1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Wireless utility functions 4 * 5 * Copyright 2007-2009 Johannes Berg <johannes@sipsolutions.net> 6 * Copyright 2013-2014 Intel Mobile Communications GmbH 7 * Copyright 2017 Intel Deutschland GmbH 8 * Copyright (C) 2018-2023 Intel Corporation 9 */ 10 #include <linux/export.h> 11 #include <linux/bitops.h> 12 #include <linux/etherdevice.h> 13 #include <linux/slab.h> 14 #include <linux/ieee80211.h> 15 #include <net/cfg80211.h> 16 #include <net/ip.h> 17 #include <net/dsfield.h> 18 #include <linux/if_vlan.h> 19 #include <linux/mpls.h> 20 #include <linux/gcd.h> 21 #include <linux/bitfield.h> 22 #include <linux/nospec.h> 23 #include "core.h" 24 #include "rdev-ops.h" 25 26 27 const struct ieee80211_rate * 28 ieee80211_get_response_rate(struct ieee80211_supported_band *sband, 29 u32 basic_rates, int bitrate) 30 { 31 struct ieee80211_rate *result = &sband->bitrates[0]; 32 int i; 33 34 for (i = 0; i < sband->n_bitrates; i++) { 35 if (!(basic_rates & BIT(i))) 36 continue; 37 if (sband->bitrates[i].bitrate > bitrate) 38 continue; 39 result = &sband->bitrates[i]; 40 } 41 42 return result; 43 } 44 EXPORT_SYMBOL(ieee80211_get_response_rate); 45 46 u32 ieee80211_mandatory_rates(struct ieee80211_supported_band *sband) 47 { 48 struct ieee80211_rate *bitrates; 49 u32 mandatory_rates = 0; 50 enum ieee80211_rate_flags mandatory_flag; 51 int i; 52 53 if (WARN_ON(!sband)) 54 return 1; 55 56 if (sband->band == NL80211_BAND_2GHZ) 57 mandatory_flag = IEEE80211_RATE_MANDATORY_B; 58 else 59 mandatory_flag = IEEE80211_RATE_MANDATORY_A; 60 61 bitrates = sband->bitrates; 62 for (i = 0; i < sband->n_bitrates; i++) 63 if (bitrates[i].flags & mandatory_flag) 64 mandatory_rates |= BIT(i); 65 return mandatory_rates; 66 } 67 EXPORT_SYMBOL(ieee80211_mandatory_rates); 68 69 u32 ieee80211_channel_to_freq_khz(int chan, enum nl80211_band band) 70 { 71 /* see 802.11 17.3.8.3.2 and Annex J 72 * there are overlapping channel numbers in 5GHz and 2GHz bands */ 73 if (chan <= 0) 74 return 0; /* not supported */ 75 switch (band) { 76 case NL80211_BAND_2GHZ: 77 case NL80211_BAND_LC: 78 if (chan == 14) 79 return MHZ_TO_KHZ(2484); 80 else if (chan < 14) 81 return MHZ_TO_KHZ(2407 + chan * 5); 82 break; 83 case NL80211_BAND_5GHZ: 84 if (chan >= 182 && chan <= 196) 85 return MHZ_TO_KHZ(4000 + chan * 5); 86 else 87 return MHZ_TO_KHZ(5000 + chan * 5); 88 break; 89 case NL80211_BAND_6GHZ: 90 /* see 802.11ax D6.1 27.3.23.2 */ 91 if (chan == 2) 92 return MHZ_TO_KHZ(5935); 93 if (chan <= 233) 94 return MHZ_TO_KHZ(5950 + chan * 5); 95 break; 96 case NL80211_BAND_60GHZ: 97 if (chan < 7) 98 return MHZ_TO_KHZ(56160 + chan * 2160); 99 break; 100 case NL80211_BAND_S1GHZ: 101 return 902000 + chan * 500; 102 default: 103 ; 104 } 105 return 0; /* not supported */ 106 } 107 EXPORT_SYMBOL(ieee80211_channel_to_freq_khz); 108 109 enum nl80211_chan_width 110 ieee80211_s1g_channel_width(const struct ieee80211_channel *chan) 111 { 112 if (WARN_ON(!chan || chan->band != NL80211_BAND_S1GHZ)) 113 return NL80211_CHAN_WIDTH_20_NOHT; 114 115 /*S1G defines a single allowed channel width per channel. 116 * Extract that width here. 117 */ 118 if (chan->flags & IEEE80211_CHAN_1MHZ) 119 return NL80211_CHAN_WIDTH_1; 120 else if (chan->flags & IEEE80211_CHAN_2MHZ) 121 return NL80211_CHAN_WIDTH_2; 122 else if (chan->flags & IEEE80211_CHAN_4MHZ) 123 return NL80211_CHAN_WIDTH_4; 124 else if (chan->flags & IEEE80211_CHAN_8MHZ) 125 return NL80211_CHAN_WIDTH_8; 126 else if (chan->flags & IEEE80211_CHAN_16MHZ) 127 return NL80211_CHAN_WIDTH_16; 128 129 pr_err("unknown channel width for channel at %dKHz?\n", 130 ieee80211_channel_to_khz(chan)); 131 132 return NL80211_CHAN_WIDTH_1; 133 } 134 EXPORT_SYMBOL(ieee80211_s1g_channel_width); 135 136 int ieee80211_freq_khz_to_channel(u32 freq) 137 { 138 /* TODO: just handle MHz for now */ 139 freq = KHZ_TO_MHZ(freq); 140 141 /* see 802.11 17.3.8.3.2 and Annex J */ 142 if (freq == 2484) 143 return 14; 144 else if (freq < 2484) 145 return (freq - 2407) / 5; 146 else if (freq >= 4910 && freq <= 4980) 147 return (freq - 4000) / 5; 148 else if (freq < 5925) 149 return (freq - 5000) / 5; 150 else if (freq == 5935) 151 return 2; 152 else if (freq <= 45000) /* DMG band lower limit */ 153 /* see 802.11ax D6.1 27.3.22.2 */ 154 return (freq - 5950) / 5; 155 else if (freq >= 58320 && freq <= 70200) 156 return (freq - 56160) / 2160; 157 else 158 return 0; 159 } 160 EXPORT_SYMBOL(ieee80211_freq_khz_to_channel); 161 162 struct ieee80211_channel *ieee80211_get_channel_khz(struct wiphy *wiphy, 163 u32 freq) 164 { 165 enum nl80211_band band; 166 struct ieee80211_supported_band *sband; 167 int i; 168 169 for (band = 0; band < NUM_NL80211_BANDS; band++) { 170 sband = wiphy->bands[band]; 171 172 if (!sband) 173 continue; 174 175 for (i = 0; i < sband->n_channels; i++) { 176 struct ieee80211_channel *chan = &sband->channels[i]; 177 178 if (ieee80211_channel_to_khz(chan) == freq) 179 return chan; 180 } 181 } 182 183 return NULL; 184 } 185 EXPORT_SYMBOL(ieee80211_get_channel_khz); 186 187 static void set_mandatory_flags_band(struct ieee80211_supported_band *sband) 188 { 189 int i, want; 190 191 switch (sband->band) { 192 case NL80211_BAND_5GHZ: 193 case NL80211_BAND_6GHZ: 194 want = 3; 195 for (i = 0; i < sband->n_bitrates; i++) { 196 if (sband->bitrates[i].bitrate == 60 || 197 sband->bitrates[i].bitrate == 120 || 198 sband->bitrates[i].bitrate == 240) { 199 sband->bitrates[i].flags |= 200 IEEE80211_RATE_MANDATORY_A; 201 want--; 202 } 203 } 204 WARN_ON(want); 205 break; 206 case NL80211_BAND_2GHZ: 207 case NL80211_BAND_LC: 208 want = 7; 209 for (i = 0; i < sband->n_bitrates; i++) { 210 switch (sband->bitrates[i].bitrate) { 211 case 10: 212 case 20: 213 case 55: 214 case 110: 215 sband->bitrates[i].flags |= 216 IEEE80211_RATE_MANDATORY_B | 217 IEEE80211_RATE_MANDATORY_G; 218 want--; 219 break; 220 case 60: 221 case 120: 222 case 240: 223 sband->bitrates[i].flags |= 224 IEEE80211_RATE_MANDATORY_G; 225 want--; 226 fallthrough; 227 default: 228 sband->bitrates[i].flags |= 229 IEEE80211_RATE_ERP_G; 230 break; 231 } 232 } 233 WARN_ON(want != 0 && want != 3); 234 break; 235 case NL80211_BAND_60GHZ: 236 /* check for mandatory HT MCS 1..4 */ 237 WARN_ON(!sband->ht_cap.ht_supported); 238 WARN_ON((sband->ht_cap.mcs.rx_mask[0] & 0x1e) != 0x1e); 239 break; 240 case NL80211_BAND_S1GHZ: 241 /* Figure 9-589bd: 3 means unsupported, so != 3 means at least 242 * mandatory is ok. 243 */ 244 WARN_ON((sband->s1g_cap.nss_mcs[0] & 0x3) == 0x3); 245 break; 246 case NUM_NL80211_BANDS: 247 default: 248 WARN_ON(1); 249 break; 250 } 251 } 252 253 void ieee80211_set_bitrate_flags(struct wiphy *wiphy) 254 { 255 enum nl80211_band band; 256 257 for (band = 0; band < NUM_NL80211_BANDS; band++) 258 if (wiphy->bands[band]) 259 set_mandatory_flags_band(wiphy->bands[band]); 260 } 261 262 bool cfg80211_supported_cipher_suite(struct wiphy *wiphy, u32 cipher) 263 { 264 int i; 265 for (i = 0; i < wiphy->n_cipher_suites; i++) 266 if (cipher == wiphy->cipher_suites[i]) 267 return true; 268 return false; 269 } 270 271 static bool 272 cfg80211_igtk_cipher_supported(struct cfg80211_registered_device *rdev) 273 { 274 struct wiphy *wiphy = &rdev->wiphy; 275 int i; 276 277 for (i = 0; i < wiphy->n_cipher_suites; i++) { 278 switch (wiphy->cipher_suites[i]) { 279 case WLAN_CIPHER_SUITE_AES_CMAC: 280 case WLAN_CIPHER_SUITE_BIP_CMAC_256: 281 case WLAN_CIPHER_SUITE_BIP_GMAC_128: 282 case WLAN_CIPHER_SUITE_BIP_GMAC_256: 283 return true; 284 } 285 } 286 287 return false; 288 } 289 290 bool cfg80211_valid_key_idx(struct cfg80211_registered_device *rdev, 291 int key_idx, bool pairwise) 292 { 293 int max_key_idx; 294 295 if (pairwise) 296 max_key_idx = 3; 297 else if (wiphy_ext_feature_isset(&rdev->wiphy, 298 NL80211_EXT_FEATURE_BEACON_PROTECTION) || 299 wiphy_ext_feature_isset(&rdev->wiphy, 300 NL80211_EXT_FEATURE_BEACON_PROTECTION_CLIENT)) 301 max_key_idx = 7; 302 else if (cfg80211_igtk_cipher_supported(rdev)) 303 max_key_idx = 5; 304 else 305 max_key_idx = 3; 306 307 if (key_idx < 0 || key_idx > max_key_idx) 308 return false; 309 310 return true; 311 } 312 313 int cfg80211_validate_key_settings(struct cfg80211_registered_device *rdev, 314 struct key_params *params, int key_idx, 315 bool pairwise, const u8 *mac_addr) 316 { 317 if (!cfg80211_valid_key_idx(rdev, key_idx, pairwise)) 318 return -EINVAL; 319 320 if (!pairwise && mac_addr && !