1 /* 2 * Wireless utility functions 3 * 4 * Copyright 2007-2009 Johannes Berg <johannes@sipsolutions.net> 5 * Copyright 2013-2014 Intel Mobile Communications GmbH 6 */ 7 #include <linux/export.h> 8 #include <linux/bitops.h> 9 #include <linux/etherdevice.h> 10 #include <linux/slab.h> 11 #include <net/cfg80211.h> 12 #include <net/ip.h> 13 #include <net/dsfield.h> 14 #include <linux/if_vlan.h> 15 #include <linux/mpls.h> 16 #include "core.h" 17 #include "rdev-ops.h" 18 19 20 struct ieee80211_rate * 21 ieee80211_get_response_rate(struct ieee80211_supported_band *sband, 22 u32 basic_rates, int bitrate) 23 { 24 struct ieee80211_rate *result = &sband->bitrates[0]; 25 int i; 26 27 for (i = 0; i < sband->n_bitrates; i++) { 28 if (!(basic_rates & BIT(i))) 29 continue; 30 if (sband->bitrates[i].bitrate > bitrate) 31 continue; 32 result = &sband->bitrates[i]; 33 } 34 35 return result; 36 } 37 EXPORT_SYMBOL(ieee80211_get_response_rate); 38 39 u32 ieee80211_mandatory_rates(struct ieee80211_supported_band *sband, 40 enum nl80211_bss_scan_width scan_width) 41 { 42 struct ieee80211_rate *bitrates; 43 u32 mandatory_rates = 0; 44 enum ieee80211_rate_flags mandatory_flag; 45 int i; 46 47 if (WARN_ON(!sband)) 48 return 1; 49 50 if (sband->band == IEEE80211_BAND_2GHZ) { 51 if (scan_width == NL80211_BSS_CHAN_WIDTH_5 || 52 scan_width == NL80211_BSS_CHAN_WIDTH_10) 53 mandatory_flag = IEEE80211_RATE_MANDATORY_G; 54 else 55 mandatory_flag = IEEE80211_RATE_MANDATORY_B; 56 } else { 57 mandatory_flag = IEEE80211_RATE_MANDATORY_A; 58 } 59 60 bitrates = sband->bitrates; 61 for (i = 0; i < sband->n_bitrates; i++) 62 if (bitrates[i].flags & mandatory_flag) 63 mandatory_rates |= BIT(i); 64 return mandatory_rates; 65 } 66 EXPORT_SYMBOL(ieee80211_mandatory_rates); 67 68 int ieee80211_channel_to_frequency(int chan, enum ieee80211_band band) 69 { 70 /* see 802.11 17.3.8.3.2 and Annex J 71 * there are overlapping channel numbers in 5GHz and 2GHz bands */ 72 if (chan <= 0) 73 return 0; /* not supported */ 74 switch (band) { 75 case IEEE80211_BAND_2GHZ: 76 if (chan == 14) 77 return 2484; 78 else if (chan < 14) 79 return 2407 + chan * 5; 80 break; 81 case IEEE80211_BAND_5GHZ: 82 if (chan >= 182 && chan <= 196) 83 return 4000 + chan * 5; 84 else 85 return 5000 + chan * 5; 86 break; 87 case IEEE80211_BAND_60GHZ: 88 if (chan < 5) 89 return 56160 + chan * 2160; 90 break; 91 default: 92 ; 93 } 94 return 0; /* not supported */ 95 } 96 EXPORT_SYMBOL(ieee80211_channel_to_frequency); 97 98 int ieee80211_frequency_to_channel(int freq) 99 { 100 /* see 802.11 17.3.8.3.2 and Annex J */ 101 if (freq == 2484) 102 return 14; 103 else if (freq < 2484) 104 return (freq - 2407) / 5; 105 else if (freq >= 4910 && freq <= 4980) 106 return (freq - 4000) / 5; 107 else if (freq <= 45000) /* DMG band lower limit */ 108 return (freq - 5000) / 5; 109 else if (freq >= 58320 && freq <= 64800) 110 return (freq - 56160) / 2160; 111 else 112 return 0; 113 } 114 EXPORT_SYMBOL(ieee80211_frequency_to_channel); 115 116 struct ieee80211_channel *__ieee80211_get_channel(struct wiphy *wiphy, 117 int freq) 118 { 119 enum ieee80211_band band; 120 struct ieee80211_supported_band *sband; 121 int i; 122 123 for (band = 0; band < IEEE80211_NUM_BANDS; band++) { 124 sband = wiphy->bands[band]; 125 126 if (!sband) 127 continue; 128 129 for (i = 0; i < sband->n_channels; i++) { 130 if (sband->channels[i].center_freq == freq) 131 return &sband->channels[i]; 132 } 133 } 134 135 return NULL; 136 } 137 EXPORT_SYMBOL(__ieee80211_get_channel); 138 139 static void set_mandatory_flags_band(struct ieee80211_supported_band *sband, 140 enum ieee80211_band band) 141 { 142 int i, want; 143 144 switch (band) { 145 case IEEE80211_BAND_5GHZ: 146 want = 3; 147 for (i = 0; i < sband->n_bitrates; i++) { 148 if (sband->bitrates[i].bitrate == 60 || 149 sband->bitrates[i].bitrate == 120 || 150 sband->bitrates[i].bitrate == 240) { 151 sband->bitrates[i].flags |= 152 IEEE80211_RATE_MANDATORY_A; 153 want--; 154 } 155 } 156 WARN_ON(want); 157 break; 158 case IEEE80211_BAND_2GHZ: 159 want = 7; 160 for (i = 0; i < sband->n_bitrates; i++) { 161 if (sband->bitrates[i].bitrate == 10) { 162 sband->bitrates[i].flags |= 163 IEEE80211_RATE_MANDATORY_B | 164 IEEE80211_RATE_MANDATORY_G; 165 want--; 166 } 167 168 if (sband->bitrates[i].bitrate == 20 || 169 sband->bitrates[i].bitrate == 55 || 170 sband->bitrates[i].bitrate == 110 || 171 sband->bitrates[i].bitrate == 60 || 172 sband->bitrates[i].bitrate == 120 || 173 sband->bitrates[i].bitrate == 240) { 174 sband->bitrates[i].flags |= 175 IEEE80211_RATE_MANDATORY_G; 176 want--; 177 } 178 179 if (sband->bitrates[i].bitrate != 10 && 180 sband->bitrates[i].bitrate != 20 && 181 sband->bitrates[i].bitrate != 55 && 182 sband->bitrates[i].bitrate != 110) 183 sband->bitrates[i].flags |= 184 IEEE80211_RATE_ERP_G; 185 } 186 WARN_ON(want != 0 && want != 3 && want != 6); 187 break; 188 case IEEE80211_BAND_60GHZ: 189 /* check for mandatory HT MCS 1..4 */ 190 WARN_ON(!sband->ht_cap.ht_supported); 191 WARN_ON((sband->ht_cap.mcs.rx_mask[0] & 0x1e) != 0x1e); 192 break; 193 case IEEE80211_NUM_BANDS: 194 WARN_ON(1); 195 break; 196 } 197 } 198 199 void ieee80211_set_bitrate_flags(struct wiphy *wiphy) 200 { 201 enum ieee80211_band band; 202 203 for (band = 0; band < IEEE80211_NUM_BANDS; band++) 204 if (wiphy->bands[band]) 205 set_mandatory_flags_band(wiphy->bands[band], band); 206 } 207 208 bool cfg80211_supported_cipher_suite(struct wiphy *wiphy, u32 cipher) 209 { 210 int i; 211 for (i = 0; i < wiphy->n_cipher_suites; i++) 212 if (cipher == wiphy->cipher_suites[i]) 213 return true; 214 return false; 215 } 216 217 int cfg80211_validate_key_settings(struct cfg80211_registered_device *rdev, 218 struct key_params *params, int key_idx, 219 bool pairwise, const u8 *mac_addr) 220 { 221 if (key_idx > 5) 222 return -EINVAL; 223 224 if (!pairwise && mac_addr && !