1 /* 2 * Wireless utility functions 3 * 4 * Copyright 2007-2009 Johannes Berg <johannes@sipsolutions.net> 5 * Copyright 2013-2014 Intel Mobile Communications GmbH 6 */ 7 #include <linux/export.h> 8 #include <linux/bitops.h> 9 #include <linux/etherdevice.h> 10 #include <linux/slab.h> 11 #include <net/cfg80211.h> 12 #include <net/ip.h> 13 #include <net/dsfield.h> 14 #include <linux/if_vlan.h> 15 #include <linux/mpls.h> 16 #include "core.h" 17 #include "rdev-ops.h" 18 19 20 struct ieee80211_rate * 21 ieee80211_get_response_rate(struct ieee80211_supported_band *sband, 22 u32 basic_rates, int bitrate) 23 { 24 struct ieee80211_rate *result = &sband->bitrates[0]; 25 int i; 26 27 for (i = 0; i < sband->n_bitrates; i++) { 28 if (!(basic_rates & BIT(i))) 29 continue; 30 if (sband->bitrates[i].bitrate > bitrate) 31 continue; 32 result = &sband->bitrates[i]; 33 } 34 35 return result; 36 } 37 EXPORT_SYMBOL(ieee80211_get_response_rate); 38 39 u32 ieee80211_mandatory_rates(struct ieee80211_supported_band *sband, 40 enum nl80211_bss_scan_width scan_width) 41 { 42 struct ieee80211_rate *bitrates; 43 u32 mandatory_rates = 0; 44 enum ieee80211_rate_flags mandatory_flag; 45 int i; 46 47 if (WARN_ON(!sband)) 48 return 1; 49 50 if (sband->band == NL80211_BAND_2GHZ) { 51 if (scan_width == NL80211_BSS_CHAN_WIDTH_5 || 52 scan_width == NL80211_BSS_CHAN_WIDTH_10) 53 mandatory_flag = IEEE80211_RATE_MANDATORY_G; 54 else 55 mandatory_flag = IEEE80211_RATE_MANDATORY_B; 56 } else { 57 mandatory_flag = IEEE80211_RATE_MANDATORY_A; 58 } 59 60 bitrates = sband->bitrates; 61 for (i = 0; i < sband->n_bitrates; i++) 62 if (bitrates[i].flags & mandatory_flag) 63 mandatory_rates |= BIT(i); 64 return mandatory_rates; 65 } 66 EXPORT_SYMBOL(ieee80211_mandatory_rates); 67 68 int ieee80211_channel_to_frequency(int chan, enum nl80211_band band) 69 { 70 /* see 802.11 17.3.8.3.2 and Annex J 71 * there are overlapping channel numbers in 5GHz and 2GHz bands */ 72 if (chan <= 0) 73 return 0; /* not supported */ 74 switch (band) { 75 case NL80211_BAND_2GHZ: 76 if (chan == 14) 77 return 2484; 78 else if (chan < 14) 79 return 2407 + chan * 5; 80 break; 81 case NL80211_BAND_5GHZ: 82 if (chan >= 182 && chan <= 196) 83 return 4000 + chan * 5; 84 else 85 return 5000 + chan * 5; 86 break; 87 case NL80211_BAND_60GHZ: 88 if (chan < 5) 89 return 56160 + chan * 2160; 90 break; 91 default: 92 ; 93 } 94 return 0; /* not supported */ 95 } 96 EXPORT_SYMBOL(ieee80211_channel_to_frequency); 97 98 int ieee80211_frequency_to_channel(int freq) 99 { 100 /* see 802.11 17.3.8.3.2 and Annex J */ 101 if (freq == 2484) 102 return 14; 103 else if (freq < 2484) 104 return (freq - 2407) / 5; 105 else if (freq >= 4910 && freq <= 4980) 106 return (freq - 4000) / 5; 107 else if (freq <= 45000) /* DMG band lower limit */ 108 return (freq - 5000) / 5; 109 else if (freq >= 58320 && freq <= 64800) 110 return (freq - 56160) / 2160; 111 else 112 return 0; 113 } 114 EXPORT_SYMBOL(ieee80211_frequency_to_channel); 115 116 struct ieee80211_channel *__ieee80211_get_channel(struct wiphy *wiphy, 117 int freq) 118 { 119 enum nl80211_band band; 120 struct ieee80211_supported_band *sband; 121 int i; 122 123 for (band = 0; band < NUM_NL80211_BANDS; band++) { 124 sband = wiphy->bands[band]; 125 126 if (!sband) 127 continue; 128 129 for (i = 0; i < sband->n_channels; i++) { 130 if (sband->channels[i].center_freq == freq) 131 return &sband->channels[i]; 132 } 133 } 134 135 return NULL; 136 } 137 EXPORT_SYMBOL(__ieee80211_get_channel); 138 139 static void set_mandatory_flags_band(struct ieee80211_supported_band *sband, 140 enum nl80211_band band) 141 { 142 int i, want; 143 144 switch (band) { 145 case NL80211_BAND_5GHZ: 146 want = 3; 147 for (i = 0; i < sband->n_bitrates; i++) { 148 if (sband->bitrates[i].bitrate == 60 || 149 sband->bitrates[i].bitrate == 120 || 150 sband->bitrates[i].bitrate == 240) { 151 sband->bitrates[i].flags |= 152 IEEE80211_RATE_MANDATORY_A; 153 want--; 154 } 155 } 156 WARN_ON(want); 157 break; 158 case NL80211_BAND_2GHZ: 159 want = 7; 160 for (i = 0; i < sband->n_bitrates; i++) { 161 if (sband->bitrates[i].bitrate == 10) { 162 sband->bitrates[i].flags |= 163 IEEE80211_RATE_MANDATORY_B | 164 IEEE80211_RATE_MANDATORY_G; 165 want--; 166 } 167 168 if (sband->bitrates[i].bitrate == 20 || 169 sband->bitrates[i].bitrate == 55 || 170 sband->bitrates[i].bitrate == 110 || 171 sband->bitrates[i].bitrate == 60 || 172 sband->bitrates[i].bitrate == 120 || 173 sband->bitrates[i].bitrate == 240) { 174 sband->bitrates[i].flags |= 175 IEEE80211_RATE_MANDATORY_G; 176 want--; 177 } 178 179 if (sband->bitrates[i].bitrate != 10 && 180 sband->bitrates[i].bitrate != 20 && 181 sband->bitrates[i].bitrate != 55 && 182 sband->bitrates[i].bitrate != 110) 183 sband->bitrates[i].flags |= 184 IEEE80211_RATE_ERP_G; 185 } 186 WARN_ON(want != 0 && want != 3 && want != 6); 187 break; 188 case NL80211_BAND_60GHZ: 189 /* check for mandatory HT MCS 1..4 */ 190 WARN_ON(!sband->ht_cap.ht_supported); 191 WARN_ON((sband->ht_cap.mcs.rx_mask[0] & 0x1e) != 0x1e); 192 break; 193 case NUM_NL80211_BANDS: 194 WARN_ON(1); 195 break; 196 } 197 } 198 199 void ieee80211_set_bitrate_flags(struct wiphy *wiphy) 200 { 201 enum nl80211_band band; 202 203 for (band = 0; band < NUM_NL80211_BANDS; band++) 204 if (wiphy->bands[band]) 205 set_mandatory_flags_band(wiphy->bands[band], band); 206 } 207 208 bool cfg80211_supported_cipher_suite(struct wiphy *wiphy, u32 cipher) 209 { 210 int i; 211 for (i = 0; i < wiphy->n_cipher_suites; i++) 212 if (cipher == wiphy->cipher_suites[i]) 213 return true; 214 return false; 215 } 216 217 int cfg80211_validate_key_settings(struct cfg80211_registered_device *rdev, 218 struct key_params *params, int key_idx, 219 bool pairwise, const u8 *mac_addr) 220 { 221 if (key_idx > 5) 222 return -EINVAL; 223 224 if (!pairwise && mac_addr && !