(rdev->wiphy.flags & WIPHY_FLAG_IBSS_RSN)) 321 return -EINVAL; 322 323 if (pairwise && !mac_addr) 324 return -EINVAL; 325 326 switch (params->cipher) { 327 case WLAN_CIPHER_SUITE_TKIP: 328 /* Extended Key ID can only be used with CCMP/GCMP ciphers */ 329 if ((pairwise && key_idx) || 330 params->mode != NL80211_KEY_RX_TX) 331 return -EINVAL; 332 break; 333 case WLAN_CIPHER_SUITE_CCMP: 334 case WLAN_CIPHER_SUITE_CCMP_256: 335 case WLAN_CIPHER_SUITE_GCMP: 336 case WLAN_CIPHER_SUITE_GCMP_256: 337 /* IEEE802.11-2016 allows only 0 and - when supporting 338 * Extended Key ID - 1 as index for pairwise keys. 339 * @NL80211_KEY_NO_TX is only allowed for pairwise keys when 340 * the driver supports Extended Key ID. 341 * @NL80211_KEY_SET_TX can't be set when installing and 342 * validating a key. 343 */ 344 if ((params->mode == NL80211_KEY_NO_TX && !pairwise) || 345 params->mode == NL80211_KEY_SET_TX) 346 return -EINVAL; 347 if (wiphy_ext_feature_isset(&rdev->wiphy, 348 NL80211_EXT_FEATURE_EXT_KEY_ID)) { 349 if (pairwise && (key_idx < 0 || key_idx > 1)) 350 return -EINVAL; 351 } else if (pairwise && key_idx) { 352 return -EINVAL; 353 } 354 break; 355 case WLAN_CIPHER_SUITE_AES_CMAC: 356 case WLAN_CIPHER_SUITE_BIP_CMAC_256: 357 case WLAN_CIPHER_SUITE_BIP_GMAC_128: 358 case WLAN_CIPHER_SUITE_BIP_GMAC_256: 359 /* Disallow BIP (group-only) cipher as pairwise cipher */ 360 if (pairwise) 361 return -EINVAL; 362 if (key_idx < 4) 363 return -EINVAL; 364 break; 365 case WLAN_CIPHER_SUITE_WEP40: 366 case WLAN_CIPHER_SUITE_WEP104: 367 if (key_idx > 3) 368 return -EINVAL; 369 break; 370 default: 371 break; 372 } 373 374 switch (params->cipher) { 375 case WLAN_CIPHER_SUITE_WEP40: 376 if (params->key_len != WLAN_KEY_LEN_WEP40) 377 return -EINVAL; 378 break; 379 case WLAN_CIPHER_SUITE_TKIP: 380 if (params->key_len != WLAN_KEY_LEN_TKIP) 381 return -EINVAL; 382 break; 383 case WLAN_CIPHER_SUITE_CCMP: 384 if (params->key_len != WLAN_KEY_LEN_CCMP) 385 return -EINVAL; 386 break; 387 case WLAN_CIPHER_SUITE_CCMP_256: 388 if (params->key_len != WLAN_KEY_LEN_CCMP_256) 389 return -EINVAL; 390 break; 391 case WLAN_CIPHER_SUITE_GCMP: 392 if (params->key_len != WLAN_KEY_LEN_GCMP) 393 return -EINVAL; 394 break; 395 case WLAN_CIPHER_SUITE_GCMP_256: 396 if (params->key_len != WLAN_KEY_LEN_GCMP_256) 397 return -EINVAL; 398 break; 399 case WLAN_CIPHER_SUITE_WEP104: 400 if (params->key_len != WLAN_KEY_LEN_WEP104) 401 return -EINVAL; 402 break; 403 case WLAN_CIPHER_SUITE_AES_CMAC: 404 if (params->key_len != WLAN_KEY_LEN_AES_CMAC) 405 return -EINVAL; 406 break; 407 case WLAN_CIPHER_SUITE_BIP_CMAC_256: 408 if (params->key_len != WLAN_KEY_LEN_BIP_CMAC_256) 409 return -EINVAL; 410 break; 411 case WLAN_CIPHER_SUITE_BIP_GMAC_128: 412 if (params->key_len != WLAN_KEY_LEN_BIP_GMAC_128) 413 return -EINVAL; 414 break; 415 case WLAN_CIPHER_SUITE_BIP_GMAC_256: 416 if (params->key_len != WLAN_KEY_LEN_BIP_GMAC_256) 417 return -EINVAL; 418 break; 419 default: 420 /* 421 * We don't know anything about this algorithm, 422 * allow using it -- but the driver must check 423 * all parameters! We still check below whether 424 * or not the driver supports this algorithm, 425 * of course. 426 */ 427 break; 428 } 429 430 if (params->seq) { 431 switch (params->cipher) { 432 case WLAN_CIPHER_SUITE_WEP40: 433 case WLAN_CIPHER_SUITE_WEP104: 434 /* These ciphers do not use key sequence */ 435 return -EINVAL; 436 case WLAN_CIPHER_SUITE_TKIP: 437 case WLAN_CIPHER_SUITE_CCMP: 438 case WLAN_CIPHER_SUITE_CCMP_256: 439 case WLAN_CIPHER_SUITE_GCMP: 440 case WLAN_CIPHER_SUITE_GCMP_256: 441 case WLAN_CIPHER_SUITE_AES_CMAC: 442 case WLAN_CIPHER_SUITE_BIP_CMAC_256: 443 case WLAN_CIPHER_SUITE_BIP_GMAC_128: 444 case WLAN_CIPHER_SUITE_BIP_GMAC_256: 445 if (params->seq_len != 6) 446 return -EINVAL; 447 break; 448 } 449 } 450 451 if (!cfg80211_supported_cipher_suite(&rdev->wiphy, params->cipher)) 452 return -EINVAL; 453 454 return 0; 455 } 456 457 unsigned int __attribute_const__ ieee80211_hdrlen(__le16 fc) 458 { 459 unsigned int hdrlen = 24; 460 461 if (ieee80211_is_ext(fc)) { 462 hdrlen = 4; 463 goto out; 464 } 465 466 if (ieee80211_is_data(fc)) { 467 if (ieee80211_has_a4(fc)) 468 hdrlen = 30; 469 if (ieee80211_is_data_qos(fc)) { 470 hdrlen += IEEE80211_QOS_CTL_LEN; 471 if (ieee80211_has_order(fc)) 472 hdrlen += IEEE80211_HT_CTL_LEN; 473 } 474 goto out; 475 } 476 477 if (ieee80211_is_mgmt(fc)) { 478 if (ieee80211_has_order(fc)) 479 hdrlen += IEEE80211_HT_CTL_LEN; 480 goto out; 481 } 482 483 if (ieee80211_is_ctl(fc)) { 484 /* 485 * ACK and CTS are 10 bytes, all others 16. To see how 486 * to get this condition consider 487 * subtype mask: 0b0000000011110000 (0x00F0) 488 * ACK subtype: 0b0000000011010000 (0x00D0) 489 * CTS subtype: 0b0000000011000000 (0x00C0) 490 * bits that matter: ^^^ (0x00E0) 491 * value of those: 0b0000000011000000 (0x00C0) 492 */ 493 if ((fc & cpu_to_le16(0x00E0)) == cpu_to_le16(0x00C0)) 494 hdrlen = 10; 495 else 496 hdrlen = 16; 497 } 498 out: 499 return hdrlen; 500 } 501 EXPORT_SYMBOL(ieee80211_hdrlen); 502 503 unsigned int ieee80211_get_hdrlen_from_skb(const struct sk_buff *skb) 504 { 505 const struct ieee80211_hdr *hdr = 506 (const struct ieee80211_hdr *)skb->data; 507 unsigned int hdrlen; 508 509 if (unlikely(skb->len < 10)) 510 return 0; 511 hdrlen = ieee80211_hdrlen(hdr->frame_control); 512 if (unlikely(hdrlen > skb->len)) 513 return 0; 514 return hdrlen; 515 } 516 EXPORT_SYMBOL(ieee80211_get_hdrlen_from_skb); 517 518 static unsigned int __ieee80211_get_mesh_hdrlen(u8 flags) 519 { 520 int ae = flags & MESH_FLAGS_AE; 521 /* 802.11-2012, 8.2.4.7.3 */ 522 switch (ae) { 523 default: 524 case 0: 525 return 6; 526 case MESH_FLAGS_AE_A4: 527 return 12; 528 case MESH_FLAGS_AE_A5_A6: 529 return 18; 530 } 531 } 532 533 unsigned int ieee80211_get_mesh_hdrlen(struct ieee80211s_hdr *meshhdr) 534 { 535 return __ieee80211_get_mesh_hdrlen(meshhdr->flags); 536 } 537 EXPORT_SYMBOL(ieee80211_get_mesh_hdrlen); 538 539 bool ieee80211_get_8023_tunnel_proto(const void *hdr, __be16 *proto) 540 { 541 const __be16 *hdr_proto = hdr + ETH_ALEN; 542 543 if (!(ether_addr_equal(hdr, rfc1042_header) && 544 *hdr_proto != htons(ETH_P_AARP) && 545 *hdr_proto != htons(ETH_P_IPX)) && 546 !ether_addr_equal(hdr, bridge_tunnel_header)) 547 return false; 548 549 *proto = *hdr_proto; 550 551 return true; 552 } 553 EXPORT_SYMBOL(ieee80211_get_8023_tunnel_proto); 554 555 int ieee80211_strip_8023_mesh_hdr(struct sk_buff *skb) 556 { 557 const void *mesh_addr; 558 struct { 559 struct ethhdr eth; 560 u8 flags; 561 } payload; 562 int hdrlen; 563 int ret; 564 565 ret = skb_copy_bits(skb, 0, &payload, sizeof(payload)); 566 if (ret) 567 return ret; 568 569 hdrlen = sizeof(payload.eth) + __ieee80211_get_mesh_hdrlen(payload.flags); 570 571 if (likely(pskb_may_pull(skb, hdrlen + 8) && 572 ieee80211_get_8023_tunnel_proto(skb->data + hdrlen, 573 &payload.eth.h_proto))) 574 hdrlen += ETH_ALEN + 2; 575 else if (!pskb_may_pull(skb, hdrlen)) 576 return -EINVAL; 577 else 578 payload.eth.h_proto = htons(skb->len - hdrlen); 579 580 mesh_addr = skb->data + sizeof(payload.eth) + ETH_ALEN; 581 switch (payload.flags & MESH_FLAGS_AE) { 582 case MESH_FLAGS_AE_A4: 583 memcpy(&payload.eth.h_source, mesh_addr, ETH_ALEN); 584 break; 585 case MESH_FLAGS_AE_A5_A6: 586 memcpy(&payload.eth, mesh_addr, 2 * ETH_ALEN); 587 break; 588 default: 589 break; 590 } 591 592 pskb_pull(skb, hdrlen - sizeof(payload.eth)); 593 memcpy(skb->data, &payload.eth, sizeof(payload.eth)); 594 595 return 0; 596 } 597 EXPORT_SYMBOL(ieee80211_strip_8023_mesh_hdr); 598 599 int ieee80211_data_to_8023_exthdr(struct sk_buff *skb, struct ethhdr *ehdr, 600 const u8 *addr, enum nl80211_iftype iftype, 601 u8 data_offset, bool is_amsdu) 602 { 603 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data; 604 struct { 605 u8 hdr[ETH_ALEN] __aligned(2); 606 __be16 proto; 607 } payload; 608 struct ethhdr tmp; 609 u16 hdrlen; 610 611 if (unlikely(!ieee80211_is_data_present(hdr->frame_control))) 612 return -1; 613 614 hdrlen = ieee80211_hdrlen(hdr->frame_control) + data_offset; 615 if (skb->len < hdrlen) 616 return -1; 617 618 /* convert IEEE 802.11 header + possible LLC headers into Ethernet 619 * header 620 * IEEE 802.11 address fields: 621 * ToDS FromDS Addr1 Addr2 Addr3 Addr4 622 * 0 0 DA SA BSSID n/a 623 * 0 1 DA BSSID SA n/a 624 * 1 0 BSSID SA DA n/a 625 * 1 1 RA TA DA SA 626 */ 627 memcpy(tmp.h_dest, ieee80211_get_DA(hdr), ETH_ALEN); 628 memcpy(tmp.h_source, ieee80211_get_SA(hdr), ETH_ALEN); 629 630 switch (hdr->frame_control & 631 cpu_to_le16(IEEE80211_FCTL_TODS | IEEE80211_FCTL_FROMDS)) { 632 case cpu_to_le16(IEEE80211_FCTL_TODS): 633 if (unlikely(iftype != NL80211_IFTYPE_AP && 634 iftype != NL80211_IFTYPE_AP_VLAN && 635 iftype != NL80211_IFTYPE_P2P_GO)) 636 return -1; 637 break; 638 case cpu_to_le16(IEEE80211_FCTL_TODS | IEEE80211_FCTL_FROMDS): 639 if (unlikely(iftype != NL80211_IFTYPE_MESH_POINT && 640 iftype != NL80211_IFTYPE_AP_VLAN && 641 iftype != NL80211_IFTYPE_STATION)) 642 return -1; 643 break; 644 case cpu_to_le16(IEEE80211_FCTL_FROMDS): 645 if ((iftype != NL80211_IFTYPE_STATION && 646 iftype != NL80211_IFTYPE_P2P_CLIENT && 647 iftype != NL80211_IFTYPE_MESH_POINT) || 648 (is_multicast_ether_addr(tmp.h_dest) && 649 ether_addr_equal(tmp.h_source, addr))) 650 return -1; 651 break; 652 case cpu_to_le16(0): 653 if (iftype != NL80211_IFTYPE_ADHOC && 654 iftype != NL80211_IFTYPE_STATION && 655 iftype != NL80211_IFTYPE_OCB) 656 return -1; 657 break; 658 } 659 660 if (likely(!is_amsdu && iftype != NL80211_IFTYPE_MESH_POINT && 661 skb_copy_bits(skb, hdrlen, &payload, sizeof(payload)) == 0 && 662 ieee80211_get_8023_tunnel_proto(&payload, &tmp.h_proto))) { 663 /* remove RFC1042 or Bridge-Tunnel encapsulation */ 664 hdrlen += ETH_ALEN + 2; 665 skb_postpull_rcsum(skb, &payload, ETH_ALEN + 2); 666 } else { 667 tmp.h_proto = htons(skb->len - hdrlen); 668 } 669 670 pskb_pull(skb, hdrlen); 671 672 if (!ehdr) 