(rdev->wiphy.flags & WIPHY_FLAG_IBSS_RSN)) 225 return -EINVAL; 226 227 if (pairwise && !mac_addr) 228 return -EINVAL; 229 230 switch (params->cipher) { 231 case WLAN_CIPHER_SUITE_TKIP: 232 case WLAN_CIPHER_SUITE_CCMP: 233 case WLAN_CIPHER_SUITE_CCMP_256: 234 case WLAN_CIPHER_SUITE_GCMP: 235 case WLAN_CIPHER_SUITE_GCMP_256: 236 /* Disallow pairwise keys with non-zero index unless it's WEP 237 * or a vendor specific cipher (because current deployments use 238 * pairwise WEP keys with non-zero indices and for vendor 239 * specific ciphers this should be validated in the driver or 240 * hardware level - but 802.11i clearly specifies to use zero) 241 */ 242 if (pairwise && key_idx) 243 return -EINVAL; 244 break; 245 case WLAN_CIPHER_SUITE_AES_CMAC: 246 case WLAN_CIPHER_SUITE_BIP_CMAC_256: 247 case WLAN_CIPHER_SUITE_BIP_GMAC_128: 248 case WLAN_CIPHER_SUITE_BIP_GMAC_256: 249 /* Disallow BIP (group-only) cipher as pairwise cipher */ 250 if (pairwise) 251 return -EINVAL; 252 break; 253 default: 254 break; 255 } 256 257 switch (params->cipher) { 258 case WLAN_CIPHER_SUITE_WEP40: 259 if (params->key_len != WLAN_KEY_LEN_WEP40) 260 return -EINVAL; 261 break; 262 case WLAN_CIPHER_SUITE_TKIP: 263 if (params->key_len != WLAN_KEY_LEN_TKIP) 264 return -EINVAL; 265 break; 266 case WLAN_CIPHER_SUITE_CCMP: 267 if (params->key_len != WLAN_KEY_LEN_CCMP) 268 return -EINVAL; 269 break; 270 case WLAN_CIPHER_SUITE_CCMP_256: 271 if (params->key_len != WLAN_KEY_LEN_CCMP_256) 272 return -EINVAL; 273 break; 274 case WLAN_CIPHER_SUITE_GCMP: 275 if (params->key_len != WLAN_KEY_LEN_GCMP) 276 return -EINVAL; 277 break; 278 case WLAN_CIPHER_SUITE_GCMP_256: 279 if (params->key_len != WLAN_KEY_LEN_GCMP_256) 280 return -EINVAL; 281 break; 282 case WLAN_CIPHER_SUITE_WEP104: 283 if (params->key_len != WLAN_KEY_LEN_WEP104) 284 return -EINVAL; 285 break; 286 case WLAN_CIPHER_SUITE_AES_CMAC: 287 if (params->key_len != WLAN_KEY_LEN_AES_CMAC) 288 return -EINVAL; 289 break; 290 case WLAN_CIPHER_SUITE_BIP_CMAC_256: 291 if (params->key_len != WLAN_KEY_LEN_BIP_CMAC_256) 292 return -EINVAL; 293 break; 294 case WLAN_CIPHER_SUITE_BIP_GMAC_128: 295 if (params->key_len != WLAN_KEY_LEN_BIP_GMAC_128) 296 return -EINVAL; 297 break; 298 case WLAN_CIPHER_SUITE_BIP_GMAC_256: 299 if (params->key_len != WLAN_KEY_LEN_BIP_GMAC_256) 300 return -EINVAL; 301 break; 302 default: 303 /* 304 * We don't know anything about this algorithm, 305 * allow using it -- but the driver must check 306 * all parameters! We still check below whether 307 * or not the driver supports this algorithm, 308 * of course. 309 */ 310 break; 311 } 312 313 if (params->seq) { 314 switch (params->cipher) { 315 case WLAN_CIPHER_SUITE_WEP40: 316 case WLAN_CIPHER_SUITE_WEP104: 317 /* These ciphers do not use key sequence */ 318 return -EINVAL; 319 case WLAN_CIPHER_SUITE_TKIP: 320 case WLAN_CIPHER_SUITE_CCMP: 321 case WLAN_CIPHER_SUITE_CCMP_256: 322 case WLAN_CIPHER_SUITE_GCMP: 323 case WLAN_CIPHER_SUITE_GCMP_256: 324 case WLAN_CIPHER_SUITE_AES_CMAC: 325 case WLAN_CIPHER_SUITE_BIP_CMAC_256: 326 case WLAN_CIPHER_SUITE_BIP_GMAC_128: 327 case WLAN_CIPHER_SUITE_BIP_GMAC_256: 328 if (params->seq_len != 6) 329 return -EINVAL; 330 break; 331 } 332 } 333 334 if (!cfg80211_supported_cipher_suite(&rdev->wiphy, params->cipher)) 335 return -EINVAL; 336 337 return 0; 338 } 339 340 unsigned int __attribute_const__ ieee80211_hdrlen(__le16 fc) 341 { 342 unsigned int hdrlen = 24; 343 344 if (ieee80211_is_data(fc)) { 345 if (ieee80211_has_a4(fc)) 346 hdrlen = 30; 347 if (ieee80211_is_data_qos(fc)) { 348 hdrlen += IEEE80211_QOS_CTL_LEN; 349 if (ieee80211_has_order(fc)) 350 hdrlen += IEEE80211_HT_CTL_LEN; 351 } 352 goto out; 353 } 354 355 if (ieee80211_is_mgmt(fc)) { 356 if (ieee80211_has_order(fc)) 357 hdrlen += IEEE80211_HT_CTL_LEN; 358 goto out; 359 } 360 361 if (ieee80211_is_ctl(fc)) { 362 /* 363 * ACK and CTS are 10 bytes, all others 16. To see how 364 * to get this condition consider 365 * subtype mask: 0b0000000011110000 (0x00F0) 366 * ACK subtype: 0b0000000011010000 (0x00D0) 367 * CTS subtype: 0b0000000011000000 (0x00C0) 368 * bits that matter: ^^^ (0x00E0) 369 * value of those: 0b0000000011000000 (0x00C0) 370 */ 371 if ((fc & cpu_to_le16(0x00E0)) == cpu_to_le16(0x00C0)) 372 hdrlen = 10; 373 else 374 hdrlen = 16; 375 } 376 out: 377 return hdrlen; 378 } 379 EXPORT_SYMBOL(ieee80211_hdrlen); 380 381 unsigned int ieee80211_get_hdrlen_from_skb(const struct sk_buff *skb) 382 { 383 const struct ieee80211_hdr *hdr = 384 (const struct ieee80211_hdr *)skb->data; 385 unsigned int hdrlen; 386 387 if (unlikely(skb->len < 10)) 388 return 0; 389 hdrlen = ieee80211_hdrlen(hdr->frame_control); 390 if (unlikely(hdrlen > skb->len)) 391 return 0; 392 return hdrlen; 393 } 394 EXPORT_SYMBOL(ieee80211_get_hdrlen_from_skb); 395 396 unsigned int ieee80211_get_mesh_hdrlen(struct ieee80211s_hdr *meshhdr) 397 { 398 int ae = meshhdr->flags & MESH_FLAGS_AE; 399 /* 802.11-2012, 8.2.4.7.3 */ 400 switch (ae) { 401 default: 402 case 0: 403 return 6; 404 case MESH_FLAGS_AE_A4: 405 return 12; 406 case MESH_FLAGS_AE_A5_A6: 407 return 18; 408 } 409 } 410 EXPORT_SYMBOL(ieee80211_get_mesh_hdrlen); 411 412 int ieee80211_data_to_8023(struct sk_buff *skb, const u8 *addr, 413 enum nl80211_iftype iftype) 414 { 415 