
32 	return result;
33 }
34 EXPORT_SYMBOL(ieee80211_get_response_rate);
35 
36 int ieee80211_channel_to_frequency(int chan, enum ieee80211_band band)
37 {
38 	/* see 802.11 17.3.8.3.2 and Annex J
39 	 * there are overlapping channel numbers in 5GHz and 2GHz bands */
40 	if (chan <= 0)
41 		return 0; /* not supported */
42 	switch (band) {
43 	case IEEE80211_BAND_2GHZ:
44 		if (chan == 14)
45 			return 2484;
46 		else if (chan < 14)
47 			return 2407 + chan * 5;
48 		break;
49 	case IEEE80211_BAND_5GHZ:
50 		if (chan >= 182 && chan <= 196)
51 			return 4000 + chan * 5;
52 		else
53 			return 5000 + chan * 5;
54 		break;
55 	case IEEE80211_BAND_60GHZ:
56 		if (chan < 5)
57 			return 56160 + chan * 2160;
58 		break;
59 	default:
60 		;
61 	}
62 	return 0; /* not supported */
63 }
64 EXPORT_SYMBOL(ieee80211_channel_to_frequency);
65 
66 int ieee80211_frequency_to_channel(int freq)
67 {
68 	/* see 802.11 17.3.8.3.2 and Annex J */
69 	if (freq == 2484)
70 		return 14;
71 	else if (freq < 2484)
72 		return (freq - 2407) / 5;
73 	else if (freq >= 4910 && freq <= 4980)
74 		return (freq - 4000) / 5;
75 	else if (freq <= 45000) /* DMG band lower limit */
76 		return (freq - 5000) / 5;
77 	else if (freq >= 58320 && freq <= 64800)
78 		return (freq - 56160) / 2160;
79 	else
80 		return 0;
81 }
82 EXPORT_SYMBOL(ieee80211_frequency_to_channel);
83 
84 struct ieee80211_channel *__ieee80211_get_channel(struct wiphy *wiphy,
85 						  int freq)
86 {
87 	enum ieee80211_band band;
88 	struct ieee80211_supported_band *sband;
89 	int i;
90 
91 	for (band = 0; band < IEEE80211_NUM_BANDS; band++) {
92 		sband = wiphy->bands[band];
93 
94 		if (!sband)
95 			continue;
96 
97 		for (i = 0; i < sband->n_channels; i++) {
98 			if (sband->channels[i].center_freq == freq)
99 				return &sband->channels[i];
100 		}
101 	}
102 
103 	return NULL;
104 }
105 EXPORT_SYMBOL(__ieee80211_get_channel);
106 
107 static void set_mandatory_flags_band(struct ieee80211_supported_band *sband,
108 				     enum ieee80211_band band)
109 {
110 	int i, want;
111 
112 	switch (band) {
113 	case IEEE80211_BAND_5GHZ:
114 		want = 3;
115 		for (i = 0; i < sband->n_bitrates; i++) {
116 			if (sband->bitrates[i].bitrate == 60 ||
117 			    sband->bitrates[i].bitrate == 120 ||
118 			    sband->bitrates[i].bitrate == 240) {
119 				sband->bitrates[i].flags |=
120 					IEEE80211_RATE_MANDATORY_A;
121 				want--;
122 			}
123 		}
124 		WARN_ON(want);
125 		break;
126 	case IEEE80211_BAND_2GHZ:
127 		want = 7;
128 		for (i = 0; i < sband->n_bitrates; i++) {
129 			if (sband->bitrates[i].bitrate == 10) {
130 				sband->bitrates[i].flags |=
131 					IEEE80211_RATE_MANDATORY_B |
132 					IEEE80211_RATE_MANDATORY_G;
133 				want--;
134 			}
135 
136 			if (sband->bitrates[i].bitrate == 20 ||
137 			    sband->bitrates[i].bitrate == 55 ||
138 			    sband->bitrates[i].bitrate == 110 ||
139 			    sband->bitrates[i].bitrate == 60 ||
140 			    sband->bitrates[i].bitrate == 120 ||
141 			    sband->bitrates[i].bitrate == 240) {
142 				sband->bitrates[i].flags |=
143 					IEEE80211_RATE_MANDATORY_G;
144 				want--;
145 			}
146 
147 			if (sband->bitrates[i].bitrate != 10 &&
148 			    sband->bitrates[i].bitrate != 20 &&
149 			    sband->bitrates[i].bitrate != 55 &&
150 			    sband->bitrates[i].bitrate != 110)
151 				sband->bitrates[i].flags |=
152 					IEEE80211_RATE_ERP_G;
153 		}
154 		WARN_ON(want != 0 && want != 3 && want != 6);
155 		break;
156 	case IEEE80211_BAND_60GHZ:
157 		/* check for mandatory HT MCS 1..4 */
158 		WARN_ON(!sband->ht_cap.ht_supported);
159 		WARN_ON((sband->ht_cap.mcs.rx_mask[0] & 0x1e) != 0x1e);
160 		break;
161 	case IEEE80211_NUM_BANDS:
162 		WARN_ON(1);
163 		break;
164 	}
165 }
166 
167 void ieee80211_set_bitrate_flags(struct wiphy *wiphy)
168 {
169 	enum ieee80211_band band;
170 
171 	for (band = 0; band < IEEE80211_NUM_BANDS; band++)
172 		if (wiphy->bands[band])
173 			set_mandatory_flags_band(wiphy->bands[band], band);
174 }
175 
176 bool cfg80211_supported_cipher_suite(struct wiphy *wiphy, u32 cipher)
177 {
178 	int i;
179 	for (i = 0; i < wiphy->n_cipher_suites; i++)
180 		if (cipher == wiphy->cipher_suites[i])
181 			return true;
182 	return false;
183 }
184 
185 int cfg80211_validate_key_settings(struct cfg80211_registered_device *rdev,
186 				   struct key_params *params, int key_idx,
187 				   bool pairwise, const u8 *mac_addr)
188 {
189 	if (key_idx > 5)
190 		return -EINVAL;
191 
192 	if (!pairwise && mac_addr && !(rdev->wiphy.flags & WIPHY_FLAG_IBSS_RSN))
193 		return -EINVAL;
194 
195 	if (pairwise && !mac_addr)
196 		return -EINVAL;
197 
198 	/*
199 	 * Disallow pairwise keys with non-zero index unless it's WEP
200 	 * or a vendor specific cipher (because current deployments use
201 	 * pairwise WEP keys with non-zero indices and for vendor specific
202 	 * ciphers this should be validated in the driver or hardware level
203 	 * - but 802.11i clearly specifies to use zero)
204 	 */
205 	if (pairwise && key_idx &&
206 	    ((params->cipher == WLAN_CIPHER_SUITE_TKIP) ||
207 	     (params->cipher == WLAN_CIPHER_SUITE_CCMP) ||
208 	     (params->cipher == WLAN_CIPHER_SUITE_AES_CMAC)))
209 		return -EINVAL;
210 
211 	switch (params->cipher) {
212 	case WLAN_CIPHER_SUITE_WEP40:
213 		if (params->key_len != WLAN_KEY_LEN_WEP40)
214 			return -EINVAL;
215 		break;
216 	case WLAN_CIPHER_SUITE_TKIP:
217 		if (params->key_len != WLAN_KEY_LEN_TKIP)
218 			return -EINVAL;
219 		break;
220 	case WLAN_CIPHER_SUITE_CCMP:
221 		if (params->key_len != WLAN_KEY_LEN_CCMP)
222 			return -EINVAL;
223 		break;
224 	case WLAN_CIPHER_SUITE_WEP104:
225 		if (params->key_len != WLAN_KEY_LEN_WEP104)
226 			return -EINVAL;
227 		break;
228 	case WLAN_CIPHER_SUITE_AES_CMAC:
229 		if (params->key_len != WLAN_KEY_LEN_AES_CMAC)
230 			return -EINVAL;
231 		break;
232 	default:
233 		/*
234 		 * We don't know anything about this algorithm,
235 		 * allow using it -- but the driver must check
236 		 * all parameters! We still check below whether
237 		 * or not the driver supports this algorithm,
238 		 * of course.
