xref: /linux/net/wireless/util.c (revision 83a37b3292f4aca799b355179ad6fbdd78a08e10)
1 /*
2  * Wireless utility functions
3  *
4  * Copyright 2007-2009	Johannes Berg <johannes@sipsolutions.net>
5  * Copyright 2013-2014  Intel Mobile Communications GmbH
6  */
7 #include <linux/export.h>
8 #include <linux/bitops.h>
9 #include <linux/etherdevice.h>
10 #include <linux/slab.h>
11 #include <net/cfg80211.h>
12 #include <net/ip.h>
13 #include <net/dsfield.h>
14 #include <linux/if_vlan.h>
15 #include <linux/mpls.h>
16 #include <linux/gcd.h>
17 #include "core.h"
18 #include "rdev-ops.h"
19 
20 
21 struct ieee80211_rate *
22 ieee80211_get_response_rate(struct ieee80211_supported_band *sband,
23 			    u32 basic_rates, int bitrate)
24 {
25 	struct ieee80211_rate *result = &sband->bitrates[0];
26 	int i;
27 
28 	for (i = 0; i < sband->n_bitrates; i++) {
29 		if (!(basic_rates & BIT(i)))
30 			continue;
31 		if (sband->bitrates[i].bitrate > bitrate)
32 			continue;
33 		result = &sband->bitrates[i];
34 	}
35 
36 	return result;
37 }
38 EXPORT_SYMBOL(ieee80211_get_response_rate);
39 
40 u32 ieee80211_mandatory_rates(struct ieee80211_supported_band *sband,
41 			      enum nl80211_bss_scan_width scan_width)
42 {
43 	struct ieee80211_rate *bitrates;
44 	u32 mandatory_rates = 0;
45 	enum ieee80211_rate_flags mandatory_flag;
46 	int i;
47 
48 	if (WARN_ON(!sband))
49 		return 1;
50 
51 	if (sband->band == NL80211_BAND_2GHZ) {
52 		if (scan_width == NL80211_BSS_CHAN_WIDTH_5 ||
53 		    scan_width == NL80211_BSS_CHAN_WIDTH_10)
54 			mandatory_flag = IEEE80211_RATE_MANDATORY_G;
55 		else
56 			mandatory_flag = IEEE80211_RATE_MANDATORY_B;
57 	} else {
58 		mandatory_flag = IEEE80211_RATE_MANDATORY_A;
59 	}
60 
61 	bitrates = sband->bitrates;
62 	for (i = 0; i < sband->n_bitrates; i++)
63 		if (bitrates[i].flags & mandatory_flag)
64 			mandatory_rates |= BIT(i);
65 	return mandatory_rates;
66 }
67 EXPORT_SYMBOL(ieee80211_mandatory_rates);
68 
69 int ieee80211_channel_to_frequency(int chan, enum nl80211_band band)
70 {
71 	/* see 802.11 17.3.8.3.2 and Annex J
72 	 * there are overlapping channel numbers in 5GHz and 2GHz bands */
73 	if (chan <= 0)
74 		return 0; /* not supported */
75 	switch (band) {
76 	case NL80211_BAND_2GHZ:
77 		if (chan == 14)
78 			return 2484;
79 		else if (chan < 14)
80 			return 2407 + chan * 5;
81 		break;
82 	case NL80211_BAND_5GHZ:
83 		if (chan >= 182 && chan <= 196)
84 			return 4000 + chan * 5;
85 		else
86 			return 5000 + chan * 5;
87 		break;
88 	case NL80211_BAND_60GHZ:
89 		if (chan < 5)
90 			return 56160 + chan * 2160;
91 		break;
92 	default:
93 		;
94 	}
95 	return 0; /* not supported */
96 }
97 EXPORT_SYMBOL(ieee80211_channel_to_frequency);
98 
99 int ieee80211_frequency_to_channel(int freq)
100 {
101 	/* see 802.11 17.3.8.3.2 and Annex J */
102 	if (freq == 2484)
103 		return 14;
104 	else if (freq < 2484)
105 		return (freq - 2407) / 5;
106 	else if (freq >= 4910 && freq <= 4980)
107 		return (freq - 4000) / 5;
108 	else if (freq <= 45000) /* DMG band lower limit */
109 		return (freq - 5000) / 5;
110 	else if (freq >= 58320 && freq <= 64800)
111 		return (freq - 56160) / 2160;
112 	else
113 		return 0;
114 }
115 EXPORT_SYMBOL(ieee80211_frequency_to_channel);
116 
117 struct ieee80211_channel *ieee80211_get_channel(struct wiphy *wiphy, int freq)
118 {
119 	enum nl80211_band band;
120 	struct ieee80211_supported_band *sband;
121 	int i;
122 
123 	for (band = 0; band < NUM_NL80211_BANDS; band++) {
124 		sband = wiphy->bands[band];
125 
126 		if (!sband)
127 			continue;
128 
129 		for (i = 0; i < sband->n_channels; i++) {
130 			if (sband->channels[i].center_freq == freq)
131 				return &sband->channels[i];
132 		}
133 	}
134 
135 	return NULL;
136 }
137 EXPORT_SYMBOL(ieee80211_get_channel);
138 
139 static void set_mandatory_flags_band(struct ieee80211_supported_band *sband)
140 {
141 	int i, want;
142 
143 	switch (sband->band) {
144 	case NL80211_BAND_5GHZ:
145 		want = 3;
146 		for (i = 0; i < sband->n_bitrates; i++) {
147 			if (sband->bitrates[i].bitrate == 60 ||
148 			    sband->bitrates[i].bitrate == 120 ||
149 			    sband->bitrates[i].bitrate == 240) {
150 				sband->bitrates[i].flags |=
151 					IEEE80211_RATE_MANDATORY_A;
152 				want--;
153 			}
154 		}
155 		WARN_ON(want);
156 		break;
157 	case NL80211_BAND_2GHZ:
158 		want = 7;
159 		for (i = 0; i < sband->n_bitrates; i++) {
160 			switch (sband->bitrates[i].bitrate) {
161 			case 10:
162 			case 20:
163 			case 55:
164 			case 110:
165 				sband->bitrates[i].flags |=
166 					IEEE80211_RATE_MANDATORY_B |
167 					IEEE80211_RATE_MANDATORY_G;
168 				want--;
169 				break;
170 			case 60:
171 			case 120:
172 			case 240:
173 				sband->bitrates[i].flags |=
174 					IEEE80211_RATE_MANDATORY_G;
175 				want--;
176 				/* fall through */
177 			default:
178 				sband->bitrates[i].flags |=
179 					IEEE80211_RATE_ERP_G;
180 				break;
181 			}
182 		}
183 		WARN_ON(want != 0 && want != 3);
184 		break;
185 	case NL80211_BAND_60GHZ:
186 		/* check for mandatory HT MCS 1..4 */
187 		WARN_ON(!sband->ht_cap.ht_supported);
188 		WARN_ON((sband->ht_cap.mcs.rx_mask[0] & 0x1e) != 0x1e);
189 		break;
190 	case NUM_NL80211_BANDS:
191 	default:
192 		WARN_ON(1);
193 		break;
194 	}
195 }
196 
197 void ieee80211_set_bitrate_flags(struct wiphy *wiphy)
198 {
199 	enum nl80211_band band;
200 
201 	for (band = 0; band < NUM_NL80211_BANDS; band++)
202 		if (wiphy->bands[band])
203 			set_mandatory_flags_band(wiphy->bands[band]);
204 }
205 
206 bool cfg80211_supported_cipher_suite(struct wiphy *wiphy, u32 cipher)
207 {
208 	int i;
209 	for (i = 0; i < wiphy->n_cipher_suites; i++)
210 		if (cipher == wiphy->cipher_suites[i])
211 			return true;
212 	return false;
213 }
214 
215 int cfg80211_validate_key_settings(struct cfg80211_registered_device *rdev,
216 				   struct key_params *params, int key_idx,
