1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Wireless utility functions 4 * 5 * Copyright 2007-2009 Johannes Berg <johannes@sipsolutions.net> 6 * Copyright 2013-2014 Intel Mobile Communications GmbH 7 * Copyright 2017 Intel Deutschland GmbH 8 * Copyright (C) 2018-2019 Intel Corporation 9 */ 10 #include <linux/export.h> 11 #include <linux/bitops.h> 12 #include <linux/etherdevice.h> 13 #include <linux/slab.h> 14 #include <linux/ieee80211.h> 15 #include <net/cfg80211.h> 16 #include <net/ip.h> 17 #include <net/dsfield.h> 18 #include <linux/if_vlan.h> 19 #include <linux/mpls.h> 20 #include <linux/gcd.h> 21 #include <linux/bitfield.h> 22 #include <linux/nospec.h> 23 #include "core.h" 24 #include "rdev-ops.h" 25 26 27 struct ieee80211_rate * 28 ieee80211_get_response_rate(struct ieee80211_supported_band *sband, 29 u32 basic_rates, int bitrate) 30 { 31 struct ieee80211_rate *result = &sband->bitrates[0]; 32 int i; 33 34 for (i = 0; i < sband->n_bitrates; i++) { 35 if (!(basic_rates & BIT(i))) 36 continue; 37 if (sband->bitrates[i].bitrate > bitrate) 38 continue; 39 result = &sband->bitrates[i]; 40 } 41 42 return result; 43 } 44 EXPORT_SYMBOL(ieee80211_get_response_rate); 45 46 u32 ieee80211_mandatory_rates(struct ieee80211_supported_band *sband, 47 enum nl80211_bss_scan_width scan_width) 48 { 49 struct ieee80211_rate *bitrates; 50 u32 mandatory_rates = 0; 51 enum ieee80211_rate_flags mandatory_flag; 52 int i; 53 54 if (WARN_ON(!sband)) 55 return 1; 56 57 if (sband->band == NL80211_BAND_2GHZ) { 58 if (scan_width == NL80211_BSS_CHAN_WIDTH_5 || 59 scan_width == NL80211_BSS_CHAN_WIDTH_10) 60 mandatory_flag = IEEE80211_RATE_MANDATORY_G; 61 else 62 mandatory_flag = IEEE80211_RATE_MANDATORY_B; 63 } else { 64 mandatory_flag = IEEE80211_RATE_MANDATORY_A; 65 } 66 67 bitrates = sband->bitrates; 68 for (i = 0; i < sband->n_bitrates; i++) 69 if (bitrates[i].flags & mandatory_flag) 70 mandatory_rates |= BIT(i); 71 return mandatory_rates; 72 } 73 EXPORT_SYMBOL(ieee80211_mandatory_rates); 74 75 int ieee80211_channel_to_frequency(int chan, enum nl80211_band band) 76 { 77 /* see 802.11 17.3.8.3.2 and Annex J 78 * there are overlapping channel numbers in 5GHz and 2GHz bands */ 79 if (chan <= 0) 80 return 0; /* not supported */ 81 switch (band) { 82 case NL80211_BAND_2GHZ: 83 if (chan == 14) 84 return 2484; 85 else if (chan < 14) 86 return 2407 + chan * 5; 87 break; 88 case NL80211_BAND_5GHZ: 89 if (chan >= 182 && chan <= 196) 90 return 4000 + chan * 5; 91 else 92 return 5000 + chan * 5; 93 break; 94 case NL80211_BAND_6GHZ: 95 /* see 802.11ax D4.1 27.3.22.2 */ 96 if (chan <= 253) 97 return 5940 + chan * 5; 98 break; 99 case NL80211_BAND_60GHZ: 100 if (chan < 7) 101 return 56160 + chan * 2160; 102 break; 103 default: 104 ; 105 } 106 return 0; /* not supported */ 107 } 108 EXPORT_SYMBOL(ieee80211_channel_to_frequency); 109 110 int ieee80211_frequency_to_channel(int freq) 111 { 112 /* see 802.11 17.3.8.3.2 and Annex J */ 113 if (freq == 2484) 114 return 14; 115 else if (freq < 2484) 116 return (freq - 2407) / 5; 117 else if (freq >= 4910 && freq <= 4980) 118 return (freq - 4000) / 5; 119 else if (freq < 5945) 120 return (freq - 5000) / 5; 121 else if (freq <= 45000) /* DMG band lower limit */ 122 /* see 802.11ax D4.1 27.3.22.2 */ 123 return (freq - 5940) / 5; 124 else if (freq >= 58320 && freq <= 70200) 125 return (freq - 56160) / 2160; 126 else 127 return 0; 128 } 129 EXPORT_SYMBOL(ieee80211_frequency_to_channel); 130 131 struct ieee80211_channel *ieee80211_get_channel(struct wiphy *wiphy, int freq) 132 { 133 enum nl80211_band band; 134 struct ieee80211_supported_band *sband; 135 int i; 136 137 for (band = 0; band < NUM_NL80211_BANDS; band++) { 138 sband = wiphy->bands[band]; 139 140 if (!sband) 141 continue; 142 143 for (i = 0; i < sband->n_channels; i++) { 144 if (sband->channels[i].center_freq == freq) 145 return &sband->channels[i]; 146 } 147 } 148 149 return NULL; 150 } 151 EXPORT_SYMBOL(ieee80211_get_channel); 152 153 static void set_mandatory_flags_band(struct ieee80211_supported_band *sband) 154 { 155 int i, want; 156 157 switch (sband->band) { 158 case NL80211_BAND_5GHZ: 159 case NL80211_BAND_6GHZ: 160 want = 3; 161 for (i = 0; i < sband->n_bitrates; i++) { 162 if (sband->bitrates[i].bitrate == 60 || 163 sband->bitrates[i].bitrate == 120 || 164 sband->bitrates[i].bitrate == 240) { 165 sband->bitrates[i].flags |= 166 IEEE80211_RATE_MANDATORY_A; 167 want--; 168 } 169 } 170 WARN_ON(want); 171 break; 172 case NL80211_BAND_2GHZ: 173 want = 7; 174 for (i = 0; i < sband->n_bitrates; i++) { 175 switch (sband->bitrates[i].bitrate) { 176 case 10: 177 case 20: 178 case 55: 179 case 110: 180 sband->bitrates[i].flags |= 181 IEEE80211_RATE_MANDATORY_B | 182 IEEE80211_RATE_MANDATORY_G; 183 want--; 184 break; 185 case 60: 186 case 120: 187 case 240: 188 sband->bitrates[i].flags |= 189 IEEE80211_RATE_MANDATORY_G; 190 want--; 191 /* fall through */ 192 default: 193 sband->bitrates[i].flags |= 194 IEEE80211_RATE_ERP_G; 195 break; 196 } 197 } 198 WARN_ON(want != 0 && want != 3); 199 break; 200 case NL80211_BAND_60GHZ: 201 /* check for mandatory HT MCS 1..4 */ 202 WARN_ON(!sband->ht_cap.ht_supported); 203 WARN_ON((sband->ht_cap.mcs.rx_mask[0] & 0x1e) != 0x1e); 204 break; 205 case NUM_NL80211_BANDS: 206 default: 207 WARN_ON(1); 208 break; 209 } 210 } 211 212 void ieee80211_set_bitrate_flags(struct wiphy *wiphy) 213 { 214 enum nl80211_band band; 215 216 for (band = 0; band < NUM_NL80211_BANDS; band++) 217 if (wiphy->bands[band]) 218 set_mandatory_flags_band(wiphy->bands[band]); 219 } 220 221 bool cfg80211_supported_cipher_suite(struct wiphy *wiphy, u32 cipher) 222 { 223 int i; 224 for (i = 0; i < wiphy->n_cipher_suites; i++) 225 if (cipher == wiphy->cipher_suites[i]) 226 return true; 227 return false; 228 } 229 230 int cfg80211_validate_key_settings(struct cfg80211_registered_device *rdev, 231 struct key_params *params, int key_idx, 232 bool pairwise, const u8 *mac_addr) 233 { 234 int max_key_idx = 5; 235 236 if (wiphy_ext_feature_isset(&rdev->wiphy, 237 NL80211_EXT_FEATURE_BEACON_PROTECTION)) 238 max_key_idx = 7; 239 if (key_idx < 0 || key_idx > max_key_idx) 240 return -EINVAL; 241 242 if (!pairwise && mac_addr && !