1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Wireless utility functions 4 * 5 * Copyright 2007-2009 Johannes Berg <johannes@sipsolutions.net> 6 * Copyright 2013-2014 Intel Mobile Communications GmbH 7 * Copyright 2017 Intel Deutschland GmbH 8 * Copyright (C) 2018-2023 Intel Corporation 9 */ 10 #include <linux/export.h> 11 #include <linux/bitops.h> 12 #include <linux/etherdevice.h> 13 #include <linux/slab.h> 14 #include <linux/ieee80211.h> 15 #include <net/cfg80211.h> 16 #include <net/ip.h> 17 #include <net/dsfield.h> 18 #include <linux/if_vlan.h> 19 #include <linux/mpls.h> 20 #include <linux/gcd.h> 21 #include <linux/bitfield.h> 22 #include <linux/nospec.h> 23 #include "core.h" 24 #include "rdev-ops.h" 25 26 27 const struct ieee80211_rate * 28 ieee80211_get_response_rate(struct ieee80211_supported_band *sband, 29 u32 basic_rates, int bitrate) 30 { 31 struct ieee80211_rate *result = &sband->bitrates[0]; 32 int i; 33 34 for (i = 0; i < sband->n_bitrates; i++) { 35 if (!(basic_rates & BIT(i))) 36 continue; 37 if (sband->bitrates[i].bitrate > bitrate) 38 continue; 39 result = &sband->bitrates[i]; 40 } 41 42 return result; 43 } 44 EXPORT_SYMBOL(ieee80211_get_response_rate); 45 46 u32 ieee80211_mandatory_rates(struct ieee80211_supported_band *sband) 47 { 48 struct ieee80211_rate *bitrates; 49 u32 mandatory_rates = 0; 50 enum ieee80211_rate_flags mandatory_flag; 51 int i; 52 53 if (WARN_ON(!sband)) 54 return 1; 55 56 if (sband->band == NL80211_BAND_2GHZ) 57 mandatory_flag = IEEE80211_RATE_MANDATORY_B; 58 else 59 mandatory_flag = IEEE80211_RATE_MANDATORY_A; 60 61 bitrates = sband->bitrates; 62 for (i = 0; i < sband->n_bitrates; i++) 63 if (bitrates[i].flags & mandatory_flag) 64 mandatory_rates |= BIT(i); 65 return mandatory_rates; 66 } 67 EXPORT_SYMBOL(ieee80211_mandatory_rates); 68 69 u32 ieee80211_channel_to_freq_khz(int chan, enum nl80211_band band) 70 { 71 /* see 802.11 17.3.8.3.2 and Annex J 72 * there are overlapping channel numbers in 5GHz and 2GHz bands */ 73 if (chan <= 0) 74 return 0; /* not supported */ 75 switch (band) { 76 case NL80211_BAND_2GHZ: 77 case NL80211_BAND_LC: 78 if (chan == 14) 79 return MHZ_TO_KHZ(2484); 80 else if (chan < 14) 81 return MHZ_TO_KHZ(2407 + chan * 5); 82 break; 83 case NL80211_BAND_5GHZ: 84 if (chan >= 182 && chan <= 196) 85 return MHZ_TO_KHZ(4000 + chan * 5); 86 else 87 return MHZ_TO_KHZ(5000 + chan * 5); 88 break; 89 case NL80211_BAND_6GHZ: 90 /* see 802.11ax D6.1 27.3.23.2 */ 91 if (chan == 2) 92 return MHZ_TO_KHZ(5935); 93 if (chan <= 233) 94 return MHZ_TO_KHZ(5950 + chan * 5); 95 break; 96 case NL80211_BAND_60GHZ: 97 if (chan < 7) 98 return MHZ_TO_KHZ(56160 + chan * 2160); 99 break; 100 case NL80211_BAND_S1GHZ: 101 return 902000 + chan * 500; 102 default: 103 ; 104 } 105 return 0; /* not supported */ 106 } 107 EXPORT_SYMBOL(ieee80211_channel_to_freq_khz); 108 109 enum nl80211_chan_width 110 ieee80211_s1g_channel_width(const struct ieee80211_channel *chan) 111 { 112 if (WARN_ON(!chan || chan->band != NL80211_BAND_S1GHZ)) 113 return NL80211_CHAN_WIDTH_20_NOHT; 114 115 /*S1G defines a single allowed channel width per channel. 116 * Extract that width here. 117 */ 118 if (chan->flags & IEEE80211_CHAN_1MHZ) 119 return NL80211_CHAN_WIDTH_1; 120 else if (chan->flags & IEEE80211_CHAN_2MHZ) 121 return NL80211_CHAN_WIDTH_2; 122 else if (chan->flags & IEEE80211_CHAN_4MHZ) 123 return NL80211_CHAN_WIDTH_4; 124 else if (chan->flags & IEEE80211_CHAN_8MHZ) 125 return NL80211_CHAN_WIDTH_8; 126 else if (chan->flags & IEEE80211_CHAN_16MHZ) 127 return NL80211_CHAN_WIDTH_16; 128 129 pr_err("unknown channel width for channel at %dKHz?\n", 130 ieee80211_channel_to_khz(chan)); 131 132 return NL80211_CHAN_WIDTH_1; 133 } 134 EXPORT_SYMBOL(ieee80211_s1g_channel_width); 135 136 int ieee80211_freq_khz_to_channel(u32 freq) 137 { 138 /* TODO: just handle MHz for now */ 139 freq = KHZ_TO_MHZ(freq); 140 141 /* see 802.11 17.3.8.3.2 and Annex J */ 142 if (freq == 2484) 143 return 14; 144 else if (freq < 2484) 145 return (freq - 2407) / 5; 146 else if (freq >= 4910 && freq <= 4980) 147 return (freq - 4000) / 5; 148 else if (freq < 5925) 149 return (freq - 5000) / 5; 150 else if (freq == 5935) 151 return 2; 152 else if (freq <= 45000) /* DMG band lower limit */ 153 /* see 802.11ax D6.1 27.3.22.2 */ 154 return (freq - 5950) / 5; 155 else if (freq >= 58320 && freq <= 70200) 156 return (freq - 56160) / 2160; 157 else 158 return 0; 159 } 160 EXPORT_SYMBOL(ieee80211_freq_khz_to_channel); 161 162 struct ieee80211_channel *ieee80211_get_channel_khz(struct wiphy *wiphy, 163 u32 freq) 164 { 165 enum nl80211_band band; 166 struct ieee80211_supported_band *sband; 167 int i; 168 169 for (band = 0; band < NUM_NL80211_BANDS; band++) { 170 sband = wiphy->bands[band]; 171 172 if (!sband) 173 continue; 174 175 for (i = 0; i < sband->n_channels; i++) { 176 struct ieee80211_channel *chan = &sband->channels[i]; 177 178 if (ieee80211_channel_to_khz(chan) == freq) 179 return chan; 180 } 181 } 182 183 return NULL; 184 } 185 EXPORT_SYMBOL(ieee80211_get_channel_khz); 186 187 static void set_mandatory_flags_band(struct ieee80211_supported_band *sband) 188 { 189 int i, want; 190 191 switch (sband->band) { 192 case NL80211_BAND_5GHZ: 193 case NL80211_BAND_6GHZ: 194 want = 3; 195 for (i = 0; i < sband->n_bitrates; i++) { 196 if (sband->bitrates[i].bitrate == 60 || 197 sband->bitrates[i].bitrate == 120 || 198 sband->bitrates[i].bitrate == 240) { 199 sband->bitrates[i].flags |= 200 IEEE80211_RATE_MANDATORY_A; 201 want--; 202 } 203 } 204 WARN_ON(want); 205 break; 206 case NL80211_BAND_2GHZ: 207 case NL80211_BAND_LC: 208 want = 7; 209 for (i = 0; i < sband->n_bitrates; i++) { 210 switch (sband->bitrates[i].bitrate) { 211 case 10: 212 case 20: 213 case 55: 214 case 110: 215 sband->bitrates[i].flags |= 216 IEEE80211_RATE_MANDATORY_B | 217 IEEE80211_RATE_MANDATORY_G; 218 want--; 219 break; 220 case 60: 221 case 120: 222 case 240: 223 sband->bitrates[i].flags |= 224 IEEE80211_RATE_MANDATORY_G; 225 want--; 226 fallthrough; 227 default: 228 sband->bitrates[i].flags |= 229 IEEE80211_RATE_ERP_G; 230 break; 231 } 232 } 233 WARN_ON(want != 0 && want != 3); 234 break; 235 case NL80211_BAND_60GHZ: 236 /* check for mandatory HT MCS 1..4 */ 237 WARN_ON(!sband->ht_cap.ht_supported); 238 WARN_ON((sband->ht_cap.mcs.rx_mask[0] & 0x1e) != 0x1e); 239 break; 240 case NL80211_BAND_S1GHZ: 241 /* Figure 9-589bd: 3 means unsupported, so != 3 means at least 242 * mandatory is ok. 243 */ 244 WARN_ON((sband->s1g_cap.nss_mcs[0] & 0x3) == 0x3); 245 break; 246 case NUM_NL80211_BANDS: 247 default: 248 WARN_ON(1); 249 break; 250 } 251 } 252 253 void ieee80211_set_bitrate_flags(struct wiphy *wiphy) 254 { 255 enum nl80211_band band; 256 257 for (band = 0; band < NUM_NL80211_BANDS; band++) 258 if (wiphy->bands[band]) 259 set_mandatory_flags_band(wiphy->bands[band]); 260 } 261 262 bool cfg80211_supported_cipher_suite(struct wiphy *wiphy, u32 cipher) 263 { 264 int i; 265 for (i = 0; i < wiphy->n_cipher_suites; i++) 266 if (cipher == wiphy->cipher_suites[i]) 267 return true; 268 return false; 269 } 270 271 static bool 272 cfg80211_igtk_cipher_supported(struct cfg80211_registered_device *rdev) 273 { 274 struct wiphy *wiphy = &rdev->wiphy; 275 int i; 276 277 for (i = 0; i < wiphy->n_cipher_suites; i++) { 278 switch (wiphy->cipher_suites[i]) { 279 case WLAN_CIPHER_SUITE_AES_CMAC: 280 case WLAN_CIPHER_SUITE_BIP_CMAC_256: 281 case WLAN_CIPHER_SUITE_BIP_GMAC_128: 282 case WLAN_CIPHER_SUITE_BIP_GMAC_256: 283 return true; 284 } 285 } 286 287 return false; 288 } 289 290 bool cfg80211_valid_key_idx(struct cfg80211_registered_device *rdev, 291 int key_idx, bool pairwise) 292 { 293 int max_key_idx; 294 295 if (pairwise) 296 max_key_idx = 3; 297 else if (wiphy_ext_feature_isset(&rdev->wiphy, 298 NL80211_EXT_FEATURE_BEACON_PROTECTION) || 299 wiphy_ext_feature_isset(&rdev->wiphy, 300 NL80211_EXT_FEATURE_BEACON_PROTECTION_CLIENT)) 301 max_key_idx = 7; 302 else if (cfg80211_igtk_cipher_supported(rdev)) 303 max_key_idx = 5; 304 else 305 max_key_idx = 3; 306 307 if (key_idx < 0 || key_idx > max_key_idx) 308 return false; 309 310 return true; 311 } 312 313 int cfg80211_validate_key_settings(struct cfg80211_registered_device *rdev, 314 struct key_params *params, int key_idx, 315 bool pairwise, const u8 *mac_addr) 316 { 317 if (!cfg80211_valid_key_idx(rdev, key_idx, pairwise)) 318 return -EINVAL; 319 320 if (!pairwise && mac_addr && !