(rdev->wiphy.flags & WIPHY_FLAG_IBSS_RSN)) 225 return -EINVAL; 226 227 if (pairwise && !mac_addr) 228 return -EINVAL; 229 230 switch (params->cipher) { 231 case WLAN_CIPHER_SUITE_TKIP: 232 case WLAN_CIPHER_SUITE_CCMP: 233 case WLAN_CIPHER_SUITE_CCMP_256: 234 case WLAN_CIPHER_SUITE_GCMP: 235 case WLAN_CIPHER_SUITE_GCMP_256: 236 /* Disallow pairwise keys with non-zero index unless it's WEP 237 * or a vendor specific cipher (because current deployments use 238 * pairwise WEP keys with non-zero indices and for vendor 239 * specific ciphers this should be validated in the driver or 240 * hardware level - but 802.11i clearly specifies to use zero) 241 */ 242 if (pairwise && key_idx) 243 return -EINVAL; 244 break; 245 case WLAN_CIPHER_SUITE_AES_CMAC: 246 case WLAN_CIPHER_SUITE_BIP_CMAC_256: 247 case WLAN_CIPHER_SUITE_BIP_GMAC_128: 248 case WLAN_CIPHER_SUITE_BIP_GMAC_256: 249 /* Disallow BIP (group-only) cipher as pairwise cipher */ 250 if (pairwise) 251 return -EINVAL; 252 break; 253 default: 254 break; 255 } 256 257 switch (params->cipher) { 258 case WLAN_CIPHER_SUITE_WEP40: 259 if (params->key_len != WLAN_KEY_LEN_WEP40) 260 return -EINVAL; 261 break; 262 case WLAN_CIPHER_SUITE_TKIP: 263 if (params->key_len != WLAN_KEY_LEN_TKIP) 264 return -EINVAL; 265 break; 266 case WLAN_CIPHER_SUITE_CCMP: 267 if (params->key_len != WLAN_KEY_LEN_CCMP) 268 return -EINVAL; 269 break; 270 case WLAN_CIPHER_SUITE_CCMP_256: 271 if (params->key_len != WLAN_KEY_LEN_CCMP_256) 272 return -EINVAL; 273 break; 274 case WLAN_CIPHER_SUITE_GCMP: 275 if (params->key_len != WLAN_KEY_LEN_GCMP) 276 return -EINVAL; 277 break; 278 case WLAN_CIPHER_SUITE_GCMP_256: 279 if (params->key_len != WLAN_KEY_LEN_GCMP_256) 280 return -EINVAL; 281 break; 282 case WLAN_CIPHER_SUITE_WEP104: 283 if (params->key_len != WLAN_KEY_LEN_WEP104) 284 return -EINVAL; 285 break; 286 case WLAN_CIPHER_SUITE_AES_CMAC: 287 if (params->key_len != WLAN_KEY_LEN_AES_CMAC) 288 return -EINVAL; 289 break; 290 case WLAN_CIPHER_SUITE_BIP_CMAC_256: 291 if (params->key_len != WLAN_KEY_LEN_BIP_CMAC_256) 292 return -EINVAL; 293 break; 294 case WLAN_CIPHER_SUITE_BIP_GMAC_128: 295 if (params->key_len != WLAN_KEY_LEN_BIP_GMAC_128) 296 return -EINVAL; 297 break; 298 case WLAN_CIPHER_SUITE_BIP_GMAC_256: 299 if (params->key_len != WLAN_KEY_LEN_BIP_GMAC_256) 300 return -EINVAL; 301 break; 302 default: 303 /* 304 * We don't know anything about this algorithm, 305 * allow using it -- but the driver must check 306 * all parameters! We still check below whether 307 * or not the driver supports this algorithm, 308 * of course. 309 */ 310 break; 311 } 312 313 if (params->seq) { 314 switch (params->cipher) { 315 case WLAN_CIPHER_SUITE_WEP40: 316 case WLAN_CIPHER_SUITE_WEP104: 317 /* These ciphers do not use key sequence */ 318 return -EINVAL; 319 case WLAN_CIPHER_SUITE_TKIP: 320 case WLAN_CIPHER_SUITE_CCMP: 321 case WLAN_CIPHER_SUITE_CCMP_256: 322 case WLAN_CIPHER_SUITE_GCMP: 323 case WLAN_CIPHER_SUITE_GCMP_256: 324 case WLAN_CIPHER_SUITE_AES_CMAC: 325 case WLAN_CIPHER_SUITE_BIP_CMAC_256: 326 case WLAN_CIPHER_SUITE_BIP_GMAC_128: 327 case WLAN_CIPHER_SUITE_BIP_GMAC_256: 328 if (params->seq_len != 6) 329 return -EINVAL; 330 break; 331 } 332 } 333 334 if (!cfg80211_supported_cipher_suite(&rdev->wiphy, params->cipher)) 335 return -EINVAL; 336 337 return 0; 338 } 339 340 unsigned int __attribute_const__ ieee80211_hdrlen(__le16 fc) 341 { 342 unsigned int hdrlen = 24; 343 344 if (ieee80211_is_data(fc)) { 345 if (ieee80211_has_a4(fc)) 346 hdrlen = 30; 347 if (ieee80211_is_data_qos(fc)) { 348 hdrlen += IEEE80211_QOS_CTL_LEN; 349 if (ieee80211_has_order(fc)) 350 hdrlen += IEEE80211_HT_CTL_LEN; 351 } 352 goto out; 353 } 354 355 if (ieee80211_is_mgmt(fc)) { 356 if (ieee80211_has_order(fc)) 357 hdrlen += IEEE80211_HT_CTL_LEN; 358 goto out; 359 } 360 361 if (ieee80211_is_ctl(fc)) { 362 /* 363 * ACK and CTS are 10 bytes, all others 16. To see how 364 * to get this condition consider 365 * subtype mask: 0b0000000011110000 (0x00F0) 366 * ACK subtype: 0b0000000011010000 (0x00D0) 367 * CTS subtype: 0b0000000011000000 (0x00C0) 368 * bits that matter: ^^^ (0x00E0) 369 * value of those: 0b0000000011000000 (0x00C0) 370 */ 371 if ((fc & cpu_to_le16(0x00E0)) == cpu_to_le16(0x00C0)) 372 hdrlen = 10; 373 else 374 hdrlen = 16; 375 } 376 out: 377 return hdrlen; 378 } 379 EXPORT_SYMBOL(ieee80211_hdrlen); 380 381 unsigned int ieee80211_get_hdrlen_from_skb(const struct sk_buff *skb) 382 { 383 const struct ieee80211_hdr *hdr = 384 (const struct ieee80211_hdr *)skb->data; 385 unsigned int hdrlen; 386 387 if (unlikely(skb->len < 10)) 388 return 0; 389 hdrlen = ieee80211_hdrlen(hdr->frame_control); 390 if (unlikely(hdrlen > skb->len)) 391 return 0; 392 return hdrlen; 393 } 394 EXPORT_SYMBOL(ieee80211_get_hdrlen_from_skb); 395 396 static unsigned int __ieee80211_get_mesh_hdrlen(u8 flags) 397 { 398 int ae = flags & MESH_FLAGS_AE; 399 /* 802.11-2012, 8.2.4.7.3 */ 400 switch (ae) { 401 default: 402 case 0: 403 return 6; 404 case MESH_FLAGS_AE_A4: 405 return 12; 406 case MESH_FLAGS_AE_A5_A6: 407 return 18; 408 } 409 } 410 411 unsigned int ieee80211_get_mesh_hdrlen(struct ieee80211s_hdr *meshhdr) 412 { 413 return __ieee80211_get_mesh_hdrlen(meshhdr->flags); 414 } 415 EXPORT_SYMBOL(ieee80211_get_mesh_hdrlen); 416 417 static int __ieee80211_data_to_8023(struct sk_buff *skb, struct ethhdr *ehdr, 418 const u8 *addr, enum nl80211_iftype iftype) 419 { 420 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data; 421 struct { 422 u8 hdr[ETH_ALEN] __aligned(2); 423 __be16 proto; 424 } payload; 425 struct ethhdr tmp; 426 u16 hdrlen; 427 u8 mesh_flags = 0; 428 429 if (unlikely(!ieee80211_is_data_present(hdr->frame_control))) 430 return -1; 431 432 hdrlen = ieee80211_hdrlen(hdr->frame_control); 