xref: /linux/net/wireless/util.c (revision 520b7aa00d8cd8e411ecc09f63a2acd90feb6d29)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Wireless utility functions
4  *
5  * Copyright 2007-2009	Johannes Berg <johannes@sipsolutions.net>
6  * Copyright 2013-2014  Intel Mobile Communications GmbH
7  * Copyright 2017	Intel Deutschland GmbH
8  * Copyright (C) 2018-2019 Intel Corporation
9  */
10 #include <linux/export.h>
11 #include <linux/bitops.h>
12 #include <linux/etherdevice.h>
13 #include <linux/slab.h>
14 #include <linux/ieee80211.h>
15 #include <net/cfg80211.h>
16 #include <net/ip.h>
17 #include <net/dsfield.h>
18 #include <linux/if_vlan.h>
19 #include <linux/mpls.h>
20 #include <linux/gcd.h>
21 #include <linux/bitfield.h>
22 #include <linux/nospec.h>
23 #include "core.h"
24 #include "rdev-ops.h"
25 
26 
27 struct ieee80211_rate *
28 ieee80211_get_response_rate(struct ieee80211_supported_band *sband,
29 			    u32 basic_rates, int bitrate)
30 {
31 	struct ieee80211_rate *result = &sband->bitrates[0];
32 	int i;
33 
34 	for (i = 0; i < sband->n_bitrates; i++) {
35 		if (!(basic_rates & BIT(i)))
36 			continue;
37 		if (sband->bitrates[i].bitrate > bitrate)
38 			continue;
39 		result = &sband->bitrates[i];
40 	}
41 
42 	return result;
43 }
44 EXPORT_SYMBOL(ieee80211_get_response_rate);
45 
46 u32 ieee80211_mandatory_rates(struct ieee80211_supported_band *sband,
47 			      enum nl80211_bss_scan_width scan_width)
48 {
49 	struct ieee80211_rate *bitrates;
50 	u32 mandatory_rates = 0;
51 	enum ieee80211_rate_flags mandatory_flag;
52 	int i;
53 
54 	if (WARN_ON(!sband))
55 		return 1;
56 
57 	if (sband->band == NL80211_BAND_2GHZ) {
58 		if (scan_width == NL80211_BSS_CHAN_WIDTH_5 ||
59 		    scan_width == NL80211_BSS_CHAN_WIDTH_10)
60 			mandatory_flag = IEEE80211_RATE_MANDATORY_G;
61 		else
62 			mandatory_flag = IEEE80211_RATE_MANDATORY_B;
63 	} else {
64 		mandatory_flag = IEEE80211_RATE_MANDATORY_A;
65 	}
66 
67 	bitrates = sband->bitrates;
68 	for (i = 0; i < sband->n_bitrates; i++)
69 		if (bitrates[i].flags & mandatory_flag)
70 			mandatory_rates |= BIT(i);
71 	return mandatory_rates;
72 }
73 EXPORT_SYMBOL(ieee80211_mandatory_rates);
74 
75 int ieee80211_channel_to_frequency(int chan, enum nl80211_band band)
76 {
77 	/* see 802.11 17.3.8.3.2 and Annex J
78 	 * there are overlapping channel numbers in 5GHz and 2GHz bands */
79 	if (chan <= 0)
80 		return 0; /* not supported */
81 	switch (band) {
82 	case NL80211_BAND_2GHZ:
83 		if (chan == 14)
84 			return 2484;
85 		else if (chan < 14)
86 			return 2407 + chan * 5;
87 		break;
88 	case NL80211_BAND_5GHZ:
89 		if (chan >= 182 && chan <= 196)
90 			return 4000 + chan * 5;
91 		else
92 			return 5000 + chan * 5;
93 		break;
94 	case NL80211_BAND_6GHZ:
95 		/* see 802.11ax D4.1 27.3.22.2 */
96 		if (chan <= 253)
97 			return 5940 + chan * 5;
98 		break;
99 	case NL80211_BAND_60GHZ:
100 		if (chan < 7)
101 			return 56160 + chan * 2160;
102 		break;
103 	default:
104 		;
105 	}
106 	return 0; /* not supported */
107 }
108 EXPORT_SYMBOL(ieee80211_channel_to_frequency);
109 
110 int ieee80211_frequency_to_channel(int freq)
111 {
112 	/* see 802.11 17.3.8.3.2 and Annex J */
113 	if (freq == 2484)
114 		return 14;
115 	else if (freq < 2484)
116 		return (freq - 2407) / 5;
117 	else if (freq >= 4910 && freq <= 4980)
118 		return (freq - 4000) / 5;
119 	else if (freq < 5945)
120 		return (freq - 5000) / 5;
121 	else if (freq <= 45000) /* DMG band lower limit */
122 		/* see 802.11ax D4.1 27.3.22.2 */
123 		return (freq - 5940) / 5;
124 	else if (freq >= 58320 && freq <= 70200)
125 		return (freq - 56160) / 2160;
126 	else
127 		return 0;
128 }
129 EXPORT_SYMBOL(ieee80211_frequency_to_channel);
130 
131 struct ieee80211_channel *ieee80211_get_channel(struct wiphy *wiphy, int freq)
132 {
133 	enum nl80211_band band;
134 	struct ieee80211_supported_band *sband;
135 	int i;
136 
137 	for (band = 0; band < NUM_NL80211_BANDS; band++) {
138 		sband = wiphy->bands[band];
139 
140 		if (!sband)
141 			continue;
142 
143 		for (i = 0; i < sband->n_channels; i++) {
144 			if (sband->channels[i].center_freq == freq)
145 				return &sband->channels[i];
146 		}
147 	}
148 
149 	return NULL;
150 }
151 EXPORT_SYMBOL(ieee80211_get_channel);
152 
153 static void set_mandatory_flags_band(struct ieee80211_supported_band *sband)
154 {
155 	int i, want;
156 
157 	switch (sband->band) {
158 	case NL80211_BAND_5GHZ:
159 	case NL80211_BAND_6GHZ:
160 		want = 3;
161 		for (i = 0; i < sband->n_bitrates; i++) {
162 			if (sband->bitrates[i].bitrate == 60 ||
163 			    sband->bitrates[i].bitrate == 120 ||
164 			    sband->bitrates[i].bitrate == 240) {
165 				sband->bitrates[i].flags |=
166 					IEEE80211_RATE_MANDATORY_A;
167 				want--;
168 			}
169 		}
170 		WARN_ON(want);
171 		break;
172 	case NL80211_BAND_2GHZ:
173 		want = 7;
174 		for (i = 0; i < sband->n_bitrates; i++) {
175 			switch (sband->bitrates[i].bitrate) {
176 			case 10:
177 			case 20:
178 			case 55:
179 			case 110:
180 				sband->bitrates[i].flags |=
181 					IEEE80211_RATE_MANDATORY_B |
182 					IEEE80211_RATE_MANDATORY_G;
183 				want--;
184 				break;
185 			case 60:
186 			case 120:
187 			case 240:
188 				sband->bitrates[i].flags |=
189 					IEEE80211_RATE_MANDATORY_G;
190 				want--;
191 				/* fall through */
192 			default:
193 				sband->bitrates[i].flags |=
194 					IEEE80211_RATE_ERP_G;
195 				break;
196 			}
197 		}
198 		WARN_ON(want != 0 && want != 3);
199 		break;
200 	case NL80211_BAND_60GHZ:
201 		/* check for mandatory HT MCS 1..4 */
202 		WARN_ON(!sband->ht_cap.ht_supported);
203 		WARN_ON((sband->ht_cap.mcs.rx_mask[0] & 0x1e) != 0x1e);
204 		break;
205 	case NUM_NL80211_BANDS:
206 	default:
207 		WARN_ON(1);
208 		break;
209 	}
210 }
211 
212 void ieee80211_set_bitrate_flags(struct wiphy *wiphy)
213 {
214 	enum nl80211_band band;
215 
216 	for (band = 0; band < NUM_NL80211_BANDS; band++)
217 		if (wiphy->bands[band])
218 			set_mandatory_flags_band(wiphy->bands[band]);
219 }
220 
221 bool cfg80211_supported_cipher_suite(struct wiphy *wiphy, u32 cipher)
222 {
223 	int i;
224 	for (i = 0; i < wiphy->n_cipher_suites; i++)
225 		if (cipher == wiphy->cipher_suites[i])
226 			return true;
227 	return false;
228 }
229 
230 int cfg80211_validate_key_settings(struct cfg80211_registered_device *rdev,
231 				   struct key_params *params, int key_idx,
232 				   bool pairwise, const u8 *mac_addr)
233 {
234 	int max_key_idx = 5;
235 
236 	if (wiphy_ext_feature_isset(&rdev->wiphy,
237 				    NL80211_EXT_FEATURE_BEACON_PROTECTION))
238 		max_key_idx = 7;
239 	if (key_idx < 0 || key_idx > max_key_idx)
240 		return -EINVAL;
241 
242 	if (!pairwise && mac_addr && !(rdev->wiphy.flags & WIPHY_FLAG_IBSS_RSN))
243 		return -EINVAL;
244 
245 	if (pairwise && !mac_addr)
246 		return -EINVAL;
247 
248 	switch (params->cipher) {
249 	case WLAN_CIPHER_SUITE_TKIP:
250 		/* Extended Key ID can only be used with CCMP/GCMP ciphers */
251 		if ((pairwise && key_idx) ||
252 		    params->mode != NL80211_KEY_RX_TX)
253 			return -EINVAL;
254 		break;
255 	case WLAN_CIPHER_SUITE_CCMP:
256 	case WLAN_CIPHER_SUITE_CCMP_256:
257 	case WLAN_CIPHER_SUITE_GCMP:
258 	case WLAN_CIPHER_SUITE_GCMP_256:
259 		/* IEEE802.11-2016 allows only 0 and - when supporting
260 		 * Extended Key ID - 1 as index for pairwise keys.
261 		 * @NL80211_KEY_NO_TX is only allowed for pairwise keys when
262 		 * the driver supports Extended Key ID.
263 		 * @NL80211_KEY_SET_TX can't be set when installing and
264 		 * validating a key.
