1 /* 2 * Wireless utility functions 3 * 4 * Copyright 2007-2009 Johannes Berg <johannes@sipsolutions.net> 5 * Copyright 2013-2014 Intel Mobile Communications GmbH 6 */ 7 #include <linux/export.h> 8 #include <linux/bitops.h> 9 #include <linux/etherdevice.h> 10 #include <linux/slab.h> 11 #include <net/cfg80211.h> 12 #include <net/ip.h> 13 #include <net/dsfield.h> 14 #include <linux/if_vlan.h> 15 #include <linux/mpls.h> 16 #include "core.h" 17 #include "rdev-ops.h" 18 19 20 struct ieee80211_rate * 21 ieee80211_get_response_rate(struct ieee80211_supported_band *sband, 22 u32 basic_rates, int bitrate) 23 { 24 struct ieee80211_rate *result = &sband->bitrates[0]; 25 int i; 26 27 for (i = 0; i < sband->n_bitrates; i++) { 28 if (!(basic_rates & BIT(i))) 29 continue; 30 if (sband->bitrates[i].bitrate > bitrate) 31 continue; 32 result = &sband->bitrates[i]; 33 } 34 35 return result; 36 } 37 EXPORT_SYMBOL(ieee80211_get_response_rate); 38 39 u32 ieee80211_mandatory_rates(struct ieee80211_supported_band *sband, 40 enum nl80211_bss_scan_width scan_width) 41 { 42 struct ieee80211_rate *bitrates; 43 u32 mandatory_rates = 0; 44 enum ieee80211_rate_flags mandatory_flag; 45 int i; 46 47 if (WARN_ON(!sband)) 48 return 1; 49 50 if (sband->band == IEEE80211_BAND_2GHZ) { 51 if (scan_width == NL80211_BSS_CHAN_WIDTH_5 || 52 scan_width == NL80211_BSS_CHAN_WIDTH_10) 53 mandatory_flag = IEEE80211_RATE_MANDATORY_G; 54 else 55 mandatory_flag = IEEE80211_RATE_MANDATORY_B; 56 } else { 57 mandatory_flag = IEEE80211_RATE_MANDATORY_A; 58 } 59 60 bitrates = sband->bitrates; 61 for (i = 0; i < sband->n_bitrates; i++) 62 if (bitrates[i].flags & mandatory_flag) 63 mandatory_rates |= BIT(i); 64 return mandatory_rates; 65 } 66 EXPORT_SYMBOL(ieee80211_mandatory_rates); 67 68 int ieee80211_channel_to_frequency(int chan, enum ieee80211_band band) 69 { 70 /* see 802.11 17.3.8.3.2 and Annex J 71 * there are overlapping channel numbers in 5GHz and 2GHz bands */ 72 if (chan <= 0) 73 return 0; /* not supported */ 74 switch (band) { 75 case IEEE80211_BAND_2GHZ: 76 if (chan == 14) 77 return 2484; 78 else if (chan < 14) 79 return 2407 + chan * 5; 80 break; 81 case IEEE80211_BAND_5GHZ: 82 if (chan >= 182 && chan <= 196) 83 return 4000 + chan * 5; 84 else 85 return 5000 + chan * 5; 86 break; 87 case IEEE80211_BAND_60GHZ: 88 if (chan < 5) 89 return 56160 + chan * 2160; 90 break; 91 default: 92 ; 93 } 94 return 0; /* not supported */ 95 } 96 EXPORT_SYMBOL(ieee80211_channel_to_frequency); 97 98 int ieee80211_frequency_to_channel(int freq) 99 { 100 /* see 802.11 17.3.8.3.2 and Annex J */ 101 if (freq == 2484) 102 return 14; 103 else if (freq < 2484) 104 return (freq - 2407) / 5; 105 else if (freq >= 4910 && freq <= 4980) 106 return (freq - 4000) / 5; 107 else if (freq <= 45000) /* DMG band lower limit */ 108 return (freq - 5000) / 5; 109 else if (freq >= 58320 && freq <= 64800) 110 return (freq - 56160) / 2160; 111 else 112 return 0; 113 } 114 EXPORT_SYMBOL(ieee80211_frequency_to_channel); 115 116 struct ieee80211_channel *__ieee80211_get_channel(struct wiphy *wiphy, 117 int freq) 118 { 119 enum ieee80211_band band; 120 struct ieee80211_supported_band *sband; 121 int i; 122 123 for (band = 0; band < IEEE80211_NUM_BANDS; band++) { 124 sband = wiphy->bands[band]; 125 126 if (!sband) 127 continue; 128 129 for (i = 0; i < sband->n_channels; i++) { 130 if (sband->channels[i].center_freq == freq) 131 return &sband->channels[i]; 132 } 133 } 134 135 return NULL; 136 } 137 EXPORT_SYMBOL(__ieee80211_get_channel); 138 139 static void set_mandatory_flags_band(struct ieee80211_supported_band *sband, 140 enum ieee80211_band band) 141 { 142 int i, want; 143 144 switch (band) { 145 case IEEE80211_BAND_5GHZ: 146 want = 3; 147 for (i = 0; i < sband->n_bitrates; i++) { 148 if (sband->bitrates[i].bitrate == 60 || 149 sband->bitrates[i].bitrate == 120 || 150 sband->bitrates[i].bitrate == 240) { 151 sband->bitrates[i].flags |= 152 IEEE80211_RATE_MANDATORY_A; 153 want--; 154 } 155 } 156 WARN_ON(want); 157 break; 158 case IEEE80211_BAND_2GHZ: 159 want = 7; 160 for (i = 0; i < sband->n_bitrates; i++) { 161 if (sband->bitrates[i].bitrate == 10) { 162 sband->bitrates[i].flags |= 163 IEEE80211_RATE_MANDATORY_B | 164 IEEE80211_RATE_MANDATORY_G; 165 want--; 166 } 167 168 if (sband->bitrates[i].bitrate == 20 || 169 sband->bitrates[i].bitrate == 55 || 170 sband->bitrates[i].bitrate == 110 || 171 sband->bitrates[i].bitrate == 60 || 172 sband->bitrates[i].bitrate == 120 || 173 sband->bitrates[i].bitrate == 240) { 174 sband->bitrates[i].flags |= 175 IEEE80211_RATE_MANDATORY_G; 176 want--; 177 } 178 179 if (sband->bitrates[i].bitrate != 10 && 180 sband->bitrates[i].bitrate != 20 && 181 sband->bitrates[i].bitrate != 55 && 182 sband->bitrates[i].bitrate != 110) 183 sband->bitrates[i].flags |= 184 IEEE80211_RATE_ERP_G; 185 } 186 WARN_ON(want != 0 && want != 3 && want != 6); 187 break; 188 case IEEE80211_BAND_60GHZ: 189 /* check for mandatory HT MCS 1..4 */ 190 WARN_ON(!sband->ht_cap.ht_supported); 191 WARN_ON((sband->ht_cap.mcs.rx_mask[0] & 0x1e) != 0x1e); 192 break; 193 case IEEE80211_NUM_BANDS: 194 WARN_ON(1); 195 break; 196 } 197 } 198 199 void ieee80211_set_bitrate_flags(struct wiphy *wiphy) 200 { 201 enum ieee80211_band band; 202 203 for (band = 0; band < IEEE80211_NUM_BANDS; band++) 204 if (wiphy->bands[band]) 205 set_mandatory_flags_band(wiphy->bands[band], band); 206 } 207 208 bool cfg80211_supported_cipher_suite(struct wiphy *wiphy, u32 cipher) 209 { 210 int i; 211 for (i = 0; i < wiphy->n_cipher_suites; i++) 212 if (cipher == wiphy->cipher_suites[i]) 213 return true; 214 return false; 215 } 216 217 int cfg80211_validate_key_settings(struct cfg80211_registered_device *rdev, 218 struct key_params *params, int key_idx, 219 bool pairwise, const u8 *mac_addr) 220 { 221 if (key_idx > 5) 222 return -EINVAL; 223 224 if (!pairwise && mac_addr && !