(rdev->wiphy.flags & WIPHY_FLAG_IBSS_RSN)) 243 return -EINVAL; 244 245 if (pairwise && !mac_addr) 246 return -EINVAL; 247 248 switch (params->cipher) { 249 case WLAN_CIPHER_SUITE_TKIP: 250 /* Extended Key ID can only be used with CCMP/GCMP ciphers */ 251 if ((pairwise && key_idx) || 252 params->mode != NL80211_KEY_RX_TX) 253 return -EINVAL; 254 break; 255 case WLAN_CIPHER_SUITE_CCMP: 256 case WLAN_CIPHER_SUITE_CCMP_256: 257 case WLAN_CIPHER_SUITE_GCMP: 258 case WLAN_CIPHER_SUITE_GCMP_256: 259 /* IEEE802.11-2016 allows only 0 and - when supporting 260 * Extended Key ID - 1 as index for pairwise keys. 261 * @NL80211_KEY_NO_TX is only allowed for pairwise keys when 262 * the driver supports Extended Key ID. 263 * @NL80211_KEY_SET_TX can't be set when installing and 264 * validating a key. 265 */ 266 if ((params->mode == NL80211_KEY_NO_TX && !pairwise) || 267 params->mode == NL80211_KEY_SET_TX) 268 return -EINVAL; 269 if (wiphy_ext_feature_isset(&rdev->wiphy, 270 NL80211_EXT_FEATURE_EXT_KEY_ID)) { 271 if (pairwise && (key_idx < 0 || key_idx > 1)) 272 return -EINVAL; 273 } else if (pairwise && key_idx) { 274 return -EINVAL; 275 } 276 break; 277 case WLAN_CIPHER_SUITE_AES_CMAC: 278 case WLAN_CIPHER_SUITE_BIP_CMAC_256: 279 case WLAN_CIPHER_SUITE_BIP_GMAC_128: 280 case WLAN_CIPHER_SUITE_BIP_GMAC_256: 281 /* Disallow BIP (group-only) cipher as pairwise cipher */ 282 if (pairwise) 283 return -EINVAL; 284 if (key_idx < 4) 285 return -EINVAL; 286 break; 287 case WLAN_CIPHER_SUITE_WEP40: 288 case WLAN_CIPHER_SUITE_WEP104: 289 if (key_idx > 3) 290 return -EINVAL; 291 default: 292 break; 293 } 294 295 switch (params->cipher) { 296 case WLAN_CIPHER_SUITE_WEP40: 297 if (params->key_len != WLAN_KEY_LEN_WEP40) 298 return -EINVAL; 299 break; 300 case WLAN_CIPHER_SUITE_TKIP: 301 if (params->key_len != WLAN_KEY_LEN_TKIP) 302 return -EINVAL; 303 break; 304 case WLAN_CIPHER_SUITE_CCMP: 305 if (params->key_len != WLAN_KEY_LEN_CCMP) 306 return -EINVAL; 307 break; 308 case WLAN_CIPHER_SUITE_CCMP_256: 309 if (params->key_len != WLAN_KEY_LEN_CCMP_256) 310 return -EINVAL; 311 break; 312 case WLAN_CIPHER_SUITE_GCMP: 313 if (params->key_len != WLAN_KEY_LEN_GCMP) 314 return -EINVAL; 315 break; 316 case WLAN_CIPHER_SUITE_GCMP_256: 317 if (params->key_len != WLAN_KEY_LEN_GCMP_256) 318 return -EINVAL; 319 break; 320 case WLAN_CIPHER_SUITE_WEP104: 321 if (params->key_len != WLAN_KEY_LEN_WEP104) 322 return -EINVAL; 323 break; 324 case WLAN_CIPHER_SUITE_AES_CMAC: 325 if (params->key_len != WLAN_KEY_LEN_AES_CMAC) 326 return -EINVAL; 327 break; 328 case WLAN_CIPHER_SUITE_BIP_CMAC_256: 329 if (params->key_len != WLAN_KEY_LEN_BIP_CMAC_256) 330 return -EINVAL; 331 break; 332 case WLAN_CIPHER_SUITE_BIP_GMAC_128: 333 if (params->key_len != WLAN_KEY_LEN_BIP_GMAC_128) 334 return -EINVAL; 335 break; 336 case WLAN_CIPHER_SUITE_BIP_GMAC_256: 337 if (params->key_len != WLAN_KEY_LEN_BIP_GMAC_256) 338 return -EINVAL; 339 break; 340 default: 341 /* 342 * We don't know anything about this algorithm, 343 * allow using it -- but the driver must check 344 * all parameters! We still check below whether 345 * or not the driver supports this algorithm, 346 * of course. 347 */ 348 break; 349 } 350 351 if (params->seq) { 352 switch (params->cipher) { 353 case WLAN_CIPHER_SUITE_WEP40: 354 case WLAN_CIPHER_SUITE_WEP104: 355 /* These ciphers do not use key sequence */ 356 return -EINVAL; 357 case WLAN_CIPHER_SUITE_TKIP: 358 case WLAN_CIPHER_SUITE_CCMP: 359 case WLAN_CIPHER_SUITE_CCMP_256: 360 case WLAN_CIPHER_SUITE_GCMP: 361 case WLAN_CIPHER_SUITE_GCMP_256: 362 case WLAN_CIPHER_SUITE_AES_CMAC: 363 case WLAN_CIPHER_SUITE_BIP_CMAC_256: 364 case WLAN_CIPHER_SUITE_BIP_GMAC_128: 365 case WLAN_CIPHER_SUITE_BIP_GMAC_256: 366 if (params->seq_len != 6) 367 return -EINVAL; 368 break; 369 } 370 } 371 372 if (!cfg80211_supported_cipher_suite(&rdev->wiphy, params->cipher)) 373 return -EINVAL; 374 375 return 0; 376 } 377 378 unsigned int __attribute_const__ ieee80211_hdrlen(__le16 fc) 379 { 380 unsigned int hdrlen = 24; 381 382 if (ieee80211_is_data(fc)) { 383 if (ieee80211_has_a4(fc)) 384 hdrlen = 30; 385 if (ieee80211_is_data_qos(fc)) { 386 hdrlen += IEEE80211_QOS_CTL_LEN; 387 if (ieee80211_has_order(fc)) 388 hdrlen += IEEE80211_HT_CTL_LEN; 389 } 390 goto out; 391 } 392 393 if (ieee80211_is_mgmt(fc)) { 394 if (ieee80211_has_order(fc)) 395 hdrlen += IEEE80211_HT_CTL_LEN; 396 goto out; 397 } 398 399 if (ieee80211_is_ctl(fc)) { 400 /* 401 * ACK and CTS are 10 bytes, all others 16. To see how 402 * to get this condition consider 403 * subtype mask: 0b0000000011110000 (0x00F0) 404 * ACK subtype: 0b0000000011010000 (0x00D0) 405 * CTS subtype: 0b0000000011000000 (0x00C0) 406 * bits that matter: ^^^ (0x00E0) 407 * value of those: 0b0000000011000000 (0x00C0) 408 */ 409 if ((fc & cpu_to_le16(0x00E0)) == cpu_to_le16(0x00C0)) 410 hdrlen = 10; 411 else 412 hdrlen = 16; 413 } 414 out: 415 return hdrlen; 416 } 417 EXPORT_SYMBOL(ieee80211_hdrlen); 418 419 unsigned int ieee80211_get_hdrlen_from_skb(const struct sk_buff *skb) 420 { 421 const struct ieee80211_hdr *hdr = 422 (const struct ieee80211_hdr *)skb->data; 423 unsigned int hdrlen; 424 425 if (unlikely(skb->len < 10)) 426 return 0; 427 hdrlen = ieee80211_hdrlen(hdr->frame_control); 428 if (unlikely(hdrlen > skb->len)) 429 return 0; 430 return hdrlen; 431 } 432 EXPORT_SYMBOL(ieee80211_get_hdrlen_from_skb); 433 434 static unsigned int __ieee80211_get_mesh_hdrlen(u8 flags) 435 { 436 int ae = flags & MESH_FLAGS_AE; 437 /* 802.11-2012, 8.2.4.7.3 */ 438 switch (ae) { 439 default: 440 case 0: 441 return 6; 442 case MESH_FLAGS_AE_A4: 443 return 12; 444 case MESH_FLAGS_AE_A5_A6: 445 return 18; 446 } 447 } 448 449 unsigned int ieee80211_get_mesh_hdrlen(struct ieee80211s_hdr *meshhdr) 450 { 451 return __ieee80211_get_mesh_hdrlen(meshhdr->flags); 452 } 453 EXPORT_SYMBOL(ieee80211_get_mesh_hdrlen); 454 455 int ieee80211_data_to_8023_exthdr(struct sk_buff *skb, struct ethhdr *ehdr, 456 const u8 *addr, enum nl80211_iftype iftype, 457 u8 data_offset) 458 { 459 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data; 460 struct { 461 u8 hdr[ETH_ALEN] __aligned(2); 462 __be16 proto; 463 } payload; 464 struct ethhdr tmp; 465 u16 hdrlen; 466 u8 mesh_flags = 0; 467 468 if (unlikely(!ieee80211_is_data_present(hdr->frame_control))) 469 return -1; 470 471 hdrlen = ieee80211_hdrlen(hdr->frame_control) + data_offset; 472 if (skb->len < hdrlen + 8) 473 return -1; 474 475 /* convert IEEE 802.11 header + possible LLC headers into Ethernet 476 * header 477 * IEEE 802.11 address fields: 478 * ToDS FromDS Addr1 Addr2 Addr3 Addr4 479 * 0 0 DA SA BSSID n/a 480 * 0 1 DA BSSID SA n/a 481 * 1 0 BSSID SA DA n/a 482 * 1 1 RA TA DA SA 483 */ 484 memcpy(tmp.h_dest, ieee80211_get_DA(hdr), ETH_ALEN); 485 memcpy(tmp.h_source, ieee80211_get_SA(hdr), ETH_ALEN); 486 487 if (iftype == NL80211_IFTYPE_MESH_POINT) 488 skb_copy_bits(skb, hdrlen, &mesh_flags, 1); 489 490 mesh_flags &= MESH_FLAGS_AE; 491 492 switch (hdr->frame_control & 493 cpu_to_le16(IEEE80211_FCTL_TODS | IEEE80211_FCTL_FROMDS)) { 494 case cpu_to_le16(IEEE80211_FCTL_TODS): 495 if (unlikely(iftype != NL80211_IFTYPE_AP && 496 iftype != NL80211_IFTYPE_AP_VLAN && 497 iftype != NL80211_IFTYPE_P2P_GO)) 498 return -1; 499 break; 500 case cpu_to_le16(IEEE80211_FCTL_TODS | IEEE80211_FCTL_FROMDS): 501 if (unlikely(iftype != NL80211_IFTYPE_WDS && 502 iftype != NL80211_IFTYPE_MESH_POINT && 503 iftype != NL80211_IFTYPE_AP_VLAN && 504 iftype != NL80211_IFTYPE_STATION)) 505 return -1; 506 if (iftype == NL80211_IFTYPE_MESH_POINT) { 507 if (mesh_flags == MESH_FLAGS_AE_A4) 508 return -1; 509 if (mesh_flags == MESH_FLAGS_AE_A5_A6) { 510 skb_copy_bits(skb, hdrlen + 511 offsetof(struct ieee80211s_hdr, eaddr1), 512 tmp.h_dest, 2 * ETH_ALEN); 513 } 514 hdrlen += __ieee80211_get_mesh_hdrlen(mesh_flags); 515 } 516 break; 517 case cpu_to_le16(IEEE80211_FCTL_FROMDS): 518 if ((iftype != NL80211_IFTYPE_STATION && 519 iftype != NL80211_IFTYPE_P2P_CLIENT && 520 iftype != NL80211_IFTYPE_MESH_POINT) || 521 (is_multicast_ether_addr(tmp.h_dest) && 522 ether_addr_equal(tmp.h_source, addr))) 523 