217 				   bool pairwise, const u8 *mac_addr)
218 {
219 	if (key_idx < 0 || key_idx > 5)
220 		return -EINVAL;
221 
222 	if (!pairwise && mac_addr && !(rdev->wiphy.flags & WIPHY_FLAG_IBSS_RSN))
223 		return -EINVAL;
224 
225 	if (pairwise && !mac_addr)
226 		return -EINVAL;
227 
228 	switch (params->cipher) {
229 	case WLAN_CIPHER_SUITE_TKIP:
230 	case WLAN_CIPHER_SUITE_CCMP:
231 	case WLAN_CIPHER_SUITE_CCMP_256:
232 	case WLAN_CIPHER_SUITE_GCMP:
233 	case WLAN_CIPHER_SUITE_GCMP_256:
234 		/* Disallow pairwise keys with non-zero index unless it's WEP
235 		 * or a vendor specific cipher (because current deployments use
236 		 * pairwise WEP keys with non-zero indices and for vendor
237 		 * specific ciphers this should be validated in the driver or
238 		 * hardware level - but 802.11i clearly specifies to use zero)
239 		 */
240 		if (pairwise && key_idx)
241 			return -EINVAL;
242 		break;
243 	case WLAN_CIPHER_SUITE_AES_CMAC:
244 	case WLAN_CIPHER_SUITE_BIP_CMAC_256:
245 	case WLAN_CIPHER_SUITE_BIP_GMAC_128:
246 	case WLAN_CIPHER_SUITE_BIP_GMAC_256:
247 		/* Disallow BIP (group-only) cipher as pairwise cipher */
248 		if (pairwise)
249 			return -EINVAL;
250 		if (key_idx < 4)
251 			return -EINVAL;
252 		break;
253 	case WLAN_CIPHER_SUITE_WEP40:
254 	case WLAN_CIPHER_SUITE_WEP104:
255 		if (key_idx > 3)
256 			return -EINVAL;
257 	default:
258 		break;
259 	}
260 
261 	switch (params->cipher) {
262 	case WLAN_CIPHER_SUITE_WEP40:
263 		if (params->key_len != WLAN_KEY_LEN_WEP40)
264 			return -EINVAL;
265 		break;
266 	case WLAN_CIPHER_SUITE_TKIP:
267 		if (params->key_len != WLAN_KEY_LEN_TKIP)
268 			return -EINVAL;
269 		break;
270 	case WLAN_CIPHER_SUITE_CCMP:
271 		if (params->key_len != WLAN_KEY_LEN_CCMP)
272 			return -EINVAL;
273 		break;
274 	case WLAN_CIPHER_SUITE_CCMP_256:
275 		if (params->key_len != WLAN_KEY_LEN_CCMP_256)
276 			return -EINVAL;
277 		break;
278 	case WLAN_CIPHER_SUITE_GCMP:
279 		if (params->key_len != WLAN_KEY_LEN_GCMP)
280 			return -EINVAL;
281 		break;
282 	case WLAN_CIPHER_SUITE_GCMP_256:
283 		if (params->key_len != WLAN_KEY_LEN_GCMP_256)
284 			return -EINVAL;
285 		break;
286 	case WLAN_CIPHER_SUITE_WEP104:
287 		if (params->key_len != WLAN_KEY_LEN_WEP104)
288 			return -EINVAL;
289 		break;
290 	case WLAN_CIPHER_SUITE_AES_CMAC:
291 		if (params->key_len != WLAN_KEY_LEN_AES_CMAC)
292 			return -EINVAL;
293 		break;
294 	case WLAN_CIPHER_SUITE_BIP_CMAC_256:
295 		if (params->key_len != WLAN_KEY_LEN_BIP_CMAC_256)
296 			return -EINVAL;
297 		break;
298 	case WLAN_CIPHER_SUITE_BIP_GMAC_128:
299 		if (params->key_len != WLAN_KEY_LEN_BIP_GMAC_128)
300 			return -EINVAL;
301 		break;
302 	case WLAN_CIPHER_SUITE_BIP_GMAC_256:
303 		if (params->key_len != WLAN_KEY_LEN_BIP_GMAC_256)
304 			return -EINVAL;
305 		break;
306 	default:
307 		/*
308 		 * We don't know anything about this algorithm,
309 		 * allow using it -- but the driver must check
310 		 * all parameters! We still check below whether
311 		 * or not the driver supports this algorithm,
312 		 * of course.
313 		 */
314 		break;
315 	}
316 
317 	if (params->seq) {
318 		switch (params->cipher) {
319 		case WLAN_CIPHER_SUITE_WEP40:
320 		case WLAN_CIPHER_SUITE_WEP104:
321 			/* These ciphers do not use key sequence */
322 			return -EINVAL;
323 		case WLAN_CIPHER_SUITE_TKIP:
324 		case WLAN_CIPHER_SUITE_CCMP:
325 		case WLAN_CIPHER_SUITE_CCMP_256:
326 		case WLAN_CIPHER_SUITE_GCMP:
327 		case WLAN_CIPHER_SUITE_GCMP_256:
328 		case WLAN_CIPHER_SUITE_AES_CMAC:
329 		case WLAN_CIPHER_SUITE_BIP_CMAC_256:
330 		case WLAN_CIPHER_SUITE_BIP_GMAC_128:
331 		case WLAN_CIPHER_SUITE_BIP_GMAC_256:
332 			if (params->seq_len != 6)
333 				return -EINVAL;
334 			break;
335 		}
336 	}
337 
338 	if (!cfg80211_supported_cipher_suite(&rdev->wiphy, params->cipher))
339 		return -EINVAL;
340 
341 	return 0;
342 }
343 
344 unsigned int __attribute_const__ ieee80211_hdrlen(__le16 fc)
345 {
346 	unsigned int hdrlen = 24;
347 
348 	if (ieee80211_is_data(fc)) {
349 		if (ieee80211_has_a4(fc))
350 			hdrlen = 30;
351 		if (ieee80211_is_data_qos(fc)) {
352 			hdrlen += IEEE80211_QOS_CTL_LEN;
353 			if (ieee80211_has_order(fc))
354 				hdrlen += IEEE80211_HT_CTL_LEN;
355 		}
356 		goto out;
357 	}
358 
359 	if (ieee80211_is_mgmt(fc)) {
360 		if (ieee80211_has_order(fc))
361 			hdrlen += IEEE80211_HT_CTL_LEN;
362 		goto out;
363 	}
364 
365 	if (ieee80211_is_ctl(fc)) {
366 		/*
367 		 * ACK and CTS are 10 bytes, all others 16. To see how
368 		 * to get this condition consider
369 		 *   subtype mask:   0b0000000011110000 (0x00F0)
370 		 *   ACK subtype:    0b0000000011010000 (0x00D0)
371 		 *   CTS subtype:    0b0000000011000000 (0x00C0)
372 		 *   bits that matter:         ^^^      (0x00E0)
373 		 *   value of those: 0b0000000011000000 (0x00C0)
374 		 */
375 		if ((fc & cpu_to_le16(0x00E0)) == cpu_to_le16(0x00C0))
376 			hdrlen = 10;
377 		else
378 			hdrlen = 16;
379 	}
380 out:
381 	return hdrlen;
382 }
383 EXPORT_SYMBOL(ieee80211_hdrlen);
384 
385 unsigned int ieee80211_get_hdrlen_from_skb(const struct sk_buff *skb)
386 {
387 	const struct ieee80211_hdr *hdr =
388 			(const struct ieee80211_hdr *)skb->data;
389 	unsigned int hdrlen;
390 
391 	if (unlikely(skb->len < 10))
392 		return 0;
393 	hdrlen = ieee80211_hdrlen(hdr->frame_control);
394 	if (unlikely(hdrlen > skb->len))
395 		return 0;
396 	return hdrlen;
397 }
398 EXPORT_SYMBOL(ieee80211_get_hdrlen_from_skb);
399 
400 static unsigned int __ieee80211_get_mesh_hdrlen(u8 flags)
401 {
402 	int ae = flags & MESH_FLAGS_AE;
403 	/* 802.11-2012, 8.2.4.7.3 */
404 	switch (ae) {
405 	default:
406 	case 0:
407 		return 6;
408 	case MESH_FLAGS_AE_A4:
409 		return 12;
410 	case MESH_FLAGS_AE_A5_A6:
411 		return 18;
412 	}
413 }
414 
415 unsigned int ieee80211_get_mesh_hdrlen(struct ieee80211s_hdr *meshhdr)
416 {
417 	return __ieee80211_get_mesh_hdrlen(meshhdr->flags);
418 }