(rdev->wiphy.flags & WIPHY_FLAG_IBSS_RSN)) 225 return -EINVAL; 226 227 if (pairwise && !mac_addr) 228 return -EINVAL; 229 230 /* 231 * Disallow pairwise keys with non-zero index unless it's WEP 232 * or a vendor specific cipher (because current deployments use 233 * pairwise WEP keys with non-zero indices and for vendor specific 234 * ciphers this should be validated in the driver or hardware level 235 * - but 802.11i clearly specifies to use zero) 236 */ 237 if (pairwise && key_idx && 238 ((params->cipher == WLAN_CIPHER_SUITE_TKIP) || 239 (params->cipher == WLAN_CIPHER_SUITE_CCMP) || 240 (params->cipher == WLAN_CIPHER_SUITE_AES_CMAC))) 241 return -EINVAL; 242 243 switch (params->cipher) { 244 case WLAN_CIPHER_SUITE_WEP40: 245 if (params->key_len != WLAN_KEY_LEN_WEP40) 246 return -EINVAL; 247 break; 248 case WLAN_CIPHER_SUITE_TKIP: 249 if (params->key_len != WLAN_KEY_LEN_TKIP) 250 return -EINVAL; 251 break; 252 case WLAN_CIPHER_SUITE_CCMP: 253 if (params->key_len != WLAN_KEY_LEN_CCMP) 254 return -EINVAL; 255 break; 256 case WLAN_CIPHER_SUITE_WEP104: 257 if (params->key_len != WLAN_KEY_LEN_WEP104) 258 return -EINVAL; 259 break; 260 case WLAN_CIPHER_SUITE_AES_CMAC: 261 if (params->key_len != WLAN_KEY_LEN_AES_CMAC) 262 return -EINVAL; 263 break; 264 default: 265 /* 266 * We don't know anything about this algorithm, 267 * allow using it -- but the driver must check 268 * all parameters! We still check below whether 269 * or not the driver supports this algorithm, 270 * of course. 271 */ 272 break; 273 } 274 275 if (params->seq) { 276 switch (params->cipher) { 277 case WLAN_CIPHER_SUITE_WEP40: 278 case WLAN_CIPHER_SUITE_WEP104: 279 /* These ciphers do not use key sequence */ 280 return -EINVAL; 281 case WLAN_CIPHER_SUITE_TKIP: 282 case WLAN_CIPHER_SUITE_CCMP: 283 case WLAN_CIPHER_SUITE_AES_CMAC: 284 if (params->seq_len != 6) 285 return -EINVAL; 286 break; 287 } 288 } 289 290 if (!cfg80211_supported_cipher_suite(&rdev->wiphy, params->cipher)) 291 return -EINVAL; 292 293 return 0; 294 } 295 296 unsigned int __attribute_const__ ieee80211_hdrlen(__le16 fc) 297 { 298 unsigned int hdrlen = 24; 299 300 if (ieee80211_is_data(fc)) { 301 if (ieee80211_has_a4(fc)) 302 hdrlen = 30; 303 if (ieee80211_is_data_qos(fc)) { 304 hdrlen += IEEE80211_QOS_CTL_LEN; 305 if (ieee80211_has_order(fc)) 306 hdrlen += IEEE80211_HT_CTL_LEN; 307 } 308 goto out; 309 } 310 311 if (ieee80211_is_ctl(fc)) { 312 /* 313 * ACK and CTS are 10 bytes, all others 16. To see how 314 * to get this condition consider 315 * subtype mask: 0b0000000011110000 (0x00F0) 316 * ACK subtype: 0b0000000011010000 (0x00D0) 317 * CTS subtype: 0b0000000011000000 (0x00C0) 318 * bits that matter: ^^^ (0x00E0) 319 * value of those: 0b0000000011000000 (0x00C0) 320 */ 321 if ((fc & cpu_to_le16(0x00E0)) == cpu_to_le16(0x00C0)) 322 hdrlen = 10; 323 else 324 hdrlen = 16; 325 } 326 out: 327 return hdrlen; 328 } 329 EXPORT_SYMBOL(ieee80211_hdrlen); 330 331 unsigned int ieee80211_get_hdrlen_from_skb(const struct sk_buff *skb) 332 { 333 const struct ieee80211_hdr *hdr = 334 (const struct ieee80211_hdr *)skb->data; 335 unsigned int hdrlen; 336 337 if (unlikely(skb->len < 10)) 338 return 0; 339 hdrlen = ieee80211_hdrlen(hdr->frame_control); 340 if (unlikely(hdrlen > skb->len)) 341 return 0; 342 return hdrlen; 343 } 344 EXPORT_SYMBOL(ieee80211_get_hdrlen_from_skb); 345 346 unsigned int ieee80211_get_mesh_hdrlen(struct ieee80211s_hdr *meshhdr) 347 { 348 int ae = meshhdr->flags & MESH_FLAGS_AE; 349 /* 802.11-2012, 8.2.4.7.3 */ 350 switch (ae) { 351 default: 352 case 0: 353 return 6; 354 case MESH_FLAGS_AE_A4: 355 return 12; 356 case MESH_FLAGS_AE_A5_A6: 357 return 18; 358 } 359 } 360 EXPORT_SYMBOL(ieee80211_get_mesh_hdrlen); 361 362 int ieee80211_data_to_8023(struct sk_buff *skb, const u8 *addr, 363 enum nl80211_iftype iftype) 364 { 365 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data; 366 u16 hdrlen, ethertype; 367 u8 *payload; 368 u8 dst[ETH_ALEN]; 369 u8 src[ETH_ALEN] __aligned(2); 370 371 if (unlikely(!ieee80211_is_data_present(hdr->frame_control))) 372 return -1; 373 374 hdrlen = ieee80211_hdrlen(hdr->frame_control); 375 376 /* convert IEEE 802.11 header + possible LLC headers into Ethernet 377 * header 378 * IEEE 802.11 address fields: 379 * ToDS FromDS Addr1 Addr2 Addr3 Addr4 380 * 0 0 DA SA BSSID n/a 381 * 0 1 DA BSSID SA n/a 382 * 1 0 BSSID SA DA n/a 383 * 1 1 RA TA DA SA 384 */ 385 memcpy(dst, ieee80211_get_DA(hdr), ETH_ALEN); 386 memcpy(src, ieee80211_get_SA(hdr), ETH_ALEN); 387 388 switch (hdr->frame_control & 389 cpu_to_le16(IEEE80211_FCTL_TODS | IEEE80211_FCTL_FROMDS)) { 390 case cpu_to_le16(IEEE80211_FCTL_TODS): 391 if (unlikely(iftype != NL80211_IFTYPE_AP && 392 iftype != NL80211_IFTYPE_AP_VLAN && 393 iftype != NL80211_IFTYPE_P2P_GO)) 394 return -1; 395 break; 396 case cpu_to_le16(IEEE80211_FCTL_TODS | IEEE80211_FCTL_FROMDS): 397 if (unlikely(iftype != NL80211_IFTYPE_WDS && 398 iftype != NL80211_IFTYPE_MESH_POINT && 399 iftype != NL80211_IFTYPE_AP_VLAN && 400 iftype != NL80211_IFTYPE_STATION)) 401 return -1; 402 if (iftype == NL80211_IFTYPE_MESH_POINT) { 403 struct ieee80211s_hdr *meshdr = 404 (struct ieee80211s_hdr *) (skb->data + hdrlen); 405 /* make sure meshdr->flags is on the linear part */ 406 if (!pskb_may_pull(skb, hdrlen + 1)) 407 return -1; 408 if (meshdr->flags & MESH_FLAGS_AE_A4) 409 return -1; 410 if (meshdr->flags & MESH_FLAGS_AE_A5_A6) { 411 skb_copy_bits(skb, hdrlen + 412 offsetof(struct ieee80211s_hdr, eaddr1), 413 dst, ETH_ALEN); 414 skb_copy_bits(skb, hdrlen + 415 offsetof(struct ieee80211s_hdr, eaddr2), 416 src, ETH_ALEN); 417 } 418 hdrlen += ieee80211_get_mesh_hdrlen(meshdr); 419 } 420 break; 421 case cpu_to_le16(IEEE80211_FCTL_FROMDS): 422 if ((iftype != NL80211_IFTYPE_STATION && 423 iftype != NL80211_IFTYPE_P2P_CLIENT && 424 iftype != NL80211_IFTYPE_MESH_POINT) || 425 (is_multicast_ether_addr(dst) && 426 ether_addr_equal(src, addr))) 427 return -1; 428 if (iftype == NL80211_IFTYPE_MESH_POINT) { 429 struct ieee80211s_hdr *meshdr = 430 (struct ieee80211s_hdr *) (skb->data + hdrlen); 431 /* make sure meshdr->flags is on the linear part */ 432 if (!pskb_may_pull(skb, hdrlen + 1)) 433 return -1; 434 if (meshdr->flags & MESH_FLAGS_AE_A5_A6) 435 return -1; 436 if (meshdr->flags & MESH_FLAGS_AE_A4) 437 skb_copy_bits(skb, hdrlen + 438 offsetof(struct ieee80211s_hdr, eaddr1), 439 src, ETH_ALEN); 440 hdrlen += ieee80211_get_mesh_hdrlen(meshdr); 441 } 442 break; 443 case cpu_to_le16(0): 444 if (iftype != NL80211_IFTYPE_ADHOC && 445 iftype != NL80211_IFTYPE_STATION) 446 return -1; 447 break; 448 } 449 450 if (!pskb_may_pull(skb, hdrlen + 8)) 451 return -1; 452 453 payload = skb->data + hdrlen; 454 ethertype = (payload[6] << 8) | payload[7]; 455 456 if (likely((ether_addr_equal(payload, rfc1042_header) && 457 ethertype != ETH_P_AARP && ethertype != ETH_P_IPX) || 458 ether_addr_equal(payload, bridge_tunnel_header))) { 459 /* remove RFC1042 or Bridge-Tunnel encapsulation and 460 * replace EtherType */ 461 skb_pull(skb, hdrlen + 6); 462 memcpy(skb_push(skb, ETH_ALEN), src, ETH_ALEN); 463 memcpy(skb_push(skb, ETH_ALEN), dst, ETH_ALEN); 464 } else { 465 struct ethhdr *ehdr; 466 __be16 len; 467 468 skb_pull(skb, hdrlen); 469 len = htons(skb->len); 470 ehdr = (struct ethhdr *) skb_push(skb, sizeof(struct ethhdr)); 471 memcpy(ehdr->h_dest, dst, ETH_ALEN); 472 memcpy(ehdr->h_source, src, ETH_ALEN); 473 ehdr->h_proto = len; 474 } 475 return 0; 476 } 477 EXPORT_SYMBOL(ieee80211_data_to_8023); 478 479 int ieee80211_data_from_8023(struct sk_buff *skb, const u8 *addr, 480 enum nl80211_iftype iftype, 481 const u8 *bssid, bool qos) 482 { 483 struct ieee80211_hdr hdr; 484 u16 hdrlen, ethertype; 485 __le16 fc; 486 const u8 *encaps_data; 487 int encaps_len, skip_header_bytes; 488 int nh_pos, h_pos; 489 int head_need; 490 491 if (unlikely(skb->len < ETH_HLEN)) 492 return -EINVAL; 493 494 nh_pos = skb_network_header(skb) - skb->data; 495 h_pos = skb_transport_header(skb) - skb->data; 496 497 /* convert Ethernet header to proper 802.11 header (based on 498 * operation mode) */ 499 ethertype = (skb->data[12] << 8) | skb->data[13]; 500 fc = cpu_to_le16(IEEE80211_FTYPE_DATA | IEEE80211_STYPE_DATA); 501 502 switch (iftype) { 503 case NL80211_IFTYPE_AP: 504 case NL80211_IFTYPE_AP_VLAN: 505 case NL80211_IFTYPE_P2P_GO: 506 fc |= cpu_to_le16(IEEE80211_FCTL_FROMDS); 507 /* DA BSSID SA */ 508 memcpy(hdr.addr1, skb->data, ETH_ALEN); 509 memcpy(hdr.addr2, addr, ETH_ALEN); 510 memcpy(hdr.addr3, skb->data + ETH_ALEN, ETH_ALEN); 511 hdrlen = 24; 512 break; 513 case NL80211_IFTYPE_STATION: 514 case NL80211_IFTYPE_P2P_CLIENT: 515 fc |= cpu_to_le16(IEEE80211_FCTL_TODS); 516 /* BSSID SA DA */ 517 memcpy(hdr.addr1, bssid, ETH_ALEN); 518 memcpy(hdr.addr2, skb->data + ETH_ALEN, ETH_ALEN); 519 memcpy(hdr.addr3, skb->data, ETH_ALEN); 520 hdrlen = 24; 521 break; 522 case NL80211_IFTYPE_ADHOC: 523 /* DA SA BSSID */ 524 memcpy(hdr.addr1, skb->data, ETH_ALEN); 525 memcpy(hdr.addr2, skb->data + ETH_ALEN, ETH_ALEN); 526 memcpy(hdr.addr3, bssid, ETH_ALEN); 527 hdrlen = 24; 528 break; 529 default: 530 return -EOPNOTSUPP; 531 } 532 533 if (qos) { 534 fc |= cpu_to_le16(IEEE80211_STYPE_QOS_DATA); 535 hdrlen += 2; 536 } 537 538 hdr.frame_control = fc; 539 hdr.duration_id = 0; 540 hdr.seq_ctrl = 0; 541 542 skip_header_bytes = ETH_HLEN; 543 if (ethertype == ETH_P_AARP || ethertype == ETH_P_IPX) { 544 encaps_data = bridge_tunnel_header; 545 encaps_len = sizeof(bridge_tunnel_header); 546 skip_header_bytes -= 2; 547 } else if (ethertype >= ETH_P_802_3_MIN) { 548 encaps_data = rfc1042_header; 549 encaps_len = sizeof(rfc1042_header); 550 skip_header_bytes -= 2; 551 } else { 552 encaps_data = NULL; 553 encaps_len = 0; 554 } 555 556 skb_pull(skb, skip_header_bytes); 557 nh_pos -= skip_header_bytes; 558 h_pos -= skip_header_bytes; 559 560 head_need = hdrlen + encaps_len - skb_headroom(skb); 561 562 if (head_need > 0 || skb_cloned(skb)) { 