673 ehdr = skb_push(skb, sizeof(struct ethhdr)); 674 memcpy(ehdr, &tmp, sizeof(tmp)); 675 676 return 0; 677 } 678 EXPORT_SYMBOL(ieee80211_data_to_8023_exthdr); 679 680 static void 681 __frame_add_frag(struct sk_buff *skb, struct page *page, 682 void *ptr, int len, int size) 683 { 684 struct skb_shared_info *sh = skb_shinfo(skb); 685 int page_offset; 686 687 get_page(page); 688 page_offset = ptr - page_address(page); 689 skb_add_rx_frag(skb, sh->nr_frags, page, page_offset, len, size); 690 } 691 692 static void 693 __ieee80211_amsdu_copy_frag(struct sk_buff *skb, struct sk_buff *frame, 694 int offset, int len) 695 { 696 struct skb_shared_info *sh = skb_shinfo(skb); 697 const skb_frag_t *frag = &sh->frags[0]; 698 struct page *frag_page; 699 void *frag_ptr; 700 int frag_len, frag_size; 701 int head_size = skb->len - skb->data_len; 702 int cur_len; 703 704 frag_page = virt_to_head_page(skb->head); 705 frag_ptr = skb->data; 706 frag_size = head_size; 707 708 while (offset >= frag_size) { 709 offset -= frag_size; 710 frag_page = skb_frag_page(frag); 711 frag_ptr = skb_frag_address(frag); 712 frag_size = skb_frag_size(frag); 713 frag++; 714 } 715 716 frag_ptr += offset; 717 frag_len = frag_size - offset; 718 719 cur_len = min(len, frag_len); 720 721 __frame_add_frag(frame, frag_page, frag_ptr, cur_len, frag_size); 722 len -= cur_len; 723 724 while (len > 0) { 725 frag_len = skb_frag_size(frag); 726 cur_len = min(len, frag_len); 727 __frame_add_frag(frame, skb_frag_page(frag), 728 skb_frag_address(frag), cur_len, frag_len); 729 len -= cur_len; 730 frag++; 731 } 732 } 733 734 static struct sk_buff * 735 __ieee80211_amsdu_copy(struct sk_buff *skb, unsigned int hlen, 736 int offset, int len, bool reuse_frag, 737 int min_len) 738 { 739 struct sk_buff *frame; 740 int cur_len = len; 741 742 if (skb->len - offset < len) 743 return NULL; 744 745 /* 746 * When reusing framents, copy some data to the head to simplify 747 * ethernet header handling and speed up protocol header processing 748 * in the stack later. 749 */ 750 if (reuse_frag) 751 cur_len = min_t(int, len, min_len); 752 753 /* 754 * Allocate and reserve two bytes more for payload 755 * alignment since sizeof(struct ethhdr) is 14. 756 */ 757 frame = dev_alloc_skb(hlen + sizeof(struct ethhdr) + 2 + cur_len); 758 if (!frame) 759 return NULL; 760 761 frame->priority = skb->priority; 762 skb_reserve(frame, hlen + sizeof(struct ethhdr) + 2); 763 skb_copy_bits(skb, offset, skb_put(frame, cur_len), cur_len); 764 765 len -= cur_len; 766 if (!len) 767 return frame; 768 769 offset += cur_len; 770 __ieee80211_amsdu_copy_frag(skb, frame, offset, len); 771 772 return frame; 773 } 774 775 static u16 776 ieee80211_amsdu_subframe_length(void *field, u8 mesh_flags, u8 hdr_type) 777 { 778 __le16 *field_le = field; 779 __be16 *field_be = field; 780 u16 len; 781 782 if (hdr_type >= 2) 783 len = le16_to_cpu(*field_le); 784 else 785 len = be16_to_cpu(*field_be); 786 if (hdr_type) 787 len += __ieee80211_get_mesh_hdrlen(mesh_flags); 788 789 return len; 790 } 791 792 bool ieee80211_is_valid_amsdu(struct sk_buff *skb, u8 mesh_hdr) 793 { 794 int offset = 0, remaining, subframe_len, padding; 795 796 for (offset = 0; offset < skb->len; offset += subframe_len + padding) { 797 struct { 798 __be16 len; 799 u8 mesh_flags; 800 } hdr; 801 u16 len; 802 803 if (skb_copy_bits(skb, offset + 2 * ETH_ALEN, &hdr, sizeof(hdr)) < 0) 804 return false; 805 806 len = ieee80211_amsdu_subframe_length(&hdr.len, hdr.mesh_flags, 807 mesh_hdr); 808 subframe_len = sizeof(struct ethhdr) + len; 809 padding = (4 - subframe_len) & 0x3; 810 remaining = skb->len - offset; 811 812 if (subframe_len > remaining) 813 return false; 814 } 815 816 return true; 817 } 818 EXPORT_SYMBOL(ieee80211_is_valid_amsdu); 819 820 void ieee80211_amsdu_to_8023s(struct sk_buff *skb, struct sk_buff_head *list, 821 const u8 *addr, enum nl80211_iftype iftype, 822 const unsigned int extra_headroom, 823 const u8 *check_da, const u8 *check_sa, 824 u8 mesh_control) 825 { 826 unsigned int hlen = ALIGN(extra_headroom, 4); 827 struct sk_buff *frame = NULL; 828 int offset = 0, remaining; 829 struct { 830 struct ethhdr eth; 831 uint8_t flags; 832 } hdr; 833 bool reuse_frag = skb->head_frag && !skb_has_frag_list(skb); 834 bool reuse_skb = false; 835 bool last = false; 836 int copy_len = sizeof(hdr.eth); 837 838 if (iftype == NL80211_IFTYPE_MESH_POINT) 839 copy_len = sizeof(hdr); 840 841 while (!last) { 842 unsigned int subframe_len; 843 int len, mesh_len = 0; 844 u8 padding; 845 846 skb_copy_bits(skb, offset, &hdr, copy_len); 847 if (iftype == NL80211_IFTYPE_MESH_POINT) 848 mesh_len = __ieee80211_get_mesh_hdrlen(hdr.flags); 849 len = ieee80211_amsdu_subframe_length(&hdr.eth.h_proto, hdr.flags, 850 mesh_control); 851 subframe_len = sizeof(struct ethhdr) + len; 852 padding = (4 - subframe_len) & 0x3; 853 854 /* the last MSDU has no padding */ 855 remaining = skb->len - offset; 856 if (subframe_len > remaining) 857 goto purge; 858 /* mitigate A-MSDU aggregation injection attacks */ 859 if (ether_addr_equal(hdr.eth.h_dest, rfc1042_header)) 860 goto purge; 861 862 offset += sizeof(struct ethhdr); 863 last = remaining <= subframe_len + padding; 864 865 /* FIXME: should we really accept multicast DA? */ 866 if ((check_da && !is_multicast_ether_addr(hdr.eth.h_dest) && 867 !ether_addr_equal(check_da, hdr.eth.h_dest)) || 868 (check_sa && !ether_addr_equal(check_sa, hdr.eth.h_source))) { 869 offset += len + padding; 870 continue; 871 } 872 873 /* reuse skb for the last subframe */ 874 if (!skb_is_nonlinear(skb) && !reuse_frag && last) { 875 skb_pull(skb, offset); 876 frame = skb; 877 reuse_skb = true; 878 } else { 879 frame = __ieee80211_amsdu_copy(skb, hlen, offset, len, 880 reuse_frag, 32 + mesh_len); 881 if (!frame) 882 goto purge; 883 884 offset += len + padding; 885 } 886 887 skb_reset_network_header(frame); 888 frame->dev = skb->dev; 889 frame->priority = skb->priority; 890 891 if (likely(iftype != NL80211_IFTYPE_MESH_POINT && 892 ieee80211_get_8023_tunnel_proto(frame->data, &hdr.eth.h_proto))) 893 skb_pull(frame, ETH_ALEN + 2); 894 895 memcpy(skb_push(frame, sizeof(hdr.eth)), &hdr.eth, sizeof(hdr.eth)); 896 __skb_queue_tail(list, frame); 897 } 898 899 if (!reuse_skb) 900 dev_kfree_skb(skb); 901 902 return; 903 904 purge: 905 __skb_queue_purge(list); 906 dev_kfree_skb(skb); 907 } 908 EXPORT_SYMBOL(ieee80211_amsdu_to_8023s); 909 910 /* Given a data frame determine the 802.1p/1d tag to use. */ 911 unsigned int cfg80211_classify8021d(struct sk_buff *skb, 912 struct cfg80211_qos_map *qos_map) 913 { 914 unsigned int dscp; 915 unsigned char vlan_priority; 916 unsigned int ret; 917 918 /* skb->priority values from 256->263 are magic values to 919 * directly indicate a specific 802.1d priority. This is used 920 * to allow 802.1d priority to be passed directly in from VLAN 921 * tags, etc. 922 */ 923 if (skb->priority >= 256 && skb->priority <= 263) { 924 ret = skb->priority - 256; 925 goto out; 926 } 927 928 if (skb_vlan_tag_present(skb)) { 929 vlan_priority = (skb_vlan_tag_get(skb) & VLAN_PRIO_MASK) 930 >> VLAN_PRIO_SHIFT; 931 if (vlan_priority > 0) { 932 ret = vlan_priority; 933 goto out; 934 } 935 } 936 937 switch (skb->protocol) { 938 case htons(ETH_P_IP): 939 dscp = ipv4_get_dsfield(ip_hdr(skb)) & 0xfc; 940 break; 941 case htons(ETH_P_IPV6): 942 dscp = ipv6_get_dsfield(ipv6_hdr(skb)) & 0xfc; 943 break; 944 case htons(ETH_P_MPLS_UC): 945 case htons(ETH_P_MPLS_MC): { 946 struct mpls_label mpls_tmp, *mpls; 947 948 mpls = skb_header_pointer(skb, sizeof(struct ethhdr), 949 sizeof(*mpls), &mpls_tmp); 950 if (!mpls) 951 return 0; 952 953 ret = (ntohl(mpls->entry) & MPLS_LS_TC_MASK) 954 >> MPLS_LS_TC_SHIFT; 955 goto out; 956 } 957 case htons(ETH_P_80221): 958 /* 802.21 is always network control traffic */ 959 return 7; 960 default: 961 return 0; 962 } 963 964 if (qos_map) { 965 unsigned int i, tmp_dscp = dscp >> 2; 966 967 for (i = 0; i < qos_map->num_des; i++) { 968 if (tmp_dscp == qos_map->dscp_exception[i].dscp) { 969 ret = qos_map->dscp_exception[i].up; 970 goto out; 971 } 972 } 973 974 for (i = 0; i < 8; i++) { 975 if (tmp_dscp >= qos_map->up[i].low && 976 tmp_dscp <= qos_map->up[i].high) { 977 ret = i; 978 goto out; 979 } 980 } 981 } 982 983 ret = dscp >> 5; 984 out: 985 return array_index_nospec(ret, IEEE80211_NUM_TIDS); 986 } 987 EXPORT_SYMBOL(cfg80211_classify8021d); 988 989 const struct element *ieee80211_bss_get_elem(struct cfg80211_bss *bss, u8 id) 990 { 991 const struct cfg80211_bss_ies *ies; 992 993 ies = rcu_dereference(bss->ies); 994 if (!ies) 995 return NULL; 996 997 return cfg80211_find_elem(id, ies->data, ies->len); 998 } 999 EXPORT_SYMBOL(ieee80211_bss_get_elem); 1000 1001 void cfg80211_upload_connect_keys(struct wireless_dev *wdev) 1002 { 1003 struct cfg80211_registered_device *rdev = wiphy_to_rdev(wdev->wiphy); 1004 struct net_device *dev = wdev->netdev; 1005 int i; 1006 1007 if (!wdev->connect_keys) 1008 return; 1009 1010 for (i = 0; i < 4; i++) { 1011 if (!wdev->connect_keys->params[i].cipher) 1012 continue; 1013 if (rdev_add_key(rdev, dev, -1, i, false, NULL, 1014 &wdev->connect_keys->params[i])) { 1015 netdev_err(dev, "failed to set