433 if (skb->len < hdrlen + 8) 434 return -1; 435 436 /* convert IEEE 802.11 header + possible LLC headers into Ethernet 437 * header 438 * IEEE 802.11 address fields: 439 * ToDS FromDS Addr1 Addr2 Addr3 Addr4 440 * 0 0 DA SA BSSID n/a 441 * 0 1 DA BSSID SA n/a 442 * 1 0 BSSID SA DA n/a 443 * 1 1 RA TA DA SA 444 */ 445 memcpy(tmp.h_dest, ieee80211_get_DA(hdr), ETH_ALEN); 446 memcpy(tmp.h_source, ieee80211_get_SA(hdr), ETH_ALEN); 447 448 if (iftype == NL80211_IFTYPE_MESH_POINT) 449 skb_copy_bits(skb, hdrlen, &mesh_flags, 1); 450 451 switch (hdr->frame_control & 452 cpu_to_le16(IEEE80211_FCTL_TODS | IEEE80211_FCTL_FROMDS)) { 453 case cpu_to_le16(IEEE80211_FCTL_TODS): 454 if (unlikely(iftype != NL80211_IFTYPE_AP && 455 iftype != NL80211_IFTYPE_AP_VLAN && 456 iftype != NL80211_IFTYPE_P2P_GO)) 457 return -1; 458 break; 459 case cpu_to_le16(IEEE80211_FCTL_TODS | IEEE80211_FCTL_FROMDS): 460 if (unlikely(iftype != NL80211_IFTYPE_WDS && 461 iftype != NL80211_IFTYPE_MESH_POINT && 462 iftype != NL80211_IFTYPE_AP_VLAN && 463 iftype != NL80211_IFTYPE_STATION)) 464 return -1; 465 if (iftype == NL80211_IFTYPE_MESH_POINT) { 466 if (mesh_flags & MESH_FLAGS_AE_A4) 467 return -1; 468 if (mesh_flags & MESH_FLAGS_AE_A5_A6) { 469 skb_copy_bits(skb, hdrlen + 470 offsetof(struct ieee80211s_hdr, eaddr1), 471 tmp.h_dest, 2 * ETH_ALEN); 472 } 473 hdrlen += __ieee80211_get_mesh_hdrlen(mesh_flags); 474 } 475 break; 476 case cpu_to_le16(IEEE80211_FCTL_FROMDS): 477 if ((iftype != NL80211_IFTYPE_STATION && 478 iftype != NL80211_IFTYPE_P2P_CLIENT && 479 iftype != NL80211_IFTYPE_MESH_POINT) || 480 (is_multicast_ether_addr(tmp.h_dest) && 481 ether_addr_equal(tmp.h_source, addr))) 482 return -1; 483 if (iftype == NL80211_IFTYPE_MESH_POINT) { 484 if (mesh_flags & MESH_FLAGS_AE_A5_A6) 485 return -1; 486 if (mesh_flags & MESH_FLAGS_AE_A4) 487 skb_copy_bits(skb, hdrlen + 488 offsetof(struct ieee80211s_hdr, eaddr1), 489 tmp.h_source, ETH_ALEN); 490 hdrlen += __ieee80211_get_mesh_hdrlen(mesh_flags); 491 } 492 break; 493 case cpu_to_le16(0): 494 if (iftype != NL80211_IFTYPE_ADHOC && 495 iftype != NL80211_IFTYPE_STATION && 496 iftype != NL80211_IFTYPE_OCB) 497 return -1; 498 break; 499 } 500 501 skb_copy_bits(skb, hdrlen, &payload, sizeof(payload)); 502 tmp.h_proto = payload.proto; 503 504 if (likely((ether_addr_equal(payload.hdr, rfc1042_header) && 505 tmp.h_proto != htons(ETH_P_AARP) && 506 tmp.h_proto != htons(ETH_P_IPX)) || 507 ether_addr_equal(payload.hdr, bridge_tunnel_header))) 508 /* remove RFC1042 or Bridge-Tunnel encapsulation and 509 * replace EtherType */ 510 hdrlen += ETH_ALEN + 2; 511 else 512 tmp.h_proto = htons(skb->len - hdrlen); 513 514 pskb_pull(skb, hdrlen); 515 516 if (!ehdr) 517 ehdr = (struct ethhdr *) skb_push(skb, sizeof(struct ethhdr)); 518 memcpy(ehdr, &tmp, sizeof(tmp)); 519 520 return 0; 521 } 522 523 int ieee80211_data_to_8023(struct sk_buff *skb, const u8 *addr, 524 enum nl80211_iftype iftype) 525 { 526 return __ieee80211_data_to_8023(skb, NULL, addr, iftype); 527 } 528 EXPORT_SYMBOL(ieee80211_data_to_8023); 529 530 int ieee80211_data_from_8023(struct sk_buff *skb, const u8 *addr, 531 enum nl80211_iftype iftype, 532 const u8 *bssid, bool qos) 533 { 534 struct ieee80211_hdr hdr; 535 u16 hdrlen, ethertype; 536 __le16 fc; 537 const u8 *encaps_data; 538 int encaps_len, skip_header_bytes; 539 int nh_pos, h_pos; 540 int head_need; 541 542 if (unlikely(skb->len < ETH_HLEN)) 543 return -EINVAL; 544 545 nh_pos = skb_network_header(skb) - skb->data; 546 h_pos = skb_transport_header(skb) - skb->data; 547 548 /* convert Ethernet header to proper 802.11 header (based on 549 * operation mode) */ 550 ethertype = (skb->data[12] << 8) | skb->data[13]; 551 fc = cpu_to_le16(IEEE80211_FTYPE_DATA | IEEE80211_STYPE_DATA); 552 553 switch (iftype) { 554 case NL80211_IFTYPE_AP: 555 case NL80211_IFTYPE_AP_VLAN: 556 case NL80211_IFTYPE_P2P_GO: 557 fc |= cpu_to_le16(IEEE80211_FCTL_FROMDS); 558 /* DA BSSID SA */ 559 memcpy(hdr.addr1, skb->data, ETH_ALEN); 560 memcpy(hdr.addr2, addr, ETH_ALEN); 561 memcpy(hdr.addr3, skb->data + ETH_ALEN, ETH_ALEN); 562 hdrlen = 24; 563 break; 564 case NL80211_IFTYPE_STATION: 565 case NL80211_IFTYPE_P2P_CLIENT: 566 fc |= cpu_to_le16(IEEE80211_FCTL_TODS); 567 /* BSSID SA DA */ 568 memcpy(hdr.addr1, bssid, ETH_ALEN); 569 memcpy(hdr.addr2, skb->data + ETH_ALEN, ETH_ALEN); 570 memcpy(hdr.addr3, skb->data, ETH_ALEN); 571 hdrlen = 24; 572 break; 573 case NL80211_IFTYPE_OCB: 574 case NL80211_IFTYPE_ADHOC: 575 /* DA SA BSSID */ 576 memcpy(hdr.addr1, skb->data, ETH_ALEN); 577 memcpy(hdr.addr2, skb->data + ETH_ALEN, ETH_ALEN); 578 memcpy(hdr.addr3, bssid, ETH_ALEN); 579 hdrlen = 24; 580 break; 581 default: 582 return -EOPNOTSUPP; 583 } 584 585 if (qos) { 586 fc |= cpu_to_le16(IEEE80211_STYPE_QOS_DATA); 587 hdrlen += 2; 588 } 589 590 hdr.frame_control = fc; 591 hdr.duration_id = 0; 592 hdr.seq_ctrl = 0; 593 594 skip_header_bytes = ETH_HLEN; 595 if (ethertype == ETH_P_AARP || ethertype == ETH_P_IPX) { 596 encaps_data = bridge_tunnel_header; 597 encaps_len = sizeof(bridge_tunnel_header); 598 skip_header_bytes -= 2; 599 } else if (ethertype >= ETH_P_802_3_MIN) { 600 encaps_data = rfc1042_header; 601 encaps_len = sizeof(rfc1042_header); 602 skip_header_bytes -= 2; 603 } else { 604 encaps_data = NULL; 605 encaps_len = 0; 606 } 607 608 skb_pull(skb, skip_header_bytes); 609 nh_pos -= skip_header_bytes; 610 h_pos -= skip_header_bytes; 611 612 head_need = hdrlen + encaps_len - skb_headroom(skb); 613 614 if (head_need > 0 || skb_cloned(skb)) { 615 head_need = max(head_need, 0); 616 if (head_need) 617 skb_orphan(skb); 618 619 if (pskb_expand_head(skb, head_need, 0, GFP_ATOMIC)) 620 return -ENOMEM; 621 622 skb->truesize += head_need; 623 } 624 625 if (encaps_data) { 626 