265 		 */
266 		if ((params->mode == NL80211_KEY_NO_TX && !pairwise) ||
267 		    params->mode == NL80211_KEY_SET_TX)
268 			return -EINVAL;
269 		if (wiphy_ext_feature_isset(&rdev->wiphy,
270 					    NL80211_EXT_FEATURE_EXT_KEY_ID)) {
271 			if (pairwise && (key_idx < 0 || key_idx > 1))
272 				return -EINVAL;
273 		} else if (pairwise && key_idx) {
274 			return -EINVAL;
275 		}
276 		break;
277 	case WLAN_CIPHER_SUITE_AES_CMAC:
278 	case WLAN_CIPHER_SUITE_BIP_CMAC_256:
279 	case WLAN_CIPHER_SUITE_BIP_GMAC_128:
280 	case WLAN_CIPHER_SUITE_BIP_GMAC_256:
281 		/* Disallow BIP (group-only) cipher as pairwise cipher */
282 		if (pairwise)
283 			return -EINVAL;
284 		if (key_idx < 4)
285 			return -EINVAL;
286 		break;
287 	case WLAN_CIPHER_SUITE_WEP40:
288 	case WLAN_CIPHER_SUITE_WEP104:
289 		if (key_idx > 3)
290 			return -EINVAL;
291 	default:
292 		break;
293 	}
294 
295 	switch (params->cipher) {
296 	case WLAN_CIPHER_SUITE_WEP40:
297 		if (params->key_len != WLAN_KEY_LEN_WEP40)
298 			return -EINVAL;
299 		break;
300 	case WLAN_CIPHER_SUITE_TKIP:
301 		if (params->key_len != WLAN_KEY_LEN_TKIP)
302 			return -EINVAL;
303 		break;
304 	case WLAN_CIPHER_SUITE_CCMP:
305 		if (params->key_len != WLAN_KEY_LEN_CCMP)
306 			return -EINVAL;
307 		break;
308 	case WLAN_CIPHER_SUITE_CCMP_256:
309 		if (params->key_len != WLAN_KEY_LEN_CCMP_256)
310 			return -EINVAL;
311 		break;
312 	case WLAN_CIPHER_SUITE_GCMP:
313 		if (params->key_len != WLAN_KEY_LEN_GCMP)
314 			return -EINVAL;
315 		break;
316 	case WLAN_CIPHER_SUITE_GCMP_256:
317 		if (params->key_len != WLAN_KEY_LEN_GCMP_256)
318 			return -EINVAL;
319 		break;
320 	case WLAN_CIPHER_SUITE_WEP104:
321 		if (params->key_len != WLAN_KEY_LEN_WEP104)
322 			return -EINVAL;
323 		break;
324 	case WLAN_CIPHER_SUITE_AES_CMAC:
325 		if (params->key_len != WLAN_KEY_LEN_AES_CMAC)
326 			return -EINVAL;
327 		break;
328 	case WLAN_CIPHER_SUITE_BIP_CMAC_256:
329 		if (params->key_len != WLAN_KEY_LEN_BIP_CMAC_256)
330 			return -EINVAL;
331 		break;
332 	case WLAN_CIPHER_SUITE_BIP_GMAC_128:
333 		if (params->key_len != WLAN_KEY_LEN_BIP_GMAC_128)
334 			return -EINVAL;
335 		break;
336 	case WLAN_CIPHER_SUITE_BIP_GMAC_256:
337 		if (params->key_len != WLAN_KEY_LEN_BIP_GMAC_256)
338 			return -EINVAL;
339 		break;
340 	default:
341 		/*
342 		 * We don't know anything about this algorithm,
343 		 * allow using it -- but the driver must check
344 		 * all parameters! We still check below whether
345 		 * or not the driver supports this algorithm,
346 		 * of course.
347 		 */
348 		break;
349 	}
350 
351 	if (params->seq) {
352 		switch (params->cipher) {
353 		case WLAN_CIPHER_SUITE_WEP40:
354 		case WLAN_CIPHER_SUITE_WEP104:
355 			/* These ciphers do not use key sequence */
356 			return -EINVAL;
357 		case WLAN_CIPHER_SUITE_TKIP:
358 		case WLAN_CIPHER_SUITE_CCMP:
359 		case WLAN_CIPHER_SUITE_CCMP_256:
360 		case WLAN_CIPHER_SUITE_GCMP:
361 		case WLAN_CIPHER_SUITE_GCMP_256:
362 		case WLAN_CIPHER_SUITE_AES_CMAC:
363 		case WLAN_CIPHER_SUITE_BIP_CMAC_256:
364 		case WLAN_CIPHER_SUITE_BIP_GMAC_128:
365 		case WLAN_CIPHER_SUITE_BIP_GMAC_256:
366 			if (params->seq_len != 6)
367 				return -EINVAL;
368 			break;
369 		}
370 	}
371 
372 	if (!cfg80211_supported_cipher_suite(&rdev->wiphy, params->cipher))
373 		return -EINVAL;
374 
375 	return 0;
376 }
377 
378 unsigned int __attribute_const__ ieee80211_hdrlen(__le16 fc)
379 {
380 	unsigned int hdrlen = 24;
381 
382 	if (ieee80211_is_data(fc)) {
383 		if (ieee80211_has_a4(fc))
384 			hdrlen = 30;
385 		if (ieee80211_is_data_qos(fc)) {
386 			hdrlen += IEEE80211_QOS_CTL_LEN;
387 			if (ieee80211_has_order(fc))
388 				hdrlen += IEEE80211_HT_CTL_LEN;
389 		}
390 		goto out;
391 	}
392 
393 	if (ieee80211_is_mgmt(fc)) {
394 		if (ieee80211_has_order(fc))
395 			hdrlen += IEEE80211_HT_CTL_LEN;
396 		goto out;
397 	}
398 
399 	if (ieee80211_is_ctl(fc)) {
400 		/*
401 		 * ACK and CTS are 10 bytes, all others 16. To see how
402 		 * to get this condition consider
403 		 *   subtype mask:   0b0000000011110000 (0x00F0)
404 		 *   ACK subtype:    0b0000000011010000 (0x00D0)
405 		 *   CTS subtype:    0b0000000011000000 (0x00C0)
406 		 *   bits that matter:         ^^^      (0x00E0)
407 		 *   value of those: 0b0000000011000000 (0x00C0)
408 		 */
409 		if ((fc & cpu_to_le16(0x00E0)) == cpu_to_le16(0x00C0))
410 			hdrlen = 10;
411 		else
412 			hdrlen = 16;
413 	}
414 out:
415 	return hdrlen;
416 }
417 EXPORT_SYMBOL(ieee80211_hdrlen);
418 
419 unsigned int ieee80211_get_hdrlen_from_skb(const struct sk_buff *skb)
420 {
421 	const struct ieee80211_hdr *hdr =
422 			(const struct ieee80211_hdr *)skb->data;
423 	unsigned int hdrlen;
424 
425 	if (unlikely(skb->len < 10))
426 		return 0;
427 	hdrlen = ieee80211_hdrlen(hdr->frame_control);
428 	if (unlikely(hdrlen > skb->len))
429 		return 0;
430 	return hdrlen;
431 }
432 EXPORT_SYMBOL(ieee80211_get_hdrlen_from_skb);
433 
434 static unsigned int __ieee80211_get_mesh_hdrlen(u8 flags)
435 {
436 	int ae = flags & MESH_FLAGS_AE;
437 	/* 802.11-2012, 8.2.4.7.3 */
438 	switch (ae) {
439 	default:
440 	case 0:
441 		return 6;
442 	case MESH_FLAGS_AE_A4:
443 		return 12;
444 	case MESH_FLAGS_AE_A5_A6:
445 		return 18;
446 	}
447 }
448 
449 unsigned int ieee80211_get_mesh_hdrlen(struct ieee80211s_hdr *meshhdr)
450 {
451 	return __ieee80211_get_mesh_hdrlen(meshhdr->flags);
452 }
453 EXPORT_SYMBOL(ieee80211_get_mesh_hdrlen);
454 
455 int ieee80211_data_to_8023_exthdr(struct sk_buff *skb, struct ethhdr *ehdr,
456 				  const u8 *addr, enum nl80211_iftype iftype,
457 				  u8 data_offset)
458 {
459 	struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data;
460 	struct {
461 		u8 hdr[ETH_ALEN] __aligned(2);
462 		__be16 proto;
463 	} payload;
464 	struct ethhdr tmp;
465 	u16 hdrlen;
466 	u8 mesh_flags = 0;
467 
468 	if (unlikely(!ieee80211_is_data_present(hdr->frame_control)))
469 		return -1;
470 
471 	hdrlen = ieee80211_hdrlen(hdr->frame_control) + data_offset;
472 	if (skb->len < hdrlen + 8)
473 		return -1;
474 
475 	/* convert IEEE 802.11 header + possible LLC headers into Ethernet
476 	 * header
477 	 * IEEE 802.11 address fields:
478 	 * ToDS FromDS Addr1 Addr2 Addr3 Addr4
479 	 *   0     0   DA    SA    BSSID n/a
480 	 *   0     1   DA    BSSID SA    n/a
481 	 *   1     0   BSSID SA    DA    n/a
482 	 *   1     1   RA    TA    DA    SA
483 	 */
484 	memcpy(tmp.h_dest, ieee80211_get_DA(hdr), ETH_ALEN);
485 	memcpy(tmp.h_source, ieee80211_get_SA(hdr), ETH_ALEN);
486 
487 	if (iftype == NL80211_IFTYPE_MESH_POINT)
488 		skb_copy_bits(skb, hdrlen, &mesh_flags, 1);
489 
490 	mesh_flags &= MESH_FLAGS_AE;
491 
492 	switch (hdr->frame_control &
493 		cpu_to_le16(IEEE80211_FCTL_TODS | IEEE80211_FCTL_FROMDS)) {
494 	case cpu_to_le16(IEEE80211_FCTL_TODS):
495 		if (unlikely(iftype != NL80211_IFTYPE_AP &&
496 			     iftype != NL80211_IFTYPE_AP_VLAN &&
497 			     iftype != NL80211_IFTYPE_P2P_GO))
498 			return -1;
499 		break;
500 	case cpu_to_le16(IEEE80211_FCTL_TODS | IEEE80211_FCTL_FROMDS):
501 		if (unlikely(iftype != NL80211_IFTYPE_WDS &&
502 			     iftype != NL80211_IFTYPE_MESH_POINT &&
503 			     iftype != NL80211_IFTYPE_AP_VLAN &&
504 			     iftype != NL80211_IFTYPE_STATION))
505 			return -1;
506 		if (iftype == NL80211_IFTYPE_MESH_POINT) {
507 			if (mesh_flags == MESH_FLAGS_AE_A4)
508 				return -1;
