xref: /linux/net/wireless/util.c (revision 4b132aacb0768ac1e652cf517097ea6f237214b9)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Wireless utility functions
4  *
5  * Copyright 2007-2009	Johannes Berg <johannes@sipsolutions.net>
6  * Copyright 2013-2014  Intel Mobile Communications GmbH
7  * Copyright 2017	Intel Deutschland GmbH
8  * Copyright (C) 2018-2023 Intel Corporation
9  */
10 #include <linux/export.h>
11 #include <linux/bitops.h>
12 #include <linux/etherdevice.h>
13 #include <linux/slab.h>
14 #include <linux/ieee80211.h>
15 #include <net/cfg80211.h>
16 #include <net/ip.h>
17 #include <net/dsfield.h>
18 #include <linux/if_vlan.h>
19 #include <linux/mpls.h>
20 #include <linux/gcd.h>
21 #include <linux/bitfield.h>
22 #include <linux/nospec.h>
23 #include "core.h"
24 #include "rdev-ops.h"
25 
26 
27 const struct ieee80211_rate *
28 ieee80211_get_response_rate(struct ieee80211_supported_band *sband,
29 			    u32 basic_rates, int bitrate)
30 {
31 	struct ieee80211_rate *result = &sband->bitrates[0];
32 	int i;
33 
34 	for (i = 0; i < sband->n_bitrates; i++) {
35 		if (!(basic_rates & BIT(i)))
36 			continue;
37 		if (sband->bitrates[i].bitrate > bitrate)
38 			continue;
39 		result = &sband->bitrates[i];
40 	}
41 
42 	return result;
43 }
44 EXPORT_SYMBOL(ieee80211_get_response_rate);
45 
46 u32 ieee80211_mandatory_rates(struct ieee80211_supported_band *sband)
47 {
48 	struct ieee80211_rate *bitrates;
49 	u32 mandatory_rates = 0;
50 	enum ieee80211_rate_flags mandatory_flag;
51 	int i;
52 
53 	if (WARN_ON(!sband))
54 		return 1;
55 
56 	if (sband->band == NL80211_BAND_2GHZ)
57 		mandatory_flag = IEEE80211_RATE_MANDATORY_B;
58 	else
59 		mandatory_flag = IEEE80211_RATE_MANDATORY_A;
60 
61 	bitrates = sband->bitrates;
62 	for (i = 0; i < sband->n_bitrates; i++)
63 		if (bitrates[i].flags & mandatory_flag)
64 			mandatory_rates |= BIT(i);
65 	return mandatory_rates;
66 }
67 EXPORT_SYMBOL(ieee80211_mandatory_rates);
68 
69 u32 ieee80211_channel_to_freq_khz(int chan, enum nl80211_band band)
70 {
71 	/* see 802.11 17.3.8.3.2 and Annex J
72 	 * there are overlapping channel numbers in 5GHz and 2GHz bands */
73 	if (chan <= 0)
74 		return 0; /* not supported */
75 	switch (band) {
76 	case NL80211_BAND_2GHZ:
77 	case NL80211_BAND_LC:
78 		if (chan == 14)
79 			return MHZ_TO_KHZ(2484);
80 		else if (chan < 14)
81 			return MHZ_TO_KHZ(2407 + chan * 5);
82 		break;
83 	case NL80211_BAND_5GHZ:
84 		if (chan >= 182 && chan <= 196)
85 			return MHZ_TO_KHZ(4000 + chan * 5);
86 		else
87 			return MHZ_TO_KHZ(5000 + chan * 5);
88 		break;
89 	case NL80211_BAND_6GHZ:
90 		/* see 802.11ax D6.1 27.3.23.2 */
91 		if (chan == 2)
92 			return MHZ_TO_KHZ(5935);
93 		if (chan <= 233)
94 			return MHZ_TO_KHZ(5950 + chan * 5);
95 		break;
96 	case NL80211_BAND_60GHZ:
97 		if (chan < 7)
98 			return MHZ_TO_KHZ(56160 + chan * 2160);
99 		break;
100 	case NL80211_BAND_S1GHZ:
101 		return 902000 + chan * 500;
102 	default:
103 		;
104 	}
105 	return 0; /* not supported */
106 }
107 EXPORT_SYMBOL(ieee80211_channel_to_freq_khz);
108 
109 enum nl80211_chan_width
110 ieee80211_s1g_channel_width(const struct ieee80211_channel *chan)
111 {
112 	if (WARN_ON(!chan || chan->band != NL80211_BAND_S1GHZ))
113 		return NL80211_CHAN_WIDTH_20_NOHT;
114 
115 	/*S1G defines a single allowed channel width per channel.