return -1; 524 if (iftype == NL80211_IFTYPE_MESH_POINT) { 525 if (mesh_flags == MESH_FLAGS_AE_A5_A6) 526 return -1; 527 if (mesh_flags == MESH_FLAGS_AE_A4) 528 skb_copy_bits(skb, hdrlen + 529 offsetof(struct ieee80211s_hdr, eaddr1), 530 tmp.h_source, ETH_ALEN); 531 hdrlen += __ieee80211_get_mesh_hdrlen(mesh_flags); 532 } 533 break; 534 case cpu_to_le16(0): 535 if (iftype != NL80211_IFTYPE_ADHOC && 536 iftype != NL80211_IFTYPE_STATION && 537 iftype != NL80211_IFTYPE_OCB) 538 return -1; 539 break; 540 } 541 542 skb_copy_bits(skb, hdrlen, &payload, sizeof(payload)); 543 tmp.h_proto = payload.proto; 544 545 if (likely((ether_addr_equal(payload.hdr, rfc1042_header) && 546 tmp.h_proto != htons(ETH_P_AARP) && 547 tmp.h_proto != htons(ETH_P_IPX)) || 548 ether_addr_equal(payload.hdr, bridge_tunnel_header))) 549 /* remove RFC1042 or Bridge-Tunnel encapsulation and 550 * replace EtherType */ 551 hdrlen += ETH_ALEN + 2; 552 else 553 tmp.h_proto = htons(skb->len - hdrlen); 554 555 pskb_pull(skb, hdrlen); 556 557 if (!ehdr) 558 ehdr = skb_push(skb, sizeof(struct ethhdr)); 559 memcpy(ehdr, &tmp, sizeof(tmp)); 560 561 return 0; 562 } 563 EXPORT_SYMBOL(ieee80211_data_to_8023_exthdr); 564 565 static void 566 __frame_add_frag(struct sk_buff *skb, struct page *page, 567 void *ptr, int len, int size) 568 { 569 struct skb_shared_info *sh = skb_shinfo(skb); 570 int page_offset; 571 572 get_page(page); 573 page_offset = ptr - page_address(page); 574 skb_add_rx_frag(skb, sh->nr_frags, page, page_offset, len, size); 575 } 576 577 static void 578 __ieee80211_amsdu_copy_frag(struct sk_buff *skb, struct sk_buff *frame, 579 int offset, int len) 580 { 581 struct skb_shared_info *sh = skb_shinfo(skb); 582 const skb_frag_t *frag = &sh->frags[0]; 583 struct page *frag_page; 584 void *frag_ptr; 585 int frag_len, frag_size; 586 int head_size = skb->len - skb->data_len; 587 int cur_len; 588 589 frag_page = virt_to_head_page(skb->head); 590 frag_ptr = skb->data; 591 frag_size = head_size; 592 593 while (offset >= frag_size) { 594 offset -= frag_size; 595 frag_page = skb_frag_page(frag); 596 frag_ptr = skb_frag_address(frag); 597 frag_size = skb_frag_size(frag); 598 frag++; 599 } 600 601 frag_ptr += offset; 602 frag_len = frag_size - offset; 603 604 cur_len = min(len, frag_len); 605 606 __frame_add_frag(frame, frag_page, frag_ptr, cur_len, frag_size); 607 len -= cur_len; 608 609 while (len > 0) { 610 frag_len = skb_frag_size(frag); 611 cur_len = min(len, frag_len); 612 __frame_add_frag(frame, skb_frag_page(frag), 613 skb_frag_address(frag), cur_len, frag_len); 614 len -= cur_len; 615 frag++; 616 } 617 } 618 619 static struct sk_buff * 620 __ieee80211_amsdu_copy(struct sk_buff *skb, unsigned int hlen, 621 int offset, int len, bool reuse_frag) 622 { 623 struct sk_buff *frame; 624 int cur_len = len; 625 626 if (skb->len - offset < len) 627 return NULL; 628 629 /* 630 * When reusing framents, copy some data to the head to simplify 631 * ethernet header handling and speed up protocol header processing 632 * in the stack later. 633 */ 634 if (reuse_frag) 635 cur_len = min_t(int, len, 32); 636 637 /* 638 * Allocate and reserve two bytes more for payload 639 * alignment since sizeof(struct ethhdr) is 14. 640 */ 641 frame = dev_alloc_skb(hlen + sizeof(struct ethhdr) + 2 + cur_len); 642 if (!frame) 643 return NULL; 644 645 skb_reserve(frame, hlen + sizeof(struct ethhdr) + 2); 646 skb_copy_bits(skb, offset, skb_put(frame, cur_len), cur_len); 647 648 len -= cur_len; 649 if (!len) 650 return frame; 651 652 offset += cur_len; 653 __ieee80211_amsdu_copy_frag(skb, frame, offset, len); 654 655 return frame; 656 } 657 658 void ieee80211_amsdu_to_8023s(struct sk_buff *skb, struct sk_buff_head *list, 659 const u8 *addr, enum nl80211_iftype iftype, 660 const unsigned int extra_headroom, 661 const u8 *check_da, const u8 *check_sa) 662 { 663 unsigned int hlen = ALIGN(extra_headroom, 4); 664 struct sk_buff *frame = NULL; 665 u16 ethertype; 666 u8 *payload; 667 int offset = 0, remaining; 668 struct ethhdr eth; 669 bool reuse_frag = skb->head_frag && !skb_has_frag_list(skb); 670 bool reuse_skb = false; 671 bool last = false; 672 673 while (!last) { 674 unsigned int subframe_len; 675 int len; 676 u8 padding; 677 678 skb_copy_bits(skb, offset, ð, sizeof(eth)); 679 len = ntohs(eth.h_proto); 680 subframe_len = sizeof(struct ethhdr) + len; 681 padding = (4 - subframe_len) & 0x3; 682 683 /* the last MSDU has no padding */ 684 remaining = skb->len - offset; 685 if (subframe_len > remaining) 686 goto purge; 687 688 offset += sizeof(struct ethhdr); 689 last = remaining <= subframe_len + padding; 690 691 /* FIXME: should we really accept multicast DA? */ 692 if ((check_da && !is_multicast_ether_addr(eth.h_dest) && 693 !ether_addr_equal(check_da, eth.h_dest)) || 694 (check_sa && !ether_addr_equal(check_sa, eth.h_source))) { 695 offset += len + padding; 696 continue; 697 } 698 699 /* reuse skb for the last subframe */ 700 if (!skb_is_nonlinear(skb) && !reuse_frag && last) { 701 skb_pull(skb, offset); 702 frame = skb; 703 reuse_skb = true; 704 } else { 705 frame = __ieee80211_amsdu_copy(skb, hlen, offset, len, 706 reuse_frag); 707 if (!frame) 708 goto purge; 709 710 offset += len + padding; 711 } 712 713 skb_reset_network_header(frame); 714 frame->dev = skb->dev; 715 frame->priority = skb->priority; 716 717 payload = frame->data; 718 ethertype = (payload[6] << 8) | payload[7]; 719 if (likely((ether_addr_equal(payload, rfc1042_header) && 720 ethertype != ETH_P_AARP && ethertype != ETH_P_IPX) || 721 ether_addr_equal(payload, bridge_tunnel_header))) { 722 eth.h_proto = htons(ethertype); 723 skb_pull(frame, ETH_ALEN + 2); 724 } 725 726 memcpy(skb_push(frame, sizeof(eth)), ð, sizeof(eth)); 727 __skb_queue_tail(list, frame); 728 } 729 730 if (!reuse_skb) 731 dev_kfree_skb(skb); 732 733 return; 734 735 purge: 736 __skb_queue_purge(list); 737 dev_kfree_skb(skb); 738 } 739 EXPORT_SYMBOL(ieee80211_amsdu_to_8023s); 740 741 /* Given a data frame determine the 802.1p/1d tag to use. */ 742 unsigned int cfg80211_classify8021d(struct sk_buff *skb, 743 struct cfg80211_qos_map *qos_map) 744 { 745 unsigned int dscp; 746 unsigned char vlan_priority; 747 unsigned int ret; 748 749 /* skb->priority values from 256->263 are magic values to 750 * directly indicate a specific 802.1d priority. This is used 751 * to allow 802.1d priority to be passed directly in from VLAN 752 * tags, etc. 753 */ 754 if (skb->priority >= 256 && skb->priority <= 263) { 755 ret = skb->priority - 256; 756 goto out; 757 } 758 759 if (skb_vlan_tag_present(skb)) { 760 vlan_priority = (skb_vlan_tag_get(skb) & VLAN_PRIO_MASK) 761 >> VLAN_PRIO_SHIFT; 762 if (vlan_priority > 0) { 763 ret = vlan_priority; 764 goto out; 765 } 766 } 767 768 switch (skb->protocol) { 769 case htons(ETH_P_IP): 770 dscp = ipv4_get_dsfield(ip_hdr(skb)) & 0xfc; 771 break; 772 case htons(ETH_P_IPV6): 773 dscp = ipv6_get_dsfield(ipv6_hdr(skb)) & 0xfc; 774 break; 775 case htons(ETH_P_MPLS_UC): 776 case htons(ETH_P_MPLS_MC): { 777 struct mpls_label mpls_tmp, *mpls; 778 779 mpls = skb_header_pointer(skb, sizeof(struct ethhdr), 780 sizeof(*mpls), &mpls_tmp); 781 if (!mpls) 782 