509 			if (mesh_flags == MESH_FLAGS_AE_A5_A6) {
510 				skb_copy_bits(skb, hdrlen +
511 					offsetof(struct ieee80211s_hdr, eaddr1),
512 					tmp.h_dest, 2 * ETH_ALEN);
513 			}
514 			hdrlen += __ieee80211_get_mesh_hdrlen(mesh_flags);
515 		}
516 		break;
517 	case cpu_to_le16(IEEE80211_FCTL_FROMDS):
518 		if ((iftype != NL80211_IFTYPE_STATION &&
519 		     iftype != NL80211_IFTYPE_P2P_CLIENT &&
520 		     iftype != NL80211_IFTYPE_MESH_POINT) ||
521 		    (is_multicast_ether_addr(tmp.h_dest) &&
522 		     ether_addr_equal(tmp.h_source, addr)))
523 			return -1;
524 		if (iftype == NL80211_IFTYPE_MESH_POINT) {
525 			if (mesh_flags == MESH_FLAGS_AE_A5_A6)
526 				return -1;
527 			if (mesh_flags == MESH_FLAGS_AE_A4)
528 				skb_copy_bits(skb, hdrlen +
529 					offsetof(struct ieee80211s_hdr, eaddr1),
530 					tmp.h_source, ETH_ALEN);
531 			hdrlen += __ieee80211_get_mesh_hdrlen(mesh_flags);
532 		}
533 		break;
534 	case cpu_to_le16(0):
535 		if (iftype != NL80211_IFTYPE_ADHOC &&
536 		    iftype != NL80211_IFTYPE_STATION &&
537 		    iftype != NL80211_IFTYPE_OCB)
538 				return -1;
539 		break;
540 	}
541 
542 	skb_copy_bits(skb, hdrlen, &payload, sizeof(payload));
543 	tmp.h_proto = payload.proto;
544 
545 	if (likely((ether_addr_equal(payload.hdr, rfc1042_header) &&
546 		    tmp.h_proto != htons(ETH_P_AARP) &&
547 		    tmp.h_proto != htons(ETH_P_IPX)) ||
548 		   ether_addr_equal(payload.hdr, bridge_tunnel_header)))
549 		/* remove RFC1042 or Bridge-Tunnel encapsulation and
550 		 * replace EtherType */
551 		hdrlen += ETH_ALEN + 2;
552 	else
553 		tmp.h_proto = htons(skb->len - hdrlen);
554 
555 	pskb_pull(skb, hdrlen);
556 
557 	if (!ehdr)
558 		ehdr = skb_push(skb, sizeof(struct ethhdr));
559 	memcpy(ehdr, &tmp, sizeof(tmp));
560 
561 	return 0;
562 }
563 EXPORT_SYMBOL(ieee80211_data_to_8023_exthdr);
564 
565 static void
566 __frame_add_frag(struct sk_buff *skb, struct page *page,
567 		 void *ptr, int len, int size)
568 {
569 	struct skb_shared_info *sh = skb_shinfo(skb);
570 	int page_offset;
571 
572 	get_page(page);
573 	page_offset = ptr - page_address(page);
574 	skb_add_rx_frag(skb, sh->nr_frags, page, page_offset, len, size);
575 }
576 
577 static void
578 __ieee80211_amsdu_copy_frag(struct sk_buff *skb, struct sk_buff *frame,
579 			    int offset, int len)
580 {
581 	struct skb_shared_info *sh = skb_shinfo(skb);
582 	const skb_frag_t *frag = &sh->frags[0];
583 	struct page *frag_page;
584 	void *frag_ptr;
585 	int frag_len, frag_size;
586 	int head_size = skb->len - skb->data_len;
587 	int cur_len;
588 
589 	frag_page = virt_to_head_page(skb->head);
590 	frag_ptr = skb->data;
591 	frag_size = head_size;
592 
593 	while (offset >= frag_size) {
594 		offset -= frag_size;
595 		frag_page = skb_frag_page(frag);
596 		frag_ptr = skb_frag_address(frag);
597 		frag_size = skb_frag_size(frag);
598 		frag++;
599 	}
600 
601 	frag_ptr += offset;
602 	frag_len = frag_size - offset;
603 
604 	cur_len = min(len, frag_len);
605 
606 	__frame_add_frag(frame, frag_page, frag_ptr, cur_len, frag_size);
607 	len -= cur_len;
608 
609 	while (len > 0) {
610 		frag_len = skb_frag_size(frag);
611 		cur_len = min(len, frag_len);
612 		__frame_add_frag(frame, skb_frag_page(frag),
613 				 skb_frag_address(frag), cur_len, frag_len);
614 		len -= cur_len;
615 		frag++;
616 	}
617 }
618 
619 static struct sk_buff *
620 __ieee80211_amsdu_copy(struct sk_buff *skb, unsigned int hlen,
621 		       int offset, int len, bool reuse_frag)
622 {
623 	struct sk_buff *frame;
624 	int cur_len = len;
625 
626 	if (skb->len - offset < len)
627 		return NULL;
628 
629 	/*
630 	 * When reusing framents, copy some data to the head to simplify
631 	 * ethernet header handling and speed up protocol header processing
632 	 * in the stack later.
633 	 */
634 	if (reuse_frag)
635 		cur_len = min_t(int, len, 32);
636 
637 	/*
638 	 * Allocate and reserve two bytes more for payload
639 	 * alignment since sizeof(struct ethhdr) is 14.
640 	 */
641 	frame = dev_alloc_skb(hlen + sizeof(struct ethhdr) + 2 + cur_len);
642 	if (!frame)
643 		return NULL;
644 
645 	skb_reserve(frame, hlen + sizeof(struct ethhdr) + 2);
646 	skb_copy_bits(skb, offset, skb_put(frame, cur_len), cur_len);
647 
648 	len -= cur_len;
649 	if (!len)
650 		return frame;
651 
652 	offset += cur_len;
653 	__ieee80211_amsdu_copy_frag(skb, frame, offset, len);
654 
655 	return frame;
656 }
657 
658 void ieee80211_amsdu_to_8023s(struct sk_buff *skb, struct sk_buff_head *list,
659 			      const u8 *addr, enum nl80211_iftype iftype,
660 			      const unsigned int extra_headroom,
661 			      const u8 *check_da, const u8 *check_sa)
662 {
663 	unsigned int hlen = ALIGN(extra_headroom, 4);
664 	struct sk_buff *frame = NULL;
665 	u16 ethertype;
666 	u8 *payload;
667 	int offset = 0, remaining;
668 	struct ethhdr eth;
669 	bool reuse_frag = skb->head_frag && !skb_has_frag_list(skb);
670 	bool reuse_skb = false;
671 	bool last = false;
672 
673 	while (!last) {
674 		unsigned int subframe_len;
675 		int len;
676 		u8 padding;
677 
678 		skb_copy_bits(skb, offset, &eth, sizeof(eth));
679 		len = ntohs(eth.h_proto);
680 		subframe_len = sizeof(struct ethhdr) + len;
681 		padding = (4 - subframe_len) & 0x3;
682 
683 		/* the last MSDU has no padding */
684 		remaining = skb->len - offset;
685 		if (subframe_len > remaining)
686 			goto purge;
687 
688 		offset += sizeof(struct ethhdr);
689 		last = remaining <= subframe_len + padding;
690 
691 		/* FIXME: should we really accept multicast DA? */
692 		if ((check_da && !is_multicast_ether_addr(eth.h_dest) &&
693 		     !ether_addr_equal(check_da, eth.h_dest)) ||
694 		    (check_sa && !ether_addr_equal(check_sa, eth.h_source))) {
695 			offset += len + padding;
696 			continue;
697 		}
698 
699 		/* reuse skb for the last subframe */
700 		if (!skb_is_nonlinear(skb) && !reuse_frag && last) {
701 			skb_pull(skb, offset);
702 			frame = skb;
703 			reuse_skb = true;
704 		} else {
705 			frame = __ieee80211_amsdu_copy(skb, hlen, offset, len,
706 						       reuse_frag);
707 			if (!frame)
708 				goto purge;
709 
710 			offset += len + padding;
711 		}
712 
713 		skb_reset_network_header(frame);
714 		frame->dev = skb->dev;
715 		frame->priority = skb->priority;
716 
717 		payload = frame->data;
718 		ethertype = (payload[6] << 8) | payload[7];
719 		if (likely((ether_addr_equal(payload, rfc1042_header) &&
720 			    ethertype != ETH_P_AARP && ethertype != ETH_P_IPX) ||
721 			   ether_addr_equal(payload, bridge_tunnel_header))) {
722 			eth.h_proto = htons(ethertype);
723 			skb_pull(frame, ETH_ALEN + 2);
724 		}
725 
726 		memcpy(skb_push(frame, sizeof(eth)), &eth, sizeof(eth));
727 		__skb_queue_tail(list, frame);
728 	}
729 
730 	if (!reuse_skb)
731 		dev_kfree_skb(skb);
732 
733 	return;
734 
735  purge:
736 	__skb_queue_purge(list);
737 	dev_kfree_skb(skb);
738 }
739 EXPORT_SYMBOL(ieee80211_amsdu_to_8023s);
740 
741 /* Given a data frame determine the 802.1p/1d tag to use. */
742 unsigned int cfg80211_classify8021d(struct sk_buff *skb,
743 				    struct cfg80211_qos_map *qos_map)
744 {
745 	unsigned int dscp;
746 	unsigned char vlan_priority;
747 	unsigned int ret;
748 
749 	/* skb->priority values from 256->263 are magic values to
750 	 * directly indicate a specific 802.1d priority.  This is used
751 	 * to allow 802.1d priority to be passed directly in from VLAN
752 	 * tags, etc.