(rdev->wiphy.flags & WIPHY_FLAG_IBSS_RSN)) 321 return -EINVAL; 322 323 if (pairwise && !mac_addr) 324 return -EINVAL; 325 326 switch (params->cipher) { 327 case WLAN_CIPHER_SUITE_TKIP: 328 /* Extended Key ID can only be used with CCMP/GCMP ciphers */ 329 if ((pairwise && key_idx) || 330 params->mode != NL80211_KEY_RX_TX) 331 return -EINVAL; 332 break; 333 case WLAN_CIPHER_SUITE_CCMP: 334 case WLAN_CIPHER_SUITE_CCMP_256: 335 case WLAN_CIPHER_SUITE_GCMP: 336 case WLAN_CIPHER_SUITE_GCMP_256: 337 /* IEEE802.11-2016 allows only 0 and - when supporting 338 * Extended Key ID - 1 as index for pairwise keys. 339 * @NL80211_KEY_NO_TX is only allowed for pairwise keys when 340 * the driver supports Extended Key ID. 341 * @NL80211_KEY_SET_TX can't be set when installing and 342 * validating a key. 343 */ 344 if ((params->mode == NL80211_KEY_NO_TX && !pairwise) || 345 params->mode == NL80211_KEY_SET_TX) 346 return -EINVAL; 347 if (wiphy_ext_feature_isset(&rdev->wiphy, 348 NL80211_EXT_FEATURE_EXT_KEY_ID)) { 349 if (pairwise && (key_idx < 0 || key_idx > 1)) 350 return -EINVAL; 351 } else if (pairwise && key_idx) { 352 return -EINVAL; 353 } 354 break; 355 case WLAN_CIPHER_SUITE_AES_CMAC: 356 case WLAN_CIPHER_SUITE_BIP_CMAC_256: 357 case WLAN_CIPHER_SUITE_BIP_GMAC_128: 358 case WLAN_CIPHER_SUITE_BIP_GMAC_256: 359 /* Disallow BIP (group-only) cipher as pairwise cipher */ 360 if (pairwise) 361 return -EINVAL; 362 if (key_idx < 4) 363 return -EINVAL; 364 break; 365 case WLAN_CIPHER_SUITE_WEP40: 366 case WLAN_CIPHER_SUITE_WEP104: 367 if (key_idx > 3) 368 return -EINVAL; 369 break; 370 default: 371 break; 372 } 373 374 switch (params->cipher) { 375 case WLAN_CIPHER_SUITE_WEP40: 376 if (params->key_len != WLAN_KEY_LEN_WEP40) 377 return -EINVAL; 378 break; 379 case WLAN_CIPHER_SUITE_TKIP: 380 if (params->key_len != WLAN_KEY_LEN_TKIP) 381 return -EINVAL; 382 break; 383 case WLAN_CIPHER_SUITE_CCMP: 384 if (params->key_len != WLAN_KEY_LEN_CCMP) 385 return -EINVAL; 386 break; 387 case WLAN_CIPHER_SUITE_CCMP_256: 388 if (params->key_len != WLAN_KEY_LEN_CCMP_256) 389 return -EINVAL; 390 break; 391 case WLAN_CIPHER_SUITE_GCMP: 392 if (params->key_len != WLAN_KEY_LEN_GCMP) 393 return -EINVAL; 394 break; 395 case WLAN_CIPHER_SUITE_GCMP_256: 396 if (params->key_len != WLAN_KEY_LEN_GCMP_256) 397 return -EINVAL; 398 break; 399 case WLAN_CIPHER_SUITE_WEP104: 400 if (params->key_len != WLAN_KEY_LEN_WEP104) 401 return -EINVAL; 402 break; 403 case WLAN_CIPHER_SUITE_AES_CMAC: 404 if (params->key_len != WLAN_KEY_LEN_AES_CMAC) 405 return -EINVAL; 406 break; 407 case WLAN_CIPHER_SUITE_BIP_CMAC_256: 408 if (params->key_len != WLAN_KEY_LEN_BIP_CMAC_256) 409 return -EINVAL; 410 break; 411 case WLAN_CIPHER_SUITE_BIP_GMAC_128: 412 if (params->key_len != WLAN_KEY_LEN_BIP_GMAC_128) 413 return -EINVAL; 414 break; 415 case WLAN_CIPHER_SUITE_BIP_GMAC_256: 416 if (params->key_len != WLAN_KEY_LEN_BIP_GMAC_256) 417 return -EINVAL; 418 break; 419 default: 420 /* 421 * We don't know anything about this algorithm, 422 * allow using it -- but the driver must check 423 * all parameters! We still check below whether 424 * or not the driver supports this algorithm, 425 * of course. 426 */ 427 break; 428 } 429 430 if (params->seq) { 431 switch (params->cipher) { 432 case WLAN_CIPHER_SUITE_WEP40: 433 case WLAN_CIPHER_SUITE_WEP104: 434 /* These ciphers do not use key sequence */ 435 return -EINVAL; 436 case WLAN_CIPHER_SUITE_TKIP: 437 case WLAN_CIPHER_SUITE_CCMP: 438 case WLAN_CIPHER_SUITE_CCMP_256: 439 case WLAN_CIPHER_SUITE_GCMP: 440 case WLAN_CIPHER_SUITE_GCMP_256: 441 case WLAN_CIPHER_SUITE_AES_CMAC: 442 case WLAN_CIPHER_SUITE_BIP_CMAC_256: 443 case WLAN_CIPHER_SUITE_BIP_GMAC_128: 444 case WLAN_CIPHER_SUITE_BIP_GMAC_256: 445 if (params->seq_len != 6) 446 return -EINVAL; 447 break; 448 } 449 } 450 451 if (!cfg80211_supported_cipher_suite(&rdev->wiphy, params->cipher)) 452 return -EINVAL; 453 454 return 0; 455 } 456 457 unsigned int __attribute_const__ ieee80211_hdrlen(__le16 fc) 458 { 459 unsigned int hdrlen = 24; 460 461 if (ieee80211_is_ext(fc)) { 462 hdrlen = 4; 463 goto out; 464 } 465 466 if (ieee80211_is_data(fc)) { 467 if (ieee80211_has_a4(fc)) 468 hdrlen = 30; 469 if (ieee80211_is_data_qos(fc)) { 470 hdrlen += IEEE80211_QOS_CTL_LEN; 471 if (ieee80211_has_order(fc)) 472 hdrlen += IEEE80211_HT_CTL_LEN; 473 } 474 goto out; 475 } 476 477 if (ieee80211_is_mgmt(fc)) { 478 if (ieee80211_has_order(fc)) 479 hdrlen += IEEE80211_HT_CTL_LEN; 480 goto out; 481 } 482 483 if (ieee80211_is_ctl(fc)) { 484 /* 485 * ACK and CTS are 10 bytes, all others 16. To see how 486 * to get this condition consider 487 * subtype mask: 0b0000000011110000 (0x00F0) 488 * ACK subtype: 0b0000000011010000 (0x00D0) 489 * CTS subtype: 0b0000000011000000 (0x00C0) 490 * bits that matter: ^^^ (0x00E0) 491 * value of those: 0b0000000011000000 (0x00C0) 492 */ 493 if ((fc & cpu_to_le16(0x00E0)) == cpu_to_le16(0x00C0)) 494 hdrlen = 10; 495 else 496 hdrlen = 16; 497 } 498 out: 499 return hdrlen; 500 } 501 EXPORT_SYMBOL(ieee80211_hdrlen); 502 503 unsigned int ieee80211_get_hdrlen_from_skb(const struct sk_buff *skb) 504 { 505 const struct ieee80211_hdr *hdr = 506 (const struct ieee80211_hdr *)skb->data; 507 unsigned int hdrlen; 508 509 if (unlikely(skb->len < 10)) 510 return 0; 511 hdrlen = ieee80211_hdrlen(hdr->frame_control); 512 if (unlikely(hdrlen > skb->len)) 513 return 0; 514 return hdrlen; 515 } 516 EXPORT_SYMBOL(ieee80211_get_hdrlen_from_skb); 517 518 static unsigned int __ieee80211_get_mesh_hdrlen(u8 flags) 519 { 520 int ae = flags & MESH_FLAGS_AE; 521 /* 802.11-2012, 8.2.4.7.3 */ 522 switch (ae) { 523 default: 524 case 0: 525 return 6; 526 case MESH_FLAGS_AE_A4: 527 return 12; 528 case MESH_FLAGS_AE_A5_A6: 529 return 18; 530 } 531 } 532 533 unsigned int ieee80211_get_mesh_hdrlen(struct ieee80211s_hdr *meshhdr) 534 { 535 return __ieee80211_get_mesh_hdrlen(meshhdr->flags); 536 } 537 EXPORT_SYMBOL(ieee80211_get_mesh_hdrlen); 538 539 bool ieee80211_get_8023_tunnel_proto(const void *hdr, __be16 *proto) 540 { 541 const __be16 *hdr_proto = hdr + ETH_ALEN; 542 543 if (!(ether_addr_equal(hdr, rfc1042_header) && 544 *hdr_proto != htons(ETH_P_AARP) && 545 *hdr_proto != htons(ETH_P_IPX)) && 546 !ether_addr_equal(hdr, bridge_tunnel_header)) 547 return false; 548 549 *proto = *hdr_proto; 550 551 return true; 552 } 553 EXPORT_SYMBOL(ieee80211_get_8023_tunnel_proto); 554 555 int ieee80211_strip_8023_mesh_hdr(struct sk_buff *skb) 556 { 557 const void *mesh_addr; 558 struct { 559 struct ethhdr eth; 560 u8 flags; 561 } payload; 562 int hdrlen; 563 int ret; 564 565 ret = skb_copy_bits(skb, 0, &payload, sizeof(payload)); 566 if (ret) 567 return ret; 568 569 hdrlen = sizeof(payload.eth) + __ieee80211_get_mesh_hdrlen(payload.flags); 570 571 if (likely(pskb_may_pull(skb, hdrlen + 8) && 572 ieee80211_get_8023_tunnel_proto(skb->data + hdrlen, 573 &payload.eth.h_proto))) 574 hdrlen += ETH_ALEN + 2; 575 else if (!pskb_may_pull(skb, hdrlen)) 576 return -EINVAL; 577 else 578 payload.eth.h_proto = htons(skb->len - hdrlen); 579 580 mesh_addr = skb->data + sizeof(payload.eth) + ETH_ALEN; 581 switch (payload.flags & MESH_FLAGS_AE) { 582 case MESH_FLAGS_AE_A4: 583 memcpy(&payload.eth.h_source, mesh_addr, ETH_ALEN); 584 break; 585 case MESH_FLAGS_AE_A5_A6: 586 memcpy(&payload.eth, mesh_addr, 2 * ETH_ALEN); 587 break; 588 default: 589 break; 590 } 591 592 pskb_pull(skb, hdrlen - sizeof(payload.eth)); 593 memcpy(skb->data, &payload.eth, sizeof(payload.eth)); 594 595 return 0; 596 } 597 EXPORT_SYMBOL(ieee80211_strip_8023_mesh_hdr); 598 599 int ieee80211_data_to_8023_exthdr(struct sk_buff *skb, struct ethhdr *ehdr, 600 const u8 *addr, enum nl80211_iftype iftype, 601 u8 data_offset, bool is_amsdu) 602 { 603 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data; 604 struct { 605 u8 hdr[ETH_ALEN] __aligned(2); 606 __be16 proto; 607 } payload; 608 struct ethhdr tmp; 609 u16 hdrlen; 610 611 if (unlikely(!ieee80211_is_data_present(hdr->frame_control))) 612 return -1; 613 614 hdrlen = ieee80211_hdrlen(hdr->frame_control) + data_offset; 615 if (skb->len < hdrlen) 616 return -1; 617 618 /* convert IEEE 802.11 header + possible LLC headers into Ethernet 619 * header 620 * IEEE 802.11 address fields: 621 * ToDS FromDS Addr1 Addr2 Addr3 Addr4 622 * 0 0 DA SA BSSID n/a 623 * 0 1 DA BSSID SA n/a 624 * 1 0 BSSID SA DA n/a 625 * 1 1 RA TA DA SA 626 */ 627 memcpy(tmp.h_dest, ieee80211_get_DA(hdr), ETH_ALEN); 628 memcpy(tmp.h_source, ieee80211_get_SA(hdr), ETH_ALEN); 629 630 switch (hdr->frame_control & 631 cpu_to_le16(IEEE80211_FCTL_TODS | IEEE80211_FCTL_FROMDS)) { 632 case cpu_to_le16(IEEE80211_FCTL_TODS): 633 if (unlikely(iftype != NL80211_IFTYPE_AP && 634 iftype != NL80211_IFTYPE_AP_VLAN && 635 iftype != NL80211_IFTYPE_P2P_GO)) 636 return -1; 637 break; 638 case cpu_to_le16(IEEE80211_FCTL_TODS | IEEE80211_FCTL_FROMDS): 639 if (unlikely(iftype != NL80211_IFTYPE_MESH_POINT && 640 iftype != NL80211_IFTYPE_AP_VLAN && 641 iftype != NL80211_IFTYPE_STATION)) 642 return -1; 643 break; 644 case cpu_to_le16(IEEE80211_FCTL_FROMDS): 645 if ((iftype != NL80211_IFTYPE_STATION && 646 iftype != NL80211_IFTYPE_P2P_CLIENT && 647 iftype != NL80211_IFTYPE_MESH_POINT) || 648 (is_multicast_ether_addr(tmp.h_dest) && 649 ether_addr_equal(tmp.h_source, addr))) 650 return -1; 651 break; 652 case cpu_to_le16(0): 653 if (iftype != NL80211_IFTYPE_ADHOC && 654 iftype != NL80211_IFTYPE_STATION && 655 iftype != NL80211_IFTYPE_OCB) 656 return -1; 657 break; 658 } 659 660 if (likely(!is_amsdu && iftype != NL80211_IFTYPE_MESH_POINT && 661 skb_copy_bits(skb, hdrlen, &payload, sizeof(payload)) == 0 && 662 ieee80211_get_8023_tunnel_proto(&payload, &tmp.h_proto))) { 663 /* remove RFC1042 or Bridge-Tunnel encapsulation */ 664 hdrlen += ETH_ALEN + 2; 665 skb_postpull_rcsum(skb, &payload, ETH_ALEN + 2); 666 } else { 667 tmp.h_proto = htons(skb->len - hdrlen); 668 } 669 670 pskb_pull(skb, hdrlen); 671 672 if (!ehdr) 673 ehdr = skb_push(skb, sizeof(struct ethhdr)); 674 memcpy(ehdr, &tmp, sizeof(tmp)); 675 676 return 0; 677 } 678 EXPORT_SYMBOL(ieee80211_data_to_8023_exthdr); 679 680 static void 681 __frame_add_frag(struct sk_buff *skb, struct page *page, 682 void *ptr, int len, int size) 683 { 684 struct skb_shared_info *sh = skb_shinfo(skb); 685 int page_offset; 686 687 