key %d\n", i); 1016 continue; 1017 } 1018 if (wdev->connect_keys->def == i && 1019 rdev_set_default_key(rdev, dev, -1, i, true, true)) { 1020 netdev_err(dev, "failed to set defkey %d\n", i); 1021 continue; 1022 } 1023 } 1024 1025 kfree_sensitive(wdev->connect_keys); 1026 wdev->connect_keys = NULL; 1027 } 1028 1029 void cfg80211_process_wdev_events(struct wireless_dev *wdev) 1030 { 1031 struct cfg80211_event *ev; 1032 unsigned long flags; 1033 1034 spin_lock_irqsave(&wdev->event_lock, flags); 1035 while (!list_empty(&wdev->event_list)) { 1036 ev = list_first_entry(&wdev->event_list, 1037 struct cfg80211_event, list); 1038 list_del(&ev->list); 1039 spin_unlock_irqrestore(&wdev->event_lock, flags); 1040 1041 switch (ev->type) { 1042 case EVENT_CONNECT_RESULT: 1043 __cfg80211_connect_result( 1044 wdev->netdev, 1045 &ev->cr, 1046 ev->cr.status == WLAN_STATUS_SUCCESS); 1047 break; 1048 case EVENT_ROAMED: 1049 __cfg80211_roamed(wdev, &ev->rm); 1050 break; 1051 case EVENT_DISCONNECTED: 1052 __cfg80211_disconnected(wdev->netdev, 1053 ev->dc.ie, ev->dc.ie_len, 1054 ev->dc.reason, 1055 !ev->dc.locally_generated); 1056 break; 1057 case EVENT_IBSS_JOINED: 1058 __cfg80211_ibss_joined(wdev->netdev, ev->ij.bssid, 1059 ev->ij.channel); 1060 break; 1061 case EVENT_STOPPED: 1062 cfg80211_leave(wiphy_to_rdev(wdev->wiphy), wdev); 1063 break; 1064 case EVENT_PORT_AUTHORIZED: 1065 __cfg80211_port_authorized(wdev, ev->pa.peer_addr, 1066 ev->pa.td_bitmap, 1067 ev->pa.td_bitmap_len); 1068 break; 1069 } 1070 1071 kfree(ev); 1072 1073 spin_lock_irqsave(&wdev->event_lock, flags); 1074 } 1075 spin_unlock_irqrestore(&wdev->event_lock, flags); 1076 } 1077 1078 void cfg80211_process_rdev_events(struct cfg80211_registered_device *rdev) 1079 { 1080 struct wireless_dev *wdev; 1081 1082 lockdep_assert_held(&rdev->wiphy.mtx); 1083 1084 list_for_each_entry(wdev, &rdev->wiphy.wdev_list, list) 1085 cfg80211_process_wdev_events(wdev); 1086 } 1087 1088 int cfg80211_change_iface(struct cfg80211_registered_device *rdev, 1089 struct net_device *dev, enum nl80211_iftype ntype, 1090 struct vif_params *params) 1091 { 1092 int err; 1093 enum nl80211_iftype otype = dev->ieee80211_ptr->iftype; 1094 1095 lockdep_assert_held(&rdev->wiphy.mtx); 1096 1097 /* don't support changing VLANs, you just re-create them */ 1098 if (otype == NL80211_IFTYPE_AP_VLAN) 1099 return -EOPNOTSUPP; 1100 1101 /* cannot change into P2P device or NAN */ 1102 if (ntype == NL80211_IFTYPE_P2P_DEVICE || 1103 ntype == NL80211_IFTYPE_NAN) 1104 return -EOPNOTSUPP; 1105 1106 if (!rdev->ops->change_virtual_intf || 1107 !(rdev->wiphy.interface_modes & (1 << ntype))) 1108 return -EOPNOTSUPP; 1109 1110 if (ntype != otype) { 1111 /* if it's part of a bridge, reject changing type to station/ibss */ 1112 if (netif_is_bridge_port(dev) && 1113 (ntype == NL80211_IFTYPE_ADHOC || 1114 ntype == NL80211_IFTYPE_STATION || 1115 ntype == NL80211_IFTYPE_P2P_CLIENT)) 1116 return -EBUSY; 1117 1118 dev->ieee80211_ptr->use_4addr = false; 1119 rdev_set_qos_map(rdev, dev, NULL); 1120 1121 switch (otype) { 1122 case NL80211_IFTYPE_AP: 1123 case NL80211_IFTYPE_P2P_GO: 1124 cfg80211_stop_ap(rdev, dev, -1, true); 1125 break; 1126 case NL80211_IFTYPE_ADHOC: 1127 cfg80211_leave_ibss(rdev, dev, false); 1128 break; 1129 case NL80211_IFTYPE_STATION: 1130 case NL80211_IFTYPE_P2P_CLIENT: 1131 cfg80211_disconnect(rdev, dev, 1132 WLAN_REASON_DEAUTH_LEAVING, true); 1133 break; 1134 case NL80211_IFTYPE_MESH_POINT: 1135 /* mesh should be handled? */ 1136 break; 1137 case NL80211_IFTYPE_OCB: 1138 cfg80211_leave_ocb(rdev, dev); 1139 break; 1140 default: 1141 break; 1142 } 1143 1144 cfg80211_process_rdev_events(rdev); 1145 cfg80211_mlme_purge_registrations(dev->ieee80211_ptr); 1146 1147 memset(&dev->ieee80211_ptr->u, 0, 1148 sizeof(dev->ieee80211_ptr->u)); 1149 memset(&dev->ieee80211_ptr->links, 0, 1150 sizeof(dev->ieee80211_ptr->links)); 1151 } 1152 1153 err = rdev_change_virtual_intf(rdev, dev, ntype, params); 1154 1155 WARN_ON(!err && dev->ieee80211_ptr->iftype != ntype); 1156 1157 if (!err && params && params->use_4addr != -1) 1158 dev->ieee80211_ptr->use_4addr = params->use_4addr; 1159 1160 if (!err) { 1161 dev->priv_flags &= ~IFF_DONT_BRIDGE; 1162 switch (ntype) { 1163 case NL80211_IFTYPE_STATION: 1164 if (dev->ieee80211_ptr->use_4addr) 1165 break; 1166 fallthrough; 1167 case NL80211_IFTYPE_OCB: 1168 case NL80211_IFTYPE_P2P_CLIENT: 1169 case NL80211_IFTYPE_ADHOC: 1170 dev->priv_flags |= IFF_DONT_BRIDGE; 1171 break; 1172 case NL80211_IFTYPE_P2P_GO: 1173 case NL80211_IFTYPE_AP: 1174 case NL80211_IFTYPE_AP_VLAN: 1175 case NL80211_IFTYPE_MESH_POINT: 1176 /* bridging OK */ 1177 break; 1178 case NL80211_IFTYPE_MONITOR: 1179 /* monitor can't bridge anyway */ 1180 break; 1181 case NL80211_IFTYPE_UNSPECIFIED: 1182 case NUM_NL80211_IFTYPES: 1183 /* not happening */ 1184 break; 1185 case NL80211_IFTYPE_P2P_DEVICE: 1186 case NL80211_IFTYPE_WDS: 1187 case NL80211_IFTYPE_NAN: 1188 WARN_ON(1); 1189 break; 1190 } 1191 } 1192 1193 if (!err && ntype != otype && netif_running(dev)) { 1194 cfg80211_update_iface_num(rdev, ntype, 1); 1195 cfg80211_update_iface_num(rdev, otype, -1); 1196 } 1197 1198 return err; 1199 } 1200 1201 static u32 cfg80211_calculate_bitrate_ht(struct rate_info *rate) 1202 { 1203 int modulation, streams, bitrate; 1204 1205 /* the formula below does only work for MCS values smaller than 32 */ 1206 if (WARN_ON_ONCE(rate->mcs >= 32)) 1207 return 0; 1208 1209 modulation = rate->mcs & 7; 1210 streams = (rate->mcs >> 3) + 1; 1211 1212 bitrate = (rate->bw == RATE_INFO_BW_40) ? 13500000 : 6500000; 1213 1214 if (modulation < 4) 1215 bitrate *= (modulation + 1); 1216 else if (modulation == 4) 1217 bitrate *= (modulation + 2); 1218 else 1219 bitrate *= (modulation + 3); 1220 1221 bitrate *= streams; 1222 1223 if (rate->flags & RATE_INFO_FLAGS_SHORT_GI) 1224 bitrate = (bitrate / 9) * 10; 1225 1226 /* do NOT round down here */ 1227 return (bitrate + 50000) / 100000; 1228 } 1229 1230 static u32 cfg80211_calculate_bitrate_dmg(struct rate_info *rate) 1231 { 1232 static const u32 __mcs2bitrate[] = { 1233 /* control PHY */ 1234 [0] = 275, 1235 /* SC PHY */ 1236 [1] = 3850, 1237 [2] = 7700, 1238 [3] = 9625, 1239 [4] = 11550, 1240 [5] = 12512, /* 1251.25 mbps */ 1241 [6] = 15400, 1242 [7] = 19250, 1243 [8] = 23100, 1244 [9] = 25025, 1245 [10] = 30800, 1246 [11] = 38500, 1247 [12] = 46200, 1248 /* OFDM PHY */ 1249 [13] = 6930, 1250 [14] = 8662, /* 866.25 mbps */ 1251 [15] = 13860, 1252 [16] = 17325, 1253 [17] = 20790, 1254 [18] = 27720, 1255 [19] = 34650, 1256 [20] = 41580, 1257 [21] = 45045, 1258 [22] = 51975, 1259 [23] = 62370, 1260 [24] = 67568, /* 6756.75 mbps */ 1261 /* LP-SC PHY */ 1262 [25] = 6260, 1263 [26] = 8340, 1264 [27] = 11120, 1265 [28] = 12510, 1266 [29] = 16680, 1267 [30] = 22240, 1268 [31] = 25030, 1269 }; 1270 1271 if (WARN_ON_ONCE(rate->mcs >= ARRAY_SIZE(__mcs2bitrate))) 1272 return 0; 1273 1274 return __mcs2bitrate[rate->mcs]; 1275 } 1276 1277 static u32 cfg80211_calculate_bitrate_extended_sc_dmg(struct rate_info *rate) 1278 { 1279 static const u32 __mcs2bitrate[] = { 1280 [6 - 6] = 26950, /* MCS 9.1 : 2695.0 mbps */ 1281 [7 - 6] = 50050, /* MCS 12.1 */ 1282 [8 - 6] = 53900, 1283 [9 - 6] = 57750, 1284 [10 - 6] = 63900, 1285 [11 - 6] = 75075, 1286 [12 - 6] = 80850, 1287 }; 1288 1289 /* Extended SC MCS not defined for base MCS below 6 or above 12 */ 1290 if (WARN_ON_ONCE(rate->mcs < 6 || rate->mcs > 12)) 1291 return 0; 1292 1293 return __mcs2bitrate[rate->mcs - 6]; 1294 } 1295 1296 static u32 cfg80211_calculate_bitrate_edmg(struct rate_info *rate) 1297 { 1298 static const u32 __mcs2bitrate[] = { 1299 /* control PHY */ 1300 [0] = 275, 1301 /* SC PHY */ 1302 [1] = 3850, 1303 [2] = 7700, 1304 [3] = 9625, 1305 [4] = 11550, 1306 [5] = 12512, /* 1251.25 mbps */ 1307 [6] = 13475, 1308 [7] = 15400, 1309 [8] = 19250, 1310 [9] = 23100, 1311 [10] = 25025, 1312 [11] = 26950, 1313 [12] = 30800, 1314 [13] = 38500, 1315 [14] = 46200, 1316 [15] = 50050, 1317 [16] = 53900, 1318 [17] = 57750, 1319 [18] = 69300, 1320 [19] = 75075, 1321 [20] = 80850, 1322 }; 1323 1324 if (WARN_ON_ONCE(rate->mcs >= ARRAY_SIZE(__mcs2bitrate))) 1325 return 0; 1326 1327 return __mcs2bitrate[rate->mcs] * rate->n_bonded_ch; 1328 } 1329 1330 static u32 cfg80211_calculate_bitrate_vht(struct rate_info *rate) 1331 { 1332 static const u32 base[4][12] = { 1333 { 6500000, 1334 13000000, 1335 19500000, 1336 26000000, 1337 39000000, 1338 52000000, 1339 58500000, 1340 65000000, 1341 78000000, 1342 /* not in the spec, but some devices use this: */ 1343 86700000, 1344 97500000, 1345 108300000, 1346 }, 1347 { 13500000, 1348 27000000, 1349 40500000, 1350 54000000, 1351 81000000, 1352 108000000, 1353 121500000, 1354 135000000, 1355 162000000, 1356 180000000, 1357 202500000, 1358 225000000, 1359 }, 1360 { 29300000, 1361 58500000, 1362 87800000, 1363 117000000, 1364 175500000, 1365 234000000, 1366 263300000, 1367 292500000, 1368 351000000, 1369 390000000, 1370 438800000, 1371 487500000, 1372 }, 1373 { 58500000, 1374 117000000, 1375 175500000, 1376 234000000, 1377 351000000, 1378 468000000, 1379 526500000, 1380 585000000, 1381 702000000, 1382 780000000, 1383 877500000, 1384 