return 0; 783 784 ret = (ntohl(mpls->entry) & MPLS_LS_TC_MASK) 785 >> MPLS_LS_TC_SHIFT; 786 goto out; 787 } 788 case htons(ETH_P_80221): 789 /* 802.21 is always network control traffic */ 790 return 7; 791 default: 792 return 0; 793 } 794 795 if (qos_map) { 796 unsigned int i, tmp_dscp = dscp >> 2; 797 798 for (i = 0; i < qos_map->num_des; i++) { 799 if (tmp_dscp == qos_map->dscp_exception[i].dscp) { 800 ret = qos_map->dscp_exception[i].up; 801 goto out; 802 } 803 } 804 805 for (i = 0; i < 8; i++) { 806 if (tmp_dscp >= qos_map->up[i].low && 807 tmp_dscp <= qos_map->up[i].high) { 808 ret = i; 809 goto out; 810 } 811 } 812 } 813 814 ret = dscp >> 5; 815 out: 816 return array_index_nospec(ret, IEEE80211_NUM_TIDS); 817 } 818 EXPORT_SYMBOL(cfg80211_classify8021d); 819 820 const struct element *ieee80211_bss_get_elem(struct cfg80211_bss *bss, u8 id) 821 { 822 const struct cfg80211_bss_ies *ies; 823 824 ies = rcu_dereference(bss->ies); 825 if (!ies) 826 return NULL; 827 828 return cfg80211_find_elem(id, ies->data, ies->len); 829 } 830 EXPORT_SYMBOL(ieee80211_bss_get_elem); 831 832 void cfg80211_upload_connect_keys(struct wireless_dev *wdev) 833 { 834 struct cfg80211_registered_device *rdev = wiphy_to_rdev(wdev->wiphy); 835 struct net_device *dev = wdev->netdev; 836 int i; 837 838 if (!wdev->connect_keys) 839 return; 840 841 for (i = 0; i < CFG80211_MAX_WEP_KEYS; i++) { 842 if (!wdev->connect_keys->params[i].cipher) 843 continue; 844 if (rdev_add_key(rdev, dev, i, false, NULL, 845 &wdev->connect_keys->params[i])) { 846 netdev_err(dev, "failed to set key %d\n", i); 847 continue; 848 } 849 if (wdev->connect_keys->def == i && 850 rdev_set_default_key(rdev, dev, i, true, true)) { 851 netdev_err(dev, "failed to set defkey %d\n", i); 852 continue; 853 } 854 } 855 856 kzfree(wdev->connect_keys); 857 wdev->connect_keys = NULL; 858 } 859 860 void cfg80211_process_wdev_events(struct wireless_dev *wdev) 861 { 862 struct cfg80211_event *ev; 863 unsigned long flags; 864 865 spin_lock_irqsave(&wdev->event_lock, flags); 866 while (!list_empty(&wdev->event_list)) { 867 ev = list_first_entry(&wdev->event_list, 868 struct cfg80211_event, list); 869 list_del(&ev->list); 870 spin_unlock_irqrestore(&wdev->event_lock, flags); 871 872 wdev_lock(wdev); 873 switch (ev->type) { 874 case EVENT_CONNECT_RESULT: 875 __cfg80211_connect_result( 876 wdev->netdev, 877 &ev->cr, 878 ev->cr.status == WLAN_STATUS_SUCCESS); 879 break; 880 case EVENT_ROAMED: 881 __cfg80211_roamed(wdev, &ev->rm); 882 break; 883 case EVENT_DISCONNECTED: 884 __cfg80211_disconnected(wdev->netdev, 885 ev->dc.ie, ev->dc.ie_len, 886 ev->dc.reason, 887 !ev->dc.locally_generated); 888 break; 889 case EVENT_IBSS_JOINED: 890 __cfg80211_ibss_joined(wdev->netdev, ev->ij.bssid, 891 ev->ij.channel); 892 break; 893 case EVENT_STOPPED: 894 __cfg80211_leave(wiphy_to_rdev(wdev->wiphy), wdev); 895 break; 896 case EVENT_PORT_AUTHORIZED: 897 __cfg80211_port_authorized(wdev, ev->pa.bssid); 898 break; 899 } 900 wdev_unlock(wdev); 901 902 kfree(ev); 903 904 spin_lock_irqsave(&wdev->event_lock, flags); 905 } 906 spin_unlock_irqrestore(&wdev->event_lock, flags); 907 } 908 909 void cfg80211_process_rdev_events(struct cfg80211_registered_device *rdev) 910 { 911 struct wireless_dev *wdev; 912 913 ASSERT_RTNL(); 914 915 list_for_each_entry(wdev, &rdev->wiphy.wdev_list, list) 916 cfg80211_process_wdev_events(wdev); 917 } 918 919 int cfg80211_change_iface(struct cfg80211_registered_device *rdev, 920 struct net_device *dev, enum nl80211_iftype ntype, 921 struct vif_params *params) 922 { 923 int err; 924 enum nl80211_iftype otype = dev->ieee80211_ptr->iftype; 925 926 ASSERT_RTNL(); 927 928 /* don't support changing VLANs, you just re-create them */ 929 if (otype == NL80211_IFTYPE_AP_VLAN) 930 return -EOPNOTSUPP; 931 932 /* cannot change into P2P device or NAN */ 933 if (ntype == NL80211_IFTYPE_P2P_DEVICE || 934 ntype == NL80211_IFTYPE_NAN) 935 return -EOPNOTSUPP; 936 937 if (!rdev->ops->change_virtual_intf || 938 !(rdev->wiphy.interface_modes & (1 << ntype))) 939 return -EOPNOTSUPP; 940 941 /* if it's part of a bridge, reject changing type to station/ibss */ 942 if (netif_is_bridge_port(dev) && 943 (ntype == NL80211_IFTYPE_ADHOC || 944 ntype == NL80211_IFTYPE_STATION || 945 ntype == NL80211_IFTYPE_P2P_CLIENT)) 946 return -EBUSY; 947 948 if (ntype != otype) { 949 dev->ieee80211_ptr->use_4addr = false; 950 dev->ieee80211_ptr->mesh_id_up_len = 0; 951 wdev_lock(dev->ieee80211_ptr); 952 rdev_set_qos_map(rdev, dev, NULL); 953 wdev_unlock(dev->ieee80211_ptr); 954 955 switch (otype) { 956 case NL80211_IFTYPE_AP: 957 cfg80211_stop_ap(rdev, dev, true); 958 break; 959 case NL80211_IFTYPE_ADHOC: 960 cfg80211_leave_ibss(rdev, dev, false); 961 break; 962 case NL80211_IFTYPE_STATION: 963 case NL80211_IFTYPE_P2P_CLIENT: 964 wdev_lock(dev->ieee80211_ptr); 965 cfg80211_disconnect(rdev, dev, 966 WLAN_REASON_DEAUTH_LEAVING, true); 967 wdev_unlock(dev->ieee80211_ptr); 968 break; 969 case NL80211_IFTYPE_MESH_POINT: 970 /* mesh should be handled? */ 971 break; 972 default: 973 break; 974 } 975 976 cfg80211_process_rdev_events(rdev); 977 cfg80211_mlme_purge_registrations(dev->ieee80211_ptr); 978 } 979 980 err = rdev_change_virtual_intf(rdev, dev, ntype, params); 981 982 WARN_ON(!err && dev->ieee80211_ptr->iftype != ntype); 983 984 if (!err && params && params->use_4addr != -1) 985 dev->ieee80211_ptr->use_4addr = params->use_4addr; 986 987 if (!err) { 988 dev->priv_flags &= ~IFF_DONT_BRIDGE; 989 switch (ntype) { 990 case NL80211_IFTYPE_STATION: 991 if (dev->ieee80211_ptr->use_4addr) 992 break; 993 /* fall through */ 994 case NL80211_IFTYPE_OCB: 995 case NL80211_IFTYPE_P2P_CLIENT: 996 case NL80211_IFTYPE_ADHOC: 997 dev->priv_flags |= IFF_DONT_BRIDGE; 998 break; 999 case NL80211_IFTYPE_P2P_GO: 1000 case NL80211_IFTYPE_AP: 1001 case NL80211_IFTYPE_AP_VLAN: 1002 case NL80211_IFTYPE_WDS: 1003 case NL80211_IFTYPE_MESH_POINT: 1004 /* bridging OK */ 1005 break; 1006 case NL80211_IFTYPE_MONITOR: 1007 /* monitor can't bridge anyway */ 1008 break; 1009 case NL80211_IFTYPE_UNSPECIFIED: 1010 case NUM_NL80211_IFTYPES: 1011 /* not happening */ 1012 break; 1013 case NL80211_IFTYPE_P2P_DEVICE: 1014 case NL80211_IFTYPE_NAN: 1015 WARN_ON(1); 1016 break; 1017 } 1018 } 1019 1020 if (!err && ntype != otype && netif_running(dev)) { 1021 cfg80211_update_iface_num(rdev, ntype, 1); 1022 cfg80211_update_iface_num(rdev, otype, -1); 1023 } 1024 1025 return err; 1026 } 1027 1028 static u32 cfg80211_calculate_bitrate_ht(struct rate_info *rate) 1029 { 1030 int modulation, streams, bitrate; 1031 1032 /* the formula below does only work for MCS values smaller than 32 */ 1033 if (WARN_ON_ONCE(rate->mcs >= 32)) 1034 return 0; 1035 1036 modulation = rate->mcs & 7; 1037 streams = (rate->mcs >> 3) + 1; 1038 1039 bitrate = (rate->bw == RATE_INFO_BW_40) ? 