419 EXPORT_SYMBOL(ieee80211_get_mesh_hdrlen);
420 
421 int ieee80211_data_to_8023_exthdr(struct sk_buff *skb, struct ethhdr *ehdr,
422 				  const u8 *addr, enum nl80211_iftype iftype)
423 {
424 	struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data;
425 	struct {
426 		u8 hdr[ETH_ALEN] __aligned(2);
427 		__be16 proto;
428 	} payload;
429 	struct ethhdr tmp;
430 	u16 hdrlen;
431 	u8 mesh_flags = 0;
432 
433 	if (unlikely(!ieee80211_is_data_present(hdr->frame_control)))
434 		return -1;
435 
436 	hdrlen = ieee80211_hdrlen(hdr->frame_control);
437 	if (skb->len < hdrlen + 8)
438 		return -1;
439 
440 	/* convert IEEE 802.11 header + possible LLC headers into Ethernet
441 	 * header
442 	 * IEEE 802.11 address fields:
443 	 * ToDS FromDS Addr1 Addr2 Addr3 Addr4
444 	 *   0     0   DA    SA    BSSID n/a
445 	 *   0     1   DA    BSSID SA    n/a
446 	 *   1     0   BSSID SA    DA    n/a
447 	 *   1     1   RA    TA    DA    SA
448 	 */
449 	memcpy(tmp.h_dest, ieee80211_get_DA(hdr), ETH_ALEN);
450 	memcpy(tmp.h_source, ieee80211_get_SA(hdr), ETH_ALEN);
451 
452 	if (iftype == NL80211_IFTYPE_MESH_POINT)
453 		skb_copy_bits(skb, hdrlen, &mesh_flags, 1);
454 
455 	mesh_flags &= MESH_FLAGS_AE;
456 
457 	switch (hdr->frame_control &
458 		cpu_to_le16(IEEE80211_FCTL_TODS | IEEE80211_FCTL_FROMDS)) {
459 	case cpu_to_le16(IEEE80211_FCTL_TODS):
460 		if (unlikely(iftype != NL80211_IFTYPE_AP &&
461 			     iftype != NL80211_IFTYPE_AP_VLAN &&
462 			     iftype != NL80211_IFTYPE_P2P_GO))
463 			return -1;
464 		break;
465 	case cpu_to_le16(IEEE80211_FCTL_TODS | IEEE80211_FCTL_FROMDS):
466 		if (unlikely(iftype != NL80211_IFTYPE_WDS &&
467 			     iftype != NL80211_IFTYPE_MESH_POINT &&
468 			     iftype != NL80211_IFTYPE_AP_VLAN &&
469 			     iftype != NL80211_IFTYPE_STATION))
470 			return -1;
471 		if (iftype == NL80211_IFTYPE_MESH_POINT) {
472 			if (mesh_flags == MESH_FLAGS_AE_A4)
473 				return -1;
474 			if (mesh_flags == MESH_FLAGS_AE_A5_A6) {
475 				skb_copy_bits(skb, hdrlen +
476 					offsetof(struct ieee80211s_hdr, eaddr1),
477 					tmp.h_dest, 2 * ETH_ALEN);
478 			}
479 			hdrlen += __ieee80211_get_mesh_hdrlen(mesh_flags);
480 		}
481 		break;
482 	case cpu_to_le16(IEEE80211_FCTL_FROMDS):
483 		if ((iftype != NL80211_IFTYPE_STATION &&
484 		     iftype != NL80211_IFTYPE_P2P_CLIENT &&
485 		     iftype != NL80211_IFTYPE_MESH_POINT) ||
486 		    (is_multicast_ether_addr(tmp.h_dest) &&
487 		     ether_addr_equal(tmp.h_source, addr)))
488 			return -1;
489 		if (iftype == NL80211_IFTYPE_MESH_POINT) {
490 			if (mesh_flags == MESH_FLAGS_AE_A5_A6)
491 				return -1;
492 			if (mesh_flags == MESH_FLAGS_AE_A4)
493 				skb_copy_bits(skb, hdrlen +
494 					offsetof(struct ieee80211s_hdr, eaddr1),
495 					tmp.h_source, ETH_ALEN);
496 			hdrlen += __ieee80211_get_mesh_hdrlen(mesh_flags);
497 		}
498 		break;
499 	case cpu_to_le16(0):
500 		if (iftype != NL80211_IFTYPE_ADHOC &&
501 		    iftype != NL80211_IFTYPE_STATION &&
502 		    iftype != NL80211_IFTYPE_OCB)
503 				return -1;
504 		break;
505 	}
506 
507 	skb_copy_bits(skb, hdrlen, &payload, sizeof(payload));
508 	tmp.h_proto = payload.proto;
509 
510 	if (likely((ether_addr_equal(payload.hdr, rfc1042_header) &&
511 		    tmp.h_proto != htons(ETH_P_AARP) &&
512 		    tmp.h_proto != htons(ETH_P_IPX)) ||
513 		   ether_addr_equal(payload.hdr, bridge_tunnel_header)))
514 		/* remove RFC1042 or Bridge-Tunnel encapsulation and
515 		 * replace EtherType */
516 		hdrlen += ETH_ALEN + 2;
517 	else
518 		tmp.h_proto = htons(skb->len - hdrlen);
519 
520 	pskb_pull(skb, hdrlen);
521 
522 	if (!ehdr)
523 		ehdr = skb_push(skb, sizeof(struct ethhdr));
524 	memcpy(ehdr, &tmp, sizeof(tmp));
525 
526 	return 0;
527 }
528 EXPORT_SYMBOL(ieee80211_data_to_8023_exthdr);
529 
530 static void
531 __frame_add_frag(struct sk_buff *skb, struct page *page,
532 		 void *ptr, int len, int size)
533 {
534 	struct skb_shared_info *sh = skb_shinfo(skb);
535 	int page_offset;
536 
537 	page_ref_inc(page);
538 	page_offset = ptr - page_address(page);
539 	skb_add_rx_frag(skb, sh->nr_frags, page, page_offset, len, size);
540 }
541 
542 static void
543 __ieee80211_amsdu_copy_frag(struct sk_buff *skb, struct sk_buff *frame,
544 			    int offset, int len)
545 {
546 	struct skb_shared_info *sh = skb_shinfo(skb);
547 	const skb_frag_t *frag = &sh->frags[0];
548 	struct page *frag_page;
549 	void *frag_ptr;
550 	int frag_len, frag_size;
551 	int head_size = skb->len - skb->data_len;
552 	int cur_len;
553 
554 	frag_page = virt_to_head_page(skb->head);
555 	frag_ptr = skb->data;
556 	frag_size = head_size;
557 
558 	while (offset >= frag_size) {
559 		offset -= frag_size;
560 		frag_page = skb_frag_page(frag);
561 		frag_ptr = skb_frag_address(frag);
562 		frag_size = skb_frag_size(frag);
563 		frag++;
564 	}
565 
566 	frag_ptr += offset;
567 	frag_len = frag_size - offset;
568 
569 	cur_len = min(len, frag_len);
570 
571 	__frame_add_frag(frame, frag_page, frag_ptr, cur_len, frag_size);
572 	len -= cur_len;
573 
574 	while (len > 0) {
575 		frag_len = skb_frag_size(frag);
576 		cur_len = min(len, frag_len);
577 		__frame_add_frag(frame, skb_frag_page(frag),
578 				 skb_frag_address(frag), cur_len, frag_len);
579 		len -= cur_len;
580 		frag++;
581 	}
582 }
583 
584 static struct sk_buff *
585 __ieee80211_amsdu_copy(struct sk_buff *skb, unsigned int hlen,
586 		       int offset, int len, bool reuse_frag)
587 {
588 	struct sk_buff *frame;
589 	int cur_len = len;
590 
591 	if (skb->len - offset < len)
592 		return NULL;
593 
594 	/*
595 	 * When reusing framents, copy some data to the head to simplify
596 	 * ethernet header handling and speed up protocol header processing
597 	 * in the stack later.
598 	 */
599 	if (reuse_frag)
600 		cur_len = min_t(int, len, 32);
601 
602 	/*
603 	 * Allocate and reserve two bytes more for payload
604 	 * alignment since sizeof(struct ethhdr) is 14.