975000000, 1385 }, 1386 }; 1387 u32 bitrate; 1388 int idx; 1389 1390 if (rate->mcs > 11) 1391 goto warn; 1392 1393 switch (rate->bw) { 1394 case RATE_INFO_BW_160: 1395 idx = 3; 1396 break; 1397 case RATE_INFO_BW_80: 1398 idx = 2; 1399 break; 1400 case RATE_INFO_BW_40: 1401 idx = 1; 1402 break; 1403 case RATE_INFO_BW_5: 1404 case RATE_INFO_BW_10: 1405 default: 1406 goto warn; 1407 case RATE_INFO_BW_20: 1408 idx = 0; 1409 } 1410 1411 bitrate = base[idx][rate->mcs]; 1412 bitrate *= rate->nss; 1413 1414 if (rate->flags & RATE_INFO_FLAGS_SHORT_GI) 1415 bitrate = (bitrate / 9) * 10; 1416 1417 /* do NOT round down here */ 1418 return (bitrate + 50000) / 100000; 1419 warn: 1420 WARN_ONCE(1, "invalid rate bw=%d, mcs=%d, nss=%d\n", 1421 rate->bw, rate->mcs, rate->nss); 1422 return 0; 1423 } 1424 1425 static u32 cfg80211_calculate_bitrate_he(struct rate_info *rate) 1426 { 1427 #define SCALE 6144 1428 u32 mcs_divisors[14] = { 1429 102399, /* 16.666666... */ 1430 51201, /* 8.333333... */ 1431 34134, /* 5.555555... */ 1432 25599, /* 4.166666... */ 1433 17067, /* 2.777777... */ 1434 12801, /* 2.083333... */ 1435 11377, /* 1.851725... */ 1436 10239, /* 1.666666... */ 1437 8532, /* 1.388888... */ 1438 7680, /* 1.250000... */ 1439 6828, /* 1.111111... */ 1440 6144, /* 1.000000... */ 1441 5690, /* 0.926106... */ 1442 5120, /* 0.833333... */ 1443 }; 1444 u32 rates_160M[3] = { 960777777, 907400000, 816666666 }; 1445 u32 rates_969[3] = { 480388888, 453700000, 408333333 }; 1446 u32 rates_484[3] = { 229411111, 216666666, 195000000 }; 1447 u32 rates_242[3] = { 114711111, 108333333, 97500000 }; 1448 u32 rates_106[3] = { 40000000, 37777777, 34000000 }; 1449 u32 rates_52[3] = { 18820000, 17777777, 16000000 }; 1450 u32 rates_26[3] = { 9411111, 8888888, 8000000 }; 1451 u64 tmp; 1452 u32 result; 1453 1454 if (WARN_ON_ONCE(rate->mcs > 13)) 1455 return 0; 1456 1457 if (WARN_ON_ONCE(rate->he_gi > NL80211_RATE_INFO_HE_GI_3_2)) 1458 return 0; 1459 if (WARN_ON_ONCE(rate->he_ru_alloc > 1460 NL80211_RATE_INFO_HE_RU_ALLOC_2x996)) 1461 return 0; 1462 if (WARN_ON_ONCE(rate->nss < 1 || rate->nss > 8)) 1463 return 0; 1464 1465 if (rate->bw == RATE_INFO_BW_160) 1466 result = rates_160M[rate->he_gi]; 1467 else if (rate->bw == RATE_INFO_BW_80 || 1468 (rate->bw == RATE_INFO_BW_HE_RU && 1469 rate->he_ru_alloc == NL80211_RATE_INFO_HE_RU_ALLOC_996)) 1470 result = rates_969[rate->he_gi]; 1471 else if (rate->bw == RATE_INFO_BW_40 || 1472 (rate->bw == RATE_INFO_BW_HE_RU && 1473 rate->he_ru_alloc == NL80211_RATE_INFO_HE_RU_ALLOC_484)) 1474 result = rates_484[rate->he_gi]; 1475 else if (rate->bw == RATE_INFO_BW_20 || 1476 (rate->bw == RATE_INFO_BW_HE_RU && 1477 rate->he_ru_alloc == NL80211_RATE_INFO_HE_RU_ALLOC_242)) 1478 result = rates_242[rate->he_gi]; 1479 else if (rate->bw == RATE_INFO_BW_HE_RU && 1480 rate->he_ru_alloc == NL80211_RATE_INFO_HE_RU_ALLOC_106) 1481 result = rates_106[rate->he_gi]; 1482 else if (rate->bw == RATE_INFO_BW_HE_RU && 1483 rate->he_ru_alloc == NL80211_RATE_INFO_HE_RU_ALLOC_52) 1484 result = rates_52[rate->he_gi]; 1485 else if (rate->bw == RATE_INFO_BW_HE_RU && 1486 rate->he_ru_alloc == NL80211_RATE_INFO_HE_RU_ALLOC_26) 1487 result = rates_26[rate->he_gi]; 1488 else { 1489 WARN(1, "invalid HE MCS: bw:%d, ru:%d\n", 1490 rate->bw, rate->he_ru_alloc); 1491 return 0; 1492 } 1493 1494 /* now scale to the appropriate MCS */ 1495 tmp = result; 1496 tmp *= SCALE; 1497 do_div(tmp, mcs_divisors[rate->mcs]); 1498 result = tmp; 1499 1500 /* and take NSS, DCM into account */ 1501 result = (result * rate->nss) / 8; 1502 if (rate->he_dcm) 1503 result /= 2; 1504 1505 return result / 10000; 1506 } 1507 1508 static u32 cfg80211_calculate_bitrate_eht(struct rate_info *rate) 1509 { 1510 #define SCALE 6144 1511 static const u32 mcs_divisors[16] = { 1512 102399, /* 16.666666... */ 1513 51201, /* 8.333333... */ 1514 34134, /* 5.555555... */ 1515 25599, /* 4.166666... */ 1516 17067, /* 2.777777... */ 1517 12801, /* 2.083333... */ 1518 11377, /* 1.851725... */ 1519 10239, /* 1.666666... */ 1520 8532, /* 1.388888... */ 1521 7680, /* 1.250000... */ 1522 6828, /* 1.111111... */ 1523 6144, /* 1.000000... */ 1524 5690, /* 0.926106... */ 1525 5120, /* 0.833333... */ 1526 409600, /* 66.666666... */ 1527 204800, /* 33.333333... */ 1528 }; 1529 static const u32 rates_996[3] = { 480388888, 453700000, 408333333 }; 1530 static const u32 rates_484[3] = { 229411111, 216666666, 195000000 }; 1531 static const u32 rates_242[3] = { 114711111, 108333333, 97500000 }; 1532 static const u32 rates_106[3] = { 40000000, 37777777, 34000000 }; 1533 static const u32 rates_52[3] = { 18820000, 17777777, 16000000 }; 1534 static const u32 rates_26[3] = { 9411111, 8888888, 8000000 }; 1535 u64 tmp; 1536 u32 result; 1537 1538 if (WARN_ON_ONCE(rate->mcs > 15)) 1539 return 0; 1540 if (WARN_ON_ONCE(rate->eht_gi > NL80211_RATE_INFO_EHT_GI_3_2)) 1541 return 0; 1542 if (WARN_ON_ONCE(rate->eht_ru_alloc > 1543 NL80211_RATE_INFO_EHT_RU_ALLOC_4x996)) 1544 return 0; 1545 if (WARN_ON_ONCE(rate->nss < 1 || rate->nss > 8)) 1546 return 0; 1547 1548 /* Bandwidth checks for MCS 14 */ 1549 if (rate->mcs == 14) { 1550 if ((rate->bw != RATE_INFO_BW_EHT_RU && 1551 rate->bw != RATE_INFO_BW_80 && 1552 rate->bw != RATE_INFO_BW_160 && 1553 rate->bw != RATE_INFO_BW_320) || 1554 (rate->bw == RATE_INFO_BW_EHT_RU && 1555 rate->eht_ru_alloc != NL80211_RATE_INFO_EHT_RU_ALLOC_996 && 1556 rate->eht_ru_alloc != NL80211_RATE_INFO_EHT_RU_ALLOC_2x996 && 1557 rate->eht_ru_alloc != NL80211_RATE_INFO_EHT_RU_ALLOC_4x996)) { 1558 WARN(1, "invalid EHT BW for MCS 14: bw:%d, ru:%d\n", 1559 rate->bw, rate->eht_ru_alloc); 1560 return 0; 1561 } 1562 } 1563 1564 if (rate->bw == RATE_INFO_BW_320 || 1565 (rate->bw == RATE_INFO_BW_EHT_RU && 1566 rate->eht_ru_alloc == NL80211_RATE_INFO_EHT_RU_ALLOC_4x996)) 1567 result = 4 * rates_996[rate->eht_gi]; 1568 else if (rate->bw == RATE_INFO_BW_EHT_RU && 1569 rate->eht_ru_alloc == NL80211_RATE_INFO_EHT_RU_ALLOC_3x996P484) 1570 result = 3 * rates_996[rate->eht_gi] + rates_484[rate->eht_gi]; 1571 else if (rate->bw == RATE_INFO_BW_EHT_RU && 1572 rate->eht_ru_alloc == NL80211_RATE_INFO_EHT_RU_ALLOC_3x996) 1573 result = 3 * rates_996[rate->eht_gi]; 1574 else if (rate->bw == RATE_INFO_BW_EHT_RU && 1575 rate->eht_ru_alloc == NL80211_RATE_INFO_EHT_RU_ALLOC_2x996P484) 1576 result = 2 * rates_996[rate->eht_gi] + rates_484[rate->eht_gi]; 1577 else if (rate->bw == RATE_INFO_BW_160 || 1578 (rate->bw == RATE_INFO_BW_EHT_RU && 1579 rate->eht_ru_alloc == NL80211_RATE_INFO_EHT_RU_ALLOC_2x996)) 1580 result = 2 * rates_996[rate->eht_gi]; 1581 else if (rate->bw == RATE_INFO_BW_EHT_RU && 1582 rate->eht_ru_alloc == 1583 NL80211_RATE_INFO_EHT_RU_ALLOC_996P484P242) 1584 result = rates_996[rate->eht_gi] + rates_484[rate->eht_gi] 1585 + rates_242[rate->eht_gi]; 1586 else if (rate->bw == RATE_INFO_BW_EHT_RU && 1587 rate->eht_ru_alloc == NL80211_RATE_INFO_EHT_RU_ALLOC_996P484) 1588 result = rates_996[rate->eht_gi] + rates_484[rate->eht_gi]; 1589 else if (rate->bw == RATE_INFO_BW_80 || 1590 (rate->bw == RATE_INFO_BW_EHT_RU && 1591 rate->eht_ru_alloc == NL80211_RATE_INFO_EHT_RU_ALLOC_996)) 1592 result = rates_996[rate->eht_gi]; 1593 else if (rate->bw == RATE_INFO_BW_EHT_RU && 1594 rate->eht_ru_alloc == NL80211_RATE_INFO_EHT_RU_ALLOC_484P242) 1595 result = rates_484[rate->eht_gi] + rates_242[rate->eht_gi]; 1596 else if (rate->bw == RATE_INFO_BW_40 || 1597 (rate->bw == RATE_INFO_BW_EHT_RU && 1598 rate->eht_ru_alloc == NL80211_RATE_INFO_EHT_RU_ALLOC_484)) 1599 result = rates_484[rate->eht_gi]; 1600 else if (rate->bw == RATE_INFO_BW_20 || 1601 (rate->bw == RATE_INFO_BW_EHT_RU && 1602 rate->eht_ru_alloc == NL80211_RATE_INFO_EHT_RU_ALLOC_242)) 1603 result = rates_242[rate->eht_gi]; 1604 else if (rate->bw == RATE_INFO_BW_EHT_RU && 1605 rate->eht_ru_alloc == NL80211_RATE_INFO_EHT_RU_ALLOC_106P26) 1606 result = rates_106[rate->eht_gi] + rates_26[rate->eht_gi]; 1607 else if (rate->bw == RATE_INFO_BW_EHT_RU && 1608 rate->eht_ru_alloc == NL80211_RATE_INFO_EHT_RU_ALLOC_106) 1609 result = rates_106[rate->eht_gi]; 1610 else if (rate->bw == RATE_INFO_BW_EHT_RU && 1611 rate->eht_ru_alloc == NL80211_RATE_INFO_EHT_RU_ALLOC_52P26) 1612 result = rates_52[rate->eht_gi] + rates_26[rate->eht_gi]; 1613 else if (rate->bw == RATE_INFO_BW_EHT_RU && 1614 rate->eht_ru_alloc == NL80211_RATE_INFO_EHT_RU_ALLOC_52) 1615 result = rates_52[rate->eht_gi]; 1616 else if (rate->bw == RATE_INFO_BW_EHT_RU && 1617 rate->eht_ru_alloc == NL80211_RATE_INFO_EHT_RU_ALLOC_26) 1618 result = rates_26[rate->eht_gi]; 1619 else { 1620 WARN(1, "invalid EHT MCS: bw:%d, ru:%d\n", 1621 rate->bw, rate->eht_ru_alloc); 1622 return 0; 1623 } 1624 1625 /* now scale to the appropriate MCS */ 1626 tmp = result; 1627 tmp *= SCALE; 1628 do_div(tmp, mcs_divisors[rate->mcs]); 1629 1630 /* and take NSS */ 1631 tmp *= rate->nss; 1632 do_div(tmp, 8); 1633 1634 result = tmp; 1635 1636 return result / 10000; 1637 } 1638 1639 static u32 cfg80211_calculate_bitrate_s1g(struct rate_info *rate) 1640 { 1641 /* For 1, 2, 4, 8 and 16 MHz channels */ 1642 static const u32 base[5][11] = { 1643 { 300000, 1644 600000, 1645 900000, 1646 1200000, 1647 1800000, 1648 2400000, 1649 2700000, 1650 3000000, 1651 