239 		 */
240 		break;
241 	}
242 
243 	if (params->seq) {
244 		switch (params->cipher) {
245 		case WLAN_CIPHER_SUITE_WEP40:
246 		case WLAN_CIPHER_SUITE_WEP104:
247 			/* These ciphers do not use key sequence */
248 			return -EINVAL;
249 		case WLAN_CIPHER_SUITE_TKIP:
250 		case WLAN_CIPHER_SUITE_CCMP:
251 		case WLAN_CIPHER_SUITE_AES_CMAC:
252 			if (params->seq_len != 6)
253 				return -EINVAL;
254 			break;
255 		}
256 	}
257 
258 	if (!cfg80211_supported_cipher_suite(&rdev->wiphy, params->cipher))
259 		return -EINVAL;
260 
261 	return 0;
262 }
263 
264 unsigned int __attribute_const__ ieee80211_hdrlen(__le16 fc)
265 {
266 	unsigned int hdrlen = 24;
267 
268 	if (ieee80211_is_data(fc)) {
269 		if (ieee80211_has_a4(fc))
270 			hdrlen = 30;
271 		if (ieee80211_is_data_qos(fc)) {
272 			hdrlen += IEEE80211_QOS_CTL_LEN;
273 			if (ieee80211_has_order(fc))
274 				hdrlen += IEEE80211_HT_CTL_LEN;
275 		}
276 		goto out;
277 	}
278 
279 	if (ieee80211_is_ctl(fc)) {
280 		/*
281 		 * ACK and CTS are 10 bytes, all others 16. To see how
282 		 * to get this condition consider
283 		 *   subtype mask:   0b0000000011110000 (0x00F0)
284 		 *   ACK subtype:    0b0000000011010000 (0x00D0)
285 		 *   CTS subtype:    0b0000000011000000 (0x00C0)
286 		 *   bits that matter:         ^^^      (0x00E0)
287 		 *   value of those: 0b0000000011000000 (0x00C0)
288 		 */
289 		if ((fc & cpu_to_le16(0x00E0)) == cpu_to_le16(0x00C0))
290 			hdrlen = 10;
291 		else
292 			hdrlen = 16;
293 	}
294 out:
295 	return hdrlen;
296 }
297 EXPORT_SYMBOL(ieee80211_hdrlen);
298 
299 unsigned int ieee80211_get_hdrlen_from_skb(const struct sk_buff *skb)
300 {
301 	const struct ieee80211_hdr *hdr =
302 			(const struct ieee80211_hdr *)skb->data;
303 	unsigned int hdrlen;
304 
305 	if (unlikely(skb->len < 10))
306 		return 0;
307 	hdrlen = ieee80211_hdrlen(hdr->frame_control);
308 	if (unlikely(hdrlen > skb->len))
309 		return 0;
310 	return hdrlen;
311 }
312 EXPORT_SYMBOL(ieee80211_get_hdrlen_from_skb);
313 
314 unsigned int ieee80211_get_mesh_hdrlen(struct ieee80211s_hdr *meshhdr)
315 {
316 	int ae = meshhdr->flags & MESH_FLAGS_AE;
317 	/* 802.11-2012, 8.2.4.7.3 */
318 	switch (ae) {
319 	default:
320 	case 0:
321 		return 6;
322 	case MESH_FLAGS_AE_A4:
323 		return 12;
324 	case MESH_FLAGS_AE_A5_A6:
325 		return 18;
326 	}
327 }
328 EXPORT_SYMBOL(ieee80211_get_mesh_hdrlen);
329 
330 int ieee80211_data_to_8023(struct sk_buff *skb, const u8 *addr,
331 			   enum nl80211_iftype iftype)
332 {
333 	struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data;
334 	u16 hdrlen, ethertype;
335 	u8 *payload;
336 	u8 dst[ETH_ALEN];
337 	u8 src[ETH_ALEN] __aligned(2);
338 
339 	if (unlikely(!ieee80211_is_data_present(hdr->frame_control)))
340 		return -1;
341 
342 	hdrlen = ieee80211_hdrlen(hdr->frame_control);
343 
344 	/* convert IEEE 802.11 header + possible LLC headers into Ethernet
345 	 * header
346 	 * IEEE 802.11 address fields:
347 	 * ToDS FromDS Addr1 Addr2 Addr3 Addr4
348 	 *   0     0   DA    SA    BSSID n/a
349 	 *   0     1   DA    BSSID SA    n/a
350 	 *   1     0   BSSID SA    DA    n/a
351 	 *   1     1   RA    TA    DA    SA
352 	 */
353 	memcpy(dst, ieee80211_get_DA(hdr), ETH_ALEN);
354 	memcpy(src, ieee80211_get_SA(hdr), ETH_ALEN);
355 
356 	switch (hdr->frame_control &
357 		cpu_to_le16(IEEE80211_FCTL_TODS | IEEE80211_FCTL_FROMDS)) {
358 	case cpu_to_le16(IEEE80211_FCTL_TODS):
359 		if (unlikely(iftype != NL80211_IFTYPE_AP &&
360 			     iftype != NL80211_IFTYPE_AP_VLAN &&
361 			     iftype != NL80211_IFTYPE_P2P_GO))
362 			return -1;
363 		break;
364 	case cpu_to_le16(IEEE80211_FCTL_TODS | IEEE80211_FCTL_FROMDS):
365 		if (unlikely(iftype != NL80211_IFTYPE_WDS &&
366 			     iftype != NL80211_IFTYPE_MESH_POINT &&
367 			     iftype != NL80211_IFTYPE_AP_VLAN &&
368 			     iftype != NL80211_IFTYPE_STATION))
369 			return -1;
370 		if (iftype == NL80211_IFTYPE_MESH_POINT) {
371 			struct ieee80211s_hdr *meshdr =
372 				(struct ieee80211s_hdr *) (skb->data + hdrlen);
373 			/* make sure meshdr->flags is on the linear part */
374 			if (!pskb_may_pull(skb, hdrlen + 1))
375 				return -1;
376 			if (meshdr->flags & MESH_FLAGS_AE_A4)
377 				return -1;
378 			if (meshdr->flags & MESH_FLAGS_AE_A5_A6) {
379 				skb_copy_bits(skb, hdrlen +
380 					offsetof(struct ieee80211s_hdr, eaddr1),
381 				       	dst, ETH_ALEN);
382 				skb_copy_bits(skb, hdrlen +