563 head_need = max(head_need, 0); 564 if (head_need) 565 skb_orphan(skb); 566 567 if (pskb_expand_head(skb, head_need, 0, GFP_ATOMIC)) 568 return -ENOMEM; 569 570 skb->truesize += head_need; 571 } 572 573 if (encaps_data) { 574 memcpy(skb_push(skb, encaps_len), encaps_data, encaps_len); 575 nh_pos += encaps_len; 576 h_pos += encaps_len; 577 } 578 579 memcpy(skb_push(skb, hdrlen), &hdr, hdrlen); 580 581 nh_pos += hdrlen; 582 h_pos += hdrlen; 583 584 /* Update skb pointers to various headers since this modified frame 585 * is going to go through Linux networking code that may potentially 586 * need things like pointer to IP header. */ 587 skb_set_mac_header(skb, 0); 588 skb_set_network_header(skb, nh_pos); 589 skb_set_transport_header(skb, h_pos); 590 591 return 0; 592 } 593 EXPORT_SYMBOL(ieee80211_data_from_8023); 594 595 596 void ieee80211_amsdu_to_8023s(struct sk_buff *skb, struct sk_buff_head *list, 597 const u8 *addr, enum nl80211_iftype iftype, 598 const unsigned int extra_headroom, 599 bool has_80211_header) 600 { 601 struct sk_buff *frame = NULL; 602 u16 ethertype; 603 u8 *payload; 604 const struct ethhdr *eth; 605 int remaining, err; 606 u8 dst[ETH_ALEN], src[ETH_ALEN]; 607 608 if (has_80211_header) { 609 err = ieee80211_data_to_8023(skb, addr, iftype); 610 if (err) 611 goto out; 612 613 /* skip the wrapping header */ 614 eth = (struct ethhdr *) skb_pull(skb, sizeof(struct ethhdr)); 615 if (!eth) 616 goto out; 617 } else { 618 eth = (struct ethhdr *) skb->data; 619 } 620 621 while (skb != frame) { 622 u8 padding; 623 __be16 len = eth->h_proto; 624 unsigned int subframe_len = sizeof(struct ethhdr) + ntohs(len); 625 626 remaining = skb->len; 627 memcpy(dst, eth->h_dest, ETH_ALEN); 628 memcpy(src, eth->h_source, ETH_ALEN); 629 630 padding = (4 - subframe_len) & 0x3; 631 /* the last MSDU has no padding */ 632 if (subframe_len > remaining) 633 goto purge; 634 635 skb_pull(skb, sizeof(struct ethhdr)); 636 /* reuse skb for the last subframe */ 637 if (remaining <= subframe_len + padding) 638 frame = skb; 639 else { 640 unsigned int hlen = ALIGN(extra_headroom, 4); 641 /* 642 * Allocate and reserve two bytes more for payload 643 * alignment since sizeof(struct ethhdr) is 14. 644 */ 645 frame = dev_alloc_skb(hlen + subframe_len + 2); 646 if (!frame) 647 goto purge; 648 649 skb_reserve(frame, hlen + sizeof(struct ethhdr) + 2); 650 memcpy(skb_put(frame, ntohs(len)), skb->data, 651 ntohs(len)); 652 653 eth = (struct ethhdr *)skb_pull(skb, ntohs(len) + 654 padding); 655 if (!eth) { 656 dev_kfree_skb(frame); 657 goto purge; 658 } 659 } 660 661 skb_reset_network_header(frame); 662 frame->dev = skb->dev; 663 frame->priority = skb->priority; 664 665 payload = frame->data; 666 ethertype = (payload[6] << 8) | payload[7]; 667 668 if (likely((ether_addr_equal(payload, rfc1042_header) && 669 ethertype != ETH_P_AARP && ethertype != ETH_P_IPX) || 670 ether_addr_equal(payload, bridge_tunnel_header))) { 671 /* remove RFC1042 or Bridge-Tunnel 672 * encapsulation and replace EtherType */ 673 skb_pull(frame, 6); 674 memcpy(skb_push(frame, ETH_ALEN), src, ETH_ALEN); 675 memcpy(skb_push(frame, ETH_ALEN), dst, ETH_ALEN); 676 } else { 677 memcpy(skb_push(frame, sizeof(__be16)), &len, 678 sizeof(__be16)); 679 memcpy(skb_push(frame, ETH_ALEN), src, ETH_ALEN); 680 memcpy(skb_push(frame, ETH_ALEN), dst, ETH_ALEN); 681 } 682 __skb_queue_tail(list, frame); 683 } 684 685 return; 686 687 purge: 688 __skb_queue_purge(list); 689 out: 690 dev_kfree_skb(skb); 691 } 692 EXPORT_SYMBOL(ieee80211_amsdu_to_8023s); 693 694 /* Given a data frame determine the 802.1p/1d tag to use. */ 695 unsigned int cfg80211_classify8021d(struct sk_buff *skb, 696 struct cfg80211_qos_map *qos_map) 697 { 698 unsigned int dscp; 699 unsigned char vlan_priority; 700 701 /* skb->priority values from 256->263 are magic values to 702 * directly indicate a specific 802.1d priority. This is used 703 * to allow 802.1d priority to be passed directly in from VLAN 704 * tags, etc. 705 */ 706 if (skb->priority >= 256 && skb->priority <= 263) 707 return skb->priority - 256; 708 709 if (vlan_tx_tag_present(skb)) { 710 vlan_priority = (vlan_tx_tag_get(skb) & VLAN_PRIO_MASK) 711 >> VLAN_PRIO_SHIFT; 712 if (vlan_priority > 0) 713 return vlan_priority; 714 } 715 716 switch (skb->protocol) { 717 case htons(ETH_P_IP): 718 dscp = ipv4_get_dsfield(ip_hdr(skb)) & 0xfc; 719 break; 720 case htons(ETH_P_IPV6): 721 dscp = ipv6_get_dsfield(ipv6_hdr(skb)) & 0xfc; 722 break; 723 case htons(ETH_P_MPLS_UC): 724 case htons(ETH_P_MPLS_MC): { 725 struct mpls_label mpls_tmp, *mpls; 726 727 mpls = skb_header_pointer(skb, sizeof(struct ethhdr), 728 sizeof(*mpls), &mpls_tmp); 729 if (!mpls) 730 return 0; 731 732 return (ntohl(mpls->entry) & MPLS_LS_TC_MASK) 733 >> MPLS_LS_TC_SHIFT; 734 } 735 case htons(ETH_P_80221): 736 /* 802.21 is always network control traffic */ 737 return 7; 738 default: 739 return 0; 740 } 741 742 if (qos_map) { 743 unsigned int i, tmp_dscp = dscp >> 2; 744 745 for (i = 0; i < qos_map->num_des; i++) { 746 if (tmp_dscp == qos_map->dscp_exception[i].dscp) 747 return qos_map->dscp_exception[i].up; 748 } 749 750 for (i = 0; i < 8; i++) { 751 if (tmp_dscp >= qos_map->up[i].low && 752 tmp_dscp <= qos_map->up[i].high) 753 return i; 754 } 755 } 756 757 return dscp >> 5; 758 } 759 EXPORT_SYMBOL(cfg80211_classify8021d); 760 761 const u8 *ieee80211_bss_get_ie(struct cfg80211_bss *bss, u8 ie) 762 { 763 const struct cfg80211_bss_ies *ies; 764 765 ies = rcu_dereference(bss->ies); 766 if (!ies) 767 return NULL; 768 769 return cfg80211_find_ie(ie, ies->data, ies->len); 770 } 771 EXPORT_SYMBOL(ieee80211_bss_get_ie); 772 773 void cfg80211_upload_connect_keys(struct wireless_dev *wdev) 774 { 775 struct cfg80211_registered_device *rdev = wiphy_to_rdev(wdev->wiphy); 776 struct net_device *dev = wdev->netdev; 777 int i; 778 779 if (!wdev->connect_keys) 780 return; 781 782 for (i = 0; i < 6; i++) { 783 if (!wdev->connect_keys->params[i].cipher) 784 continue; 785 if (rdev_add_key(rdev, dev, i, false, NULL, 786 &wdev->connect_keys->params[i])) { 787 netdev_err(dev, "failed to set key %d\n", i); 788 continue; 789 } 790 if (wdev->connect_keys->def == i) 791 if (rdev_set_default_key(rdev, dev, i, true, true)) { 792 netdev_err(dev, "failed to set defkey %d\n", i); 793 continue; 794 } 795 if (wdev->connect_keys->defmgmt == i) 796 if (rdev_set_default_mgmt_key(rdev, dev, i)) 797 netdev_err(dev, "failed to set mgtdef %d\n", i); 798 } 799 800 kzfree(wdev->connect_keys); 801 wdev->connect_keys = NULL; 802 } 803 804 void cfg80211_process_wdev_events(struct wireless_dev *wdev) 805 { 806 struct cfg80211_event *ev; 807 unsigned long flags; 808 const u8 *bssid = NULL; 809 810 spin_lock_irqsave(&wdev->event_lock, flags); 811 while (!list_empty(&wdev->event_list)) { 812 ev = list_first_entry(&wdev->event_list, 813 struct cfg80211_event, list); 814 list_del(&ev->list); 815 spin_unlock_irqrestore(&wdev->event_lock, flags); 816 817 wdev_lock(wdev); 818 switch (ev->type) { 819 case EVENT_CONNECT_RESULT: 820 if (!is_zero_ether_addr(ev->cr.bssid)) 821 bssid = ev->cr.bssid; 822 __cfg80211_connect_result( 823 wdev->netdev, bssid, 824 ev->cr.req_ie, ev->cr.req_ie_len, 825 ev->cr.resp_ie, ev->cr.resp_ie_len, 826 ev->cr.status, 827 ev->cr.status == WLAN_STATUS_SUCCESS, 828 NULL); 829 break; 830 case EVENT_ROAMED: 831 __cfg80211_roamed(wdev, ev->rm.bss, ev->rm.req_ie, 832 ev->rm.req_ie_len, ev->rm.resp_ie, 833 ev->rm.resp_ie_len); 834 break; 835 case EVENT_DISCONNECTED: 836 __cfg80211_disconnected(wdev->netdev, 837 ev->dc.ie, ev->dc.ie_len, 838 ev->dc.reason, true); 839 break; 840 case EVENT_IBSS_JOINED: 841 __cfg80211_ibss_joined(wdev->netdev, ev->ij.bssid, 842 ev->ij.channel); 843 break; 844 case EVENT_STOPPED: 845 __cfg80211_leave(wiphy_to_rdev(wdev->wiphy), wdev); 846 break; 847 } 848 wdev_unlock(wdev); 849 850 kfree(ev); 851 852 spin_lock_irqsave(&wdev->event_lock, flags); 853 } 854 spin_unlock_irqrestore(&wdev->event_lock, flags); 855 } 856 857 void cfg80211_process_rdev_events(struct cfg80211_registered_device *rdev) 858 { 859 struct wireless_dev *wdev; 860 861 ASSERT_RTNL(); 862 863 list_for_each_entry(wdev, &rdev->wdev_list, list) 864 cfg80211_process_wdev_events(wdev); 865 } 866 867 int cfg80211_change_iface(struct cfg80211_registered_device *rdev, 868 struct net_device *dev, enum nl80211_iftype ntype, 869 u32 *flags, struct vif_params *params) 870 { 871 int err; 872 enum nl80211_iftype otype = dev->ieee80211_ptr->iftype; 873 874 ASSERT_RTNL(); 875 876 /* don't support changing VLANs, you just re-create them */ 877 if (otype == NL80211_IFTYPE_AP_VLAN) 878 return -EOPNOTSUPP; 879 880 /* cannot change into P2P device type */ 881 if (ntype == NL80211_IFTYPE_P2P_DEVICE) 882 return -EOPNOTSUPP; 883 884 if (!rdev->ops->change_virtual_intf || 885 !(rdev->wiphy.interface_modes & (1 << ntype))) 886 return -EOPNOTSUPP; 887 888 /* if it's part of a bridge, reject changing type to station/ibss */ 889 if ((dev->priv_flags & IFF_BRIDGE_PORT) && 890 (ntype == NL80211_IFTYPE_ADHOC || 891 ntype == NL80211_IFTYPE_STATION || 892 ntype == NL80211_IFTYPE_P2P_CLIENT)) 893 return -EBUSY; 894 895 if (ntype != otype && netif_running(dev)) { 896 dev->ieee80211_ptr->use_4addr = false; 897 dev->ieee80211_ptr->mesh_id_up_len = 0; 898 wdev_lock(dev->ieee80211_ptr); 899 rdev_set_qos_map(rdev, dev, NULL); 900 wdev_unlock(dev->ieee80211_ptr); 901 902 switch (otype) { 903 case NL80211_IFTYPE_AP: 904 cfg80211_stop_ap(rdev, dev, true); 905 break; 906 case NL80211_IFTYPE_ADHOC: 907 cfg80211_leave_ibss(rdev, dev, false); 908 break; 909 case NL80211_IFTYPE_STATION: 910 case NL80211_IFTYPE_P2P_CLIENT: 911 wdev_lock(dev->ieee80211_ptr); 912 cfg80211_disconnect(rdev, dev, 913 WLAN_REASON_DEAUTH_LEAVING, true); 914 wdev_unlock(dev->ieee80211_ptr); 915 break; 916 case NL80211_IFTYPE_MESH_POINT: 917 /* mesh should be handled? */ 918 break; 919 default: 920 break; 921 } 922 923 cfg80211_process_rdev_events(rdev); 924 } 925 926 err = rdev_change_virtual_intf(rdev, dev, ntype, flags, params); 927 928 WARN_ON(!err && dev->ieee80211_ptr->iftype != ntype); 929 930 if (!err && params && params->use_4addr != -1) 931 dev->ieee80211_ptr->use_4addr = params->use_4addr; 932 933 if (!err) { 934 dev->priv_flags &= ~IFF_DONT_BRIDGE; 935 switch (ntype) { 936 case NL80211_IFTYPE_STATION: 937 if (dev->ieee80211_ptr->use_4addr) 938 break; 939 /* fall through */ 940 case NL80211_IFTYPE_P2P_CLIENT: 941 case NL80211_IFTYPE_ADHOC: 942 dev->priv_flags |= IFF_DONT_BRIDGE; 943 break; 944 case