xref: /linux/net/wireless/util.c (revision 95db3b255fde4e830e5f8cc011eb404023f669d4)
1 /*
2  * Wireless utility functions
3  *
4  * Copyright 2007-2009	Johannes Berg <johannes@sipsolutions.net>
5  * Copyright 2013-2014  Intel Mobile Communications GmbH
6  */
7 #include <linux/export.h>
8 #include <linux/bitops.h>
9 #include <linux/etherdevice.h>
10 #include <linux/slab.h>
11 #include <net/cfg80211.h>
12 #include <net/ip.h>
13 #include <net/dsfield.h>
14 #include <linux/if_vlan.h>
15 #include <linux/mpls.h>
16 #include "core.h"
17 #include "rdev-ops.h"
18 
19 
20 struct ieee80211_rate *
21 ieee80211_get_response_rate(struct ieee80211_supported_band *sband,
22 			    u32 basic_rates, int bitrate)
23 {
24 	struct ieee80211_rate *result = &sband->bitrates[0];
25 	int i;
26 
27 	for (i = 0; i < sband->n_bitrates; i++) {
28 		if (!(basic_rates & BIT(i)))
29 			continue;
30 		if (sband->bitrates[i].bitrate > bitrate)
31 			continue;
32 		result = &sband->bitrates[i];
33 	}
34 
35 	return result;
36 }
37 EXPORT_SYMBOL(ieee80211_get_response_rate);
38 
39 u32 ieee80211_mandatory_rates(struct ieee80211_supported_band *sband,
40 			      enum nl80211_bss_scan_width scan_width)
41 {
42 	struct ieee80211_rate *bitrates;
43 	u32 mandatory_rates = 0;
44 	enum ieee80211_rate_flags mandatory_flag;
45 	int i;
46 
47 	if (WARN_ON(!sband))
48 		return 1;
49 
50 	if (sband->band == NL80211_BAND_2GHZ) {
51 		if (scan_width == NL80211_BSS_CHAN_WIDTH_5 ||
52 		    scan_width == NL80211_BSS_CHAN_WIDTH_10)
53 			mandatory_flag = IEEE80211_RATE_MANDATORY_G;
54 		else
55 			mandatory_flag = IEEE80211_RATE_MANDATORY_B;
56 	} else {
57 		mandatory_flag = IEEE80211_RATE_MANDATORY_A;
58 	}
59 
60 	bitrates = sband->bitrates;
61 	for (i = 0; i < sband->n_bitrates; i++)
62 		if (bitrates[i].flags & mandatory_flag)
63 			mandatory_rates |= BIT(i);
64 	return mandatory_rates;
65 }
66 EXPORT_SYMBOL(ieee80211_mandatory_rates);
67 
68 int ieee80211_channel_to_frequency(int chan, enum nl80211_band band)
69 {
70 	/* see 802.11 17.3.8.3.2 and Annex J
71 	 * there are overlapping channel numbers in 5GHz and 2GHz bands */
72 	if (chan <= 0)
73 		return 0; /* not supported */
74 	switch (band) {
75 	case NL80211_BAND_2GHZ:
76 		if (chan == 14)
77 			return 2484;
78 		else if (chan < 14)
79 			return 2407 + chan * 5;
80 		break;
81 	case NL80211_BAND_5GHZ:
82 		if (chan >= 182 && chan <= 196)
83 			return 4000 + chan * 5;
84 		else
85 			return 5000 + chan * 5;
86 		break;
87 	case NL80211_BAND_60GHZ:
88 		if (chan < 5)
89 			return 56160 + chan * 2160;
90 		break;
91 	default:
92 		;
93 	}
94 	return 0; /* not supported */
95 }
96 EXPORT_SYMBOL(ieee80211_channel_to_frequency);
97 
98 int ieee80211_frequency_to_channel(int freq)
99 {
100 	/* see 802.11 17.3.8.3.2 and Annex J */
101 	if (freq == 2484)
102 		return 14;
103 	else if (freq < 2484)
104 		return (freq - 2407) / 5;
105 	else if (freq >= 4910 && freq <= 4980)
106 		return (freq - 4000) / 5;
107 	else if (freq <= 45000) /* DMG band lower limit */
108 		return (freq - 5000) / 5;
109 	else if (freq >= 58320 && freq <= 64800)
110 		return (freq - 56160) / 2160;
111 	else
112 		return 0;
113 }
114 EXPORT_SYMBOL(ieee80211_frequency_to_channel);
115 
116 struct ieee80211_channel *__ieee80211_get_channel(struct wiphy *wiphy,
117 						  int freq)
118 {
119 	enum nl80211_band band;
120 	struct ieee80211_supported_band *sband;
121 	int i;
122 
123 	for (band = 0; band < NUM_NL80211_BANDS; band++) {
124 		sband = wiphy->bands[band];
125 
126 		if (!sband)
127 			continue;
128 
129 		for (i = 0; i < sband->n_channels; i++) {
130 			if (sband->channels[i].center_freq == freq)
131 				return &sband->channels[i];
132 		}
133 	}
134 
135 	return NULL;
136 }
137 EXPORT_SYMBOL(__ieee80211_get_channel);
138 
139 static void set_mandatory_flags_band(struct ieee80211_supported_band *sband,
140 				     enum nl80211_band band)
141 {
142 	int i, want;
143 
144 	switch (band) {
145 	case NL80211_BAND_5GHZ:
146 		want = 3;
147 		for (i = 0; i < sband->n_bitrates; i++) {
148 			if (sband->bitrates[i].bitrate == 60 ||
149 			    sband->bitrates[i].bitrate == 120 ||
150 			    sband->bitrates[i].bitrate == 240) {
151 				sband->bitrates[i].flags |=
152 					IEEE80211_RATE_MANDATORY_A;
153 				want--;
154 			}
155 		}
156 		WARN_ON(want);
157 		break;
158 	case NL80211_BAND_2GHZ:
159 		want = 7;
160 		for (i = 0; i < sband->n_bitrates; i++) {
161 			if (sband->bitrates[i].bitrate == 10) {
162 				sband->bitrates[i].flags |=
163 					IEEE80211_RATE_MANDATORY_B |
164 					IEEE80211_RATE_MANDATORY_G;
165 				want--;
166 			}
167 
168 			if (sband->bitrates[i].bitrate == 20 ||
169 			    sband->bitrates[i].bitrate == 55 ||
170 			    sband->bitrates[i].bitrate == 110 ||
171 			    sband->bitrates[i].bitrate == 60 ||
172 			    sband->bitrates[i].bitrate == 120 ||
173 			    sband->bitrates[i].bitrate == 240) {
174 				sband->bitrates[i].flags |=
175 					IEEE80211_RATE_MANDATORY_G;
176 				want--;
177 			}
178 
179 			if (sband->bitrates[i].bitrate != 10 &&
180 			    sband->bitrates[i].bitrate != 20 &&
181 			    sband->bitrates[i].bitrate != 55 &&
182 			    sband->bitrates[i].bitrate != 110)
183 				sband->bitrates[i].flags |=
184 					IEEE80211_RATE_ERP_G;
185 		}
186 		WARN_ON(want != 0 && want != 3 && want != 6);
187 		break;
188 	case NL80211_BAND_60GHZ:
189 		/* check for mandatory HT MCS 1..4 */
190 		WARN_ON(!sband->ht_cap.ht_supported);
191 		WARN_ON((sband->ht_cap.mcs.rx_mask[0] & 0x1e) != 0x1e);
192 		break;
193 	case NUM_NL80211_BANDS:
194 		WARN_ON(1);
195 		break;
196 	}
197 }
198 
199 void ieee80211_set_bitrate_flags(struct wiphy *wiphy)
200 {
201 	enum nl80211_band band;
202 
203 	for (band = 0; band < NUM_NL80211_BANDS; band++)
204 		if (wiphy->bands[band])
205 			set_mandatory_flags_band(wiphy->bands[band], band);
206 }
207 
208 bool cfg80211_supported_cipher_suite(struct wiphy *wiphy, u32 cipher)
209 {
210 	int i;
211 	for (i = 0; i < wiphy->n_cipher_suites; i++)
212 		if (cipher == wiphy->cipher_suites[i])
213 			return true;
214 	return false;
215 }
216 
217 int cfg80211_validate_key_settings(struct cfg80211_registered_device *rdev,