383 					offsetof(struct ieee80211s_hdr, eaddr2),
384 				        src, ETH_ALEN);
385 			}
386 			hdrlen += ieee80211_get_mesh_hdrlen(meshdr);
387 		}
388 		break;
389 	case cpu_to_le16(IEEE80211_FCTL_FROMDS):
390 		if ((iftype != NL80211_IFTYPE_STATION &&
391 		     iftype != NL80211_IFTYPE_P2P_CLIENT &&
392 		     iftype != NL80211_IFTYPE_MESH_POINT) ||
393 		    (is_multicast_ether_addr(dst) &&
394 		     ether_addr_equal(src, addr)))
395 			return -1;
396 		if (iftype == NL80211_IFTYPE_MESH_POINT) {
397 			struct ieee80211s_hdr *meshdr =
398 				(struct ieee80211s_hdr *) (skb->data + hdrlen);
399 			/* make sure meshdr->flags is on the linear part */
400 			if (!pskb_may_pull(skb, hdrlen + 1))
401 				return -1;
402 			if (meshdr->flags & MESH_FLAGS_AE_A5_A6)
403 				return -1;
404 			if (meshdr->flags & MESH_FLAGS_AE_A4)
405 				skb_copy_bits(skb, hdrlen +
406 					offsetof(struct ieee80211s_hdr, eaddr1),
407 					src, ETH_ALEN);
408 			hdrlen += ieee80211_get_mesh_hdrlen(meshdr);
409 		}
410 		break;
411 	case cpu_to_le16(0):
412 		if (iftype != NL80211_IFTYPE_ADHOC &&
413 		    iftype != NL80211_IFTYPE_STATION)
414 				return -1;
415 		break;
416 	}
417 
418 	if (!pskb_may_pull(skb, hdrlen + 8))
419 		return -1;
420 
421 	payload = skb->data + hdrlen;
422 	ethertype = (payload[6] << 8) | payload[7];
423 
424 	if (likely((ether_addr_equal(payload, rfc1042_header) &&
425 		    ethertype != ETH_P_AARP && ethertype != ETH_P_IPX) ||
426 		   ether_addr_equal(payload, bridge_tunnel_header))) {
427 		/* remove RFC1042 or Bridge-Tunnel encapsulation and
428 		 * replace EtherType */
429 		skb_pull(skb, hdrlen + 6);
430 		memcpy(skb_push(skb, ETH_ALEN), src, ETH_ALEN);
431 		memcpy(skb_push(skb, ETH_ALEN), dst, ETH_ALEN);
432 	} else {
433 		struct ethhdr *ehdr;
434 		__be16 len;
435 
436 		skb_pull(skb, hdrlen);
437 		len = htons(skb->len);
438 		ehdr = (struct ethhdr *) skb_push(skb, sizeof(struct ethhdr));
439 		memcpy(ehdr->h_dest, dst, ETH_ALEN);
440 		memcpy(ehdr->h_source, src, ETH_ALEN);
441 		ehdr->h_proto = len;
442 	}
443 	return 0;
444 }
445 EXPORT_SYMBOL(ieee80211_data_to_8023);
446 
447 int ieee80211_data_from_8023(struct sk_buff *skb, const u8 *addr,
448 			     enum nl80211_iftype iftype, u8 *bssid, bool qos)
449 {
450 	struct ieee80211_hdr hdr;
451 	u16 hdrlen, ethertype;
452 	__le16 fc;
453 	const u8 *encaps_data;
454 	int encaps_len, skip_header_bytes;
455 	int nh_pos, h_pos;
456 	int head_need;
457 
458 	if (unlikely(skb->len < ETH_HLEN))
459 		return -EINVAL;
460 
461 	nh_pos = skb_network_header(skb) - skb->data;
462 	h_pos = skb_transport_header(skb) - skb->data;
463 
464 	/* convert Ethernet header to proper 802.11 header (based on
465 	 * operation mode) */
466 	ethertype = (skb->data[12] << 8) | skb->data[13];
467 	fc = cpu_to_le16(IEEE80211_FTYPE_DATA | IEEE80211_STYPE_DATA);
468 
469 	switch (iftype) {
470 	case NL80211_IFTYPE_AP:
471 	case NL80211_IFTYPE_AP_VLAN:
472 	case NL80211_IFTYPE_P2P_GO:
473 		fc |= cpu_to_le16(IEEE80211_FCTL_FROMDS);
474 		/* DA BSSID SA */
475 		memcpy(hdr.addr1, skb->data, ETH_ALEN);
476 		memcpy(hdr.addr2, addr, ETH_ALEN);
477 		memcpy(hdr.addr3, skb->data + ETH_ALEN, ETH_ALEN);
478 		hdrlen = 24;
479 		break;
480 	case NL80211_IFTYPE_STATION:
481 	case NL80211_IFTYPE_P2P_CLIENT:
482 		fc |= cpu_to_le16(IEEE80211_FCTL_TODS);
483 		/* BSSID SA DA */
484 		memcpy(hdr.addr1, bssid, ETH_ALEN);
485 		memcpy(hdr.addr2, skb->data + ETH_ALEN, ETH_ALEN);
486 		memcpy(hdr.addr3, skb->data, ETH_ALEN);
487 		hdrlen = 24;
488 		break;
489 	case NL80211_IFTYPE_ADHOC:
490 		/* DA SA BSSID */
491 		memcpy(hdr.addr1, skb->data, ETH_ALEN);
492 		memcpy(hdr.addr2, skb->data + ETH_ALEN, ETH_ALEN);
493 		memcpy(hdr.addr3, bssid, ETH_ALEN);
494 		hdrlen = 24;
495 		break;
496 	default:
497 		return -EOPNOTSUPP;
498 	}
499 
500 	if (qos) {
501 		fc |= cpu_to_le16(IEEE80211_STYPE_QOS_DATA);
502 		hdrlen += 2;
503 	}
504 
505 	hdr.frame_control = fc;
506 	hdr.duration_id = 0;
507 	hdr.seq_ctrl = 0;
508 
509 	skip_header_bytes = ETH_HLEN;
510 	if (ethertype == ETH_P_AARP || ethertype == ETH_P_IPX) {
511 		encaps_data = bridge_tunnel_header;
512 		encaps_len = sizeof(bridge_tunnel_header);
513 		skip_header_bytes -= 2;
514 	} else if (ethertype > 0x600) {
515 		encaps_data = rfc1042_header;
516 		encaps_len = sizeof(rfc1042_header);
517 		skip_header_bytes -= 2;
518 	} else {
519 		encaps_data = NULL;
520 		encaps_len = 0;
521 	}