605 	 */
606 	frame = dev_alloc_skb(hlen + sizeof(struct ethhdr) + 2 + cur_len);
607 	if (!frame)
608 		return NULL;
609 
610 	skb_reserve(frame, hlen + sizeof(struct ethhdr) + 2);
611 	skb_copy_bits(skb, offset, skb_put(frame, cur_len), cur_len);
612 
613 	len -= cur_len;
614 	if (!len)
615 		return frame;
616 
617 	offset += cur_len;
618 	__ieee80211_amsdu_copy_frag(skb, frame, offset, len);
619 
620 	return frame;
621 }
622 
623 void ieee80211_amsdu_to_8023s(struct sk_buff *skb, struct sk_buff_head *list,
624 			      const u8 *addr, enum nl80211_iftype iftype,
625 			      const unsigned int extra_headroom,
626 			      const u8 *check_da, const u8 *check_sa)
627 {
628 	unsigned int hlen = ALIGN(extra_headroom, 4);
629 	struct sk_buff *frame = NULL;
630 	u16 ethertype;
631 	u8 *payload;
632 	int offset = 0, remaining;
633 	struct ethhdr eth;
634 	bool reuse_frag = skb->head_frag && !skb_has_frag_list(skb);
635 	bool reuse_skb = false;
636 	bool last = false;
637 
638 	while (!last) {
639 		unsigned int subframe_len;
640 		int len;
641 		u8 padding;
642 
643 		skb_copy_bits(skb, offset, &eth, sizeof(eth));
644 		len = ntohs(eth.h_proto);
645 		subframe_len = sizeof(struct ethhdr) + len;
646 		padding = (4 - subframe_len) & 0x3;
647 
648 		/* the last MSDU has no padding */
649 		remaining = skb->len - offset;
650 		if (subframe_len > remaining)
651 			goto purge;
652 
653 		offset += sizeof(struct ethhdr);
654 		last = remaining <= subframe_len + padding;
655 
656 		/* FIXME: should we really accept multicast DA? */
657 		if ((check_da && !is_multicast_ether_addr(eth.h_dest) &&
658 		     !ether_addr_equal(check_da, eth.h_dest)) ||
659 		    (check_sa && !ether_addr_equal(check_sa, eth.h_source))) {
660 			offset += len + padding;
661 			continue;
662 		}
663 
664 		/* reuse skb for the last subframe */
665 		if (!skb_is_nonlinear(skb) && !reuse_frag && last) {
666 			skb_pull(skb, offset);
667 			frame = skb;
668 			reuse_skb = true;
669 		} else {
670 			frame = __ieee80211_amsdu_copy(skb, hlen, offset, len,
671 						       reuse_frag);
672 			if (!frame)
673 				goto purge;
674 
675 			offset += len + padding;
676 		}
677 
678 		skb_reset_network_header(frame);
679 		frame->dev = skb->dev;
680 		frame->priority = skb->priority;
681 
682 		payload = frame->data;
683 		ethertype = (payload[6] << 8) | payload[7];
684 		if (likely((ether_addr_equal(payload, rfc1042_header) &&
685 			    ethertype != ETH_P_AARP && ethertype != ETH_P_IPX) ||
686 			   ether_addr_equal(payload, bridge_tunnel_header))) {
687 			eth.h_proto = htons(ethertype);
688 			skb_pull(frame, ETH_ALEN + 2);
689 		}
690 
691 		memcpy(skb_push(frame, sizeof(eth)), &eth, sizeof(eth));
692 		__skb_queue_tail(list, frame);
693 	}
694 
695 	if (!reuse_skb)
696 		dev_kfree_skb(skb);
697 
698 	return;
699 
700  purge:
701 	__skb_queue_purge(list);
702 	dev_kfree_skb(skb);
703 }
704 EXPORT_SYMBOL(ieee80211_amsdu_to_8023s);
705 
706 /* Given a data frame determine the 802.1p/1d tag to use. */
707 unsigned int cfg80211_classify8021d(struct sk_buff *skb,
708 				    struct cfg80211_qos_map *qos_map)
709 {
710 	unsigned int dscp;
711 	unsigned char vlan_priority;
712 
713 	/* skb->priority values from 256->263 are magic values to
714 	 * directly indicate a specific 802.1d priority.  This is used
715 	 * to allow 802.1d priority to be passed directly in from VLAN
716 	 * tags, etc.
717 	 */
718 	if (skb->priority >= 256 && skb->priority <= 263)
719 		return skb->priority - 256;
720 
721 	if (skb_vlan_tag_present(skb)) {
722 		vlan_priority = (skb_vlan_tag_get(skb) & VLAN_PRIO_MASK)
723 			>> VLAN_PRIO_SHIFT;
724 		if (vlan_priority > 0)
725 			return vlan_priority;
726 	}
727 
728 	switch (skb->protocol) {
729 	case htons(ETH_P_IP):
730 		dscp = ipv4_get_dsfield(ip_hdr(skb)) & 0xfc;
731 		break;
732 	case htons(ETH_P_IPV6):
733 		dscp = ipv6_get_dsfield(ipv6_hdr(skb)) & 0xfc;
734 		break;
735 	case htons(ETH_P_MPLS_UC):
736 	case htons(ETH_P_MPLS_MC): {
737 		struct mpls_label mpls_tmp, *mpls;
738 
739 		mpls = skb_header_pointer(skb, sizeof(struct ethhdr),
740 					  sizeof(*mpls), &mpls_tmp);
741 		if (!mpls)
742 			return 0;
743 
744 		return (ntohl(mpls->entry) & MPLS_LS_TC_MASK)
745 			>> MPLS_LS_TC_SHIFT;
746 	}
747 	case htons(ETH_P_80221):
748 		/* 802.21 is always network control traffic */
749 		return 7;
750 	default:
751 		return 0;
752 	}
753 
754 	if (qos_map) {
755 		unsigned int i, tmp_dscp = dscp >> 2;
756 
757 		for (i = 0; i < qos_map->num_des; i++) {
758 			if (tmp_dscp == qos_map->dscp_exception[i].dscp)
759 				return qos_map->dscp_exception[i].up;
760 		}
761 
762 		for (i = 0; i < 8; i++) {
763 			if (tmp_dscp >= qos_map->up[i].low &&
764 			    tmp_dscp <= qos_map->up[i].high)
765 				return i;
766 		}
767 	}
768 
769 	return dscp >> 5;
770 }
771 EXPORT_SYMBOL(cfg80211_classify8021d);
772 
773 const u8 *ieee80211_bss_get_ie(struct cfg80211_bss *bss, u8 ie)
774 {
775 	const struct cfg80211_bss_ies *ies;
776 
777 	ies = rcu_dereference(bss->ies);
778 	if (!ies)
779 		return NULL;
780 
781 	return cfg80211_find_ie(ie, ies->data, ies->len);
782 }
783 EXPORT_SYMBOL(ieee80211_bss_get_ie);
784 
785 void cfg80211_upload_connect_keys(struct wireless_dev *wdev)
786 {
787 	struct cfg80211_registered_device *rdev = wiphy_to_rdev(wdev->wiphy);
788 	struct net_device *dev = wdev->netdev;
789 	int i;
790 
791 	if (!wdev->connect_keys)
792 		return;
793 
794 	for (i = 0; i < CFG80211_MAX_WEP_KEYS; i++) {
795 		if (!wdev->connect_keys->params[i].cipher)
796 			continue;
797 		if (rdev_add_key(rdev, dev, i, false, NULL,
798 				 &wdev->connect_keys->params[i])) {
799 			netdev_err(dev, "failed to set key %d\n", i);
800 			continue;
801 		}
802 		if (wdev->connect_keys->def == i &&
803 		    rdev_set_default_key(rdev, dev, i, true, true)) {
804 			netdev_err(dev, "failed to set defkey %d\n", i);
805 			continue;
806 		}
807 	}
808 
809 	kzfree(wdev->connect_keys);
810 	wdev->connect_keys = NULL;
811 }
812 
813 void cfg80211_process_wdev_events(struct wireless_dev *wdev)
814 {
815 	struct cfg80211_event *ev;
816 	unsigned long flags;
817 
818 	spin_lock_irqsave(&wdev->event_lock, flags);
819 	while (!list_empty(&wdev->event_list)) {
820 		ev = list_first_entry(&wdev->event_list,
821 				      struct cfg80211_event, list);
822 		list_del(&ev->list);
823 		spin_unlock_irqrestore(&wdev->event_lock, flags);
824 
825 		wdev_lock(wdev);
826 		switch (ev->type) {
827 		case EVENT_CONNECT_RESULT:
828 			__cfg80211_connect_result(