116 	 * Extract that width here.
117 	 */
118 	if (chan->flags & IEEE80211_CHAN_1MHZ)
119 		return NL80211_CHAN_WIDTH_1;
120 	else if (chan->flags & IEEE80211_CHAN_2MHZ)
121 		return NL80211_CHAN_WIDTH_2;
122 	else if (chan->flags & IEEE80211_CHAN_4MHZ)
123 		return NL80211_CHAN_WIDTH_4;
124 	else if (chan->flags & IEEE80211_CHAN_8MHZ)
125 		return NL80211_CHAN_WIDTH_8;
126 	else if (chan->flags & IEEE80211_CHAN_16MHZ)
127 		return NL80211_CHAN_WIDTH_16;
128 
129 	pr_err("unknown channel width for channel at %dKHz?\n",
130 	       ieee80211_channel_to_khz(chan));
131 
132 	return NL80211_CHAN_WIDTH_1;
133 }
134 EXPORT_SYMBOL(ieee80211_s1g_channel_width);
135 
136 int ieee80211_freq_khz_to_channel(u32 freq)
137 {
138 	/* TODO: just handle MHz for now */
139 	freq = KHZ_TO_MHZ(freq);
140 
141 	/* see 802.11 17.3.8.3.2 and Annex J */
142 	if (freq == 2484)
143 		return 14;
144 	else if (freq < 2484)
145 		return (freq - 2407) / 5;
146 	else if (freq >= 4910 && freq <= 4980)
147 		return (freq - 4000) / 5;
148 	else if (freq < 5925)
149 		return (freq - 5000) / 5;
150 	else if (freq == 5935)
151 		return 2;
152 	else if (freq <= 45000) /* DMG band lower limit */
153 		/* see 802.11ax D6.1 27.3.22.2 */
154 		return (freq - 5950) / 5;
155 	else if (freq >= 58320 && freq <= 70200)
156 		return (freq - 56160) / 2160;
157 	else
158 		return 0;
159 }
160 EXPORT_SYMBOL(ieee80211_freq_khz_to_channel);
161 
162 struct ieee80211_channel *ieee80211_get_channel_khz(struct wiphy *wiphy,
163 						    u32 freq)
164 {
165 	enum nl80211_band band;
166 	struct ieee80211_supported_band *sband;
167 	int i;
168 
169 	for (band = 0; band < NUM_NL80211_BANDS; band++) {
170 		sband = wiphy->bands[band];
171 
172 		if (!sband)
173 			continue;
174 
175 		for (i = 0; i < sband->n_channels; i++) {
176 			struct ieee80211_channel *chan = &sband->channels[i];
177 
178 			if (ieee80211_channel_to_khz(chan) == freq)
179 				return chan;
180 		}
181 	}
182 
183 	return NULL;
184 }
185 EXPORT_SYMBOL(ieee80211_get_channel_khz);
186 
187 static void set_mandatory_flags_band(struct ieee80211_supported_band *sband)
188 {
189 	int i, want;
190 
191 	switch (sband->band) {
192 	case NL80211_BAND_5GHZ:
193 	case NL80211_BAND_6GHZ:
194 		want = 3;
195 		for (i = 0; i < sband->n_bitrates; i++) {
196 			if (sband->bitrates[i].bitrate == 60 ||
197 			    sband->bitrates[i].bitrate == 120 ||
198 			    sband->bitrates[i].bitrate == 240) {
199 				sband->bitrates[i].flags |=
200 					IEEE80211_RATE_MANDATORY_A;
201 				want--;
202 			}
203 		}
204 		WARN_ON(want);
205 		break;
206 	case NL80211_BAND_2GHZ:
207 	case NL80211_BAND_LC:
208 		want = 7;
209 		for (i = 0; i < sband->n_bitrates; i++) {
210 			switch (sband->bitrates[i].bitrate) {
211 			case 10:
212 			case 20:
213 			case 55:
214 			case 110:
215 				sband->bitrates[i].flags |=
216 					IEEE80211_RATE_MANDATORY_B |
217 					IEEE80211_RATE_MANDATORY_G;
218 				want--;
219 				break;
220 			case 60:
221 			case 120:
222 			case 240:
223 				sband->bitrates[i].flags |=
224 					IEEE80211_RATE_MANDATORY_G;
225 				want--;
226 				fallthrough;
227 			default:
228 				sband->bitrates[i].flags |=
229 					IEEE80211_RATE_ERP_G;
230 				break;
231 			}
232 		}
233 		WARN_ON(want != 0 && want != 3);
234 		break;
235 	case NL80211_BAND_60GHZ:
236 		/* check for mandatory HT MCS 1..4 */
237 		WARN_ON(!sband->ht_cap.ht_supported);
238 		WARN_ON((sband->ht_cap.mcs.rx_mask[0] & 0x1e) != 0x1e);
239 		break;
240 	case NL80211_BAND_S1GHZ:
241 		/* Figure 9-589bd: 3 means unsupported, so != 3 means at least
242 		 * mandatory is ok.