522 
523 	skb_pull(skb, skip_header_bytes);
524 	nh_pos -= skip_header_bytes;
525 	h_pos -= skip_header_bytes;
526 
527 	head_need = hdrlen + encaps_len - skb_headroom(skb);
528 
529 	if (head_need > 0 || skb_cloned(skb)) {
530 		head_need = max(head_need, 0);
531 		if (head_need)
532 			skb_orphan(skb);
533 
534 		if (pskb_expand_head(skb, head_need, 0, GFP_ATOMIC))
535 			return -ENOMEM;
536 
537 		skb->truesize += head_need;
538 	}
539 
540 	if (encaps_data) {
541 		memcpy(skb_push(skb, encaps_len), encaps_data, encaps_len);
542 		nh_pos += encaps_len;
543 		h_pos += encaps_len;
544 	}
545 
546 	memcpy(skb_push(skb, hdrlen), &hdr, hdrlen);
547 
548 	nh_pos += hdrlen;
549 	h_pos += hdrlen;
550 
551 	/* Update skb pointers to various headers since this modified frame
552 	 * is going to go through Linux networking code that may potentially
553 	 * need things like pointer to IP header. */
554 	skb_set_mac_header(skb, 0);
555 	skb_set_network_header(skb, nh_pos);
556 	skb_set_transport_header(skb, h_pos);
557 
558 	return 0;
559 }
560 EXPORT_SYMBOL(ieee80211_data_from_8023);
561 
562 
563 void ieee80211_amsdu_to_8023s(struct sk_buff *skb, struct sk_buff_head *list,
564 			      const u8 *addr, enum nl80211_iftype iftype,
565 			      const unsigned int extra_headroom,
566 			      bool has_80211_header)
567 {
568 	struct sk_buff *frame = NULL;
569 	u16 ethertype;
570 	u8 *payload;
571 	const struct ethhdr *eth;
572 	int remaining, err;
573 	u8 dst[ETH_ALEN], src[ETH_ALEN];
574 
575 	if (has_80211_header) {
576 		err = ieee80211_data_to_8023(skb, addr, iftype);
577 		if (err)
578 			goto out;
579 
580 		/* skip the wrapping header */
581 		eth = (struct ethhdr *) skb_pull(skb, sizeof(struct ethhdr));
582 		if (!eth)
583 			goto out;
584 	} else {
585 		eth = (struct ethhdr *) skb->data;
586 	}
587 
588 	while (skb != frame) {
589 		u8 padding;
590 		__be16 len = eth->h_proto;
591 		unsigned int subframe_len = sizeof(struct ethhdr) + ntohs(len);
592 
593 		remaining = skb->len;
594 		memcpy(dst, eth->h_dest, ETH_ALEN);
595 		memcpy(src, eth->h_source, ETH_ALEN);
596 
597 		padding = (4 - subframe_len) & 0x3;
598 		/* the last MSDU has no padding */
599 		if (subframe_len > remaining)
600 			goto purge;
601 
602 		skb_pull(skb, sizeof(struct ethhdr));
603 		/* reuse skb for the last subframe */
604 		if (remaining <= subframe_len + padding)
605 			frame = skb;
606 		else {
607 			unsigned int hlen = ALIGN(extra_headroom, 4);
608 			/*
609 			 * Allocate and reserve two bytes more for payload
610 			 * alignment since sizeof(struct ethhdr) is 14.
611 			 */
612 			frame = dev_alloc_skb(hlen + subframe_len + 2);
613 			if (!frame)
614 				goto purge;
615 
616 			skb_reserve(frame, hlen + sizeof(struct ethhdr) + 2);
617 			memcpy(skb_put(frame, ntohs(len)), skb->data,
618 				ntohs(len));
619 
620 			eth = (struct ethhdr *)skb_pull(skb, ntohs(len) +
621 							padding);
622 			if (!eth) {
623 				dev_kfree_skb(frame);
624 				goto purge;
625 			}
626 		}
627 
628 		skb_reset_network_header(frame);
629 		frame->dev = skb->dev;
630 		frame->priority = skb->priority;
631 
632 		payload = frame->data;
633 		ethertype = (payload[6] << 8) | payload[7];
634 
635 		if (likely((ether_addr_equal(payload, rfc1042_header) &&
636 			    ethertype != ETH_P_AARP && ethertype != ETH_P_IPX) ||
637 			   ether_addr_equal(payload, bridge_tunnel_header))) {
638 			/* remove RFC1042 or Bridge-Tunnel
639 			 * encapsulation and replace EtherType */
640 			skb_pull(frame, 6);
641 			memcpy(skb_push(frame, ETH_ALEN), src, ETH_ALEN);
642 			memcpy(skb_push(frame, ETH_ALEN), dst, ETH_ALEN);
643 		} else {
644 			memcpy(skb_push(frame, sizeof(__be16)), &len,
645 				sizeof(__be16));
646 			memcpy(skb_push(frame, ETH_ALEN), src, ETH_ALEN);
647 			memcpy(skb_push(frame, ETH_ALEN), dst, ETH_ALEN);
648 		}
649 		__skb_queue_tail(list, frame);
650 	}
651 
652 	return;
653 
654  purge:
655 	__skb_queue_purge(list);
656  out:
657 	dev_kfree_skb(skb);
658 }
659 EXPORT_SYMBOL(ieee80211_amsdu_to_8023s);
660 
661 /* Given a data frame determine the 802.1p/1d tag to use. */
662 unsigned int cfg80211_classify8021d(struct sk_buff *skb)
663 {
664 	unsigned int dscp;
665 
666 	/* skb->priority values from 256->263 are magic values to
667 	 * directly indicate a specific 802.1d priority.  This is used
668 	 * to allow 802.1d priority to be passed directly in from VLAN
669 	 * tags, etc.