get_page(page); 688 page_offset = ptr - page_address(page); 689 skb_add_rx_frag(skb, sh->nr_frags, page, page_offset, len, size); 690 } 691 692 static void 693 __ieee80211_amsdu_copy_frag(struct sk_buff *skb, struct sk_buff *frame, 694 int offset, int len) 695 { 696 struct skb_shared_info *sh = skb_shinfo(skb); 697 const skb_frag_t *frag = &sh->frags[0]; 698 struct page *frag_page; 699 void *frag_ptr; 700 int frag_len, frag_size; 701 int head_size = skb->len - skb->data_len; 702 int cur_len; 703 704 frag_page = virt_to_head_page(skb->head); 705 frag_ptr = skb->data; 706 frag_size = head_size; 707 708 while (offset >= frag_size) { 709 offset -= frag_size; 710 frag_page = skb_frag_page(frag); 711 frag_ptr = skb_frag_address(frag); 712 frag_size = skb_frag_size(frag); 713 frag++; 714 } 715 716 frag_ptr += offset; 717 frag_len = frag_size - offset; 718 719 cur_len = min(len, frag_len); 720 721 __frame_add_frag(frame, frag_page, frag_ptr, cur_len, frag_size); 722 len -= cur_len; 723 724 while (len > 0) { 725 frag_len = skb_frag_size(frag); 726 cur_len = min(len, frag_len); 727 __frame_add_frag(frame, skb_frag_page(frag), 728 skb_frag_address(frag), cur_len, frag_len); 729 len -= cur_len; 730 frag++; 731 } 732 } 733 734 static struct sk_buff * 735 __ieee80211_amsdu_copy(struct sk_buff *skb, unsigned int hlen, 736 int offset, int len, bool reuse_frag, 737 int min_len) 738 { 739 struct sk_buff *frame; 740 int cur_len = len; 741 742 if (skb->len - offset < len) 743 return NULL; 744 745 /* 746 * When reusing framents, copy some data to the head to simplify 747 * ethernet header handling and speed up protocol header processing 748 * in the stack later. 749 */ 750 if (reuse_frag) 751 cur_len = min_t(int, len, min_len); 752 753 /* 754 * Allocate and reserve two bytes more for payload 755 * alignment since sizeof(struct ethhdr) is 14. 756 */ 757 frame = dev_alloc_skb(hlen + sizeof(struct ethhdr) + 2 + cur_len); 758 if (!frame) 759 return NULL; 760 761 frame->priority = skb->priority; 762 skb_reserve(frame, hlen + sizeof(struct ethhdr) + 2); 763 skb_copy_bits(skb, offset, skb_put(frame, cur_len), cur_len); 764 765 len -= cur_len; 766 if (!len) 767 return frame; 768 769 offset += cur_len; 770 __ieee80211_amsdu_copy_frag(skb, frame, offset, len); 771 772 return frame; 773 } 774 775 static u16 776 ieee80211_amsdu_subframe_length(void *field, u8 mesh_flags, u8 hdr_type) 777 { 778 __le16 *field_le = field; 779 __be16 *field_be = field; 780 u16 len; 781 782 if (hdr_type >= 2) 783 len = le16_to_cpu(*field_le); 784 else 785 len = be16_to_cpu(*field_be); 786 if (hdr_type) 787 len += __ieee80211_get_mesh_hdrlen(mesh_flags); 788 789 return len; 790 } 791 792 bool ieee80211_is_valid_amsdu(struct sk_buff *skb, u8 mesh_hdr) 793 { 794 int offset = 0, remaining, subframe_len, padding; 795 796 for (offset = 0; offset < skb->len; offset += subframe_len + padding) { 797 struct { 798 __be16 len; 799 u8 mesh_flags; 800 } hdr; 801 u16 len; 802 803 if (skb_copy_bits(skb, offset + 2 * ETH_ALEN, &hdr, sizeof(hdr)) < 0) 804 return false; 805 806 len = ieee80211_amsdu_subframe_length(&hdr.len, hdr.mesh_flags, 807 mesh_hdr); 808 subframe_len = sizeof(struct ethhdr) + len; 809 padding = (4 - subframe_len) & 0x3; 810 remaining = skb->len - offset; 811 812 if (subframe_len > remaining) 813 return false; 814 } 815 816 return true; 817 } 818 EXPORT_SYMBOL(ieee80211_is_valid_amsdu); 819 820 void ieee80211_amsdu_to_8023s(struct sk_buff *skb, struct sk_buff_head *list, 821 const u8 *addr, enum nl80211_iftype iftype, 822 const unsigned int extra_headroom, 823 const u8 *check_da, const u8 *check_sa, 824 u8 mesh_control) 825 { 826 unsigned int hlen = ALIGN(extra_headroom, 4); 827 struct sk_buff *frame = NULL; 828 int offset = 0, remaining; 829 struct { 830 struct ethhdr eth; 831 uint8_t flags; 832 } hdr; 833 bool reuse_frag = skb->head_frag && !skb_has_frag_list(skb); 834 bool reuse_skb = false; 835 bool last = false; 836 int copy_len = sizeof(hdr.eth); 837 838 if (iftype == NL80211_IFTYPE_MESH_POINT) 839 copy_len = sizeof(hdr); 840 841 while (!last) { 842 unsigned int subframe_len; 843 int len, mesh_len = 0; 844 u8 padding; 845 846 skb_copy_bits(skb, offset, &hdr, copy_len); 847 if (iftype == NL80211_IFTYPE_MESH_POINT) 848 mesh_len = __ieee80211_get_mesh_hdrlen(hdr.flags); 849 len = ieee80211_amsdu_subframe_length(&hdr.eth.h_proto, hdr.flags, 850 mesh_control); 851 subframe_len = sizeof(struct ethhdr) + len; 852 padding = (4 - subframe_len) & 0x3; 853 854 /* the last MSDU has no padding */ 855 remaining = skb->len - offset; 856 if (subframe_len > remaining) 857 goto purge; 858 /* mitigate A-MSDU aggregation injection attacks */ 859 if (ether_addr_equal(hdr.eth.h_dest, rfc1042_header)) 860 goto purge; 861 862 offset += sizeof(struct ethhdr); 863 last = remaining <= subframe_len + padding; 864 865 /* FIXME: should we really accept multicast DA? */ 866 if ((check_da && !is_multicast_ether_addr(hdr.eth.h_dest) && 867 !ether_addr_equal(check_da, hdr.eth.h_dest)) || 868 (check_sa && !ether_addr_equal(check_sa, hdr.eth.h_source))) { 869 offset += len + padding; 870 continue; 871 } 872 873 /* reuse skb for the last subframe */ 874 if (!skb_is_nonlinear(skb) && !reuse_frag && last) { 875 skb_pull(skb, offset); 876 frame = skb; 877 reuse_skb = true; 878 } else { 879 frame = __ieee80211_amsdu_copy(skb, hlen, offset, len, 880 reuse_frag, 32 + mesh_len); 881 if (!frame) 882 goto purge; 883 884 offset += len + padding; 885 } 886 887 skb_reset_network_header(frame); 888 frame->dev = skb->dev; 889 frame->priority = skb->priority; 890 891 if (likely(iftype != NL80211_IFTYPE_MESH_POINT && 892 ieee80211_get_8023_tunnel_proto(frame->data, &hdr.eth.h_proto))) 893 skb_pull(frame, ETH_ALEN + 2); 894 895 memcpy(skb_push(frame, sizeof(hdr.eth)), &hdr.eth, sizeof(hdr.eth)); 896 __skb_queue_tail(list, frame); 897 } 898 899 if (!reuse_skb) 900 dev_kfree_skb(skb); 901 902 return; 903 904 purge: 905 __skb_queue_purge(list); 906 dev_kfree_skb(skb); 907 } 908 EXPORT_SYMBOL(ieee80211_amsdu_to_8023s); 909 910 /* Given a data frame determine the 802.1p/1d tag to use. */ 911 unsigned int cfg80211_classify8021d(struct sk_buff *skb, 912 struct cfg80211_qos_map *qos_map) 913 { 914 unsigned int dscp; 915 unsigned char vlan_priority; 916 unsigned int ret; 917 918 /* skb->priority values from 256->263 are magic values to 919 * directly indicate a specific 802.1d priority. This is used 920 * to allow 802.1d priority to be passed directly in from VLAN 921 * tags, etc. 922 */ 923 if (skb->priority >= 256 && skb->priority <= 263) { 924 ret = skb->priority - 256; 925 goto out; 926 } 927 928 if (skb_vlan_tag_present(skb)) { 929 vlan_priority = (skb_vlan_tag_get(skb) & VLAN_PRIO_MASK) 930 >> VLAN_PRIO_SHIFT; 931 if (vlan_priority > 0) { 932 ret = vlan_priority; 933 goto out; 934 } 935 } 936 937 switch (skb->protocol) { 938 case htons(ETH_P_IP): 939 dscp = ipv4_get_dsfield(ip_hdr(skb)) & 0xfc; 940 break; 941 case htons(ETH_P_IPV6): 942 dscp = ipv6_get_dsfield(ipv6_hdr(skb)) & 0xfc; 943 break; 944 case htons(ETH_P_MPLS_UC): 945 case htons(ETH_P_MPLS_MC): { 946 struct mpls_label mpls_tmp, *mpls; 947 948 mpls = skb_header_pointer(skb, sizeof(struct ethhdr), 949 sizeof(*mpls), &mpls_tmp); 950 if (!mpls) 951 return 0; 952 953 ret = (ntohl(mpls->entry) & MPLS_LS_TC_MASK) 954 >> MPLS_LS_TC_SHIFT; 955 goto out; 956 } 957 case htons(ETH_P_80221): 958 /* 802.21 is always network control traffic */ 959 return 7; 960 default: 961 return 0; 962 } 963 964 if (qos_map) { 965 unsigned int i, tmp_dscp = dscp >> 2; 966 967 for (i = 0; i < qos_map->num_des; i++) { 968 if (tmp_dscp == qos_map->dscp_exception[i].dscp) { 969 ret = qos_map->dscp_exception[i].up; 970 goto out; 971 } 972 } 973 974 for (i = 0; i < 8; i++) { 975 if (tmp_dscp >= qos_map->up[i].low && 976 tmp_dscp <= qos_map->up[i].high) { 977 ret = i; 978 goto out; 979 } 980 } 981 } 982 983 /* The default mapping as defined Section 2.3 in RFC8325: The three 984 * Most Significant Bits (MSBs) of the DSCP are used as the 985 * corresponding L2 markings. 