753 	 */
754 	if (skb->priority >= 256 && skb->priority <= 263) {
755 		ret = skb->priority - 256;
756 		goto out;
757 	}
758 
759 	if (skb_vlan_tag_present(skb)) {
760 		vlan_priority = (skb_vlan_tag_get(skb) & VLAN_PRIO_MASK)
761 			>> VLAN_PRIO_SHIFT;
762 		if (vlan_priority > 0) {
763 			ret = vlan_priority;
764 			goto out;
765 		}
766 	}
767 
768 	switch (skb->protocol) {
769 	case htons(ETH_P_IP):
770 		dscp = ipv4_get_dsfield(ip_hdr(skb)) & 0xfc;
771 		break;
772 	case htons(ETH_P_IPV6):
773 		dscp = ipv6_get_dsfield(ipv6_hdr(skb)) & 0xfc;
774 		break;
775 	case htons(ETH_P_MPLS_UC):
776 	case htons(ETH_P_MPLS_MC): {
777 		struct mpls_label mpls_tmp, *mpls;
778 
779 		mpls = skb_header_pointer(skb, sizeof(struct ethhdr),
780 					  sizeof(*mpls), &mpls_tmp);
781 		if (!mpls)
782 			return 0;
783 
784 		ret = (ntohl(mpls->entry) & MPLS_LS_TC_MASK)
785 			>> MPLS_LS_TC_SHIFT;
786 		goto out;
787 	}
788 	case htons(ETH_P_80221):
789 		/* 802.21 is always network control traffic */
790 		return 7;
791 	default:
792 		return 0;
793 	}
794 
795 	if (qos_map) {
796 		unsigned int i, tmp_dscp = dscp >> 2;
797 
798 		for (i = 0; i < qos_map->num_des; i++) {
799 			if (tmp_dscp == qos_map->dscp_exception[i].dscp) {
800 				ret = qos_map->dscp_exception[i].up;
801 				goto out;
802 			}
803 		}
804 
805 		for (i = 0; i < 8; i++) {
806 			if (tmp_dscp >= qos_map->up[i].low &&
807 			    tmp_dscp <= qos_map->up[i].high) {
808 				ret = i;
809 				goto out;
810 			}
811 		}
812 	}
813 
814 	ret = dscp >> 5;
815 out:
816 	return array_index_nospec(ret, IEEE80211_NUM_TIDS);
817 }
818 EXPORT_SYMBOL(cfg80211_classify8021d);
819 
820 const struct element *ieee80211_bss_get_elem(struct cfg80211_bss *bss, u8 id)
821 {
822 	const struct cfg80211_bss_ies *ies;
823 
824 	ies = rcu_dereference(bss->ies);
825 	if (!ies)
826 		return NULL;
827 
828 	return cfg80211_find_elem(id, ies->data, ies->len);
829 }
830 EXPORT_SYMBOL(ieee80211_bss_get_elem);
831 
832 void cfg80211_upload_connect_keys(struct wireless_dev *wdev)
833 {
834 	struct cfg80211_registered_device *rdev = wiphy_to_rdev(wdev->wiphy);
835 	struct net_device *dev = wdev->netdev;
836 	int i;
837 
838 	if (!wdev->connect_keys)
839 		return;
840 
841 	for (i = 0; i < CFG80211_MAX_WEP_KEYS; i++) {
842 		if (!wdev->connect_keys->params[i].cipher)
843 			continue;
844 		if (rdev_add_key(rdev, dev, i, false, NULL,
845 				 &wdev->connect_keys->params[i])) {
846 			netdev_err(dev, "failed to set key %d\n", i);
847 			continue;
848 		}
849 		if (wdev->connect_keys->def == i &&
850 		    rdev_set_default_key(rdev, dev, i, true, true)) {
851 			netdev_err(dev, "failed to set defkey %d\n", i);
852 			continue;
853 		}
854 	}
855 
856 	kzfree(wdev->connect_keys);
857 	wdev->connect_keys = NULL;
858 }
859 
860 void cfg80211_process_wdev_events(struct wireless_dev *wdev)
861 {
862 	struct cfg80211_event *ev;
863 	unsigned long flags;
864 
865 	spin_lock_irqsave(&wdev->event_lock, flags);
866 	while (!list_empty(&wdev->event_list)) {
867 		ev = list_first_entry(&wdev->event_list,
868 				      struct cfg80211_event, list);
869 		list_del(&ev->list);
870 		spin_unlock_irqrestore(&wdev->event_lock, flags);
871 
872 		wdev_lock(wdev);
873 		switch (ev->type) {
874 		case EVENT_CONNECT_RESULT:
875 			__cfg80211_connect_result(
876 				wdev->netdev,
877 				&ev->cr,
878 				ev->cr.status == WLAN_STATUS_SUCCESS);
879 			break;
880 		case EVENT_ROAMED:
881 			__cfg80211_roamed(wdev, &ev->rm);
882 			break;
883 		case EVENT_DISCONNECTED:
884 			__cfg80211_disconnected(wdev->netdev,
885 						ev->dc.ie, ev->dc.ie_len,
886 						ev->dc.reason,
887 						!ev->dc.locally_generated);
888 			break;
889 		case EVENT_IBSS_JOINED:
890 			__cfg80211_ibss_joined(wdev->netdev, ev->ij.bssid,
891 					       ev->ij.channel);
892 			break;
893 		case EVENT_STOPPED:
894 			__cfg80211_leave(wiphy_to_rdev(wdev->wiphy), wdev);
895 			break;
896 		case EVENT_PORT_AUTHORIZED:
897 			__cfg80211_port_authorized(wdev, ev->pa.bssid);
898 			break;
899 		}
900 		wdev_unlock(wdev);
901 
902 		kfree(ev);
903 
904 		spin_lock_irqsave(&wdev->event_lock, flags);
905 	}
906 	spin_unlock_irqrestore(&wdev->event_lock, flags);
907 }
908 
909 void cfg80211_process_rdev_events(struct cfg80211_registered_device *rdev)
910 {
911 	struct wireless_dev *wdev;
912 
913 	ASSERT_RTNL();
914 
915 	list_for_each_entry(wdev, &rdev->wiphy.wdev_list, list)
916 		cfg80211_process_wdev_events(wdev);
917 }
918 
919 int cfg80211_change_iface(struct cfg80211_registered_device *rdev,
920 			  struct net_device *dev, enum nl80211_iftype ntype,
921 			  struct vif_params *params)
922 {
923 	int err;
924 	enum nl80211_iftype otype = dev->ieee80211_ptr->iftype;
925 
926 	ASSERT_RTNL();
927 
928 	/* don't support changing VLANs, you just re-create them */
929 	if (otype == NL80211_IFTYPE_AP_VLAN)
930 		return -EOPNOTSUPP;
931 
932 	/* cannot change into P2P device or NAN */
933 	if (ntype == NL80211_IFTYPE_P2P_DEVICE ||
934 	    ntype == NL80211_IFTYPE_NAN)
935 		return -EOPNOTSUPP;
936 
937 	if (!rdev->ops->change_virtual_intf ||
938 	    !(rdev->wiphy.interface_modes & (1 << ntype)))
939 		return -EOPNOTSUPP;
940 
941 	/* if it's part of a bridge, reject changing type to station/ibss */
942 	if (netif_is_bridge_port(dev) &&
943 	    (ntype == NL80211_IFTYPE_ADHOC ||
944 	     ntype == NL80211_IFTYPE_STATION ||
945 	     ntype == NL80211_IFTYPE_P2P_CLIENT))
946 		return -EBUSY;
947 
948 	if (ntype != otype) {
949 		dev->ieee80211_ptr->use_4addr = false;
950 		dev->ieee80211_ptr->mesh_id_up_len = 0;
951 		wdev_lock(dev->ieee80211_ptr);
952 		rdev_set_qos_map(rdev, dev, NULL);
953 		wdev_unlock(dev->ieee80211_ptr);
954 
955 		switch (otype) {
956 		case NL80211_IFTYPE_AP:
957 			cfg80211_stop_ap(rdev, dev, true);
958 			break;
959 		case NL80211_IFTYPE_ADHOC:
960 			cfg80211_leave_ibss(rdev, dev, false);
961 			break;
962 		case NL80211_IFTYPE_STATION:
963 		case NL80211_IFTYPE_P2P_CLIENT:
964 			wdev_lock(dev->ieee80211_ptr);
965 			cfg80211_disconnect(rdev, dev,
966 					    WLAN_REASON_DEAUTH_LEAVING, true);
967 			wdev_unlock(dev->ieee80211_ptr);
968 			break;
969 		case NL80211_IFTYPE_MESH_POINT:
970 			/* mesh should be handled? */
971 			break;
972 		default:
973 			break;
974 		}
975 
976 		cfg80211_process_rdev_events(rdev);
977 		cfg80211_mlme_purge_registrations(dev->ieee80211_ptr);
978 	}
979 
980 	err = rdev_change_virtual_intf(rdev, dev, ntype, params);
981 
982 	WARN_ON(!err && dev->ieee80211_ptr->iftype != ntype);
983 
984 	if (!err && params && params->use_4addr != -1)
985 		dev->ieee80211_ptr->use_4addr = params->use_4addr;
986 
987 	if (!err) {
988 		dev->priv_flags &= ~IFF_DONT_BRIDGE;
989 		switch (ntype) {
990 		case NL80211_IFTYPE_STATION:
991 			if (dev->ieee80211_ptr->use_4addr)
992 				break;
993 			/* fall through */
994 		case NL80211_IFTYPE_OCB:
995 		case NL80211_IFTYPE_P2P_CLIENT:
996 		case NL80211_IFTYPE_ADHOC:
997 			dev->priv_flags |= IFF_DONT_BRIDGE;
998 			break;
999 		case NL80211_IFTYPE_P2P_GO:
1000 		case NL80211_IFTYPE_AP:
1001 		case NL80211_IFTYPE_AP_VLAN:
1002 		case NL80211_IFTYPE_WDS:
1003 		case NL80211_IFTYPE_MESH_POINT:
1004 			/* bridging OK */
1005 			break;
1006 		case NL80211_IFTYPE_MONITOR:
1007 			/* monitor can't bridge anyway */
1008 			break;
1009 		case NL80211_IFTYPE_UNSPECIFIED:
1010 		case NUM_NL80211_IFTYPES:
1011 			/* not happening */
1012 			break;
1013 		case NL80211_IFTYPE_P2P_DEVICE:
1014 		case NL80211_IFTYPE_NAN:
1015 			WARN_ON(1);
1016 			break;
1017 		}
1018 	}
1019 
1020 	if (!err && ntype != otype && netif_running(dev)) {
1021 		cfg80211_update_iface_num(rdev, ntype, 1);
1022 		cfg80211_update_iface_num(rdev, otype, -1);
1023 	}
1024 
1025 	return err;
1026 }
1027 
1028 static u32 cfg80211_calculate_bitrate_ht(struct rate_info *rate)
1029 {
1030 	int modulation, streams, bitrate;
1031 
1032 	/* the formula below does only work for MCS values smaller than 32 */
1033 	if (WARN_ON_ONCE(rate->mcs >= 32))
1034 		return 0;
1035 
1036 	modulation = rate->mcs & 7;
1037 	streams = (rate->mcs >> 3) + 1;
1038 
1039 	bitrate = (rate->bw == RATE_INFO_BW_40) ? 13500000 : 6500000;
1040 
1041 	if (modulation < 4)
1042 		bitrate *= (modulation + 1);
1043 	else if (modulation == 4)
1044 		bitrate *= (modulation + 2);
1045 	else
1046 		bitrate *= (modulation + 3);
1047 
1048 	bitrate *= streams;
1049 
1050 	if (rate->flags & RATE_INFO_FLAGS_SHORT_GI)
1051 		bitrate = (bitrate / 9) * 10;
1052 
1053 	/* do NOT round down here */
1054 	return (bitrate + 50000) / 100000;
1055 }
1056 
1057 static u32 cfg80211_calculate_bitrate_dmg(struct rate_info *rate)