670 	 */
671 	if (skb->priority >= 256 && skb->priority <= 263)
672 		return skb->priority - 256;
673 
674 	switch (skb->protocol) {
675 	case htons(ETH_P_IP):
676 		dscp = ipv4_get_dsfield(ip_hdr(skb)) & 0xfc;
677 		break;
678 	case htons(ETH_P_IPV6):
679 		dscp = ipv6_get_dsfield(ipv6_hdr(skb)) & 0xfc;
680 		break;
681 	default:
682 		return 0;
683 	}
684 
685 	return dscp >> 5;
686 }
687 EXPORT_SYMBOL(cfg80211_classify8021d);
688 
689 const u8 *ieee80211_bss_get_ie(struct cfg80211_bss *bss, u8 ie)
690 {
691 	const struct cfg80211_bss_ies *ies;
692 
693 	ies = rcu_dereference(bss->ies);
694 	if (!ies)
695 		return NULL;
696 
697 	return cfg80211_find_ie(ie, ies->data, ies->len);
698 }
699 EXPORT_SYMBOL(ieee80211_bss_get_ie);
700 
701 void cfg80211_upload_connect_keys(struct wireless_dev *wdev)
702 {
703 	struct cfg80211_registered_device *rdev = wiphy_to_dev(wdev->wiphy);
704 	struct net_device *dev = wdev->netdev;
705 	int i;
706 
707 	if (!wdev->connect_keys)
708 		return;
709 
710 	for (i = 0; i < 6; i++) {
711 		if (!wdev->connect_keys->params[i].cipher)
712 			continue;
713 		if (rdev_add_key(rdev, dev, i, false, NULL,
714 				 &wdev->connect_keys->params[i])) {
715 			netdev_err(dev, "failed to set key %d\n", i);
716 			continue;
717 		}
718 		if (wdev->connect_keys->def == i)
719 			if (rdev_set_default_key(rdev, dev, i, true, true)) {
720 				netdev_err(dev, "failed to set defkey %d\n", i);
721 				continue;
722 			}
723 		if (wdev->connect_keys->defmgmt == i)
724 			if (rdev_set_default_mgmt_key(rdev, dev, i))
725 				netdev_err(dev, "failed to set mgtdef %d\n", i);
726 	}
727 
728 	kfree(wdev->connect_keys);
729 	wdev->connect_keys = NULL;
730 }
731 
732 void cfg80211_process_wdev_events(struct wireless_dev *wdev)
733 {
734 	struct cfg80211_event *ev;
735 	unsigned long flags;
736 	const u8 *bssid = NULL;
737 
738 	spin_lock_irqsave(&wdev->event_lock, flags);
739 	while (!list_empty(&wdev->event_list)) {
740 		ev = list_first_entry(&wdev->event_list,
741 				      struct cfg80211_event, list);
742 		list_del(&ev->list);
743 		spin_unlock_irqrestore(&wdev->event_lock, flags);
744 
745 		wdev_lock(wdev);
746 		switch (ev->type) {
747 		case EVENT_CONNECT_RESULT:
748 			if (!is_zero_ether_addr(ev->cr.bssid))
749 				bssid = ev->cr.bssid;
750 			__cfg80211_connect_result(
751 				wdev->netdev, bssid,
752 				ev->cr.req_ie, ev->cr.req_ie_len,
753 				ev->cr.resp_ie, ev->cr.resp_ie_len,
754 				ev->cr.status,
755 				ev->cr.status == WLAN_STATUS_SUCCESS,
756 				NULL);
757 			break;
758 		case EVENT_ROAMED:
759 			__cfg80211_roamed(wdev, ev->rm.bss, ev->rm.req_ie,
760 					  ev->rm.req_ie_len, ev->rm.resp_ie,
761 					  ev->rm.resp_ie_len);
762 			break;
763 		case EVENT_DISCONNECTED:
764 			__cfg80211_disconnected(wdev->netdev,
765 						ev->dc.ie, ev->dc.ie_len,
766 						ev->dc.reason, true);
767 			break;
768 		case EVENT_IBSS_JOINED:
769 			__cfg80211_ibss_joined(wdev->netdev, ev->ij.bssid);
770 			break;
771 		}
772 		wdev_unlock(wdev);
773 
774 		kfree(ev);
775 
776 		spin_lock_irqsave(&wdev->event_lock, flags);
777 	}
778 	spin_unlock_irqrestore(&wdev->event_lock, flags);
779 }
780 
781 void cfg80211_process_rdev_events(struct cfg80211_registered_device *rdev)
782 {
783 	struct wireless_dev *wdev;
784 
785 	ASSERT_RTNL();
786 	ASSERT_RDEV_LOCK(rdev);
787 
788 	mutex_lock(&rdev->devlist_mtx);
789 
790 	list_for_each_entry(wdev, &rdev->wdev_list, list)
791 		cfg80211_process_wdev_events(wdev);
792 
793 	mutex_unlock(&rdev->devlist_mtx);
794 }
795 
796 int cfg80211_change_iface(struct cfg80211_registered_device *rdev,
797 			  struct net_device *dev, enum nl80211_iftype ntype,
798 			  u32 *flags, struct vif_params *params)
799 {
800 	int err;
801 	enum nl80211_iftype otype = dev->ieee80211_ptr->iftype;
802 
803 	ASSERT_RDEV_LOCK(rdev);
804 
805 	/* don't support changing VLANs, you just re-create them */
806 	if (otype == NL80211_IFTYPE_AP_VLAN)
807 		return -EOPNOTSUPP;
808 
809 	/* cannot change into P2P device type */
810 	if (ntype == NL80211_IFTYPE_P2P_DEVICE)
811 		return -EOPNOTSUPP;
812 
813 	if (!rdev->ops->change_virtual_intf ||
814 	    !(rdev->wiphy.interface_modes & (1 << ntype)))
815 		return -EOPNOTSUPP;
816 
817 	/* if it's part of a bridge, reject changing type to station/ibss */
818 	if ((dev->priv_flags & IFF_BRIDGE_PORT) &&
819 	    (ntype == NL80211_IFTYPE_ADHOC ||
820 	     ntype == NL80211_IFTYPE_STATION ||
821 	     ntype == NL80211_IFTYPE_P2P_CLIENT))
822 		return -EBUSY;
823 
824 	if (ntype != otype && netif_running(dev)) {
825 		mutex_lock(&rdev->devlist_mtx);
826 		err = cfg80211_can_change_interface(rdev, dev->ieee80211_ptr,
827 						    ntype);
828 		mutex_unlock(&rdev->devlist_mtx);
829 		if (err)
830 			return err;
831 
832 		dev->ieee80211_ptr->use_4addr = false;
833 		dev->ieee80211_ptr->mesh_id_up_len = 0;
834 
835 		switch (otype) {
836 		case NL80211_IFTYPE_AP:
837 			cfg80211_stop_ap(rdev, dev);
838 			break;
839 		case NL80211_IFTYPE_ADHOC:
840 			cfg80211_leave_ibss(rdev, dev, false);
841 			break;
842 		case NL80211_IFTYPE_STATION:
843 		case NL80211_IFTYPE_P2P_CLIENT:
844 			cfg80211_disconnect(rdev, dev,
845 					    WLAN_REASON_DEAUTH_LEAVING, true);
846 			break;
847 		case NL80211_IFTYPE_MESH_POINT:
848 			/* mesh should be handled? */
849 			break;
850 		default:
851 			break;
852 		}
853 
854 		cfg80211_process_rdev_events(rdev);
855 	}
856 
857 	err = rdev_change_virtual_intf(rdev, dev, ntype, flags, params);
858 
859 	WARN_ON(!err && dev->ieee80211_ptr->iftype != ntype);
860 
861 	if (!err && params && params->use_4addr != -1)
862 		dev->ieee80211_ptr->use_4addr = params->use_4addr;
863 
864 	if (!err) {
865 		dev->priv_flags &= ~IFF_DONT_BRIDGE;
866 		switch (ntype) {
867 		case NL80211_IFTYPE_STATION:
868 			if (dev->ieee80211_ptr->use_4addr)
869 				break;
870 			/* fall through */
871 		case NL80211_IFTYPE_P2P_CLIENT:
872 		case NL80211_IFTYPE_ADHOC:
873 			dev->priv_flags |= IFF_DONT_BRIDGE;
874 			break;
875 		case NL80211_IFTYPE_P2P_GO:
876 		case NL80211_IFTYPE_AP:
877 		case NL80211_IFTYPE_AP_VLAN:
878 		case NL80211_IFTYPE_WDS:
879 		case NL80211_IFTYPE_MESH_POINT:
880 			/* bridging OK */
881 			break;
882 		case NL80211_IFTYPE_MONITOR:
883 			/* monitor can't bridge anyway */
884 			break;
885 		case NL80211_IFTYPE_UNSPECIFIED:
886 		case NUM_NL80211_IFTYPES:
887 			/* not happening */
888 			break;
889 		case NL80211_IFTYPE_P2P_DEVICE:
890 			WARN_ON(1);
891 			break;
892 		}
893 	}
894 
895 	if (!err && ntype != otype && netif_running(dev)) {
896 		cfg80211_update_iface_num(rdev, ntype, 1);
897 		cfg80211_update_iface_num(rdev, otype, -1);
898 	}
899 
900 	return err;
901 }
902 
903 static u32 cfg80211_calculate_bitrate_60g(struct rate_info *rate)
904 {
905 	static const u32 __mcs2bitrate[] = {
906 		/* control PHY */
907 		[0] =   275,
908 		/* SC PHY */
909 		[1] =  3850,
910 		[2] =  7700,
911 		[3] =  9625,
912 		[4] = 11550,
913 		[5] = 12512, /* 1251.25 mbps */
914 		[6] = 15400,
915 		[7] = 19250,
916 		[8] = 23100,
917 		[9] = 25025,
918 		[10] = 30800,
919 		[11] = 38500,
920 		[12] = 46200,
921 		/* OFDM PHY */
922 		[13] =  6930,
923 		[14] =  8662, /* 866.25 mbps */
924 		[15] = 13860,
925 		[16] = 17325,
926 		[17] = 20790,
927 		[18] = 27720,
928 		[19] = 34650,
929 		[20] = 41580,
930 		[21] = 45045,
931 		[22] = 51975,
932 		[23] = 62370,
933 		[24] = 67568, /* 6756.75 mbps */
934 		/* LP-SC PHY */
935 		[25] =  6260,
936 		[26] =  8340,
937 		[27] = 11120,
938 		[28] = 12510,
939 		[29] = 16680,
940 		[30] = 22240,
941 		[31] = 25030,
942 	};
943 
944 	if (WARN_ON_ONCE(rate->mcs >= ARRAY_SIZE(__mcs2bitrate)))
945 		return 0;
946 
947 	return __mcs2bitrate[rate->mcs];
948 }
949 
950 static u32 cfg80211_calculate_bitrate_vht(struct rate_info *rate)
951 {
952 	static const u32 base[4][10] = {
953 		{   6500000,
954 		   13000000,
955 		   19500000,
956 		   26000000,
957 		   39000000,
958 		   52000000,
959 		   58500000,
960 		   65000000,
961 		   78000000,
962 		   0,
963 		},
964 		{  13500000,
965 		   27000000,
966 		   40500000,
967 		   54000000,
968 		   81000000,
969 		  108000000,
970 		  121500000,
971 		  135000000,
972 		  162000000,
973 		  180000000,
974 		},
975 		{  29300000,
976 		   58500000,
977 		   87800000,
978 		  117000000,
979 		  175500000,
980 		  234000000,
981 		  263300000,
982 		  292500000,
983 		  351000000,
984 		  390000000,
985 		},
986 		{  58500000,
987 		  117000000,
988 		  175500000,
989 		  234000000,
990 		  351000000,
991 		  468000000,
992 		  526500000,
993 		  585000000,
994 		  702000000,
995 		  780000000,
996 		},
997 	};
998 	u32 bitrate;
999 	int idx;
1000 
1001 	if (WARN_ON_ONCE(rate->mcs > 9))
1002 		return 0;
1003 
1004 	idx = rate->flags & (RATE_INFO_FLAGS_160_MHZ_WIDTH |
1005 			     RATE_INFO_FLAGS_80P80_MHZ_WIDTH) ? 3 :
1006 		  rate->flags & RATE_INFO_FLAGS_80_MHZ_WIDTH ? 2 :
1007 		  rate->flags & RATE_INFO_FLAGS_40_MHZ_WIDTH ? 1 : 0;
1008 
1009 	bitrate = base[idx][rate->mcs];
1010 	bitrate *= rate->nss;
1011 
1012 	if (rate->flags & RATE_INFO_FLAGS_SHORT_GI)
1013 		bitrate = (bitrate / 9) * 10;
1014 
1015 	/* do NOT round down here */
1016 	return (bitrate + 50000) / 100000;
1017 }
1018 
1019 u32 cfg80211_calculate_bitrate(struct rate_info *rate)
1020 {
1021 	int modulation, streams, bitrate;
1022 
1023 	if (!(rate->flags & RATE_INFO_FLAGS_MCS) &&
1024 	    !(rate->flags & RATE_INFO_FLAGS_VHT_MCS))
1025 		return rate->legacy;
1026 	if (rate->flags & RATE_INFO_FLAGS_60G)
1027 		return cfg80211_calculate_bitrate_60g(rate);
1028 	if (rate->flags & RATE_INFO_FLAGS_VHT_MCS)
1029 		return cfg80211_calculate_bitrate_vht(rate);
1030 
1031 	/* the formula below does only work for MCS values smaller than 32 */
1032 	if (WARN_ON_ONCE(rate->mcs >= 32))
1033 		return 0;
1034 
1035 	modulation = rate->mcs & 7;
1036 	streams = (rate->mcs >> 3) + 1;
1037 
1038 	bitrate = (rate->flags & RATE_INFO_FLAGS_40_MHZ_WIDTH) ?