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data; 416 u16 hdrlen, ethertype; 417 u8 *payload; 418 u8 dst[ETH_ALEN]; 419 u8 src[ETH_ALEN] __aligned(2); 420 421 if (unlikely(!ieee80211_is_data_present(hdr->frame_control))) 422 return -1; 423 424 hdrlen = ieee80211_hdrlen(hdr->frame_control); 425 426 /* convert IEEE 802.11 header + possible LLC headers into Ethernet 427 * header 428 * IEEE 802.11 address fields: 429 * ToDS FromDS Addr1 Addr2 Addr3 Addr4 430 * 0 0 DA SA BSSID n/a 431 * 0 1 DA BSSID SA n/a 432 * 1 0 BSSID SA DA n/a 433 * 1 1 RA TA DA SA 434 */ 435 memcpy(dst, ieee80211_get_DA(hdr), ETH_ALEN); 436 memcpy(src, ieee80211_get_SA(hdr), ETH_ALEN); 437 438 switch (hdr->frame_control & 439 cpu_to_le16(IEEE80211_FCTL_TODS | IEEE80211_FCTL_FROMDS)) { 440 case cpu_to_le16(IEEE80211_FCTL_TODS): 441 if (unlikely(iftype != NL80211_IFTYPE_AP && 442 iftype != NL80211_IFTYPE_AP_VLAN && 443 iftype != NL80211_IFTYPE_P2P_GO)) 444 return -1; 445 break; 446 case cpu_to_le16(IEEE80211_FCTL_TODS | IEEE80211_FCTL_FROMDS): 447 if (unlikely(iftype != NL80211_IFTYPE_WDS && 448 iftype != NL80211_IFTYPE_MESH_POINT && 449 iftype != NL80211_IFTYPE_AP_VLAN && 450 iftype != NL80211_IFTYPE_STATION)) 451 return -1; 452 if (iftype == NL80211_IFTYPE_MESH_POINT) { 453 struct ieee80211s_hdr *meshdr = 454 (struct ieee80211s_hdr *) (skb->data + hdrlen); 455 /* make sure meshdr->flags is on the linear part */ 456 if (!pskb_may_pull(skb, hdrlen + 1)) 457 return -1; 458 if (meshdr->flags & MESH_FLAGS_AE_A4) 459 return -1; 460 if (meshdr->flags & MESH_FLAGS_AE_A5_A6) { 461 skb_copy_bits(skb, hdrlen + 462 offsetof(struct ieee80211s_hdr, eaddr1), 463 dst, ETH_ALEN); 464 skb_copy_bits(skb, hdrlen + 465 offsetof(struct ieee80211s_hdr, eaddr2), 466 src, ETH_ALEN); 467 } 468 hdrlen += ieee80211_get_mesh_hdrlen(meshdr); 469 } 470 break; 471 case cpu_to_le16(IEEE80211_FCTL_FROMDS): 472 if ((iftype != NL80211_IFTYPE_STATION && 473 iftype != NL80211_IFTYPE_P2P_CLIENT && 474 iftype != NL80211_IFTYPE_MESH_POINT) || 475 (is_multicast_ether_addr(dst) && 476 ether_addr_equal(src, addr))) 477 return -1; 478 if (iftype == NL80211_IFTYPE_MESH_POINT) { 479 struct ieee80211s_hdr *meshdr = 480 (struct ieee80211s_hdr *) (skb->data + hdrlen); 481 /* make sure meshdr->flags is on the linear part */ 482 if (!pskb_may_pull(skb, hdrlen + 1)) 483 return -1; 484 if (meshdr->flags & MESH_FLAGS_AE_A5_A6) 485 return -1; 486 if (meshdr->flags & MESH_FLAGS_AE_A4) 487 skb_copy_bits(skb, hdrlen + 488 offsetof(struct ieee80211s_hdr, eaddr1), 489 src, ETH_ALEN); 490 hdrlen += ieee80211_get_mesh_hdrlen(meshdr); 491 } 492 break; 493 case cpu_to_le16(0): 494 if (iftype != NL80211_IFTYPE_ADHOC && 495 iftype != NL80211_IFTYPE_STATION && 496 iftype != NL80211_IFTYPE_OCB) 497 return -1; 498 break; 499 } 500 501 if (!pskb_may_pull(skb, hdrlen + 8)) 502 return -1; 503 504 payload = skb->data + hdrlen; 505 ethertype = (payload[6] << 8) | payload[7]; 506 507 if (likely((ether_addr_equal(payload, rfc1042_header) && 508 ethertype != ETH_P_AARP && ethertype != ETH_P_IPX) || 509 ether_addr_equal(payload, bridge_tunnel_header))) { 510 /* remove RFC1042 or Bridge-Tunnel encapsulation and 511 * replace EtherType */ 512 skb_pull(skb, hdrlen + 6); 513 memcpy(skb_push(skb, ETH_ALEN), src, ETH_ALEN); 514 memcpy(skb_push(skb, ETH_ALEN), dst, ETH_ALEN); 515 } else { 516 struct ethhdr *ehdr; 517 __be16 len; 518 519 skb_pull(skb, hdrlen); 520 len = htons(skb->len); 521 ehdr = (struct ethhdr *) skb_push(skb, sizeof(struct ethhdr)); 522 memcpy(ehdr->h_dest, dst, ETH_ALEN); 523 memcpy(ehdr->h_source, src, ETH_ALEN); 524 ehdr->h_proto = len; 525 } 526 return 0; 527 } 528 EXPORT_SYMBOL(ieee80211_data_to_8023); 529 530 int ieee80211_data_from_8023(struct sk_buff *skb, const u8 *addr, 531 enum nl80211_iftype iftype, 532 const u8 *bssid, bool qos) 533 { 534 struct ieee80211_hdr hdr; 535 u16 hdrlen, ethertype; 536 __le16 fc; 537 const u8 *encaps_data; 538 int encaps_len, skip_header_bytes; 539 int nh_pos, h_pos; 540 int head_need; 541 542 if (unlikely(skb->len < ETH_HLEN)) 543 return -EINVAL; 544 545 nh_pos = skb_network_header(skb) - skb->data; 546 h_pos = skb_transport_header(skb) - skb->data; 547 548 /* convert Ethernet header to proper 802.11 header (based on 549 * operation mode) */ 550 ethertype = (skb->data[12] << 8) | skb->data[13]; 551 fc = cpu_to_le16(IEEE80211_FTYPE_DATA | IEEE80211_STYPE_DATA); 552 553 switch (iftype) { 554 case NL80211_IFTYPE_AP: 555 case NL80211_IFTYPE_AP_VLAN: 556 case NL80211_IFTYPE_P2P_GO: 557 fc |= cpu_to_le16(IEEE80211_FCTL_FROMDS); 558 /* DA BSSID SA */ 559 memcpy(hdr.addr1, skb->data, ETH_ALEN); 560 memcpy(hdr.addr2, addr, ETH_ALEN); 561 memcpy(hdr.addr3, skb->data + ETH_ALEN, ETH_ALEN); 562 hdrlen = 24; 563 break; 564 case NL80211_IFTYPE_STATION: 565 case NL80211_IFTYPE_P2P_CLIENT: 566 fc |= cpu_to_le16(IEEE80211_FCTL_TODS); 567 /* BSSID SA DA */ 568 memcpy(hdr.addr1, bssid, ETH_ALEN); 569 memcpy(hdr.addr2, skb->data + ETH_ALEN, ETH_ALEN); 570 memcpy(hdr.addr3, skb->data, ETH_ALEN); 571 hdrlen = 24; 572 break; 573 case NL80211_IFTYPE_OCB: 574 case NL80211_IFTYPE_ADHOC: 575 /* DA SA BSSID */ 576 memcpy(hdr.addr1, skb->data, ETH_ALEN); 577 memcpy(hdr.addr2, skb->data + ETH_ALEN, ETH_ALEN); 578 memcpy(hdr.addr3, bssid, ETH_ALEN); 579 hdrlen = 24; 580 break; 581 default: 582 return -EOPNOTSUPP; 583 } 584 585 if (qos) { 586 fc |= cpu_to_le16(IEEE80211_STYPE_QOS_DATA); 587 hdrlen += 2; 588 } 589 590 hdr.frame_control = fc; 591 hdr.duration_id = 0; 592 hdr.seq_ctrl = 0; 593 594 skip_header_bytes = ETH_HLEN; 595 if (ethertype == ETH_P_AARP || ethertype == ETH_P_IPX) { 596 encaps_data = bridge_tunnel_header; 597 encaps_len = sizeof(bridge_tunnel_header); 598 skip_header_bytes -= 2; 599 } else if (ethertype >= ETH_P_802_3_MIN) { 600 encaps_data = rfc1042_header; 601 encaps_len = sizeof(rfc1042_header); 602 skip_header_bytes -= 2; 603 } else { 604 encaps_data = NULL; 605 encaps_len = 0; 606 } 607 608 skb_pull(skb, skip_header_bytes); 609 nh_pos -= skip_header_bytes; 610 h_pos -= skip_header_bytes; 611 612 head_need = hdrlen + encaps_len - skb_headroom(skb); 613 614 if (head_need > 0 || skb_cloned(skb)) { 615 head_need = max(head_need, 0); 616 if (head_need) 617 skb_orphan(skb); 618 619 if (pskb_expand_head(skb, head_need, 0, GFP_ATOMIC)) 620 return -ENOMEM; 621 622 skb->truesize += head_need; 623 } 624 625 if (encaps_data) { 626 memcpy(skb_push(skb, encaps_len), encaps_data, encaps_len); 627 nh_pos += encaps_len; 628 h_pos += encaps_len; 629 } 630 631 memcpy(skb_push(skb, hdrlen), &hdr, hdrlen); 632 633 nh_pos += hdrlen; 634 h_pos += hdrlen; 635 636 /* Update skb pointers to various headers since this modified frame 637 * is going to go through Linux networking code that may potentially 638 * need things like pointer to IP header. */ 639 skb_set_mac_header(skb, 0); 640 skb_set_network_header(skb, nh_pos); 641 skb_set_transport_header(skb, h_pos); 642 643 return 0; 644 } 645 EXPORT_SYMBOL(ieee80211_data_from_8023); 646 647 648 void ieee80211_amsdu_to_8023s(struct sk_buff *skb, struct sk_buff_head *list, 649 const u8 *addr, enum nl80211_iftype iftype, 650 const unsigned int extra_headroom, 651 bool has_80211_header) 652 { 653 struct sk_buff *frame = NULL; 654 u16 ethertype; 655 u8 *payload; 656 const struct ethhdr *eth; 657 int remaining, err; 658 u8 dst[ETH_ALEN], src[ETH_ALEN]; 659 660 if (has_80211_header) { 661 err = ieee80211_data_to_8023(skb, addr, iftype); 662 if (err) 663 goto out; 664 665 /* skip the wrapping header */ 666 eth = (struct ethhdr *) skb_pull(skb, sizeof(struct ethhdr)); 667 if (!eth) 668 goto out; 669 } else { 670 eth = (struct ethhdr *) skb->data; 671 } 672 673 while (skb != frame) { 674 u8 padding; 675 __be16 len = eth->h_proto; 676 unsigned int subframe_len = sizeof(struct ethhdr) + ntohs(len); 677 678 remaining = skb->len; 679 memcpy(dst, eth->h_dest, ETH_ALEN); 680 memcpy(src, eth->h_source, ETH_ALEN); 681 682 padding = (4 - subframe_len) & 0x3; 683 /* the last MSDU has no padding */ 684 if (subframe_len > remaining) 685 goto purge; 686 687 skb_pull(skb, sizeof(struct ethhdr)); 688 /* reuse skb for the last subframe */ 689 if (remaining <= subframe_len + padding) 690 frame = skb; 691 else { 692 unsigned int hlen = ALIGN(extra_headroom, 4); 693 /* 694 * Allocate and reserve two bytes more for payload 695 * alignment since sizeof(struct ethhdr) is 14. 696 */ 697 frame = dev_alloc_skb(hlen + subframe_len + 2); 698 if (!frame) 699 goto purge; 700 701 skb_reserve(frame, hlen + sizeof(struct ethhdr) + 2); 702 memcpy(skb_put(frame, ntohs(len)), skb->data, 703 ntohs(len)); 704 705 eth = (struct ethhdr *)skb_pull(skb, ntohs(len) + 706 padding); 707 if (!eth) { 708 dev_kfree_skb(frame); 709 goto purge; 710 } 711 } 712 713 skb_reset_network_header(frame); 714 frame->dev = skb->dev; 715 frame->priority = skb->priority; 716 717 payload = frame->data; 718 ethertype = (payload[6] << 8) | payload[7]; 719 720 if (likely((ether_addr_equal(payload, rfc1042_header) && 721 ethertype != ETH_P_AARP && ethertype != ETH_P_IPX) || 722 ether_addr_equal(payload, bridge_tunnel_header))) { 723 /* remove RFC1042 or Bridge-Tunnel 724 * encapsulation and replace EtherType */ 725 skb_pull(frame, 6); 726 memcpy(skb_push(frame, ETH_ALEN), src, ETH_ALEN); 727 memcpy(skb_push(frame, ETH_ALEN), dst, ETH_ALEN); 728 } else { 729 memcpy(skb_push(frame, sizeof(__be16)), &len, 730 sizeof(__be16)); 731 memcpy(skb_push(frame, ETH_ALEN), src, ETH_ALEN); 732 memcpy(skb_push(frame, ETH_ALEN), dst, ETH_ALEN); 733 } 734 __skb_queue_tail(list, frame); 735 } 736 737 return; 738 739 purge: 740 __skb_queue_purge(list); 741 out: 742 dev_kfree_skb(skb); 743 } 744 EXPORT_SYMBOL(ieee80211_amsdu_to_8023s); 745 746 /* Given a data frame determine the 802.1p/1d tag to use. */ 747 unsigned int cfg80211_classify8021d(struct sk_buff *skb, 748 struct cfg80211_qos_map *qos_map) 749 { 750 unsigned int dscp; 751 unsigned char vlan_priority; 752 753 /* skb->priority values from 256->263 are magic values to 754 * directly indicate a specific 802.1d priority. This is used 755 * to allow 802.1d priority to be passed directly in from VLAN 756 * tags, etc. 757 */ 758 if (skb->priority >= 256 && skb->priority <= 263) 759 return skb->priority - 256; 760 761 if (skb_vlan_tag_present(skb)) { 762 vlan_priority = (skb_vlan_tag_get(skb) & VLAN_PRIO_MASK) 763 >> VLAN_PRIO_SHIFT; 764 if (vlan_priority > 0) 765 return vlan_priority; 766 } 767 768 switch (skb->protocol) { 769 case htons(ETH_P_IP): 770 dscp = ipv4_get_dsfield(ip_hdr(skb)) & 0xfc; 771 break; 772 case htons(ETH_P_IPV6): 773 dscp = ipv6_get_dsfield(ipv6_hdr(skb)) & 0xfc; 774 break; 775 case htons(ETH_P_MPLS_UC): 776 case htons(ETH_P_MPLS_MC): { 777 struct mpls_label mpls_tmp, *mpls; 778 779 mpls = skb_header_pointer(skb, sizeof(struct ethhdr), 780 sizeof(*mpls), &mpls_tmp); 781 if (!mpls) 782 return 0; 783 784 return (ntohl(mpls->entry) & MPLS_LS_TC_MASK) 785 >> MPLS_LS_TC_SHIFT; 786 } 787 case htons(ETH_P_80221): 788 /* 802.21 is always network control traffic */ 789 return 7; 790 default: 791 return 0; 792 } 793 794 if (qos_map) { 795 unsigned int i, tmp_dscp = dscp >> 2; 