1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Wireless utility functions 4 * 5 * Copyright 2007-2009 Johannes Berg <johannes@sipsolutions.net> 6 * Copyright 2013-2014 Intel Mobile Communications GmbH 7 * Copyright 2017 Intel Deutschland GmbH 8 * Copyright (C) 2018-2020 Intel Corporation 9 */ 10 #include <linux/export.h> 11 #include <linux/bitops.h> 12 #include <linux/etherdevice.h> 13 #include <linux/slab.h> 14 #include <linux/ieee80211.h> 15 #include <net/cfg80211.h> 16 #include <net/ip.h> 17 #include <net/dsfield.h> 18 #include <linux/if_vlan.h> 19 #include <linux/mpls.h> 20 #include <linux/gcd.h> 21 #include <linux/bitfield.h> 22 #include <linux/nospec.h> 23 #include "core.h" 24 #include "rdev-ops.h" 25 26 27 struct ieee80211_rate * 28 ieee80211_get_response_rate(struct ieee80211_supported_band *sband, 29 u32 basic_rates, int bitrate) 30 { 31 struct ieee80211_rate *result = &sband->bitrates[0]; 32 int i; 33 34 for (i = 0; i < sband->n_bitrates; i++) { 35 if (!(basic_rates & BIT(i))) 36 continue; 37 if (sband->bitrates[i].bitrate > bitrate) 38 continue; 39 result = &sband->bitrates[i]; 40 } 41 42 return result; 43 } 44 EXPORT_SYMBOL(ieee80211_get_response_rate); 45 46 u32 ieee80211_mandatory_rates(struct ieee80211_supported_band *sband, 47 enum nl80211_bss_scan_width scan_width) 48 { 49 struct ieee80211_rate *bitrates; 50 u32 mandatory_rates = 0; 51 enum ieee80211_rate_flags mandatory_flag; 52 int i; 53 54 if (WARN_ON(!sband)) 55 return 1; 56 57 if (sband->band == NL80211_BAND_2GHZ) { 58 if (scan_width == NL80211_BSS_CHAN_WIDTH_5 || 59 scan_width == NL80211_BSS_CHAN_WIDTH_10) 60 mandatory_flag = IEEE80211_RATE_MANDATORY_G; 61 else 62 mandatory_flag = IEEE80211_RATE_MANDATORY_B; 63 } else { 64 mandatory_flag = IEEE80211_RATE_MANDATORY_A; 65 } 66 67 bitrates = sband->bitrates; 68 for (i = 0; i < sband->n_bitrates; i++) 69 if (bitrates[i].flags & mandatory_flag) 70 mandatory_rates |= BIT(i); 71 return mandatory_rates; 72 } 73 EXPORT_SYMBOL(ieee80211_mandatory_rates); 74 75 u32 ieee80211_channel_to_freq_khz(int chan, enum nl80211_band band) 76 { 77 /* see 802.11 17.3.8.3.2 and Annex J 78 * there are overlapping channel numbers in 5GHz and 2GHz bands */ 79 if (chan <= 0) 80 return 0; /* not supported */ 81 switch (band) { 82 case NL80211_BAND_2GHZ: 83 if (chan == 14) 84 return MHZ_TO_KHZ(2484); 85 else if (chan < 14) 86 return MHZ_TO_KHZ(2407 + chan * 5); 87 break; 88 case NL80211_BAND_5GHZ: 89 if (chan >= 182 && chan <= 196) 90 return MHZ_TO_KHZ(4000 + chan * 5); 91 else 92 return MHZ_TO_KHZ(5000 + chan * 5); 93 break; 94 case NL80211_BAND_6GHZ: 95 /* see 802.11ax D6.1 27.3.23.2 */ 96 if (chan == 2) 97 return MHZ_TO_KHZ(5935); 98 if (chan <= 233) 99 return MHZ_TO_KHZ(5950 + chan * 5); 100 break; 101 case NL80211_BAND_60GHZ: 102 if (chan < 7) 103 return MHZ_TO_KHZ(56160 + chan * 2160); 104 break; 105 case NL80211_BAND_S1GHZ: 106 return 902000 + chan * 500; 107 default: 108 ; 109 } 110 return 0; /* not supported */ 111 } 112 EXPORT_SYMBOL(ieee80211_channel_to_freq_khz); 113 114 enum nl80211_chan_width 115 ieee80211_s1g_channel_width(const struct ieee80211_channel *chan) 116 { 117 if (WARN_ON(!chan || chan->band != NL80211_BAND_S1GHZ)) 118 return NL80211_CHAN_WIDTH_20_NOHT; 119 120 /*S1G defines a single allowed channel width per channel. 121 * Extract that width here. 122 */ 123 if (chan->flags & IEEE80211_CHAN_1MHZ) 124 return NL80211_CHAN_WIDTH_1; 125 else if (chan->flags & IEEE80211_CHAN_2MHZ) 126 return NL80211_CHAN_WIDTH_2; 127 else if (chan->flags & IEEE80211_CHAN_4MHZ) 128 return NL80211_CHAN_WIDTH_4; 129 else if (chan->flags & IEEE80211_CHAN_8MHZ) 130 return NL80211_CHAN_WIDTH_8; 131 else if (chan->flags & IEEE80211_CHAN_16MHZ) 132 return NL80211_CHAN_WIDTH_16; 133 134 pr_err("unknown channel width for channel at %dKHz?\n", 135 ieee80211_channel_to_khz(chan)); 136 137 return NL80211_CHAN_WIDTH_1; 138 } 139 EXPORT_SYMBOL(ieee80211_s1g_channel_width); 140 141 int ieee80211_freq_khz_to_channel(u32 freq) 142 { 143 /* TODO: just handle MHz for now */ 144 freq = KHZ_TO_MHZ(freq); 145 146 /* see 802.11 17.3.8.3.2 and Annex J */ 147 if (freq == 2484) 148 return 14; 149 else if (freq < 2484) 150 return (freq - 2407) / 5; 151 else if (freq >= 4910 && freq <= 4980) 152 return (freq - 4000) / 5; 153 else if (freq < 5925) 154 return (freq - 5000) / 5; 155 else if (freq == 5935) 156 return 2; 157 else if (freq <= 45000) /* DMG band lower limit */ 158 /* see 802.11ax D6.1 27.3.22.2 */ 159 return (freq - 5950) / 5; 160 else if (freq >= 58320 && freq <= 70200) 161 return (freq - 56160) / 2160; 162 else 163 return 0; 164 } 165 EXPORT_SYMBOL(ieee80211_freq_khz_to_channel); 166 167 struct ieee80211_channel *ieee80211_get_channel_khz(struct wiphy *wiphy, 168 u32 freq) 169 { 170 enum nl80211_band band; 171 struct ieee80211_supported_band *sband; 172 int i; 173 174 for (band = 0; band < NUM_NL80211_BANDS; band++) { 175 sband = wiphy->bands[band]; 176 177 if (!sband) 178 continue; 179 180 for (i = 0; i < sband->n_channels; i++) { 181 struct ieee80211_channel *chan = &sband->channels[i]; 182 183 if (ieee80211_channel_to_khz(chan) == freq) 184 return chan; 185 } 186 } 187 188 return NULL; 189 } 190 EXPORT_SYMBOL(ieee80211_get_channel_khz); 191 192 static void set_mandatory_flags_band(struct ieee80211_supported_band *sband) 193 { 194 int i, want; 195 196 switch (sband->band) { 197 case NL80211_BAND_5GHZ: 198 case NL80211_BAND_6GHZ: 199 want = 3; 200 for (i = 0; i < sband->n_bitrates; i++) { 201 if (sband->bitrates[i].bitrate == 60 || 202 sband->bitrates[i].bitrate == 120 || 203 sband->bitrates[i].bitrate == 240) { 204 sband->bitrates[i].flags |= 205 IEEE80211_RATE_MANDATORY_A; 206 want--; 207 } 208 } 209 WARN_ON(want); 210 break; 211 case NL80211_BAND_2GHZ: 212 want = 7; 213 for (i = 0; i < sband->n_bitrates; i++) { 214 switch (sband->bitrates[i].bitrate) { 215 case 10: 216 case 20: 217 case 55: 218 case 110: 219 sband->bitrates[i].flags |= 220 IEEE80211_RATE_MANDATORY_B | 221 IEEE80211_RATE_MANDATORY_G; 222 want--; 223 break; 224 case 60: 225 case 120: 226 case 240: 227 sband->bitrates[i].flags |= 228 IEEE80211_RATE_MANDATORY_G; 229 want--; 230 fallthrough; 231 default: 232 sband->bitrates[i].flags |= 233 IEEE80211_RATE_ERP_G; 234 break; 235 } 236 } 237 WARN_ON(want != 0 && want != 3); 238 break; 239 case NL80211_BAND_60GHZ: 240 /* check for mandatory HT MCS 1..4 */ 241 WARN_ON(!sband->ht_cap.ht_supported); 242 WARN_ON((sband->ht_cap.mcs.rx_mask[0] & 0x1e) != 0x1e); 243 break; 244 case NL80211_BAND_S1GHZ: 245 /* Figure 9-589bd: 3 means unsupported, so != 3 means at least 246 * mandatory is ok. 247 */ 248 WARN_ON((sband->s1g_cap.nss_mcs[0] & 0x3) == 0x3); 249 break; 250 case NUM_NL80211_BANDS: 251 default: 252 WARN_ON(1); 253 break; 254 } 255 } 256 257 void ieee80211_set_bitrate_flags(struct wiphy *wiphy) 258 { 259 enum nl80211_band band; 260 261 for (band = 0; band < NUM_NL80211_BANDS; band++) 262 if (wiphy->bands[band]) 263 set_mandatory_flags_band(wiphy->bands[band]); 264 } 265 266 bool cfg80211_supported_cipher_suite(struct wiphy *wiphy, u32 cipher) 267 { 268 int i; 269 for (i = 0; i < wiphy->n_cipher_suites; i++) 270 if (cipher == wiphy->cipher_suites[i]) 271 return true; 272 return false; 273 } 274 275 int cfg80211_validate_key_settings(struct cfg80211_registered_device *rdev, 276 struct key_params *params, int key_idx, 277 bool pairwise, const u8 *mac_addr) 278 { 279 int max_key_idx = 5; 280 281 if (wiphy_ext_feature_isset(&rdev->wiphy, 282 NL80211_EXT_FEATURE_BEACON_PROTECTION) || 283 wiphy_ext_feature_isset(&rdev->wiphy, 284 NL80211_EXT_FEATURE_BEACON_PROTECTION_CLIENT)) 285 max_key_idx = 7; 286 if (key_idx < 0 || key_idx > max_key_idx) 287 return -EINVAL; 288 289 if (!pairwise && mac_addr && !