986 */ 987 ret = dscp >> 5; 988 989 /* Handle specific DSCP values for which the default mapping (as 990 * described above) doesn't adhere to the intended usage of the DSCP 991 * value. See section 4 in RFC8325. Specifically, for the following 992 * Diffserv Service Classes no update is needed: 993 * - Standard: DF 994 * - Low Priority Data: CS1 995 * - Multimedia Streaming: AF31, AF32, AF33 996 * - Multimedia Conferencing: AF41, AF42, AF43 997 * - Network Control Traffic: CS7 998 * - Real-Time Interactive: CS4 999 */ 1000 switch (dscp >> 2) { 1001 case 10: 1002 case 12: 1003 case 14: 1004 /* High throughput data: AF11, AF12, AF13 */ 1005 ret = 0; 1006 break; 1007 case 16: 1008 /* Operations, Administration, and Maintenance and Provisioning: 1009 * CS2 1010 */ 1011 ret = 0; 1012 break; 1013 case 18: 1014 case 20: 1015 case 22: 1016 /* Low latency data: AF21, AF22, AF23 */ 1017 ret = 3; 1018 break; 1019 case 24: 1020 /* Broadcasting video: CS3 */ 1021 ret = 4; 1022 break; 1023 case 40: 1024 /* Signaling: CS5 */ 1025 ret = 5; 1026 break; 1027 case 44: 1028 /* Voice Admit: VA */ 1029 ret = 6; 1030 break; 1031 case 46: 1032 /* Telephony traffic: EF */ 1033 ret = 6; 1034 break; 1035 case 48: 1036 /* Network Control Traffic: CS6 */ 1037 ret = 7; 1038 break; 1039 } 1040 out: 1041 return array_index_nospec(ret, IEEE80211_NUM_TIDS); 1042 } 1043 EXPORT_SYMBOL(cfg80211_classify8021d); 1044 1045 const struct element *ieee80211_bss_get_elem(struct cfg80211_bss *bss, u8 id) 1046 { 1047 const struct cfg80211_bss_ies *ies; 1048 1049 ies = rcu_dereference(bss->ies); 1050 if (!ies) 1051 return NULL; 1052 1053 return cfg80211_find_elem(id, ies->data, ies->len); 1054 } 1055 EXPORT_SYMBOL(ieee80211_bss_get_elem); 1056 1057 void cfg80211_upload_connect_keys(struct wireless_dev *wdev) 1058 { 1059 struct cfg80211_registered_device *rdev = wiphy_to_rdev(wdev->wiphy); 1060 struct net_device *dev = wdev->netdev; 1061 int i; 1062 1063 if (!wdev->connect_keys) 1064 return; 1065 1066 for (i = 0; i < 4; i++) { 1067 if (!wdev->connect_keys->params[i].cipher) 1068 continue; 1069 if (rdev_add_key(rdev, dev, -1, i, false, NULL, 1070 &wdev->connect_keys->params[i])) { 1071 netdev_err(dev, "failed to set key %d\n", i); 1072 continue; 1073 } 1074 if (wdev->connect_keys->def == i && 1075 rdev_set_default_key(rdev, dev, -1, i, true, true)) { 1076 netdev_err(dev, "failed to set defkey %d\n", i); 1077 continue; 1078 } 1079 } 1080 1081 kfree_sensitive(wdev->connect_keys); 1082 wdev->connect_keys = NULL; 1083 } 1084 1085 void cfg80211_process_wdev_events(struct wireless_dev *wdev) 1086 { 1087 struct cfg80211_event *ev; 1088 unsigned long flags; 1089 1090 spin_lock_irqsave(&wdev->event_lock, flags); 1091 while (!list_empty(&wdev->event_list)) { 1092 ev = list_first_entry(&wdev->event_list, 1093 struct cfg80211_event, list); 1094 list_del(&ev->list); 1095 spin_unlock_irqrestore(&wdev->event_lock, flags); 1096 1097 switch (ev->type) { 1098 case EVENT_CONNECT_RESULT: 1099 __cfg80211_connect_result( 1100 wdev->netdev, 1101 &ev->cr, 1102 ev->cr.status == WLAN_STATUS_SUCCESS); 1103 break; 1104 case EVENT_ROAMED: 1105 __cfg80211_roamed(wdev, &ev->rm); 1106 break; 1107 case EVENT_DISCONNECTED: 1108 __cfg80211_disconnected(wdev->netdev, 1109 ev->dc.ie, ev->dc.ie_len, 1110 ev->dc.reason, 1111 !ev->dc.locally_generated); 1112 break; 1113 case EVENT_IBSS_JOINED: 1114 __cfg80211_ibss_joined(wdev->netdev, ev->ij.bssid, 1115 ev->ij.channel); 1116 break; 1117 case EVENT_STOPPED: 1118 cfg80211_leave(wiphy_to_rdev(wdev->wiphy), wdev); 1119 break; 1120 case EVENT_PORT_AUTHORIZED: 1121 __cfg80211_port_authorized(wdev, ev->pa.peer_addr, 1122 ev->pa.td_bitmap, 1123 ev->pa.td_bitmap_len); 1124 break; 1125 } 1126 1127 kfree(ev); 1128 1129 spin_lock_irqsave(&wdev->event_lock, flags); 1130 } 1131 spin_unlock_irqrestore(&wdev->event_lock, flags); 1132 } 1133 1134 void cfg80211_process_rdev_events(struct cfg80211_registered_device *rdev) 1135 { 1136 struct wireless_dev *wdev; 1137 1138 lockdep_assert_held(&rdev->wiphy.mtx); 1139 1140 list_for_each_entry(wdev, &rdev->wiphy.wdev_list, list) 1141 cfg80211_process_wdev_events(wdev); 1142 } 1143 1144 int cfg80211_change_iface(struct cfg80211_registered_device *rdev, 1145 struct net_device *dev, enum nl80211_iftype ntype, 1146 struct vif_params *params) 1147 { 1148 int err; 1149 enum nl80211_iftype otype = dev->ieee80211_ptr->iftype; 1150 1151 lockdep_assert_held(&rdev->wiphy.mtx); 1152 1153 /* don't support changing VLANs, you just re-create them */ 1154 if (otype == NL80211_IFTYPE_AP_VLAN) 1155 return -EOPNOTSUPP; 1156 1157 /* cannot change into P2P device or NAN */ 1158 if (ntype == NL80211_IFTYPE_P2P_DEVICE || 1159 ntype == NL80211_IFTYPE_NAN) 1160 return -EOPNOTSUPP; 1161 1162 if (!rdev->ops->change_virtual_intf || 1163 !(rdev->wiphy.interface_modes & (1 << ntype))) 1164 return -EOPNOTSUPP; 1165 1166 if (ntype != otype) { 1167 /* if it's part of a bridge, reject changing type to station/ibss */ 1168 if (netif_is_bridge_port(dev) && 1169 (ntype == NL80211_IFTYPE_ADHOC || 1170 ntype == NL80211_IFTYPE_STATION || 1171 ntype == NL80211_IFTYPE_P2P_CLIENT)) 1172 return -EBUSY; 1173 1174 dev->ieee80211_ptr->use_4addr = false; 1175 rdev_set_qos_map(rdev, dev, NULL); 1176 1177 switch (otype) { 1178 case NL80211_IFTYPE_AP: 1179 case NL80211_IFTYPE_P2P_GO: 1180 cfg80211_stop_ap(rdev, dev, -1, true); 1181 break; 1182 case NL80211_IFTYPE_ADHOC: 1183 cfg80211_leave_ibss(rdev, dev, false); 1184 break; 1185 case NL80211_IFTYPE_STATION: 1186 case NL80211_IFTYPE_P2P_CLIENT: 1187 cfg80211_disconnect(rdev, dev, 1188 WLAN_REASON_DEAUTH_LEAVING, true); 1189 break; 1190 case NL80211_IFTYPE_MESH_POINT: 1191 /* mesh should be handled? */ 1192 break; 1193 case NL80211_IFTYPE_OCB: 1194 cfg80211_leave_ocb(rdev, dev); 1195 break; 1196 default: 1197 break; 1198 } 1199 1200 cfg80211_process_rdev_events(rdev); 1201 cfg80211_mlme_purge_registrations(dev->ieee80211_ptr); 1202 1203 memset(&dev->ieee80211_ptr->u, 0, 1204 sizeof(dev->ieee80211_ptr->u)); 1205 memset(&dev->ieee80211_ptr->links, 0, 1206 sizeof(dev->ieee80211_ptr->links)); 1207 } 1208 1209 err = rdev_change_virtual_intf(rdev, dev, ntype, params); 1210 1211 WARN_ON(!err && dev->ieee80211_ptr->iftype != ntype); 1212 1213 if (!err && params && params->use_4addr != -1) 1214 dev->ieee80211_ptr->use_4addr = params->use_4addr; 1215 1216 if (!err) { 1217 dev->priv_flags &= ~IFF_DONT_BRIDGE; 1218 switch (ntype) { 1219 case NL80211_IFTYPE_STATION: 1220 if (dev->ieee80211_ptr->use_4addr) 1221 break; 1222 fallthrough; 1223 case NL80211_IFTYPE_OCB: 1224 case NL80211_IFTYPE_P2P_CLIENT: 1225 case NL80211_IFTYPE_ADHOC: 1226 dev->priv_flags |= IFF_DONT_BRIDGE; 1227 break; 1228 case NL80211_IFTYPE_P2P_GO: 1229 case NL80211_IFTYPE_AP: 1230 case NL80211_IFTYPE_AP_VLAN: 1231 case NL80211_IFTYPE_MESH_POINT: 1232 /* bridging OK */ 1233 break; 1234 case NL80211_IFTYPE_MONITOR: 1235 /* monitor can't bridge anyway */ 1236 break; 1237 case NL80211_IFTYPE_UNSPECIFIED: 1238 case NUM_NL80211_IFTYPES: 1239 /* not happening */ 1240 break; 1241 case NL80211_IFTYPE_P2P_DEVICE: 1242 case NL80211_IFTYPE_WDS: 1243 case NL80211_IFTYPE_NAN: 1244 WARN_ON(1); 1245 break; 1246 } 1247 } 1248 1249 if (!err && ntype != otype && netif_running(dev)) { 1250 cfg80211_update_iface_num(rdev, ntype, 1); 1251 cfg80211_update_iface_num(rdev, otype, -1); 1252 } 1253 1254 return err; 1255 } 1256 1257 static u32 cfg80211_calculate_bitrate_ht(struct rate_info *rate) 1258 { 1259 int modulation, streams, bitrate; 1260 1261 /* the formula below does only work for MCS values smaller than 32 */ 1262 if (WARN_ON_ONCE(rate->mcs >= 32)) 1263 return 0; 1264 1265 modulation = rate->mcs & 7; 1266 streams = (rate->mcs >> 3) + 1; 1267 1268 bitrate = (rate->bw == RATE_INFO_BW_40) ? 13500000 : 6500000; 1269 1270 if (modulation < 4) 1271 bitrate *= (modulation + 1); 1272 else if (modulation == 4) 1273 bitrate *= (modulation + 2); 1274 else 1275 bitrate *= (modulation + 3); 1276 1277 bitrate *= streams; 1278 1279 if (rate->flags & RATE_INFO_FLAGS_SHORT_GI) 1280 bitrate = (bitrate / 9) * 10; 1281 1282 /* do NOT round down here */ 1283 return (bitrate + 50000) / 100000; 1284 } 1285 1286 static u32 cfg80211_calculate_bitrate_dmg(struct rate_info *rate) 1287 { 1288 static const u32 __mcs2bitrate[] = { 1289 /* control PHY */ 1290 [0] = 275, 1291 /* SC PHY */ 1292 [1] = 3850, 1293 [2] = 7700, 1294 [3] = 9625, 1295 [4] = 11550, 1296 [5] = 12512, /* 1251.25 mbps */ 1297 [6] = 15400, 1298 [7] = 19250, 1299 [8] = 23100, 1300 [9] = 25025, 1301 [10] = 30800, 1302 [11] = 38500, 1303 [12] = 46200, 1304 /* OFDM PHY */ 1305 [13] = 6930, 1306 [14] = 8662, /* 866.25 mbps */ 1307 [15] = 13860, 1308 [16] = 17325, 1309 [17] = 20790, 1310 [18] = 27720, 1311 [19] = 34650, 1312 [20] = 41580, 1313 [21] = 45045, 1314 [22] = 51975, 1315 [23] = 62370, 1316 [24] = 67568, /* 6756.75 mbps */ 1317 /* LP-SC PHY */ 1318 [25] = 6260, 1319 [26] = 8340, 1320 [27] = 11120, 1321 [28] = 12510, 1322 [29] = 16680, 1323 [30] = 22240, 1324 [31] = 25030, 1325 }; 1326 1327 if (WARN_ON_ONCE(rate->mcs >= ARRAY_SIZE(__mcs2bitrate))) 1328 return 0; 1329 1330 return __mcs2bitrate[rate->mcs]; 1331 } 1332 1333 static u32 cfg80211_calculate_bitrate_extended_sc_dmg(struct rate_info *rate) 1334 { 1335 static const u32 __mcs2bitrate[] = { 1336 [6 - 6] = 26950, /* MCS 9.1 : 2695.0 mbps */ 1337 [7 - 6] = 50050, /* MCS 12.1 */ 1338 [8 - 6] = 53900, 1339 [9 - 6] = 57750, 1340 [10 - 6] = 63900, 1341 [11 - 6] = 75075, 1342 [12 - 6] = 80850, 1343 }; 1344 1345 /* Extended SC MCS not defined for base MCS below 6 or above 12 */ 1346 if (WARN_ON_ONCE(rate->mcs < 6 || rate->mcs > 12)) 1347 return 0; 1348 1349 return __mcs2bitrate[rate->mcs - 6]; 1350 } 1351 1352 static u32 cfg80211_calculate_bitrate_edmg(struct rate_info *rate) 1353 { 1354 static const u32 __mcs2bitrate[] = { 1355 /* control PHY */ 1356 [0] = 275, 1357 /* SC PHY */ 1358 [1] = 3850, 1359 [2] = 7700, 1360 [3] = 9625, 1361 [4] = 11550, 1362 [5] = 12512, /* 1251.25 mbps */ 1363 [6] = 13475, 1364 [7] = 15400, 1365 [8] = 19250, 1366 [9] = 23100, 1367 [10] = 25025, 1368 [11] = 26950, 1369 [12] = 30800, 1370 [13] = 38500, 1371 [14] = 46200, 1372 [15] = 50050, 1373 [16] = 53900, 1374 [17] = 57750, 1375 [18] = 69300, 1376 [19] = 75075, 1377 [20] = 80850, 1378 }; 1379 1380 if (WARN_ON_ONCE(rate->mcs >= ARRAY_SIZE(__mcs2bitrate))) 1381 return 0; 1382 1383 return __mcs2bitrate[rate->mcs] * rate->n_bonded_ch; 1384 } 1385 1386 static u32 cfg80211_calculate_bitrate_vht(struct rate_info *rate) 1387 { 1388 static const u32 base[4][12] = { 1389 { 6500000, 1390 13000000, 1391 19500000, 1392 26000000, 1393 39000000, 1394 52000000, 1395 58500000, 