13500000 : 6500000; 1040 1041 if (modulation < 4) 1042 bitrate *= (modulation + 1); 1043 else if (modulation == 4) 1044 bitrate *= (modulation + 2); 1045 else 1046 bitrate *= (modulation + 3); 1047 1048 bitrate *= streams; 1049 1050 if (rate->flags & RATE_INFO_FLAGS_SHORT_GI) 1051 bitrate = (bitrate / 9) * 10; 1052 1053 /* do NOT round down here */ 1054 return (bitrate + 50000) / 100000; 1055 } 1056 1057 static u32 cfg80211_calculate_bitrate_dmg(struct rate_info *rate) 1058 { 1059 static const u32 __mcs2bitrate[] = { 1060 /* control PHY */ 1061 [0] = 275, 1062 /* SC PHY */ 1063 [1] = 3850, 1064 [2] = 7700, 1065 [3] = 9625, 1066 [4] = 11550, 1067 [5] = 12512, /* 1251.25 mbps */ 1068 [6] = 15400, 1069 [7] = 19250, 1070 [8] = 23100, 1071 [9] = 25025, 1072 [10] = 30800, 1073 [11] = 38500, 1074 [12] = 46200, 1075 /* OFDM PHY */ 1076 [13] = 6930, 1077 [14] = 8662, /* 866.25 mbps */ 1078 [15] = 13860, 1079 [16] = 17325, 1080 [17] = 20790, 1081 [18] = 27720, 1082 [19] = 34650, 1083 [20] = 41580, 1084 [21] = 45045, 1085 [22] = 51975, 1086 [23] = 62370, 1087 [24] = 67568, /* 6756.75 mbps */ 1088 /* LP-SC PHY */ 1089 [25] = 6260, 1090 [26] = 8340, 1091 [27] = 11120, 1092 [28] = 12510, 1093 [29] = 16680, 1094 [30] = 22240, 1095 [31] = 25030, 1096 }; 1097 1098 if (WARN_ON_ONCE(rate->mcs >= ARRAY_SIZE(__mcs2bitrate))) 1099 return 0; 1100 1101 return __mcs2bitrate[rate->mcs]; 1102 } 1103 1104 static u32 cfg80211_calculate_bitrate_edmg(struct rate_info *rate) 1105 { 1106 static const u32 __mcs2bitrate[] = { 1107 /* control PHY */ 1108 [0] = 275, 1109 /* SC PHY */ 1110 [1] = 3850, 1111 [2] = 7700, 1112 [3] = 9625, 1113 [4] = 11550, 1114 [5] = 12512, /* 1251.25 mbps */ 1115 [6] = 13475, 1116 [7] = 15400, 1117 [8] = 19250, 1118 [9] = 23100, 1119 [10] = 25025, 1120 [11] = 26950, 1121 [12] = 30800, 1122 [13] = 38500, 1123 [14] = 46200, 1124 [15] = 50050, 1125 [16] = 53900, 1126 [17] = 57750, 1127 [18] = 69300, 1128 [19] = 75075, 1129 [20] = 80850, 1130 }; 1131 1132 if (WARN_ON_ONCE(rate->mcs >= ARRAY_SIZE(__mcs2bitrate))) 1133 return 0; 1134 1135 return __mcs2bitrate[rate->mcs] * rate->n_bonded_ch; 1136 } 1137 1138 static u32 cfg80211_calculate_bitrate_vht(struct rate_info *rate) 1139 { 1140 static const u32 base[4][10] = { 1141 { 6500000, 1142 13000000, 1143 19500000, 1144 26000000, 1145 39000000, 1146 52000000, 1147 58500000, 1148 65000000, 1149 78000000, 1150 /* not in the spec, but some devices use this: */ 1151 86500000, 1152 }, 1153 { 13500000, 1154 27000000, 1155 40500000, 1156 54000000, 1157 81000000, 1158 108000000, 1159 121500000, 1160 135000000, 1161 162000000, 1162 180000000, 1163 }, 1164 { 29300000, 1165 58500000, 1166 87800000, 1167 117000000, 1168 175500000, 1169 234000000, 1170 263300000, 1171 292500000, 1172 351000000, 1173 390000000, 1174 }, 1175 { 58500000, 1176 117000000, 1177 175500000, 1178 234000000, 1179 351000000, 1180 468000000, 1181 526500000, 1182 585000000, 1183 702000000, 1184 780000000, 1185 }, 1186 }; 1187 u32 bitrate; 1188 int idx; 1189 1190 if (rate->mcs > 9) 1191 goto warn; 1192 1193 switch (rate->bw) { 1194 case RATE_INFO_BW_160: 1195 idx = 3; 1196 break; 1197 case RATE_INFO_BW_80: 1198 idx = 2; 1199 break; 1200 case RATE_INFO_BW_40: 1201 idx = 1; 1202 break; 1203 case RATE_INFO_BW_5: 1204 case RATE_INFO_BW_10: 1205 default: 1206 goto warn; 1207 case RATE_INFO_BW_20: 1208 idx = 0; 1209 } 1210 1211 bitrate = base[idx][rate->mcs]; 1212 bitrate *= rate->nss; 1213 1214 if (rate->flags & RATE_INFO_FLAGS_SHORT_GI) 1215 bitrate = (bitrate / 9) * 10; 1216 1217 /* do NOT round down here */ 1218 return (bitrate + 50000) / 100000; 1219 warn: 1220 WARN_ONCE(1, "invalid rate bw=%d, mcs=%d, nss=%d\n", 1221 rate->bw, rate->mcs, rate->nss); 1222 return 0; 1223 } 1224 1225 static u32 cfg80211_calculate_bitrate_he(struct rate_info *rate) 1226 { 1227 #define SCALE 2048 1228 u16 mcs_divisors[12] = { 1229 34133, /* 16.666666... */ 1230 17067, /* 8.333333... */ 1231 11378, /* 5.555555... */ 1232 8533, /* 4.166666... */ 1233 5689, /* 2.777777... */ 1234 4267, /* 2.083333... */ 1235 3923, /* 1.851851... */ 1236 3413, /* 1.666666... */ 1237 2844, /* 1.388888... */ 1238 2560, /* 1.250000... */ 1239 2276, /* 1.111111... */ 1240 2048, /* 1.000000... */ 1241 }; 1242 u32 rates_160M[3] = { 960777777, 907400000, 816666666 }; 1243 u32 rates_969[3] = { 480388888, 453700000, 408333333 }; 1244 u32 rates_484[3] = { 229411111, 216666666, 195000000 }; 1245 u32 rates_242[3] = { 114711111, 108333333, 97500000 }; 1246 u32 rates_106[3] = { 40000000, 37777777, 34000000 }; 1247 u32 rates_52[3] = { 18820000, 17777777, 16000000 }; 1248 u32 rates_26[3] = { 9411111, 8888888, 8000000 }; 1249 u64 tmp; 1250 u32 result; 1251 1252 if (WARN_ON_ONCE(rate->mcs > 11)) 1253 return 0; 1254 1255 if (WARN_ON_ONCE(rate->he_gi > NL80211_RATE_INFO_HE_GI_3_2)) 1256 return 0; 1257 if (WARN_ON_ONCE(rate->he_ru_alloc > 1258 NL80211_RATE_INFO_HE_RU_ALLOC_2x996)) 1259 return 0; 1260 if (WARN_ON_ONCE(rate->nss < 1 || rate->nss > 8)) 1261 return 0; 1262 1263 if (rate->bw == RATE_INFO_BW_160) 1264 result = rates_160M[rate->he_gi]; 1265 else if (rate->bw == RATE_INFO_BW_80 || 1266 (rate->bw == RATE_INFO_BW_HE_RU && 1267 rate->he_ru_alloc == NL80211_RATE_INFO_HE_RU_ALLOC_996)) 1268 result = rates_969[rate->he_gi]; 1269 else if (rate->bw == RATE_INFO_BW_40 || 1270 (rate->bw == RATE_INFO_BW_HE_RU && 1271 rate->he_ru_alloc == NL80211_RATE_INFO_HE_RU_ALLOC_484)) 1272 result = rates_484[rate->he_gi]; 1273 else if (rate->bw == RATE_INFO_BW_20 || 1274 (rate->bw == RATE_INFO_BW_HE_RU && 1275 rate->he_ru_alloc == NL80211_RATE_INFO_HE_RU_ALLOC_242)) 1276 result = rates_242[rate->he_gi]; 1277 else if (rate->bw == RATE_INFO_BW_HE_RU && 1278 rate->he_ru_alloc == NL80211_RATE_INFO_HE_RU_ALLOC_106) 1279 result = rates_106[rate->he_gi]; 1280 else if (rate->bw == RATE_INFO_BW_HE_RU && 1281 rate->he_ru_alloc == NL80211_RATE_INFO_HE_RU_ALLOC_52) 1282 result = rates_52[rate->he_gi]; 1283 else if (rate->bw == RATE_INFO_BW_HE_RU && 1284 rate->he_ru_alloc == NL80211_RATE_INFO_HE_RU_ALLOC_26) 1285 result = rates_26[rate->he_gi]; 1286 else { 1287 WARN(1, "invalid HE MCS: bw:%d, ru:%d\n", 1288 rate->bw, rate->he_ru_alloc); 1289 return 0; 1290 } 1291 1292 /* now scale to the appropriate MCS */ 1293 tmp = result; 1294 tmp *= SCALE; 1295 do_div(tmp, mcs_divisors[rate->mcs]); 1296 result = tmp; 1297 1298 /* and take NSS, DCM into account */ 1299 result = (result * rate->nss) / 8; 1300 if (rate->he_dcm) 1301 result /= 2; 1302 1303 return result / 10000; 1304 } 1305 1306 u32 cfg80211_calculate_bitrate(struct rate_info *rate) 1307 { 1308 if (rate->flags & RATE_INFO_FLAGS_MCS) 1309 return cfg80211_calculate_bitrate_ht(rate); 1310 if (rate->flags & RATE_INFO_FLAGS_DMG) 1311 return cfg80211_calculate_bitrate_dmg(rate); 1312 if (rate->flags & RATE_INFO_FLAGS_EDMG) 1313 return cfg80211_calculate_bitrate_edmg(rate); 1314 if (rate->flags & RATE_INFO_FLAGS_VHT_MCS) 1315 return cfg80211_calculate_bitrate_vht(rate); 1316 if (rate->flags & RATE_INFO_FLAGS_HE_MCS) 1317 return cfg80211_calculate_bitrate_he(rate); 1318 1319 return rate->legacy; 1320 } 1321 EXPORT_SYMBOL(cfg80211_calculate_bitrate); 1322 1323 int cfg80211_get_p2p_attr(const u8 *ies, unsigned int len, 1324 enum ieee80211_p2p_attr_id attr, 1325 u8 *buf, unsigned int bufsize) 1326 { 1327 u8 *out = buf; 1328 u16 attr_remaining = 0; 1329 bool desired_attr = false; 1330 u16 desired_len = 0; 1331 1332 while (len > 0) { 1333 unsigned int iedatalen; 1334 unsigned int copy; 1335 