memcpy(skb_push(skb, encaps_len), encaps_data, encaps_len); 627 nh_pos += encaps_len; 628 h_pos += encaps_len; 629 } 630 631 memcpy(skb_push(skb, hdrlen), &hdr, hdrlen); 632 633 nh_pos += hdrlen; 634 h_pos += hdrlen; 635 636 /* Update skb pointers to various headers since this modified frame 637 * is going to go through Linux networking code that may potentially 638 * need things like pointer to IP header. */ 639 skb_reset_mac_header(skb); 640 skb_set_network_header(skb, nh_pos); 641 skb_set_transport_header(skb, h_pos); 642 643 return 0; 644 } 645 EXPORT_SYMBOL(ieee80211_data_from_8023); 646 647 static void 648 __frame_add_frag(struct sk_buff *skb, struct page *page, 649 void *ptr, int len, int size) 650 { 651 struct skb_shared_info *sh = skb_shinfo(skb); 652 int page_offset; 653 654 page_ref_inc(page); 655 page_offset = ptr - page_address(page); 656 skb_add_rx_frag(skb, sh->nr_frags, page, page_offset, len, size); 657 } 658 659 static void 660 __ieee80211_amsdu_copy_frag(struct sk_buff *skb, struct sk_buff *frame, 661 int offset, int len) 662 { 663 struct skb_shared_info *sh = skb_shinfo(skb); 664 const skb_frag_t *frag = &sh->frags[-1]; 665 struct page *frag_page; 666 void *frag_ptr; 667 int frag_len, frag_size; 668 int head_size = skb->len - skb->data_len; 669 int cur_len; 670 671 frag_page = virt_to_head_page(skb->head); 672 frag_ptr = skb->data; 673 frag_size = head_size; 674 675 while (offset >= frag_size) { 676 offset -= frag_size; 677 frag++; 678 frag_page = skb_frag_page(frag); 679 frag_ptr = skb_frag_address(frag); 680 frag_size = skb_frag_size(frag); 681 } 682 683 frag_ptr += offset; 684 frag_len = frag_size - offset; 685 686 cur_len = min(len, frag_len); 687 688 __frame_add_frag(frame, frag_page, frag_ptr, cur_len, frag_size); 689 len -= cur_len; 690 691 while (len > 0) { 692 frag++; 693 frag_len = skb_frag_size(frag); 694 cur_len = min(len, frag_len); 695 __frame_add_frag(frame, skb_frag_page(frag), 696 skb_frag_address(frag), cur_len, frag_len); 697 len -= cur_len; 698 } 699 } 700 701 static struct sk_buff * 702 __ieee80211_amsdu_copy(struct sk_buff *skb, unsigned int hlen, 703 int offset, int len, bool reuse_frag) 704 { 705 struct sk_buff *frame; 706 int cur_len = len; 707 708 if (skb->len - offset < len) 709 return NULL; 710 711 /* 712 * When reusing framents, copy some data to the head to simplify 713 * ethernet header handling and speed up protocol header processing 714 * in the stack later. 715 */ 716 if (reuse_frag) 717 cur_len = min_t(int, len, 32); 718 719 /* 720 * Allocate and reserve two bytes more for payload 721 * alignment since sizeof(struct ethhdr) is 14. 722 */ 723 frame = dev_alloc_skb(hlen + sizeof(struct ethhdr) + 2 + cur_len); 724 if (!frame) 725 return NULL; 726 727 skb_reserve(frame, hlen + sizeof(struct ethhdr) + 2); 728 skb_copy_bits(skb, offset, skb_put(frame, cur_len), cur_len); 729 730 len -= cur_len; 731 if (!len) 732 return frame; 733 734 offset += cur_len; 735 __ieee80211_amsdu_copy_frag(skb, frame, offset, len); 736 737 return frame; 738 } 739 740 void ieee80211_amsdu_to_8023s(struct sk_buff *skb, struct sk_buff_head *list, 741 const u8 *addr, enum nl80211_iftype iftype, 742 const unsigned int extra_headroom, 743 bool has_80211_header) 744 { 745 unsigned int hlen = ALIGN(extra_headroom, 4); 746 struct sk_buff *frame = NULL; 747 u16 ethertype; 748 u8 *payload; 749 int offset = 0, remaining, err; 750 struct ethhdr eth; 751 bool reuse_frag = skb->head_frag && !skb_has_frag_list(skb); 752 bool reuse_skb = false; 753 bool last = false; 754 755 if (has_80211_header) { 756 err = __ieee80211_data_to_8023(skb, ð, addr, iftype); 757 if (err) 758 goto out; 759 } 760 761 while (!last) { 762 unsigned int subframe_len; 763 int len; 764 u8 padding; 765 766 skb_copy_bits(skb, offset, ð, sizeof(eth)); 767 len = ntohs(eth.h_proto); 768 subframe_len = sizeof(struct ethhdr) + len; 769 padding = (4 - subframe_len) & 0x3; 770 771 /* the last MSDU has no padding */ 772 remaining = skb->len - offset; 773 if (subframe_len > remaining) 774 goto purge; 775 776 offset += sizeof(struct ethhdr); 777 /* reuse skb for the last subframe */ 778 last = remaining <= subframe_len + padding; 779 if (!skb_is_nonlinear(skb) && !reuse_frag && last) { 780 skb_pull(skb, offset); 781 frame = skb; 782 reuse_skb = true; 783 } else { 784 frame = __ieee80211_amsdu_copy(skb, hlen, offset, len, 785 reuse_frag); 786 if (!frame) 787 goto purge; 788 789 offset += len + padding; 790 } 791 792 skb_reset_network_header(frame); 793 frame->dev = skb->dev; 794 frame->priority = skb->priority; 795 796 payload = frame->data; 797 ethertype = (payload[6] << 8) | payload[7]; 798 if (likely((ether_addr_equal(payload, rfc1042_header) && 799 ethertype != ETH_P_AARP && ethertype != ETH_P_IPX) || 800 ether_addr_equal(payload, bridge_tunnel_header))) { 801 eth.h_proto = htons(ethertype); 802 skb_pull(frame, ETH_ALEN + 2); 803 } 804 805 memcpy(skb_push(frame, sizeof(eth)), ð, sizeof(eth)); 806 __skb_queue_tail(list, frame); 807 } 808 809 if (!reuse_skb) 810 dev_kfree_skb(skb); 811 812 return; 813 814 purge: 815 __skb_queue_purge(list); 816 out: 817 dev_kfree_skb(skb); 818 } 819 EXPORT_SYMBOL(ieee80211_amsdu_to_8023s); 820 821 /* Given a data frame determine the 802.1p/1d tag to use. */ 822 unsigned int cfg80211_classify8021d(struct sk_buff *skb, 823 struct cfg80211_qos_map *qos_map) 824 { 825 unsigned int dscp; 826 unsigned char vlan_priority; 827 828 /* skb->priority values from 256->263 are magic values to 829 * directly indicate a specific 802.1d priority. This is used 830 * to allow 802.1d priority to be passed directly in from VLAN 831 * tags, etc. 832 */ 833 if (skb->priority >= 256 && skb->priority <= 263) 834 return skb->priority - 256; 835 836 if (skb_vlan_tag_present(skb)) { 837 vlan_priority = (skb_vlan_tag_get(skb) & VLAN_PRIO_MASK) 838 >> VLAN_PRIO_SHIFT; 839 if (vlan_priority > 0) 840 return vlan_priority; 841 } 842 843 switch (skb->protocol) { 844 case htons(ETH_P_IP): 845 dscp = ipv4_get_dsfield(ip_hdr(skb)) & 0xfc; 846 break; 847 case htons(ETH_P_IPV6): 848 dscp = ipv6_get_dsfield(ipv6_hdr(skb)) & 0xfc; 849 break; 850 case htons(ETH_P_MPLS_UC): 851 case htons(ETH_P_MPLS_MC): { 852 struct mpls_label mpls_tmp, *mpls; 853 854 mpls = skb_header_pointer(skb, sizeof(struct ethhdr), 855 sizeof(*mpls), &mpls_tmp); 856 if (!mpls) 857 return 0; 858 859 return (ntohl(mpls->entry) & MPLS_LS_TC_MASK) 860 >> MPLS_LS_TC_SHIFT; 861 } 862 case htons(ETH_P_80221): 863 /* 802.21 is always network control traffic */ 864 return 7; 865 default: 866 return 0; 867 } 868 869 if (qos_map) { 870 unsigned int i, tmp_dscp = dscp >> 2; 871 872 for (i = 0; i < qos_map->num_des; i++) { 873 if (tmp_dscp == qos_map->dscp_exception[i].dscp) 874 return qos_map->dscp_exception[i].up; 875 } 876 877 for (i = 0; i < 8; i++) { 878 if (tmp_dscp >= qos_map->up[i].low && 879 tmp_dscp <= qos_map->up[i].high) 880 return i; 881 } 882 } 883 884 return dscp >> 5; 885 } 886 EXPORT_SYMBOL(cfg80211_classify8021d); 887 888 const u8 *ieee80211_bss_get_ie(struct cfg80211_bss *bss, u8 ie) 889 { 890 const struct cfg80211_bss_ies *ies; 891 892 ies = rcu_dereference(bss->ies); 893 if (!ies) 894 return NULL; 895 896 return cfg80211_find_ie(ie, ies->data, ies->len); 897 } 898 EXPORT_SYMBOL(ieee80211_bss_get_ie); 899 900 void cfg80211_upload_connect_keys(struct wireless_dev *wdev) 901 { 902 struct cfg80211_registered_device *rdev = wiphy_to_rdev(wdev->wiphy); 903 struct net_device *dev = wdev->netdev; 904 int i; 905 906 if (!wdev->connect_keys) 907 return; 908 909 for (i = 0; i < 6; i++) { 910 if (!wdev->connect_keys->params[i].cipher) 911 continue; 912 if (rdev_add_key(rdev, dev, i, false, NULL, 913 &wdev->connect_keys->params[i])) { 914 netdev_err(dev, "failed to set key %d\n", i); 915 continue; 916 } 917 if (wdev->connect_keys->def == i) 918 if (rdev_set_default_key(rdev, dev, i, true, true)) { 919 netdev_err(dev, "failed to set defkey %d\n", i); 920 continue; 921 } 922 if (wdev->connect_keys->defmgmt == i) 923 if (rdev_set_default_mgmt_key(rdev, dev, i)) 924 netdev_err(dev, "failed to set mgtdef %d\n", i); 925 } 926 927 kzfree(wdev->connect_keys); 928 wdev->connect_keys = NULL; 929 } 930 931 void cfg80211_process_wdev_events(struct wireless_dev *wdev) 932 { 933 struct cfg80211_event *ev; 934 unsigned long flags; 935 const u8 *bssid = NULL; 936 937 spin_lock_irqsave(&wdev->event_lock, flags); 938 while (!list_empty(&wdev->event_list)) { 939 ev = list_first_entry(&wdev->event_list, 940 struct cfg80211_event, list); 941 list_del(&ev->list); 942 spin_unlock_irqrestore(&wdev->event_lock, flags); 943 944 wdev_lock(wdev); 945 switch (ev->type) { 946 case EVENT_CONNECT_RESULT: 947 if (!is_zero_ether_addr(ev->cr.bssid)) 948 bssid = ev->cr.bssid; 949 __cfg80211_connect_result( 950 wdev->netdev, bssid, 951 ev->cr.req_ie, ev->cr.req_ie_len, 952 ev->cr.resp_ie, ev->cr.resp_ie_len, 953 ev->cr.status, 954 ev->cr.status == WLAN_STATUS_SUCCESS, 955 ev->cr.bss); 956 break; 957 case EVENT_ROAMED: 958 __cfg80211_roamed(wdev, ev->rm.bss, ev->rm.req_ie, 959 ev->rm.req_ie_len, ev->rm.resp_ie, 960 ev->rm.resp_ie_len); 961 break; 962 case EVENT_DISCONNECTED: 963 __cfg80211_disconnected(wdev->netdev, 964 ev->dc.ie, ev->dc.ie_len, 965 ev->dc.reason, 966 !ev->dc.locally_generated); 967 break; 968 case EVENT_IBSS_JOINED: 969 __cfg80211_ibss_joined(wdev->netdev, ev->ij.bssid, 970 ev->ij.channel); 971 break; 972 case EVENT_STOPPED: 973 __cfg80211_leave(wiphy_to_rdev(wdev->wiphy), wdev); 974 break; 975 } 976 wdev_unlock(wdev); 977 978 kfree(ev); 979 980 spin_lock_irqsave(&wdev->event_lock, flags); 981 } 982 spin_unlock_irqrestore(&wdev->event_lock, flags); 983 } 984 985 void cfg80211_process_rdev_events(struct cfg80211_registered_device *rdev) 986 { 987 struct wireless_dev *wdev; 988 989 ASSERT_RTNL(); 990 991 list_for_each_entry(wdev, &rdev->wiphy.wdev_list, list) 992 cfg80211_process_wdev_events(wdev); 993 } 994 995 int cfg80211_change_iface(struct cfg80211_registered_device *rdev, 996 struct net_device *dev, enum nl80211_iftype ntype, 997 u32 *flags, struct vif_params *params) 998 { 999 int err; 1000 enum nl80211_iftype otype = dev->ieee80211_ptr->iftype; 1001 1002 ASSERT_RTNL(); 1003 1004 /* don't support changing VLANs, you just re-create them */ 1005 if (otype == NL80211_IFTYPE_AP_VLAN) 1006 return -EOPNOTSUPP; 1007 1008 /* cannot change into P2P device type */ 1009 if (ntype == NL80211_IFTYPE_P2P_DEVICE) 1010 return -EOPNOTSUPP; 1011 1012 if (!rdev->ops->change_virtual_intf || 1013 !(rdev->wiphy.interface_modes & (1 << ntype))) 1014 return -EOPNOTSUPP; 1015 1016 /* if it's part of a bridge, reject changing type to station/ibss */ 1017 if ((dev->priv_flags & IFF_BRIDGE_PORT) && 1018 (ntype == NL80211_IFTYPE_ADHOC || 1019 ntype == NL80211_IFTYPE_STATION || 1020 ntype == NL80211_IFTYPE_P2P_CLIENT)) 1021 return -EBUSY; 1022 1023 if (ntype != otype) { 1024 dev->ieee80211_ptr->use_4addr = false; 1025 dev->ieee80211_ptr->mesh_id_up_len = 0; 1026 wdev_lock(dev->ieee80211_ptr); 1027 rdev_set_qos_map(rdev, dev, NULL); 1028 wdev_unlock(dev->ieee80211_ptr); 1029 1030 switch (otype) { 1031 case NL80211_IFTYPE_AP: 1032 cfg80211_stop_ap(rdev, dev, true); 1033 break; 1034 case NL80211_IFTYPE_ADHOC: 1035 cfg80211_leave_ibss(rdev, dev, false); 1036 break; 1037 case NL80211_IFTYPE_STATION: 1038 case NL80211_IFTYPE_P2P_CLIENT: 1039 wdev_lock(dev->ieee80211_ptr); 1040 cfg80211_disconnect(rdev, dev, 1041 WLAN_REASON_DEAUTH_LEAVING, true); 1042 wdev_unlock(dev->ieee80211_ptr); 1043 break; 1044 case NL80211_IFTYPE_MESH_POINT: 1045 /* mesh should be handled? */ 1046 break; 1047 