(rdev->wiphy.flags & WIPHY_FLAG_IBSS_RSN)) 290 return -EINVAL; 291 292 if (pairwise && !mac_addr) 293 return -EINVAL; 294 295 switch (params->cipher) { 296 case WLAN_CIPHER_SUITE_TKIP: 297 /* Extended Key ID can only be used with CCMP/GCMP ciphers */ 298 if ((pairwise && key_idx) || 299 params->mode != NL80211_KEY_RX_TX) 300 return -EINVAL; 301 break; 302 case WLAN_CIPHER_SUITE_CCMP: 303 case WLAN_CIPHER_SUITE_CCMP_256: 304 case WLAN_CIPHER_SUITE_GCMP: 305 case WLAN_CIPHER_SUITE_GCMP_256: 306 /* IEEE802.11-2016 allows only 0 and - when supporting 307 * Extended Key ID - 1 as index for pairwise keys. 308 * @NL80211_KEY_NO_TX is only allowed for pairwise keys when 309 * the driver supports Extended Key ID. 310 * @NL80211_KEY_SET_TX can't be set when installing and 311 * validating a key. 312 */ 313 if ((params->mode == NL80211_KEY_NO_TX && !pairwise) || 314 params->mode == NL80211_KEY_SET_TX) 315 return -EINVAL; 316 if (wiphy_ext_feature_isset(&rdev->wiphy, 317 NL80211_EXT_FEATURE_EXT_KEY_ID)) { 318 if (pairwise && (key_idx < 0 || key_idx > 1)) 319 return -EINVAL; 320 } else if (pairwise && key_idx) { 321 return -EINVAL; 322 } 323 break; 324 case WLAN_CIPHER_SUITE_AES_CMAC: 325 case WLAN_CIPHER_SUITE_BIP_CMAC_256: 326 case WLAN_CIPHER_SUITE_BIP_GMAC_128: 327 case WLAN_CIPHER_SUITE_BIP_GMAC_256: 328 /* Disallow BIP (group-only) cipher as pairwise cipher */ 329 if (pairwise) 330 return -EINVAL; 331 if (key_idx < 4) 332 return -EINVAL; 333 break; 334 case WLAN_CIPHER_SUITE_WEP40: 335 case WLAN_CIPHER_SUITE_WEP104: 336 if (key_idx > 3) 337 return -EINVAL; 338 default: 339 break; 340 } 341 342 switch (params->cipher) { 343 case WLAN_CIPHER_SUITE_WEP40: 344 if (params->key_len != WLAN_KEY_LEN_WEP40) 345 return -EINVAL; 346 break; 347 case WLAN_CIPHER_SUITE_TKIP: 348 if (params->key_len != WLAN_KEY_LEN_TKIP) 349 return -EINVAL; 350 break; 351 case WLAN_CIPHER_SUITE_CCMP: 352 if (params->key_len != WLAN_KEY_LEN_CCMP) 353 return -EINVAL; 354 break; 355 case WLAN_CIPHER_SUITE_CCMP_256: 356 if (params->key_len != WLAN_KEY_LEN_CCMP_256) 357 return -EINVAL; 358 break; 359 case WLAN_CIPHER_SUITE_GCMP: 360 if (params->key_len != WLAN_KEY_LEN_GCMP) 361 return -EINVAL; 362 break; 363 case WLAN_CIPHER_SUITE_GCMP_256: 364 if (params->key_len != WLAN_KEY_LEN_GCMP_256) 365 return -EINVAL; 366 break; 367 case WLAN_CIPHER_SUITE_WEP104: 368 if (params->key_len != WLAN_KEY_LEN_WEP104) 369 return -EINVAL; 370 break; 371 case WLAN_CIPHER_SUITE_AES_CMAC: 372 if (params->key_len != WLAN_KEY_LEN_AES_CMAC) 373 return -EINVAL; 374 break; 375 case WLAN_CIPHER_SUITE_BIP_CMAC_256: 376 if (params->key_len != WLAN_KEY_LEN_BIP_CMAC_256) 377 return -EINVAL; 378 break; 379 case WLAN_CIPHER_SUITE_BIP_GMAC_128: 380 if (params->key_len != WLAN_KEY_LEN_BIP_GMAC_128) 381 return -EINVAL; 382 break; 383 case WLAN_CIPHER_SUITE_BIP_GMAC_256: 384 if (params->key_len != WLAN_KEY_LEN_BIP_GMAC_256) 385 return -EINVAL; 386 break; 387 default: 388 /* 389 * We don't know anything about this algorithm, 390 * allow using it -- but the driver must check 391 * all parameters! We still check below whether 392 * or not the driver supports this algorithm, 393 * of course. 394 */ 395 break; 396 } 397 398 if (params->seq) { 399 switch (params->cipher) { 400 case WLAN_CIPHER_SUITE_WEP40: 401 case WLAN_CIPHER_SUITE_WEP104: 402 /* These ciphers do not use key sequence */ 403 return -EINVAL; 404 case WLAN_CIPHER_SUITE_TKIP: 405 case WLAN_CIPHER_SUITE_CCMP: 406 case WLAN_CIPHER_SUITE_CCMP_256: 407 case WLAN_CIPHER_SUITE_GCMP: 408 case WLAN_CIPHER_SUITE_GCMP_256: 409 case WLAN_CIPHER_SUITE_AES_CMAC: 410 case WLAN_CIPHER_SUITE_BIP_CMAC_256: 411 case WLAN_CIPHER_SUITE_BIP_GMAC_128: 412 case WLAN_CIPHER_SUITE_BIP_GMAC_256: 413 if (params->seq_len != 6) 414 return -EINVAL; 415 break; 416 } 417 } 418 419 if (!cfg80211_supported_cipher_suite(&rdev->wiphy, params->cipher)) 420 return -EINVAL; 421 422 return 0; 423 } 424 425 unsigned int __attribute_const__ ieee80211_hdrlen(__le16 fc) 426 { 427 unsigned int hdrlen = 24; 428 429 if (ieee80211_is_ext(fc)) { 430 hdrlen = 4; 431 goto out; 432 } 433 434 if (ieee80211_is_data(fc)) { 435 if (ieee80211_has_a4(fc)) 436 hdrlen = 30; 437 if (ieee80211_is_data_qos(fc)) { 438 hdrlen += IEEE80211_QOS_CTL_LEN; 439 if (ieee80211_has_order(fc)) 440 hdrlen += IEEE80211_HT_CTL_LEN; 441 } 442 goto out; 443 } 444 445 if (ieee80211_is_mgmt(fc)) { 446 if (ieee80211_has_order(fc)) 447 hdrlen += IEEE80211_HT_CTL_LEN; 448 goto out; 449 } 450 451 if (ieee80211_is_ctl(fc)) { 452 /* 453 * ACK and CTS are 10 bytes, all others 16. To see how 454 * to get this condition consider 455 * subtype mask: 0b0000000011110000 (0x00F0) 456 * ACK subtype: 0b0000000011010000 (0x00D0) 457 * CTS subtype: 0b0000000011000000 (0x00C0) 458 * bits that matter: ^^^ (0x00E0) 459 * value of those: 0b0000000011000000 (0x00C0) 460 */ 461 if ((fc & cpu_to_le16(0x00E0)) == cpu_to_le16(0x00C0)) 462 hdrlen = 10; 463 else 464 hdrlen = 16; 465 } 466 out: 467 return hdrlen; 468 } 469 EXPORT_SYMBOL(ieee80211_hdrlen); 470 471 unsigned int ieee80211_get_hdrlen_from_skb(const struct sk_buff *skb) 472 { 473 const struct ieee80211_hdr *hdr = 474 (const struct ieee80211_hdr *)skb->data; 475 unsigned int hdrlen; 476 477 if (unlikely(skb->len < 10)) 478 return 0; 479 hdrlen = ieee80211_hdrlen(hdr->frame_control); 480 if (unlikely(hdrlen > skb->len)) 481 return 0; 482 return hdrlen; 483 } 484 EXPORT_SYMBOL(ieee80211_get_hdrlen_from_skb); 485 486 static unsigned int __ieee80211_get_mesh_hdrlen(u8 flags) 487 { 488 int ae = flags & MESH_FLAGS_AE; 489 /* 802.11-2012, 8.2.4.7.3 */ 490 switch (ae) { 491 default: 492 case 0: 493 return 6; 494 case MESH_FLAGS_AE_A4: 495 return 12; 496 case MESH_FLAGS_AE_A5_A6: 497 return 18; 498 } 499 } 500 501 unsigned int ieee80211_get_mesh_hdrlen(struct ieee80211s_hdr *meshhdr) 502 { 503 return __ieee80211_get_mesh_hdrlen(meshhdr->flags); 504 } 505 EXPORT_SYMBOL(ieee80211_get_mesh_hdrlen); 506 507 int ieee80211_data_to_8023_exthdr(struct sk_buff *skb, struct ethhdr *ehdr, 508 const u8 *addr, enum nl80211_iftype iftype, 509 u8 data_offset) 510 { 511 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data; 512 struct { 513 u8 hdr[ETH_ALEN] __aligned(2); 514 __be16 proto; 515 } payload; 516 struct ethhdr tmp; 517 u16 hdrlen; 518 u8 mesh_flags = 0; 519 520 if (unlikely(!ieee80211_is_data_present(hdr->frame_control))) 521 return -1; 522 523 hdrlen = ieee80211_hdrlen(hdr->frame_control) + data_offset; 524 if (skb->len < hdrlen + 8) 525 return -1; 526 527 /* convert IEEE 802.11 header + possible LLC headers into Ethernet 528 * header 529 * IEEE 802.11 address fields: 530 * ToDS FromDS Addr1 Addr2 Addr3 Addr4 531 * 0 0 DA SA BSSID n/a 532 * 0 1 DA BSSID SA n/a 533 * 1 0 BSSID SA DA n/a 534 * 1 1 RA TA DA SA 535 */ 536 memcpy(tmp.h_dest, ieee80211_get_DA(hdr), ETH_ALEN); 537 memcpy(tmp.h_source, ieee80211_get_SA(hdr), ETH_ALEN); 538 539 if (iftype == NL80211_IFTYPE_MESH_POINT) 540 skb_copy_bits(skb, hdrlen, &mesh_flags, 1); 541 542 mesh_flags &= MESH_FLAGS_AE; 543 544 switch (hdr->frame_control & 545 cpu_to_le16(IEEE80211_FCTL_TODS | IEEE80211_FCTL_FROMDS)) { 546 case cpu_to_le16(IEEE80211_FCTL_TODS): 547 if (unlikely(iftype != NL80211_IFTYPE_AP && 548 iftype != NL80211_IFTYPE_AP_VLAN && 549 iftype != NL80211_IFTYPE_P2P_GO)) 550 return -1; 551 break; 552 case cpu_to_le16(IEEE80211_FCTL_TODS | IEEE80211_FCTL_FROMDS): 553 if (unlikely(iftype != NL80211_IFTYPE_MESH_POINT && 554 iftype != NL80211_IFTYPE_AP_VLAN && 555 iftype != NL80211_IFTYPE_STATION)) 556 return -1; 557 if (iftype == NL80211_IFTYPE_MESH_POINT) { 558 if (mesh_flags == MESH_FLAGS_AE_A4) 559 return -1; 560 if (mesh_flags == MESH_FLAGS_AE_A5_A6) { 561 skb_copy_bits(skb, hdrlen + 562 offsetof(struct ieee80211s_hdr, eaddr1), 563 tmp.h_dest, 2 * ETH_ALEN); 564 } 565 hdrlen += __ieee80211_get_mesh_hdrlen(mesh_flags); 566 } 567 break; 568 case cpu_to_le16(IEEE80211_FCTL_FROMDS): 569 if ((iftype != NL80211_IFTYPE_STATION && 570 iftype != NL80211_IFTYPE_P2P_CLIENT && 571 iftype != NL80211_IFTYPE_MESH_POINT) || 572 (is_multicast_ether_addr(tmp.h_dest) && 573 ether_addr_equal(tmp.h_source, addr))) 574 return -1; 575 if (iftype == NL80211_IFTYPE_MESH_POINT) { 576 if (mesh_flags == MESH_FLAGS_AE_A5_A6) 577 return -1; 578 if (mesh_flags == MESH_FLAGS_AE_A4) 579 skb_copy_bits(skb, hdrlen + 580 offsetof(struct ieee80211s_hdr, eaddr1), 581 tmp.h_source, ETH_ALEN); 582 hdrlen += __ieee80211_get_mesh_hdrlen(mesh_flags); 583 } 584 break; 585 case cpu_to_le16(0): 586 if (iftype != NL80211_IFTYPE_ADHOC && 587 iftype != NL80211_IFTYPE_STATION && 588 iftype != NL80211_IFTYPE_OCB) 589 return -1; 590 break; 591 } 592 593 skb_copy_bits(skb, hdrlen, &payload, sizeof(payload)); 594 tmp.h_proto = payload.proto; 595 596 if (likely((ether_addr_equal(payload.hdr, rfc1042_header) && 597 tmp.h_proto != htons(ETH_P_AARP) && 598 tmp.h_proto != htons(ETH_P_IPX)) || 599 ether_addr_equal(payload.hdr, bridge_tunnel_header))) 600 /* remove RFC1042 or Bridge-Tunnel encapsulation and 601 * replace EtherType */ 602 hdrlen += ETH_ALEN + 2; 603 else 604 tmp.h_proto = htons(skb->len - hdrlen); 605 606 pskb_pull(skb, hdrlen); 607 608 if (!ehdr) 609 ehdr = skb_push(skb, sizeof(struct ethhdr)); 610 memcpy(ehdr, &tmp, sizeof(tmp)); 611 612 return 0; 613 } 614 EXPORT_SYMBOL(ieee80211_data_to_8023_exthdr); 615 616 static void 617 __frame_add_frag(struct sk_buff *skb, struct page *page, 618 void *ptr, int len, int size) 619 { 620 struct skb_shared_info *sh = skb_shinfo(skb); 621 int page_offset; 622 623 get_page(page); 624 page_offset = ptr - page_address(page); 625 skb_add_rx_frag(skb, sh->nr_frags, page, page_offset, len, size); 626 } 627 628 static void 629 __ieee80211_amsdu_copy_frag(struct sk_buff *skb, struct sk_buff *frame, 630 int offset, int len) 631 { 632 struct skb_shared_info *sh = skb_shinfo(skb); 633 const skb_frag_t *frag = &sh->frags[0]; 634 struct page *frag_page; 635 void *frag_ptr; 636 int frag_len, frag_size; 637 int head_size = skb->len - skb->data_len; 638 int cur_len; 639 640 frag_page = virt_to_head_page(skb->head); 641 frag_ptr = skb->data; 642 frag_size = head_size; 643 644 while (offset >= frag_size) { 645 offset -= frag_size; 646 frag_page = skb_frag_page(frag); 647 frag_ptr = skb_frag_address(frag); 648 frag_size = skb_frag_size(frag); 649 frag++; 650 } 651 652 frag_ptr += offset; 653 frag_len = frag_size - offset; 654 655 cur_len = min(len, frag_len); 656 657 __frame_add_frag(frame, frag_page, frag_ptr, cur_len, frag_size); 658 len -= cur_len; 659 660 while (len > 0) { 661 frag_len = skb_frag_size(frag); 662 cur_len = min(len, frag_len); 663 __frame_add_frag(frame, skb_frag_page(frag), 664 skb_frag_address(frag), cur_len, frag_len); 665 len -= cur_len; 666 frag++; 667 } 668 } 669 670 static struct sk_buff * 671 __ieee80211_amsdu_copy(struct sk_buff *skb, unsigned int hlen, 672 int offset, int len, bool reuse_frag) 673 { 674 struct sk_buff *frame; 675 int cur_len = len; 676 677 if (skb->len - offset < len) 678 return NULL; 679 680 /* 681 * When reusing framents, copy some data to the head to simplify 682 * ethernet header handling and speed up protocol header processing 683 * in the stack later. 684 */ 685 if (reuse_frag) 686 cur_len = min_t(int, len, 32); 687 688 /* 689 * Allocate and reserve two bytes more for payload 690 * alignment since sizeof(struct ethhdr) is 14. 691 */ 692 frame = dev_alloc_skb(hlen + sizeof(struct ethhdr) + 2 + cur_len); 693 if (!frame) 694 return NULL; 695 696 skb_reserve(frame, hlen + sizeof(struct ethhdr) + 2); 697 skb_copy_bits(skb, offset, skb_put(frame, cur_len), cur_len); 698 699 len -= cur_len; 700 if (!len) 701 return frame; 702 703 offset += cur_len; 704 __ieee80211_amsdu_copy_frag(skb, frame, offset, len); 705 706 return frame; 707 } 708 709 void ieee80211_amsdu_to_8023s(struct sk_buff *skb, struct sk_buff_head *list, 710 const u8 *addr, enum nl80211_iftype iftype, 711 const unsigned int extra_headroom, 712 const u8 *check_da, const u8 *check_sa) 713 { 714 unsigned int hlen = ALIGN(extra_headroom, 4); 715 struct sk_buff *frame = NULL; 716 u16 ethertype; 717 u8 *payload; 718 int offset = 0, remaining; 719 struct ethhdr eth; 720 bool reuse_frag = skb->head_frag && !skb_has_frag_list(skb); 721 bool reuse_skb = false; 722 bool last = false; 723 724 while (!last) { 725 unsigned int subframe_len; 726 int len; 727 u8 padding; 728 729 skb_copy_bits(skb, offset, ð, sizeof(eth)); 730 len = ntohs(eth.h_proto); 731 subframe_len = sizeof(struct ethhdr) + len; 732 padding = (4 - subframe_len) & 0x3; 733 734 /* the last MSDU has no padding */ 735 remaining = skb->len - offset; 736 if (subframe_len > remaining) 737 goto purge; 738 739 offset += sizeof(struct ethhdr); 740 last = remaining <= subframe_len + padding; 741 742 /* FIXME: should we really accept multicast DA? */ 743 if ((check_da && !is_multicast_ether_addr(eth.h_dest) && 744 !ether_addr_equal(check_da, eth.h_dest)) || 745 (check_sa && !ether_addr_equal(check_sa, eth.h_source))) { 746 offset += len + padding; 747 continue; 748 } 749 750 /* reuse skb for the last subframe */ 751 if (!skb_is_nonlinear(skb) && !reuse_frag && last) { 752 skb_pull(skb, offset); 753 frame = skb; 754 reuse_skb = true; 755 } else { 756 frame = __ieee80211_amsdu_copy(skb, hlen, offset, len, 757 reuse_frag); 758 if (!frame) 759 goto purge; 760 761 offset += len + padding; 762 } 763 764 skb_reset_network_header(frame); 765 frame->dev = skb->dev; 766 frame->priority = skb->priority; 767 768 payload = frame->data; 769 ethertype = (payload[6] << 8) | payload[7]; 770 if (likely((ether_addr_equal(payload, rfc1042_header) && 771 ethertype != ETH_P_AARP && ethertype != ETH_P_IPX) || 772 ether_addr_equal(payload, bridge_tunnel_header))) { 773 eth.h_proto = htons(ethertype); 774 skb_pull(frame, ETH_ALEN + 2); 775 } 776 777 memcpy(skb_push(frame, sizeof(eth)), ð, sizeof(eth)); 778 __skb_queue_tail(list, frame); 779 } 780 781 if (!reuse_skb) 782 dev_kfree_skb(skb); 783 784 return; 785 786 purge: 787 __skb_queue_purge(list); 788 dev_kfree_skb(skb); 789 } 790 EXPORT_SYMBOL(ieee80211_amsdu_to_8023s); 791 792 /* Given a data frame determine the 802.1p/1d tag to use. */ 793 unsigned int cfg80211_classify8021d(struct sk_buff *skb, 794 struct cfg80211_qos_map *qos_map) 795 { 796 unsigned int dscp; 797 unsigned char vlan_priority; 798 unsigned int ret; 799 800 /* skb->priority values from 