NL80211_IFTYPE_P2P_GO: 945 case NL80211_IFTYPE_AP: 946 case NL80211_IFTYPE_AP_VLAN: 947 case NL80211_IFTYPE_WDS: 948 case NL80211_IFTYPE_MESH_POINT: 949 /* bridging OK */ 950 break; 951 case NL80211_IFTYPE_MONITOR: 952 /* monitor can't bridge anyway */ 953 break; 954 case NL80211_IFTYPE_UNSPECIFIED: 955 case NUM_NL80211_IFTYPES: 956 /* not happening */ 957 break; 958 case NL80211_IFTYPE_P2P_DEVICE: 959 WARN_ON(1); 960 break; 961 } 962 } 963 964 if (!err && ntype != otype && netif_running(dev)) { 965 cfg80211_update_iface_num(rdev, ntype, 1); 966 cfg80211_update_iface_num(rdev, otype, -1); 967 } 968 969 return err; 970 } 971 972 static u32 cfg80211_calculate_bitrate_60g(struct rate_info *rate) 973 { 974 static const u32 __mcs2bitrate[] = { 975 /* control PHY */ 976 [0] = 275, 977 /* SC PHY */ 978 [1] = 3850, 979 [2] = 7700, 980 [3] = 9625, 981 [4] = 11550, 982 [5] = 12512, /* 1251.25 mbps */ 983 [6] = 15400, 984 [7] = 19250, 985 [8] = 23100, 986 [9] = 25025, 987 [10] = 30800, 988 [11] = 38500, 989 [12] = 46200, 990 /* OFDM PHY */ 991 [13] = 6930, 992 [14] = 8662, /* 866.25 mbps */ 993 [15] = 13860, 994 [16] = 17325, 995 [17] = 20790, 996 [18] = 27720, 997 [19] = 34650, 998 [20] = 41580, 999 [21] = 45045, 1000 [22] = 51975, 1001 [23] = 62370, 1002 [24] = 67568, /* 6756.75 mbps */ 1003 /* LP-SC PHY */ 1004 [25] = 6260, 1005 [26] = 8340, 1006 [27] = 11120, 1007 [28] = 12510, 1008 [29] = 16680, 1009 [30] = 22240, 1010 [31] = 25030, 1011 }; 1012 1013 if (WARN_ON_ONCE(rate->mcs >= ARRAY_SIZE(__mcs2bitrate))) 1014 return 0; 1015 1016 return __mcs2bitrate[rate->mcs]; 1017 } 1018 1019 static u32 cfg80211_calculate_bitrate_vht(struct rate_info *rate) 1020 { 1021 static const u32 base[4][10] = { 1022 { 6500000, 1023 13000000, 1024 19500000, 1025 26000000, 1026 39000000, 1027 52000000, 1028 58500000, 1029 65000000, 1030 78000000, 1031 0, 1032 }, 1033 { 13500000, 1034 27000000, 1035 40500000, 1036 54000000, 1037 81000000, 1038 108000000, 1039 121500000, 1040 135000000, 1041 162000000, 1042 180000000, 1043 }, 1044 { 29300000, 1045 58500000, 1046 87800000, 1047 117000000, 1048 175500000, 1049 234000000, 1050 263300000, 1051 292500000, 1052 351000000, 1053 390000000, 1054 }, 1055 { 58500000, 1056 117000000, 1057 175500000, 1058 234000000, 1059 351000000, 1060 468000000, 1061 526500000, 1062 585000000, 1063 702000000, 1064 780000000, 1065 }, 1066 }; 1067 u32 bitrate; 1068 int idx; 1069 1070 if (WARN_ON_ONCE(rate->mcs > 9)) 1071 return 0; 1072 1073 idx = rate->flags & (RATE_INFO_FLAGS_160_MHZ_WIDTH | 1074 RATE_INFO_FLAGS_80P80_MHZ_WIDTH) ? 3 : 1075 rate->flags & RATE_INFO_FLAGS_80_MHZ_WIDTH ? 2 : 1076 rate->flags & RATE_INFO_FLAGS_40_MHZ_WIDTH ? 1 : 0; 1077 1078 bitrate = base[idx][rate->mcs]; 1079 bitrate *= rate->nss; 1080 1081 if (rate->flags & RATE_INFO_FLAGS_SHORT_GI) 1082 bitrate = (bitrate / 9) * 10; 1083 1084 /* do NOT round down here */ 1085 return (bitrate + 50000) / 100000; 1086 } 1087 1088 u32 cfg80211_calculate_bitrate(struct rate_info *rate) 1089 { 1090 int modulation, streams, bitrate; 1091 1092 if (!(rate->flags & RATE_INFO_FLAGS_MCS) && 1093 !(rate->flags & RATE_INFO_FLAGS_VHT_MCS)) 1094 return rate->legacy; 1095 if (rate->flags & RATE_INFO_FLAGS_60G) 1096 return cfg80211_calculate_bitrate_60g(rate); 1097 if (rate->flags & RATE_INFO_FLAGS_VHT_MCS) 1098 return cfg80211_calculate_bitrate_vht(rate); 1099 1100 /* the formula below does only work for MCS values smaller than 32 */ 1101 if (WARN_ON_ONCE(rate->mcs >= 32)) 1102 return 0; 1103 1104 modulation = rate->mcs & 7; 1105 streams = (rate->mcs >> 3) + 1; 1106 1107 bitrate = (rate->flags & RATE_INFO_FLAGS_40_MHZ_WIDTH) ? 1108 13500000 : 6500000; 1109 1110 if (modulation < 4) 1111 bitrate *= (modulation + 1); 1112 else if (modulation == 4) 1113 bitrate *= (modulation + 2); 1114 else 1115 bitrate *= (modulation + 3); 1116 1117 bitrate *= streams; 1118 1119 if (rate->flags & RATE_INFO_FLAGS_SHORT_GI) 1120 bitrate = (bitrate / 9) * 10; 1121 1122 /* do NOT round down here */ 1123 return (bitrate + 50000) / 100000; 1124 } 1125 EXPORT_SYMBOL(cfg80211_calculate_bitrate); 1126 1127 int cfg80211_get_p2p_attr(const u8 *ies, unsigned int len, 1128 enum ieee80211_p2p_attr_id attr, 1129 u8 *buf, unsigned int bufsize) 1130 { 1131 u8 *out = buf; 1132 u16 attr_remaining = 0; 1133 bool desired_attr = false; 1134 u16 desired_len = 0; 1135 1136 while (len > 0) { 1137 unsigned int iedatalen; 1138 unsigned int copy; 1139 const u8 *iedata; 1140 1141 if (len < 2) 1142 return -EILSEQ; 1143 iedatalen = ies[1]; 1144 if (iedatalen + 2 > len) 1145 return -EILSEQ; 1146 1147 if (ies[0] != WLAN_EID_VENDOR_SPECIFIC) 1148 goto cont; 1149 1150 if (iedatalen < 4) 1151 goto cont; 1152 1153 iedata = ies + 2; 1154 1155 /* check WFA OUI, P2P subtype */ 1156 if (iedata[0] != 0x50 || iedata[1] != 0x6f || 1157 iedata[2] != 0x9a || iedata[3] != 0x09) 1158 goto cont; 1159 1160 iedatalen -= 4; 1161 iedata += 4; 1162 1163 /* check attribute continuation into this IE */ 1164 copy = min_t(unsigned int, attr_remaining, iedatalen); 1165 if (copy && desired_attr) { 1166 desired_len += copy; 1167 if (out) { 1168 memcpy(out, iedata, min(bufsize, copy)); 1169 out += min(bufsize, copy); 1170 bufsize -= min(bufsize, copy); 1171 } 1172 1173 1174 if (copy == attr_remaining) 1175 