3600000, 1652 4000000, 1653 /* MCS 10 supported in 1 MHz only */ 1654 150000, 1655 }, 1656 { 650000, 1657 1300000, 1658 1950000, 1659 2600000, 1660 3900000, 1661 5200000, 1662 5850000, 1663 6500000, 1664 7800000, 1665 /* MCS 9 not valid */ 1666 }, 1667 { 1350000, 1668 2700000, 1669 4050000, 1670 5400000, 1671 8100000, 1672 10800000, 1673 12150000, 1674 13500000, 1675 16200000, 1676 18000000, 1677 }, 1678 { 2925000, 1679 5850000, 1680 8775000, 1681 11700000, 1682 17550000, 1683 23400000, 1684 26325000, 1685 29250000, 1686 35100000, 1687 39000000, 1688 }, 1689 { 8580000, 1690 11700000, 1691 17550000, 1692 23400000, 1693 35100000, 1694 46800000, 1695 52650000, 1696 58500000, 1697 70200000, 1698 78000000, 1699 }, 1700 }; 1701 u32 bitrate; 1702 /* default is 1 MHz index */ 1703 int idx = 0; 1704 1705 if (rate->mcs >= 11) 1706 goto warn; 1707 1708 switch (rate->bw) { 1709 case RATE_INFO_BW_16: 1710 idx = 4; 1711 break; 1712 case RATE_INFO_BW_8: 1713 idx = 3; 1714 break; 1715 case RATE_INFO_BW_4: 1716 idx = 2; 1717 break; 1718 case RATE_INFO_BW_2: 1719 idx = 1; 1720 break; 1721 case RATE_INFO_BW_1: 1722 idx = 0; 1723 break; 1724 case RATE_INFO_BW_5: 1725 case RATE_INFO_BW_10: 1726 case RATE_INFO_BW_20: 1727 case RATE_INFO_BW_40: 1728 case RATE_INFO_BW_80: 1729 case RATE_INFO_BW_160: 1730 default: 1731 goto warn; 1732 } 1733 1734 bitrate = base[idx][rate->mcs]; 1735 bitrate *= rate->nss; 1736 1737 if (rate->flags & RATE_INFO_FLAGS_SHORT_GI) 1738 bitrate = (bitrate / 9) * 10; 1739 /* do NOT round down here */ 1740 return (bitrate + 50000) / 100000; 1741 warn: 1742 WARN_ONCE(1, "invalid rate bw=%d, mcs=%d, nss=%d\n", 1743 rate->bw, rate->mcs, rate->nss); 1744 return 0; 1745 } 1746 1747 u32 cfg80211_calculate_bitrate(struct rate_info *rate) 1748 { 1749 if (rate->flags & RATE_INFO_FLAGS_MCS) 1750 return cfg80211_calculate_bitrate_ht(rate); 1751 if (rate->flags & RATE_INFO_FLAGS_DMG) 1752 return cfg80211_calculate_bitrate_dmg(rate); 1753 if (rate->flags & RATE_INFO_FLAGS_EXTENDED_SC_DMG) 1754 return cfg80211_calculate_bitrate_extended_sc_dmg(rate); 1755 if (rate->flags & RATE_INFO_FLAGS_EDMG) 1756 return cfg80211_calculate_bitrate_edmg(rate); 1757 if (rate->flags & RATE_INFO_FLAGS_VHT_MCS) 1758 return cfg80211_calculate_bitrate_vht(rate); 1759 if (rate->flags & RATE_INFO_FLAGS_HE_MCS) 1760 return cfg80211_calculate_bitrate_he(rate); 1761 if (rate->flags & RATE_INFO_FLAGS_EHT_MCS) 1762 return cfg80211_calculate_bitrate_eht(rate); 1763 if (rate->flags & RATE_INFO_FLAGS_S1G_MCS) 1764 return cfg80211_calculate_bitrate_s1g(rate); 1765 1766 return rate->legacy; 1767 } 1768 EXPORT_SYMBOL(cfg80211_calculate_bitrate); 1769 1770 int cfg80211_get_p2p_attr(const u8 *ies, unsigned int len, 1771 enum ieee80211_p2p_attr_id attr, 1772 u8 *buf, unsigned int bufsize) 1773 { 1774 u8 *out = buf; 1775 u16 attr_remaining = 0; 1776 bool desired_attr = false; 1777 u16 desired_len = 0; 1778 1779 while (len > 0) { 1780 unsigned int iedatalen; 1781 unsigned int copy; 1782 const u8 *iedata; 1783 1784 if (len < 2) 1785 return -EILSEQ; 1786 iedatalen = ies[1]; 1787 if (iedatalen + 2 > len) 1788 return -EILSEQ; 1789 1790 if (ies[0] != WLAN_EID_VENDOR_SPECIFIC) 1791 goto cont; 1792 1793 if (iedatalen < 4) 1794 goto cont; 1795 1796 iedata = ies + 2; 1797 1798 /* check WFA OUI, P2P subtype */ 1799 if (iedata[0] != 0x50 || iedata[1] != 0x6f || 1800 iedata[2] != 0x9a || iedata[3] != 0x09) 1801 goto cont; 1802 1803 iedatalen -= 4; 1804 iedata += 4; 1805 1806 /* check attribute continuation into this IE */ 1807 copy = min_t(unsigned int, attr_remaining, iedatalen); 1808 if (copy && desired_attr) { 1809 desired_len += copy; 1810 if (out) { 1811 memcpy(out, iedata, min(bufsize, copy)); 1812 out += min(bufsize, copy); 1813 bufsize -= min(bufsize, copy); 1814 } 1815 1816 1817 if (copy == attr_remaining) 1818 return desired_len; 1819 } 1820 1821 attr_remaining -= copy; 1822 if (attr_remaining) 1823 goto cont; 1824 1825 iedatalen -= copy; 1826 iedata += copy; 1827 1828 while (iedatalen > 0) { 1829 u16 attr_len; 1830 1831 /* P2P attribute ID & size must fit */ 1832 if (iedatalen < 3) 1833 return -EILSEQ; 1834 desired_attr = iedata[0] == attr; 1835 attr_len = get_unaligned_le16(iedata + 1); 1836 iedatalen -= 3; 1837 iedata += 3; 1838 1839 copy = min_t(unsigned int, attr_len, iedatalen); 1840 1841 if (desired_attr) { 1842 desired_len += copy; 1843 if (out) { 1844 memcpy(out, iedata, min(bufsize, copy)); 1845 out += min(bufsize, copy); 1846 bufsize -= min(bufsize, copy); 1847 } 1848 1849 if (copy == attr_len) 1850 return desired_len; 1851 } 1852 1853 iedata += copy; 1854 iedatalen -= copy; 1855 attr_remaining = attr_len - copy; 1856 } 1857 1858 cont: 1859 len -= ies[1] + 2; 1860 ies += ies[1] + 2; 1861 } 1862 1863 if (attr_remaining && desired_attr) 1864 return -EILSEQ; 1865 1866 return -ENOENT; 1867 } 1868 EXPORT_SYMBOL(cfg80211_get_p2p_attr); 1869 1870 static bool ieee80211_id_in_list(const u8 *ids, int n_ids, u8 id, bool id_ext) 1871 { 1872 int i; 1873 1874 /* Make sure array values are legal */ 1875 if (WARN_ON(ids[n_ids - 1] == WLAN_EID_EXTENSION)) 1876 return false; 1877 1878 i = 0; 1879 while (i < n_ids) { 1880 if (ids[i] == WLAN_EID_EXTENSION) { 1881 if (id_ext && (ids[i + 1] == id)) 1882 return true; 1883 1884 i += 2; 1885 continue; 1886 } 1887 1888 if (ids[i] == id && !id_ext) 1889 return true; 1890 1891 i++; 1892 } 1893 return false; 1894 } 1895 1896 static size_t skip_ie(const u8 *ies, size_t ielen, size_t pos) 1897 { 1898 /* we assume a validly formed IEs buffer */ 1899 u8 len = ies[pos + 1]; 1900 1901 pos += 2 + len; 1902 1903 /* the IE itself must have 255 bytes for fragments to follow */ 1904 if (len < 255) 1905 return pos; 1906 1907 while (pos < ielen && ies[pos] == WLAN_EID_FRAGMENT) { 1908 len = ies[pos + 1]; 1909 pos += 2 + len; 1910 } 1911 1912 return pos; 1913 } 1914 1915 size_t ieee80211_ie_split_ric(const u8 *ies, size_t ielen, 1916 const u8 *ids, int n_ids, 1917 const u8 *after_ric, int n_after_ric, 1918 size_t offset) 1919 { 1920 size_t pos = offset; 1921 1922 while (pos < ielen) { 1923 u8 ext = 0; 1924 1925 if (ies[pos] == WLAN_EID_EXTENSION) 1926 ext = 2; 1927 if ((pos + ext) >= ielen) 1928 break; 1929 1930 if (!ieee80211_id_in_list(ids, n_ids, ies[pos + ext], 1931 ies[pos] == WLAN_EID_EXTENSION)) 1932 break; 1933 1934 if (ies[pos] == WLAN_EID_RIC_DATA && n_after_ric) { 1935 pos = skip_ie(ies, ielen, pos); 1936 1937 while (pos < ielen) { 1938 if (ies[pos] == WLAN_EID_EXTENSION) 1939 ext = 2; 1940 else 1941 ext = 0; 1942 1943 if ((pos + ext) >= ielen) 1944 break; 1945 1946 if (!ieee80211_id_in_list(after_ric, 1947 n_after_ric, 1948 ies[pos + ext], 1949 ext == 2)) 1950 pos = skip_ie(ies, ielen, pos); 1951 else 1952 break; 1953 } 1954 } else { 1955 pos = skip_ie(ies, ielen, pos); 1956 } 1957 } 1958 1959 return pos; 1960 } 1961 EXPORT_SYMBOL(ieee80211_ie_split_ric); 1962 1963 void ieee80211_fragment_element(struct sk_buff *skb, u8 *len_pos, u8 frag_id) 1964 { 1965 unsigned int elem_len; 1966 1967 if (!len_pos) 1968 return; 1969 1970 elem_len = skb->data + skb->len - len_pos - 1; 1971 1972 while (elem_len > 255) { 1973 /* this one is 255 */ 1974 *len_pos = 255; 1975 /* remaining data gets smaller */ 1976 elem_len -= 255; 1977 /* make space for the fragment ID/len in SKB */ 1978 skb_put(skb, 2); 1979 /* shift back the remaining data to place fragment ID/len */ 1980 memmove(len_pos + 255 + 3, len_pos + 255 + 1, elem_len); 1981 /* place the fragment ID */ 1982 len_pos += 255 + 1; 1983 *len_pos = frag_id; 1984 /* and point to fragment length to update later */ 1985 len_pos++; 1986 } 1987 1988 *len_pos = elem_len; 1989 } 1990 EXPORT_SYMBOL(ieee80211_fragment_element); 1991 1992 bool ieee80211_operating_class_to_band(u8 operating_class, 1993 enum nl80211_band *band) 1994 { 1995 switch (operating_class) { 1996 case 112: 1997 case 115 ... 127: 1998 case 128 ... 130: 1999 *band = NL80211_BAND_5GHZ; 2000 return true; 2001 case 131 ... 