1396 65000000, 1397 78000000, 1398 /* not in the spec, but some devices use this: */ 1399 86700000, 1400 97500000, 1401 108300000, 1402 }, 1403 { 13500000, 1404 27000000, 1405 40500000, 1406 54000000, 1407 81000000, 1408 108000000, 1409 121500000, 1410 135000000, 1411 162000000, 1412 180000000, 1413 202500000, 1414 225000000, 1415 }, 1416 { 29300000, 1417 58500000, 1418 87800000, 1419 117000000, 1420 175500000, 1421 234000000, 1422 263300000, 1423 292500000, 1424 351000000, 1425 390000000, 1426 438800000, 1427 487500000, 1428 }, 1429 { 58500000, 1430 117000000, 1431 175500000, 1432 234000000, 1433 351000000, 1434 468000000, 1435 526500000, 1436 585000000, 1437 702000000, 1438 780000000, 1439 877500000, 1440 975000000, 1441 }, 1442 }; 1443 u32 bitrate; 1444 int idx; 1445 1446 if (rate->mcs > 11) 1447 goto warn; 1448 1449 switch (rate->bw) { 1450 case RATE_INFO_BW_160: 1451 idx = 3; 1452 break; 1453 case RATE_INFO_BW_80: 1454 idx = 2; 1455 break; 1456 case RATE_INFO_BW_40: 1457 idx = 1; 1458 break; 1459 case RATE_INFO_BW_5: 1460 case RATE_INFO_BW_10: 1461 default: 1462 goto warn; 1463 case RATE_INFO_BW_20: 1464 idx = 0; 1465 } 1466 1467 bitrate = base[idx][rate->mcs]; 1468 bitrate *= rate->nss; 1469 1470 if (rate->flags & RATE_INFO_FLAGS_SHORT_GI) 1471 bitrate = (bitrate / 9) * 10; 1472 1473 /* do NOT round down here */ 1474 return (bitrate + 50000) / 100000; 1475 warn: 1476 WARN_ONCE(1, "invalid rate bw=%d, mcs=%d, nss=%d\n", 1477 rate->bw, rate->mcs, rate->nss); 1478 return 0; 1479 } 1480 1481 static u32 cfg80211_calculate_bitrate_he(struct rate_info *rate) 1482 { 1483 #define SCALE 6144 1484 u32 mcs_divisors[14] = { 1485 102399, /* 16.666666... */ 1486 51201, /* 8.333333... */ 1487 34134, /* 5.555555... */ 1488 25599, /* 4.166666... */ 1489 17067, /* 2.777777... */ 1490 12801, /* 2.083333... */ 1491 11377, /* 1.851725... */ 1492 10239, /* 1.666666... */ 1493 8532, /* 1.388888... */ 1494 7680, /* 1.250000... */ 1495 6828, /* 1.111111... */ 1496 6144, /* 1.000000... */ 1497 5690, /* 0.926106... */ 1498 5120, /* 0.833333... */ 1499 }; 1500 u32 rates_160M[3] = { 960777777, 907400000, 816666666 }; 1501 u32 rates_969[3] = { 480388888, 453700000, 408333333 }; 1502 u32 rates_484[3] = { 229411111, 216666666, 195000000 }; 1503 u32 rates_242[3] = { 114711111, 108333333, 97500000 }; 1504 u32 rates_106[3] = { 40000000, 37777777, 34000000 }; 1505 u32 rates_52[3] = { 18820000, 17777777, 16000000 }; 1506 u32 rates_26[3] = { 9411111, 8888888, 8000000 }; 1507 u64 tmp; 1508 u32 result; 1509 1510 if (WARN_ON_ONCE(rate->mcs > 13)) 1511 return 0; 1512 1513 if (WARN_ON_ONCE(rate->he_gi > NL80211_RATE_INFO_HE_GI_3_2)) 1514 return 0; 1515 if (WARN_ON_ONCE(rate->he_ru_alloc > 1516 NL80211_RATE_INFO_HE_RU_ALLOC_2x996)) 1517 return 0; 1518 if (WARN_ON_ONCE(rate->nss < 1 || rate->nss > 8)) 1519 return 0; 1520 1521 if (rate->bw == RATE_INFO_BW_160) 1522 result = rates_160M[rate->he_gi]; 1523 else if (rate->bw == RATE_INFO_BW_80 || 1524 (rate->bw == RATE_INFO_BW_HE_RU && 1525 rate->he_ru_alloc == NL80211_RATE_INFO_HE_RU_ALLOC_996)) 1526 result = rates_969[rate->he_gi]; 1527 else if (rate->bw == RATE_INFO_BW_40 || 1528 (rate->bw == RATE_INFO_BW_HE_RU && 1529 rate->he_ru_alloc == NL80211_RATE_INFO_HE_RU_ALLOC_484)) 1530 result = rates_484[rate->he_gi]; 1531 else if (rate->bw == RATE_INFO_BW_20 || 1532 (rate->bw == RATE_INFO_BW_HE_RU && 1533 rate->he_ru_alloc == NL80211_RATE_INFO_HE_RU_ALLOC_242)) 1534 result = rates_242[rate->he_gi]; 1535 else if (rate->bw == RATE_INFO_BW_HE_RU && 1536 rate->he_ru_alloc == NL80211_RATE_INFO_HE_RU_ALLOC_106) 1537 result = rates_106[rate->he_gi]; 1538 else if (rate->bw == RATE_INFO_BW_HE_RU && 1539 rate->he_ru_alloc == NL80211_RATE_INFO_HE_RU_ALLOC_52) 1540 result = rates_52[rate->he_gi]; 1541 else if (rate->bw == RATE_INFO_BW_HE_RU && 1542 rate->he_ru_alloc == NL80211_RATE_INFO_HE_RU_ALLOC_26) 1543 result = rates_26[rate->he_gi]; 1544 else { 1545 WARN(1, "invalid HE MCS: bw:%d, ru:%d\n", 1546 rate->bw, rate->he_ru_alloc); 1547 return 0; 1548 } 1549 1550 /* now scale to the appropriate MCS */ 1551 tmp = result; 1552 tmp *= SCALE; 1553 do_div(tmp, mcs_divisors[rate->mcs]); 1554 result = tmp; 1555 1556 /* and take NSS, DCM into account */ 1557 result = (result * rate->nss) / 8; 1558 if (rate->he_dcm) 1559 result /= 2; 1560 1561 return result / 10000; 1562 } 1563 1564 static u32 cfg80211_calculate_bitrate_eht(struct rate_info *rate) 1565 { 1566 #define SCALE 6144 1567 static const u32 mcs_divisors[16] = { 1568 102399, /* 16.666666... */ 1569 51201, /* 8.333333... */ 1570 34134, /* 5.555555... */ 1571 25599, /* 4.166666... */ 1572 17067, /* 2.777777... */ 1573 12801, /* 2.083333... */ 1574 11377, /* 1.851725... */ 1575 10239, /* 1.666666... */ 1576 8532, /* 1.388888... */ 1577 7680, /* 1.250000... */ 1578 6828, /* 1.111111... */ 1579 6144, /* 1.000000... */ 1580 5690, /* 0.926106... */ 1581 5120, /* 0.833333... */ 1582 409600, /* 66.666666... */ 1583 204800, /* 33.333333... */ 1584 }; 1585 static const u32 rates_996[3] = { 480388888, 453700000, 408333333 }; 1586 static const u32 rates_484[3] = { 229411111, 216666666, 195000000 }; 1587 static const u32 rates_242[3] = { 114711111, 108333333, 97500000 }; 1588 static const u32 rates_106[3] = { 40000000, 37777777, 34000000 }; 1589 static const u32 rates_52[3] = { 18820000, 17777777, 16000000 }; 1590 static const u32 rates_26[3] = { 9411111, 8888888, 8000000 }; 1591 u64 tmp; 1592 u32 result; 1593 1594 if (WARN_ON_ONCE(rate->mcs > 15)) 1595 return 0; 1596 if (WARN_ON_ONCE(rate->eht_gi > NL80211_RATE_INFO_EHT_GI_3_2)) 1597 return 0; 1598 if (WARN_ON_ONCE(rate->eht_ru_alloc > 1599 NL80211_RATE_INFO_EHT_RU_ALLOC_4x996)) 1600 return 0; 1601 if (WARN_ON_ONCE(rate->nss < 1 || rate->nss > 8)) 1602 return 0; 1603 1604 /* Bandwidth checks for MCS 14 */ 1605 if (rate->mcs == 14) { 1606 if ((rate->bw != RATE_INFO_BW_EHT_RU && 1607 rate->bw != RATE_INFO_BW_80 && 1608 rate->bw != RATE_INFO_BW_160 && 1609 rate->bw != RATE_INFO_BW_320) || 1610 (rate->bw == RATE_INFO_BW_EHT_RU && 1611 rate->eht_ru_alloc != NL80211_RATE_INFO_EHT_RU_ALLOC_996 && 1612 rate->eht_ru_alloc != NL80211_RATE_INFO_EHT_RU_ALLOC_2x996 && 1613 rate->eht_ru_alloc != NL80211_RATE_INFO_EHT_RU_ALLOC_4x996)) { 1614 WARN(1, "invalid EHT BW for MCS 14: bw:%d, ru:%d\n", 1615 rate->bw, rate->eht_ru_alloc); 1616 return 0; 1617 } 1618 } 1619 1620 if (rate->bw == RATE_INFO_BW_320 || 1621 (rate->bw == RATE_INFO_BW_EHT_RU && 1622 rate->eht_ru_alloc == NL80211_RATE_INFO_EHT_RU_ALLOC_4x996)) 1623 result = 4 * rates_996[rate->eht_gi]; 1624 else if (rate->bw == RATE_INFO_BW_EHT_RU && 1625 rate->eht_ru_alloc == NL80211_RATE_INFO_EHT_RU_ALLOC_3x996P484) 1626 result = 3 * rates_996[rate->eht_gi] + rates_484[rate->eht_gi]; 1627 else if (rate->bw == RATE_INFO_BW_EHT_RU && 1628 rate->eht_ru_alloc == NL80211_RATE_INFO_EHT_RU_ALLOC_3x996) 1629 result = 3 * rates_996[rate->eht_gi]; 1630 else if (rate->bw == RATE_INFO_BW_EHT_RU && 1631 rate->eht_ru_alloc == NL80211_RATE_INFO_EHT_RU_ALLOC_2x996P484) 1632 result = 2 * rates_996[rate->eht_gi] + rates_484[rate->eht_gi]; 1633 else if (rate->bw == RATE_INFO_BW_160 || 1634 (rate->bw == RATE_INFO_BW_EHT_RU && 1635 rate->eht_ru_alloc == NL80211_RATE_INFO_EHT_RU_ALLOC_2x996)) 1636 result = 2 * rates_996[rate->eht_gi]; 1637 else if (rate->bw == RATE_INFO_BW_EHT_RU && 1638 rate->eht_ru_alloc == 1639 NL80211_RATE_INFO_EHT_RU_ALLOC_996P484P242) 1640 result = rates_996[rate->eht_gi] + rates_484[rate->eht_gi] 1641 + rates_242[rate->eht_gi]; 1642 else if (rate->bw == RATE_INFO_BW_EHT_RU && 1643 rate->eht_ru_alloc == NL80211_RATE_INFO_EHT_RU_ALLOC_996P484) 1644 result = rates_996[rate->eht_gi] + rates_484[rate->eht_gi]; 1645 else if (rate->bw == RATE_INFO_BW_80 || 1646 (rate->bw == RATE_INFO_BW_EHT_RU && 1647 rate->eht_ru_alloc == NL80211_RATE_INFO_EHT_RU_ALLOC_996)) 1648 result = rates_996[rate->eht_gi]; 1649 else if (rate->bw == RATE_INFO_BW_EHT_RU && 1650 rate->eht_ru_alloc == NL80211_RATE_INFO_EHT_RU_ALLOC_484P242) 1651 result = rates_484[rate->eht_gi] + rates_242[rate->eht_gi]; 1652 else if (rate->bw == RATE_INFO_BW_40 || 1653 (rate->bw == RATE_INFO_BW_EHT_RU && 1654 rate->eht_ru_alloc == NL80211_RATE_INFO_EHT_RU_ALLOC_484)) 1655 result = rates_484[rate->eht_gi]; 1656 else if (rate->bw == RATE_INFO_BW_20 || 1657 (rate->bw == RATE_INFO_BW_EHT_RU && 1658 rate->eht_ru_alloc == NL80211_RATE_INFO_EHT_RU_ALLOC_242)) 1659 result = rates_242[rate->eht_gi]; 1660 else if (rate->bw == RATE_INFO_BW_EHT_RU && 1661 rate->eht_ru_alloc == NL80211_RATE_INFO_EHT_RU_ALLOC_106P26) 1662 result = rates_106[rate->eht_gi] + rates_26[rate->eht_gi]; 1663 else if (rate->bw == RATE_INFO_BW_EHT_RU && 1664 rate->eht_ru_alloc == NL80211_RATE_INFO_EHT_RU_ALLOC_106) 1665 result = rates_106[rate->eht_gi]; 1666 else if (rate->bw == RATE_INFO_BW_EHT_RU && 1667 rate->eht_ru_alloc == NL80211_RATE_INFO_EHT_RU_ALLOC_52P26) 1668 result = rates_52[rate->eht_gi] + rates_26[rate->eht_gi]; 1669 else if (rate->bw == RATE_INFO_BW_EHT_RU && 1670 rate->eht_ru_alloc == NL80211_RATE_INFO_EHT_RU_ALLOC_52) 1671 result = rates_52[rate->eht_gi]; 1672 else if (rate->bw == RATE_INFO_BW_EHT_RU && 1673 rate->eht_ru_alloc == NL80211_RATE_INFO_EHT_RU_ALLOC_26) 1674 result = rates_26[rate->eht_gi]; 1675 else { 1676 WARN(1, "invalid EHT MCS: bw:%d, ru:%d\n", 1677 rate->bw, rate->eht_ru_alloc); 1678 return 0; 1679 } 1680 