1039 			13500000 : 6500000;
1040 
1041 	if (modulation < 4)
1042 		bitrate *= (modulation + 1);
1043 	else if (modulation == 4)
1044 		bitrate *= (modulation + 2);
1045 	else
1046 		bitrate *= (modulation + 3);
1047 
1048 	bitrate *= streams;
1049 
1050 	if (rate->flags & RATE_INFO_FLAGS_SHORT_GI)
1051 		bitrate = (bitrate / 9) * 10;
1052 
1053 	/* do NOT round down here */
1054 	return (bitrate + 50000) / 100000;
1055 }
1056 EXPORT_SYMBOL(cfg80211_calculate_bitrate);
1057 
1058 int cfg80211_get_p2p_attr(const u8 *ies, unsigned int len,
1059 			  enum ieee80211_p2p_attr_id attr,
1060 			  u8 *buf, unsigned int bufsize)
1061 {
1062 	u8 *out = buf;
1063 	u16 attr_remaining = 0;
1064 	bool desired_attr = false;
1065 	u16 desired_len = 0;
1066 
1067 	while (len > 0) {
1068 		unsigned int iedatalen;
1069 		unsigned int copy;
1070 		const u8 *iedata;
1071 
1072 		if (len < 2)
1073 			return -EILSEQ;
1074 		iedatalen = ies[1];
1075 		if (iedatalen + 2 > len)
1076 			return -EILSEQ;
1077 
1078 		if (ies[0] != WLAN_EID_VENDOR_SPECIFIC)
1079 			goto cont;
1080 
1081 		if (iedatalen < 4)
1082 			goto cont;
1083 
1084 		iedata = ies + 2;
1085 
1086 		/* check WFA OUI, P2P subtype */
1087 		if (iedata[0] != 0x50 || iedata[1] != 0x6f ||
1088 		    iedata[2] != 0x9a || iedata[3] != 0x09)
1089 			goto cont;
1090 
1091 		iedatalen -= 4;
1092 		iedata += 4;
1093 
1094 		/* check attribute continuation into this IE */
1095 		copy = min_t(unsigned int, attr_remaining, iedatalen);
1096 		if (copy && desired_attr) {
1097 			desired_len += copy;
1098 			if (out) {
1099 				memcpy(out, iedata, min(bufsize, copy));
1100 				out += min(bufsize, copy);
1101 				bufsize -= min(bufsize, copy);
1102 			}
1103 
1104 
1105 			if (copy == attr_remaining)
1106 				return desired_len;
1107 		}
1108 
1109 		attr_remaining -= copy;
1110 		if (attr_remaining)
1111 			goto cont;
1112 
1113 		iedatalen -= copy;
1114 		iedata += copy;
1115 
1116 		while (iedatalen > 0) {
1117 			u16 attr_len;
1118 
1119 			/* P2P attribute ID & size must fit */
1120 			if (iedatalen < 3)
1121 				return -EILSEQ;
1122 			desired_attr = iedata[0] == attr;
1123 			attr_len = get_unaligned_le16(iedata + 1);
1124 			iedatalen -= 3;
1125 			iedata += 3;
1126 
1127 			copy = min_t(unsigned int, attr_len, iedatalen);
1128 
1129 			if (desired_attr) {
1130 				desired_len += copy;
1131 				if (out) {
1132 					memcpy(out, iedata, min(bufsize, copy));
1133 					out += min(bufsize, copy);
1134 					bufsize -= min(bufsize, copy);
1135 				}
1136 
1137 				if (copy == attr_len)
1138 					return desired_len;
1139 			}
1140 
1141 			iedata += copy;
1142 			iedatalen -= copy;
1143 			attr_remaining = attr_len - copy;
1144 		}
1145 
1146  cont:
1147 		len -= ies[1] + 2;
1148 		ies += ies[1] + 2;
1149 	}
1150 
1151 	if (attr_remaining && desired_attr)
1152 		return -EILSEQ;
1153 
1154 	return -ENOENT;
1155 }
1156 EXPORT_SYMBOL(cfg80211_get_p2p_attr);
1157 
1158 int cfg80211_validate_beacon_int(struct cfg80211_registered_device *rdev,
1159 				 u32 beacon_int)
1160 {
1161 	struct wireless_dev *wdev;
1162 	int res = 0;
1163 
1164 	if (!beacon_int)
1165 		return -EINVAL;
1166 
1167 	mutex_lock(&rdev->devlist_mtx);
1168 
1169 	list_for_each_entry(wdev, &rdev->wdev_list, list) {
1170 		if (!wdev->beacon_interval)
1171 			continue;
1172 		if (wdev->beacon_interval != beacon_int) {
1173 			res = -EINVAL;
1174 			break;
1175 		}
1176 	}
1177 
1178 	mutex_unlock(&rdev->devlist_mtx);
1179 
1180 	return res;
1181 }
1182 
1183 int cfg80211_can_use_iftype_chan(struct cfg80211_registered_device *rdev,
1184 				 struct wireless_dev *wdev,
1185 				 enum nl80211_iftype iftype,
1186 				 struct ieee80211_channel *chan,
1187 				 enum cfg80211_chan_mode chanmode)
1188 {
1189 	struct wireless_dev *wdev_iter;
1190 	u32 used_iftypes = BIT(iftype);
1191 	int num[NUM_NL80211_IFTYPES];
1192 	struct ieee80211_channel
1193 			*used_channels[CFG80211_MAX_NUM_DIFFERENT_CHANNELS];
1194 	struct ieee80211_channel *ch;
1195 	enum cfg80211_chan_mode chmode;
1196 	int num_different_channels = 0;
1197 	int total = 1;
1198 	int i, j;
1199 
1200 	ASSERT_RTNL();
1201 	lockdep_assert_held(&rdev->devlist_mtx);
1202 
1203 	/* Always allow software iftypes */
1204 	if (rdev->wiphy.software_iftypes & BIT(iftype))
1205 		return 0;
1206 
1207 	memset(num, 0, sizeof(num));
1208 	memset(used_channels, 0, sizeof(used_channels));
1209 
1210 	num[iftype] = 1;
1211 
1212 	switch (chanmode) {
1213 	case CHAN_MODE_UNDEFINED:
1214 		break;
1215 	case CHAN_MODE_SHARED:
1216 		WARN_ON(!chan);
1217 		used_channels[0] = chan;
1218 		num_different_channels++;
1219 		break;
1220 	case CHAN_MODE_EXCLUSIVE:
1221 		num_different_channels++;
1222 		break;
1223 	}
1224 
1225 	list_for_each_entry(wdev_iter, &rdev->wdev_list, list) {
1226 		if (wdev_iter == wdev)
1227 			continue;
1228 		if (wdev_iter->netdev) {
1229 			if (!netif_running(wdev_iter->netdev))
1230 				continue;
1231 		} else if (wdev_iter->iftype == NL80211_IFTYPE_P2P_DEVICE) {
1232 			if (!wdev_iter->p2p_started)
1233 				continue;
1234 		} else {
1235 			WARN_ON(1);
1236 		}
1237 
1238 		if (rdev->wiphy.software_iftypes & BIT(wdev_iter->iftype))
1239 			continue;
1240 
1241 		/*
1242 		 * We may be holding the "wdev" mutex, but now need to lock
1243 		 * wdev_iter. This is OK because once we get here wdev_iter
1244 		 * is not wdev (tested above), but we need to use the nested
1245 		 * locking for lockdep.