const u8 *iedata; 1336 1337 if (len < 2) 1338 return -EILSEQ; 1339 iedatalen = ies[1]; 1340 if (iedatalen + 2 > len) 1341 return -EILSEQ; 1342 1343 if (ies[0] != WLAN_EID_VENDOR_SPECIFIC) 1344 goto cont; 1345 1346 if (iedatalen < 4) 1347 goto cont; 1348 1349 iedata = ies + 2; 1350 1351 /* check WFA OUI, P2P subtype */ 1352 if (iedata[0] != 0x50 || iedata[1] != 0x6f || 1353 iedata[2] != 0x9a || iedata[3] != 0x09) 1354 goto cont; 1355 1356 iedatalen -= 4; 1357 iedata += 4; 1358 1359 /* check attribute continuation into this IE */ 1360 copy = min_t(unsigned int, attr_remaining, iedatalen); 1361 if (copy && desired_attr) { 1362 desired_len += copy; 1363 if (out) { 1364 memcpy(out, iedata, min(bufsize, copy)); 1365 out += min(bufsize, copy); 1366 bufsize -= min(bufsize, copy); 1367 } 1368 1369 1370 if (copy == attr_remaining) 1371 return desired_len; 1372 } 1373 1374 attr_remaining -= copy; 1375 if (attr_remaining) 1376 goto cont; 1377 1378 iedatalen -= copy; 1379 iedata += copy; 1380 1381 while (iedatalen > 0) { 1382 u16 attr_len; 1383 1384 /* P2P attribute ID & size must fit */ 1385 if (iedatalen < 3) 1386 return -EILSEQ; 1387 desired_attr = iedata[0] == attr; 1388 attr_len = get_unaligned_le16(iedata + 1); 1389 iedatalen -= 3; 1390 iedata += 3; 1391 1392 copy = min_t(unsigned int, attr_len, iedatalen); 1393 1394 if (desired_attr) { 1395 desired_len += copy; 1396 if (out) { 1397 memcpy(out, iedata, min(bufsize, copy)); 1398 out += min(bufsize, copy); 1399 bufsize -= min(bufsize, copy); 1400 } 1401 1402 if (copy == attr_len) 1403 return desired_len; 1404 } 1405 1406 iedata += copy; 1407 iedatalen -= copy; 1408 attr_remaining = attr_len - copy; 1409 } 1410 1411 cont: 1412 len -= ies[1] + 2; 1413 ies += ies[1] + 2; 1414 } 1415 1416 if (attr_remaining && desired_attr) 1417 return -EILSEQ; 1418 1419 return -ENOENT; 1420 } 1421 EXPORT_SYMBOL(cfg80211_get_p2p_attr); 1422 1423 static bool ieee80211_id_in_list(const u8 *ids, int n_ids, u8 id, bool id_ext) 1424 { 1425 int i; 1426 1427 /* Make sure array values are legal */ 1428 if (WARN_ON(ids[n_ids - 1] == WLAN_EID_EXTENSION)) 1429 return false; 1430 1431 i = 0; 1432 while (i < n_ids) { 1433 if (ids[i] == WLAN_EID_EXTENSION) { 1434 if (id_ext && (ids[i + 1] == id)) 1435 return true; 1436 1437 i += 2; 1438 continue; 1439 } 1440 1441 if (ids[i] == id && !id_ext) 1442 return true; 1443 1444 i++; 1445 } 1446 return false; 1447 } 1448 1449 static size_t skip_ie(const u8 *ies, size_t ielen, size_t pos) 1450 { 1451 /* we assume a validly formed IEs buffer */ 1452 u8 len = ies[pos + 1]; 1453 1454 pos += 2 + len; 1455 1456 /* the IE itself must have 255 bytes for fragments to follow */ 1457 if (len < 255) 1458 return pos; 1459 1460 while (pos < ielen && ies[pos] == WLAN_EID_FRAGMENT) { 1461 len = ies[pos + 1]; 1462 pos += 2 + len; 1463 } 1464 1465 return pos; 1466 } 1467 1468 size_t ieee80211_ie_split_ric(const u8 *ies, size_t ielen, 1469 const u8 *ids, int n_ids, 1470 const u8 *after_ric, int n_after_ric, 1471 size_t offset) 1472 { 1473 size_t pos = offset; 1474 1475 while (pos < ielen) { 1476 u8 ext = 0; 1477 1478 if (ies[pos] == WLAN_EID_EXTENSION) 1479 ext = 2; 1480 if ((pos + ext) >= ielen) 1481 break; 1482 1483 if (!ieee80211_id_in_list(ids, n_ids, ies[pos + ext], 1484 ies[pos] == WLAN_EID_EXTENSION)) 1485 break; 1486 1487 if (ies[pos] == WLAN_EID_RIC_DATA && n_after_ric) { 1488 pos = skip_ie(ies, ielen, pos); 1489 1490 while (pos < ielen) { 1491 if (ies[pos] == WLAN_EID_EXTENSION) 1492 ext = 2; 1493 else 1494 ext = 0; 1495 1496 if ((pos + ext) >= ielen) 1497 break; 1498 1499 if (!ieee80211_id_in_list(after_ric, 1500 n_after_ric, 1501 ies[pos + ext], 1502 ext == 2)) 1503 pos = skip_ie(ies, ielen, pos); 1504 else 1505 break; 1506 } 1507 } else { 1508 pos = skip_ie(ies, ielen, pos); 1509 } 1510 } 1511 1512 return pos; 1513 } 1514 EXPORT_SYMBOL(ieee80211_ie_split_ric); 1515 1516 bool ieee80211_operating_class_to_band(u8 operating_class, 1517 enum nl80211_band *band) 1518 { 1519 switch (operating_class) { 1520 case 112: 1521 case 115 ... 127: 1522 case 128 ... 130: 1523 *band = NL80211_BAND_5GHZ; 1524 return true; 1525 case 131 ... 135: 1526 *band = NL80211_BAND_6GHZ; 1527 return true; 1528 case 81: 1529 case 82: 1530 case 83: 1531 case 84: 1532 *band = NL80211_BAND_2GHZ; 1533 return true; 1534 case 180: 1535 *band = NL80211_BAND_60GHZ; 1536 return true; 1537 } 1538 1539 return false; 1540 } 1541 EXPORT_SYMBOL(ieee80211_operating_class_to_band); 1542 1543 bool ieee80211_chandef_to_operating_class(struct cfg80211_chan_def *chandef, 1544 u8 *op_class) 1545 { 1546 u8 vht_opclass; 1547 u32 freq = chandef->center_freq1; 1548 1549 if (freq >= 2412 && freq <= 2472) { 1550 if (chandef->width > NL80211_CHAN_WIDTH_40) 1551 return false; 1552 1553 /* 2.407 GHz, channels 1..13 */ 1554 if (chandef->width == NL80211_CHAN_WIDTH_40) { 1555 if (freq > chandef->chan->center_freq) 1556 *op_class = 83; /* HT40+ */ 1557 else 1558 *op_class = 84; /* HT40- */ 1559 } else { 1560 *op_class = 81; 1561 } 1562 1563 return true; 1564 } 1565 1566 if (freq == 2484) { 1567 /* channel 14 is only for IEEE 802.11b */ 1568 if (chandef->width != NL80211_CHAN_WIDTH_20_NOHT) 1569 return false; 1570 1571 *op_class = 82; /* channel 14 */ 1572 return true; 1573 } 1574 1575 switch (chandef->width) { 1576 case NL80211_CHAN_WIDTH_80: 1577 vht_opclass = 128; 1578 break; 1579 case NL80211_CHAN_WIDTH_160: 1580 vht_opclass = 129; 1581 break; 1582 case NL80211_CHAN_WIDTH_80P80: 1583 vht_opclass = 130; 1584 break; 1585 case NL80211_CHAN_WIDTH_10: 1586 case NL80211_CHAN_WIDTH_5: 1587 return false; /* unsupported for now */ 1588 default: 1589 vht_opclass = 0; 1590 break; 1591 } 1592 1593 /* 5 GHz, channels 36..48 */ 1594 if (freq >= 5180 && freq <= 5240) { 1595 if (vht_opclass) { 1596 *op_class = vht_opclass; 1597 } else if (chandef->width == NL80211_CHAN_WIDTH_40) { 1598 if (freq > chandef->chan->center_freq) 1599 *op_class = 116; 1600 else 1601 *op_class = 117; 1602 } else { 1603 *op_class = 115; 1604 } 1605 1606 return true; 1607 } 1608 1609 /* 5 GHz, channels 52..64 */ 1610 if (freq >= 5260 && freq <= 5320) { 1611 if (vht_opclass) { 1612 *op_class = vht_opclass; 1613 } else if (chandef->width == NL80211_CHAN_WIDTH_40) { 1614 if (freq > chandef->chan->center_freq) 1615 *op_class = 119; 1616 else 1617 *op_class = 120; 1618 } else { 1619 *op_class = 118; 1620 } 1621 1622 return true; 1623 } 1624 1625 /* 5 GHz, channels 100..144 */ 1626 if (freq >= 5500 && freq <= 5720) { 1627 if (vht_opclass) { 1628 *op_class = vht_opclass; 1629 } else if (chandef->width == NL80211_CHAN_WIDTH_40) { 1630 if (freq > chandef->chan->center_freq) 1631 *op_class = 122; 1632 else 1633 *op_class = 123; 1634 } else { 1635 *op_class = 121; 1636 } 1637 1638 return true; 1639 } 1640 1641 /* 5 GHz, channels 149..169 */ 1642 if (freq >= 5745 && freq <= 5845) { 1643 if (vht_opclass) { 1644 *op_class = vht_opclass; 1645 } else if (chandef->width == NL80211_CHAN_WIDTH_40) { 1646 if (freq > chandef->chan->center_freq) 1647 *op_class = 126; 1648 else 1649 *op_class = 127; 1650 } else if (freq <= 5805) { 1651 *op_class = 124; 1652 } else { 1653 *op_class = 125; 1654 } 1655 1656 return true; 1657 } 1658 1659 /* 56.16 GHz, channel 1..4 */ 1660 if (freq >= 56160 + 2160 * 1 && freq <= 56160 + 2160 * 6) { 1661 if (chandef->width >= NL80211_CHAN_WIDTH_40) 1662 return false; 1663 1664 *op_class = 180; 1665 return true; 1666 } 1667 1668 /* not supported yet */ 1669 return false; 1670 } 1671 EXPORT_SYMBOL(ieee80211_chandef_to_operating_class); 1672 1673 static void cfg80211_calculate_bi_data(struct wiphy *wiphy, u32 new_beacon_int, 1674 u32 *beacon_int_gcd, 1675 bool *beacon_int_different) 1676 { 1677 struct wireless_dev *wdev; 1678 1679 *beacon_int_gcd = 0; 1680 *beacon_int_different = false; 1681 1682 list_for_each_entry(wdev, &wiphy->wdev_list, list) { 1683 if (!wdev->beacon_interval) 1684 continue; 1685 1686 if (!