218 				   struct key_params *params, int key_idx,
219 				   bool pairwise, const u8 *mac_addr)
220 {
221 	if (key_idx > 5)
222 		return -EINVAL;
223 
224 	if (!pairwise && mac_addr && !(rdev->wiphy.flags & WIPHY_FLAG_IBSS_RSN))
225 		return -EINVAL;
226 
227 	if (pairwise && !mac_addr)
228 		return -EINVAL;
229 
230 	switch (params->cipher) {
231 	case WLAN_CIPHER_SUITE_TKIP:
232 	case WLAN_CIPHER_SUITE_CCMP:
233 	case WLAN_CIPHER_SUITE_CCMP_256:
234 	case WLAN_CIPHER_SUITE_GCMP:
235 	case WLAN_CIPHER_SUITE_GCMP_256:
236 		/* Disallow pairwise keys with non-zero index unless it's WEP
237 		 * or a vendor specific cipher (because current deployments use
238 		 * pairwise WEP keys with non-zero indices and for vendor
239 		 * specific ciphers this should be validated in the driver or
240 		 * hardware level - but 802.11i clearly specifies to use zero)
241 		 */
242 		if (pairwise && key_idx)
243 			return -EINVAL;
244 		break;
245 	case WLAN_CIPHER_SUITE_AES_CMAC:
246 	case WLAN_CIPHER_SUITE_BIP_CMAC_256:
247 	case WLAN_CIPHER_SUITE_BIP_GMAC_128:
248 	case WLAN_CIPHER_SUITE_BIP_GMAC_256:
249 		/* Disallow BIP (group-only) cipher as pairwise cipher */
250 		if (pairwise)
251 			return -EINVAL;
252 		break;
253 	default:
254 		break;
255 	}
256 
257 	switch (params->cipher) {
258 	case WLAN_CIPHER_SUITE_WEP40:
259 		if (params->key_len != WLAN_KEY_LEN_WEP40)
260 			return -EINVAL;
261 		break;
262 	case WLAN_CIPHER_SUITE_TKIP:
263 		if (params->key_len != WLAN_KEY_LEN_TKIP)
264 			return -EINVAL;
265 		break;
266 	case WLAN_CIPHER_SUITE_CCMP:
267 		if (params->key_len != WLAN_KEY_LEN_CCMP)
268 			return -EINVAL;
269 		break;
270 	case WLAN_CIPHER_SUITE_CCMP_256:
271 		if (params->key_len != WLAN_KEY_LEN_CCMP_256)
272 			return -EINVAL;
273 		break;
274 	case WLAN_CIPHER_SUITE_GCMP:
275 		if (params->key_len != WLAN_KEY_LEN_GCMP)
276 			return -EINVAL;
277 		break;
278 	case WLAN_CIPHER_SUITE_GCMP_256:
279 		if (params->key_len != WLAN_KEY_LEN_GCMP_256)
280 			return -EINVAL;
281 		break;
282 	case WLAN_CIPHER_SUITE_WEP104:
283 		if (params->key_len != WLAN_KEY_LEN_WEP104)
284 			return -EINVAL;
285 		break;
286 	case WLAN_CIPHER_SUITE_AES_CMAC:
287 		if (params->key_len != WLAN_KEY_LEN_AES_CMAC)
288 			return -EINVAL;
289 		break;
290 	case WLAN_CIPHER_SUITE_BIP_CMAC_256:
291 		if (params->key_len != WLAN_KEY_LEN_BIP_CMAC_256)
292 			return -EINVAL;
293 		break;
294 	case WLAN_CIPHER_SUITE_BIP_GMAC_128:
295 		if (params->key_len != WLAN_KEY_LEN_BIP_GMAC_128)
296 			return -EINVAL;
297 		break;
298 	case WLAN_CIPHER_SUITE_BIP_GMAC_256:
299 		if (params->key_len != WLAN_KEY_LEN_BIP_GMAC_256)
300 			return -EINVAL;
301 		break;
302 	default:
303 		/*
304 		 * We don't know anything about this algorithm,
305 		 * allow using it -- but the driver must check
306 		 * all parameters! We still check below whether
307 		 * or not the driver supports this algorithm,
308 		 * of course.
309 		 */
310 		break;
311 	}
312 
313 	if (params->seq) {
314 		switch (params->cipher) {
315 		case WLAN_CIPHER_SUITE_WEP40:
316 		case WLAN_CIPHER_SUITE_WEP104:
317 			/* These ciphers do not use key sequence */
318 			return -EINVAL;
319 		case WLAN_CIPHER_SUITE_TKIP:
320 		case WLAN_CIPHER_SUITE_CCMP:
321 		case WLAN_CIPHER_SUITE_CCMP_256:
322 		case WLAN_CIPHER_SUITE_GCMP:
323 		case WLAN_CIPHER_SUITE_GCMP_256:
324 		case WLAN_CIPHER_SUITE_AES_CMAC:
325 		case WLAN_CIPHER_SUITE_BIP_CMAC_256:
326 		case WLAN_CIPHER_SUITE_BIP_GMAC_128:
327 		case WLAN_CIPHER_SUITE_BIP_GMAC_256:
328 			if (params->seq_len != 6)
329 				return -EINVAL;
330 			break;
331 		}
332 	}
333 
334 	if (!cfg80211_supported_cipher_suite(&rdev->wiphy, params->cipher))
335 		return -EINVAL;
336 
337 	return 0;
338 }
339 
340 unsigned int __attribute_const__ ieee80211_hdrlen(__le16 fc)
341 {
342 	unsigned int hdrlen = 24;
343 
344 	if (ieee80211_is_data(fc)) {
345 		if (ieee80211_has_a4(fc))
346 			hdrlen = 30;
347 		if (ieee80211_is_data_qos(fc)) {
348 			hdrlen += IEEE80211_QOS_CTL_LEN;
349 			if (ieee80211_has_order(fc))
350 				hdrlen += IEEE80211_HT_CTL_LEN;
351 		}
352 		goto out;
353 	}
354 
355 	if (ieee80211_is_mgmt(fc)) {
356 		if (ieee80211_has_order(fc))
357 			hdrlen += IEEE80211_HT_CTL_LEN;
358 		goto out;
359 	}
360 
361 	if (ieee80211_is_ctl(fc)) {
362 		/*
363 		 * ACK and CTS are 10 bytes, all others 16. To see how
364 		 * to get this condition consider
365 		 *   subtype mask:   0b0000000011110000 (0x00F0)
366 		 *   ACK subtype:    0b0000000011010000 (0x00D0)
367 		 *   CTS subtype:    0b0000000011000000 (0x00C0)
368 		 *   bits that matter:         ^^^      (0x00E0)
369 		 *   value of those: 0b0000000011000000 (0x00C0)
370 		 */
371 		if ((fc & cpu_to_le16(0x00E0)) == cpu_to_le16(0x00C0))
372 			hdrlen = 10;
373 		else
374 			hdrlen = 16;
375 	}
376 out:
377 	return hdrlen;
378 }
379 EXPORT_SYMBOL(ieee80211_hdrlen);
380 
381 unsigned int ieee80211_get_hdrlen_from_skb(const struct sk_buff *skb)
382 {
383 	const struct ieee80211_hdr *hdr =
384 			(const struct ieee80211_hdr *)skb->data;
385 	unsigned int hdrlen;
386 
387 	if (unlikely(skb->len < 10))
388 		return 0;
389 	hdrlen = ieee80211_hdrlen(hdr->frame_control);
390 	if (unlikely(hdrlen > skb->len))
391 		return 0;
392 	return hdrlen;
393 }
394 EXPORT_SYMBOL(ieee80211_get_hdrlen_from_skb);
395 
396 static unsigned int __ieee80211_get_mesh_hdrlen(u8 flags)
397 {
398 	int ae = flags & MESH_FLAGS_AE;
399 	/* 802.11-2012, 8.2.4.7.3 */
400 	switch (ae) {
401 	default:
402 	case 0:
403 		return 6;
404 	case MESH_FLAGS_AE_A4:
405 		return 12;
406 	case MESH_FLAGS_AE_A5_A6:
407 		return 18;
408 	}
409 }
410 
411 unsigned int ieee80211_get_mesh_hdrlen(struct ieee80211s_hdr *meshhdr)
412 {
413 	return __ieee80211_get_mesh_hdrlen(meshhdr->flags);
414 }
415 EXPORT_SYMBOL(ieee80211_get_mesh_hdrlen);
416 
417 static int __ieee80211_data_to_8023(struct sk_buff *skb, struct ethhdr *ehdr,
418 				    const u8 *addr, enum nl80211_iftype iftype)
419 {
420 	struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data;
421 	struct {
422 		u8 hdr[ETH_ALEN] __aligned(2);
423 		__be16 proto;
424 	} payload;
425 	struct ethhdr tmp;
426 	u16 hdrlen;
427 	u8 mesh_flags = 0;
428 