1058 {
1059 	static const u32 __mcs2bitrate[] = {
1060 		/* control PHY */
1061 		[0] =   275,
1062 		/* SC PHY */
1063 		[1] =  3850,
1064 		[2] =  7700,
1065 		[3] =  9625,
1066 		[4] = 11550,
1067 		[5] = 12512, /* 1251.25 mbps */
1068 		[6] = 15400,
1069 		[7] = 19250,
1070 		[8] = 23100,
1071 		[9] = 25025,
1072 		[10] = 30800,
1073 		[11] = 38500,
1074 		[12] = 46200,
1075 		/* OFDM PHY */
1076 		[13] =  6930,
1077 		[14] =  8662, /* 866.25 mbps */
1078 		[15] = 13860,
1079 		[16] = 17325,
1080 		[17] = 20790,
1081 		[18] = 27720,
1082 		[19] = 34650,
1083 		[20] = 41580,
1084 		[21] = 45045,
1085 		[22] = 51975,
1086 		[23] = 62370,
1087 		[24] = 67568, /* 6756.75 mbps */
1088 		/* LP-SC PHY */
1089 		[25] =  6260,
1090 		[26] =  8340,
1091 		[27] = 11120,
1092 		[28] = 12510,
1093 		[29] = 16680,
1094 		[30] = 22240,
1095 		[31] = 25030,
1096 	};
1097 
1098 	if (WARN_ON_ONCE(rate->mcs >= ARRAY_SIZE(__mcs2bitrate)))
1099 		return 0;
1100 
1101 	return __mcs2bitrate[rate->mcs];
1102 }
1103 
1104 static u32 cfg80211_calculate_bitrate_edmg(struct rate_info *rate)
1105 {
1106 	static const u32 __mcs2bitrate[] = {
1107 		/* control PHY */
1108 		[0] =   275,
1109 		/* SC PHY */
1110 		[1] =  3850,
1111 		[2] =  7700,
1112 		[3] =  9625,
1113 		[4] = 11550,
1114 		[5] = 12512, /* 1251.25 mbps */
1115 		[6] = 13475,
1116 		[7] = 15400,
1117 		[8] = 19250,
1118 		[9] = 23100,
1119 		[10] = 25025,
1120 		[11] = 26950,
1121 		[12] = 30800,
1122 		[13] = 38500,
1123 		[14] = 46200,
1124 		[15] = 50050,
1125 		[16] = 53900,
1126 		[17] = 57750,
1127 		[18] = 69300,
1128 		[19] = 75075,
1129 		[20] = 80850,
1130 	};
1131 
1132 	if (WARN_ON_ONCE(rate->mcs >= ARRAY_SIZE(__mcs2bitrate)))
1133 		return 0;
1134 
1135 	return __mcs2bitrate[rate->mcs] * rate->n_bonded_ch;
1136 }
1137 
1138 static u32 cfg80211_calculate_bitrate_vht(struct rate_info *rate)
1139 {
1140 	static const u32 base[4][10] = {
1141 		{   6500000,
1142 		   13000000,
1143 		   19500000,
1144 		   26000000,
1145 		   39000000,
1146 		   52000000,
1147 		   58500000,
1148 		   65000000,
1149 		   78000000,
1150 		/* not in the spec, but some devices use this: */
1151 		   86500000,
1152 		},
1153 		{  13500000,
1154 		   27000000,
1155 		   40500000,
1156 		   54000000,
1157 		   81000000,
1158 		  108000000,
1159 		  121500000,
1160 		  135000000,
1161 		  162000000,
1162 		  180000000,
1163 		},
1164 		{  29300000,
1165 		   58500000,
1166 		   87800000,
1167 		  117000000,
1168 		  175500000,
1169 		  234000000,
1170 		  263300000,
1171 		  292500000,
1172 		  351000000,
1173 		  390000000,
1174 		},
1175 		{  58500000,
1176 		  117000000,
1177 		  175500000,
1178 		  234000000,
1179 		  351000000,
1180 		  468000000,
1181 		  526500000,
1182 		  585000000,
1183 		  702000000,
1184 		  780000000,
1185 		},
1186 	};
1187 	u32 bitrate;
1188 	int idx;
1189 
1190 	if (rate->mcs > 9)
1191 		goto warn;
1192 
1193 	switch (rate->bw) {
1194 	case RATE_INFO_BW_160:
1195 		idx = 3;
1196 		break;
1197 	case RATE_INFO_BW_80:
1198 		idx = 2;
1199 		break;
1200 	case RATE_INFO_BW_40:
1201 		idx = 1;
1202 		break;
1203 	case RATE_INFO_BW_5:
1204 	case RATE_INFO_BW_10:
1205 	default:
1206 		goto warn;
1207 	case RATE_INFO_BW_20:
1208 		idx = 0;
1209 	}
1210 
1211 	bitrate = base[idx][rate->mcs];
1212 	bitrate *= rate->nss;
1213 
1214 	if (rate->flags & RATE_INFO_FLAGS_SHORT_GI)
1215 		bitrate = (bitrate / 9) * 10;
1216 
1217 	/* do NOT round down here */
1218 	return (bitrate + 50000) / 100000;
1219  warn:
1220 	WARN_ONCE(1, "invalid rate bw=%d, mcs=%d, nss=%d\n",
1221 		  rate->bw, rate->mcs, rate->nss);
1222 	return 0;
1223 }
1224 
1225 static u32 cfg80211_calculate_bitrate_he(struct rate_info *rate)
1226 {
1227 #define SCALE 2048
1228 	u16 mcs_divisors[12] = {
1229 		34133, /* 16.666666... */
1230 		17067, /*  8.333333... */
1231 		11378, /*  5.555555... */
1232 		 8533, /*  4.166666... */
1233 		 5689, /*  2.777777... */
1234 		 4267, /*  2.083333... */
1235 		 3923, /*  1.851851... */
1236 		 3413, /*  1.666666... */
1237 		 2844, /*  1.388888... */
1238 		 2560, /*  1.250000... */
1239 		 2276, /*  1.111111... */
1240 		 2048, /*  1.000000... */
1241 	};
1242 	u32 rates_160M[3] = { 960777777, 907400000, 816666666 };
1243 	u32 rates_969[3] =  { 480388888, 453700000, 408333333 };
1244 	u32 rates_484[3] =  { 229411111, 216666666, 195000000 };
1245 	u32 rates_242[3] =  { 114711111, 108333333,  97500000 };
1246 	u32 rates_106[3] =  {  40000000,  37777777,  34000000 };
1247 	u32 rates_52[3]  =  {  18820000,  17777777,  16000000 };
1248 	u32 rates_26[3]  =  {   9411111,   8888888,   8000000 };
1249 	u64 tmp;
1250 	u32 result;
1251 
1252 	if (WARN_ON_ONCE(rate->mcs > 11))
1253 		return 0;
1254 
1255 	if (WARN_ON_ONCE(rate->he_gi > NL80211_RATE_INFO_HE_GI_3_2))
1256 		return 0;
1257 	if (WARN_ON_ONCE(rate->he_ru_alloc >
1258 			 NL80211_RATE_INFO_HE_RU_ALLOC_2x996))
1259 		return 0;
1260 	if (WARN_ON_ONCE(rate->nss < 1 || rate->nss > 8))
1261 		return 0;
1262 
1263 	if (rate->bw == RATE_INFO_BW_160)
1264 		result = rates_160M[rate->he_gi];
1265 	else if (rate->bw == RATE_INFO_BW_80 ||
1266 		 (rate->bw == RATE_INFO_BW_HE_RU &&
1267 		  rate->he_ru_alloc == NL80211_RATE_INFO_HE_RU_ALLOC_996))
1268 		result = rates_969[rate->he_gi];
1269 	else if (rate->bw == RATE_INFO_BW_40 ||
1270 		 (rate->bw == RATE_INFO_BW_HE_RU &&
1271 		  rate->he_ru_alloc == NL80211_RATE_INFO_HE_RU_ALLOC_484))
1272 		result = rates_484[rate->he_gi];
1273 	else if (rate->bw == RATE_INFO_BW_20 ||
1274 		 (rate->bw == RATE_INFO_BW_HE_RU &&
1275 		  rate->he_ru_alloc == NL80211_RATE_INFO_HE_RU_ALLOC_242))
1276 		result = rates_242[rate->he_gi];
1277 	else if (rate->bw == RATE_INFO_BW_HE_RU &&
1278 		 rate->he_ru_alloc == NL80211_RATE_INFO_HE_RU_ALLOC_106)
1279 		result = rates_106[rate->he_gi];
1280 	else if (rate->bw == RATE_INFO_BW_HE_RU &&
1281 		 rate->he_ru_alloc == NL80211_RATE_INFO_HE_RU_ALLOC_52)
1282 		result = rates_52[rate->he_gi];
1283 	else if (rate->bw == RATE_INFO_BW_HE_RU &&
1284 		 rate->he_ru_alloc == NL80211_RATE_INFO_HE_RU_ALLOC_26)
1285 		result = rates_26[rate->he_gi];
1286 	else {
1287 		WARN(1, "invalid HE MCS: bw:%d, ru:%d\n",
1288 		     rate->bw, rate->he_ru_alloc);
1289 		return 0;
1290 	}
1291 
1292 	/* now scale to the appropriate MCS */
1293 	tmp = result;
1294 	tmp *= SCALE;
1295 	do_div(tmp, mcs_divisors[rate->mcs]);
1296 	result = tmp;
1297 
1298 	/* and take NSS, DCM into account */
1299 	result = (result * rate->nss) / 8;
1300 	if (rate->he_dcm)
1301 		result /= 2;
1302 
1303 	return result / 10000;
1304 }
1305 
1306 u32 cfg80211_calculate_bitrate(struct rate_info *rate)
1307 {
1308 	if (rate->flags & RATE_INFO_FLAGS_MCS)
1309 		return cfg80211_calculate_bitrate_ht(rate);
1310 	if (rate->flags & RATE_INFO_FLAGS_DMG)
1311 		return cfg80211_calculate_bitrate_dmg(rate);
1312 	if (rate->flags & RATE_INFO_FLAGS_EDMG)
1313 		return cfg80211_calculate_bitrate_edmg(rate);
1314 	if (rate->flags & RATE_INFO_FLAGS_VHT_MCS)
1315 		return cfg80211_calculate_bitrate_vht(rate);
1316 	if (rate->flags & RATE_INFO_FLAGS_HE_MCS)
1317 		return cfg80211_calculate_bitrate_he(rate);
1318 
1319 	return rate->legacy;
1320 }
1321 EXPORT_SYMBOL(cfg80211_calculate_bitrate);
1322 
1323 int cfg80211_get_p2p_attr(const u8 *ies, unsigned int len,
1324 			  enum ieee80211_p2p_attr_id attr,
1325 			  u8 *buf, unsigned int bufsize)
1326 {
1327 	u8 *out = buf;
1328 	u16 attr_remaining = 0;
1329 	bool desired_attr = false;
1330 	u16 desired_len = 0;
1331 
1332 	while (len > 0) {
1333 		unsigned int iedatalen;
1334 		unsigned int copy;
1335 		const u8 *iedata;
1336 
1337 		if (len < 2)
1338 			return -EILSEQ;
1339 		iedatalen = ies[1];
1340 		if (iedatalen + 2 > len)
1341 			return -EILSEQ;
1342 
1343 		if (ies[0] != WLAN_EID_VENDOR_SPECIFIC)
1344 			goto cont;
1345 
1346 		if (iedatalen < 4)
1347 			goto cont;
1348 
1349 		iedata = ies + 2;
1350 
1351 		/* check WFA OUI, P2P subtype */
1352 		if (iedata[0] != 0x50 || iedata[1] != 0x6f ||
1353 		    iedata[2] != 0x9a || iedata[3] != 0x09)
1354 			goto cont;
1355 
1356 		iedatalen -= 4;
1357 		iedata += 4;
1358 
1359 		/* check attribute continuation into this IE */
1360 		copy = min_t(unsigned int, attr_remaining, iedatalen);
1361 		if (copy && desired_attr) {
1362 			desired_len += copy;
1363 			if (out) {
1364 				memcpy(out, iedata, min(bufsize, copy));
1365 				out += min(bufsize, copy);
1366 				bufsize -= min(bufsize, copy);
1367 			}
1368 
1369 
1370 			if (copy == attr_remaining)
1371 				return desired_len;
1372 		}
1373 
1374 		attr_remaining -= copy;
1375 		if (attr_remaining)