default: 1048 break; 1049 } 1050 1051 cfg80211_process_rdev_events(rdev); 1052 } 1053 1054 err = rdev_change_virtual_intf(rdev, dev, ntype, flags, params); 1055 1056 WARN_ON(!err && dev->ieee80211_ptr->iftype != ntype); 1057 1058 if (!err && params && params->use_4addr != -1) 1059 dev->ieee80211_ptr->use_4addr = params->use_4addr; 1060 1061 if (!err) { 1062 dev->priv_flags &= ~IFF_DONT_BRIDGE; 1063 switch (ntype) { 1064 case NL80211_IFTYPE_STATION: 1065 if (dev->ieee80211_ptr->use_4addr) 1066 break; 1067 /* fall through */ 1068 case NL80211_IFTYPE_OCB: 1069 case NL80211_IFTYPE_P2P_CLIENT: 1070 case NL80211_IFTYPE_ADHOC: 1071 dev->priv_flags |= IFF_DONT_BRIDGE; 1072 break; 1073 case NL80211_IFTYPE_P2P_GO: 1074 case NL80211_IFTYPE_AP: 1075 case NL80211_IFTYPE_AP_VLAN: 1076 case NL80211_IFTYPE_WDS: 1077 case NL80211_IFTYPE_MESH_POINT: 1078 /* bridging OK */ 1079 break; 1080 case NL80211_IFTYPE_MONITOR: 1081 /* monitor can't bridge anyway */ 1082 break; 1083 case NL80211_IFTYPE_UNSPECIFIED: 1084 case NUM_NL80211_IFTYPES: 1085 /* not happening */ 1086 break; 1087 case NL80211_IFTYPE_P2P_DEVICE: 1088 WARN_ON(1); 1089 break; 1090 } 1091 } 1092 1093 if (!err && ntype != otype && netif_running(dev)) { 1094 cfg80211_update_iface_num(rdev, ntype, 1); 1095 cfg80211_update_iface_num(rdev, otype, -1); 1096 } 1097 1098 return err; 1099 } 1100 1101 static u32 cfg80211_calculate_bitrate_60g(struct rate_info *rate) 1102 { 1103 static const u32 __mcs2bitrate[] = { 1104 /* control PHY */ 1105 [0] = 275, 1106 /* SC PHY */ 1107 [1] = 3850, 1108 [2] = 7700, 1109 [3] = 9625, 1110 [4] = 11550, 1111 [5] = 12512, /* 1251.25 mbps */ 1112 [6] = 15400, 1113 [7] = 19250, 1114 [8] = 23100, 1115 [9] = 25025, 1116 [10] = 30800, 1117 [11] = 38500, 1118 [12] = 46200, 1119 /* OFDM PHY */ 1120 [13] = 6930, 1121 [14] = 8662, /* 866.25 mbps */ 1122 [15] = 13860, 1123 [16] = 17325, 1124 [17] = 20790, 1125 [18] = 27720, 1126 [19] = 34650, 1127 [20] = 41580, 1128 [21] = 45045, 1129 [22] = 51975, 1130 [23] = 62370, 1131 [24] = 67568, /* 6756.75 mbps */ 1132 /* LP-SC PHY */ 1133 [25] = 6260, 1134 [26] = 8340, 1135 [27] = 11120, 1136 [28] = 12510, 1137 [29] = 16680, 1138 [30] = 22240, 1139 [31] = 25030, 1140 }; 1141 1142 if (WARN_ON_ONCE(rate->mcs >= ARRAY_SIZE(__mcs2bitrate))) 1143 return 0; 1144 1145 return __mcs2bitrate[rate->mcs]; 1146 } 1147 1148 static u32 cfg80211_calculate_bitrate_vht(struct rate_info *rate) 1149 { 1150 static const u32 base[4][10] = { 1151 { 6500000, 1152 13000000, 1153 19500000, 1154 26000000, 1155 39000000, 1156 52000000, 1157 58500000, 1158 65000000, 1159 78000000, 1160 0, 1161 }, 1162 { 13500000, 1163 27000000, 1164 40500000, 1165 54000000, 1166 81000000, 1167 108000000, 1168 121500000, 1169 135000000, 1170 162000000, 1171 180000000, 1172 }, 1173 { 29300000, 1174 58500000, 1175 87800000, 1176 117000000, 1177 175500000, 1178 234000000, 1179 263300000, 1180 292500000, 1181 351000000, 1182 390000000, 1183 }, 1184 { 58500000, 1185 117000000, 1186 175500000, 1187 234000000, 1188 351000000, 1189 468000000, 1190 526500000, 1191 585000000, 1192 702000000, 1193 780000000, 1194 }, 1195 }; 1196 u32 bitrate; 1197 int idx; 1198 1199 if (WARN_ON_ONCE(rate->mcs > 9)) 1200 return 0; 1201 1202 switch (rate->bw) { 1203 case RATE_INFO_BW_160: 1204 idx = 3; 1205 break; 1206 case RATE_INFO_BW_80: 1207 idx = 2; 1208 break; 1209 case RATE_INFO_BW_40: 1210 idx = 1; 1211 break; 1212 case RATE_INFO_BW_5: 1213 case RATE_INFO_BW_10: 1214 default: 1215 WARN_ON(1); 1216 /* fall through */ 1217 case RATE_INFO_BW_20: 1218 idx = 0; 1219 } 1220 1221 bitrate = base[idx][rate->mcs]; 1222 bitrate *= rate->nss; 1223 1224 if (rate->flags & RATE_INFO_FLAGS_SHORT_GI) 1225 bitrate = (bitrate / 9) * 10; 1226 1227 /* do NOT round down here */ 1228 return (bitrate + 50000) / 100000; 1229 } 1230 1231 u32 cfg80211_calculate_bitrate(struct rate_info *rate) 1232 { 1233 int modulation, streams, bitrate; 1234 1235 if (!(rate->flags & RATE_INFO_FLAGS_MCS) && 1236 !(rate->flags & RATE_INFO_FLAGS_VHT_MCS)) 1237 return rate->legacy; 1238 if (rate->flags & RATE_INFO_FLAGS_60G) 1239 return cfg80211_calculate_bitrate_60g(rate); 1240 if (rate->flags & RATE_INFO_FLAGS_VHT_MCS) 1241 return cfg80211_calculate_bitrate_vht(rate); 1242 1243 /* the formula below does only work for MCS values smaller than 32 */ 1244 if (WARN_ON_ONCE(rate->mcs >= 32)) 1245 return 0; 1246 1247 modulation = rate->mcs & 7; 1248 streams = (rate->mcs >> 3) + 1; 1249 1250 bitrate = (rate->bw == RATE_INFO_BW_40) ? 13500000 : 6500000; 1251 1252 if (modulation < 4) 1253 bitrate *= (modulation + 1); 1254 else if (modulation == 4) 1255 bitrate *= (modulation + 2); 1256 else 1257 bitrate *= (modulation + 3); 1258 1259 bitrate *= streams; 1260 1261 if (rate->flags & RATE_INFO_FLAGS_SHORT_GI) 1262 bitrate = (bitrate / 9) * 10; 1263 1264 /* do NOT round down here */ 1265 return (bitrate + 50000) / 100000; 1266 } 1267 EXPORT_SYMBOL(cfg80211_calculate_bitrate); 1268 1269 int cfg80211_get_p2p_attr(const u8 *ies, unsigned int len, 1270 enum ieee80211_p2p_attr_id attr, 1271 u8 *buf, unsigned int bufsize) 1272 { 1273 u8 *out = buf; 1274 u16 attr_remaining = 0; 1275 bool desired_attr = false; 1276 u16 desired_len = 0; 1277 1278 while (len > 0) { 1279 unsigned int iedatalen; 1280 unsigned int copy; 1281 const u8 *iedata; 1282 1283 if (len < 2) 1284 return -EILSEQ; 1285 iedatalen = ies[1]; 1286 if (iedatalen + 2 > len) 1287 return -EILSEQ; 1288 1289 if (ies[0] != WLAN_EID_VENDOR_SPECIFIC) 1290 goto cont; 1291 1292 if (iedatalen < 4) 1293 goto cont; 1294 1295 iedata = ies + 2; 1296 1297 /* check WFA OUI, P2P subtype */ 1298 if (iedata[0] != 0x50 || iedata[1] != 0x6f || 1299 iedata[2] != 0x9a || iedata[3] != 0x09) 1300 goto cont; 1301 1302 iedatalen -= 4; 1303 iedata += 4; 1304 1305 /* check attribute