1246 		 */
1247 		mutex_lock_nested(&wdev_iter->mtx, 1);
1248 		__acquire(wdev_iter->mtx);
1249 		cfg80211_get_chan_state(wdev_iter, &ch, &chmode);
1250 		wdev_unlock(wdev_iter);
1251 
1252 		switch (chmode) {
1253 		case CHAN_MODE_UNDEFINED:
1254 			break;
1255 		case CHAN_MODE_SHARED:
1256 			for (i = 0; i < CFG80211_MAX_NUM_DIFFERENT_CHANNELS; i++)
1257 				if (!used_channels[i] || used_channels[i] == ch)
1258 					break;
1259 
1260 			if (i == CFG80211_MAX_NUM_DIFFERENT_CHANNELS)
1261 				return -EBUSY;
1262 
1263 			if (used_channels[i] == NULL) {
1264 				used_channels[i] = ch;
1265 				num_different_channels++;
1266 			}
1267 			break;
1268 		case CHAN_MODE_EXCLUSIVE:
1269 			num_different_channels++;
1270 			break;
1271 		}
1272 
1273 		num[wdev_iter->iftype]++;
1274 		total++;
1275 		used_iftypes |= BIT(wdev_iter->iftype);
1276 	}
1277 
1278 	if (total == 1)
1279 		return 0;
1280 
1281 	for (i = 0; i < rdev->wiphy.n_iface_combinations; i++) {
1282 		const struct ieee80211_iface_combination *c;
1283 		struct ieee80211_iface_limit *limits;
1284 		u32 all_iftypes = 0;
1285 
1286 		c = &rdev->wiphy.iface_combinations[i];
1287 
1288 		if (total > c->max_interfaces)
1289 			continue;
1290 		if (num_different_channels > c->num_different_channels)
1291 			continue;
1292 
1293 		limits = kmemdup(c->limits, sizeof(limits[0]) * c->n_limits,
1294 				 GFP_KERNEL);
1295 		if (!limits)
1296 			return -ENOMEM;
1297 
1298 		for (iftype = 0; iftype < NUM_NL80211_IFTYPES; iftype++) {
1299 			if (rdev->wiphy.software_iftypes & BIT(iftype))
1300 				continue;
1301 			for (j = 0; j < c->n_limits; j++) {
1302 				all_iftypes |= limits[j].types;
1303 				if (!(limits[j].types & BIT(iftype)))
1304 					continue;
1305 				if (limits[j].max < num[iftype])
1306 					goto cont;
1307 				limits[j].max -= num[iftype];
1308 			}
1309 		}
1310 
1311 		/*
1312 		 * Finally check that all iftypes that we're currently
1313 		 * using are actually part of this combination. If they
1314 		 * aren't then we can't use this combination and have
1315 		 * to continue to the next.
1316 		 */
1317 		if ((all_iftypes & used_iftypes) != used_iftypes)
1318 			goto cont;
1319 
1320 		/*
1321 		 * This combination covered all interface types and
1322 		 * supported the requested numbers, so we're good.
1323 		 */
1324 		kfree(limits);
1325 		return 0;
1326  cont:
1327 		kfree(limits);
1328 	}
1329 
1330 	return -EBUSY;
1331 }
1332 
1333 int ieee80211_get_ratemask(struct ieee80211_supported_band *sband,
1334 			   const u8 *rates, unsigned int n_rates,
1335 			   u32 *mask)
1336 {
1337 	int i, j;
1338 
1339 	if (!sband)
1340 		return -EINVAL;
1341 
1342 	if (n_rates == 0 || n_rates > NL80211_MAX_SUPP_RATES)
1343 		return -EINVAL;
1344 
1345 	*mask = 0;
1346 
1347 	for (i = 0; i < n_rates; i++) {
1348 		int rate = (rates[i] & 0x7f) * 5;
1349 		bool found = false;
1350 
1351 		for (j = 0; j < sband->n_bitrates; j++) {
1352 			if (sband->bitrates[j].bitrate == rate) {
1353 				found = true;
1354 				*mask |= BIT(j);
1355 				break;
1356 			}
1357 		}
1358 		if (!found)
1359 			return -EINVAL;
1360 	}
1361 
1362 	/*
1363 	 * mask must have at least one bit set here since we
1364 	 * didn't accept a 0-length rates array nor allowed
1365 	 * entries in the array that didn't exist
1366 	 */
1367 
1368 	return 0;
1369 }
1370 
1371 /* See IEEE 802.1H for LLC/SNAP encapsulation/decapsulation */
1372 /* Ethernet-II snap header (RFC1042 for most EtherTypes) */
1373 const unsigned char rfc1042_header[] __aligned(2) =
1374 	{ 0xaa, 0xaa, 0x03, 0x00, 0x00, 0x00 };
1375 EXPORT_SYMBOL(rfc1042_header);
1376 
1377 /* Bridge-Tunnel header (for EtherTypes ETH_P_AARP and ETH_P_IPX) */
1378 const unsigned char bridge_tunnel_header[] __aligned(2) =
1379 	{ 0xaa, 0xaa, 0x03, 0x00, 0x00, 0xf8 };
1380 EXPORT_SYMBOL(bridge_tunnel_header);
1381