1681 /* now scale to the appropriate MCS */ 1682 tmp = result; 1683 tmp *= SCALE; 1684 do_div(tmp, mcs_divisors[rate->mcs]); 1685 1686 /* and take NSS */ 1687 tmp *= rate->nss; 1688 do_div(tmp, 8); 1689 1690 result = tmp; 1691 1692 return result / 10000; 1693 } 1694 1695 static u32 cfg80211_calculate_bitrate_s1g(struct rate_info *rate) 1696 { 1697 /* For 1, 2, 4, 8 and 16 MHz channels */ 1698 static const u32 base[5][11] = { 1699 { 300000, 1700 600000, 1701 900000, 1702 1200000, 1703 1800000, 1704 2400000, 1705 2700000, 1706 3000000, 1707 3600000, 1708 4000000, 1709 /* MCS 10 supported in 1 MHz only */ 1710 150000, 1711 }, 1712 { 650000, 1713 1300000, 1714 1950000, 1715 2600000, 1716 3900000, 1717 5200000, 1718 5850000, 1719 6500000, 1720 7800000, 1721 /* MCS 9 not valid */ 1722 }, 1723 { 1350000, 1724 2700000, 1725 4050000, 1726 5400000, 1727 8100000, 1728 10800000, 1729 12150000, 1730 13500000, 1731 16200000, 1732 18000000, 1733 }, 1734 { 2925000, 1735 5850000, 1736 8775000, 1737 11700000, 1738 17550000, 1739 23400000, 1740 26325000, 1741 29250000, 1742 35100000, 1743 39000000, 1744 }, 1745 { 8580000, 1746 11700000, 1747 17550000, 1748 23400000, 1749 35100000, 1750 46800000, 1751 52650000, 1752 58500000, 1753 70200000, 1754 78000000, 1755 }, 1756 }; 1757 u32 bitrate; 1758 /* default is 1 MHz index */ 1759 int idx = 0; 1760 1761 if (rate->mcs >= 11) 1762 goto warn; 1763 1764 switch (rate->bw) { 1765 case RATE_INFO_BW_16: 1766 idx = 4; 1767 break; 1768 case RATE_INFO_BW_8: 1769 idx = 3; 1770 break; 1771 case RATE_INFO_BW_4: 1772 idx = 2; 1773 break; 1774 case RATE_INFO_BW_2: 1775 idx = 1; 1776 break; 1777 case RATE_INFO_BW_1: 1778 idx = 0; 1779 break; 1780 case RATE_INFO_BW_5: 1781 case RATE_INFO_BW_10: 1782 case RATE_INFO_BW_20: 1783 case RATE_INFO_BW_40: 1784 case RATE_INFO_BW_80: 1785 case RATE_INFO_BW_160: 1786 default: 1787 goto warn; 1788 } 1789 1790 bitrate = base[idx][rate->mcs]; 1791 bitrate *= rate->nss; 1792 1793 if (rate->flags & RATE_INFO_FLAGS_SHORT_GI) 1794 bitrate = (bitrate / 9) * 10; 1795 /* do NOT round down here */ 1796 return (bitrate + 50000) / 100000; 1797 warn: 1798 WARN_ONCE(1, "invalid rate bw=%d, mcs=%d, nss=%d\n", 1799 rate->bw, rate->mcs, rate->nss); 1800 return 0; 1801 } 1802 1803 u32 cfg80211_calculate_bitrate(struct rate_info *rate) 1804 { 1805 if (rate->flags & RATE_INFO_FLAGS_MCS) 1806 return cfg80211_calculate_bitrate_ht(rate); 1807 if (rate->flags & RATE_INFO_FLAGS_DMG) 1808 return cfg80211_calculate_bitrate_dmg(rate); 1809 if (rate->flags & RATE_INFO_FLAGS_EXTENDED_SC_DMG) 1810 return cfg80211_calculate_bitrate_extended_sc_dmg(rate); 1811 if (rate->flags & RATE_INFO_FLAGS_EDMG) 1812 return cfg80211_calculate_bitrate_edmg(rate); 1813 if (rate->flags & RATE_INFO_FLAGS_VHT_MCS) 1814 return cfg80211_calculate_bitrate_vht(rate); 1815 if (rate->flags & RATE_INFO_FLAGS_HE_MCS) 1816 return cfg80211_calculate_bitrate_he(rate); 1817 if (rate->flags & RATE_INFO_FLAGS_EHT_MCS) 1818 return cfg80211_calculate_bitrate_eht(rate); 1819 if (rate->flags & RATE_INFO_FLAGS_S1G_MCS) 1820 return cfg80211_calculate_bitrate_s1g(rate); 1821 1822 return rate->legacy; 1823 } 1824 EXPORT_SYMBOL(cfg80211_calculate_bitrate); 1825 1826 int cfg80211_get_p2p_attr(const u8 *ies, unsigned int len, 1827 enum ieee80211_p2p_attr_id attr, 1828 u8 *buf, unsigned int bufsize) 1829 { 1830 u8 *out = buf; 1831 u16 attr_remaining = 0; 1832 bool desired_attr = false; 1833 u16 desired_len = 0; 1834 1835 while (len > 0) { 1836 unsigned int iedatalen; 1837 unsigned int copy; 1838 const u8 *iedata; 1839 1840 if (len < 2) 1841 return -EILSEQ; 1842 iedatalen = ies[1]; 1843 if (iedatalen + 2 > len) 1844 return -EILSEQ; 1845 1846 if (ies[0] != WLAN_EID_VENDOR_SPECIFIC) 1847 goto cont; 1848 1849 if (iedatalen < 4) 1850 goto cont; 1851 1852 iedata = ies + 2; 1853 1854 /* check WFA OUI, P2P subtype */ 1855 if (iedata[0] != 0x50 || iedata[1] != 0x6f || 1856 iedata[2] != 0x9a || iedata[3] != 0x09) 1857 goto cont; 1858 1859 iedatalen -= 4; 1860 iedata += 4; 1861 1862 /* check attribute continuation into this IE */ 1863 copy = min_t(unsigned int, attr_remaining, iedatalen); 1864 if (copy && desired_attr) { 1865 desired_len += copy; 1866 if (out) { 1867 memcpy(out, iedata, min(bufsize, copy)); 1868 out += min(bufsize, copy); 1869 bufsize -= min(bufsize, copy); 1870 } 1871 1872 1873 if (copy == attr_remaining) 1874 return desired_len; 1875 } 1876 1877 attr_remaining -= copy; 1878 if (attr_remaining) 1879 goto cont; 1880 1881 iedatalen -= copy; 1882 iedata += copy; 1883 1884 while (iedatalen > 0) { 1885 u16 attr_len; 1886 1887 /* P2P attribute ID & size must fit */ 1888 if (iedatalen < 3) 1889 return -EILSEQ; 1890 desired_attr = iedata[0] == attr; 1891 attr_len = get_unaligned_le16(iedata + 1); 1892 iedatalen -= 3; 1893 iedata += 3; 1894 1895 copy = min_t(unsigned int, attr_len, iedatalen); 1896 1897 if (desired_attr) { 1898 desired_len += copy; 1899 if (out) { 1900 memcpy(out, iedata, min(bufsize, copy)); 1901 out += min(bufsize, copy); 1902 bufsize -= min(bufsize, copy); 1903 } 1904 1905 if (copy == attr_len) 1906 return desired_len; 1907 } 1908 1909 iedata += copy; 1910 iedatalen -= copy; 1911 attr_remaining = attr_len - copy; 1912 } 1913 1914 cont: 1915 len -= ies[1] + 2; 1916 ies += ies[1] + 2; 1917 } 1918 1919 if (attr_remaining && desired_attr) 1920 return -EILSEQ; 1921 1922 return -ENOENT; 1923 } 1924 EXPORT_SYMBOL(cfg80211_get_p2p_attr); 1925 1926 static bool ieee80211_id_in_list(const u8 *ids, int n_ids, u8 id, bool id_ext) 1927 { 1928 int i; 1929 1930 /* Make sure array values are legal */ 1931 if (WARN_ON(ids[n_ids - 1] == WLAN_EID_EXTENSION)) 1932 return false; 1933 1934 i = 0; 1935 while (i < n_ids) { 1936 if (ids[i] == WLAN_EID_EXTENSION) { 1937 if (id_ext && (ids[i + 1] == id)) 1938 return true; 1939 1940 i += 2; 1941 continue; 1942 } 1943 1944 if (ids[i] == id && !id_ext) 1945 return true; 1946 1947 i++; 1948 } 1949 return false; 1950 } 1951 1952 static size_t skip_ie(const u8 *ies, size_t ielen, size_t pos) 1953 { 1954 /* we assume a validly formed IEs buffer */ 1955 u8 len = ies[pos + 1]; 1956 1957 pos += 2 + len; 1958 1959 /* the IE itself must have 255 bytes for fragments to follow */ 1960 if (len < 255) 1961 return pos; 1962 1963 while (pos < ielen && ies[pos] == WLAN_EID_FRAGMENT) { 1964 len = ies[pos + 1]; 1965 pos += 2 + len; 1966 } 1967 1968 return pos; 1969 } 1970 1971 size_t ieee80211_ie_split_ric(const u8 *ies, size_t ielen, 1972 const u8 *ids, int n_ids, 1973 const u8 *after_ric, int n_after_ric, 1974 size_t offset) 1975 { 1976 size_t pos = offset; 1977 1978 while (pos < ielen) { 1979 u8 ext = 0; 1980 1981 if (ies[pos] == WLAN_EID_EXTENSION) 1982 ext = 2; 1983 if ((pos + ext) >= ielen) 1984 break; 1985 1986 if (!ieee80211_id_in_list(ids, n_ids, ies[pos + ext], 1987 ies[pos] == WLAN_EID_EXTENSION)) 1988 break; 1989 1990 if (ies[pos] == WLAN_EID_RIC_DATA && n_after_ric) { 1991 pos = skip_ie(ies, ielen, pos); 1992 1993 while (pos < ielen) { 1994 if (ies[pos] == WLAN_EID_EXTENSION) 1995 ext = 2; 1996 else 1997 ext = 0; 1998 1999 if ((pos + ext) >= ielen) 2000 break; 2001 2002 if (!ieee80211_id_in_list(after_ric, 2003 n_after_ric, 2004 ies[pos + ext], 2005 ext == 2)) 2006 pos = skip_ie(ies, ielen, pos); 2007 else 2008 break; 2009 } 2010 } else { 2011 pos = skip_ie(ies, ielen, pos); 2012 } 2013 } 2014 2015 return pos; 2016 } 2017 EXPORT_SYMBOL(ieee80211_ie_split_ric); 2018 2019 void ieee80211_fragment_element(struct sk_buff *skb, u8 *len_pos, u8 frag_id) 2020 { 2021 unsigned int elem_len; 2022 2023 if (!len_pos) 2024 return; 2025 2026 elem_len = skb->data + skb->len - len_pos - 1; 2027 2028 while (elem_len > 255) { 2029 /* this one is 255 */ 2030 *len_pos = 255; 2031 /* remaining data gets smaller */ 2032 elem_len -= 255; 2033 /* make space for the fragment ID/len in SKB */ 2034 skb_put(skb, 2); 2035 /* shift back the remaining data to place fragment ID/len */ 2036 memmove(len_pos + 255 + 3, len_pos + 255 + 1, elem_len); 2037 /* place the fragment ID */ 2038 len_pos += 255 + 1; 2039 *len_pos = frag_id; 2040 /* and point to fragment length to update later */ 2041 len_pos++; 2042 } 2043 2044 *len_pos = elem_len; 2045 } 2046 EXPORT_SYMBOL(ieee80211_fragment_element); 2047 2048 bool ieee80211_operating_class_to_band(u8 operating_class, 2049 enum nl80211_band *band) 2050 { 2051 switch (operating_class) { 2052 case 112: 2053 case 115 ... 127: 2054 case 128 ... 130: 2055 *band = NL80211_BAND_5GHZ; 2056 return true; 2057 case 131 ... 