135: 2002 case 137: 2003 *band = NL80211_BAND_6GHZ; 2004 return true; 2005 case 81: 2006 case 82: 2007 case 83: 2008 case 84: 2009 *band = NL80211_BAND_2GHZ; 2010 return true; 2011 case 180: 2012 *band = NL80211_BAND_60GHZ; 2013 return true; 2014 } 2015 2016 return false; 2017 } 2018 EXPORT_SYMBOL(ieee80211_operating_class_to_band); 2019 2020 bool ieee80211_chandef_to_operating_class(struct cfg80211_chan_def *chandef, 2021 u8 *op_class) 2022 { 2023 u8 vht_opclass; 2024 u32 freq = chandef->center_freq1; 2025 2026 if (freq >= 2412 && freq <= 2472) { 2027 if (chandef->width > NL80211_CHAN_WIDTH_40) 2028 return false; 2029 2030 /* 2.407 GHz, channels 1..13 */ 2031 if (chandef->width == NL80211_CHAN_WIDTH_40) { 2032 if (freq > chandef->chan->center_freq) 2033 *op_class = 83; /* HT40+ */ 2034 else 2035 *op_class = 84; /* HT40- */ 2036 } else { 2037 *op_class = 81; 2038 } 2039 2040 return true; 2041 } 2042 2043 if (freq == 2484) { 2044 /* channel 14 is only for IEEE 802.11b */ 2045 if (chandef->width != NL80211_CHAN_WIDTH_20_NOHT) 2046 return false; 2047 2048 *op_class = 82; /* channel 14 */ 2049 return true; 2050 } 2051 2052 switch (chandef->width) { 2053 case NL80211_CHAN_WIDTH_80: 2054 vht_opclass = 128; 2055 break; 2056 case NL80211_CHAN_WIDTH_160: 2057 vht_opclass = 129; 2058 break; 2059 case NL80211_CHAN_WIDTH_80P80: 2060 vht_opclass = 130; 2061 break; 2062 case NL80211_CHAN_WIDTH_10: 2063 case NL80211_CHAN_WIDTH_5: 2064 return false; /* unsupported for now */ 2065 default: 2066 vht_opclass = 0; 2067 break; 2068 } 2069 2070 /* 5 GHz, channels 36..48 */ 2071 if (freq >= 5180 && freq <= 5240) { 2072 if (vht_opclass) { 2073 *op_class = vht_opclass; 2074 } else if (chandef->width == NL80211_CHAN_WIDTH_40) { 2075 if (freq > chandef->chan->center_freq) 2076 *op_class = 116; 2077 else 2078 *op_class = 117; 2079 } else { 2080 *op_class = 115; 2081 } 2082 2083 return true; 2084 } 2085 2086 /* 5 GHz, channels 52..64 */ 2087 if (freq >= 5260 && freq <= 5320) { 2088 if (vht_opclass) { 2089 *op_class = vht_opclass; 2090 } else if (chandef->width == NL80211_CHAN_WIDTH_40) { 2091 if (freq > chandef->chan->center_freq) 2092 *op_class = 119; 2093 else 2094 *op_class = 120; 2095 } else { 2096 *op_class = 118; 2097 } 2098 2099 return true; 2100 } 2101 2102 /* 5 GHz, channels 100..144 */ 2103 if (freq >= 5500 && freq <= 5720) { 2104 if (vht_opclass) { 2105 *op_class = vht_opclass; 2106 } else if (chandef->width == NL80211_CHAN_WIDTH_40) { 2107 if (freq > chandef->chan->center_freq) 2108 *op_class = 122; 2109 else 2110 *op_class = 123; 2111 } else { 2112 *op_class = 121; 2113 } 2114 2115 return true; 2116 } 2117 2118 /* 5 GHz, channels 149..169 */ 2119 if (freq >= 5745 && freq <= 5845) { 2120 if (vht_opclass) { 2121 *op_class = vht_opclass; 2122 } else if (chandef->width == NL80211_CHAN_WIDTH_40) { 2123 if (freq > chandef->chan->center_freq) 2124 *op_class = 126; 2125 else 2126 *op_class = 127; 2127 } else if (freq <= 5805) { 2128 *op_class = 124; 2129 } else { 2130 *op_class = 125; 2131 } 2132 2133 return true; 2134 } 2135 2136 /* 56.16 GHz, channel 1..4 */ 2137 if (freq >= 56160 + 2160 * 1 && freq <= 56160 + 2160 * 6) { 2138 if (chandef->width >= NL80211_CHAN_WIDTH_40) 2139 return false; 2140 2141 *op_class = 180; 2142 return true; 2143 } 2144 2145 /* not supported yet */ 2146 return false; 2147 } 2148 EXPORT_SYMBOL(ieee80211_chandef_to_operating_class); 2149 2150 static int cfg80211_wdev_bi(struct wireless_dev *wdev) 2151 { 2152 switch (wdev->iftype) { 2153 case NL80211_IFTYPE_AP: 2154 case NL80211_IFTYPE_P2P_GO: 2155 WARN_ON(wdev->valid_links); 2156 return wdev->links[0].ap.beacon_interval; 2157 case NL80211_IFTYPE_MESH_POINT: 2158 return wdev->u.mesh.beacon_interval; 2159 case NL80211_IFTYPE_ADHOC: 2160 return wdev->u.ibss.beacon_interval; 2161 default: 2162 break; 2163 } 2164 2165 return 0; 2166 } 2167 2168 static void cfg80211_calculate_bi_data(struct wiphy *wiphy, u32 new_beacon_int, 2169 u32 *beacon_int_gcd, 2170 bool *beacon_int_different) 2171 { 2172 struct wireless_dev *wdev; 2173 2174 *beacon_int_gcd = 0; 2175 *beacon_int_different = false; 2176 2177 list_for_each_entry(wdev, &wiphy->wdev_list, list) { 2178 int wdev_bi; 2179 2180 /* this feature isn't supported with MLO */ 2181 if (wdev->valid_links) 2182 continue; 2183 2184 wdev_bi = cfg80211_wdev_bi(wdev); 2185 2186 if (!wdev_bi) 2187 continue; 2188 2189 if (!*beacon_int_gcd) { 2190 *beacon_int_gcd = wdev_bi; 2191 continue; 2192 } 2193 2194 if (wdev_bi == *beacon_int_gcd) 2195 continue; 2196 2197 *beacon_int_different = true; 2198 *beacon_int_gcd = gcd(*beacon_int_gcd, wdev_bi); 2199 } 2200 2201 if (new_beacon_int && *beacon_int_gcd != new_beacon_int) { 2202 if (*beacon_int_gcd) 2203 *beacon_int_different = true; 2204 *beacon_int_gcd = gcd(*beacon_int_gcd, new_beacon_int); 2205 } 2206 } 2207 2208 int cfg80211_validate_beacon_int(struct cfg80211_registered_device *rdev, 2209 enum nl80211_iftype iftype, u32 beacon_int) 2210 { 2211 /* 2212 * This is just a basic pre-condition check; if interface combinations 2213 * are possible the driver must already be checking those with a call 2214 * to cfg80211_check_combinations(), in which case we'll validate more 2215 * through the cfg80211_calculate_bi_data() call and code in 2216 * cfg80211_iter_combinations(). 2217 */ 2218 2219 if (beacon_int < 10 || beacon_int > 10000) 2220 return -EINVAL; 2221 2222 return 0; 2223 } 2224 2225 int cfg80211_iter_combinations(struct wiphy *wiphy, 2226 struct iface_combination_params *params, 2227 void (*iter)(const struct ieee80211_iface_combination *c, 2228 void *data), 2229 void *data) 2230 { 2231 const struct ieee80211_regdomain *regdom; 2232 enum nl80211_dfs_regions region = 0; 2233 int i, j, iftype; 2234 int num_interfaces = 0; 2235 u32 used_iftypes = 0; 2236 u32 beacon_int_gcd; 2237 bool beacon_int_different; 2238 2239 /* 2240 * This is a bit strange, since the iteration used to rely only on 2241 * the data given by the driver, but here it now relies on context, 2242 * in form of the currently operating interfaces. 2243 * This is OK for all current users, and saves us from having to 2244 * push the GCD calculations into all the drivers. 2245 * In the future, this should probably rely more on data that's in 2246 * cfg80211 already - the only thing not would appear to be any new 2247 * interfaces (while being brought up) and channel/radar data. 2248 */ 2249 cfg80211_calculate_bi_data(wiphy, params->new_beacon_int, 2250 &beacon_int_gcd, &beacon_int_different); 2251 2252 if (params->radar_detect) { 2253 rcu_read_lock(); 2254 regdom = rcu_dereference(cfg80211_regdomain); 2255 if (regdom) 2256 region = regdom->dfs_region; 2257 rcu_read_unlock(); 2258 } 2259 2260 for (iftype = 0; iftype < NUM_NL80211_IFTYPES; iftype++) { 2261 num_interfaces += params->iftype_num[iftype]; 2262 if (params->iftype_num[iftype] > 0 && 2263 !cfg80211_iftype_allowed(wiphy, iftype, 0, 1)) 2264 used_iftypes |= BIT(iftype); 2265 } 2266 2267 for (i = 0; i < wiphy->n_iface_combinations; i++) { 2268 const struct ieee80211_iface_combination *c; 2269 struct ieee80211_iface_limit *limits; 2270 u32 all_iftypes = 0; 2271 2272 c = &wiphy->iface_combinations[i]; 2273 2274 if (num_interfaces > c->max_interfaces) 2275 continue; 2276 if (params->num_different_channels > c->num_different_channels) 2277 continue; 2278 2279 limits = kmemdup(c->limits, sizeof(limits[0]) * c->n_limits, 2280 GFP_KERNEL); 2281 if (!limits) 2282 return -ENOMEM; 2283 2284 for (iftype = 0; iftype < NUM_NL80211_IFTYPES; iftype++) { 2285 if (cfg80211_iftype_allowed(wiphy, iftype, 0, 1)) 2286 continue; 2287 for (j = 0; j < c->n_limits; j++) { 2288 all_iftypes |= limits[j].types; 2289 if (!(limits[j].types & BIT(iftype))) 2290 continue; 2291 if (limits[j].max < params->iftype_num[iftype]) 2292 goto cont; 2293 limits[j].max -= params->iftype_num[iftype]; 2294 } 2295 } 2296 2297 if (params->radar_detect != 2298 (c->radar_detect_widths & params->radar_detect)) 2299 goto cont; 2300 2301 if (params->radar_detect && c->radar_detect_regions && 2302 !(c->radar_detect_regions & BIT(region))) 2303 goto cont; 2304 2305 /* Finally check that all iftypes that we're currently 2306 * using are actually part of this combination. If they 2307 * aren't then we can't use this combination and have 2308 * to continue to the next. 2309 */ 2310 if ((all_iftypes & used_iftypes) != used_iftypes) 2311 goto cont; 2312 2313 if (beacon_int_gcd) { 2314 if (c->beacon_int_min_gcd && 2315 beacon_int_gcd < c->beacon_int_min_gcd) 2316 goto cont; 2317 if (!c->beacon_int_min_gcd && beacon_int_different) 2318 goto cont; 2319 } 2320 2321 /* This combination covered all interface types and 2322 * supported the requested numbers, so we're good. 2323 */ 2324 2325 (*iter)(c, data); 2326 cont: 2327 kfree(limits); 2328 } 2329 2330 return 0; 2331 } 2332 EXPORT_SYMBOL(cfg80211_iter_combinations); 2333 2334 static void 2335 cfg80211_iter_sum_ifcombs(const struct ieee80211_iface_combination *c, 2336 void *data) 2337 { 2338 int *num = data; 2339 (*num)++; 2340 } 2341 2342 int cfg80211_check_combinations(struct wiphy *wiphy, 2343 struct iface_combination_params *params) 2344 { 2345 int err, num = 0; 2346 2347 err = cfg80211_iter_combinations(wiphy, params, 2348 cfg80211_iter_sum_ifcombs, &num); 2349 if (err) 2350 return err; 2351 if (num == 0) 2352 return -EBUSY; 2353 2354 return 0; 2355 } 2356 EXPORT_SYMBOL(cfg80211_check_combinations); 2357 2358 int ieee80211_get_ratemask(struct ieee80211_supported_band *sband, 2359 const u8 *rates, unsigned int n_rates, 2360 u32 *mask) 2361 { 2362 int i, j; 2363 2364 if (!sband) 2365 return -EINVAL; 2366 2367 if (n_rates == 0 || n_rates > NL80211_MAX_SUPP_RATES) 2368 return -EINVAL; 2369 2370 *mask = 0; 2371 2372 for (i = 0; i < n_rates; i++) { 2373 int rate = (rates[i] & 0x7f) * 5; 2374 bool found = false; 2375 2376 for (j = 0; j < sband->n_bitrates; j++) { 2377 if (sband->bitrates[j].bitrate == rate) { 2378 found = true; 2379 *mask |= BIT(j); 2380 break; 2381 } 2382 } 2383 if (!found) 2384 return -EINVAL; 2385 } 2386 2387 /* 2388 * mask must have at least one bit set here since we 2389 * didn't accept a 0-length rates array nor allowed 2390 * entries in the array that didn't exist 2391 */ 2392 2393 return 0; 2394 } 2395 2396 unsigned int ieee80211_get_num_supported_channels(struct wiphy *wiphy) 2397 { 2398 enum nl80211_band band; 2399 unsigned int n_channels = 