429 	if (unlikely(!ieee80211_is_data_present(hdr->frame_control)))
430 		return -1;
431 
432 	hdrlen = ieee80211_hdrlen(hdr->frame_control);
433 	if (skb->len < hdrlen + 8)
434 		return -1;
435 
436 	/* convert IEEE 802.11 header + possible LLC headers into Ethernet
437 	 * header
438 	 * IEEE 802.11 address fields:
439 	 * ToDS FromDS Addr1 Addr2 Addr3 Addr4
440 	 *   0     0   DA    SA    BSSID n/a
441 	 *   0     1   DA    BSSID SA    n/a
442 	 *   1     0   BSSID SA    DA    n/a
443 	 *   1     1   RA    TA    DA    SA
444 	 */
445 	memcpy(tmp.h_dest, ieee80211_get_DA(hdr), ETH_ALEN);
446 	memcpy(tmp.h_source, ieee80211_get_SA(hdr), ETH_ALEN);
447 
448 	if (iftype == NL80211_IFTYPE_MESH_POINT)
449 		skb_copy_bits(skb, hdrlen, &mesh_flags, 1);
450 
451 	switch (hdr->frame_control &
452 		cpu_to_le16(IEEE80211_FCTL_TODS | IEEE80211_FCTL_FROMDS)) {
453 	case cpu_to_le16(IEEE80211_FCTL_TODS):
454 		if (unlikely(iftype != NL80211_IFTYPE_AP &&
455 			     iftype != NL80211_IFTYPE_AP_VLAN &&
456 			     iftype != NL80211_IFTYPE_P2P_GO))
457 			return -1;
458 		break;
459 	case cpu_to_le16(IEEE80211_FCTL_TODS | IEEE80211_FCTL_FROMDS):
460 		if (unlikely(iftype != NL80211_IFTYPE_WDS &&
461 			     iftype != NL80211_IFTYPE_MESH_POINT &&
462 			     iftype != NL80211_IFTYPE_AP_VLAN &&
463 			     iftype != NL80211_IFTYPE_STATION))
464 			return -1;
465 		if (iftype == NL80211_IFTYPE_MESH_POINT) {
466 			if (mesh_flags & MESH_FLAGS_AE_A4)
467 				return -1;
468 			if (mesh_flags & MESH_FLAGS_AE_A5_A6) {
469 				skb_copy_bits(skb, hdrlen +
470 					offsetof(struct ieee80211s_hdr, eaddr1),
471 					tmp.h_dest, 2 * ETH_ALEN);
472 			}
473 			hdrlen += __ieee80211_get_mesh_hdrlen(mesh_flags);
474 		}
475 		break;
476 	case cpu_to_le16(IEEE80211_FCTL_FROMDS):
477 		if ((iftype != NL80211_IFTYPE_STATION &&
478 		     iftype != NL80211_IFTYPE_P2P_CLIENT &&
479 		     iftype != NL80211_IFTYPE_MESH_POINT) ||
480 		    (is_multicast_ether_addr(tmp.h_dest) &&
481 		     ether_addr_equal(tmp.h_source, addr)))
482 			return -1;
483 		if (iftype == NL80211_IFTYPE_MESH_POINT) {
484 			if (mesh_flags & MESH_FLAGS_AE_A5_A6)
485 				return -1;
486 			if (mesh_flags & MESH_FLAGS_AE_A4)
487 				skb_copy_bits(skb, hdrlen +
488 					offsetof(struct ieee80211s_hdr, eaddr1),
489 					tmp.h_source, ETH_ALEN);
490 			hdrlen += __ieee80211_get_mesh_hdrlen(mesh_flags);
491 		}
492 		break;
493 	case cpu_to_le16(0):
494 		if (iftype != NL80211_IFTYPE_ADHOC &&
495 		    iftype != NL80211_IFTYPE_STATION &&
496 		    iftype != NL80211_IFTYPE_OCB)
497 				return -1;
498 		break;
499 	}
500 
501 	skb_copy_bits(skb, hdrlen, &payload, sizeof(payload));
502 	tmp.h_proto = payload.proto;
503 
504 	if (likely((ether_addr_equal(payload.hdr, rfc1042_header) &&
505 		    tmp.h_proto != htons(ETH_P_AARP) &&
506 		    tmp.h_proto != htons(ETH_P_IPX)) ||
507 		   ether_addr_equal(payload.hdr, bridge_tunnel_header)))
508 		/* remove RFC1042 or Bridge-Tunnel encapsulation and
509 		 * replace EtherType */
510 		hdrlen += ETH_ALEN + 2;
511 	else
512 		tmp.h_proto = htons(skb->len - hdrlen);
513 
514 	pskb_pull(skb, hdrlen);
515 
516 	if (!ehdr)
517 		ehdr = (struct ethhdr *) skb_push(skb, sizeof(struct ethhdr));
518 	memcpy(ehdr, &tmp, sizeof(tmp));
519 
520 	return 0;
521 }
522 
523 int ieee80211_data_to_8023(struct sk_buff *skb, const u8 *addr,
524 			   enum nl80211_iftype iftype)
525 {
526 	return __ieee80211_data_to_8023(skb, NULL, addr, iftype);
527 }
528 EXPORT_SYMBOL(ieee80211_data_to_8023);
529 
530 int ieee80211_data_from_8023(struct sk_buff *skb, const u8 *addr,
531 			     enum nl80211_iftype iftype,
532 			     const u8 *bssid, bool qos)
533 {
534 	struct ieee80211_hdr hdr;
535 	u16 hdrlen, ethertype;
536 	__le16 fc;
537 	const u8 *encaps_data;
538 	int encaps_len, skip_header_bytes;
539 	int nh_pos, h_pos;
540 	int head_need;
541 
542 	if (unlikely(skb->len < ETH_HLEN))
543 		return -EINVAL;
544 
545 	nh_pos = skb_network_header(skb) - skb->data;
546 	h_pos = skb_transport_header(skb) - skb->data;
547 
548 	/* convert Ethernet header to proper 802.11 header (based on
549 	 * operation mode) */
550 	ethertype = (skb->data[12] << 8) | skb->data[13];
551 	fc = cpu_to_le16(IEEE80211_FTYPE_DATA | IEEE80211_STYPE_DATA);
552 
553 	switch (iftype) {
554 	case NL80211_IFTYPE_AP:
555 	case NL80211_IFTYPE_AP_VLAN:
556 	case NL80211_IFTYPE_P2P_GO:
557 		fc |= cpu_to_le16(IEEE80211_FCTL_FROMDS);
558 		/* DA BSSID SA */
559 		memcpy(hdr.addr1, skb->data, ETH_ALEN);
560 		memcpy(hdr.addr2, addr, ETH_ALEN);
561 		memcpy(hdr.addr3, skb->data + ETH_ALEN, ETH_ALEN);
562 		hdrlen = 24;
563 		break;
564 	case NL80211_IFTYPE_STATION:
565 	case NL80211_IFTYPE_P2P_CLIENT:
566 		fc |= cpu_to_le16(IEEE80211_FCTL_TODS);
567 		/* BSSID SA DA */
568 		memcpy(hdr.addr1, bssid, ETH_ALEN);
569 		memcpy(hdr.addr2, skb->data + ETH_ALEN, ETH_ALEN);
570 		memcpy(hdr.addr3, skb->data, ETH_ALEN);
571 		hdrlen = 24;
572 		break;
573 	case NL80211_IFTYPE_OCB:
574 	case NL80211_IFTYPE_ADHOC:
575 		/* DA SA BSSID */
576 		memcpy(hdr.addr1, skb->data, ETH_ALEN);
577 		memcpy(hdr.addr2, skb->data + ETH_ALEN, ETH_ALEN);
578 		memcpy(hdr.addr3, bssid, ETH_ALEN);
579 		hdrlen = 24;
580 		break;
581 	default:
582 		return -EOPNOTSUPP;
583 	}
584 
585 	if (qos) {
586 		fc |= cpu_to_le16(IEEE80211_STYPE_QOS_DATA);
587 		hdrlen += 2;
588 	}
589 
590 	hdr.frame_control = fc;
591 	hdr.duration_id = 0;
592 	hdr.seq_ctrl = 0;
593 
594 	skip_header_bytes = ETH_HLEN;
595 	if (ethertype == ETH_P_AARP || ethertype == ETH_P_IPX) {
596 		encaps_data = bridge_tunnel_header;
597 		encaps_len = sizeof(bridge_tunnel_header);
598 		skip_header_bytes -= 2;
599 	} else if (ethertype >= ETH_P_802_3_MIN) {
600 		encaps_data = rfc1042_header;
601 		encaps_len = sizeof(rfc1042_header);
602 		skip_header_bytes -= 2;
603 	} else {
604 		encaps_data = NULL;
605 		encaps_len = 0;
606 	}
607 
608 	skb_pull(skb, skip_header_bytes);
609 	nh_pos -= skip_header_bytes;
610 	h_pos -= skip_header_bytes;
611 
612 	head_need = hdrlen + encaps_len - skb_headroom(skb);
613 
614 	if (head_need > 0 || skb_cloned(skb)) {
615 		head_need = max(head_need, 0);
616 		if (head_need)