return desired_len; 1176 } 1177 1178 attr_remaining -= copy; 1179 if (attr_remaining) 1180 goto cont; 1181 1182 iedatalen -= copy; 1183 iedata += copy; 1184 1185 while (iedatalen > 0) { 1186 u16 attr_len; 1187 1188 /* P2P attribute ID & size must fit */ 1189 if (iedatalen < 3) 1190 return -EILSEQ; 1191 desired_attr = iedata[0] == attr; 1192 attr_len = get_unaligned_le16(iedata + 1); 1193 iedatalen -= 3; 1194 iedata += 3; 1195 1196 copy = min_t(unsigned int, attr_len, iedatalen); 1197 1198 if (desired_attr) { 1199 desired_len += copy; 1200 if (out) { 1201 memcpy(out, iedata, min(bufsize, copy)); 1202 out += min(bufsize, copy); 1203 bufsize -= min(bufsize, copy); 1204 } 1205 1206 if (copy == attr_len) 1207 return desired_len; 1208 } 1209 1210 iedata += copy; 1211 iedatalen -= copy; 1212 attr_remaining = attr_len - copy; 1213 } 1214 1215 cont: 1216 len -= ies[1] + 2; 1217 ies += ies[1] + 2; 1218 } 1219 1220 if (attr_remaining && desired_attr) 1221 return -EILSEQ; 1222 1223 return -ENOENT; 1224 } 1225 EXPORT_SYMBOL(cfg80211_get_p2p_attr); 1226 1227 bool ieee80211_operating_class_to_band(u8 operating_class, 1228 enum ieee80211_band *band) 1229 { 1230 switch (operating_class) { 1231 case 112: 1232 case 115 ... 127: 1233 *band = IEEE80211_BAND_5GHZ; 1234 return true; 1235 case 81: 1236 case 82: 1237 case 83: 1238 case 84: 1239 *band = IEEE80211_BAND_2GHZ; 1240 return true; 1241 case 180: 1242 *band = IEEE80211_BAND_60GHZ; 1243 return true; 1244 } 1245 1246 return false; 1247 } 1248 EXPORT_SYMBOL(ieee80211_operating_class_to_band); 1249 1250 int cfg80211_validate_beacon_int(struct cfg80211_registered_device *rdev, 1251 u32 beacon_int) 1252 { 1253 struct wireless_dev *wdev; 1254 int res = 0; 1255 1256 if (!beacon_int) 1257 return -EINVAL; 1258 1259 list_for_each_entry(wdev, &rdev->wdev_list, list) { 1260 if (!wdev->beacon_interval) 1261 continue; 1262 if (wdev->beacon_interval != beacon_int) { 1263 res = -EINVAL; 1264 break; 1265 } 1266 } 1267 1268 return res; 1269 } 1270 1271 int cfg80211_iter_combinations(struct wiphy *wiphy, 1272 const int num_different_channels, 1273 const u8 radar_detect, 1274 const int iftype_num[NUM_NL80211_IFTYPES], 1275 void (*iter)(const struct ieee80211_iface_combination *c, 1276 void *data), 1277 void *data) 1278 { 1279 const struct ieee80211_regdomain *regdom; 1280 enum nl80211_dfs_regions region = 0; 1281 int i, j, iftype; 1282 int num_interfaces = 0; 1283 u32 used_iftypes = 0; 1284 1285 if (radar_detect) { 1286 rcu_read_lock(); 1287 regdom = rcu_dereference(cfg80211_regdomain); 1288 if (regdom) 1289 region = regdom->dfs_region; 1290 rcu_read_unlock(); 1291 } 1292 1293 for (iftype = 0; iftype < NUM_NL80211_IFTYPES; iftype++) { 1294 num_interfaces += iftype_num[iftype]; 1295 if (iftype_num[iftype] > 0 && 1296 !(wiphy->software_iftypes & BIT(iftype))) 1297 used_iftypes |= BIT(iftype); 1298 } 1299 1300 for (i = 0; i < wiphy->n_iface_combinations; i++) { 1301 const struct ieee80211_iface_combination *c; 1302 struct ieee80211_iface_limit *limits; 1303 u32 all_iftypes = 0; 1304 1305 c = &wiphy->iface_combinations[i]; 1306 1307 if (num_interfaces > c->max_interfaces) 1308 continue; 1309 if (num_different_channels > c->num_different_channels) 1310 continue; 1311 1312 limits = kmemdup(c->limits, sizeof(limits[0]) * c->n_limits, 1313 GFP_KERNEL); 1314 if (!limits) 1315 return -ENOMEM; 1316 1317 for (iftype = 0; iftype < NUM_NL80211_IFTYPES; iftype++) { 1318 if (wiphy->software_iftypes & BIT(iftype)) 1319 continue; 1320 for (j = 0; j < c->n_limits; j++) { 1321 all_iftypes |= limits[j].types; 1322 if (!(limits[j].types & BIT(iftype))) 1323 continue; 1324 if (limits[j].max < iftype_num[iftype]) 1325 goto cont; 1326 limits[j].max -= iftype_num[iftype]; 1327 } 1328 } 1329 1330 if (radar_detect != (c->radar_detect_widths & radar_detect)) 1331 goto cont; 1332 1333 if (radar_detect && c->radar_detect_regions && 1334 !(c->radar_detect_regions & BIT(region))) 1335 goto cont; 1336 1337 /* Finally check that all iftypes that we're currently 1338 * using are actually part of this combination. If they 1339 * aren't then we can't use this combination and have 1340 * to continue to the next. 1341 */ 1342 if ((all_iftypes & used_iftypes) != used_iftypes) 1343 goto cont; 1344 1345 /* This combination covered all interface types and 1346 * supported the requested numbers, so we're good. 1347 */ 1348 1349 (*iter)(c, data); 1350 cont: 1351 kfree(limits); 1352 } 1353 1354 return 0; 1355 } 1356 EXPORT_SYMBOL(cfg80211_iter_combinations); 1357 1358 static void 1359 cfg80211_iter_sum_ifcombs(const struct ieee80211_iface_combination *c, 1360 void *data) 1361 { 1362 int *num = data; 1363 (*num)++; 1364 } 1365 1366 int cfg80211_check_combinations(struct wiphy *wiphy, 1367 const int num_different_channels, 1368 const u8 radar_detect, 1369 const int iftype_num[NUM_NL80211_IFTYPES]) 1370 { 1371 int err, num = 0; 1372 1373 err = cfg80211_iter_combinations(wiphy, num_different_channels, 1374 radar_detect, iftype_num, 1375 cfg80211_iter_sum_ifcombs, &num); 1376 if (err) 1377 return err; 1378 if (num == 0) 1379 return -EBUSY; 1380 1381 return 0; 1382 } 1383 EXPORT_SYMBOL(cfg80211_check_combinations); 1384 1385 int cfg80211_can_use_iftype_chan(struct cfg80211_registered_device *rdev, 