*beacon_int_gcd) { 1687 *beacon_int_gcd = wdev->beacon_interval; 1688 continue; 1689 } 1690 1691 if (wdev->beacon_interval == *beacon_int_gcd) 1692 continue; 1693 1694 *beacon_int_different = true; 1695 *beacon_int_gcd = gcd(*beacon_int_gcd, wdev->beacon_interval); 1696 } 1697 1698 if (new_beacon_int && *beacon_int_gcd != new_beacon_int) { 1699 if (*beacon_int_gcd) 1700 *beacon_int_different = true; 1701 *beacon_int_gcd = gcd(*beacon_int_gcd, new_beacon_int); 1702 } 1703 } 1704 1705 int cfg80211_validate_beacon_int(struct cfg80211_registered_device *rdev, 1706 enum nl80211_iftype iftype, u32 beacon_int) 1707 { 1708 /* 1709 * This is just a basic pre-condition check; if interface combinations 1710 * are possible the driver must already be checking those with a call 1711 * to cfg80211_check_combinations(), in which case we'll validate more 1712 * through the cfg80211_calculate_bi_data() call and code in 1713 * cfg80211_iter_combinations(). 1714 */ 1715 1716 if (beacon_int < 10 || beacon_int > 10000) 1717 return -EINVAL; 1718 1719 return 0; 1720 } 1721 1722 int cfg80211_iter_combinations(struct wiphy *wiphy, 1723 struct iface_combination_params *params, 1724 void (*iter)(const struct ieee80211_iface_combination *c, 1725 void *data), 1726 void *data) 1727 { 1728 const struct ieee80211_regdomain *regdom; 1729 enum nl80211_dfs_regions region = 0; 1730 int i, j, iftype; 1731 int num_interfaces = 0; 1732 u32 used_iftypes = 0; 1733 u32 beacon_int_gcd; 1734 bool beacon_int_different; 1735 1736 /* 1737 * This is a bit strange, since the iteration used to rely only on 1738 * the data given by the driver, but here it now relies on context, 1739 * in form of the currently operating interfaces. 1740 * This is OK for all current users, and saves us from having to 1741 * push the GCD calculations into all the drivers. 1742 * In the future, this should probably rely more on data that's in 1743 * cfg80211 already - the only thing not would appear to be any new 1744 * interfaces (while being brought up) and channel/radar data. 1745 */ 1746 cfg80211_calculate_bi_data(wiphy, params->new_beacon_int, 1747 &beacon_int_gcd, &beacon_int_different); 1748 1749 if (params->radar_detect) { 1750 rcu_read_lock(); 1751 regdom = rcu_dereference(cfg80211_regdomain); 1752 if (regdom) 1753 region = regdom->dfs_region; 1754 rcu_read_unlock(); 1755 } 1756 1757 for (iftype = 0; iftype < NUM_NL80211_IFTYPES; iftype++) { 1758 num_interfaces += params->iftype_num[iftype]; 1759 if (params->iftype_num[iftype] > 0 && 1760 !cfg80211_iftype_allowed(wiphy, iftype, 0, 1)) 1761 used_iftypes |= BIT(iftype); 1762 } 1763 1764 for (i = 0; i < wiphy->n_iface_combinations; i++) { 1765 const struct ieee80211_iface_combination *c; 1766 struct ieee80211_iface_limit *limits; 1767 u32 all_iftypes = 0; 1768 1769 c = &wiphy->iface_combinations[i]; 1770 1771 if (num_interfaces > c->max_interfaces) 1772 continue; 1773 if (params->num_different_channels > c->num_different_channels) 1774 continue; 1775 1776 limits = kmemdup(c->limits, sizeof(limits[0]) * c->n_limits, 1777 GFP_KERNEL); 1778 if (!limits) 1779 return -ENOMEM; 1780 1781 for (iftype = 0; iftype < NUM_NL80211_IFTYPES; iftype++) { 1782 if (cfg80211_iftype_allowed(wiphy, iftype, 0, 1)) 1783 continue; 1784 for (j = 0; j < c->n_limits; j++) { 1785 all_iftypes |= limits[j].types; 1786 if (!(limits[j].types & BIT(iftype))) 1787 continue; 1788 if (limits[j].max < params->iftype_num[iftype]) 1789 goto cont; 1790 limits[j].max -= params->iftype_num[iftype]; 1791 } 1792 } 1793 1794 if (params->radar_detect != 1795 (c->radar_detect_widths & params->radar_detect)) 1796 goto cont; 1797 1798 if (params->radar_detect && c->radar_detect_regions && 1799 !(c->radar_detect_regions & BIT(region))) 1800 goto cont; 1801 1802 /* Finally check that all iftypes that we're currently 1803 * using are actually part of this combination. If they 1804 * aren't then we can't use this combination and have 1805 * to continue to the next. 1806 */ 1807 if ((all_iftypes & used_iftypes) != used_iftypes) 1808 goto cont; 1809 1810 if (beacon_int_gcd) { 1811 if (c->beacon_int_min_gcd && 1812 beacon_int_gcd < c->beacon_int_min_gcd) 1813 goto cont; 1814 if (!c->beacon_int_min_gcd && beacon_int_different) 1815 goto cont; 1816 } 1817 1818 /* This combination covered all interface types and 1819 * supported the requested numbers, so we're good. 1820 */ 1821 1822 (*iter)(c, data); 1823 cont: 1824 kfree(limits); 1825 } 1826 1827 return 0; 1828 } 1829 EXPORT_SYMBOL(cfg80211_iter_combinations); 1830 1831 static void 1832 cfg80211_iter_sum_ifcombs(const struct ieee80211_iface_combination *c, 1833 void *data) 1834 { 1835 int *num = data; 1836 (*num)++; 1837 } 1838 1839 int cfg80211_check_combinations(struct wiphy *wiphy, 1840 struct iface_combination_params *params) 1841 { 1842 int err, num = 0; 1843 1844 err = cfg80211_iter_combinations(wiphy, params, 1845 cfg80211_iter_sum_ifcombs, &num); 1846 if (err) 1847 return err; 1848 if (num == 0) 1849 return -EBUSY; 1850 1851 return 0; 1852 } 1853 EXPORT_SYMBOL(cfg80211_check_combinations); 1854 1855 int ieee80211_get_ratemask(struct ieee80211_supported_band *sband, 1856 const u8 *rates, unsigned int n_rates, 1857 u32 *mask) 1858 { 1859 int i, j; 1860 1861 if (!sband) 1862 return -EINVAL; 1863 1864 if (n_rates == 0 || n_rates > NL80211_MAX_SUPP_RATES) 1865 return -EINVAL; 1866 1867 *mask = 0; 1868 1869 for (i = 0; i < n_rates; i++) { 1870 int rate = (rates[i] & 0x7f) * 5; 1871 bool found = false; 1872 1873 for (j = 0; j < sband->n_bitrates; j++) { 1874 if (sband->bitrates[j].bitrate == rate) { 1875 found = true; 1876 *mask |= BIT(j); 1877 break; 1878 } 1879 } 1880 if (!found) 1881 return -EINVAL; 1882 } 1883 1884 /* 1885 * mask must have at least one bit set here since we 1886 * didn't accept a 0-length rates array nor allowed 1887 * entries in the array that didn't exist 1888 */ 1889 1890 return 0; 1891 } 1892 1893 unsigned int ieee80211_get_num_supported_channels(struct wiphy *wiphy) 1894 { 1895 enum nl80211_band band; 1896 unsigned int n_channels = 0; 1897 1898 for (band = 0; band < NUM_NL80211_BANDS; band++) 1899 if (wiphy->bands[band]) 1900 n_channels += wiphy->bands[band]->n_channels; 1901 1902 return n_channels; 1903 } 1904 EXPORT_SYMBOL(ieee80211_get_num_supported_channels); 1905 1906 int cfg80211_get_station(struct net_device *dev, const u8 *mac_addr, 1907 struct station_info *sinfo) 1908 { 1909 struct cfg80211_registered_device *rdev; 1910 struct wireless_dev *wdev; 1911 1912 wdev = dev->ieee80211_ptr; 1913 if (!wdev) 1914 return -EOPNOTSUPP; 1915 1916 rdev = wiphy_to_rdev(wdev->wiphy); 1917 if (!rdev->ops->get_station) 1918 return -EOPNOTSUPP; 1919 1920 memset(sinfo, 0, sizeof(*sinfo)); 1921 1922 return rdev_get_station(rdev, dev, mac_addr, sinfo); 1923 } 1924 EXPORT_SYMBOL(cfg80211_get_station); 1925 1926 void cfg80211_free_nan_func(struct cfg80211_nan_func *f) 1927 { 1928 int i; 1929 1930 if (!f) 1931 return; 1932 1933 kfree(f->serv_spec_info); 1934 kfree(f->srf_bf); 1935 kfree(f->srf_macs); 1936 for (i = 0; i < f->num_rx_filters; i++) 1937 kfree(f->rx_filters[i].filter); 1938 1939 for (i = 0; i < f->num_tx_filters; i++) 1940 kfree(f->tx_filters[i].filter); 1941 1942 kfree(f->rx_filters); 1943 kfree(f->tx_filters); 1944 kfree(f); 1945 } 1946 EXPORT_SYMBOL(cfg80211_free_nan_func); 1947 1948 bool cfg80211_does_bw_fit_range(const struct ieee80211_freq_range *freq_range, 1949 u32 center_freq_khz, u32 bw_khz) 1950 { 1951 u32 start_freq_khz, end_freq_khz; 1952 1953 start_freq_khz = center_freq_khz - (bw_khz / 2); 1954 end_freq_khz = center_freq_khz + (bw_khz / 2); 1955 1956 if (start_freq_khz >= freq_range->start_freq_khz && 1957 end_freq_khz <= freq_range->end_freq_khz) 1958 return true; 1959 1960 return false; 1961 } 1962 1963 int cfg80211_sinfo_alloc_tid_stats(struct station_info *sinfo, gfp_t gfp) 1964 { 1965 sinfo->pertid = kcalloc(IEEE80211_NUM_TIDS + 1, 1966 sizeof(*(sinfo->pertid)), 1967 gfp); 1968 if (!sinfo->pertid) 1969 return -ENOMEM; 1970 1971 return 0; 1972 } 1973 EXPORT_SYMBOL(cfg80211_sinfo_alloc_tid_stats); 1974 1975 /* See IEEE 802.1H for LLC/SNAP encapsulation/decapsulation */ 1976 /* Ethernet-II snap header (RFC1042 for most EtherTypes) */ 1977 const unsigned char rfc1042_header[] __aligned(2) = 1978 { 0xaa, 0xaa, 0x03, 0x00, 0x00, 0x00 }; 1979 EXPORT_SYMBOL(rfc1042_header); 1980 1981 /* Bridge-Tunnel header (for EtherTypes ETH_P_AARP and ETH_P_IPX) */ 1982 const unsigned char bridge_tunnel_header[] __aligned(2) = 1983 { 0xaa, 0xaa, 0x03, 0x00, 0x00, 0xf8 }; 1984 EXPORT_SYMBOL(bridge_tunnel_header); 1985 1986 /* Layer 2 Update frame (802.2 Type 1 LLC XID Update response) */ 1987 struct iapp_layer2_update { 1988 u8 da[ETH_ALEN]; /* broadcast */ 1989 u8 sa[ETH_ALEN]; /* STA addr */ 1990 __be16 len; /* 6 */ 1991 u8 dsap; /* 0 */ 1992 u8 ssap; /* 0 */ 1993 u8 control; 1994 u8 xid_info[3]; 1995 } __packed; 1996 1997 void cfg80211_send_layer2_update(struct net_device *dev, const u8 *addr) 1998 { 1999 struct iapp_layer2_update *msg; 2000 struct sk_buff *skb; 2001 2002 /* Send Level 2 Update Frame to update forwarding tables in layer 2 2003 * bridge devices */ 2004 2005 skb = dev_alloc_skb(sizeof(*msg)); 2006 if (!skb) 2007 return; 2008 msg = skb_put(skb, sizeof(*msg)); 2009 2010 /* 802.2 Type 1 Logical Link Control (LLC) Exchange Identifier (XID) 2011 * Update response frame; IEEE Std 802.2-1998, 5.4.1.2.1 */ 2012 2013 eth_broadcast_addr(msg->da); 2014 ether_addr_copy(msg->sa, addr); 2015 msg->len = htons(6); 2016 msg->dsap = 0; 2017 msg->ssap = 0x01; /* NULL LSAP, CR Bit: Response */ 2018 msg->control = 0xaf; /* XID response lsb.1111F101. 2019 * F=0 (no poll command; unsolicited frame) */ 2020 msg->xid_info[0] = 0x81; /* XID format identifier */ 2021 msg->xid_info[1] = 1; /* LLC types/classes: Type 1 LLC */ 2022 msg->xid_info[2] = 0; /* XID sender's receive window size (RW) */ 2023 2024 skb->dev = dev; 2025 skb->protocol = eth_type_trans(skb, dev); 2026 memset(skb->cb, 0, sizeof(skb->cb)); 2027 netif_rx_ni(skb); 2028 } 2029 EXPORT_SYMBOL(cfg80211_send_layer2_update); 2030 2031 int ieee80211_get_vht_max_nss(struct ieee80211_vht_cap *cap, 2032 enum ieee80211_vht_chanwidth bw, 2033 int mcs, bool ext_nss_bw_capable) 2034 { 2035 u16 map = le16_to_cpu(cap->supp_mcs.rx_mcs_map); 2036 int max_vht_nss = 0; 2037 int ext_nss_bw; 2038 int supp_width; 2039 int i, mcs_encoding; 2040 2041 if (map == 0xffff) 2042 return 0; 2043 2044 if (WARN_ON(mcs > 9)) 2045 return 0; 2046 if (mcs <= 7) 2047 mcs_encoding = 0; 2048 else if (mcs == 8) 2049 mcs_encoding = 1; 2050 else 2051 mcs_encoding = 2; 2052 2053 /* find max_vht_nss for the given MCS */ 2054 for (i = 7; i >= 0; i--) { 2055 int supp = (map >> (2 * i)) & 3; 2056 2057 if (supp == 3) 2058 continue; 2059 2060 if (supp >= mcs_encoding) { 2061 max_vht_nss = i + 1; 2062 break; 2063 } 2064 } 2065 2066 if (!(cap->supp_mcs.tx_mcs_map & 2067 cpu_to_le16(IEEE80211_VHT_EXT_NSS_BW_CAPABLE))) 2068 return max_vht_nss; 2069 2070 ext_nss_bw = le32_get_bits(cap->vht_cap_info, 2071 IEEE80211_VHT_CAP_EXT_NSS_BW_MASK); 2072 supp_width = le32_get_bits(cap->vht_cap_info, 2073 IEEE80211_VHT_CAP_SUPP_CHAN_WIDTH_MASK); 2074 2075 /* if not capable, treat ext_nss_bw as 0 */ 2076 if (!ext_nss_bw_capable) 2077 ext_nss_bw = 0; 2078 2079 /* This is invalid */ 2080 if (supp_width == 3) 2081 return 0; 2082 2083 /* This is an invalid combination so pretend nothing is supported */ 2084 if (supp_width == 2 && (ext_nss_bw == 1 || ext_nss_bw == 2)) 2085 return 0; 2086 2087 /* 2088 * Cover all the special cases according to IEEE 802.11-2016 2089 * Table 9-250. All other cases are either factor of 1 or not 2090 * valid/supported. 2091 */ 2092 switch (bw) { 2093 case IEEE80211_VHT_CHANWIDTH_USE_HT: 2094 case IEEE80211_VHT_CHANWIDTH_80MHZ: 2095 if ((supp_width == 1 || supp_width == 2) && 2096 ext_nss_bw == 3) 2097 return 2 * max_vht_nss; 2098 break; 2099 case IEEE80211_VHT_CHANWIDTH_160MHZ: 2100 if (supp_width == 0 && 2101 (ext_nss_bw == 1 || ext_nss_bw == 2)) 2102 return max_vht_nss / 2; 2103 if (supp_width == 0 && 2104 ext_nss_bw == 3) 2105 return (3 * max_vht_nss) / 4; 2106 if (supp_width == 1 && 2107 ext_nss_bw == 3) 2108 return 2 * max_vht_nss; 2109 break; 2110 case IEEE80211_VHT_CHANWIDTH_80P80MHZ: 2111 if (supp_width == 0 && ext_nss_bw == 1) 2112 return 0; /* not possible */ 2113 if (supp_width == 0 && 2114 ext_nss_bw == 2) 2115 return max_vht_nss / 2; 2116 if (supp_width == 0 && 2117 ext_nss_bw == 3) 2118 return (3 * max_vht_nss) / 4; 2119 if (supp_width == 1 && 2120 ext_nss_bw == 0) 2121 return 0; /* not possible */ 2122 if (supp_width == 1 && 2123 ext_nss_bw == 1) 2124 return max_vht_nss / 2; 2125 if (supp_width == 1 && 2126 ext_nss_bw == 2) 2127 return (3 * max_vht_nss) / 4; 2128 break; 2129 } 2130 2131 /* not covered or invalid combination received */ 2132 return max_vht_nss; 2133 } 2134 EXPORT_SYMBOL(ieee80211_get_vht_max_nss); 2135 2136 bool cfg80211_iftype_allowed(struct wiphy *wiphy, enum nl80211_iftype iftype, 2137 bool is_4addr, u8 check_swif) 2138 2139 { 2140 bool is_vlan = iftype == NL80211_IFTYPE_AP_VLAN; 2141 2142 switch (check_swif) { 2143 case 0: 2144 if (is_vlan && is_4addr) 2145 return wiphy->flags & WIPHY_FLAG_4ADDR_AP; 2146 return wiphy->interface_modes & BIT(iftype); 2147 case 1: 2148 if (!(wiphy->software_iftypes & BIT(iftype)) && is_vlan) 2149 return wiphy->flags & WIPHY_FLAG_4ADDR_AP; 2150 return wiphy->software_iftypes & BIT(iftype); 2151 default: 2152 break; 2153 } 2154 2155 return false; 2156 } 2157 EXPORT_SYMBOL(cfg80211_iftype_allowed); 2158