617 			skb_orphan(skb);
618 
619 		if (pskb_expand_head(skb, head_need, 0, GFP_ATOMIC))
620 			return -ENOMEM;
621 
622 		skb->truesize += head_need;
623 	}
624 
625 	if (encaps_data) {
626 		memcpy(skb_push(skb, encaps_len), encaps_data, encaps_len);
627 		nh_pos += encaps_len;
628 		h_pos += encaps_len;
629 	}
630 
631 	memcpy(skb_push(skb, hdrlen), &hdr, hdrlen);
632 
633 	nh_pos += hdrlen;
634 	h_pos += hdrlen;
635 
636 	/* Update skb pointers to various headers since this modified frame
637 	 * is going to go through Linux networking code that may potentially
638 	 * need things like pointer to IP header. */
639 	skb_reset_mac_header(skb);
640 	skb_set_network_header(skb, nh_pos);
641 	skb_set_transport_header(skb, h_pos);
642 
643 	return 0;
644 }
645 EXPORT_SYMBOL(ieee80211_data_from_8023);
646 
647 static void
648 __frame_add_frag(struct sk_buff *skb, struct page *page,
649 		 void *ptr, int len, int size)
650 {
651 	struct skb_shared_info *sh = skb_shinfo(skb);
652 	int page_offset;
653 
654 	page_ref_inc(page);
655 	page_offset = ptr - page_address(page);
656 	skb_add_rx_frag(skb, sh->nr_frags, page, page_offset, len, size);
657 }
658 
659 static void
660 __ieee80211_amsdu_copy_frag(struct sk_buff *skb, struct sk_buff *frame,
661 			    int offset, int len)
662 {
663 	struct skb_shared_info *sh = skb_shinfo(skb);
664 	const skb_frag_t *frag = &sh->frags[-1];
665 	struct page *frag_page;
666 	void *frag_ptr;
667 	int frag_len, frag_size;
668 	int head_size = skb->len - skb->data_len;
669 	int cur_len;
670 
671 	frag_page = virt_to_head_page(skb->head);
672 	frag_ptr = skb->data;
673 	frag_size = head_size;
674 
675 	while (offset >= frag_size) {
676 		offset -= frag_size;
677 		frag++;
678 		frag_page = skb_frag_page(frag);
679 		frag_ptr = skb_frag_address(frag);
680 		frag_size = skb_frag_size(frag);
681 	}
682 
683 	frag_ptr += offset;
684 	frag_len = frag_size - offset;
685 
686 	cur_len = min(len, frag_len);
687 
688 	__frame_add_frag(frame, frag_page, frag_ptr, cur_len, frag_size);
689 	len -= cur_len;
690 
691 	while (len > 0) {
692 		frag++;
693 		frag_len = skb_frag_size(frag);
694 		cur_len = min(len, frag_len);
695 		__frame_add_frag(frame, skb_frag_page(frag),
696 				 skb_frag_address(frag), cur_len, frag_len);
697 		len -= cur_len;
698 	}
699 }
700 
701 static struct sk_buff *
702 __ieee80211_amsdu_copy(struct sk_buff *skb, unsigned int hlen,
703 		       int offset, int len, bool reuse_frag)
704 {
705 	struct sk_buff *frame;
706 	int cur_len = len;
707 
708 	if (skb->len - offset < len)
709 		return NULL;
710 
711 	/*
712 	 * When reusing framents, copy some data to the head to simplify
713 	 * ethernet header handling and speed up protocol header processing
714 	 * in the stack later.
715 	 */
716 	if (reuse_frag)
717 		cur_len = min_t(int, len, 32);
718 
719 	/*
720 	 * Allocate and reserve two bytes more for payload
721 	 * alignment since sizeof(struct ethhdr) is 14.
722 	 */
723 	frame = dev_alloc_skb(hlen + sizeof(struct ethhdr) + 2 + cur_len);
724 	if (!frame)
725 		return NULL;
726 
727 	skb_reserve(frame, hlen + sizeof(struct ethhdr) + 2);
728 	skb_copy_bits(skb, offset, skb_put(frame, cur_len), cur_len);
729 
730 	len -= cur_len;
731 	if (!len)
732 		return frame;
733 
734 	offset += cur_len;
735 	__ieee80211_amsdu_copy_frag(skb, frame, offset, len);
736 
737 	return frame;
738 }
739 
740 void ieee80211_amsdu_to_8023s(struct sk_buff *skb, struct sk_buff_head *list,
741 			      const u8 *addr, enum nl80211_iftype iftype,
742 			      const unsigned int extra_headroom,
743 			      bool has_80211_header)
744 {
745 	unsigned int hlen = ALIGN(extra_headroom, 4);
746 	struct sk_buff *frame = NULL;
747 	u16 ethertype;
748 	u8 *payload;
749 	int offset = 0, remaining, err;
750 	struct ethhdr eth;
751 	bool reuse_frag = skb->head_frag && !skb_has_frag_list(skb);
752 	bool reuse_skb = false;
753 	bool last = false;
754 
755 	if (has_80211_header) {
756 		err = __ieee80211_data_to_8023(skb, &eth, addr, iftype);
757 		if (err)
758 			goto out;
759 	}
760 
761 	while (!last) {
762 		unsigned int subframe_len;
763 		int len;
764 		u8 padding;
765 
766 		skb_copy_bits(skb, offset, &eth, sizeof(eth));
767 		len = ntohs(eth.h_proto);
768 		subframe_len = sizeof(struct ethhdr) + len;
769 		padding = (4 - subframe_len) & 0x3;
770 
771 		/* the last MSDU has no padding */
772 		remaining = skb->len - offset;
773 		if (subframe_len > remaining)
774 			goto purge;
775 
776 		offset += sizeof(struct ethhdr);
777 		/* reuse skb for the last subframe */
778 		last = remaining <= subframe_len + padding;
779 		if (!skb_is_nonlinear(skb) && !reuse_frag && last) {
780 			skb_pull(skb, offset);
781 			frame = skb;
782 			reuse_skb = true;
783 		} else {
784 			frame = __ieee80211_amsdu_copy(skb, hlen, offset, len,
785 						       reuse_frag);
786 			if (!frame)
787 				goto purge;
788 
789 			offset += len + padding;
790 		}
791 
792 		skb_reset_network_header(frame);
793 		frame->dev = skb->dev;
794 		frame->priority = skb->priority;
795 
796 		payload = frame->data;
797 		ethertype = (payload[6] << 8) | payload[7];
798 		if (likely((ether_addr_equal(payload, rfc1042_header) &&
799 			    ethertype != ETH_P_AARP && ethertype != ETH_P_IPX) ||
800 			   ether_addr_equal(payload, bridge_tunnel_header))) {
801 			eth.h_proto = htons(ethertype);
802 			skb_pull(frame, ETH_ALEN + 2);
803 		}
804 
805 		memcpy(skb_push(frame, sizeof(eth)), &eth, sizeof(eth));
806 		__skb_queue_tail(list, frame);
807 	}
808 
809 	if (!reuse_skb)
810 		dev_kfree_skb(skb);
811 
812 	return;
813 
814  purge:
815 	__skb_queue_purge(list);
816  out:
817 	dev_kfree_skb(skb);
818 }
819 EXPORT_SYMBOL(ieee80211_amsdu_to_8023s);
820 
821 /* Given a data frame determine the 802.1p/1d tag to use. */
822 unsigned int cfg80211_classify8021d(struct sk_buff *skb,
823 				    struct cfg80211_qos_map *qos_map)
824 {
825 	unsigned int dscp;
826 	unsigned char vlan_priority;
827 
828 	/* skb->priority values from 256->263 are magic values to
829 	 * directly indicate a specific 802.1d priority.  This is used
830 	 * to allow 802.1d priority to be passed directly in from VLAN
831 	 * tags, etc.