796 797 for (i = 0; i < qos_map->num_des; i++) { 798 if (tmp_dscp == qos_map->dscp_exception[i].dscp) 799 return qos_map->dscp_exception[i].up; 800 } 801 802 for (i = 0; i < 8; i++) { 803 if (tmp_dscp >= qos_map->up[i].low && 804 tmp_dscp <= qos_map->up[i].high) 805 return i; 806 } 807 } 808 809 return dscp >> 5; 810 } 811 EXPORT_SYMBOL(cfg80211_classify8021d); 812 813 const u8 *ieee80211_bss_get_ie(struct cfg80211_bss *bss, u8 ie) 814 { 815 const struct cfg80211_bss_ies *ies; 816 817 ies = rcu_dereference(bss->ies); 818 if (!ies) 819 return NULL; 820 821 return cfg80211_find_ie(ie, ies->data, ies->len); 822 } 823 EXPORT_SYMBOL(ieee80211_bss_get_ie); 824 825 void cfg80211_upload_connect_keys(struct wireless_dev *wdev) 826 { 827 struct cfg80211_registered_device *rdev = wiphy_to_rdev(wdev->wiphy); 828 struct net_device *dev = wdev->netdev; 829 int i; 830 831 if (!wdev->connect_keys) 832 return; 833 834 for (i = 0; i < 6; i++) { 835 if (!wdev->connect_keys->params[i].cipher) 836 continue; 837 if (rdev_add_key(rdev, dev, i, false, NULL, 838 &wdev->connect_keys->params[i])) { 839 netdev_err(dev, "failed to set key %d\n", i); 840 continue; 841 } 842 if (wdev->connect_keys->def == i) 843 if (rdev_set_default_key(rdev, dev, i, true, true)) { 844 netdev_err(dev, "failed to set defkey %d\n", i); 845 continue; 846 } 847 if (wdev->connect_keys->defmgmt == i) 848 if (rdev_set_default_mgmt_key(rdev, dev, i)) 849 netdev_err(dev, "failed to set mgtdef %d\n", i); 850 } 851 852 kzfree(wdev->connect_keys); 853 wdev->connect_keys = NULL; 854 } 855 856 void cfg80211_process_wdev_events(struct wireless_dev *wdev) 857 { 858 struct cfg80211_event *ev; 859 unsigned long flags; 860 const u8 *bssid = NULL; 861 862 spin_lock_irqsave(&wdev->event_lock, flags); 863 while (!list_empty(&wdev->event_list)) { 864 ev = list_first_entry(&wdev->event_list, 865 struct cfg80211_event, list); 866 list_del(&ev->list); 867 spin_unlock_irqrestore(&wdev->event_lock, flags); 868 869 wdev_lock(wdev); 870 switch (ev->type) { 871 case EVENT_CONNECT_RESULT: 872 if (!is_zero_ether_addr(ev->cr.bssid)) 873 bssid = ev->cr.bssid; 874 __cfg80211_connect_result( 875 wdev->netdev, bssid, 876 ev->cr.req_ie, ev->cr.req_ie_len, 877 ev->cr.resp_ie, ev->cr.resp_ie_len, 878 ev->cr.status, 879 ev->cr.status == WLAN_STATUS_SUCCESS, 880 NULL); 881 break; 882 case EVENT_ROAMED: 883 __cfg80211_roamed(wdev, ev->rm.bss, ev->rm.req_ie, 884 ev->rm.req_ie_len, ev->rm.resp_ie, 885 ev->rm.resp_ie_len); 886 break; 887 case EVENT_DISCONNECTED: 888 __cfg80211_disconnected(wdev->netdev, 889 ev->dc.ie, ev->dc.ie_len, 890 ev->dc.reason, 891 !ev->dc.locally_generated); 892 break; 893 case EVENT_IBSS_JOINED: 894 __cfg80211_ibss_joined(wdev->netdev, ev->ij.bssid, 895 ev->ij.channel); 896 break; 897 case EVENT_STOPPED: 898 __cfg80211_leave(wiphy_to_rdev(wdev->wiphy), wdev); 899 break; 900 } 901 wdev_unlock(wdev); 902 903 kfree(ev); 904 905 spin_lock_irqsave(&wdev->event_lock, flags); 906 } 907 spin_unlock_irqrestore(&wdev->event_lock, flags); 908 } 909 910 void cfg80211_process_rdev_events(struct cfg80211_registered_device *rdev) 911 { 912 struct wireless_dev *wdev; 913 914 ASSERT_RTNL(); 915 916 list_for_each_entry(wdev, &rdev->wdev_list, list) 917 cfg80211_process_wdev_events(wdev); 918 } 919 920 int cfg80211_change_iface(struct cfg80211_registered_device *rdev, 921 struct net_device *dev, enum nl80211_iftype ntype, 922 u32 *flags, struct vif_params *params) 923 { 924 int err; 925 enum nl80211_iftype otype = dev->ieee80211_ptr->iftype; 926 927 ASSERT_RTNL(); 928 929 /* don't support changing VLANs, you just re-create them */ 930 if (otype == NL80211_IFTYPE_AP_VLAN) 931 return -EOPNOTSUPP; 932 933 /* cannot change into P2P device type */ 934 if (ntype == NL80211_IFTYPE_P2P_DEVICE) 935 return -EOPNOTSUPP; 936 937 if (!rdev->ops->change_virtual_intf || 938 !(rdev->wiphy.interface_modes & (1 << ntype))) 939 return -EOPNOTSUPP; 940 941 /* if it's part of a bridge, reject changing type to station/ibss */ 942 if ((dev->priv_flags & IFF_BRIDGE_PORT) && 943 (ntype == NL80211_IFTYPE_ADHOC || 944 ntype == NL80211_IFTYPE_STATION || 945 ntype == NL80211_IFTYPE_P2P_CLIENT)) 946 return -EBUSY; 947 948 if (ntype != otype) { 949 dev->ieee80211_ptr->use_4addr = false; 950 dev->ieee80211_ptr->mesh_id_up_len = 0; 951 wdev_lock(dev->ieee80211_ptr); 952 rdev_set_qos_map(rdev, dev, NULL); 953 wdev_unlock(dev->ieee80211_ptr); 954 955 switch (otype) { 956 case NL80211_IFTYPE_AP: 957 cfg80211_stop_ap(rdev, dev, true); 958 break; 959 case NL80211_IFTYPE_ADHOC: 960 cfg80211_leave_ibss(rdev, dev, false); 961 break; 962 case NL80211_IFTYPE_STATION: 963 case NL80211_IFTYPE_P2P_CLIENT: 964 wdev_lock(dev->ieee80211_ptr); 965 cfg80211_disconnect(rdev, dev, 966 WLAN_REASON_DEAUTH_LEAVING, true); 967 wdev_unlock(dev->ieee80211_ptr); 968 break; 969 case NL80211_IFTYPE_MESH_POINT: 970 /* mesh should be handled? */ 971 break; 972 default: 973 break; 974 } 975 976 cfg80211_process_rdev_events(rdev); 977 } 978 979 err = rdev_change_virtual_intf(rdev, dev, ntype, flags, params); 980 981 WARN_ON(!err && dev->ieee80211_ptr->iftype != ntype); 982 983 if (!err && params && params->use_4addr != -1) 984 dev->ieee80211_ptr->use_4addr = params->use_4addr; 985 986 if (!err) { 987 dev->priv_flags &= ~IFF_DONT_BRIDGE; 988 switch (ntype) { 989 case NL80211_IFTYPE_STATION: 990 if (dev->ieee80211_ptr->use_4addr) 991 break; 992 /* fall through */ 993 case NL80211_IFTYPE_OCB: 994 case NL80211_IFTYPE_P2P_CLIENT: 995 case NL80211_IFTYPE_ADHOC: 996 dev->priv_flags |= IFF_DONT_BRIDGE; 997 break; 