1376 			goto cont;
1377 
1378 		iedatalen -= copy;
1379 		iedata += copy;
1380 
1381 		while (iedatalen > 0) {
1382 			u16 attr_len;
1383 
1384 			/* P2P attribute ID & size must fit */
1385 			if (iedatalen < 3)
1386 				return -EILSEQ;
1387 			desired_attr = iedata[0] == attr;
1388 			attr_len = get_unaligned_le16(iedata + 1);
1389 			iedatalen -= 3;
1390 			iedata += 3;
1391 
1392 			copy = min_t(unsigned int, attr_len, iedatalen);
1393 
1394 			if (desired_attr) {
1395 				desired_len += copy;
1396 				if (out) {
1397 					memcpy(out, iedata, min(bufsize, copy));
1398 					out += min(bufsize, copy);
1399 					bufsize -= min(bufsize, copy);
1400 				}
1401 
1402 				if (copy == attr_len)
1403 					return desired_len;
1404 			}
1405 
1406 			iedata += copy;
1407 			iedatalen -= copy;
1408 			attr_remaining = attr_len - copy;
1409 		}
1410 
1411  cont:
1412 		len -= ies[1] + 2;
1413 		ies += ies[1] + 2;
1414 	}
1415 
1416 	if (attr_remaining && desired_attr)
1417 		return -EILSEQ;
1418 
1419 	return -ENOENT;
1420 }
1421 EXPORT_SYMBOL(cfg80211_get_p2p_attr);
1422 
1423 static bool ieee80211_id_in_list(const u8 *ids, int n_ids, u8 id, bool id_ext)
1424 {
1425 	int i;
1426 
1427 	/* Make sure array values are legal */
1428 	if (WARN_ON(ids[n_ids - 1] == WLAN_EID_EXTENSION))
1429 		return false;
1430 
1431 	i = 0;
1432 	while (i < n_ids) {
1433 		if (ids[i] == WLAN_EID_EXTENSION) {
1434 			if (id_ext && (ids[i + 1] == id))
1435 				return true;
1436 
1437 			i += 2;
1438 			continue;
1439 		}
1440 
1441 		if (ids[i] == id && !id_ext)
1442 			return true;
1443 
1444 		i++;
1445 	}
1446 	return false;
1447 }
1448 
1449 static size_t skip_ie(const u8 *ies, size_t ielen, size_t pos)
1450 {
1451 	/* we assume a validly formed IEs buffer */
1452 	u8 len = ies[pos + 1];
1453 
1454 	pos += 2 + len;
1455 
1456 	/* the IE itself must have 255 bytes for fragments to follow */
1457 	if (len < 255)
1458 		return pos;
1459 
1460 	while (pos < ielen && ies[pos] == WLAN_EID_FRAGMENT) {
1461 		len = ies[pos + 1];
1462 		pos += 2 + len;
1463 	}
1464 
1465 	return pos;
1466 }
1467 
1468 size_t ieee80211_ie_split_ric(const u8 *ies, size_t ielen,
1469 			      const u8 *ids, int n_ids,
1470 			      const u8 *after_ric, int n_after_ric,
1471 			      size_t offset)
1472 {
1473 	size_t pos = offset;
1474 
1475 	while (pos < ielen) {
1476 		u8 ext = 0;
1477 
1478 		if (ies[pos] == WLAN_EID_EXTENSION)
1479 			ext = 2;
1480 		if ((pos + ext) >= ielen)
1481 			break;
1482 
1483 		if (!ieee80211_id_in_list(ids, n_ids, ies[pos + ext],
1484 					  ies[pos] == WLAN_EID_EXTENSION))
1485 			break;
1486 
1487 		if (ies[pos] == WLAN_EID_RIC_DATA && n_after_ric) {
1488 			pos = skip_ie(ies, ielen, pos);
1489 
1490 			while (pos < ielen) {
1491 				if (ies[pos] == WLAN_EID_EXTENSION)
1492 					ext = 2;
1493 				else
1494 					ext = 0;
1495 
1496 				if ((pos + ext) >= ielen)
1497 					break;
1498 
1499 				if (!ieee80211_id_in_list(after_ric,
1500 							  n_after_ric,
1501 							  ies[pos + ext],
1502 							  ext == 2))
1503 					pos = skip_ie(ies, ielen, pos);
1504 				else
1505 					break;
1506 			}
1507 		} else {
1508 			pos = skip_ie(ies, ielen, pos);
1509 		}
1510 	}
1511 
1512 	return pos;
1513 }
1514 EXPORT_SYMBOL(ieee80211_ie_split_ric);
1515 
1516 bool ieee80211_operating_class_to_band(u8 operating_class,
1517 				       enum nl80211_band *band)
1518 {
1519 	switch (operating_class) {
1520 	case 112:
1521 	case 115 ... 127:
1522 	case 128 ... 130:
1523 		*band = NL80211_BAND_5GHZ;
1524 		return true;
1525 	case 131 ... 135:
1526 		*band = NL80211_BAND_6GHZ;
1527 		return true;
1528 	case 81:
1529 	case 82:
1530 	case 83:
1531 	case 84:
1532 		*band = NL80211_BAND_2GHZ;
1533 		return true;
1534 	case 180:
1535 		*band = NL80211_BAND_60GHZ;
1536 		return true;
1537 	}
1538 
1539 	return false;
1540 }
1541 EXPORT_SYMBOL(ieee80211_operating_class_to_band);
1542 
1543 bool ieee80211_chandef_to_operating_class(struct cfg80211_chan_def *chandef,
1544 					  u8 *op_class)
1545 {
1546 	u8 vht_opclass;
1547 	u32 freq = chandef->center_freq1;
1548 
1549 	if (freq >= 2412 && freq <= 2472) {
1550 		if (chandef->width > NL80211_CHAN_WIDTH_40)
1551 			return false;
1552 
1553 		/* 2.407 GHz, channels 1..13 */
1554 		if (chandef->width == NL80211_CHAN_WIDTH_40) {
1555 			if (freq > chandef->chan->center_freq)
1556 				*op_class = 83; /* HT40+ */
1557 			else
1558 				*op_class = 84; /* HT40- */
1559 		} else {
1560 			*op_class = 81;
1561 		}
1562 
1563 		return true;
1564 	}
1565 
1566 	if (freq == 2484) {
1567 		/* channel 14 is only for IEEE 802.11b */
1568 		if (chandef->width != NL80211_CHAN_WIDTH_20_NOHT)
1569 			return false;
1570 
1571 		*op_class = 82; /* channel 14 */
1572 		return true;
1573 	}
1574 
1575 	switch (chandef->width) {
1576 	case NL80211_CHAN_WIDTH_80:
1577 		vht_opclass = 128;
1578 		break;
1579 	case NL80211_CHAN_WIDTH_160:
1580 		vht_opclass = 129;
1581 		break;
1582 	case NL80211_CHAN_WIDTH_80P80:
1583 		vht_opclass = 130;
1584 		break;
1585 	case NL80211_CHAN_WIDTH_10:
1586 	case NL80211_CHAN_WIDTH_5:
1587 		return false; /* unsupported for now */
1588 	default:
1589 		vht_opclass = 0;
1590 		break;
1591 	}
1592 
1593 	/* 5 GHz, channels 36..48 */
1594 	if (freq >= 5180 && freq <= 5240) {
1595 		if (vht_opclass) {
1596 			*op_class = vht_opclass;
1597 		} else if (chandef->width == NL80211_CHAN_WIDTH_40) {
1598 			if (freq > chandef->chan->center_freq)
1599 				*op_class = 116;
1600 			else
1601 				*op_class = 117;
1602 		} else {
1603 			*op_class = 115;
1604 		}
1605 
1606 		return true;
1607 	}
1608 
1609 	/* 5 GHz, channels 52..64 */
1610 	if (freq >= 5260 && freq <= 5320) {
1611 		if (vht_opclass) {
1612 			*op_class = vht_opclass;
1613 		} else if (chandef->width == NL80211_CHAN_WIDTH_40) {
1614 			if (freq > chandef->chan->center_freq)
1615 				*op_class = 119;
1616 			else
1617 				*op_class = 120;
1618 		} else {
1619 			*op_class = 118;
1620 		}
1621 
1622 		return true;
1623 	}
1624 
1625 	/* 5 GHz, channels 100..144 */
1626 	if (freq >= 5500 && freq <= 5720) {
1627 		if (vht_opclass) {
1628 			*op_class = vht_opclass;
1629 		} else if (chandef->width == NL80211_CHAN_WIDTH_40) {
1630 			if (freq > chandef->chan->center_freq)
1631 				*op_class = 122;
1632 			else
1633 				*op_class = 123;
1634 		} else {
1635 			*op_class = 121;
1636 		}
1637 
1638 		return true;
1639 	}
1640 
1641 	/* 5 GHz, channels 149..169 */
1642 	if (freq >= 5745 && freq <= 5845) {
1643 		if (vht_opclass) {
1644 			*op_class = vht_opclass;
1645 		} else if (chandef->width == NL80211_CHAN_WIDTH_40) {
1646 			if (freq > chandef->chan->center_freq)
1647 				*op_class = 126;
1648 			else
1649 				*op_class = 127;
1650 		} else if (freq <= 5805) {
1651 			*op_class = 124;
1652 		} else {
1653 			*op_class = 125;
1654 		}
1655 
1656 		return true;
1657 	}
1658 
1659 	/* 56.16 GHz, channel 1..4 */
1660 	if (freq >= 56160 + 2160 * 1 && freq <= 56160 + 2160 * 6) {
1661 		if (chandef->width >= NL80211_CHAN_WIDTH_40)
1662 			return false;
1663 
1664 		*op_class = 180;
1665 		return true;
1666 	}
1667 
1668 	/* not supported yet */
1669 	return false;
1670 }
1671 EXPORT_SYMBOL(ieee80211_chandef_to_operating_class);
1672 
1673 static void cfg80211_calculate_bi_data(struct wiphy *wiphy, u32 new_beacon_int,
1674 				       u32 *beacon_int_gcd,
1675 				       bool *beacon_int_different)
1676 {
1677 	struct wireless_dev *wdev;
1678 
1679 	*beacon_int_gcd = 0;
1680 	*beacon_int_different = false;
1681 
1682 	list_for_each_entry(wdev, &wiphy->wdev_list, list) {
1683 		if (!wdev->beacon_interval)
1684 			continue;
1685 
1686 		if (!*beacon_int_gcd) {
1687 			*beacon_int_gcd = wdev->beacon_interval;
1688 			continue;
1689 		}
1690 
1691 		if (wdev->beacon_interval == *beacon_int_gcd)
1692 			continue;
1693 
1694 		*beacon_int_different = true;
1695 		*beacon_int_gcd = gcd(*beacon_int_gcd, wdev->beacon_interval);
1696 	}
1697 
1698 	if (new_beacon_int && *beacon_int_gcd != new_beacon_int) {
1699 		if (*beacon_int_gcd)
1700 			*beacon_int_different = true;
1701 		*beacon_int_gcd = gcd(*beacon_int_gcd, new_beacon_int);
1702 	}
1703 }
1704 
1705 int cfg80211_validate_beacon_int(struct cfg80211_registered_device *rdev,
1706 				 enum nl80211_iftype iftype, u32 beacon_int)
1707 {
1708 	/*
1709 	 * This is just a basic pre-condition check; if interface combinations
1710 	 * are possible the driver must already be checking those with a call
1711 	 * to cfg80211_check_combinations(), in which case we'll validate more
1712 	 * through the cfg80211_calculate_bi_data() call and code in
1713 	 * cfg80211_iter_combinations().