832 	 */
833 	if (skb->priority >= 256 && skb->priority <= 263)
834 		return skb->priority - 256;
835 
836 	if (skb_vlan_tag_present(skb)) {
837 		vlan_priority = (skb_vlan_tag_get(skb) & VLAN_PRIO_MASK)
838 			>> VLAN_PRIO_SHIFT;
839 		if (vlan_priority > 0)
840 			return vlan_priority;
841 	}
842 
843 	switch (skb->protocol) {
844 	case htons(ETH_P_IP):
845 		dscp = ipv4_get_dsfield(ip_hdr(skb)) & 0xfc;
846 		break;
847 	case htons(ETH_P_IPV6):
848 		dscp = ipv6_get_dsfield(ipv6_hdr(skb)) & 0xfc;
849 		break;
850 	case htons(ETH_P_MPLS_UC):
851 	case htons(ETH_P_MPLS_MC): {
852 		struct mpls_label mpls_tmp, *mpls;
853 
854 		mpls = skb_header_pointer(skb, sizeof(struct ethhdr),
855 					  sizeof(*mpls), &mpls_tmp);
856 		if (!mpls)
857 			return 0;
858 
859 		return (ntohl(mpls->entry) & MPLS_LS_TC_MASK)
860 			>> MPLS_LS_TC_SHIFT;
861 	}
862 	case htons(ETH_P_80221):
863 		/* 802.21 is always network control traffic */
864 		return 7;
865 	default:
866 		return 0;
867 	}
868 
869 	if (qos_map) {
870 		unsigned int i, tmp_dscp = dscp >> 2;
871 
872 		for (i = 0; i < qos_map->num_des; i++) {
873 			if (tmp_dscp == qos_map->dscp_exception[i].dscp)
874 				return qos_map->dscp_exception[i].up;
875 		}
876 
877 		for (i = 0; i < 8; i++) {
878 			if (tmp_dscp >= qos_map->up[i].low &&
879 			    tmp_dscp <= qos_map->up[i].high)
880 				return i;
881 		}
882 	}
883 
884 	return dscp >> 5;
885 }
886 EXPORT_SYMBOL(cfg80211_classify8021d);
887 
888 const u8 *ieee80211_bss_get_ie(struct cfg80211_bss *bss, u8 ie)
889 {
890 	const struct cfg80211_bss_ies *ies;
891 
892 	ies = rcu_dereference(bss->ies);
893 	if (!ies)
894 		return NULL;
895 
896 	return cfg80211_find_ie(ie, ies->data, ies->len);
897 }
898 EXPORT_SYMBOL(ieee80211_bss_get_ie);
899 
900 void cfg80211_upload_connect_keys(struct wireless_dev *wdev)
901 {
902 	struct cfg80211_registered_device *rdev = wiphy_to_rdev(wdev->wiphy);
903 	struct net_device *dev = wdev->netdev;
904 	int i;
905 
906 	if (!wdev->connect_keys)
907 		return;
908 
909 	for (i = 0; i < 6; i++) {
910 		if (!wdev->connect_keys->params[i].cipher)
911 			continue;
912 		if (rdev_add_key(rdev, dev, i, false, NULL,
913 				 &wdev->connect_keys->params[i])) {
914 			netdev_err(dev, "failed to set key %d\n", i);
915 			continue;
916 		}
917 		if (wdev->connect_keys->def == i)
918 			if (rdev_set_default_key(rdev, dev, i, true, true)) {
919 				netdev_err(dev, "failed to set defkey %d\n", i);
920 				continue;
921 			}
922 		if (wdev->connect_keys->defmgmt == i)
923 			if (rdev_set_default_mgmt_key(rdev, dev, i))
924 				netdev_err(dev, "failed to set mgtdef %d\n", i);
925 	}
926 
927 	kzfree(wdev->connect_keys);
928 	wdev->connect_keys = NULL;
929 }
930 
931 void cfg80211_process_wdev_events(struct wireless_dev *wdev)
932 {
933 	struct cfg80211_event *ev;
934 	unsigned long flags;
935 	const u8 *bssid = NULL;
936 
937 	spin_lock_irqsave(&wdev->event_lock, flags);
938 	while (!list_empty(&wdev->event_list)) {
939 		ev = list_first_entry(&wdev->event_list,
940 				      struct cfg80211_event, list);
941 		list_del(&ev->list);
942 		spin_unlock_irqrestore(&wdev->event_lock, flags);
943 
944 		wdev_lock(wdev);
945 		switch (ev->type) {
946 		case EVENT_CONNECT_RESULT:
947 			if (!is_zero_ether_addr(ev->cr.bssid))
948 				bssid = ev->cr.bssid;
949 			__cfg80211_connect_result(
950 				wdev->netdev, bssid,
951 				ev->cr.req_ie, ev->cr.req_ie_len,
952 				ev->cr.resp_ie, ev->cr.resp_ie_len,
953 				ev->cr.status,
954 				ev->cr.status == WLAN_STATUS_SUCCESS,
955 				ev->cr.bss);
956 			break;
957 		case EVENT_ROAMED:
958 			__cfg80211_roamed(wdev, ev->rm.bss, ev->rm.req_ie,
959 					  ev->rm.req_ie_len, ev->rm.resp_ie,
960 					  ev->rm.resp_ie_len);
961 			break;
962 		case EVENT_DISCONNECTED:
963 			__cfg80211_disconnected(wdev->netdev,
964 						ev->dc.ie, ev->dc.ie_len,
965 						ev->dc.reason,
966 						!ev->dc.locally_generated);
967 			break;
968 		case EVENT_IBSS_JOINED:
969 			__cfg80211_ibss_joined(wdev->netdev, ev->ij.bssid,
970 					       ev->ij.channel);
971 			break;
972 		case EVENT_STOPPED:
973 			__cfg80211_leave(wiphy_to_rdev(wdev->wiphy), wdev);
974 			break;
975 		}
976 		wdev_unlock(wdev);
977 
978 		kfree(ev);
979 
980 		spin_lock_irqsave(&wdev->event_lock, flags);
981 	}
982 	spin_unlock_irqrestore(&wdev->event_lock, flags);
983 }
984 
985 void cfg80211_process_rdev_events(struct cfg80211_registered_device *rdev)
986 {
987 	struct wireless_dev *wdev;
988 
989 	ASSERT_RTNL();
990 
991 	list_for_each_entry(wdev, &rdev->wiphy.wdev_list, list)
992 		cfg80211_process_wdev_events(wdev);
993 }
994 
995 int cfg80211_change_iface(struct cfg80211_registered_device *rdev,
996 			  struct net_device *dev, enum nl80211_iftype ntype,
997 			  u32 *flags, struct vif_params *params)
998 {
999 	int err;
1000 	enum nl80211_iftype otype = dev->ieee80211_ptr->iftype;
1001 
1002 	ASSERT_RTNL();
1003 
1004 	/* don't support changing VLANs, you just re-create them */
1005 	if (otype == NL80211_IFTYPE_AP_VLAN)
1006 		return -EOPNOTSUPP;
1007 
1008 	/* cannot change into P2P device type */
1009 	if (ntype == NL80211_IFTYPE_P2P_DEVICE)
1010 		return -EOPNOTSUPP;
1011 
1012 	if (!rdev->ops->change_virtual_intf ||
1013 	    !(rdev->wiphy.interface_modes & (1 << ntype)))
1014 		return -EOPNOTSUPP;
1015 
1016 	/* if it's part of a bridge, reject changing type to station/ibss */
1017 	if ((dev->priv_flags & IFF_BRIDGE_PORT) &&
1018 	    (ntype == NL80211_IFTYPE_ADHOC ||
1019 	     ntype == NL80211_IFTYPE_STATION ||
1020 	     ntype == NL80211_IFTYPE_P2P_CLIENT))
1021 		return -EBUSY;
1022 
1023 	if (ntype != otype) {
1024 		dev->ieee80211_ptr->use_4addr = false;
1025 		dev->ieee80211_ptr->mesh_id_up_len = 0;
1026 		wdev_lock(dev->ieee80211_ptr);
1027 		rdev_set_qos_map(rdev, dev, NULL);
1028 		wdev_unlock(dev->ieee80211_ptr);
1029 
1030 		switch (otype) {
1031 		case NL80211_IFTYPE_AP:
1032 			cfg80211_stop_ap(rdev, dev, true);
1033 			break;
1034 		case NL80211_IFTYPE_ADHOC:
1035 			cfg80211_leave_ibss(rdev, dev, false);
1036 			break;
1037 		case NL80211_IFTYPE_STATION:
1038 		case NL80211_IFTYPE_P2P_CLIENT:
1039 			wdev_lock(dev->ieee80211_ptr);
1040 			cfg80211_disconnect(rdev, dev,
1041 					    WLAN_REASON_DEAUTH_LEAVING, true);
1042 			wdev_unlock(dev->ieee80211_ptr);
1043 			break;