0; 2400 2401 for (band = 0; band < NUM_NL80211_BANDS; band++) 2402 if (wiphy->bands[band]) 2403 n_channels += wiphy->bands[band]->n_channels; 2404 2405 return n_channels; 2406 } 2407 EXPORT_SYMBOL(ieee80211_get_num_supported_channels); 2408 2409 int cfg80211_get_station(struct net_device *dev, const u8 *mac_addr, 2410 struct station_info *sinfo) 2411 { 2412 struct cfg80211_registered_device *rdev; 2413 struct wireless_dev *wdev; 2414 2415 wdev = dev->ieee80211_ptr; 2416 if (!wdev) 2417 return -EOPNOTSUPP; 2418 2419 rdev = wiphy_to_rdev(wdev->wiphy); 2420 if (!rdev->ops->get_station) 2421 return -EOPNOTSUPP; 2422 2423 memset(sinfo, 0, sizeof(*sinfo)); 2424 2425 return rdev_get_station(rdev, dev, mac_addr, sinfo); 2426 } 2427 EXPORT_SYMBOL(cfg80211_get_station); 2428 2429 void cfg80211_free_nan_func(struct cfg80211_nan_func *f) 2430 { 2431 int i; 2432 2433 if (!f) 2434 return; 2435 2436 kfree(f->serv_spec_info); 2437 kfree(f->srf_bf); 2438 kfree(f->srf_macs); 2439 for (i = 0; i < f->num_rx_filters; i++) 2440 kfree(f->rx_filters[i].filter); 2441 2442 for (i = 0; i < f->num_tx_filters; i++) 2443 kfree(f->tx_filters[i].filter); 2444 2445 kfree(f->rx_filters); 2446 kfree(f->tx_filters); 2447 kfree(f); 2448 } 2449 EXPORT_SYMBOL(cfg80211_free_nan_func); 2450 2451 bool cfg80211_does_bw_fit_range(const struct ieee80211_freq_range *freq_range, 2452 u32 center_freq_khz, u32 bw_khz) 2453 { 2454 u32 start_freq_khz, end_freq_khz; 2455 2456 start_freq_khz = center_freq_khz - (bw_khz / 2); 2457 end_freq_khz = center_freq_khz + (bw_khz / 2); 2458 2459 if (start_freq_khz >= freq_range->start_freq_khz && 2460 end_freq_khz <= freq_range->end_freq_khz) 2461 return true; 2462 2463 return false; 2464 } 2465 2466 int cfg80211_sinfo_alloc_tid_stats(struct station_info *sinfo, gfp_t gfp) 2467 { 2468 sinfo->pertid = kcalloc(IEEE80211_NUM_TIDS + 1, 2469 sizeof(*(sinfo->pertid)), 2470 gfp); 2471 if (!sinfo->pertid) 2472 return -ENOMEM; 2473 2474 return 0; 2475 } 2476 EXPORT_SYMBOL(cfg80211_sinfo_alloc_tid_stats); 2477 2478 /* See IEEE 802.1H for LLC/SNAP encapsulation/decapsulation */ 2479 /* Ethernet-II snap header (RFC1042 for most EtherTypes) */ 2480 const unsigned char rfc1042_header[] __aligned(2) = 2481 { 0xaa, 0xaa, 0x03, 0x00, 0x00, 0x00 }; 2482 EXPORT_SYMBOL(rfc1042_header); 2483 2484 /* Bridge-Tunnel header (for EtherTypes ETH_P_AARP and ETH_P_IPX) */ 2485 const unsigned char bridge_tunnel_header[] __aligned(2) = 2486 { 0xaa, 0xaa, 0x03, 0x00, 0x00, 0xf8 }; 2487 EXPORT_SYMBOL(bridge_tunnel_header); 2488 2489 /* Layer 2 Update frame (802.2 Type 1 LLC XID Update response) */ 2490 struct iapp_layer2_update { 2491 u8 da[ETH_ALEN]; /* broadcast */ 2492 u8 sa[ETH_ALEN]; /* STA addr */ 2493 __be16 len; /* 6 */ 2494 u8 dsap; /* 0 */ 2495 u8 ssap; /* 0 */ 2496 u8 control; 2497 u8 xid_info[3]; 2498 } __packed; 2499 2500 void cfg80211_send_layer2_update(struct net_device *dev, const u8 *addr) 2501 { 2502 struct iapp_layer2_update *msg; 2503 struct sk_buff *skb; 2504 2505 /* Send Level 2 Update Frame to update forwarding tables in layer 2 2506 * bridge devices */ 2507 2508 skb = dev_alloc_skb(sizeof(*msg)); 2509 if (!skb) 2510 return; 2511 msg = skb_put(skb, sizeof(*msg)); 2512 2513 /* 802.2 Type 1 Logical Link Control (LLC) Exchange Identifier (XID) 2514 * Update response frame; IEEE Std 802.2-1998, 5.4.1.2.1 */ 2515 2516 eth_broadcast_addr(msg->da); 2517 ether_addr_copy(msg->sa, addr); 2518 msg->len = htons(6); 2519 msg->dsap = 0; 2520 msg->ssap = 0x01; /* NULL LSAP, CR Bit: Response */ 2521 msg->control = 0xaf; /* XID response lsb.1111F101. 2522 * F=0 (no poll command; unsolicited frame) */ 2523 msg->xid_info[0] = 0x81; /* XID format identifier */ 2524 msg->xid_info[1] = 1; /* LLC types/classes: Type 1 LLC */ 2525 msg->xid_info[2] = 0; /* XID sender's receive window size (RW) */ 2526 2527 skb->dev = dev; 2528 skb->protocol = eth_type_trans(skb, dev); 2529 memset(skb->cb, 0, sizeof(skb->cb)); 2530 netif_rx(skb); 2531 } 2532 EXPORT_SYMBOL(cfg80211_send_layer2_update); 2533 2534 int ieee80211_get_vht_max_nss(struct ieee80211_vht_cap *cap, 2535 enum ieee80211_vht_chanwidth bw, 2536 int mcs, bool ext_nss_bw_capable, 2537 unsigned int max_vht_nss) 2538 { 2539 u16 map = le16_to_cpu(cap->supp_mcs.rx_mcs_map); 2540 int ext_nss_bw; 2541 int supp_width; 2542 int i, mcs_encoding; 2543 2544 if (map == 0xffff) 2545 return 0; 2546 2547 if (WARN_ON(mcs > 9 || max_vht_nss > 8)) 2548 return 0; 2549 if (mcs <= 7) 2550 mcs_encoding = 0; 2551 else if (mcs == 8) 2552 mcs_encoding = 1; 2553 else 2554 mcs_encoding = 2; 2555 2556 if (!max_vht_nss) { 2557 /* find max_vht_nss for the given MCS */ 2558 for (i = 7; i >= 0; i--) { 2559 int supp = (map >> (2 * i)) & 3; 2560 2561 if (supp == 3) 2562 continue; 2563 2564 if (supp >= mcs_encoding) { 2565 max_vht_nss = i + 1; 2566 break; 2567 } 2568 } 2569 } 2570 2571 if (!(cap->supp_mcs.tx_mcs_map & 2572 cpu_to_le16(IEEE80211_VHT_EXT_NSS_BW_CAPABLE))) 2573 return max_vht_nss; 2574 2575 ext_nss_bw = le32_get_bits(cap->vht_cap_info, 2576 IEEE80211_VHT_CAP_EXT_NSS_BW_MASK); 2577 supp_width = le32_get_bits(cap->vht_cap_info, 2578 IEEE80211_VHT_CAP_SUPP_CHAN_WIDTH_MASK); 2579 2580 /* if not capable, treat ext_nss_bw as 0 */ 2581 if (!ext_nss_bw_capable) 2582 ext_nss_bw = 0; 2583 2584 /* This is invalid */ 2585 if (supp_width == 3) 2586 return 0; 2587 2588 /* This is an invalid combination so pretend nothing is supported */ 2589 if (supp_width == 2 && (ext_nss_bw == 1 || ext_nss_bw == 2)) 2590 return 0; 2591 2592 /* 2593 * Cover all the special cases according to IEEE 802.11-2016 2594 * Table 9-250. All other cases are either factor of 1 or not 2595 * valid/supported. 2596 */ 2597 switch (bw) { 2598 case IEEE80211_VHT_CHANWIDTH_USE_HT: 2599 case IEEE80211_VHT_CHANWIDTH_80MHZ: 2600 if ((supp_width == 1 || supp_width == 2) && 2601 ext_nss_bw == 3) 2602 return 2 * max_vht_nss; 2603 break; 2604 case IEEE80211_VHT_CHANWIDTH_160MHZ: 2605 if (supp_width == 0 && 2606 (ext_nss_bw == 1 || ext_nss_bw == 2)) 2607 return max_vht_nss / 2; 2608 if (supp_width == 0 && 2609 ext_nss_bw == 3) 2610 return (3 * max_vht_nss) / 4; 2611 if (supp_width == 1 && 2612 ext_nss_bw == 3) 2613 return 2 * max_vht_nss; 2614 break; 2615 case IEEE80211_VHT_CHANWIDTH_80P80MHZ: 2616 if (supp_width == 0 && ext_nss_bw == 1) 2617 return 0; /* not possible */ 2618 if (supp_width == 0 && 2619 ext_nss_bw == 2) 2620 return max_vht_nss / 2; 2621 if (supp_width == 0 && 2622 ext_nss_bw == 3) 2623 return (3 * max_vht_nss) / 4; 2624 if (supp_width == 1 && 2625 ext_nss_bw == 0) 2626 return 0; /* not possible */ 2627 if (supp_width == 1 && 2628 ext_nss_bw == 1) 2629 return max_vht_nss / 2; 2630 if (supp_width == 1 && 2631 ext_nss_bw == 2) 2632 return (3 * max_vht_nss) / 4; 2633 break; 2634 } 2635 2636 /* not covered or invalid combination received */ 2637 return max_vht_nss; 2638 } 2639 EXPORT_SYMBOL(ieee80211_get_vht_max_nss); 2640 2641 bool cfg80211_iftype_allowed(struct wiphy *wiphy, enum nl80211_iftype iftype, 2642 bool is_4addr, u8 check_swif) 2643 2644 { 2645 bool is_vlan = iftype == NL80211_IFTYPE_AP_VLAN; 2646 2647 switch (check_swif) { 2648 case 0: 2649 if (is_vlan && is_4addr) 2650 return wiphy->flags & WIPHY_FLAG_4ADDR_AP; 2651 return wiphy->interface_modes & BIT(iftype); 2652 case 1: 2653 if (!(wiphy->software_iftypes & BIT(iftype)) && is_vlan) 2654 return wiphy->flags & WIPHY_FLAG_4ADDR_AP; 2655 return wiphy->software_iftypes & BIT(iftype); 2656 default: 2657 break; 2658 } 2659 2660 return false; 2661 } 2662 EXPORT_SYMBOL(cfg80211_iftype_allowed); 2663 2664 void cfg80211_remove_link(struct wireless_dev *wdev, unsigned int link_id) 2665 { 2666 struct cfg80211_registered_device *rdev = wiphy_to_rdev(wdev->wiphy); 2667 2668 lockdep_assert_wiphy(wdev->wiphy); 2669 2670 switch (wdev->iftype) { 2671 case NL80211_IFTYPE_AP: 2672 case NL80211_IFTYPE_P2P_GO: 2673 cfg80211_stop_ap(rdev, wdev->netdev, link_id, true); 2674 break; 2675 default: 2676 /* per-link not relevant */ 2677 break; 2678 } 2679 2680 wdev->valid_links &= ~BIT(link_id); 2681 2682 rdev_del_intf_link(rdev, wdev, link_id); 2683 2684 eth_zero_addr(wdev->links[link_id].addr); 2685 } 2686 2687 void cfg80211_remove_links(struct wireless_dev *wdev) 2688 { 2689 unsigned int link_id; 2690 2691 /* 2692 * links are controlled by upper layers (userspace/cfg) 2693 * only for AP mode, so only remove them here for AP 2694 */ 2695 if (wdev->iftype != NL80211_IFTYPE_AP) 2696 return; 2697 2698 if (wdev->valid_links) { 2699 for_each_valid_link(wdev, link_id) 2700 cfg80211_remove_link(wdev, link_id); 2701 } 2702 } 2703 2704 int cfg80211_remove_virtual_intf(struct cfg80211_registered_device *rdev, 2705 struct wireless_dev *wdev) 2706 { 2707 cfg80211_remove_links(wdev); 2708 2709 return rdev_del_virtual_intf(rdev, wdev); 2710 } 2711 2712 const struct wiphy_iftype_ext_capab * 2713 cfg80211_get_iftype_ext_capa(struct wiphy *wiphy, enum nl80211_iftype type) 2714 { 2715 int i; 2716 2717 for (i = 0; i < wiphy->num_iftype_ext_capab; i++) { 2718 if (wiphy->iftype_ext_capab[i].iftype == type) 2719 return &wiphy->iftype_ext_capab[i]; 2720 } 2721 2722 return NULL; 2723 } 2724 EXPORT_SYMBOL(cfg80211_get_iftype_ext_capa); 2725