continuation into this IE */ 1306 copy = min_t(unsigned int, attr_remaining, iedatalen); 1307 if (copy && desired_attr) { 1308 desired_len += copy; 1309 if (out) { 1310 memcpy(out, iedata, min(bufsize, copy)); 1311 out += min(bufsize, copy); 1312 bufsize -= min(bufsize, copy); 1313 } 1314 1315 1316 if (copy == attr_remaining) 1317 return desired_len; 1318 } 1319 1320 attr_remaining -= copy; 1321 if (attr_remaining) 1322 goto cont; 1323 1324 iedatalen -= copy; 1325 iedata += copy; 1326 1327 while (iedatalen > 0) { 1328 u16 attr_len; 1329 1330 /* P2P attribute ID & size must fit */ 1331 if (iedatalen < 3) 1332 return -EILSEQ; 1333 desired_attr = iedata[0] == attr; 1334 attr_len = get_unaligned_le16(iedata + 1); 1335 iedatalen -= 3; 1336 iedata += 3; 1337 1338 copy = min_t(unsigned int, attr_len, iedatalen); 1339 1340 if (desired_attr) { 1341 desired_len += copy; 1342 if (out) { 1343 memcpy(out, iedata, min(bufsize, copy)); 1344 out += min(bufsize, copy); 1345 bufsize -= min(bufsize, copy); 1346 } 1347 1348 if (copy == attr_len) 1349 return desired_len; 1350 } 1351 1352 iedata += copy; 1353 iedatalen -= copy; 1354 attr_remaining = attr_len - copy; 1355 } 1356 1357 cont: 1358 len -= ies[1] + 2; 1359 ies += ies[1] + 2; 1360 } 1361 1362 if (attr_remaining && desired_attr) 1363 return -EILSEQ; 1364 1365 return -ENOENT; 1366 } 1367 EXPORT_SYMBOL(cfg80211_get_p2p_attr); 1368 1369 static bool ieee80211_id_in_list(const u8 *ids, int n_ids, u8 id) 1370 { 1371 int i; 1372 1373 for (i = 0; i < n_ids; i++) 1374 if (ids[i] == id) 1375 return true; 1376 return false; 1377 } 1378 1379 size_t ieee80211_ie_split_ric(const u8 *ies, size_t ielen, 1380 const u8 *ids, int n_ids, 1381 const u8 *after_ric, int n_after_ric, 1382 size_t offset) 1383 { 1384 size_t pos = offset; 1385 1386 while (pos < ielen && ieee80211_id_in_list(ids, n_ids, ies[pos])) { 1387 if (ies[pos] == WLAN_EID_RIC_DATA && n_after_ric) { 1388 pos += 2 + ies[pos + 1]; 1389 1390 while (pos < ielen && 1391 !ieee80211_id_in_list(after_ric, n_after_ric, 1392 ies[pos])) 1393 pos += 2 + ies[pos + 1]; 1394 } else { 1395 pos += 2 + ies[pos + 1]; 1396 } 1397 } 1398 1399 return pos; 1400 } 1401 EXPORT_SYMBOL(ieee80211_ie_split_ric); 1402 1403 bool ieee80211_operating_class_to_band(u8 operating_class, 1404 enum nl80211_band *band) 1405 { 1406 switch (operating_class) { 1407 case 112: 1408 case 115 ... 127: 1409 case 128 ... 130: 1410 *band = NL80211_BAND_5GHZ; 1411 return true; 1412 case 81: 1413 case 82: 1414 case 83: 1415 case 84: 1416 *band = NL80211_BAND_2GHZ; 1417 return true; 1418 case 180: 1419 *band = NL80211_BAND_60GHZ; 1420 return true; 1421 } 1422 1423 return false; 1424 } 1425 EXPORT_SYMBOL(ieee80211_operating_class_to_band); 1426 1427 bool ieee80211_chandef_to_operating_class(struct cfg80211_chan_def *chandef, 1428 u8 *op_class) 1429 { 1430 u8 vht_opclass; 1431 u16 freq = chandef->center_freq1; 1432 1433 if (freq >= 2412 && freq <= 2472) { 1434 if (chandef->width > NL80211_CHAN_WIDTH_40) 1435 return false; 1436 1437 /* 2.407 GHz, channels 1..13 */ 1438 if (chandef->width == NL80211_CHAN_WIDTH_40) { 1439 if (freq > chandef->chan->center_freq) 1440 *op_class = 83; /* HT40+ */ 1441 else 1442 *op_class = 84; /* HT40- */ 1443 } else { 1444 *op_class = 81; 1445 } 1446 1447 return true; 1448 } 1449 1450 if (freq == 2484) { 1451 if (chandef->width > NL80211_CHAN_WIDTH_40) 1452 return false; 1453 1454 *op_class = 82; /* channel 14 */ 1455 return true; 1456 } 1457 1458 switch (chandef->width) { 1459 case NL80211_CHAN_WIDTH_80: 1460 vht_opclass = 128; 1461 break; 1462 case NL80211_CHAN_WIDTH_160: 1463 vht_opclass = 129; 1464 break; 1465 case NL80211_CHAN_WIDTH_80P80: 1466 vht_opclass = 130; 1467 break; 1468 case NL80211_CHAN_WIDTH_10: 1469 case NL80211_CHAN_WIDTH_5: 1470 return false; /* unsupported for now */ 1471 default: 1472 vht_opclass = 0; 1473 break; 1474 } 1475 1476 /* 5 GHz, channels 36..48 */ 1477 if (freq >= 5180 && freq <= 5240) { 1478 if (vht_opclass) { 1479 *op_class = vht_opclass; 1480 } else if (chandef->width == NL80211_CHAN_WIDTH_40) { 1481 if (freq > chandef->chan->center_freq) 1482 *op_class = 116; 1483 else 1484 *op_class = 117; 1485 } else { 1486 *op_class = 115; 1487 } 1488 1489 return true; 1490 } 1491 1492 /* 5 GHz, channels 52..64 */ 1493 if (freq >= 5260 && freq <= 5320) { 1494 if (vht_opclass) { 1495 *op_class = vht_opclass; 1496 } else if (chandef->width == NL80211_CHAN_WIDTH_40) { 1497 if (freq > chandef->chan->center_freq) 1498 *op_class = 119; 1499 else 1500 *op_class = 120; 1501 } else { 1502 *op_class = 118; 1503 } 1504 1505 return true; 1506 } 1507 1508 /* 5 GHz, channels 100..144 */ 1509 if (freq >= 5500 && freq <= 5720) { 1510 if (vht_opclass) { 1511 *op_class = vht_opclass; 1512 } else if (chandef->width == NL80211_CHAN_WIDTH_40) { 1513 if (freq > chandef->chan->center_freq) 1514 *op_class = 122; 1515 else 1516 *op_class = 123; 1517 } else { 1518 *op_class = 121; 1519 } 1520 1521 return true; 1522 } 1523 1524 /* 5 GHz, channels 149..169 */ 1525 if (freq >= 5745 && freq <= 5845) { 1526 if (vht_opclass) { 1527 *op_class = vht_opclass; 1528 } else if (chandef->width == NL80211_CHAN_WIDTH_40) { 1529 if (freq > chandef->chan->center_freq) 1530 *op_class = 126; 1531 else 1532 *op_class = 127; 1533 } else if (freq <= 5805) { 1534 *op_class = 124; 1535 } else { 1536 *op_class = 125; 1537 } 1538 1539 return true; 1540 } 1541 1542 /* 56.16 GHz, channel 1..4 */ 1543 if (freq >= 56160 + 2160 * 1 && freq <= 56160 + 2160 * 4) { 1544 if (chandef->width >= NL80211_CHAN_WIDTH_40) 1545 return false; 1546 1547 *op_class = 180; 1548 return true; 1549 } 1550 1551 /* not supported yet */ 1552 return false; 1553 } 1554 EXPORT_SYMBOL(ieee80211_chandef_to_operating_class); 1555 1556 int cfg80211_validate_beacon_int(struct