1044 		case NL80211_IFTYPE_MESH_POINT:
1045 			/* mesh should be handled? */
1046 			break;
1047 		default:
1048 			break;
1049 		}
1050 
1051 		cfg80211_process_rdev_events(rdev);
1052 	}
1053 
1054 	err = rdev_change_virtual_intf(rdev, dev, ntype, flags, params);
1055 
1056 	WARN_ON(!err && dev->ieee80211_ptr->iftype != ntype);
1057 
1058 	if (!err && params && params->use_4addr != -1)
1059 		dev->ieee80211_ptr->use_4addr = params->use_4addr;
1060 
1061 	if (!err) {
1062 		dev->priv_flags &= ~IFF_DONT_BRIDGE;
1063 		switch (ntype) {
1064 		case NL80211_IFTYPE_STATION:
1065 			if (dev->ieee80211_ptr->use_4addr)
1066 				break;
1067 			/* fall through */
1068 		case NL80211_IFTYPE_OCB:
1069 		case NL80211_IFTYPE_P2P_CLIENT:
1070 		case NL80211_IFTYPE_ADHOC:
1071 			dev->priv_flags |= IFF_DONT_BRIDGE;
1072 			break;
1073 		case NL80211_IFTYPE_P2P_GO:
1074 		case NL80211_IFTYPE_AP:
1075 		case NL80211_IFTYPE_AP_VLAN:
1076 		case NL80211_IFTYPE_WDS:
1077 		case NL80211_IFTYPE_MESH_POINT:
1078 			/* bridging OK */
1079 			break;
1080 		case NL80211_IFTYPE_MONITOR:
1081 			/* monitor can't bridge anyway */
1082 			break;
1083 		case NL80211_IFTYPE_UNSPECIFIED:
1084 		case NUM_NL80211_IFTYPES:
1085 			/* not happening */
1086 			break;
1087 		case NL80211_IFTYPE_P2P_DEVICE:
1088 			WARN_ON(1);
1089 			break;
1090 		}
1091 	}
1092 
1093 	if (!err && ntype != otype && netif_running(dev)) {
1094 		cfg80211_update_iface_num(rdev, ntype, 1);
1095 		cfg80211_update_iface_num(rdev, otype, -1);
1096 	}
1097 
1098 	return err;
1099 }
1100 
1101 static u32 cfg80211_calculate_bitrate_60g(struct rate_info *rate)
1102 {
1103 	static const u32 __mcs2bitrate[] = {
1104 		/* control PHY */
1105 		[0] =   275,
1106 		/* SC PHY */
1107 		[1] =  3850,
1108 		[2] =  7700,
1109 		[3] =  9625,
1110 		[4] = 11550,
1111 		[5] = 12512, /* 1251.25 mbps */
1112 		[6] = 15400,
1113 		[7] = 19250,
1114 		[8] = 23100,
1115 		[9] = 25025,
1116 		[10] = 30800,
1117 		[11] = 38500,
1118 		[12] = 46200,
1119 		/* OFDM PHY */
1120 		[13] =  6930,
1121 		[14] =  8662, /* 866.25 mbps */
1122 		[15] = 13860,
1123 		[16] = 17325,
1124 		[17] = 20790,
1125 		[18] = 27720,
1126 		[19] = 34650,
1127 		[20] = 41580,
1128 		[21] = 45045,
1129 		[22] = 51975,
1130 		[23] = 62370,
1131 		[24] = 67568, /* 6756.75 mbps */
1132 		/* LP-SC PHY */
1133 		[25] =  6260,
1134 		[26] =  8340,
1135 		[27] = 11120,
1136 		[28] = 12510,
1137 		[29] = 16680,
1138 		[30] = 22240,
1139 		[31] = 25030,
1140 	};
1141 
1142 	if (WARN_ON_ONCE(rate->mcs >= ARRAY_SIZE(__mcs2bitrate)))
1143 		return 0;
1144 
1145 	return __mcs2bitrate[rate->mcs];
1146 }
1147 
1148 static u32 cfg80211_calculate_bitrate_vht(struct rate_info *rate)
1149 {
1150 	static const u32 base[4][10] = {
1151 		{   6500000,
1152 		   13000000,
1153 		   19500000,
1154 		   26000000,
1155 		   39000000,
1156 		   52000000,
1157 		   58500000,
1158 		   65000000,
1159 		   78000000,
1160 		   0,
1161 		},
1162 		{  13500000,
1163 		   27000000,
1164 		   40500000,
1165 		   54000000,
1166 		   81000000,
1167 		  108000000,
1168 		  121500000,
1169 		  135000000,
1170 		  162000000,
1171 		  180000000,
1172 		},
1173 		{  29300000,
1174 		   58500000,
1175 		   87800000,
1176 		  117000000,
1177 		  175500000,
1178 		  234000000,
1179 		  263300000,
1180 		  292500000,
1181 		  351000000,
1182 		  390000000,
1183 		},
1184 		{  58500000,
1185 		  117000000,
1186 		  175500000,
1187 		  234000000,
1188 		  351000000,
1189 		  468000000,
1190 		  526500000,
1191 		  585000000,
1192 		  702000000,
1193 		  780000000,
1194 		},
1195 	};
1196 	u32 bitrate;
1197 	int idx;
1198 
1199 	if (WARN_ON_ONCE(rate->mcs > 9))
1200 		return 0;
1201 
1202 	switch (rate->bw) {
1203 	case RATE_INFO_BW_160:
1204 		idx = 3;
1205 		break;
1206 	case RATE_INFO_BW_80:
1207 		idx = 2;
1208 		break;
1209 	case RATE_INFO_BW_40:
1210 		idx = 1;
1211 		break;
1212 	case RATE_INFO_BW_5:
1213 	case RATE_INFO_BW_10:
1214 	default:
1215 		WARN_ON(1);
1216 		/* fall through */
1217 	case RATE_INFO_BW_20:
1218 		idx = 0;
1219 	}
1220 
1221 	bitrate = base[idx][rate->mcs];
1222 	bitrate *= rate->nss;
1223 
1224 	if (rate->flags & RATE_INFO_FLAGS_SHORT_GI)
1225 		bitrate = (bitrate / 9) * 10;
1226 
1227 	/* do NOT round down here */
1228 	return (bitrate + 50000) / 100000;
1229 }
1230 
1231 u32 cfg80211_calculate_bitrate(struct rate_info *rate)
1232 {
1233 	int modulation, streams, bitrate;
1234 
1235 	if (!(rate->flags & RATE_INFO_FLAGS_MCS) &&
1236 	    !(rate->flags & RATE_INFO_FLAGS_VHT_MCS))
1237 		return rate->legacy;
1238 	if (rate->flags & RATE_INFO_FLAGS_60G)
1239 		return cfg80211_calculate_bitrate_60g(rate);
1240 	if (rate->flags & RATE_INFO_FLAGS_VHT_MCS)
1241 		return cfg80211_calculate_bitrate_vht(rate);
1242 
1243 	/* the formula below does only work for MCS values smaller than 32 */
1244 	if (WARN_ON_ONCE(rate->mcs >= 32))
1245 		return 0;
1246 
1247 	modulation = rate->mcs & 7;
1248 	streams = (rate->mcs >> 3) + 1;
1249 
1250 	bitrate = (rate->bw == RATE_INFO_BW_40) ? 13500000 : 6500000;
1251 
1252 	if (modulation < 4)
1253 		bitrate *= (modulation + 1);
1254 	else if (modulation == 4)
1255 		bitrate *= (modulation + 2);
1256 	else
1257 		bitrate *= (modulation + 3);
1258 
1259 	bitrate *= streams;
1260 
1261 	if (rate->flags & RATE_INFO_FLAGS_SHORT_GI)
1262 		bitrate = (bitrate / 9) * 10;
1263 
1264 	/* do NOT round down here */
1265 	return (bitrate + 50000) / 100000;
1266 }
1267 EXPORT_SYMBOL(cfg80211_calculate_bitrate);
1268 
1269 int cfg80211_get_p2p_attr(const u8 *ies, unsigned int len,
1270 			  enum ieee80211_p2p_attr_id attr,
1271 			  u8 *buf, unsigned int bufsize)
1272 {
1273 	u8 *out = buf;
1274 	u16 attr_remaining = 0;
1275 	bool desired_attr = false;
1276 	u16 desired_len = 0;
1277 
1278 	while (len > 0) {
1279 		unsigned int iedatalen;
1280 		unsigned int copy;
1281 		const u8 *iedata;
1282 
1283 		if (len < 2)
1284 			return -EILSEQ;
1285 		iedatalen = ies[1];
1286 		if (iedatalen + 2 > len)
1287 			return -EILSEQ;
1288 
1289 		if (ies[0] != WLAN_EID_VENDOR_SPECIFIC)
1290 			goto cont;
1291 
1292 		if (iedatalen < 4)
1293 			goto cont;
1294 
1295 		iedata = ies + 2;
1296 
1297 		/* check WFA OUI, P2P subtype */
1298 		if (iedata[0] != 0x50 || iedata[1] != 0x6f ||
1299 		    iedata[2] != 0x9a || iedata[3] != 0x09)