998 case NL80211_IFTYPE_P2P_GO: 999 case NL80211_IFTYPE_AP: 1000 case NL80211_IFTYPE_AP_VLAN: 1001 case NL80211_IFTYPE_WDS: 1002 case NL80211_IFTYPE_MESH_POINT: 1003 /* bridging OK */ 1004 break; 1005 case NL80211_IFTYPE_MONITOR: 1006 /* monitor can't bridge anyway */ 1007 break; 1008 case NL80211_IFTYPE_UNSPECIFIED: 1009 case NUM_NL80211_IFTYPES: 1010 /* not happening */ 1011 break; 1012 case NL80211_IFTYPE_P2P_DEVICE: 1013 WARN_ON(1); 1014 break; 1015 } 1016 } 1017 1018 if (!err && ntype != otype && netif_running(dev)) { 1019 cfg80211_update_iface_num(rdev, ntype, 1); 1020 cfg80211_update_iface_num(rdev, otype, -1); 1021 } 1022 1023 return err; 1024 } 1025 1026 static u32 cfg80211_calculate_bitrate_60g(struct rate_info *rate) 1027 { 1028 static const u32 __mcs2bitrate[] = { 1029 /* control PHY */ 1030 [0] = 275, 1031 /* SC PHY */ 1032 [1] = 3850, 1033 [2] = 7700, 1034 [3] = 9625, 1035 [4] = 11550, 1036 [5] = 12512, /* 1251.25 mbps */ 1037 [6] = 15400, 1038 [7] = 19250, 1039 [8] = 23100, 1040 [9] = 25025, 1041 [10] = 30800, 1042 [11] = 38500, 1043 [12] = 46200, 1044 /* OFDM PHY */ 1045 [13] = 6930, 1046 [14] = 8662, /* 866.25 mbps */ 1047 [15] = 13860, 1048 [16] = 17325, 1049 [17] = 20790, 1050 [18] = 27720, 1051 [19] = 34650, 1052 [20] = 41580, 1053 [21] = 45045, 1054 [22] = 51975, 1055 [23] = 62370, 1056 [24] = 67568, /* 6756.75 mbps */ 1057 /* LP-SC PHY */ 1058 [25] = 6260, 1059 [26] = 8340, 1060 [27] = 11120, 1061 [28] = 12510, 1062 [29] = 16680, 1063 [30] = 22240, 1064 [31] = 25030, 1065 }; 1066 1067 if (WARN_ON_ONCE(rate->mcs >= ARRAY_SIZE(__mcs2bitrate))) 1068 return 0; 1069 1070 return __mcs2bitrate[rate->mcs]; 1071 } 1072 1073 static u32 cfg80211_calculate_bitrate_vht(struct rate_info *rate) 1074 { 1075 static const u32 base[4][10] = { 1076 { 6500000, 1077 13000000, 1078 19500000, 1079 26000000, 1080 39000000, 1081 52000000, 1082 58500000, 1083 65000000, 1084 78000000, 1085 0, 1086 }, 1087 { 13500000, 1088 27000000, 1089 40500000, 1090 54000000, 1091 81000000, 1092 108000000, 1093 121500000, 1094 135000000, 1095 162000000, 1096 180000000, 1097 }, 1098 { 29300000, 1099 58500000, 1100 87800000, 1101 117000000, 1102 175500000, 1103 234000000, 1104 263300000, 1105 292500000, 1106 351000000, 1107 390000000, 1108 }, 1109 { 58500000, 1110 117000000, 1111 175500000, 1112 234000000, 1113 351000000, 1114 468000000, 1115 526500000, 1116 585000000, 1117 702000000, 1118 780000000, 1119 }, 1120 }; 1121 u32 bitrate; 1122 int idx; 1123 1124 if (WARN_ON_ONCE(rate->mcs > 9)) 1125 return 0; 1126 1127 switch (rate->bw) { 1128 case RATE_INFO_BW_160: 1129 idx = 3; 1130 break; 1131 case RATE_INFO_BW_80: 1132 idx = 2; 1133 break; 1134 case RATE_INFO_BW_40: 1135 idx = 1; 1136 break; 1137 case RATE_INFO_BW_5: 1138 case RATE_INFO_BW_10: 1139 default: 1140 WARN_ON(1); 1141 /* fall through */ 1142 case RATE_INFO_BW_20: 1143 idx = 0; 1144 } 1145 1146 bitrate = base[idx][rate->mcs]; 1147 bitrate *= rate->nss; 1148 1149 if (rate->flags & RATE_INFO_FLAGS_SHORT_GI) 1150 bitrate = (bitrate / 9) * 10; 1151 1152 /* do NOT round down here */ 1153 return (bitrate + 50000) / 100000; 1154 } 1155 1156 u32 cfg80211_calculate_bitrate(struct rate_info *rate) 1157 { 1158 int modulation, streams, bitrate; 1159 1160 if (!(rate->flags & RATE_INFO_FLAGS_MCS) && 1161 !(rate->flags & RATE_INFO_FLAGS_VHT_MCS)) 1162 return rate->legacy; 1163 if (rate->flags & RATE_INFO_FLAGS_60G) 1164 return cfg80211_calculate_bitrate_60g(rate); 1165 if (rate->flags & RATE_INFO_FLAGS_VHT_MCS) 1166 return cfg80211_calculate_bitrate_vht(rate); 1167 1168 /* the formula below does only work for MCS values smaller than 32 */ 1169 if (WARN_ON_ONCE(rate->mcs >= 32)) 1170 return 0; 1171 1172 modulation = rate->mcs & 7; 1173 streams = (rate->mcs >> 3) + 1; 1174 1175 bitrate = (rate->bw == RATE_INFO_BW_40) ? 13500000 : 6500000; 1176 1177 if (modulation < 4) 1178 bitrate *= (modulation + 1); 1179 else if (modulation == 4) 1180 bitrate *= (modulation + 2); 1181 else 1182 bitrate *= (modulation + 3); 1183 1184 bitrate *= streams; 1185 1186 if (rate->flags & RATE_INFO_FLAGS_SHORT_GI) 1187 bitrate = (bitrate / 9) * 10; 1188 1189 /* do NOT round down here */ 1190 return (bitrate + 50000) / 100000; 1191 } 1192 EXPORT_SYMBOL(cfg80211_calculate_bitrate); 1193 1194 int cfg80211_get_p2p_attr(const u8 *ies, unsigned int len, 1195 enum ieee80211_p2p_attr_id attr, 1196 u8 *buf, unsigned int bufsize) 1197 { 1198 u8 *out = buf; 1199 u16 attr_remaining = 0; 1200 bool desired_attr = false; 1201 u16 desired_len = 0; 1202 1203 while (len > 0) { 1204 unsigned int iedatalen; 1205 unsigned int copy; 1206 const u8 *iedata; 1207 1208 if (len < 2) 1209 return -EILSEQ; 1210 iedatalen = ies[1]; 1211 if (iedatalen + 2 > len) 1212 return -EILSEQ; 1213 1214 if (ies[0] != WLAN_EID_VENDOR_SPECIFIC) 1215 goto cont; 1216 1217 if (iedatalen < 4) 1218 goto cont; 1219 1220 iedata = ies + 2; 1221 1222 /* check WFA OUI, P2P subtype */ 1223 if (iedata[0] != 0x50 || iedata[1] != 0x6f || 1224 iedata[2] != 0x9a || iedata[3] != 0x09) 1225 goto cont; 1226 1227 iedatalen -= 4; 1228 iedata += 4; 1229 1230 /* check attribute continuation into this IE */ 1231 copy = min_t(unsigned int, attr_remaining, iedatalen); 1232 if (copy && desired_attr) { 1233 desired_len += copy; 1234 if (out) { 1235 memcpy(out, iedata, min(bufsize, copy)); 1236 out += min(bufsize, copy); 1237 bufsize -= min(bufsize, copy); 1238 } 1239 1240 1241 if (copy == attr_remaining) 1242 return desired_len; 1243 } 1244 1245 attr_remaining -= copy; 1246 if (attr_remaining) 1247 goto cont; 1248 1249 iedatalen -= copy; 1250 iedata += copy; 1251 1252 while (iedatalen > 0) { 1253 u16 attr_len; 1254 1255 /* P2P attribute ID & size must fit */ 1256 if (iedatalen < 3) 1257 return -EILSEQ; 1258 desired_attr = iedata[0] == attr; 1259 attr_len = get_unaligned_le16(iedata + 1); 1260 iedatalen -= 3; 1261 iedata += 3; 1262 1263 copy = min_t(unsigned int, attr_len, iedatalen); 1264 1265 if (desired_attr) { 1266 desired_len += copy; 1267 if (out) { 1268 memcpy(out, iedata, min(bufsize, copy)); 1269 out += min(bufsize, copy); 1270 bufsize -= min(bufsize, copy); 1271 } 1272 1273 if (copy == attr_len) 1274 return desired_len; 1275 } 1276 1277 iedata += copy; 1278 iedatalen -= copy; 1279 attr_remaining = attr_len - copy; 1280 } 1281 1282 cont: 1283 len -= ies[1] + 2; 1284 ies += ies[1] + 2; 1285 } 1286 1287 if (attr_remaining && desired_attr) 1288 return -EILSEQ; 1289 1290 return -ENOENT; 1291 } 1292 EXPORT_SYMBOL(cfg80211_get_p2p_attr); 1293 1294 static bool ieee80211_id_in_list(const u8 *ids, int n_ids, u8 id) 1295 { 1296 int i; 1297 1298 for (i = 0; i < n_ids; i++) 1299 if (ids[i] == id) 1300 return true; 1301 return false; 1302 } 1303 1304 size_t ieee80211_ie_split_ric(const u8 *ies, size_t ielen, 1305 const u8 *ids, int n_ids, 1306 const u8 *after_ric, int n_after_ric, 1307 size_t offset) 1308 { 1309 size_t pos = offset; 1310 1311 while (pos < ielen && ieee80211_id_in_list(ids, n_ids, ies[pos])) { 1312 if (ies[pos] == WLAN_EID_RIC_DATA && n_after_ric) { 1313 pos += 2 + ies[pos + 1]; 1314 1315 while (pos < ielen && 1316 !ieee80211_id_in_list(after_ric, n_after_ric, 1317 ies[pos])) 1318 pos += 2 + ies[pos + 1]; 1319 } else { 1320 pos += 2 + ies[pos + 1]; 1321 } 1322 } 1323 1324 return pos; 1325 } 1326 EXPORT_SYMBOL(ieee80211_ie_split_ric); 1327 1328 bool ieee80211_operating_class_to_band(u8 operating_class, 1329 enum ieee80211_band *band) 1330 { 1331 switch (operating_class) { 1332 case 112: 1333 case 115 ... 127: 1334 case 128 ... 130: 1335 *band = IEEE80211_BAND_5GHZ; 1336 return true; 1337 case 81: 1338 case 82: 1339 case 83: 1340 case 84: 1341 *band = IEEE80211_BAND_2GHZ; 1342 return true; 1343 case 180: 1344 *band = IEEE80211_BAND_60GHZ; 1345 return true; 1346 } 1347 1348 return false; 1349 } 1350 EXPORT_SYMBOL(ieee80211_operating_class_to_band); 1351 1352 bool ieee80211_chandef_to_operating_class(struct cfg80211_chan_def *chandef, 1353 u8 *op_class) 1354 { 1355 u8 vht_opclass; 1356 u16 freq = chandef->center_freq1; 1357 1358 if (freq >= 2412 && freq <= 2472) { 1359 if (chandef->width > NL80211_CHAN_WIDTH_40) 1360 return false; 1361 1362 /* 2.407 GHz, channels 1..13 */ 1363 if (chandef->width == NL80211_CHAN_WIDTH_40) { 1364 if (freq > chandef->chan->center_freq) 1365 *op_class = 83; /* HT40+ */ 1366 else 1367 *op_class = 84; /* HT40- */ 1368 } else { 1369 *op_class = 81; 1370 } 1371 1372 return true; 1373 } 1374 1375 if (freq == 2484) { 1376 if (chandef->width > NL80211_CHAN_WIDTH_40) 1377 return false; 1378 1379 *op_class = 82; /* channel 14 */ 1380 return true; 1381 } 1382 1383 switch (chandef->width) { 1384 case NL80211_CHAN_WIDTH_80: 1385 vht_opclass = 128; 1386 break; 1387 case NL80211_CHAN_WIDTH_160: 1388 vht_opclass = 129; 1389 break; 1390 case NL80211_CHAN_WIDTH_80P80: 1391 vht_opclass = 130; 1392 break; 1393 case NL80211_CHAN_WIDTH_10: 1394 case NL80211_CHAN_WIDTH_5: 1395 return false; /* unsupported for now */ 1396 default: 1397 vht_opclass = 0; 1398 break; 1399 } 1400 1401 /* 5 GHz, channels 36..48 */ 1402 if (freq >= 5180 && freq <= 5240) { 1403 if (vht_opclass) { 1404 *op_class = vht_opclass; 1405 } else if (chandef->width == NL80211_CHAN_WIDTH_40) { 1406 if (freq > chandef->chan->center_freq) 1407 *op_class = 116; 1408 else 1409 *op_class = 117; 1410 } else { 1411 *op_class = 115; 1412 } 1413 1414 return true; 1415 } 1416 1417 /* 5 GHz, channels 52..64 */ 1418 if (freq >= 5260 && freq <= 5320) { 1419 if (vht_opclass) { 1420 *op_class = vht_opclass; 1421 } else if (chandef->width == NL80211_CHAN_WIDTH_40) { 1422 if (freq > chandef->chan->center_freq) 1423 *op_class = 119; 1424 else 1425 *op_class = 120; 1426 } else { 1427 *op_class = 118; 1428 } 1429 1430 return true; 1431 } 1432 1433 /* 5 GHz, channels 100..144 */ 1434 if (freq >= 5500 && freq <= 5720) { 1435 if (vht_opclass) { 1436 *op_class = vht_opclass; 1437 } else if (chandef->width == NL80211_CHAN_WIDTH_40) { 1438 if (freq > chandef->chan->center_freq) 1439 *op_class = 122; 1440 else 1441 *op_class = 123; 1442 } else { 1443 *op_class = 121; 1444 } 1445 1446 return true; 1447 } 1448 1449 /* 5 GHz, channels 149..169 */ 1450 if (freq >= 5745 && freq <= 5845) { 1451 if (vht_opclass) { 1452 *op_class = vht_opclass; 1453 } else if (chandef->width == NL80211_CHAN_WIDTH_40) { 1454 if (freq > chandef->chan->center_freq) 1455 *op_class = 126; 1456 else 1457 *op_class = 127; 1458 } else if (freq <= 5805) { 1459 *op_class = 124; 1460 } else { 1461 *op_class = 125; 1462 } 1463 1464 return true; 1465 } 1466 1467 /* 56.16 GHz, channel 1..4 */ 1468 if (freq >= 56160 + 2160 * 1 && freq <= 56160 + 2160 * 4) { 1469 if (chandef->width >= NL80211_CHAN_WIDTH_40) 1470 return false; 1471 1472 *op_class = 180; 1473 return true; 1474 } 1475 1476 /* not supported yet */ 1477 return false; 1478 } 1479 EXPORT_SYMBOL(ieee80211_chandef_to_operating_class); 1480 1481 int cfg80211_validate_beacon_int(struct cfg80211_registered_device *rdev, 1482 u32 beacon_int) 1483 { 1484 struct wireless_dev *wdev; 1485 int res = 0; 1486 1487 if (!beacon_int) 1488 return -EINVAL; 1489 1490 list_for_each_entry(wdev, &rdev->wdev_list, list) { 1491 if (!wdev->beacon_interval) 1492 continue; 1493 if (wdev->beacon_interval != beacon_int) { 1494 res = -EINVAL; 1495 break; 1496 } 1497 } 1498 1499 return res; 1500 } 1501 1502 int cfg80211_iter_combinations(struct wiphy *wiphy, 1503 const int num_different_channels, 1504 const u8 radar_detect, 1505 const int iftype_num[NUM_NL80211_IFTYPES], 1506 void (*iter)(const struct ieee80211_iface_combination *c, 1507 void *data), 1508 void *data) 1509 { 1510 const struct ieee80211_regdomain *regdom; 1511 enum nl80211_dfs_regions region = 0; 1512 int i, j, iftype; 1513 int num_interfaces = 0; 1514 u32 used_iftypes = 0; 1515 1516 if (radar_detect) { 1517 rcu_read_lock(); 1518 regdom = rcu_dereference(cfg80211_regdomain); 1519 if (regdom) 1520 region = regdom->dfs_region; 1521 rcu_read_unlock(); 1522 } 1523 1524 for (iftype = 0; iftype < NUM_NL80211_IFTYPES; iftype++) { 1525 num_interfaces += iftype_num[iftype]; 1526 if (iftype_num[iftype] > 0 && 1527 !(wiphy->software_iftypes & BIT(iftype))) 1528 used_iftypes |= BIT(iftype); 1529 } 1530 1531 for (i = 0; i < wiphy->n_iface_combinations; i++) { 1532 const struct ieee80211_iface_combination *c; 1533 struct ieee80211_iface_limit *limits; 1534 u32 all_iftypes = 0; 1535 1536 c = &wiphy->iface_combinations[i]; 1537 1538 if (num_interfaces > c->max_interfaces) 1539 continue; 1540 if (num_different_channels > c->num_different_channels) 1541 continue; 1542 1543 limits = kmemdup(c->limits, sizeof(limits[0]) * c->n_limits, 1544 GFP_KERNEL); 1545 if (!limits) 1546 return -ENOMEM; 1547 1548 for (iftype = 0; iftype < NUM_NL80211_IFTYPES; iftype++) { 1549 if (wiphy->software_iftypes & BIT(iftype)) 1550 continue; 1551 for (j = 0; j < c->n_limits; j++) { 1552 all_iftypes |= limits[j].types; 1553 if (!(limits[j].types & BIT(iftype))) 1554 continue; 1555 if (limits[j].max < iftype_num[iftype]) 1556 goto cont; 1557 limits[j].max -= iftype_num[iftype]; 1558 } 1559 } 1560 1561 if (radar_detect != (c->radar_detect_widths & radar_detect)) 1562 goto cont; 1563 1564 if (radar_detect && c->radar_detect_regions && 1565 !(c->radar_detect_regions & BIT(region))) 1566 goto cont; 1567 1568 /* Finally check that all iftypes that we're currently 1569 * using are actually part of this combination. If they 1570 * aren't then we can't use this combination and have 1571 * to continue to the next. 1572 */ 1573 if ((all_iftypes & used_iftypes) != used_iftypes) 1574 goto cont; 1575 1576 /* This combination covered all interface types and 1577 * supported the requested numbers, so we're good. 1578 */ 1579 1580 (*iter)(c, data); 1581 cont: 1582 kfree(limits); 1583 } 1584 1585 return 0; 1586 } 1587 EXPORT_SYMBOL(cfg80211_iter_combinations); 1588 1589 static void 1590 cfg80211_iter_sum_ifcombs(const struct ieee80211_iface_combination *c, 1591 void *data) 1592 { 1593 int *num = data; 1594 (*num)++; 1595 } 1596 1597 int cfg80211_check_combinations(struct wiphy *wiphy, 1598 const int num_different_channels, 1599 const u8 radar_detect, 1600 const int iftype_num[NUM_NL80211_IFTYPES]) 1601 { 1602 int err, num = 0; 1603 1604 err = cfg80211_iter_combinations(wiphy, num_different_channels, 1605 radar_detect, iftype_num, 1606 cfg80211_iter_sum_ifcombs, &num); 1607 if (err) 1608 return err; 1609 if (num == 0) 1610 return -EBUSY; 1611 1612 return 0; 1613 } 1614 EXPORT_SYMBOL(cfg80211_check_combinations); 1615 1616 int ieee80211_get_ratemask(struct ieee80211_supported_band *sband, 1617 const u8 *rates, unsigned int n_rates, 1618 u32 *mask) 1619 { 1620 int i, j; 1621 1622 if (!sband) 1623 return -EINVAL; 1624 1625 if (n_rates == 0 || n_rates > NL80211_MAX_SUPP_RATES) 1626 return -EINVAL; 1627 1628 *mask = 0; 1629 1630 for (i = 0; i < n_rates; i++) { 1631 int rate = (rates[i] & 0x7f) * 5; 1632 bool found = false; 1633 1634 for (j = 0; j < sband->n_bitrates; j++) { 1635 if (sband->bitrates[j].bitrate == rate) { 1636 found = true; 1637 *mask |= BIT(j); 1638 break; 1639 } 1640 } 1641 if (!found) 1642 return -EINVAL; 1643 } 1644 1645 /* 1646 * mask must have at least one bit set here since we 1647 * didn't accept a 0-length rates array nor allowed 1648 * entries in the array that didn't exist 1649 */ 1650 1651 return 0; 1652 } 1653 1654 unsigned int ieee80211_get_num_supported_channels(struct wiphy *wiphy) 1655 { 1656 enum ieee80211_band band; 1657 unsigned int n_channels = 0; 1658 1659 for (band = 0; band < IEEE80211_NUM_BANDS; band++) 1660 if (wiphy->bands[band]) 1661 n_channels += wiphy->bands[band]->n_channels; 1662 1663 return n_channels; 1664 } 1665 EXPORT_SYMBOL(ieee80211_get_num_supported_channels); 1666 1667 int cfg80211_get_station(struct net_device *dev, const u8 *mac_addr, 1668 struct station_info *sinfo) 1669 { 1670 struct cfg80211_registered_device *rdev; 1671 struct wireless_dev *wdev; 1672 1673 wdev = dev->ieee80211_ptr; 1674 if (!wdev) 1675 return -EOPNOTSUPP; 1676 1677 rdev = wiphy_to_rdev(wdev->wiphy); 1678 if (!rdev->ops->get_station) 1679 return -EOPNOTSUPP; 1680 1681 return rdev_get_station(rdev, dev, mac_addr, sinfo); 1682 } 1683 EXPORT_SYMBOL(cfg80211_get_station); 1684 1685 /* See IEEE 802.1H for LLC/SNAP encapsulation/decapsulation */ 1686 /* Ethernet-II snap header (RFC1042 for most EtherTypes) */ 1687 const unsigned char rfc1042_header[] __aligned(2) = 1688 { 0xaa, 0xaa, 0x03, 0x00, 0x00, 0x00 }; 1689 EXPORT_SYMBOL(rfc1042_header); 1690 1691 /* Bridge-Tunnel header (for EtherTypes ETH_P_AARP and ETH_P_IPX) */ 1692 const unsigned char bridge_tunnel_header[] __aligned(2) = 1693 { 0xaa, 0xaa, 0x03, 0x00, 0x00, 0xf8 }; 1694 EXPORT_SYMBOL(bridge_tunnel_header); 1695