243 		 */
244 		WARN_ON((sband->s1g_cap.nss_mcs[0] & 0x3) == 0x3);
245 		break;
246 	case NUM_NL80211_BANDS:
247 	default:
248 		WARN_ON(1);
249 		break;
250 	}
251 }
252 
253 void ieee80211_set_bitrate_flags(struct wiphy *wiphy)
254 {
255 	enum nl80211_band band;
256 
257 	for (band = 0; band < NUM_NL80211_BANDS; band++)
258 		if (wiphy->bands[band])
259 			set_mandatory_flags_band(wiphy->bands[band]);
260 }
261 
262 bool cfg80211_supported_cipher_suite(struct wiphy *wiphy, u32 cipher)
263 {
264 	int i;
265 	for (i = 0; i < wiphy->n_cipher_suites; i++)
266 		if (cipher == wiphy->cipher_suites[i])
267 			return true;
268 	return false;
269 }
270 
271 static bool
272 cfg80211_igtk_cipher_supported(struct cfg80211_registered_device *rdev)
273 {
274 	struct wiphy *wiphy = &rdev->wiphy;
275 	int i;
276 
277 	for (i = 0; i < wiphy->n_cipher_suites; i++) {
278 		switch (wiphy->cipher_suites[i]) {
279 		case WLAN_CIPHER_SUITE_AES_CMAC:
280 		case WLAN_CIPHER_SUITE_BIP_CMAC_256:
281 		case WLAN_CIPHER_SUITE_BIP_GMAC_128:
282 		case WLAN_CIPHER_SUITE_BIP_GMAC_256:
283 			return true;
284 		}
285 	}
286 
287 	return false;
288 }
289 
290 bool cfg80211_valid_key_idx(struct cfg80211_registered_device *rdev,
291 			    int key_idx, bool pairwise)
292 {
293 	int max_key_idx;
294 
295 	if (pairwise)
296 		max_key_idx = 3;
297 	else if (wiphy_ext_feature_isset(&rdev->wiphy,
298 					 NL80211_EXT_FEATURE_BEACON_PROTECTION) ||
299 		 wiphy_ext_feature_isset(&rdev->wiphy,
300 					 NL80211_EXT_FEATURE_BEACON_PROTECTION_CLIENT))
301 		max_key_idx = 7;
302 	else if (cfg80211_igtk_cipher_supported(rdev))
303 		max_key_idx = 5;
304 	else
305 		max_key_idx = 3;
306 
307 	if (key_idx < 0 || key_idx > max_key_idx)
308 		return false;
309 
310 	return true;
311 }
312 
313 int cfg80211_validate_key_settings(struct cfg80211_registered_device *rdev,
314 				   struct key_params *params, int key_idx,
315 				   bool pairwise, const u8 *mac_addr)
316 {
317 	if (!cfg80211_valid_key_idx(rdev, key_idx, pairwise))
318 		return -EINVAL;
319 
320 	if (!pairwise && mac_addr && !(rdev->wiphy.flags & WIPHY_FLAG_IBSS_RSN))
321 		return -EINVAL;
322 
323 	if (pairwise && !mac_addr)
324 		return -EINVAL;
325 
326 	switch (params->cipher) {
327 	case WLAN_CIPHER_SUITE_TKIP:
328 		/* Extended Key ID can only be used with CCMP/GCMP ciphers */
329 		if ((pairwise && key_idx) ||
330 		    params->mode != NL80211_KEY_RX_TX)
331 			return -EINVAL;
332 		break;
333 	case WLAN_CIPHER_SUITE_CCMP:
334 	case WLAN_CIPHER_SUITE_CCMP_256:
335 	case WLAN_CIPHER_SUITE_GCMP:
336 	case WLAN_CIPHER_SUITE_GCMP_256:
337 		/* IEEE802.11-2016 allows only 0 and - when supporting
338 		 * Extended Key ID - 1 as index for pairwise keys.