829 				wdev->netdev,
830 				&ev->cr,
831 				ev->cr.status == WLAN_STATUS_SUCCESS);
832 			break;
833 		case EVENT_ROAMED:
834 			__cfg80211_roamed(wdev, &ev->rm);
835 			break;
836 		case EVENT_DISCONNECTED:
837 			__cfg80211_disconnected(wdev->netdev,
838 						ev->dc.ie, ev->dc.ie_len,
839 						ev->dc.reason,
840 						!ev->dc.locally_generated);
841 			break;
842 		case EVENT_IBSS_JOINED:
843 			__cfg80211_ibss_joined(wdev->netdev, ev->ij.bssid,
844 					       ev->ij.channel);
845 			break;
846 		case EVENT_STOPPED:
847 			__cfg80211_leave(wiphy_to_rdev(wdev->wiphy), wdev);
848 			break;
849 		case EVENT_PORT_AUTHORIZED:
850 			__cfg80211_port_authorized(wdev, ev->pa.bssid);
851 			break;
852 		}
853 		wdev_unlock(wdev);
854 
855 		kfree(ev);
856 
857 		spin_lock_irqsave(&wdev->event_lock, flags);
858 	}
859 	spin_unlock_irqrestore(&wdev->event_lock, flags);
860 }
861 
862 void cfg80211_process_rdev_events(struct cfg80211_registered_device *rdev)
863 {
864 	struct wireless_dev *wdev;
865 
866 	ASSERT_RTNL();
867 
868 	list_for_each_entry(wdev, &rdev->wiphy.wdev_list, list)
869 		cfg80211_process_wdev_events(wdev);
870 }
871 
872 int cfg80211_change_iface(struct cfg80211_registered_device *rdev,
873 			  struct net_device *dev, enum nl80211_iftype ntype,
874 			  struct vif_params *params)
875 {
876 	int err;
877 	enum nl80211_iftype otype = dev->ieee80211_ptr->iftype;
878 
879 	ASSERT_RTNL();
880 
881 	/* don't support changing VLANs, you just re-create them */
882 	if (otype == NL80211_IFTYPE_AP_VLAN)
883 		return -EOPNOTSUPP;
884 
885 	/* cannot change into P2P device or NAN */
886 	if (ntype == NL80211_IFTYPE_P2P_DEVICE ||
887 	    ntype == NL80211_IFTYPE_NAN)
888 		return -EOPNOTSUPP;
889 
890 	if (!rdev->ops->change_virtual_intf ||
891 	    !(rdev->wiphy.interface_modes & (1 << ntype)))
892 		return -EOPNOTSUPP;
893 
894 	/* if it's part of a bridge, reject changing type to station/ibss */
895 	if ((dev->priv_flags & IFF_BRIDGE_PORT) &&
896 	    (ntype == NL80211_IFTYPE_ADHOC ||
897 	     ntype == NL80211_IFTYPE_STATION ||
898 	     ntype == NL80211_IFTYPE_P2P_CLIENT))
899 		return -EBUSY;
900 
901 	if (ntype != otype) {
902 		dev->ieee80211_ptr->use_4addr = false;
903 		dev->ieee80211_ptr->mesh_id_up_len = 0;
904 		wdev_lock(dev->ieee80211_ptr);
905 		rdev_set_qos_map(rdev, dev, NULL);
906 		wdev_unlock(dev->ieee80211_ptr);
907 
908 		switch (otype) {
909 		case NL80211_IFTYPE_AP:
910 			cfg80211_stop_ap(rdev, dev, true);
911 			break;
912 		case NL80211_IFTYPE_ADHOC:
913 			cfg80211_leave_ibss(rdev, dev, false);
914 			break;
915 		case NL80211_IFTYPE_STATION:
916 		case NL80211_IFTYPE_P2P_CLIENT:
917 			wdev_lock(dev->ieee80211_ptr);
918 			cfg80211_disconnect(rdev, dev,
919 					    WLAN_REASON_DEAUTH_LEAVING, true);
920 			wdev_unlock(dev->ieee80211_ptr);
921 			break;
922 		case NL80211_IFTYPE_MESH_POINT:
923 			/* mesh should be handled? */
924 			break;
925 		default:
926 			break;
927 		}
928 
929 		cfg80211_process_rdev_events(rdev);
930 	}
931 
932 	err = rdev_change_virtual_intf(rdev, dev, ntype, params);
933 
934 	WARN_ON(!err && dev->ieee80211_ptr->iftype != ntype);
935 
936 	if (!err && params && params->use_4addr != -1)
937 		dev->ieee80211_ptr->use_4addr = params->use_4addr;
938 
939 	if (!err) {
940 		dev->priv_flags &= ~IFF_DONT_BRIDGE;
941 		switch (ntype) {
942 		case NL80211_IFTYPE_STATION:
943 			if (dev->ieee80211_ptr->use_4addr)
944 				break;
945 			/* fall through */
946 		case NL80211_IFTYPE_OCB:
947 		case NL80211_IFTYPE_P2P_CLIENT:
948 		case NL80211_IFTYPE_ADHOC:
949 			dev->priv_flags |= IFF_DONT_BRIDGE;
950 			break;
951 		case NL80211_IFTYPE_P2P_GO:
952 		case NL80211_IFTYPE_AP:
953 		case NL80211_IFTYPE_AP_VLAN:
954 		case NL80211_IFTYPE_WDS:
955 		case NL80211_IFTYPE_MESH_POINT:
956 			/* bridging OK */
957 			break;
958 		case NL80211_IFTYPE_MONITOR:
959 			/* monitor can't bridge anyway */
960 			break;
961 		case NL80211_IFTYPE_UNSPECIFIED:
962 		case NUM_NL80211_IFTYPES:
963 			/* not happening */
964 			break;
965 		case NL80211_IFTYPE_P2P_DEVICE:
966 		case NL80211_IFTYPE_NAN:
967 			WARN_ON(1);
968 			break;
969 		}
970 	}
971 
972 	if (!err && ntype != otype && netif_running(dev)) {
973 		cfg80211_update_iface_num(rdev, ntype, 1);
974 		cfg80211_update_iface_num(rdev, otype, -1);
975 	}
976 
977 	return err;
978 }
979 
980 static u32 cfg80211_calculate_bitrate_ht(struct rate_info *rate)
981 {
982 	int modulation, streams, bitrate;
983 
984 	/* the formula below does only work for MCS values smaller than 32 */
985 	if (WARN_ON_ONCE(rate->mcs >= 32))
986 		return 0;
987 
988 	modulation = rate->mcs & 7;
989 	streams = (rate->mcs >> 3) + 1;
990 
991 	bitrate = (rate->bw == RATE_INFO_BW_40) ? 13500000 : 6500000;
992 
993 	if (modulation < 4)
994 		bitrate *= (modulation + 1);
995 	else if (modulation == 4)
996 		bitrate *= (modulation + 2);
997 	else
998 		bitrate *= (modulation + 3);
999 
1000 	bitrate *= streams;
1001 
1002 	if (rate->flags & RATE_INFO_FLAGS_SHORT_GI)
1003 		bitrate = (bitrate / 9) * 10;
1004 
1005 	/* do NOT round down here */
1006 	return (bitrate + 50000) / 100000;
1007 }
1008 
1009 static u32 cfg80211_calculate_bitrate_60g(struct rate_info *rate)
1010 {
1011 	static const u32 __mcs2bitrate[] = {
1012 		/* control PHY */
1013 		[0] =   275,
1014 		/* SC PHY */
1015 		[1] =  3850,
1016 		[2] =  7700,
1017 		[3] =  9625,
1018 		[4] = 11550,
1019 		[5] = 12512, /* 1251.25 mbps */
1020 		[6] = 15400,
1021 		[7] = 19250,
1022 		[8] = 23100,
1023 		[9] = 25025,
1024 		[10] = 30800,
1025 		[11] = 38500,
1026 		[12] = 46200,
1027 		/* OFDM PHY */
1028 		[13] =  6930,
1029 		[14] =  8662, /* 866.25 mbps */
1030 		[15] = 13860,
1031 		[16] = 17325,
1032 		[17] = 20790,
1033 		[18] = 27720,
1034 		[19] = 34650,
1035 		[20] = 41580,
1036 		[21] = 45045,
1037 		[22] = 51975,
1038 		[23] = 62370,
1039 		[24] = 67568, /* 6756.75 mbps */
1040 		/* LP-SC PHY */
1041 		[25] =  6260,
1042 		[26] =  8340,
1043 		[27] = 11120,
1044 		[28] = 12510,
1045 		[29] = 16680,
1046 		[30] = 22240,
1047 		[31] = 25030,
1048 	};
1049 
1050 	if (WARN_ON_ONCE(rate->mcs >= ARRAY_SIZE(__mcs2bitrate)))
1051 		return 0;
1052 
1053 	return __mcs2bitrate[rate->mcs];
1054 }
1055 
1056 static u32 cfg80211_calculate_bitrate_vht(struct rate_info *rate)
1057 {
1058 	static const u32 base[4][10] = {
1059 		{   6500000,
1060 		   13000000,
1061 		   19500000,
1062 		   26000000,
1063 		   39000000,
1064 		   52000000,
1065 		   58500000,
1066 		   65000000,