256->263 are magic values to 801 * directly indicate a specific 802.1d priority. This is used 802 * to allow 802.1d priority to be passed directly in from VLAN 803 * tags, etc. 804 */ 805 if (skb->priority >= 256 && skb->priority <= 263) { 806 ret = skb->priority - 256; 807 goto out; 808 } 809 810 if (skb_vlan_tag_present(skb)) { 811 vlan_priority = (skb_vlan_tag_get(skb) & VLAN_PRIO_MASK) 812 >> VLAN_PRIO_SHIFT; 813 if (vlan_priority > 0) { 814 ret = vlan_priority; 815 goto out; 816 } 817 } 818 819 switch (skb->protocol) { 820 case htons(ETH_P_IP): 821 dscp = ipv4_get_dsfield(ip_hdr(skb)) & 0xfc; 822 break; 823 case htons(ETH_P_IPV6): 824 dscp = ipv6_get_dsfield(ipv6_hdr(skb)) & 0xfc; 825 break; 826 case htons(ETH_P_MPLS_UC): 827 case htons(ETH_P_MPLS_MC): { 828 struct mpls_label mpls_tmp, *mpls; 829 830 mpls = skb_header_pointer(skb, sizeof(struct ethhdr), 831 sizeof(*mpls), &mpls_tmp); 832 if (!mpls) 833 return 0; 834 835 ret = (ntohl(mpls->entry) & MPLS_LS_TC_MASK) 836 >> MPLS_LS_TC_SHIFT; 837 goto out; 838 } 839 case htons(ETH_P_80221): 840 /* 802.21 is always network control traffic */ 841 return 7; 842 default: 843 return 0; 844 } 845 846 if (qos_map) { 847 unsigned int i, tmp_dscp = dscp >> 2; 848 849 for (i = 0; i < qos_map->num_des; i++) { 850 if (tmp_dscp == qos_map->dscp_exception[i].dscp) { 851 ret = qos_map->dscp_exception[i].up; 852 goto out; 853 } 854 } 855 856 for (i = 0; i < 8; i++) { 857 if (tmp_dscp >= qos_map->up[i].low && 858 tmp_dscp <= qos_map->up[i].high) { 859 ret = i; 860 goto out; 861 } 862 } 863 } 864 865 ret = dscp >> 5; 866 out: 867 return array_index_nospec(ret, IEEE80211_NUM_TIDS); 868 } 869 EXPORT_SYMBOL(cfg80211_classify8021d); 870 871 const struct element *ieee80211_bss_get_elem(struct cfg80211_bss *bss, u8 id) 872 { 873 const struct cfg80211_bss_ies *ies; 874 875 ies = rcu_dereference(bss->ies); 876 if (!ies) 877 return NULL; 878 879 return cfg80211_find_elem(id, ies->data, ies->len); 880 } 881 EXPORT_SYMBOL(ieee80211_bss_get_elem); 882 883 void cfg80211_upload_connect_keys(struct wireless_dev *wdev) 884 { 885 struct cfg80211_registered_device *rdev = wiphy_to_rdev(wdev->wiphy); 886 struct net_device *dev = wdev->netdev; 887 int i; 888 889 if (!wdev->connect_keys) 890 return; 891 892 for (i = 0; i < CFG80211_MAX_WEP_KEYS; i++) { 893 if (!wdev->connect_keys->params[i].cipher) 894 continue; 895 if (rdev_add_key(rdev, dev, i, false, NULL, 896 &wdev->connect_keys->params[i])) { 897 netdev_err(dev, "failed to set key %d\n", i); 898 continue; 899 } 900 if (wdev->connect_keys->def == i && 901 rdev_set_default_key(rdev, dev, i, true, true)) { 902 netdev_err(dev, "failed to set defkey %d\n", i); 903 continue; 904 } 905 } 906 907 kfree_sensitive(wdev->connect_keys); 908 wdev->connect_keys = NULL; 909 } 910 911 void cfg80211_process_wdev_events(struct wireless_dev *wdev) 912 { 913 struct cfg80211_event *ev; 914 unsigned long flags; 915 916 spin_lock_irqsave(&wdev->event_lock, flags); 917 while (!list_empty(&wdev->event_list)) { 918 ev = list_first_entry(&wdev->event_list, 919 struct cfg80211_event, list); 920 list_del(&ev->list); 921 spin_unlock_irqrestore(&wdev->event_lock, flags); 922 923 wdev_lock(wdev); 924 switch (ev->type) { 925 case EVENT_CONNECT_RESULT: 926 __cfg80211_connect_result( 927 wdev->netdev, 928 &ev->cr, 929 ev->cr.status == WLAN_STATUS_SUCCESS); 930 break; 931 case EVENT_ROAMED: 932 __cfg80211_roamed(wdev, &ev->rm); 933 break; 934 case EVENT_DISCONNECTED: 935 __cfg80211_disconnected(wdev->netdev, 936 ev->dc.ie, ev->dc.ie_len, 937 ev->dc.reason, 938 !ev->dc.locally_generated); 939 break; 940 case EVENT_IBSS_JOINED: 941 __cfg80211_ibss_joined(wdev->netdev, ev->ij.bssid, 942 ev->ij.channel); 943 break; 944 case EVENT_STOPPED: 945 __cfg80211_leave(wiphy_to_rdev(wdev->wiphy), wdev); 946 break; 947 case EVENT_PORT_AUTHORIZED: 948 __cfg80211_port_authorized(wdev, ev->pa.bssid); 949 break; 950 } 951 wdev_unlock(wdev); 952 953 kfree(ev); 954 955 spin_lock_irqsave(&wdev->event_lock, flags); 956 } 957 spin_unlock_irqrestore(&wdev->event_lock, flags); 958 } 959 960 void cfg80211_process_rdev_events(struct cfg80211_registered_device *rdev) 961 { 962 struct wireless_dev *wdev; 963 964 ASSERT_RTNL(); 965 966 list_for_each_entry(wdev, &rdev->wiphy.wdev_list, list) 967 cfg80211_process_wdev_events(wdev); 968 } 969 970 int cfg80211_change_iface(struct cfg80211_registered_device *rdev, 971 struct net_device *dev, enum nl80211_iftype ntype, 972 struct vif_params *params) 973 { 974 int err; 975 enum nl80211_iftype otype = dev->ieee80211_ptr->iftype; 976 977 ASSERT_RTNL(); 978 979 /* don't support changing VLANs, you just re-create them */ 980 if (otype == NL80211_IFTYPE_AP_VLAN) 981 return -EOPNOTSUPP; 982 983 /* cannot change into P2P device or NAN */ 984 if (ntype == NL80211_IFTYPE_P2P_DEVICE || 985 ntype == NL80211_IFTYPE_NAN) 986 return -EOPNOTSUPP; 987 988 if (!rdev->ops->change_virtual_intf || 989 !(rdev->wiphy.interface_modes & (1 << ntype))) 990 return -EOPNOTSUPP; 991 992 /* if it's part of a bridge, reject changing type to station/ibss */ 993 if (netif_is_bridge_port(dev) && 994 (ntype == NL80211_IFTYPE_ADHOC || 995 ntype == NL80211_IFTYPE_STATION || 996 ntype == NL80211_IFTYPE_P2P_CLIENT)) 997 return -EBUSY; 998 999 if (ntype != otype) { 1000 dev->ieee80211_ptr->use_4addr = false; 1001 dev->ieee80211_ptr->mesh_id_up_len = 0; 1002 wdev_lock(dev->ieee80211_ptr); 1003 rdev_set_qos_map(rdev, dev, NULL); 1004 wdev_unlock(dev->ieee80211_ptr); 1005 1006 switch (otype) { 1007 case NL80211_IFTYPE_AP: 1008 cfg80211_stop_ap(rdev, dev, true); 1009 break; 1010 case NL80211_IFTYPE_ADHOC: 1011 cfg80211_leave_ibss(rdev, dev, false); 1012 break; 1013 case NL80211_IFTYPE_STATION: 1014 case NL80211_IFTYPE_P2P_CLIENT: 1015 wdev_lock(dev->ieee80211_ptr); 1016 cfg80211_disconnect(rdev, dev, 1017 WLAN_REASON_DEAUTH_LEAVING, true); 1018 wdev_unlock(dev->ieee80211_ptr); 1019 break; 1020 case NL80211_IFTYPE_MESH_POINT: 1021 /* mesh should be handled? */ 1022 break; 1023 default: 1024 break; 1025 } 1026 1027 cfg80211_process_rdev_events(rdev); 1028 cfg80211_mlme_purge_registrations(dev->ieee80211_ptr); 1029 } 1030 1031 err = rdev_change_virtual_intf(rdev, dev, ntype, params); 1032 1033 WARN_ON(!err && dev->ieee80211_ptr->iftype != ntype); 1034 1035 if (!err && params && params->use_4addr != -1) 1036 dev->ieee80211_ptr->use_4addr = params->use_4addr; 1037 1038 if (!err) { 1039 dev->priv_flags &= ~IFF_DONT_BRIDGE; 1040 switch (ntype) { 1041 case NL80211_IFTYPE_STATION: 1042 if (dev->ieee80211_ptr->use_4addr) 1043 break; 1044 fallthrough; 1045 case NL80211_IFTYPE_OCB: 1046 case NL80211_IFTYPE_P2P_CLIENT: 1047 case NL80211_IFTYPE_ADHOC: 1048 dev->priv_flags |= IFF_DONT_BRIDGE; 1049 break; 1050 case NL80211_IFTYPE_P2P_GO: 1051 case NL80211_IFTYPE_AP: 1052 case NL80211_IFTYPE_AP_VLAN: 1053 case NL80211_IFTYPE_MESH_POINT: 1054 /* bridging OK */ 1055 break; 1056 case NL80211_IFTYPE_MONITOR: 1057 /* monitor can't bridge anyway */ 1058 break; 1059 case NL80211_IFTYPE_UNSPECIFIED: 1060 case NUM_NL80211_IFTYPES: 1061 /* not happening */ 1062 break; 1063 case NL80211_IFTYPE_P2P_DEVICE: 1064 case NL80211_IFTYPE_WDS: 1065 case NL80211_IFTYPE_NAN: 1066 WARN_ON(1); 1067 break; 1068 } 1069 } 1070 1071 if (!err && ntype != otype && netif_running(dev)) { 1072 cfg80211_update_iface_num(rdev, ntype, 1); 1073 cfg80211_update_iface_num(rdev, otype, -1); 1074 } 1075 1076 return err; 1077 } 1078 1079 static u32 cfg80211_calculate_bitrate_ht(struct rate_info *rate) 1080 { 1081 int modulation, streams, bitrate; 1082 1083 /* the formula below does only work for MCS values smaller than 32 */ 1084 if (WARN_ON_ONCE(rate->mcs >= 32)) 1085 return 0; 1086 1087 modulation = rate->mcs & 7; 1088 streams = (rate->mcs >> 3) + 1; 1089 1090 bitrate = (rate->bw == RATE_INFO_BW_40) ? 