135: 2058 case 137: 2059 *band = NL80211_BAND_6GHZ; 2060 return true; 2061 case 81: 2062 case 82: 2063 case 83: 2064 case 84: 2065 *band = NL80211_BAND_2GHZ; 2066 return true; 2067 case 180: 2068 *band = NL80211_BAND_60GHZ; 2069 return true; 2070 } 2071 2072 return false; 2073 } 2074 EXPORT_SYMBOL(ieee80211_operating_class_to_band); 2075 2076 bool ieee80211_chandef_to_operating_class(struct cfg80211_chan_def *chandef, 2077 u8 *op_class) 2078 { 2079 u8 vht_opclass; 2080 u32 freq = chandef->center_freq1; 2081 2082 if (freq >= 2412 && freq <= 2472) { 2083 if (chandef->width > NL80211_CHAN_WIDTH_40) 2084 return false; 2085 2086 /* 2.407 GHz, channels 1..13 */ 2087 if (chandef->width == NL80211_CHAN_WIDTH_40) { 2088 if (freq > chandef->chan->center_freq) 2089 *op_class = 83; /* HT40+ */ 2090 else 2091 *op_class = 84; /* HT40- */ 2092 } else { 2093 *op_class = 81; 2094 } 2095 2096 return true; 2097 } 2098 2099 if (freq == 2484) { 2100 /* channel 14 is only for IEEE 802.11b */ 2101 if (chandef->width != NL80211_CHAN_WIDTH_20_NOHT) 2102 return false; 2103 2104 *op_class = 82; /* channel 14 */ 2105 return true; 2106 } 2107 2108 switch (chandef->width) { 2109 case NL80211_CHAN_WIDTH_80: 2110 vht_opclass = 128; 2111 break; 2112 case NL80211_CHAN_WIDTH_160: 2113 vht_opclass = 129; 2114 break; 2115 case NL80211_CHAN_WIDTH_80P80: 2116 vht_opclass = 130; 2117 break; 2118 case NL80211_CHAN_WIDTH_10: 2119 case NL80211_CHAN_WIDTH_5: 2120 return false; /* unsupported for now */ 2121 default: 2122 vht_opclass = 0; 2123 break; 2124 } 2125 2126 /* 5 GHz, channels 36..48 */ 2127 if (freq >= 5180 && freq <= 5240) { 2128 if (vht_opclass) { 2129 *op_class = vht_opclass; 2130 } else if (chandef->width == NL80211_CHAN_WIDTH_40) { 2131 if (freq > chandef->chan->center_freq) 2132 *op_class = 116; 2133 else 2134 *op_class = 117; 2135 } else { 2136 *op_class = 115; 2137 } 2138 2139 return true; 2140 } 2141 2142 /* 5 GHz, channels 52..64 */ 2143 if (freq >= 5260 && freq <= 5320) { 2144 if (vht_opclass) { 2145 *op_class = vht_opclass; 2146 } else if (chandef->width == NL80211_CHAN_WIDTH_40) { 2147 if (freq > chandef->chan->center_freq) 2148 *op_class = 119; 2149 else 2150 *op_class = 120; 2151 } else { 2152 *op_class = 118; 2153 } 2154 2155 return true; 2156 } 2157 2158 /* 5 GHz, channels 100..144 */ 2159 if (freq >= 5500 && freq <= 5720) { 2160 if (vht_opclass) { 2161 *op_class = vht_opclass; 2162 } else if (chandef->width == NL80211_CHAN_WIDTH_40) { 2163 if (freq > chandef->chan->center_freq) 2164 *op_class = 122; 2165 else 2166 *op_class = 123; 2167 } else { 2168 *op_class = 121; 2169 } 2170 2171 return true; 2172 } 2173 2174 /* 5 GHz, channels 149..169 */ 2175 if (freq >= 5745 && freq <= 5845) { 2176 if (vht_opclass) { 2177 *op_class = vht_opclass; 2178 } else if (chandef->width == NL80211_CHAN_WIDTH_40) { 2179 if (freq > chandef->chan->center_freq) 2180 *op_class = 126; 2181 else 2182 *op_class = 127; 2183 } else if (freq <= 5805) { 2184 *op_class = 124; 2185 } else { 2186 *op_class = 125; 2187 } 2188 2189 return true; 2190 } 2191 2192 /* 56.16 GHz, channel 1..4 */ 2193 if (freq >= 56160 + 2160 * 1 && freq <= 56160 + 2160 * 6) { 2194 if (chandef->width >= NL80211_CHAN_WIDTH_40) 2195 return false; 2196 2197 *op_class = 180; 2198 return true; 2199 } 2200 2201 /* not supported yet */ 2202 return false; 2203 } 2204 EXPORT_SYMBOL(ieee80211_chandef_to_operating_class); 2205 2206 static int cfg80211_wdev_bi(struct wireless_dev *wdev) 2207 { 2208 switch (wdev->iftype) { 2209 case NL80211_IFTYPE_AP: 2210 case NL80211_IFTYPE_P2P_GO: 2211 WARN_ON(wdev->valid_links); 2212 return wdev->links[0].ap.beacon_interval; 2213 case NL80211_IFTYPE_MESH_POINT: 2214 return wdev->u.mesh.beacon_interval; 2215 case NL80211_IFTYPE_ADHOC: 2216 return wdev->u.ibss.beacon_interval; 2217 default: 2218 break; 2219 } 2220 2221 return 0; 2222 } 2223 2224 static void cfg80211_calculate_bi_data(struct wiphy *wiphy, u32 new_beacon_int, 2225 u32 *beacon_int_gcd, 2226 bool *beacon_int_different) 2227 { 2228 struct wireless_dev *wdev; 2229 2230 *beacon_int_gcd = 0; 2231 *beacon_int_different = false; 2232 2233 list_for_each_entry(wdev, &wiphy->wdev_list, list) { 2234 int wdev_bi; 2235 2236 /* this feature isn't supported with MLO */ 2237 if (wdev->valid_links) 2238 continue; 2239 2240 wdev_bi = cfg80211_wdev_bi(wdev); 2241 2242 if (!wdev_bi) 2243 continue; 2244 2245 if (!*beacon_int_gcd) { 2246 *beacon_int_gcd = wdev_bi; 2247 continue; 2248 } 2249 2250 if (wdev_bi == *beacon_int_gcd) 2251 continue; 2252 2253 *beacon_int_different = true; 2254 *beacon_int_gcd = gcd(*beacon_int_gcd, wdev_bi); 2255 } 2256 2257 if (new_beacon_int && *beacon_int_gcd != new_beacon_int) { 2258 if (*beacon_int_gcd) 2259 *beacon_int_different = true; 2260 *beacon_int_gcd = gcd(*beacon_int_gcd, new_beacon_int); 2261 } 2262 } 2263 2264 int cfg80211_validate_beacon_int(struct cfg80211_registered_device *rdev, 2265 enum nl80211_iftype iftype, u32 beacon_int) 2266 { 2267 /* 2268 * This is just a basic pre-condition check; if interface combinations 2269 * are possible the driver must already be checking those with a call 2270 * to cfg80211_check_combinations(), in which case we'll validate more 2271 * through the cfg80211_calculate_bi_data() call and code in 2272 * cfg80211_iter_combinations(). 2273 */ 2274 2275 if (beacon_int < 10 || beacon_int > 10000) 2276 return -EINVAL; 2277 2278 return 0; 2279 } 2280 2281 int cfg80211_iter_combinations(struct wiphy *wiphy, 2282 struct iface_combination_params *params, 2283 void (*iter)(const struct ieee80211_iface_combination *c, 2284 void *data), 2285 void *data) 2286 { 2287 const struct ieee80211_regdomain *regdom; 2288 enum nl80211_dfs_regions region = 0; 2289 int i, j, iftype; 2290 int num_interfaces = 0; 2291 u32 used_iftypes = 0; 2292 u32 beacon_int_gcd; 2293 bool beacon_int_different; 2294 2295 /* 2296 * This is a bit strange, since the iteration used to rely only on 2297 * the data given by the driver, but here it now relies on context, 2298 * in form of the currently operating interfaces. 2299 * This is OK for all current users, and saves us from having to 2300 * push the GCD calculations into all the drivers. 2301 * In the future, this should probably rely more on data that's in 2302 * cfg80211 already - the only thing not would appear to be any new 2303 * interfaces (while being brought up) and channel/radar data. 2304 */ 2305 cfg80211_calculate_bi_data(wiphy, params->new_beacon_int, 2306 &beacon_int_gcd, &beacon_int_different); 2307 2308 if (params->radar_detect) { 2309 rcu_read_lock(); 2310 regdom = rcu_dereference(cfg80211_regdomain); 2311 if (regdom) 2312 region = regdom->dfs_region; 2313 rcu_read_unlock(); 2314 } 2315 2316 for (iftype = 0; iftype < NUM_NL80211_IFTYPES; iftype++) { 2317 num_interfaces += params->iftype_num[iftype]; 2318 if (params->iftype_num[iftype] > 0 && 2319 !cfg80211_iftype_allowed(wiphy, iftype, 0, 1)) 2320 used_iftypes |= BIT(iftype); 2321 } 2322 2323 for (i = 0; i < wiphy->n_iface_combinations; i++) { 2324 const struct ieee80211_iface_combination *c; 2325 struct ieee80211_iface_limit *limits; 2326 u32 all_iftypes = 0; 2327 2328 c = &wiphy->iface_combinations[i]; 2329 2330 if (num_interfaces > c->max_interfaces) 2331 continue; 2332 if (params->num_different_channels > c->num_different_channels) 2333 continue; 2334 2335 limits = kmemdup(c->limits, sizeof(limits[0]) * c->n_limits, 2336 GFP_KERNEL); 2337 if (!limits) 2338 return -ENOMEM; 2339 2340 for (iftype = 0; iftype < NUM_NL80211_IFTYPES; iftype++) { 2341 if (cfg80211_iftype_allowed(wiphy, iftype, 0, 1)) 2342 continue; 2343 for (j = 0; j < c->n_limits; j++) { 2344 all_iftypes |= limits[j].types; 2345 if (!(limits[j].types & BIT(iftype))) 2346 continue; 2347 if (limits[j].max < params->iftype_num[iftype]) 2348 goto cont; 2349 limits[j].max -= params->iftype_num[iftype]; 2350 } 2351 } 2352 2353 if (params->radar_detect != 2354 (c->radar_detect_widths & params->radar_detect)) 2355 goto cont; 2356 2357 if (params->radar_detect && c->radar_detect_regions && 2358 !(c->radar_detect_regions & BIT(region))) 2359 goto cont; 2360 2361 /* Finally check that all iftypes that we're currently 2362 * using are actually part of this combination. If they 2363 * aren't then we can't use this combination and have 2364 * to continue to the next. 2365 */ 2366 if ((all_iftypes & used_iftypes) != used_iftypes) 2367 goto cont; 2368 2369 if (beacon_int_gcd) { 2370 if (c->beacon_int_min_gcd && 2371 beacon_int_gcd < c->beacon_int_min_gcd) 2372 goto cont; 2373 if (!c->beacon_int_min_gcd && beacon_int_different) 2374 goto cont; 2375 } 2376 2377 /* This combination covered all interface types and 2378 * supported the requested numbers, so we're good. 2379 */ 2380 2381 (*iter)(c, data); 2382 cont: 2383 kfree(limits); 2384 } 2385 2386 return 0; 2387 } 2388 EXPORT_SYMBOL(cfg80211_iter_combinations); 2389 2390 static void 2391 cfg80211_iter_sum_ifcombs(const struct ieee80211_iface_combination *c, 2392 void *data) 2393 { 2394 int *num = data; 2395 (*num)++; 2396 } 2397 2398 int cfg80211_check_combinations(struct wiphy *wiphy, 2399 struct iface_combination_params *params) 2400 { 2401 int err, num = 0; 2402 2403 err = cfg80211_iter_combinations(wiphy, params, 2404 cfg80211_iter_sum_ifcombs, &num); 2405 if (err) 2406 return err; 2407 if (num == 0) 2408 return -EBUSY; 2409 2410 return 0; 2411 } 2412 EXPORT_SYMBOL(cfg80211_check_combinations); 2413 2414 int ieee80211_get_ratemask(struct ieee80211_supported_band *sband, 2415 const u8 *rates, unsigned int n_rates, 2416 u32 *mask) 2417 { 2418 int i, j; 2419 2420 if (!sband) 2421 return -EINVAL; 2422 2423 if (n_rates == 0 || n_rates > NL80211_MAX_SUPP_RATES) 2424 return -EINVAL; 2425 2426 *mask = 0; 2427 2428 for (i = 0; i < n_rates; i++) { 2429 int rate = (rates[i] & 0x7f) * 5; 2430 bool found = false; 2431 2432 for (j = 0; j < sband->n_bitrates; j++) { 2433 if (sband->bitrates[j].bitrate == rate) { 2434 found = true; 2435 *mask |= BIT(j); 2436 break; 2437 } 2438 } 2439 if (!found) 2440 return -EINVAL; 2441 } 2442 2443 /* 2444 * mask must have at least one bit set here since we 2445 * didn't accept a 0-length rates array nor allowed 2446 * entries in the array that didn't exist 2447 */ 2448 2449 return 0; 2450 } 2451 2452 unsigned int ieee80211_get_num_supported_channels(struct wiphy *wiphy) 2453 { 2454 enum nl80211_band band; 2455 unsigned int n_channels = 0; 2456 2457 for (band = 0; band < NUM_NL80211_BANDS; band++) 2458 if (wiphy->bands[band]) 2459 n_channels += wiphy->bands[band]->n_channels; 2460 2461 return n_channels; 2462 } 2463 EXPORT_SYMBOL(ieee80211_get_num_supported_channels); 2464 2465 int cfg80211_get_station(struct net_device *dev, const u8 *mac_addr, 2466 struct station_info *sinfo) 2467 { 2468 struct cfg80211_registered_device *rdev; 2469 struct wireless_dev *wdev; 2470 2471 wdev = dev->ieee80211_ptr; 2472 if (!wdev) 2473 return -EOPNOTSUPP; 2474 2475 rdev = wiphy_to_rdev(wdev->wiphy); 2476 if (!rdev->ops->get_station) 2477 return -EOPNOTSUPP; 2478 2479 memset(sinfo, 0, sizeof(*sinfo)); 2480 2481 return rdev_get_station(rdev, dev, mac_addr, sinfo); 2482 } 2483 EXPORT_SYMBOL(cfg80211_get_station); 2484 2485 void cfg80211_free_nan_func(struct cfg80211_nan_func *f) 2486 { 2487 int i; 2488 2489 if (!f) 2490 return; 2491 2492 kfree(f->serv_spec_info); 2493 kfree(f->srf_bf); 2494 kfree(f->srf_macs); 2495 for (i = 0; i < f->num_rx_filters; i++) 2496 kfree(f->rx_filters[i].filter); 2497 2498 for (i = 0; i < f->num_tx_filters; i++) 2499 kfree(f->tx_filters[i].filter); 2500 2501 kfree(f->rx_filters); 2502 kfree(f->tx_filters); 2503 kfree(f); 2504 } 2505 EXPORT_SYMBOL(cfg80211_free_nan_func); 2506 2507 bool cfg80211_does_bw_fit_range(const struct ieee80211_freq_range *freq_range, 2508 u32 center_freq_khz, u32 bw_khz) 2509 { 2510 u32 start_freq_khz, end_freq_khz; 2511 2512 start_freq_khz = center_freq_khz - (bw_khz / 2); 2513 end_freq_khz = center_freq_khz + (bw_khz / 2); 2514 2515 if (start_freq_khz >= freq_range->start_freq_khz && 2516 end_freq_khz <= freq_range->end_freq_khz) 2517 return true; 2518 2519 return false; 2520 } 2521 2522 int cfg80211_sinfo_alloc_tid_stats(struct station_info *sinfo, gfp_t gfp) 2523 { 2524 sinfo->pertid = kcalloc(IEEE80211_NUM_TIDS + 1, 2525 sizeof(*(sinfo->pertid)), 2526 gfp); 2527 if (!sinfo->pertid) 2528 return -ENOMEM; 2529 2530 return 0; 2531 } 2532 EXPORT_SYMBOL(cfg80211_sinfo_alloc_tid_stats); 2533 2534 /* See IEEE 802.1H for LLC/SNAP encapsulation/decapsulation */ 2535 /* Ethernet-II snap header (RFC1042 for most EtherTypes) */ 2536 const unsigned char rfc1042_header[] __aligned(2) = 2537 { 0xaa, 0xaa, 0x03, 0x00, 0x00, 0x00 }; 2538 EXPORT_SYMBOL(rfc1042_header); 2539 2540 /* Bridge-Tunnel header (for EtherTypes ETH_P_AARP and ETH_P_IPX) */ 2541 const unsigned char bridge_tunnel_header[] __aligned(2) = 2542 { 0xaa, 0xaa, 0x03, 0x00, 0x00, 0xf8 }; 2543 EXPORT_SYMBOL(bridge_tunnel_header); 2544 2545 /* Layer 2 Update frame (802.2 Type 1 LLC XID Update response) */ 2546 struct iapp_layer2_update { 2547 u8 da[ETH_ALEN]; /* broadcast */ 2548 u8 sa[ETH_ALEN]; /* STA addr */ 2549 __be16 len; /* 6 */ 2550 u8 dsap; /* 0 */ 2551 u8 ssap; /* 0 */ 2552 u8 control; 2553 u8 xid_info[3]; 2554 } __packed; 2555 2556 void cfg80211_send_layer2_update(struct net_device *dev, const u8 *addr) 2557 { 2558 struct iapp_layer2_update *msg; 2559 struct sk_buff *skb; 2560 2561 /* Send Level 2 Update Frame to update forwarding tables in layer 2 2562 * bridge devices */ 2563 2564 skb = dev_alloc_skb(sizeof(*msg)); 2565 if (!skb) 2566 return; 2567 msg = skb_put(skb, sizeof(*msg)); 2568 2569 /* 802.2 Type 1 Logical Link Control (LLC) Exchange Identifier (XID) 2570 * Update response frame; IEEE Std 802.2-1998, 5.4.1.2.1 */ 2571 2572 eth_broadcast_addr(msg->da); 2573 ether_addr_copy(msg->sa, addr); 2574 msg->len = htons(6); 2575 msg->dsap = 0; 2576 msg->ssap = 0x01; /* NULL LSAP, CR Bit: Response */ 2577 msg->control = 0xaf; /* XID response lsb.1111F101. 2578 * F=0 (no poll command; unsolicited frame) */ 2579 msg->xid_info[0] = 0x81; /* XID format identifier */ 2580 msg->xid_info[1] = 1; /* LLC types/classes: Type 1 LLC */ 2581 msg->xid_info[2] = 0; /* XID sender's receive window size (RW) */ 2582 2583 skb->dev = dev; 2584 skb->protocol = eth_type_trans(skb, dev); 2585 memset(skb->cb, 0, sizeof(skb->cb)); 2586 netif_rx(skb); 2587 } 2588 EXPORT_SYMBOL(cfg80211_send_layer2_update); 2589 2590 int ieee80211_get_vht_max_nss(struct ieee80211_vht_cap *cap, 2591 enum ieee80211_vht_chanwidth bw, 2592 int mcs, bool ext_nss_bw_capable, 2593 unsigned int max_vht_nss) 2594 { 2595 u16 map = le16_to_cpu(cap->supp_mcs.rx_mcs_map); 2596 int ext_nss_bw; 2597 int supp_width; 2598 int i, mcs_encoding; 2599 2600 if (map == 0xffff) 2601 return 0; 2602 2603 if (WARN_ON(mcs > 9 || max_vht_nss > 8)) 2604 return 0; 2605 if (mcs <= 7) 2606 mcs_encoding = 0; 2607 else if (mcs == 8) 2608 mcs_encoding = 1; 2609 else 2610 mcs_encoding = 2; 2611 2612 if (!max_vht_nss) { 2613 /* find max_vht_nss for the given MCS */ 2614 for (i = 7; i >= 0; i--) { 2615 int supp = (map >> (2 * i)) & 3; 2616 2617 if (supp == 3) 2618 continue; 2619 2620 if (supp >= mcs_encoding) { 2621 max_vht_nss = i + 1; 2622 break; 2623 } 2624 } 2625 } 2626 2627 if (!(cap->supp_mcs.tx_mcs_map & 2628 cpu_to_le16(IEEE80211_VHT_EXT_NSS_BW_CAPABLE))) 2629 return max_vht_nss; 2630 2631 ext_nss_bw = le32_get_bits(cap->vht_cap_info, 2632 IEEE80211_VHT_CAP_EXT_NSS_BW_MASK); 2633 supp_width = le32_get_bits(cap->vht_cap_info, 2634 IEEE80211_VHT_CAP_SUPP_CHAN_WIDTH_MASK); 2635 2636 /* if not capable, treat ext_nss_bw as 0 */ 2637 if (!ext_nss_bw_capable) 2638 ext_nss_bw = 0; 2639 2640 /* This is invalid */ 2641 if (supp_width == 3) 2642 return 0; 2643 2644 /* This is an invalid combination so pretend nothing is supported */ 2645 if (supp_width == 2 && (ext_nss_bw == 1 || ext_nss_bw == 2)) 2646 return 0; 2647 2648 /* 2649 * Cover all the special cases according to IEEE 802.11-2016 2650 * Table 9-250. All other cases are either factor of 1 or not 2651 * valid/supported. 2652 */ 2653 switch (bw) { 2654 case IEEE80211_VHT_CHANWIDTH_USE_HT: 2655 case IEEE80211_VHT_CHANWIDTH_80MHZ: 2656 if ((supp_width == 1 || supp_width == 2) && 2657 ext_nss_bw == 3) 2658 return 2 * max_vht_nss; 2659 break; 2660 case IEEE80211_VHT_CHANWIDTH_160MHZ: 2661 if (supp_width == 0 && 2662 (ext_nss_bw == 1 || ext_nss_bw == 2)) 2663 return max_vht_nss / 2; 2664 if (supp_width == 0 && 2665 ext_nss_bw == 3) 2666 return (3 * max_vht_nss) / 4; 2667 if (supp_width == 1 && 2668 ext_nss_bw == 3) 2669 return 2 * max_vht_nss; 2670 break; 2671 case IEEE80211_VHT_CHANWIDTH_80P80MHZ: 2672 if (supp_width == 0 && ext_nss_bw == 1) 2673 return 0; /* not possible */ 2674 if (supp_width == 0 && 2675 ext_nss_bw == 2) 2676 return max_vht_nss / 2; 2677 if (supp_width == 0 && 2678 ext_nss_bw == 3) 2679 return (3 * max_vht_nss) / 4; 2680 if (supp_width == 1 && 2681 ext_nss_bw == 0) 2682 return 0; /* not possible */ 2683 if (supp_width == 1 && 2684 ext_nss_bw == 1) 2685 return max_vht_nss / 2; 2686 if (supp_width == 1 && 2687 ext_nss_bw == 2) 2688 return (3 * max_vht_nss) / 4; 2689 break; 2690 } 2691 2692 /* not covered or invalid combination received */ 2693 return max_vht_nss; 2694 } 2695 EXPORT_SYMBOL(ieee80211_get_vht_max_nss); 2696 2697 bool cfg80211_iftype_allowed(struct wiphy *wiphy, enum nl80211_iftype iftype, 2698 bool is_4addr, u8 check_swif) 2699 2700 { 2701 bool is_vlan = iftype == NL80211_IFTYPE_AP_VLAN; 2702 2703 switch (check_swif) { 2704 case 0: 2705 if (is_vlan && is_4addr) 2706 return wiphy->flags & WIPHY_FLAG_4ADDR_AP; 2707 return wiphy->interface_modes & BIT(iftype); 2708 case 1: 2709 if (!(wiphy->software_iftypes & BIT(iftype)) && is_vlan) 2710 return wiphy->flags & WIPHY_FLAG_4ADDR_AP; 2711 return wiphy->software_iftypes & BIT(iftype); 2712 default: 2713 break; 2714 } 2715 2716 return false; 2717 } 2718 EXPORT_SYMBOL(cfg80211_iftype_allowed); 2719 2720 void cfg80211_remove_link(struct wireless_dev *wdev, unsigned int link_id) 2721 { 2722 struct cfg80211_registered_device *rdev = wiphy_to_rdev(wdev->wiphy); 2723 2724 lockdep_assert_wiphy(wdev->wiphy); 2725 2726 switch (wdev->iftype) { 2727 case NL80211_IFTYPE_AP: 2728 case NL80211_IFTYPE_P2P_GO: 2729 cfg80211_stop_ap(rdev, wdev->netdev, link_id, true); 2730 break; 2731 default: 2732 /* per-link not relevant */ 2733 break; 2734 } 2735 2736 wdev->valid_links &= ~BIT(link_id); 2737 2738 rdev_del_intf_link(rdev, wdev, link_id); 2739 2740 eth_zero_addr(wdev->links[link_id].addr); 2741 } 2742 2743 void cfg80211_remove_links(struct wireless_dev *wdev) 2744 { 2745 unsigned int link_id; 2746 2747 /* 2748 * links are controlled by upper layers (userspace/cfg) 2749 * only for AP mode, so only remove them here for AP 2750 */ 2751 if (wdev->iftype != NL80211_IFTYPE_AP) 2752 return; 2753 2754 if (wdev->valid_links) { 2755 for_each_valid_link(wdev, link_id) 2756 cfg80211_remove_link(wdev, link_id); 2757 } 2758 } 2759 2760 int cfg80211_remove_virtual_intf(struct cfg80211_registered_device *rdev, 2761 struct wireless_dev *wdev) 2762 { 2763 cfg80211_remove_links(wdev); 2764 2765 return rdev_del_virtual_intf(rdev, wdev); 2766 } 2767 2768 const struct wiphy_iftype_ext_capab * 2769 cfg80211_get_iftype_ext_capa(struct wiphy *wiphy, enum nl80211_iftype type) 2770 { 2771 int i; 2772 2773 for (i = 0; i < wiphy->num_iftype_ext_capab; i++) { 2774 if (wiphy->iftype_ext_capab[i].iftype == type) 2775 return &wiphy->iftype_ext_capab[i]; 2776 } 2777 2778 return NULL; 2779 } 2780 EXPORT_SYMBOL(cfg80211_get_iftype_ext_capa); 2781