1714 	 */
1715 
1716 	if (beacon_int < 10 || beacon_int > 10000)
1717 		return -EINVAL;
1718 
1719 	return 0;
1720 }
1721 
1722 int cfg80211_iter_combinations(struct wiphy *wiphy,
1723 			       struct iface_combination_params *params,
1724 			       void (*iter)(const struct ieee80211_iface_combination *c,
1725 					    void *data),
1726 			       void *data)
1727 {
1728 	const struct ieee80211_regdomain *regdom;
1729 	enum nl80211_dfs_regions region = 0;
1730 	int i, j, iftype;
1731 	int num_interfaces = 0;
1732 	u32 used_iftypes = 0;
1733 	u32 beacon_int_gcd;
1734 	bool beacon_int_different;
1735 
1736 	/*
1737 	 * This is a bit strange, since the iteration used to rely only on
1738 	 * the data given by the driver, but here it now relies on context,
1739 	 * in form of the currently operating interfaces.
1740 	 * This is OK for all current users, and saves us from having to
1741 	 * push the GCD calculations into all the drivers.
1742 	 * In the future, this should probably rely more on data that's in
1743 	 * cfg80211 already - the only thing not would appear to be any new
1744 	 * interfaces (while being brought up) and channel/radar data.
1745 	 */
1746 	cfg80211_calculate_bi_data(wiphy, params->new_beacon_int,
1747 				   &beacon_int_gcd, &beacon_int_different);
1748 
1749 	if (params->radar_detect) {
1750 		rcu_read_lock();
1751 		regdom = rcu_dereference(cfg80211_regdomain);
1752 		if (regdom)
1753 			region = regdom->dfs_region;
1754 		rcu_read_unlock();
1755 	}
1756 
1757 	for (iftype = 0; iftype < NUM_NL80211_IFTYPES; iftype++) {
1758 		num_interfaces += params->iftype_num[iftype];
1759 		if (params->iftype_num[iftype] > 0 &&
1760 		    !cfg80211_iftype_allowed(wiphy, iftype, 0, 1))
1761 			used_iftypes |= BIT(iftype);
1762 	}
1763 
1764 	for (i = 0; i < wiphy->n_iface_combinations; i++) {
1765 		const struct ieee80211_iface_combination *c;
1766 		struct ieee80211_iface_limit *limits;
1767 		u32 all_iftypes = 0;
1768 
1769 		c = &wiphy->iface_combinations[i];
1770 
1771 		if (num_interfaces > c->max_interfaces)
1772 			continue;
1773 		if (params->num_different_channels > c->num_different_channels)
1774 			continue;
1775 
1776 		limits = kmemdup(c->limits, sizeof(limits[0]) * c->n_limits,
1777 				 GFP_KERNEL);
1778 		if (!limits)
1779 			return -ENOMEM;
1780 
1781 		for (iftype = 0; iftype < NUM_NL80211_IFTYPES; iftype++) {
1782 			if (cfg80211_iftype_allowed(wiphy, iftype, 0, 1))
1783 				continue;
1784 			for (j = 0; j < c->n_limits; j++) {
1785 				all_iftypes |= limits[j].types;
1786 				if (!(limits[j].types & BIT(iftype)))
1787 					continue;
1788 				if (limits[j].max < params->iftype_num[iftype])
1789 					goto cont;
1790 				limits[j].max -= params->iftype_num[iftype];
1791 			}
1792 		}
1793 
1794 		if (params->radar_detect !=
1795 			(c->radar_detect_widths & params->radar_detect))
1796 			goto cont;
1797 
1798 		if (params->radar_detect && c->radar_detect_regions &&
1799 		    !(c->radar_detect_regions & BIT(region)))
1800 			goto cont;
1801 
1802 		/* Finally check that all iftypes that we're currently
1803 		 * using are actually part of this combination. If they
1804 		 * aren't then we can't use this combination and have
1805 		 * to continue to the next.
1806 		 */
1807 		if ((all_iftypes & used_iftypes) != used_iftypes)
1808 			goto cont;
1809 
1810 		if (beacon_int_gcd) {
1811 			if (c->beacon_int_min_gcd &&
1812 			    beacon_int_gcd < c->beacon_int_min_gcd)
1813 				goto cont;
1814 			if (!c->beacon_int_min_gcd && beacon_int_different)
1815 				goto cont;
1816 		}
1817 
1818 		/* This combination covered all interface types and
1819 		 * supported the requested numbers, so we're good.
1820 		 */
1821 
1822 		(*iter)(c, data);
1823  cont:
1824 		kfree(limits);
1825 	}
1826 
1827 	return 0;
1828 }
1829 EXPORT_SYMBOL(cfg80211_iter_combinations);
1830 
1831 static void
1832 cfg80211_iter_sum_ifcombs(const struct ieee80211_iface_combination *c,
1833 			  void *data)
1834 {
1835 	int *num = data;
1836 	(*num)++;
1837 }
1838 
1839 int cfg80211_check_combinations(struct wiphy *wiphy,
1840 				struct iface_combination_params *params)
1841 {
1842 	int err, num = 0;
1843 
1844 	err = cfg80211_iter_combinations(wiphy, params,
1845 					 cfg80211_iter_sum_ifcombs, &num);
1846 	if (err)
1847 		return err;
1848 	if (num == 0)
1849 		return -EBUSY;
1850 
1851 	return 0;
1852 }
1853 EXPORT_SYMBOL(cfg80211_check_combinations);
1854 
1855 int ieee80211_get_ratemask(struct ieee80211_supported_band *sband,
1856 			   const u8 *rates, unsigned int n_rates,
1857 			   u32 *mask)
1858 {
1859 	int i, j;
1860 
1861 	if (!sband)
1862 		return -EINVAL;
1863 
1864 	if (n_rates == 0 || n_rates > NL80211_MAX_SUPP_RATES)
1865 		return -EINVAL;
1866 
1867 	*mask = 0;
1868 
1869 	for (i = 0; i < n_rates; i++) {
1870 		int rate = (rates[i] & 0x7f) * 5;
1871 		bool found = false;
1872 
1873 		for (j = 0; j < sband->n_bitrates; j++) {
1874 			if (sband->bitrates[j].bitrate == rate) {
1875 				found = true;
1876 				*mask |= BIT(j);
1877 				break;
1878 			}
1879 		}
1880 		if (!found)
1881 			return -EINVAL;
1882 	}
1883 
1884 	/*
1885 	 * mask must have at least one bit set here since we
1886 	 * didn't accept a 0-length rates array nor allowed
1887 	 * entries in the array that didn't exist
1888 	 */
1889 
1890 	return 0;
1891 }
1892 
1893 unsigned int ieee80211_get_num_supported_channels(struct wiphy *wiphy)
1894 {
1895 	enum nl80211_band band;
1896 	unsigned int n_channels = 0;
1897 
1898 	for (band = 0; band < NUM_NL80211_BANDS; band++)
1899 		if (wiphy->bands[band])
1900 			n_channels += wiphy->bands[band]->n_channels;
1901 
1902 	return n_channels;
1903 }
1904 EXPORT_SYMBOL(ieee80211_get_num_supported_channels);
1905 
1906 int cfg80211_get_station(struct net_device *dev, const u8 *mac_addr,
1907 			 struct station_info *sinfo)
1908 {
1909 	struct cfg80211_registered_device *rdev;
1910 	struct wireless_dev *wdev;
1911 
1912 	wdev = dev->ieee80211_ptr;
1913 	if (!wdev)
1914 		return -EOPNOTSUPP;
1915 
1916 	rdev = wiphy_to_rdev(wdev->wiphy);
1917 	if (!rdev->ops->get_station)
1918 		return -EOPNOTSUPP;
1919 
1920 	memset(sinfo, 0, sizeof(*sinfo));
1921 
1922 	return rdev_get_station(rdev, dev, mac_addr, sinfo);
1923 }
1924 EXPORT_SYMBOL(cfg80211_get_station);
1925 
1926 void cfg80211_free_nan_func(struct cfg80211_nan_func *f)
1927 {
1928 	int i;
1929 
1930 	if (!f)
1931 		return;
1932 
1933 	kfree(f->serv_spec_info);
1934 	kfree(f->srf_bf);
1935 	kfree(f->srf_macs);
1936 	for (i = 0; i < f->num_rx_filters; i++)
1937 		kfree(f->rx_filters[i].filter);
1938 
1939 	for (i = 0; i < f->num_tx_filters; i++)
1940 		kfree(f->tx_filters[i].filter);
1941 