1067 		   78000000,
1068 		/* not in the spec, but some devices use this: */
1069 		   86500000,
1070 		},
1071 		{  13500000,
1072 		   27000000,
1073 		   40500000,
1074 		   54000000,
1075 		   81000000,
1076 		  108000000,
1077 		  121500000,
1078 		  135000000,
1079 		  162000000,
1080 		  180000000,
1081 		},
1082 		{  29300000,
1083 		   58500000,
1084 		   87800000,
1085 		  117000000,
1086 		  175500000,
1087 		  234000000,
1088 		  263300000,
1089 		  292500000,
1090 		  351000000,
1091 		  390000000,
1092 		},
1093 		{  58500000,
1094 		  117000000,
1095 		  175500000,
1096 		  234000000,
1097 		  351000000,
1098 		  468000000,
1099 		  526500000,
1100 		  585000000,
1101 		  702000000,
1102 		  780000000,
1103 		},
1104 	};
1105 	u32 bitrate;
1106 	int idx;
1107 
1108 	if (rate->mcs > 9)
1109 		goto warn;
1110 
1111 	switch (rate->bw) {
1112 	case RATE_INFO_BW_160:
1113 		idx = 3;
1114 		break;
1115 	case RATE_INFO_BW_80:
1116 		idx = 2;
1117 		break;
1118 	case RATE_INFO_BW_40:
1119 		idx = 1;
1120 		break;
1121 	case RATE_INFO_BW_5:
1122 	case RATE_INFO_BW_10:
1123 	default:
1124 		goto warn;
1125 	case RATE_INFO_BW_20:
1126 		idx = 0;
1127 	}
1128 
1129 	bitrate = base[idx][rate->mcs];
1130 	bitrate *= rate->nss;
1131 
1132 	if (rate->flags & RATE_INFO_FLAGS_SHORT_GI)
1133 		bitrate = (bitrate / 9) * 10;
1134 
1135 	/* do NOT round down here */
1136 	return (bitrate + 50000) / 100000;
1137  warn:
1138 	WARN_ONCE(1, "invalid rate bw=%d, mcs=%d, nss=%d\n",
1139 		  rate->bw, rate->mcs, rate->nss);
1140 	return 0;
1141 }
1142 
1143 u32 cfg80211_calculate_bitrate(struct rate_info *rate)
1144 {
1145 	if (rate->flags & RATE_INFO_FLAGS_MCS)
1146 		return cfg80211_calculate_bitrate_ht(rate);
1147 	if (rate->flags & RATE_INFO_FLAGS_60G)
1148 		return cfg80211_calculate_bitrate_60g(rate);
1149 	if (rate->flags & RATE_INFO_FLAGS_VHT_MCS)
1150 		return cfg80211_calculate_bitrate_vht(rate);
1151 
1152 	return rate->legacy;
1153 }
1154 EXPORT_SYMBOL(cfg80211_calculate_bitrate);
1155 
1156 int cfg80211_get_p2p_attr(const u8 *ies, unsigned int len,
1157 			  enum ieee80211_p2p_attr_id attr,
1158 			  u8 *buf, unsigned int bufsize)
1159 {
1160 	u8 *out = buf;
1161 	u16 attr_remaining = 0;
1162 	bool desired_attr = false;
1163 	u16 desired_len = 0;
1164 
1165 	while (len > 0) {
1166 		unsigned int iedatalen;
1167 		unsigned int copy;
1168 		const u8 *iedata;
1169 
1170 		if (len < 2)
1171 			return -EILSEQ;
1172 		iedatalen = ies[1];
1173 		if (iedatalen + 2 > len)
1174 			return -EILSEQ;
1175 
1176 		if (ies[0] != WLAN_EID_VENDOR_SPECIFIC)
1177 			goto cont;
1178 
1179 		if (iedatalen < 4)
1180 			goto cont;
1181 
1182 		iedata = ies + 2;
1183 
1184 		/* check WFA OUI, P2P subtype */
1185 		if (iedata[0] != 0x50 || iedata[1] != 0x6f ||
1186 		    iedata[2] != 0x9a || iedata[3] != 0x09)
1187 			goto cont;
1188 
1189 		iedatalen -= 4;
1190 		iedata += 4;
1191 
1192 		/* check attribute continuation into this IE */
1193 		copy = min_t(unsigned int, attr_remaining, iedatalen);
1194 		if (copy && desired_attr) {
1195 			desired_len += copy;
1196 			if (out) {
1197 				memcpy(out, iedata, min(bufsize, copy));
1198 				out += min(bufsize, copy);
1199 				bufsize -= min(bufsize, copy);
1200 			}
1201 
1202 
1203 			if (copy == attr_remaining)
1204 				return desired_len;
1205 		}
1206 
1207 		attr_remaining -= copy;
1208 		if (attr_remaining)
1209 			goto cont;
1210 
1211 		iedatalen -= copy;
1212 		iedata += copy;
1213 
1214 		while (iedatalen > 0) {
1215 			u16 attr_len;
1216 
1217 			/* P2P attribute ID & size must fit */
1218 			if (iedatalen < 3)
1219 				return -EILSEQ;
1220 			desired_attr = iedata[0] == attr;
1221 			attr_len = get_unaligned_le16(iedata + 1);
1222 			iedatalen -= 3;
1223 			iedata += 3;
1224 
1225 			copy = min_t(unsigned int, attr_len, iedatalen);
1226 
1227 			if (desired_attr) {
1228 				desired_len += copy;
1229 				if (out) {
1230 					memcpy(out, iedata, min(bufsize, copy));
1231 					out += min(bufsize, copy);
1232 					bufsize -= min(bufsize, copy);
1233 				}
1234 
1235 				if (copy == attr_len)
1236 					return desired_len;
1237 			}
1238 
1239 			iedata += copy;
1240 			iedatalen -= copy;
1241 			attr_remaining = attr_len - copy;
1242 		}
1243 
1244  cont:
1245 		len -= ies[1] + 2;
1246 		ies += ies[1] + 2;
1247 	}
1248 
1249 	if (attr_remaining && desired_attr)
1250 		return -EILSEQ;
1251 
1252 	return -ENOENT;
1253 }
1254 EXPORT_SYMBOL(cfg80211_get_p2p_attr);
1255 
1256 static bool ieee80211_id_in_list(const u8 *ids, int n_ids, u8 id, bool id_ext)
1257 {
1258 	int i;
1259 
1260 	/* Make sure array values are legal */
1261 	if (WARN_ON(ids[n_ids - 1] == WLAN_EID_EXTENSION))
1262 		return false;
1263 
1264 	i = 0;
1265 	while (i < n_ids) {
1266 		if (ids[i] == WLAN_EID_EXTENSION) {
1267 			if (id_ext && (ids[i + 1] == id))
1268 				return true;
1269 
1270 			i += 2;
1271 			continue;
1272 		}
1273 
1274 		if (ids[i] == id && !id_ext)
1275 			return true;
1276 
1277 		i++;
1278 	}
1279 	return false;
1280 }
1281 
1282 static size_t skip_ie(const u8 *ies, size_t ielen, size_t pos)
1283 {
1284 	/* we assume a validly formed IEs buffer */
1285 	u8 len = ies[pos + 1];
1286 
1287 	pos += 2 + len;
1288 
1289 	/* the IE itself must have 255 bytes for fragments to follow */
1290 	if (len < 255)
1291 		return pos;
1292 
1293 	while (pos < ielen && ies[pos] == WLAN_EID_FRAGMENT) {
1294 		len = ies[pos + 1];
1295 		pos += 2 + len;
1296 	}
1297 
1298 	return pos;
1299 }
1300 
1301 size_t ieee80211_ie_split_ric(const u8 *ies, size_t ielen,
1302 			      const u8 *ids, int n_ids,
1303 			      const u8 *after_ric, int n_after_ric,
1304 			      size_t offset)
1305 {
1306 	size_t pos = offset;
1307 
1308 	while (pos < ielen) {
1309 		u8 ext = 0;
1310 
1311 		if (ies[pos] == WLAN_EID_EXTENSION)
1312 			ext = 2;
1313 		if ((pos + ext) >= ielen)
1314 			break;
1315 
1316 		if (!ieee80211_id_in_list(ids, n_ids, ies[pos + ext],
1317 					  ies[pos] == WLAN_EID_EXTENSION))
1318 			break;
1319 
1320 		if (ies[pos] == WLAN_EID_RIC_DATA && n_after_ric) {
1321 			pos = skip_ie(ies, ielen, pos);
1322 
1323 			while (pos < ielen) {
1324 				if (ies[pos] == WLAN_EID_EXTENSION)
1325 					ext = 2;
1326 				else
1327 					ext = 0;
1328 
1329 				if ((pos + ext) >= ielen)
1330 					break;
1331 
1332 				if (!ieee80211_id_in_list(after_ric,
1333 							  n_after_ric,
1334 							  ies[pos + ext],
1335 							  ext == 2))
1336 					pos = skip_ie(ies, ielen, pos);
1337 			}
1338 		} else {