13500000 : 6500000; 1091 1092 if (modulation < 4) 1093 bitrate *= (modulation + 1); 1094 else if (modulation == 4) 1095 bitrate *= (modulation + 2); 1096 else 1097 bitrate *= (modulation + 3); 1098 1099 bitrate *= streams; 1100 1101 if (rate->flags & RATE_INFO_FLAGS_SHORT_GI) 1102 bitrate = (bitrate / 9) * 10; 1103 1104 /* do NOT round down here */ 1105 return (bitrate + 50000) / 100000; 1106 } 1107 1108 static u32 cfg80211_calculate_bitrate_dmg(struct rate_info *rate) 1109 { 1110 static const u32 __mcs2bitrate[] = { 1111 /* control PHY */ 1112 [0] = 275, 1113 /* SC PHY */ 1114 [1] = 3850, 1115 [2] = 7700, 1116 [3] = 9625, 1117 [4] = 11550, 1118 [5] = 12512, /* 1251.25 mbps */ 1119 [6] = 15400, 1120 [7] = 19250, 1121 [8] = 23100, 1122 [9] = 25025, 1123 [10] = 30800, 1124 [11] = 38500, 1125 [12] = 46200, 1126 /* OFDM PHY */ 1127 [13] = 6930, 1128 [14] = 8662, /* 866.25 mbps */ 1129 [15] = 13860, 1130 [16] = 17325, 1131 [17] = 20790, 1132 [18] = 27720, 1133 [19] = 34650, 1134 [20] = 41580, 1135 [21] = 45045, 1136 [22] = 51975, 1137 [23] = 62370, 1138 [24] = 67568, /* 6756.75 mbps */ 1139 /* LP-SC PHY */ 1140 [25] = 6260, 1141 [26] = 8340, 1142 [27] = 11120, 1143 [28] = 12510, 1144 [29] = 16680, 1145 [30] = 22240, 1146 [31] = 25030, 1147 }; 1148 1149 if (WARN_ON_ONCE(rate->mcs >= ARRAY_SIZE(__mcs2bitrate))) 1150 return 0; 1151 1152 return __mcs2bitrate[rate->mcs]; 1153 } 1154 1155 static u32 cfg80211_calculate_bitrate_edmg(struct rate_info *rate) 1156 { 1157 static const u32 __mcs2bitrate[] = { 1158 /* control PHY */ 1159 [0] = 275, 1160 /* SC PHY */ 1161 [1] = 3850, 1162 [2] = 7700, 1163 [3] = 9625, 1164 [4] = 11550, 1165 [5] = 12512, /* 1251.25 mbps */ 1166 [6] = 13475, 1167 [7] = 15400, 1168 [8] = 19250, 1169 [9] = 23100, 1170 [10] = 25025, 1171 [11] = 26950, 1172 [12] = 30800, 1173 [13] = 38500, 1174 [14] = 46200, 1175 [15] = 50050, 1176 [16] = 53900, 1177 [17] = 57750, 1178 [18] = 69300, 1179 [19] = 75075, 1180 [20] = 80850, 1181 }; 1182 1183 if (WARN_ON_ONCE(rate->mcs >= ARRAY_SIZE(__mcs2bitrate))) 1184 return 0; 1185 1186 return __mcs2bitrate[rate->mcs] * rate->n_bonded_ch; 1187 } 1188 1189 static u32 cfg80211_calculate_bitrate_vht(struct rate_info *rate) 1190 { 1191 static const u32 base[4][10] = { 1192 { 6500000, 1193 13000000, 1194 19500000, 1195 26000000, 1196 39000000, 1197 52000000, 1198 58500000, 1199 65000000, 1200 78000000, 1201 /* not in the spec, but some devices use this: */ 1202 86500000, 1203 }, 1204 { 13500000, 1205 27000000, 1206 40500000, 1207 54000000, 1208 81000000, 1209 108000000, 1210 121500000, 1211 135000000, 1212 162000000, 1213 180000000, 1214 }, 1215 { 29300000, 1216 58500000, 1217 87800000, 1218 117000000, 1219 175500000, 1220 234000000, 1221 263300000, 1222 292500000, 1223 351000000, 1224 390000000, 1225 }, 1226 { 58500000, 1227 117000000, 1228 175500000, 1229 234000000, 1230 351000000, 1231 468000000, 1232 526500000, 1233 585000000, 1234 702000000, 1235 780000000, 1236 }, 1237 }; 1238 u32 bitrate; 1239 int idx; 1240 1241 if (rate->mcs > 9) 1242 goto warn; 1243 1244 switch (rate->bw) { 1245 case RATE_INFO_BW_160: 1246 idx = 3; 1247 break; 1248 case RATE_INFO_BW_80: 1249 idx = 2; 1250 break; 1251 case RATE_INFO_BW_40: 1252 idx = 1; 1253 break; 1254 case RATE_INFO_BW_5: 1255 case RATE_INFO_BW_10: 1256 default: 1257 goto warn; 1258 case RATE_INFO_BW_20: 1259 idx = 0; 1260 } 1261 1262 bitrate = base[idx][rate->mcs]; 1263 bitrate *= rate->nss; 1264 1265 if (rate->flags & RATE_INFO_FLAGS_SHORT_GI) 1266 bitrate = (bitrate / 9) * 10; 1267 1268 /* do NOT round down here */ 1269 return (bitrate + 50000) / 100000; 1270 warn: 1271 WARN_ONCE(1, "invalid rate bw=%d, mcs=%d, nss=%d\n", 1272 rate->bw, rate->mcs, rate->nss); 1273 return 0; 1274 } 1275 1276 static u32 cfg80211_calculate_bitrate_he(struct rate_info *rate) 1277 { 1278 #define SCALE 6144 1279 u32 mcs_divisors[14] = { 1280 102399, /* 16.666666... */ 1281 51201, /* 8.333333... */ 1282 34134, /* 5.555555... */ 1283 25599, /* 4.166666... */ 1284 17067, /* 2.777777... */ 1285 12801, /* 2.083333... */ 1286 11769, /* 1.851851... */ 1287 10239, /* 1.666666... */ 1288 8532, /* 1.388888... */ 1289 7680, /* 1.250000... */ 1290 6828, /* 1.111111... */ 1291 6144, /* 1.000000... */ 1292 5690, /* 0.926106... */ 1293 5120, /* 0.833333... */ 1294 }; 1295 u32 rates_160M[3] = { 960777777, 907400000, 816666666 }; 1296 u32 rates_969[3] = { 480388888, 453700000, 408333333 }; 1297 u32 rates_484[3] = { 229411111, 216666666, 195000000 }; 1298 u32 rates_242[3] = { 114711111, 108333333, 97500000 }; 1299 u32 rates_106[3] = { 40000000, 37777777, 34000000 }; 1300 u32 rates_52[3] = { 18820000, 17777777, 16000000 }; 1301 u32 rates_26[3] = { 9411111, 8888888, 8000000 }; 1302 u64 tmp; 1303 u32 result; 1304 1305 if (WARN_ON_ONCE(rate->mcs > 13)) 1306 return 0; 1307 1308 if (WARN_ON_ONCE(rate->he_gi > NL80211_RATE_INFO_HE_GI_3_2)) 1309 return 0; 1310 if (WARN_ON_ONCE(rate->he_ru_alloc > 1311 NL80211_RATE_INFO_HE_RU_ALLOC_2x996)) 1312 return 0; 1313 if (WARN_ON_ONCE(rate->nss < 1 || rate->nss > 8)) 1314 return 0; 1315 1316 if (rate->bw == RATE_INFO_BW_160) 1317 result = rates_160M[rate->he_gi]; 1318 else if (rate->bw == RATE_INFO_BW_80 || 1319 (rate->bw == RATE_INFO_BW_HE_RU && 1320 rate->he_ru_alloc == NL80211_RATE_INFO_HE_RU_ALLOC_996)) 1321 result = rates_969[rate->he_gi]; 1322 else if (rate->bw == RATE_INFO_BW_40 || 1323 (rate->bw == RATE_INFO_BW_HE_RU && 1324 rate->he_ru_alloc == NL80211_RATE_INFO_HE_RU_ALLOC_484)) 1325 result = rates_484[rate->he_gi]; 1326 else if (rate->bw == RATE_INFO_BW_20 || 1327 (rate->bw == RATE_INFO_BW_HE_RU && 1328 rate->he_ru_alloc == NL80211_RATE_INFO_HE_RU_ALLOC_242)) 1329 result = rates_242[rate->he_gi]; 1330 else if (rate->bw == RATE_INFO_BW_HE_RU && 1331 rate->he_ru_alloc == NL80211_RATE_INFO_HE_RU_ALLOC_106) 1332 result = rates_106[rate->he_gi]; 1333 else if (rate->bw == RATE_INFO_BW_HE_RU && 1334 rate->he_ru_alloc == NL80211_RATE_INFO_HE_RU_ALLOC_52) 1335 result = rates_52[rate->he_gi]; 1336 else if (rate->bw == RATE_INFO_BW_HE_RU && 1337 rate->he_ru_alloc == NL80211_RATE_INFO_HE_RU_ALLOC_26) 1338 result = rates_26[rate->he_gi]; 1339 else { 1340 WARN(1, "invalid HE MCS: bw:%d, ru:%d\n", 1341 rate->bw, rate->he_ru_alloc); 1342 return 0; 1343 } 1344 1345 /* now scale to the appropriate MCS */ 1346 tmp = result; 1347 tmp *= SCALE; 1348 do_div(tmp, mcs_divisors[rate->mcs]); 1349 result = tmp; 1350 1351 /* and take NSS, DCM into account */ 1352 result = (result * rate->nss) / 8; 1353 if (rate->he_dcm) 1354 result /= 2; 1355 1356 return result / 10000; 1357 } 1358 1359 u32 cfg80211_calculate_bitrate(struct rate_info *rate) 1360 { 1361 if (rate->flags & RATE_INFO_FLAGS_MCS) 1362 return cfg80211_calculate_bitrate_ht(rate); 1363 if (rate->flags & RATE_INFO_FLAGS_DMG) 1364 return cfg80211_calculate_bitrate_dmg(rate); 1365 if (rate->flags & RATE_INFO_FLAGS_EDMG) 1366 return cfg80211_calculate_bitrate_edmg(rate); 1367 if (rate->flags & RATE_INFO_FLAGS_VHT_MCS) 1368 return cfg80211_calculate_bitrate_vht(rate); 1369 if (rate->flags & RATE_INFO_FLAGS_HE_MCS) 1370 return cfg80211_calculate_bitrate_he(rate); 1371 1372 return rate->legacy; 1373 } 1374 EXPORT_SYMBOL(cfg80211_calculate_bitrate); 1375 1376 int cfg80211_get_p2p_attr(const u8 *ies, unsigned int len, 1377 enum ieee80211_p2p_attr_id attr, 1378 u8 *buf, unsigned int bufsize) 1379 { 1380 u8 *out = buf; 1381 u16 attr_remaining = 0; 1382 bool desired_attr = false; 1383 u16 desired_len = 0; 1384 1385 while (len > 0) { 1386 unsigned int iedatalen; 1387 unsigned int copy; 1388 const u8 *iedata; 1389 1390 if (len < 2) 1391 return -EILSEQ; 1392 iedatalen = ies[1]; 1393 if (iedatalen + 2 > len) 1394 return -EILSEQ; 1395 1396 if (ies[0] != WLAN_EID_VENDOR_SPECIFIC) 1397 goto cont; 1398 1399 if (iedatalen < 4) 1400 goto cont; 1401 1402 iedata = ies + 2; 1403 1404 /* check WFA OUI, P2P subtype */ 1405 if (iedata[0] != 0x50 || iedata[1] != 0x6f || 1406 iedata[2] != 0x9a || iedata[3] != 0x09) 1407 goto cont; 1408 1409 iedatalen -= 4; 1410 iedata += 4; 1411 1412 /* check attribute continuation into this IE */ 1413 copy = min_t(unsigned int, attr_remaining, iedatalen); 1414 if (copy && desired_attr) { 1415 desired_len += copy; 1416 if (out) { 1417 memcpy(out, iedata, min(bufsize, copy)); 1418 out += min(bufsize, copy); 1419 bufsize -= min(bufsize, copy); 1420 } 1421 1422 1423 if (copy == attr_remaining) 1424 return desired_len; 1425 } 1426 1427 attr_remaining -= copy; 1428 if (attr_remaining) 1429 goto cont; 1430 1431 iedatalen -= copy; 1432 iedata += copy; 1433 1434 while (iedatalen > 0) { 1435 u16 attr_len; 1436 1437 /* P2P attribute ID & size must fit */ 1438 if (iedatalen < 3) 1439 return -EILSEQ; 1440 desired_attr = iedata[0] == attr; 1441 attr_len = get_unaligned_le16(iedata + 1); 1442 iedatalen -= 3; 1443 iedata += 3; 1444 1445 copy = min_t(unsigned int, attr_len, iedatalen); 1446 1447 if (desired_attr) { 1448 desired_len += copy; 1449 if (out) { 1450 memcpy(out, iedata, min(bufsize, copy)); 1451 out += min(bufsize, copy); 1452 bufsize -= min(bufsize, copy); 1453 } 1454 1455 if (copy == attr_len) 1456 return desired_len; 1457 } 1458 1459 iedata += copy; 1460 iedatalen -= copy; 1461 attr_remaining = attr_len - copy; 1462 } 1463 1464 cont: 1465 len -= ies[1] + 2; 1466 ies += ies[1] + 2; 1467 } 1468 1469 if (attr_remaining && desired_attr) 1470 return -EILSEQ; 1471 1472 return -ENOENT; 1473 } 1474 EXPORT_SYMBOL(cfg80211_get_p2p_attr); 1475 1476 static bool ieee80211_id_in_list(const u8 *ids, int n_ids, u8 id, bool id_ext) 1477 { 1478 int i; 1479 1480 /* Make sure array values are legal */ 1481 if (WARN_ON(ids[n_ids - 1] == WLAN_EID_EXTENSION)) 1482 return false; 1483 1484 i = 0; 1485 while (i < n_ids) { 1486 if (ids[i] == WLAN_EID_EXTENSION) { 1487 if (id_ext && (ids[i + 1] == id)) 1488 return true; 1489 1490 i += 2; 1491 continue; 1492 } 1493 1494 if (ids[i] == id && !id_ext) 1495 return true; 1496 1497 i++; 1498 } 1499 return false; 1500 } 1501 1502 static size_t skip_ie(const u8 *ies, size_t ielen, size_t pos) 1503 { 1504 /* we assume a validly formed IEs buffer */ 1505 u8 len = ies[pos + 1]; 1506 1507 pos += 2 + len; 1508 1509 /* the IE itself must have 255 bytes for fragments to follow */ 1510 if (len < 255) 1511 return pos; 1512 1513 while (pos < ielen && ies[pos] == WLAN_EID_FRAGMENT) { 1514 len = ies[pos + 1]; 1515 pos += 2 + len; 1516 } 1517 1518 return pos; 1519 } 1520 1521 size_t ieee80211_ie_split_ric(const u8 *ies, size_t ielen, 1522 const u8 *ids, int n_ids, 1523 const u8 *after_ric, int n_after_ric, 1524 size_t offset) 1525 { 1526 size_t pos = offset; 1527 1528 while (pos < ielen) { 1529 u8 ext = 0; 1530 1531 if (ies[pos] == WLAN_EID_EXTENSION) 1532 ext = 2; 1533 if ((pos + ext) >= ielen) 1534 break; 1535 1536 if (!ieee80211_id_in_list(ids, n_ids, ies[pos + ext], 1537 ies[pos] == WLAN_EID_EXTENSION)) 1538 break; 1539 1540 if (ies[pos] == WLAN_EID_RIC_DATA && n_after_ric) { 1541 pos = skip_ie(ies, ielen, pos); 1542 1543 while (pos < ielen) { 1544 if (ies[pos] == WLAN_EID_EXTENSION) 1545 ext = 2; 1546 else 1547 ext = 0; 1548 1549 if ((pos + ext) >= ielen) 1550 break; 1551 1552 if (!ieee80211_id_in_list(after_ric, 1553 n_after_ric, 1554 ies[pos + ext], 1555 ext == 2)) 1556 pos = skip_ie(ies, ielen, pos); 1557 else 1558 break; 1559 } 1560 } else { 1561 pos = skip_ie(ies, ielen, pos); 1562 } 1563 } 1564 1565 return pos; 1566 } 1567 EXPORT_SYMBOL(ieee80211_ie_split_ric); 1568 1569 bool ieee80211_operating_class_to_band(u8 operating_class, 1570 enum nl80211_band *band) 1571 { 1572 switch (operating_class) { 1573 case 112: 1574 case 115 ... 127: 1575 case 128 ... 130: 1576 *band = NL80211_BAND_5GHZ; 1577 return true; 1578 case 131 ... 135: 1579 *band = NL80211_BAND_6GHZ; 1580 return true; 1581 case 81: 1582 case 82: 1583 case 83: 1584 case 84: 1585 *band = NL80211_BAND_2GHZ; 1586 return true; 1587 case 180: 1588 *band = NL80211_BAND_60GHZ; 1589 return true; 1590 } 1591 1592 return false; 1593 } 1594 EXPORT_SYMBOL(ieee80211_operating_class_to_band); 1595 1596 bool ieee80211_chandef_to_operating_class(struct cfg80211_chan_def *chandef, 1597 u8 *op_class) 1598 { 1599 u8 vht_opclass; 1600 u32 freq = chandef->center_freq1; 1601 1602 if (freq >= 2412 && freq <= 2472) { 1603 if (chandef->width > NL80211_CHAN_WIDTH_40) 1604 return false; 1605 1606 /* 2.407 GHz, channels 1..13 */ 1607 if (chandef->width == NL80211_CHAN_WIDTH_40) { 1608 if (freq > chandef->chan->center_freq) 1609 *op_class = 83; /* HT40+ */ 1610 else 1611 *op_class = 84; /* HT40- */ 1612 } else { 1613 *op_class = 81; 1614 } 1615 1616 return true; 1617 } 1618 1619 if (freq == 2484) { 1620 /* channel 14 is only for IEEE 802.11b */ 1621 if (chandef->width != NL80211_CHAN_WIDTH_20_NOHT) 1622 return false; 1623 1624 *op_class = 82; /* channel 14 */ 1625 return true; 1626 } 1627 1628 switch (chandef->width) { 1629 case NL80211_CHAN_WIDTH_80: 1630 vht_opclass = 128; 1631 break; 1632 case NL80211_CHAN_WIDTH_160: 1633 vht_opclass = 129; 1634 break; 1635 case NL80211_CHAN_WIDTH_80P80: 1636 vht_opclass = 130; 1637 break; 1638 case NL80211_CHAN_WIDTH_10: 1639 case NL80211_CHAN_WIDTH_5: 1640 return false; /* unsupported for now */ 1641 default: 1642 vht_opclass = 0; 1643 break; 1644 } 1645 1646 /* 5 GHz, channels 36..48 */ 1647 if (freq >= 5180 && freq <= 5240) { 1648 if (vht_opclass) { 1649 *op_class = vht_opclass; 1650 } else if (chandef->width == NL80211_CHAN_WIDTH_40) { 1651 if (freq > chandef->chan->center_freq) 1652 *op_class = 116; 1653 else 1654 *op_class = 117; 1655 } else { 1656 *op_class = 115; 1657 } 1658 1659 return true; 1660 } 1661 1662 /* 5 GHz, channels 52..64 */ 1663 if (freq >= 5260 && freq <= 5320) { 1664 if (vht_opclass) { 1665 *op_class = vht_opclass; 1666 } else if (chandef->width == NL80211_CHAN_WIDTH_40) { 1667 if (freq > chandef->chan->center_freq) 1668 *op_class = 119; 1669 else 1670 *op_class = 120; 1671 } else { 1672 *op_class = 118; 1673 } 1674 1675 return true; 1676 } 1677 1678 /* 5 GHz, channels 100..144 */ 1679 if (freq >= 5500 && freq <= 5720) { 1680 if (vht_opclass) { 1681 *op_class = vht_opclass; 1682 } else if (chandef->width == NL80211_CHAN_WIDTH_40) { 1683 if (freq > chandef->chan->center_freq) 1684 *op_class = 122; 1685 else 1686 *op_class = 123; 1687 } else { 1688 *op_class = 121; 1689 } 1690 1691 return true; 1692 } 1693 