1300 			goto cont;
1301 
1302 		iedatalen -= 4;
1303 		iedata += 4;
1304 
1305 		/* check attribute continuation into this IE */
1306 		copy = min_t(unsigned int, attr_remaining, iedatalen);
1307 		if (copy && desired_attr) {
1308 			desired_len += copy;
1309 			if (out) {
1310 				memcpy(out, iedata, min(bufsize, copy));
1311 				out += min(bufsize, copy);
1312 				bufsize -= min(bufsize, copy);
1313 			}
1314 
1315 
1316 			if (copy == attr_remaining)
1317 				return desired_len;
1318 		}
1319 
1320 		attr_remaining -= copy;
1321 		if (attr_remaining)
1322 			goto cont;
1323 
1324 		iedatalen -= copy;
1325 		iedata += copy;
1326 
1327 		while (iedatalen > 0) {
1328 			u16 attr_len;
1329 
1330 			/* P2P attribute ID & size must fit */
1331 			if (iedatalen < 3)
1332 				return -EILSEQ;
1333 			desired_attr = iedata[0] == attr;
1334 			attr_len = get_unaligned_le16(iedata + 1);
1335 			iedatalen -= 3;
1336 			iedata += 3;
1337 
1338 			copy = min_t(unsigned int, attr_len, iedatalen);
1339 
1340 			if (desired_attr) {
1341 				desired_len += copy;
1342 				if (out) {
1343 					memcpy(out, iedata, min(bufsize, copy));
1344 					out += min(bufsize, copy);
1345 					bufsize -= min(bufsize, copy);
1346 				}
1347 
1348 				if (copy == attr_len)
1349 					return desired_len;
1350 			}
1351 
1352 			iedata += copy;
1353 			iedatalen -= copy;
1354 			attr_remaining = attr_len - copy;
1355 		}
1356 
1357  cont:
1358 		len -= ies[1] + 2;
1359 		ies += ies[1] + 2;
1360 	}
1361 
1362 	if (attr_remaining && desired_attr)
1363 		return -EILSEQ;
1364 
1365 	return -ENOENT;
1366 }
1367 EXPORT_SYMBOL(cfg80211_get_p2p_attr);
1368 
1369 static bool ieee80211_id_in_list(const u8 *ids, int n_ids, u8 id)
1370 {
1371 	int i;
1372 
1373 	for (i = 0; i < n_ids; i++)
1374 		if (ids[i] == id)
1375 			return true;
1376 	return false;
1377 }
1378 
1379 size_t ieee80211_ie_split_ric(const u8 *ies, size_t ielen,
1380 			      const u8 *ids, int n_ids,
1381 			      const u8 *after_ric, int n_after_ric,
1382 			      size_t offset)
1383 {
1384 	size_t pos = offset;
1385 
1386 	while (pos < ielen && ieee80211_id_in_list(ids, n_ids, ies[pos])) {
1387 		if (ies[pos] == WLAN_EID_RIC_DATA && n_after_ric) {
1388 			pos += 2 + ies[pos + 1];
1389 
1390 			while (pos < ielen &&
1391 			       !ieee80211_id_in_list(after_ric, n_after_ric,
1392 						     ies[pos]))
1393 				pos += 2 + ies[pos + 1];
1394 		} else {
1395 			pos += 2 + ies[pos + 1];
1396 		}
1397 	}
1398 
1399 	return pos;
1400 }
1401 EXPORT_SYMBOL(ieee80211_ie_split_ric);
1402 
1403 bool ieee80211_operating_class_to_band(u8 operating_class,
1404 				       enum nl80211_band *band)
1405 {
1406 	switch (operating_class) {
1407 	case 112:
1408 	case 115 ... 127:
1409 	case 128 ... 130:
1410 		*band = NL80211_BAND_5GHZ;
1411 		return true;
1412 	case 81:
1413 	case 82:
1414 	case 83:
1415 	case 84:
1416 		*band = NL80211_BAND_2GHZ;
1417 		return true;
1418 	case 180:
1419 		*band = NL80211_BAND_60GHZ;
1420 		return true;
1421 	}
1422 
1423 	return false;
1424 }
1425 EXPORT_SYMBOL(ieee80211_operating_class_to_band);
1426 
1427 bool ieee80211_chandef_to_operating_class(struct cfg80211_chan_def *chandef,
1428 					  u8 *op_class)
1429 {
1430 	u8 vht_opclass;
1431 	u16 freq = chandef->center_freq1;
1432 
1433 	if (freq >= 2412 && freq <= 2472) {
1434 		if (chandef->width > NL80211_CHAN_WIDTH_40)
1435 			return false;
1436 
1437 		/* 2.407 GHz, channels 1..13 */
1438 		if (chandef->width == NL80211_CHAN_WIDTH_40) {
1439 			if (freq > chandef->chan->center_freq)
1440 				*op_class = 83; /* HT40+ */
1441 			else
1442 				*op_class = 84; /* HT40- */
1443 		} else {
1444 			*op_class = 81;
1445 		}
1446 
1447 		return true;
1448 	}
1449 
1450 	if (freq == 2484) {
1451 		if (chandef->width > NL80211_CHAN_WIDTH_40)
1452 			return false;
1453 
1454 		*op_class = 82; /* channel 14 */
1455 		return true;
1456 	}
1457 
1458 	switch (chandef->width) {
1459 	case NL80211_CHAN_WIDTH_80:
1460 		vht_opclass = 128;
1461 		break;
1462 	case NL80211_CHAN_WIDTH_160:
1463 		vht_opclass = 129;
1464 		break;
1465 	case NL80211_CHAN_WIDTH_80P80:
1466 		vht_opclass = 130;
1467 		break;
1468 	case NL80211_CHAN_WIDTH_10:
1469 	case NL80211_CHAN_WIDTH_5:
1470 		return false; /* unsupported for now */
1471 	default:
1472 		vht_opclass = 0;
1473 		break;
1474 	}
1475 
1476 	/* 5 GHz, channels 36..48 */
1477 	if (freq >= 5180 && freq <= 5240) {
1478 		if (vht_opclass) {
1479 			*op_class = vht_opclass;
1480 		} else if (chandef->width == NL80211_CHAN_WIDTH_40) {
1481 			if (freq > chandef->chan->center_freq)
1482 				*op_class = 116;
1483 			else
1484 				*op_class = 117;
1485 		} else {
1486 			*op_class = 115;
1487 		}
1488 
1489 		return true;
1490 	}
1491 
1492 	/* 5 GHz, channels 52..64 */
1493 	if (freq >= 5260 && freq <= 5320) {
1494 		if (vht_opclass) {
1495 			*op_class = vht_opclass;
1496 		} else if (chandef->width == NL80211_CHAN_WIDTH_40) {
1497 			if (freq > chandef->chan->center_freq)
1498 				*op_class = 119;
1499 			else
1500 				*op_class = 120;
1501 		} else {
1502 			*op_class = 118;
1503 		}
1504 
1505 		return true;
1506 	}
1507 
1508 	/* 5 GHz, channels 100..144 */
1509 	if (freq >= 5500 && freq <= 5720) {
1510 		if (vht_opclass) {
1511 			*op_class = vht_opclass;
1512 		} else if (chandef->width == NL80211_CHAN_WIDTH_40) {
1513 			if (freq > chandef->chan->center_freq)
1514 				*op_class = 122;
1515 			else
1516 				*op_class = 123;
1517 		} else {
1518 			*op_class = 121;
1519 		}
1520 
1521 		return true;
1522 	}
1523 
1524 	/* 5 GHz, channels 149..169 */
1525 	if (freq >= 5745 && freq <= 5845) {
1526 		if (vht_opclass) {
1527 			*op_class = vht_opclass;
1528 		} else if (chandef->width == NL80211_CHAN_WIDTH_40) {
1529 			if (freq > chandef->chan->center_freq)
1530 				*op_class = 126;
1531 			else
1532 				*op_class = 127;
1533 		} else if (freq <= 5805) {
1534 			*op_class = 124;
1535 		} else {
1536 			*op_class = 125;
1537 		}
1538 
1539 		return true;
1540 	}
1541 
1542 	/* 56.16 GHz, channel 1..4 */
1543 	if (freq >= 56160 + 2160 * 1 && freq <= 56160 + 2160 * 4) {
1544 		if (chandef->width >= NL80211_CHAN_WIDTH_40)
1545 			return false;
1546 
1547 		*op_class = 180;
1548 		return true;
1549 	}
1550 
1551 	/* not supported yet */
1552 	return false;
1553 }