1339 			pos = skip_ie(ies, ielen, pos);
1340 		}
1341 	}
1342 
1343 	return pos;
1344 }
1345 EXPORT_SYMBOL(ieee80211_ie_split_ric);
1346 
1347 bool ieee80211_operating_class_to_band(u8 operating_class,
1348 				       enum nl80211_band *band)
1349 {
1350 	switch (operating_class) {
1351 	case 112:
1352 	case 115 ... 127:
1353 	case 128 ... 130:
1354 		*band = NL80211_BAND_5GHZ;
1355 		return true;
1356 	case 81:
1357 	case 82:
1358 	case 83:
1359 	case 84:
1360 		*band = NL80211_BAND_2GHZ;
1361 		return true;
1362 	case 180:
1363 		*band = NL80211_BAND_60GHZ;
1364 		return true;
1365 	}
1366 
1367 	return false;
1368 }
1369 EXPORT_SYMBOL(ieee80211_operating_class_to_band);
1370 
1371 bool ieee80211_chandef_to_operating_class(struct cfg80211_chan_def *chandef,
1372 					  u8 *op_class)
1373 {
1374 	u8 vht_opclass;
1375 	u16 freq = chandef->center_freq1;
1376 
1377 	if (freq >= 2412 && freq <= 2472) {
1378 		if (chandef->width > NL80211_CHAN_WIDTH_40)
1379 			return false;
1380 
1381 		/* 2.407 GHz, channels 1..13 */
1382 		if (chandef->width == NL80211_CHAN_WIDTH_40) {
1383 			if (freq > chandef->chan->center_freq)
1384 				*op_class = 83; /* HT40+ */
1385 			else
1386 				*op_class = 84; /* HT40- */
1387 		} else {
1388 			*op_class = 81;
1389 		}
1390 
1391 		return true;
1392 	}
1393 
1394 	if (freq == 2484) {
1395 		if (chandef->width > NL80211_CHAN_WIDTH_40)
1396 			return false;
1397 
1398 		*op_class = 82; /* channel 14 */
1399 		return true;
1400 	}
1401 
1402 	switch (chandef->width) {
1403 	case NL80211_CHAN_WIDTH_80:
1404 		vht_opclass = 128;
1405 		break;
1406 	case NL80211_CHAN_WIDTH_160:
1407 		vht_opclass = 129;
1408 		break;
1409 	case NL80211_CHAN_WIDTH_80P80:
1410 		vht_opclass = 130;
1411 		break;
1412 	case NL80211_CHAN_WIDTH_10:
1413 	case NL80211_CHAN_WIDTH_5:
1414 		return false; /* unsupported for now */
1415 	default:
1416 		vht_opclass = 0;
1417 		break;
1418 	}
1419 
1420 	/* 5 GHz, channels 36..48 */
1421 	if (freq >= 5180 && freq <= 5240) {
1422 		if (vht_opclass) {
1423 			*op_class = vht_opclass;
1424 		} else if (chandef->width == NL80211_CHAN_WIDTH_40) {
1425 			if (freq > chandef->chan->center_freq)
1426 				*op_class = 116;
1427 			else
1428 				*op_class = 117;
1429 		} else {
1430 			*op_class = 115;
1431 		}
1432 
1433 		return true;
1434 	}
1435 
1436 	/* 5 GHz, channels 52..64 */
1437 	if (freq >= 5260 && freq <= 5320) {
1438 		if (vht_opclass) {
1439 			*op_class = vht_opclass;
1440 		} else if (chandef->width == NL80211_CHAN_WIDTH_40) {
1441 			if (freq > chandef->chan->center_freq)
1442 				*op_class = 119;
1443 			else
1444 				*op_class = 120;
1445 		} else {
1446 			*op_class = 118;
1447 		}
1448 
1449 		return true;
1450 	}
1451 
1452 	/* 5 GHz, channels 100..144 */
1453 	if (freq >= 5500 && freq <= 5720) {
1454 		if (vht_opclass) {
1455 			*op_class = vht_opclass;
1456 		} else if (chandef->width == NL80211_CHAN_WIDTH_40) {
1457 			if (freq > chandef->chan->center_freq)
1458 				*op_class = 122;
1459 			else
1460 				*op_class = 123;
1461 		} else {
1462 			*op_class = 121;
1463 		}
1464 
1465 		return true;
1466 	}
1467 
1468 	/* 5 GHz, channels 149..169 */
1469 	if (freq >= 5745 && freq <= 5845) {
1470 		if (vht_opclass) {
1471 			*op_class = vht_opclass;
1472 		} else if (chandef->width == NL80211_CHAN_WIDTH_40) {
1473 			if (freq > chandef->chan->center_freq)
1474 				*op_class = 126;
1475 			else
1476 				*op_class = 127;
1477 		} else if (freq <= 5805) {
1478 			*op_class = 124;
1479 		} else {
1480 			*op_class = 125;
1481 		}
1482 
1483 		return true;
1484 	}
1485 
1486 	/* 56.16 GHz, channel 1..4 */
1487 	if (freq >= 56160 + 2160 * 1 && freq <= 56160 + 2160 * 4) {
1488 		if (chandef->width >= NL80211_CHAN_WIDTH_40)
1489 			return false;
1490 
1491 		*op_class = 180;
1492 		return true;
1493 	}
1494 
1495 	/* not supported yet */
1496 	return false;
1497 }
1498 EXPORT_SYMBOL(ieee80211_chandef_to_operating_class);
1499 
1500 static void cfg80211_calculate_bi_data(struct wiphy *wiphy, u32 new_beacon_int,
1501 				       u32 *beacon_int_gcd,
1502 				       bool *beacon_int_different)
1503 {
1504 	struct wireless_dev *wdev;
1505 
1506 	*beacon_int_gcd = 0;
1507 	*beacon_int_different = false;
1508 
1509 	list_for_each_entry(wdev, &wiphy->wdev_list, list) {
1510 		if (!wdev->beacon_interval)
1511 			continue;
1512 
1513 		if (!*beacon_int_gcd) {
1514 			*beacon_int_gcd = wdev->beacon_interval;
1515 			continue;
1516 		}
1517 
1518 		if (wdev->beacon_interval == *beacon_int_gcd)
1519 			continue;
1520 
1521 		*beacon_int_different = true;
1522 		*beacon_int_gcd = gcd(*beacon_int_gcd, wdev->beacon_interval);
1523 	}
1524 
1525 	if (new_beacon_int && *beacon_int_gcd != new_beacon_int) {
1526 		if (*beacon_int_gcd)
1527 			*beacon_int_different = true;
1528 		*beacon_int_gcd = gcd(*beacon_int_gcd, new_beacon_int);
1529 	}
1530 }
1531 
1532 int cfg80211_validate_beacon_int(struct cfg80211_registered_device *rdev,
1533 				 enum nl80211_iftype iftype, u32 beacon_int)
1534 {
1535 	/*
1536 	 * This is just a basic pre-condition check; if interface combinations
1537 	 * are possible the driver must already be checking those with a call
1538 	 * to cfg80211_check_combinations(), in which case we'll validate more
1539 	 * through the cfg80211_calculate_bi_data() call and code in
1540 	 * cfg80211_iter_combinations().
1541 	 */
1542 
1543 	if (beacon_int < 10 || beacon_int > 10000)
1544 		return -EINVAL;
1545 
1546 	return 0;
1547 }
1548 
1549 int cfg80211_iter_combinations(struct wiphy *wiphy,
1550 			       struct iface_combination_params *params,
1551 			       void (*iter)(const struct ieee80211_iface_combination *c,
1552 					    void *data),
1553 			       void *data)
1554 {
1555 	const struct ieee80211_regdomain *regdom;
1556 	enum nl80211_dfs_regions region = 0;
1557 	int i, j, iftype;
1558 	int num_interfaces = 0;
1559 	u32 used_iftypes = 0;
1560 	u32 beacon_int_gcd;
1561 	bool beacon_int_different;
1562 
1563 	/*
1564 	 * This is a bit strange, since the iteration used to rely only on
1565 	 * the data given by the driver, but here it now relies on context,
1566 	 * in form of the currently operating interfaces.
1567 	 * This is OK for all current users, and saves us from having to
1568 	 * push the GCD calculations into all the drivers.
1569 	 * In the future, this should probably rely more on data that's in
1570 	 * cfg80211 already - the only thing not would appear to be any new
1571 	 * interfaces (while being brought up) and channel/radar data.