1694 /* 5 GHz, channels 149..169 */ 1695 if (freq >= 5745 && freq <= 5845) { 1696 if (vht_opclass) { 1697 *op_class = vht_opclass; 1698 } else if (chandef->width == NL80211_CHAN_WIDTH_40) { 1699 if (freq > chandef->chan->center_freq) 1700 *op_class = 126; 1701 else 1702 *op_class = 127; 1703 } else if (freq <= 5805) { 1704 *op_class = 124; 1705 } else { 1706 *op_class = 125; 1707 } 1708 1709 return true; 1710 } 1711 1712 /* 56.16 GHz, channel 1..4 */ 1713 if (freq >= 56160 + 2160 * 1 && freq <= 56160 + 2160 * 6) { 1714 if (chandef->width >= NL80211_CHAN_WIDTH_40) 1715 return false; 1716 1717 *op_class = 180; 1718 return true; 1719 } 1720 1721 /* not supported yet */ 1722 return false; 1723 } 1724 EXPORT_SYMBOL(ieee80211_chandef_to_operating_class); 1725 1726 static void cfg80211_calculate_bi_data(struct wiphy *wiphy, u32 new_beacon_int, 1727 u32 *beacon_int_gcd, 1728 bool *beacon_int_different) 1729 { 1730 struct wireless_dev *wdev; 1731 1732 *beacon_int_gcd = 0; 1733 *beacon_int_different = false; 1734 1735 list_for_each_entry(wdev, &wiphy->wdev_list, list) { 1736 if (!wdev->beacon_interval) 1737 continue; 1738 1739 if (!*beacon_int_gcd) { 1740 *beacon_int_gcd = wdev->beacon_interval; 1741 continue; 1742 } 1743 1744 if (wdev->beacon_interval == *beacon_int_gcd) 1745 continue; 1746 1747 *beacon_int_different = true; 1748 *beacon_int_gcd = gcd(*beacon_int_gcd, wdev->beacon_interval); 1749 } 1750 1751 if (new_beacon_int && *beacon_int_gcd != new_beacon_int) { 1752 if (*beacon_int_gcd) 1753 *beacon_int_different = true; 1754 *beacon_int_gcd = gcd(*beacon_int_gcd, new_beacon_int); 1755 } 1756 } 1757 1758 int cfg80211_validate_beacon_int(struct cfg80211_registered_device *rdev, 1759 enum nl80211_iftype iftype, u32 beacon_int) 1760 { 1761 /* 1762 * This is just a basic pre-condition check; if interface combinations 1763 * are possible the driver must already be checking those with a call 1764 * to cfg80211_check_combinations(), in which case we'll validate more 1765 * through the cfg80211_calculate_bi_data() call and code in 1766 * cfg80211_iter_combinations(). 1767 */ 1768 1769 if (beacon_int < 10 || beacon_int > 10000) 1770 return -EINVAL; 1771 1772 return 0; 1773 } 1774 1775 int cfg80211_iter_combinations(struct wiphy *wiphy, 1776 struct iface_combination_params *params, 1777 void (*iter)(const struct ieee80211_iface_combination *c, 1778 void *data), 1779 void *data) 1780 { 1781 const struct ieee80211_regdomain *regdom; 1782 enum nl80211_dfs_regions region = 0; 1783 int i, j, iftype; 1784 int num_interfaces = 0; 1785 u32 used_iftypes = 0; 1786 u32 beacon_int_gcd; 1787 bool beacon_int_different; 1788 1789 /* 1790 * This is a bit strange, since the iteration used to rely only on 1791 * the data given by the driver, but here it now relies on context, 1792 * in form of the currently operating interfaces. 1793 * This is OK for all current users, and saves us from having to 1794 * push the GCD calculations into all the drivers. 1795 * In the future, this should probably rely more on data that's in 1796 * cfg80211 already - the only thing not would appear to be any new 1797 * interfaces (while being brought up) and channel/radar data. 1798 */ 1799 cfg80211_calculate_bi_data(wiphy, params->new_beacon_int, 1800 &beacon_int_gcd, &beacon_int_different); 1801 1802 if (params->radar_detect) { 1803 rcu_read_lock(); 1804 regdom = rcu_dereference(cfg80211_regdomain); 1805 if (regdom) 1806 region = regdom->dfs_region; 1807 rcu_read_unlock(); 1808 } 1809 1810 for (iftype = 0; iftype < NUM_NL80211_IFTYPES; iftype++) { 1811 num_interfaces += params->iftype_num[iftype]; 1812 if (params->iftype_num[iftype] > 0 && 1813 !cfg80211_iftype_allowed(wiphy, iftype, 0, 1)) 1814 used_iftypes |= BIT(iftype); 1815 } 1816 1817 for (i = 0; i < wiphy->n_iface_combinations; i++) { 1818 const struct ieee80211_iface_combination *c; 1819 struct ieee80211_iface_limit *limits; 1820 u32 all_iftypes = 0; 1821 1822 c = &wiphy->iface_combinations[i]; 1823 1824 if (num_interfaces > c->max_interfaces) 1825 continue; 1826 if (params->num_different_channels > c->num_different_channels) 1827 continue; 1828 1829 limits = kmemdup(c->limits, sizeof(limits[0]) * c->n_limits, 1830 GFP_KERNEL); 1831 if (!limits) 1832 return -ENOMEM; 1833 1834 for (iftype = 0; iftype < NUM_NL80211_IFTYPES; iftype++) { 1835 if (cfg80211_iftype_allowed(wiphy, iftype, 0, 1)) 1836 continue; 1837 for (j = 0; j < c->n_limits; j++) { 1838 all_iftypes |= limits[j].types; 1839 if (!(limits[j].types & BIT(iftype))) 1840 continue; 1841 if (limits[j].max < params->iftype_num[iftype]) 1842 goto cont; 1843 limits[j].max -= params->iftype_num[iftype]; 1844 } 1845 } 1846 1847 if (params->radar_detect != 1848 (c->radar_detect_widths & params->radar_detect)) 1849 goto cont; 1850 1851 if (params->radar_detect && c->radar_detect_regions && 1852 !(c->radar_detect_regions & BIT(region))) 1853 goto cont; 1854 1855 /* Finally check that all iftypes that we're currently 1856 * using are actually part of this combination. If they 1857 * aren't then we can't use this combination and have 1858 * to continue to the next. 1859 */ 1860 if ((all_iftypes & used_iftypes) != used_iftypes) 1861 goto cont; 1862 1863 if (beacon_int_gcd) { 1864 if (c->beacon_int_min_gcd && 1865 beacon_int_gcd < c->beacon_int_min_gcd) 1866 goto cont; 1867 if (!c->beacon_int_min_gcd && beacon_int_different) 1868 goto cont; 1869 } 1870 1871 /* This combination covered all interface types and 1872 * supported the requested numbers, so we're good. 1873 */ 1874 1875 (*iter)(c, data); 1876 cont: 1877 kfree(limits); 1878 } 1879 1880 return 0; 1881 } 1882 EXPORT_SYMBOL(cfg80211_iter_combinations); 1883 1884 static void 1885 cfg80211_iter_sum_ifcombs(const struct ieee80211_iface_combination *c, 1886 void *data) 1887 { 1888 int *num = data; 1889 (*num)++; 1890 } 1891 1892 int cfg80211_check_combinations(struct wiphy *wiphy, 1893 struct iface_combination_params *params) 1894 { 1895 int err, num = 0; 1896 1897 err = cfg80211_iter_combinations(wiphy, params, 1898 cfg80211_iter_sum_ifcombs, &num); 1899 if (err) 1900 return err; 1901 if (num == 0) 1902 return -EBUSY; 1903 1904 return 0; 1905 } 1906 EXPORT_SYMBOL(cfg80211_check_combinations); 1907 1908 int ieee80211_get_ratemask(struct ieee80211_supported_band *sband, 1909 const u8 *rates, unsigned int n_rates, 1910 u32 *mask) 1911 { 1912 int i, j; 1913 1914 if (!sband) 1915 return -EINVAL; 1916 1917 if (n_rates == 0 || n_rates > NL80211_MAX_SUPP_RATES) 1918 return -EINVAL; 1919 1920 *mask = 0; 1921 1922 for (i = 0; i < n_rates; i++) { 1923 int rate = (rates[i] & 0x7f) * 5; 1924 bool found = false; 1925 1926 for (j = 0; j < sband->n_bitrates; j++) { 1927 if (sband->bitrates[j].bitrate == rate) { 1928 found = true; 1929 *mask |= BIT(j); 1930 break; 1931 } 1932 } 1933 if (!found) 1934 return -EINVAL; 1935 } 1936 1937 /* 1938 * mask must have at least one bit set here since we 1939 * didn't accept a 0-length rates array nor allowed 1940 * entries in the array that didn't exist 1941 */ 1942 1943 return 0; 1944 } 1945 1946 unsigned int ieee80211_get_num_supported_channels(struct wiphy *wiphy) 1947 { 1948 enum nl80211_band band; 1949 unsigned int n_channels = 0; 1950 1951 for (band = 0; band < NUM_NL80211_BANDS; band++) 1952 if (wiphy->bands[band]) 1953 n_channels += wiphy->bands[band]->n_channels; 1954 1955 return n_channels; 1956 } 1957 EXPORT_SYMBOL(ieee80211_get_num_supported_channels); 1958 1959 int cfg80211_get_station(struct net_device *dev, const u8 *mac_addr, 1960 struct station_info *sinfo) 1961 { 1962 struct cfg80211_registered_device *rdev; 1963 struct wireless_dev *wdev; 1964 1965 wdev = dev->ieee80211_ptr; 1966 if (!wdev) 1967 return -EOPNOTSUPP; 1968 1969 rdev = wiphy_to_rdev(wdev->wiphy); 1970 if (!rdev->ops->get_station) 1971 return -EOPNOTSUPP; 1972 1973 memset(sinfo, 0, sizeof(*sinfo)); 1974 1975 return rdev_get_station(rdev, dev, mac_addr, sinfo); 1976 } 1977 EXPORT_SYMBOL(cfg80211_get_station); 1978 1979 void cfg80211_free_nan_func(struct cfg80211_nan_func *f) 1980 { 1981 int i; 1982 1983 if (!f) 1984 return; 1985 1986 kfree(f->serv_spec_info); 1987 kfree(f->srf_bf); 1988 kfree(f->srf_macs); 1989 for (i = 0; i < f->num_rx_filters; i++) 1990 kfree(f->rx_filters[i].filter); 1991 1992 for (i = 0; i < f->num_tx_filters; i++) 1993 kfree(f->tx_filters[i].filter); 1994 1995 kfree(f->rx_filters); 1996 kfree(f->tx_filters); 1997 kfree(f); 1998 } 1999 EXPORT_SYMBOL(cfg80211_free_nan_func); 2000 2001 bool cfg80211_does_bw_fit_range(const struct ieee80211_freq_range *freq_range, 2002 u32 center_freq_khz, u32 bw_khz) 2003 { 2004 u32 start_freq_khz, end_freq_khz; 2005 2006 start_freq_khz = center_freq_khz - (bw_khz / 2); 2007 end_freq_khz = center_freq_khz + (bw_khz / 2); 2008 2009 if (start_freq_khz >= freq_range->start_freq_khz && 2010 end_freq_khz <= freq_range->end_freq_khz) 2011 return true; 2012 2013 return false; 2014 } 2015 2016 int cfg80211_sinfo_alloc_tid_stats(struct station_info *sinfo, gfp_t gfp) 2017 { 2018 sinfo->pertid = kcalloc(IEEE80211_NUM_TIDS + 1, 2019 sizeof(*(sinfo->pertid)), 2020 gfp); 2021 if (!sinfo->pertid) 2022 return -ENOMEM; 2023 2024 return 0; 2025 } 2026 EXPORT_SYMBOL(cfg80211_sinfo_alloc_tid_stats); 2027 2028 /* See IEEE 802.1H for LLC/SNAP encapsulation/decapsulation */ 2029 /* Ethernet-II snap header (RFC1042 for most EtherTypes) */ 2030 const unsigned char rfc1042_header[] __aligned(2) = 2031 { 0xaa, 0xaa, 0x03, 0x00, 0x00, 0x00 }; 2032 EXPORT_SYMBOL(rfc1042_header); 2033 2034 /* Bridge-Tunnel header (for EtherTypes ETH_P_AARP and ETH_P_IPX) */ 2035 const unsigned char bridge_tunnel_header[] __aligned(2) = 2036 { 0xaa, 0xaa, 0x03, 0x00, 0x00, 0xf8 }; 2037 EXPORT_SYMBOL(bridge_tunnel_header); 2038 2039 /* Layer 2 Update frame (802.2 Type 1 LLC XID Update response) */ 2040 struct iapp_layer2_update { 2041 u8 da[ETH_ALEN]; /* broadcast */ 2042 u8 sa[ETH_ALEN]; /* STA addr */ 2043 __be16 len; /* 6 */ 2044 u8 dsap; /* 0 */ 2045 u8 ssap; /* 0 */ 2046 u8 control; 2047 u8 xid_info[3]; 2048 } __packed; 2049 2050 void cfg80211_send_layer2_update(struct net_device *dev, const u8 *addr) 2051 { 2052 struct iapp_layer2_update *msg; 2053 struct sk_buff *skb; 2054 2055 /* Send Level 2 Update Frame to update forwarding tables in layer 2 2056 * bridge devices */ 2057 2058 skb = dev_alloc_skb(sizeof(*msg)); 2059 if (!skb) 2060 return; 2061 msg = skb_put(skb, sizeof(*msg)); 2062 2063 /* 802.2 Type 1 Logical Link Control (LLC) Exchange Identifier (XID) 2064 * Update response frame; IEEE Std 802.2-1998, 5.4.1.2.1 */ 2065 2066 eth_broadcast_addr(msg->da); 2067 ether_addr_copy(msg->sa, addr); 2068 msg->len = htons(6); 2069 msg->dsap = 0; 2070 msg->ssap = 0x01; /* NULL LSAP, CR Bit: Response */ 2071 msg->control = 0xaf; /* XID response lsb.1111F101. 2072 * F=0 (no poll command; unsolicited frame) */ 2073 msg->xid_info[0] = 0x81; /* XID format identifier */ 2074 msg->xid_info[1] = 1; /* LLC types/classes: Type 1 LLC */ 2075 msg->xid_info[2] = 0; /* XID sender's receive window size (RW) */ 2076 2077 skb->dev = dev; 2078 skb->protocol = eth_type_trans(skb, dev); 2079 memset(skb->cb, 0, sizeof(skb->cb)); 2080 netif_rx_ni(skb); 2081 } 2082 EXPORT_SYMBOL(cfg80211_send_layer2_update); 2083 2084 int ieee80211_get_vht_max_nss(struct ieee80211_vht_cap *cap, 2085 enum ieee80211_vht_chanwidth bw, 2086 int mcs, bool ext_nss_bw_capable, 2087 unsigned int max_vht_nss) 2088 { 2089 u16 map = le16_to_cpu(cap->supp_mcs.rx_mcs_map); 2090 int ext_nss_bw; 2091 int supp_width; 2092 int i, mcs_encoding; 2093 2094 if (map == 0xffff) 2095 return 0; 2096 2097 if (WARN_ON(mcs > 9 || max_vht_nss > 8)) 2098 return 0; 2099 if (mcs <= 7) 2100 mcs_encoding = 0; 2101 else if (mcs == 8) 2102 mcs_encoding = 1; 2103 else 2104 mcs_encoding = 2; 2105 2106 if (!max_vht_nss) { 2107 /* find max_vht_nss for the given MCS */ 2108 for (i = 7; i >= 0; i--) { 2109 int supp = (map >> (2 * i)) & 3; 2110 2111 if (supp == 3) 2112 continue; 2113 2114 if (supp >= mcs_encoding) { 2115 max_vht_nss = i + 1; 2116 break; 2117 } 2118 } 2119 } 2120 2121 if (!(cap->supp_mcs.tx_mcs_map & 2122 cpu_to_le16(IEEE80211_VHT_EXT_NSS_BW_CAPABLE))) 2123 return max_vht_nss; 2124 2125 ext_nss_bw = le32_get_bits(cap->vht_cap_info, 2126 IEEE80211_VHT_CAP_EXT_NSS_BW_MASK); 2127 supp_width = le32_get_bits(cap->vht_cap_info, 2128 IEEE80211_VHT_CAP_SUPP_CHAN_WIDTH_MASK); 2129 2130 /* if not capable, treat ext_nss_bw as 0 */ 2131 if (!ext_nss_bw_capable) 2132 ext_nss_bw = 0; 2133 2134 /* This is invalid */ 2135 if (supp_width == 3) 2136 return 0; 2137 2138 /* This is an invalid combination so pretend nothing is supported */ 2139 if (supp_width == 2 && (ext_nss_bw == 1 || ext_nss_bw == 2)) 2140 return 0; 2141 2142 /* 2143 * Cover all the special cases according to IEEE 802.11-2016 2144 * Table 9-250. All other cases are either factor of 1 or not 2145 * valid/supported. 2146 */ 2147 switch (bw) { 2148 case IEEE80211_VHT_CHANWIDTH_USE_HT: 2149 case IEEE80211_VHT_CHANWIDTH_80MHZ: 2150 if ((supp_width == 1 || supp_width == 2) && 2151 ext_nss_bw == 3) 2152 return 2 * max_vht_nss; 2153 break; 2154 case IEEE80211_VHT_CHANWIDTH_160MHZ: 2155 if (supp_width == 0 && 2156 (ext_nss_bw == 1 || ext_nss_bw == 2)) 2157 return max_vht_nss / 2; 2158 if (supp_width == 0 && 2159 ext_nss_bw == 3) 2160 return (3 * max_vht_nss) / 4; 2161 if (supp_width == 1 && 2162 ext_nss_bw == 3) 2163 return 2 * max_vht_nss; 2164 break; 2165 case IEEE80211_VHT_CHANWIDTH_80P80MHZ: 2166 if (supp_width == 0 && ext_nss_bw == 1) 2167 return 0; /* not possible */ 2168 if (supp_width == 0 && 2169 ext_nss_bw == 2) 2170 return max_vht_nss / 2; 2171 if (supp_width == 0 && 2172 ext_nss_bw == 3) 2173 return (3 * max_vht_nss) / 4; 2174 if (supp_width == 1 && 2175 ext_nss_bw == 0) 2176 return 0; /* not possible */ 2177 if (supp_width == 1 && 2178 ext_nss_bw == 1) 2179 return max_vht_nss / 2; 2180 if (supp_width == 1 && 2181 ext_nss_bw == 2) 2182 return (3 * max_vht_nss) / 4; 2183 break; 2184 } 2185 2186 /* not covered or invalid combination received */ 2187 return max_vht_nss; 2188 } 2189 EXPORT_SYMBOL(ieee80211_get_vht_max_nss); 2190 2191 bool cfg80211_iftype_allowed(struct wiphy *wiphy, enum nl80211_iftype iftype, 2192 bool is_4addr, u8 check_swif) 2193 2194 { 2195 bool is_vlan = iftype == NL80211_IFTYPE_AP_VLAN; 2196 2197 switch (check_swif) { 2198 case 0: 2199 if (is_vlan && is_4addr) 2200 return wiphy->flags & WIPHY_FLAG_4ADDR_AP; 2201 return wiphy->interface_modes & BIT(iftype); 2202 case 1: 2203 if (!(wiphy->software_iftypes & BIT(iftype)) && is_vlan) 2204 return wiphy->flags & WIPHY_FLAG_4ADDR_AP; 2205 return wiphy->software_iftypes & BIT(iftype); 2206 default: 2207 break; 2208 } 2209 2210 return false; 2211 } 2212 EXPORT_SYMBOL(cfg80211_iftype_allowed); 2213