339 		 * @NL80211_KEY_NO_TX is only allowed for pairwise keys when
340 		 * the driver supports Extended Key ID.
341 		 * @NL80211_KEY_SET_TX can't be set when installing and
342 		 * validating a key.
343 		 */
344 		if ((params->mode == NL80211_KEY_NO_TX && !pairwise) ||
345 		    params->mode == NL80211_KEY_SET_TX)
346 			return -EINVAL;
347 		if (wiphy_ext_feature_isset(&rdev->wiphy,
348 					    NL80211_EXT_FEATURE_EXT_KEY_ID)) {
349 			if (pairwise && (key_idx < 0 || key_idx > 1))
350 				return -EINVAL;
351 		} else if (pairwise && key_idx) {
352 			return -EINVAL;
353 		}
354 		break;
355 	case WLAN_CIPHER_SUITE_AES_CMAC:
356 	case WLAN_CIPHER_SUITE_BIP_CMAC_256:
357 	case WLAN_CIPHER_SUITE_BIP_GMAC_128:
358 	case WLAN_CIPHER_SUITE_BIP_GMAC_256:
359 		/* Disallow BIP (group-only) cipher as pairwise cipher */
360 		if (pairwise)
361 			return -EINVAL;
362 		if (key_idx < 4)
363 			return -EINVAL;
364 		break;
365 	case WLAN_CIPHER_SUITE_WEP40:
366 	case WLAN_CIPHER_SUITE_WEP104:
367 		if (key_idx > 3)
368 			return -EINVAL;
369 		break;
370 	default:
371 		break;
372 	}
373 
374 	switch (params->cipher) {
375 	case WLAN_CIPHER_SUITE_WEP40:
376 		if (params->key_len != WLAN_KEY_LEN_WEP40)
377 			return -EINVAL;
378 		break;
379 	case WLAN_CIPHER_SUITE_TKIP:
380 		if (params->key_len != WLAN_KEY_LEN_TKIP)
381 			return -EINVAL;
382 		break;
383 	case WLAN_CIPHER_SUITE_CCMP:
384 		if (params->key_len != WLAN_KEY_LEN_CCMP)
385 			return -EINVAL;
386 		break;
387 	case WLAN_CIPHER_SUITE_CCMP_256:
388 		if (params->key_len != WLAN_KEY_LEN_CCMP_256)
389 			return -EINVAL;
390 		break;
391 	case WLAN_CIPHER_SUITE_GCMP:
392 		if (params->key_len != WLAN_KEY_LEN_GCMP)
393 			return -EINVAL;
394 		break;
395 	case WLAN_CIPHER_SUITE_GCMP_256:
396 		if (params->key_len != WLAN_KEY_LEN_GCMP_256)
397 			return -EINVAL;
398 		break;
399 	case WLAN_CIPHER_SUITE_WEP104:
400 		if (params->key_len != WLAN_KEY_LEN_WEP104)
401 			return -EINVAL;
402 		break;
403 	case WLAN_CIPHER_SUITE_AES_CMAC:
404 		if (params->key_len != WLAN_KEY_LEN_AES_CMAC)
405 			return -EINVAL;
406 		break;
407 	case WLAN_CIPHER_SUITE_BIP_CMAC_256:
408 		if (params->key_len != WLAN_KEY_LEN_BIP_CMAC_256)
409 			return -EINVAL;
410 		break;
411 	case WLAN_CIPHER_SUITE_BIP_GMAC_128:
412 		if (params->key_len != WLAN_KEY_LEN_BIP_GMAC_128)
413 			return -EINVAL;
414 		break;
415 	case WLAN_CIPHER_SUITE_BIP_GMAC_256:
416 		if (params->key_len != WLAN_KEY_LEN_BIP_GMAC_256)
417 			return -EINVAL;
418 		break;
419 	default:
420 		/*
421 		 * We don't know anything about this algorithm,
422 		 * allow using it -- but the driver must check
423 		 * all parameters! We still check below whether
424 		 * or not the driver supports this algorithm,
425 		 * of course.