1554 EXPORT_SYMBOL(ieee80211_chandef_to_operating_class);
1555 
1556 int cfg80211_validate_beacon_int(struct cfg80211_registered_device *rdev,
1557 				 u32 beacon_int)
1558 {
1559 	struct wireless_dev *wdev;
1560 	int res = 0;
1561 
1562 	if (!beacon_int)
1563 		return -EINVAL;
1564 
1565 	list_for_each_entry(wdev, &rdev->wiphy.wdev_list, list) {
1566 		if (!wdev->beacon_interval)
1567 			continue;
1568 		if (wdev->beacon_interval != beacon_int) {
1569 			res = -EINVAL;
1570 			break;
1571 		}
1572 	}
1573 
1574 	return res;
1575 }
1576 
1577 int cfg80211_iter_combinations(struct wiphy *wiphy,
1578 			       const int num_different_channels,
1579 			       const u8 radar_detect,
1580 			       const int iftype_num[NUM_NL80211_IFTYPES],
1581 			       void (*iter)(const struct ieee80211_iface_combination *c,
1582 					    void *data),
1583 			       void *data)
1584 {
1585 	const struct ieee80211_regdomain *regdom;
1586 	enum nl80211_dfs_regions region = 0;
1587 	int i, j, iftype;
1588 	int num_interfaces = 0;
1589 	u32 used_iftypes = 0;
1590 
1591 	if (radar_detect) {
1592 		rcu_read_lock();
1593 		regdom = rcu_dereference(cfg80211_regdomain);
1594 		if (regdom)
1595 			region = regdom->dfs_region;
1596 		rcu_read_unlock();
1597 	}
1598 
1599 	for (iftype = 0; iftype < NUM_NL80211_IFTYPES; iftype++) {
1600 		num_interfaces += iftype_num[iftype];
1601 		if (iftype_num[iftype] > 0 &&
1602 		    !(wiphy->software_iftypes & BIT(iftype)))
1603 			used_iftypes |= BIT(iftype);
1604 	}
1605 
1606 	for (i = 0; i < wiphy->n_iface_combinations; i++) {
1607 		const struct ieee80211_iface_combination *c;
1608 		struct ieee80211_iface_limit *limits;
1609 		u32 all_iftypes = 0;
1610 
1611 		c = &wiphy->iface_combinations[i];
1612 
1613 		if (num_interfaces > c->max_interfaces)
1614 			continue;
1615 		if (num_different_channels > c->num_different_channels)
1616 			continue;
1617 
1618 		limits = kmemdup(c->limits, sizeof(limits[0]) * c->n_limits,
1619 				 GFP_KERNEL);
1620 		if (!limits)
1621 			return -ENOMEM;
1622 
1623 		for (iftype = 0; iftype < NUM_NL80211_IFTYPES; iftype++) {
1624 			if (wiphy->software_iftypes & BIT(iftype))
1625 				continue;
1626 			for (j = 0; j < c->n_limits; j++) {
1627 				all_iftypes |= limits[j].types;
1628 				if (!(limits[j].types & BIT(iftype)))
1629 					continue;
1630 				if (limits[j].max < iftype_num[iftype])
1631 					goto cont;
1632 				limits[j].max -= iftype_num[iftype];
1633 			}
1634 		}
1635 
1636 		if (radar_detect != (c->radar_detect_widths & radar_detect))
1637 			goto cont;
1638 
1639 		if (radar_detect && c->radar_detect_regions &&
1640 		    !(c->radar_detect_regions & BIT(region)))
1641 			goto cont;
1642 
1643 		/* Finally check that all iftypes that we're currently
1644 		 * using are actually part of this combination. If they
1645 		 * aren't then we can't use this combination and have
1646 		 * to continue to the next.
1647 		 */
1648 		if ((all_iftypes & used_iftypes) != used_iftypes)
1649 			goto cont;
1650 
1651 		/* This combination covered all interface types and
1652 		 * supported the requested numbers, so we're good.
1653 		 */
1654 
1655 		(*iter)(c, data);
1656  cont:
1657 		kfree(limits);
1658 	}
1659 
1660 	return 0;
1661 }
1662 EXPORT_SYMBOL(cfg80211_iter_combinations);
1663 
1664 static void
1665 cfg80211_iter_sum_ifcombs(const struct ieee80211_iface_combination *c,
1666 			  void *data)
1667 {
1668 	int *num = data;
1669 	(*num)++;
1670 }
1671 
1672 int cfg80211_check_combinations(struct wiphy *wiphy,
1673 				const int num_different_channels,
1674 				const u8 radar_detect,
1675 				const int iftype_num[NUM_NL80211_IFTYPES])
1676 {
1677 	int err, num = 0;
1678 
1679 	err = cfg80211_iter_combinations(wiphy, num_different_channels,
1680 					 radar_detect, iftype_num,
1681 					 cfg80211_iter_sum_ifcombs, &num);
1682 	if (err)
1683 		return err;
1684 	if (num == 0)
1685 		return -EBUSY;
1686 
1687 	return 0;
1688 }
1689 EXPORT_SYMBOL(cfg80211_check_combinations);
1690 
1691 int ieee80211_get_ratemask(struct ieee80211_supported_band *sband,
1692 			   const u8 *rates, unsigned int n_rates,
1693 			   u32 *mask)
1694 {
1695 	int i, j;
1696 
1697 	if (!sband)
1698 		return -EINVAL;
1699 
1700 	if (n_rates == 0 || n_rates > NL80211_MAX_SUPP_RATES)
1701 		return -EINVAL;
1702 
1703 	*mask = 0;
1704 
1705 	for (i = 0; i < n_rates; i++) {
1706 		int rate = (rates[i] & 0x7f) * 5;
1707 		bool found = false;
1708 
1709 		for (j = 0; j < sband->n_bitrates; j++) {
1710 			if (sband->bitrates[j].bitrate == rate) {
1711 				found = true;
1712 				*mask |= BIT(j);
1713 				break;
1714 			}
1715 		}
1716 		if (!found)
1717 			return -EINVAL;
1718 	}
1719 
1720 	/*
1721 	 * mask must have at least one bit set here since we
1722 	 * didn't accept a 0-length rates array nor allowed
1723 	 * entries in the array that didn't exist
1724 	 */
1725 
1726 	return 0;
1727 }
1728 
1729 unsigned int ieee80211_get_num_supported_channels(struct wiphy *wiphy)
1730 {
1731 	enum nl80211_band band;
1732 	unsigned int n_channels = 0;
1733 
1734 	for (band = 0; band < NUM_NL80211_BANDS; band++)
1735 		if (wiphy->bands[band])
1736 			n_channels += wiphy->bands[band]->n_channels;
1737 
1738 	return n_channels;
1739 }
1740 EXPORT_SYMBOL(ieee80211_get_num_supported_channels);
1741 
1742 int cfg80211_get_station(struct net_device *dev, const u8 *mac_addr,
1743 			 struct station_info *sinfo)
1744 {
1745 	struct cfg80211_registered_device *rdev;
1746 	struct wireless_dev *wdev;
1747 
1748 	wdev = dev->ieee80211_ptr;
1749 	if (!wdev)
1750 		return -EOPNOTSUPP;
1751 
1752 	rdev = wiphy_to_rdev(wdev->wiphy);
1753 	if (!rdev->ops->get_station)
1754 		return -EOPNOTSUPP;
1755 
1756 	return rdev_get_station(rdev, dev, mac_addr, sinfo);
1757 }
1758 EXPORT_SYMBOL(cfg80211_get_station);
1759 
1760 /* See IEEE 802.1H for LLC/SNAP encapsulation/decapsulation */
1761 /* Ethernet-II snap header (RFC1042 for most EtherTypes) */
1762 const unsigned char rfc1042_header[] __aligned(2) =
1763 	{ 0xaa, 0xaa, 0x03, 0x00, 0x00, 0x00 };
1764 EXPORT_SYMBOL(rfc1042_header);
1765 
1766 /* Bridge-Tunnel header (for EtherTypes ETH_P_AARP and ETH_P_IPX) */
1767 const unsigned char bridge_tunnel_header[] __aligned(2) =
1768 	{ 0xaa, 0xaa, 0x03, 0x00, 0x00, 0xf8 };
1769 EXPORT_SYMBOL(bridge_tunnel_header);
1770