1386 struct wireless_dev *wdev, 1387 enum nl80211_iftype iftype, 1388 struct ieee80211_channel *chan, 1389 enum cfg80211_chan_mode chanmode, 1390 u8 radar_detect) 1391 { 1392 struct wireless_dev *wdev_iter; 1393 int num[NUM_NL80211_IFTYPES]; 1394 struct ieee80211_channel 1395 *used_channels[CFG80211_MAX_NUM_DIFFERENT_CHANNELS]; 1396 struct ieee80211_channel *ch; 1397 enum cfg80211_chan_mode chmode; 1398 int num_different_channels = 0; 1399 int total = 1; 1400 int i; 1401 1402 ASSERT_RTNL(); 1403 1404 if (WARN_ON(hweight32(radar_detect) > 1)) 1405 return -EINVAL; 1406 1407 if (WARN_ON(iftype >= NUM_NL80211_IFTYPES)) 1408 return -EINVAL; 1409 1410 /* Always allow software iftypes */ 1411 if (rdev->wiphy.software_iftypes & BIT(iftype)) { 1412 if (radar_detect) 1413 return -EINVAL; 1414 return 0; 1415 } 1416 1417 memset(num, 0, sizeof(num)); 1418 memset(used_channels, 0, sizeof(used_channels)); 1419 1420 num[iftype] = 1; 1421 1422 /* TODO: We'll probably not need this anymore, since this 1423 * should only be called with CHAN_MODE_UNDEFINED. There are 1424 * still a couple of pending calls where other chanmodes are 1425 * used, but we should get rid of them. 1426 */ 1427 switch (chanmode) { 1428 case CHAN_MODE_UNDEFINED: 1429 break; 1430 case CHAN_MODE_SHARED: 1431 WARN_ON(!chan); 1432 used_channels[0] = chan; 1433 num_different_channels++; 1434 break; 1435 case CHAN_MODE_EXCLUSIVE: 1436 num_different_channels++; 1437 break; 1438 } 1439 1440 list_for_each_entry(wdev_iter, &rdev->wdev_list, list) { 1441 if (wdev_iter == wdev) 1442 continue; 1443 if (wdev_iter->iftype == NL80211_IFTYPE_P2P_DEVICE) { 1444 if (!wdev_iter->p2p_started) 1445 continue; 1446 } else if (wdev_iter->netdev) { 1447 if (!netif_running(wdev_iter->netdev)) 1448 continue; 1449 } else { 1450 WARN_ON(1); 1451 } 1452 1453 if (rdev->wiphy.software_iftypes & BIT(wdev_iter->iftype)) 1454 continue; 1455 1456 /* 1457 * We may be holding the "wdev" mutex, but now need to lock 1458 * wdev_iter. This is OK because once we get here wdev_iter 1459 * is not wdev (tested above), but we need to use the nested 1460 * locking for lockdep. 1461 */ 1462 mutex_lock_nested(&wdev_iter->mtx, 1); 1463 __acquire(wdev_iter->mtx); 1464 cfg80211_get_chan_state(wdev_iter, &ch, &chmode, &radar_detect); 1465 wdev_unlock(wdev_iter); 1466 1467 switch (chmode) { 1468 case CHAN_MODE_UNDEFINED: 1469 break; 1470 case CHAN_MODE_SHARED: 1471 for (i = 0; i < CFG80211_MAX_NUM_DIFFERENT_CHANNELS; i++) 1472 if (!used_channels[i] || used_channels[i] == ch) 1473 break; 1474 1475 if (i == CFG80211_MAX_NUM_DIFFERENT_CHANNELS) 1476 return -EBUSY; 1477 1478 if (used_channels[i] == NULL) { 1479 used_channels[i] = ch; 1480 num_different_channels++; 1481 } 1482 break; 1483 case CHAN_MODE_EXCLUSIVE: 1484 num_different_channels++; 1485 break; 1486 } 1487 1488 num[wdev_iter->iftype]++; 1489 total++; 1490 } 1491 1492 if (total == 1 && !radar_detect) 1493 return 0; 1494 1495 return cfg80211_check_combinations(&rdev->wiphy, num_different_channels, 1496 radar_detect, num); 1497 } 1498 1499 int ieee80211_get_ratemask(struct ieee80211_supported_band *sband, 1500 const u8 *rates, unsigned int n_rates, 1501 u32 *mask) 1502 { 1503 int i, j; 1504 1505 if (!sband) 1506 return -EINVAL; 1507 1508 if (n_rates == 0 || n_rates > NL80211_MAX_SUPP_RATES) 1509 return -EINVAL; 1510 1511 *mask = 0; 1512 1513 for (i = 0; i < n_rates; i++) { 1514 int rate = (rates[i] & 0x7f) * 5; 1515 bool found = false; 1516 1517 for (j = 0; j < sband->n_bitrates; j++) { 1518 if (sband->bitrates[j].bitrate == rate) { 1519 found = true; 1520 *mask |= BIT(j); 1521 break; 1522 } 1523 } 1524 if (!found) 1525 return -EINVAL; 1526 } 1527 1528 /* 1529 * mask must have at least one bit set here since we 1530 * didn't accept a 0-length rates array nor allowed 1531 * entries in the array that didn't exist 1532 */ 1533 1534 return 0; 1535 } 1536 1537 unsigned int ieee80211_get_num_supported_channels(struct wiphy *wiphy) 1538 { 1539 enum ieee80211_band band; 1540 unsigned int n_channels = 0; 1541 1542 for (band = 0; band < IEEE80211_NUM_BANDS; band++) 1543 if (wiphy->bands[band]) 1544 n_channels += wiphy->bands[band]->n_channels; 1545 1546 return n_channels; 1547 } 1548 EXPORT_SYMBOL(ieee80211_get_num_supported_channels); 1549 1550 int cfg80211_get_station(struct net_device *dev, const u8 *mac_addr, 1551 struct station_info *sinfo) 1552 { 1553 struct cfg80211_registered_device *rdev; 1554 struct wireless_dev *wdev; 1555 1556 wdev = dev->ieee80211_ptr; 1557 if (!wdev) 1558 return -EOPNOTSUPP; 1559 1560 rdev = wiphy_to_rdev(wdev->wiphy); 1561 if (!rdev->ops->get_station) 1562 return -EOPNOTSUPP; 1563 1564 return rdev_get_station(rdev, dev, mac_addr, sinfo); 1565 } 1566 EXPORT_SYMBOL(cfg80211_get_station); 1567 1568 /* See IEEE 802.1H for LLC/SNAP encapsulation/decapsulation */ 1569 /* Ethernet-II snap header (RFC1042 for most EtherTypes) */ 1570 const unsigned char rfc1042_header[] __aligned(2) = 1571 { 0xaa, 0xaa, 0x03, 0x00, 0x00, 0x00 }; 1572 EXPORT_SYMBOL(rfc1042_header); 1573 1574 /* Bridge-Tunnel header (for EtherTypes ETH_P_AARP and ETH_P_IPX) */ 1575 const unsigned char bridge_tunnel_header[] __aligned(2) = 1576 { 0xaa, 0xaa, 0x03, 0x00, 0x00, 0xf8 }; 1577 EXPORT_SYMBOL(bridge_tunnel_header); 1578