cfg80211_registered_device *rdev, 1557 u32 beacon_int) 1558 { 1559 struct wireless_dev *wdev; 1560 int res = 0; 1561 1562 if (!beacon_int) 1563 return -EINVAL; 1564 1565 list_for_each_entry(wdev, &rdev->wiphy.wdev_list, list) { 1566 if (!wdev->beacon_interval) 1567 continue; 1568 if (wdev->beacon_interval != beacon_int) { 1569 res = -EINVAL; 1570 break; 1571 } 1572 } 1573 1574 return res; 1575 } 1576 1577 int cfg80211_iter_combinations(struct wiphy *wiphy, 1578 const int num_different_channels, 1579 const u8 radar_detect, 1580 const int iftype_num[NUM_NL80211_IFTYPES], 1581 void (*iter)(const struct ieee80211_iface_combination *c, 1582 void *data), 1583 void *data) 1584 { 1585 const struct ieee80211_regdomain *regdom; 1586 enum nl80211_dfs_regions region = 0; 1587 int i, j, iftype; 1588 int num_interfaces = 0; 1589 u32 used_iftypes = 0; 1590 1591 if (radar_detect) { 1592 rcu_read_lock(); 1593 regdom = rcu_dereference(cfg80211_regdomain); 1594 if (regdom) 1595 region = regdom->dfs_region; 1596 rcu_read_unlock(); 1597 } 1598 1599 for (iftype = 0; iftype < NUM_NL80211_IFTYPES; iftype++) { 1600 num_interfaces += iftype_num[iftype]; 1601 if (iftype_num[iftype] > 0 && 1602 !(wiphy->software_iftypes & BIT(iftype))) 1603 used_iftypes |= BIT(iftype); 1604 } 1605 1606 for (i = 0; i < wiphy->n_iface_combinations; i++) { 1607 const struct ieee80211_iface_combination *c; 1608 struct ieee80211_iface_limit *limits; 1609 u32 all_iftypes = 0; 1610 1611 c = &wiphy->iface_combinations[i]; 1612 1613 if (num_interfaces > c->max_interfaces) 1614 continue; 1615 if (num_different_channels > c->num_different_channels) 1616 continue; 1617 1618 limits = kmemdup(c->limits, sizeof(limits[0]) * c->n_limits, 1619 GFP_KERNEL); 1620 if (!limits) 1621 return -ENOMEM; 1622 1623 for (iftype = 0; iftype < NUM_NL80211_IFTYPES; iftype++) { 1624 if (wiphy->software_iftypes & BIT(iftype)) 1625 continue; 1626 for (j = 0; j < c->n_limits; j++) { 1627 all_iftypes |= limits[j].types; 1628 if (!(limits[j].types & BIT(iftype))) 1629 continue; 1630 if (limits[j].max < iftype_num[iftype]) 1631 goto cont; 1632 limits[j].max -= iftype_num[iftype]; 1633 } 1634 } 1635 1636 if (radar_detect != (c->radar_detect_widths & radar_detect)) 1637 goto cont; 1638 1639 if (radar_detect && c->radar_detect_regions && 1640 !(c->radar_detect_regions & BIT(region))) 1641 goto cont; 1642 1643 /* Finally check that all iftypes that we're currently 1644 * using are actually part of this combination. If they 1645 * aren't then we can't use this combination and have 1646 * to continue to the next. 1647 */ 1648 if ((all_iftypes & used_iftypes) != used_iftypes) 1649 goto cont; 1650 1651 /* This combination covered all interface types and 1652 * supported the requested numbers, so we're good. 1653 */ 1654 1655 (*iter)(c, data); 1656 cont: 1657 kfree(limits); 1658 } 1659 1660 return 0; 1661 } 1662 EXPORT_SYMBOL(cfg80211_iter_combinations); 1663 1664 static void 1665 cfg80211_iter_sum_ifcombs(const struct ieee80211_iface_combination *c, 1666 void *data) 1667 { 1668 int *num = data; 1669 (*num)++; 1670 } 1671 1672 int cfg80211_check_combinations(struct wiphy *wiphy, 1673 const int num_different_channels, 1674 const u8 radar_detect, 1675 const int iftype_num[NUM_NL80211_IFTYPES]) 1676 { 1677 int err, num = 0; 1678 1679 err = cfg80211_iter_combinations(wiphy, num_different_channels, 1680 radar_detect, iftype_num, 1681 cfg80211_iter_sum_ifcombs, &num); 1682 if (err) 1683 return err; 1684 if (num == 0) 1685 return -EBUSY; 1686 1687 return 0; 1688 } 1689 EXPORT_SYMBOL(cfg80211_check_combinations); 1690 1691 int ieee80211_get_ratemask(struct ieee80211_supported_band *sband, 1692 const u8 *rates, unsigned int n_rates, 1693 u32 *mask) 1694 { 1695 int i, j; 1696 1697 if (!sband) 1698 return -EINVAL; 1699 1700 if (n_rates == 0 || n_rates > NL80211_MAX_SUPP_RATES) 1701 return -EINVAL; 1702 1703 *mask = 0; 1704 1705 for (i = 0; i < n_rates; i++) { 1706 int rate = (rates[i] & 0x7f) * 5; 1707 bool found = false; 1708 1709 for (j = 0; j < sband->n_bitrates; j++) { 1710 if (sband->bitrates[j].bitrate == rate) { 1711 found = true; 1712 *mask |= BIT(j); 1713 break; 1714 } 1715 } 1716 if (!found) 1717 return -EINVAL; 1718 } 1719 1720 /* 1721 * mask must have at least one bit set here since we 1722 * didn't accept a 0-length rates array nor allowed 1723 * entries in the array that didn't exist 1724 */ 1725 1726 return 0; 1727 } 1728 1729 unsigned int ieee80211_get_num_supported_channels(struct wiphy *wiphy) 1730 { 1731 enum nl80211_band band; 1732 unsigned int n_channels = 0; 1733 1734 for (band = 0; band < NUM_NL80211_BANDS; band++) 1735 if (wiphy->bands[band]) 1736 n_channels += wiphy->bands[band]->n_channels; 1737 1738 return n_channels; 1739 } 1740 EXPORT_SYMBOL(ieee80211_get_num_supported_channels); 1741 1742 int cfg80211_get_station(struct net_device *dev, const u8 *mac_addr, 1743 struct station_info *sinfo) 1744 { 1745 struct cfg80211_registered_device *rdev; 1746 struct wireless_dev *wdev; 1747 1748 wdev = dev->ieee80211_ptr; 1749 if (!wdev) 1750 return -EOPNOTSUPP; 1751 1752 rdev = wiphy_to_rdev(wdev->wiphy); 1753 if (!rdev->ops->get_station) 1754 return -EOPNOTSUPP; 1755 1756 return rdev_get_station(rdev, dev, mac_addr, sinfo); 1757 } 1758 EXPORT_SYMBOL(cfg80211_get_station); 1759 1760 /* See IEEE 802.1H for LLC/SNAP encapsulation/decapsulation */ 1761 /* Ethernet-II snap header (RFC1042 for most EtherTypes) */ 1762 const unsigned char rfc1042_header[] __aligned(2) = 1763 { 0xaa, 0xaa, 0x03, 0x00, 0x00, 0x00 }; 1764 EXPORT_SYMBOL(rfc1042_header); 1765 1766 /* Bridge-Tunnel header (for EtherTypes ETH_P_AARP and ETH_P_IPX) */ 1767 const unsigned char bridge_tunnel_header[] __aligned(2) = 1768 { 0xaa, 0xaa, 0x03, 0x00, 0x00, 0xf8 }; 1769 EXPORT_SYMBOL(bridge_tunnel_header); 1770