1572 	 */
1573 	cfg80211_calculate_bi_data(wiphy, params->new_beacon_int,
1574 				   &beacon_int_gcd, &beacon_int_different);
1575 
1576 	if (params->radar_detect) {
1577 		rcu_read_lock();
1578 		regdom = rcu_dereference(cfg80211_regdomain);
1579 		if (regdom)
1580 			region = regdom->dfs_region;
1581 		rcu_read_unlock();
1582 	}
1583 
1584 	for (iftype = 0; iftype < NUM_NL80211_IFTYPES; iftype++) {
1585 		num_interfaces += params->iftype_num[iftype];
1586 		if (params->iftype_num[iftype] > 0 &&
1587 		    !(wiphy->software_iftypes & BIT(iftype)))
1588 			used_iftypes |= BIT(iftype);
1589 	}
1590 
1591 	for (i = 0; i < wiphy->n_iface_combinations; i++) {
1592 		const struct ieee80211_iface_combination *c;
1593 		struct ieee80211_iface_limit *limits;
1594 		u32 all_iftypes = 0;
1595 
1596 		c = &wiphy->iface_combinations[i];
1597 
1598 		if (num_interfaces > c->max_interfaces)
1599 			continue;
1600 		if (params->num_different_channels > c->num_different_channels)
1601 			continue;
1602 
1603 		limits = kmemdup(c->limits, sizeof(limits[0]) * c->n_limits,
1604 				 GFP_KERNEL);
1605 		if (!limits)
1606 			return -ENOMEM;
1607 
1608 		for (iftype = 0; iftype < NUM_NL80211_IFTYPES; iftype++) {
1609 			if (wiphy->software_iftypes & BIT(iftype))
1610 				continue;
1611 			for (j = 0; j < c->n_limits; j++) {
1612 				all_iftypes |= limits[j].types;
1613 				if (!(limits[j].types & BIT(iftype)))
1614 					continue;
1615 				if (limits[j].max < params->iftype_num[iftype])
1616 					goto cont;
1617 				limits[j].max -= params->iftype_num[iftype];
1618 			}
1619 		}
1620 
1621 		if (params->radar_detect !=
1622 			(c->radar_detect_widths & params->radar_detect))
1623 			goto cont;
1624 
1625 		if (params->radar_detect && c->radar_detect_regions &&
1626 		    !(c->radar_detect_regions & BIT(region)))
1627 			goto cont;
1628 
1629 		/* Finally check that all iftypes that we're currently
1630 		 * using are actually part of this combination. If they
1631 		 * aren't then we can't use this combination and have
1632 		 * to continue to the next.
1633 		 */
1634 		if ((all_iftypes & used_iftypes) != used_iftypes)
1635 			goto cont;
1636 
1637 		if (beacon_int_gcd) {
1638 			if (c->beacon_int_min_gcd &&
1639 			    beacon_int_gcd < c->beacon_int_min_gcd)
1640 				goto cont;
1641 			if (!c->beacon_int_min_gcd && beacon_int_different)
1642 				goto cont;
1643 		}
1644 
1645 		/* This combination covered all interface types and
1646 		 * supported the requested numbers, so we're good.
1647 		 */
1648 
1649 		(*iter)(c, data);
1650  cont:
1651 		kfree(limits);
1652 	}
1653 
1654 	return 0;
1655 }
1656 EXPORT_SYMBOL(cfg80211_iter_combinations);
1657 
1658 static void
1659 cfg80211_iter_sum_ifcombs(const struct ieee80211_iface_combination *c,
1660 			  void *data)
1661 {
1662 	int *num = data;
1663 	(*num)++;
1664 }
1665 
1666 int cfg80211_check_combinations(struct wiphy *wiphy,
1667 				struct iface_combination_params *params)
1668 {
1669 	int err, num = 0;
1670 
1671 	err = cfg80211_iter_combinations(wiphy, params,
1672 					 cfg80211_iter_sum_ifcombs, &num);
1673 	if (err)
1674 		return err;
1675 	if (num == 0)
1676 		return -EBUSY;
1677 
1678 	return 0;
1679 }
1680 EXPORT_SYMBOL(cfg80211_check_combinations);
1681 
1682 int ieee80211_get_ratemask(struct ieee80211_supported_band *sband,
1683 			   const u8 *rates, unsigned int n_rates,
1684 			   u32 *mask)
1685 {
1686 	int i, j;
1687 
1688 	if (!sband)
1689 		return -EINVAL;
1690 
1691 	if (n_rates == 0 || n_rates > NL80211_MAX_SUPP_RATES)
1692 		return -EINVAL;
1693 
1694 	*mask = 0;
1695 
1696 	for (i = 0; i < n_rates; i++) {
1697 		int rate = (rates[i] & 0x7f) * 5;
1698 		bool found = false;
1699 
1700 		for (j = 0; j < sband->n_bitrates; j++) {
1701 			if (sband->bitrates[j].bitrate == rate) {
1702 				found = true;
1703 				*mask |= BIT(j);
1704 				break;
1705 			}
1706 		}
1707 		if (!found)
1708 			return -EINVAL;
1709 	}
1710 
1711 	/*
1712 	 * mask must have at least one bit set here since we
1713 	 * didn't accept a 0-length rates array nor allowed
1714 	 * entries in the array that didn't exist
1715 	 */
1716 
1717 	return 0;
1718 }
1719 
1720 unsigned int ieee80211_get_num_supported_channels(struct wiphy *wiphy)
1721 {
1722 	enum nl80211_band band;
1723 	unsigned int n_channels = 0;
1724 
1725 	for (band = 0; band < NUM_NL80211_BANDS; band++)
1726 		if (wiphy->bands[band])
1727 			n_channels += wiphy->bands[band]->n_channels;
1728 
1729 	return n_channels;
1730 }
1731 EXPORT_SYMBOL(ieee80211_get_num_supported_channels);
1732 
1733 int cfg80211_get_station(struct net_device *dev, const u8 *mac_addr,
1734 			 struct station_info *sinfo)
1735 {
1736 	struct cfg80211_registered_device *rdev;
1737 	struct wireless_dev *wdev;
1738 
1739 	wdev = dev->ieee80211_ptr;
1740 	if (!wdev)
1741 		return -EOPNOTSUPP;
1742 
1743 	rdev = wiphy_to_rdev(wdev->wiphy);
1744 	if (!rdev->ops->get_station)
1745 		return -EOPNOTSUPP;
1746 
1747 	return rdev_get_station(rdev, dev, mac_addr, sinfo);
1748 }
1749 EXPORT_SYMBOL(cfg80211_get_station);
1750 
1751 void cfg80211_free_nan_func(struct cfg80211_nan_func *f)
1752 {
1753 	int i;
1754 
1755 	if (!f)
1756 		return;
1757 
1758 	kfree(f->serv_spec_info);
1759 	kfree(f->srf_bf);
1760 	kfree(f->srf_macs);
1761 	for (i = 0; i < f->num_rx_filters; i++)
1762 		kfree(f->rx_filters[i].filter);
1763 
1764 	for (i = 0; i < f->num_tx_filters; i++)
1765 		kfree(f->tx_filters[i].filter);
1766 
1767 	kfree(f->rx_filters);
1768 	kfree(f->tx_filters);
1769 	kfree(f);
1770 }
1771 EXPORT_SYMBOL(cfg80211_free_nan_func);
1772 
1773 bool cfg80211_does_bw_fit_range(const struct ieee80211_freq_range *freq_range,
1774 				u32 center_freq_khz, u32 bw_khz)
1775 {
1776 	u32 start_freq_khz, end_freq_khz;
1777 
1778 	start_freq_khz = center_freq_khz - (bw_khz / 2);
1779 	end_freq_khz = center_freq_khz + (bw_khz / 2);
1780 
1781 	if (start_freq_khz >= freq_range->start_freq_khz &&
1782 	    end_freq_khz <= freq_range->end_freq_khz)
1783 		return true;
1784 
1785 	return false;
1786 }
1787 
1788 /* See IEEE 802.1H for LLC/SNAP encapsulation/decapsulation */
1789 /* Ethernet-II snap header (RFC1042 for most EtherTypes) */
1790 const unsigned char rfc1042_header[] __aligned(2) =
1791 	{ 0xaa, 0xaa, 0x03, 0x00, 0x00, 0x00 };
1792 EXPORT_SYMBOL(rfc1042_header);
1793 
1794 /* Bridge-Tunnel header (for EtherTypes ETH_P_AARP and ETH_P_IPX) */
1795 const unsigned char bridge_tunnel_header[] __aligned(2) =
1796 	{ 0xaa, 0xaa, 0x03, 0x00, 0x00, 0xf8 };
1797 EXPORT_SYMBOL(bridge_tunnel_header);
1798