1942 	kfree(f->rx_filters);
1943 	kfree(f->tx_filters);
1944 	kfree(f);
1945 }
1946 EXPORT_SYMBOL(cfg80211_free_nan_func);
1947 
1948 bool cfg80211_does_bw_fit_range(const struct ieee80211_freq_range *freq_range,
1949 				u32 center_freq_khz, u32 bw_khz)
1950 {
1951 	u32 start_freq_khz, end_freq_khz;
1952 
1953 	start_freq_khz = center_freq_khz - (bw_khz / 2);
1954 	end_freq_khz = center_freq_khz + (bw_khz / 2);
1955 
1956 	if (start_freq_khz >= freq_range->start_freq_khz &&
1957 	    end_freq_khz <= freq_range->end_freq_khz)
1958 		return true;
1959 
1960 	return false;
1961 }
1962 
1963 int cfg80211_sinfo_alloc_tid_stats(struct station_info *sinfo, gfp_t gfp)
1964 {
1965 	sinfo->pertid = kcalloc(IEEE80211_NUM_TIDS + 1,
1966 				sizeof(*(sinfo->pertid)),
1967 				gfp);
1968 	if (!sinfo->pertid)
1969 		return -ENOMEM;
1970 
1971 	return 0;
1972 }
1973 EXPORT_SYMBOL(cfg80211_sinfo_alloc_tid_stats);
1974 
1975 /* See IEEE 802.1H for LLC/SNAP encapsulation/decapsulation */
1976 /* Ethernet-II snap header (RFC1042 for most EtherTypes) */
1977 const unsigned char rfc1042_header[] __aligned(2) =
1978 	{ 0xaa, 0xaa, 0x03, 0x00, 0x00, 0x00 };
1979 EXPORT_SYMBOL(rfc1042_header);
1980 
1981 /* Bridge-Tunnel header (for EtherTypes ETH_P_AARP and ETH_P_IPX) */
1982 const unsigned char bridge_tunnel_header[] __aligned(2) =
1983 	{ 0xaa, 0xaa, 0x03, 0x00, 0x00, 0xf8 };
1984 EXPORT_SYMBOL(bridge_tunnel_header);
1985 
1986 /* Layer 2 Update frame (802.2 Type 1 LLC XID Update response) */
1987 struct iapp_layer2_update {
1988 	u8 da[ETH_ALEN];	/* broadcast */
1989 	u8 sa[ETH_ALEN];	/* STA addr */
1990 	__be16 len;		/* 6 */
1991 	u8 dsap;		/* 0 */
1992 	u8 ssap;		/* 0 */
1993 	u8 control;
1994 	u8 xid_info[3];
1995 } __packed;
1996 
1997 void cfg80211_send_layer2_update(struct net_device *dev, const u8 *addr)
1998 {
1999 	struct iapp_layer2_update *msg;
2000 	struct sk_buff *skb;
2001 
2002 	/* Send Level 2 Update Frame to update forwarding tables in layer 2
2003 	 * bridge devices */
2004 
2005 	skb = dev_alloc_skb(sizeof(*msg));
2006 	if (!skb)
2007 		return;
2008 	msg = skb_put(skb, sizeof(*msg));
2009 
2010 	/* 802.2 Type 1 Logical Link Control (LLC) Exchange Identifier (XID)
2011 	 * Update response frame; IEEE Std 802.2-1998, 5.4.1.2.1 */
2012 
2013 	eth_broadcast_addr(msg->da);
2014 	ether_addr_copy(msg->sa, addr);
2015 	msg->len = htons(6);
2016 	msg->dsap = 0;
2017 	msg->ssap = 0x01;	/* NULL LSAP, CR Bit: Response */
2018 	msg->control = 0xaf;	/* XID response lsb.1111F101.
2019 				 * F=0 (no poll command; unsolicited frame) */
2020 	msg->xid_info[0] = 0x81;	/* XID format identifier */
2021 	msg->xid_info[1] = 1;	/* LLC types/classes: Type 1 LLC */
2022 	msg->xid_info[2] = 0;	/* XID sender's receive window size (RW) */
2023 
2024 	skb->dev = dev;
2025 	skb->protocol = eth_type_trans(skb, dev);
2026 	memset(skb->cb, 0, sizeof(skb->cb));
2027 	netif_rx_ni(skb);
2028 }
2029 EXPORT_SYMBOL(cfg80211_send_layer2_update);
2030 
2031 int ieee80211_get_vht_max_nss(struct ieee80211_vht_cap *cap,
2032 			      enum ieee80211_vht_chanwidth bw,
2033 			      int mcs, bool ext_nss_bw_capable)
2034 {
2035 	u16 map = le16_to_cpu(cap->supp_mcs.rx_mcs_map);
2036 	int max_vht_nss = 0;
2037 	int ext_nss_bw;
2038 	int supp_width;
2039 	int i, mcs_encoding;
2040 
2041 	if (map == 0xffff)
2042 		return 0;
2043 
2044 	if (WARN_ON(mcs > 9))
2045 		return 0;
2046 	if (mcs <= 7)
2047 		mcs_encoding = 0;
2048 	else if (mcs == 8)
2049 		mcs_encoding = 1;
2050 	else
2051 		mcs_encoding = 2;
2052 
2053 	/* find max_vht_nss for the given MCS */
2054 	for (i = 7; i >= 0; i--) {
2055 		int supp = (map >> (2 * i)) & 3;
2056 
2057 		if (supp == 3)
2058 			continue;
2059 
2060 		if (supp >= mcs_encoding) {
2061 			max_vht_nss = i + 1;
2062 			break;
2063 		}
2064 	}
2065 
2066 	if (!(cap->supp_mcs.tx_mcs_map &
2067 			cpu_to_le16(IEEE80211_VHT_EXT_NSS_BW_CAPABLE)))
2068 		return max_vht_nss;
2069 
2070 	ext_nss_bw = le32_get_bits(cap->vht_cap_info,
2071 				   IEEE80211_VHT_CAP_EXT_NSS_BW_MASK);
2072 	supp_width = le32_get_bits(cap->vht_cap_info,
2073 				   IEEE80211_VHT_CAP_SUPP_CHAN_WIDTH_MASK);
2074 
2075 	/* if not capable, treat ext_nss_bw as 0 */
2076 	if (!ext_nss_bw_capable)
2077 		ext_nss_bw = 0;
2078 
2079 	/* This is invalid */
2080 	if (supp_width == 3)
2081 		return 0;
2082 
2083 	/* This is an invalid combination so pretend nothing is supported */
2084 	if (supp_width == 2 && (ext_nss_bw == 1 || ext_nss_bw == 2))
2085 		return 0;
2086 
2087 	/*
2088 	 * Cover all the special cases according to IEEE 802.11-2016
2089 	 * Table 9-250. All other cases are either factor of 1 or not
2090 	 * valid/supported.
2091 	 */
2092 	switch (bw) {
2093 	case IEEE80211_VHT_CHANWIDTH_USE_HT:
2094 	case IEEE80211_VHT_CHANWIDTH_80MHZ:
2095 		if ((supp_width == 1 || supp_width == 2) &&
2096 		    ext_nss_bw == 3)
2097 			return 2 * max_vht_nss;
2098 		break;
2099 	case IEEE80211_VHT_CHANWIDTH_160MHZ:
2100 		if (supp_width == 0 &&
2101 		    (ext_nss_bw == 1 || ext_nss_bw == 2))
2102 			return max_vht_nss / 2;
2103 		if (supp_width == 0 &&
2104 		    ext_nss_bw == 3)
2105 			return (3 * max_vht_nss) / 4;
2106 		if (supp_width == 1 &&
2107 		    ext_nss_bw == 3)
2108 			return 2 * max_vht_nss;
2109 		break;
2110 	case IEEE80211_VHT_CHANWIDTH_80P80MHZ:
2111 		if (supp_width == 0 && ext_nss_bw == 1)
2112 			return 0; /* not possible */
2113 		if (supp_width == 0 &&
2114 		    ext_nss_bw == 2)
2115 			return max_vht_nss / 2;
2116 		if (supp_width == 0 &&
2117 		    ext_nss_bw == 3)
2118 			return (3 * max_vht_nss) / 4;
2119 		if (supp_width == 1 &&
2120 		    ext_nss_bw == 0)
2121 			return 0; /* not possible */
2122 		if (supp_width == 1 &&
2123 		    ext_nss_bw == 1)
2124 			return max_vht_nss / 2;
2125 		if (supp_width == 1 &&
2126 		    ext_nss_bw == 2)
2127 			return (3 * max_vht_nss) / 4;
2128 		break;
2129 	}
2130 
2131 	/* not covered or invalid combination received */
2132 	return max_vht_nss;
2133 }
2134 EXPORT_SYMBOL(ieee80211_get_vht_max_nss);
2135 
2136 bool cfg80211_iftype_allowed(struct wiphy *wiphy, enum nl80211_iftype iftype,
2137 			     bool is_4addr, u8 check_swif)
2138 
2139 {
2140 	bool is_vlan = iftype == NL80211_IFTYPE_AP_VLAN;
2141 
2142 	switch (check_swif) {
2143 	case 0:
2144 		if (is_vlan && is_4addr)
2145 			return wiphy->flags & WIPHY_FLAG_4ADDR_AP;
2146 		return wiphy->interface_modes & BIT(iftype);
2147 	case 1:
2148 		if (!(wiphy->software_iftypes & BIT(iftype)) && is_vlan)
2149 			return wiphy->flags & WIPHY_FLAG_4ADDR_AP;
2150 		return wiphy->software_iftypes & BIT(iftype);
2151 	default:
2152 		break;
2153 	}
2154 
2155 	return false;
2156 }
2157 EXPORT_SYMBOL(cfg80211_iftype_allowed);
2158