426 		 */
427 		break;
428 	}
429 
430 	if (params->seq) {
431 		switch (params->cipher) {
432 		case WLAN_CIPHER_SUITE_WEP40:
433 		case WLAN_CIPHER_SUITE_WEP104:
434 			/* These ciphers do not use key sequence */
435 			return -EINVAL;
436 		case WLAN_CIPHER_SUITE_TKIP:
437 		case WLAN_CIPHER_SUITE_CCMP:
438 		case WLAN_CIPHER_SUITE_CCMP_256:
439 		case WLAN_CIPHER_SUITE_GCMP:
440 		case WLAN_CIPHER_SUITE_GCMP_256:
441 		case WLAN_CIPHER_SUITE_AES_CMAC:
442 		case WLAN_CIPHER_SUITE_BIP_CMAC_256:
443 		case WLAN_CIPHER_SUITE_BIP_GMAC_128:
444 		case WLAN_CIPHER_SUITE_BIP_GMAC_256:
445 			if (params->seq_len != 6)
446 				return -EINVAL;
447 			break;
448 		}
449 	}
450 
451 	if (!cfg80211_supported_cipher_suite(&rdev->wiphy, params->cipher))
452 		return -EINVAL;
453 
454 	return 0;
455 }
456 
457 unsigned int __attribute_const__ ieee80211_hdrlen(__le16 fc)
458 {
459 	unsigned int hdrlen = 24;
460 
461 	if (ieee80211_is_ext(fc)) {
462 		hdrlen = 4;
463 		goto out;
464 	}
465 
466 	if (ieee80211_is_data(fc)) {
467 		if (ieee80211_has_a4(fc))
468 			hdrlen = 30;
469 		if (ieee80211_is_data_qos(fc)) {
470 			hdrlen += IEEE80211_QOS_CTL_LEN;
471 			if (ieee80211_has_order(fc))
472 				hdrlen += IEEE80211_HT_CTL_LEN;
473 		}
474 		goto out;
475 	}
476 
477 	if (ieee80211_is_mgmt(fc)) {
478 		if (ieee80211_has_order(fc))
479 			hdrlen += IEEE80211_HT_CTL_LEN;
480 		goto out;
481 	}
482 
483 	if (ieee80211_is_ctl(fc)) {
484 		/*
485 		 * ACK and CTS are 10 bytes, all others 16. To see how
486 		 * to get this condition consider
487 		 *   subtype mask:   0b0000000011110000 (0x00F0)
488 		 *   ACK subtype:    0b0000000011010000 (0x00D0)
489 		 *   CTS subtype:    0b0000000011000000 (0x00C0)
490 		 *   bits that matter:         ^^^      (0x00E0)
491 		 *   value of those: 0b0000000011000000 (0x00C0)
492 		 */
493 		if ((fc & cpu_to_le16(0x00E0)) == cpu_to_le16(0x00C0))
494 			hdrlen = 10;
495 		else
496 			hdrlen = 16;
497 	}
498 out:
499 	return hdrlen;
500 }
501 EXPORT_SYMBOL(ieee80211_hdrlen);
502 
503 unsigned int ieee80211_get_hdrlen_from_skb(const struct sk_buff *skb)
504 {
505 	const struct ieee80211_hdr *hdr =
506 			(const struct ieee80211_hdr *)skb->data;
507 	unsigned int hdrlen;
508 
509 	if (unlikely(skb->len < 10))
510 		return 0;
511 	hdrlen = ieee80211_hdrlen(hdr->frame_control);
512 	if (unlikely(hdrlen > skb->len))
513 		return 0;
514 	return hdrlen;
515 }
516 EXPORT_SYMBOL(ieee80211_get_hdrlen_from_skb);
517 
518 static unsigned int __ieee80211_get_mesh_hdrlen(u8 flags)
519 {
520 	int ae = flags & MESH_FLAGS_AE;
521 	/* 802.11-2012, 8.2.4.7.3 */
522 	switch (ae) {
523 	default:
524 	case 0:
525 		return 6;
526 	case MESH_FLAGS_AE_A4:
527 		return 12;
528 	case MESH_FLAGS_AE_A5_A6:
529 		return 18;
530 	}
531 }
532 
533 unsigned int ieee80211_get_mesh_hdrlen(struct ieee80211s_hdr *meshhdr)
534 {
535 	return __ieee80211_get_mesh_hdrlen(meshhdr->flags);
536 }
537 EXPORT_SYMBOL(ieee80211_get_mesh_hdrlen);
538 
539 bool ieee80211_get_8023_tunnel_proto(const void *hdr, __be16 *proto)
540 {
541 	const __be16 *hdr_proto = hdr + ETH_ALEN;
542 
543 	if (!(ether_addr_equal(hdr, rfc1042_header) &&
544 	      *hdr_proto != htons(ETH_P_AARP) &&
545 	      *hdr_proto != htons(ETH_P_IPX)) &&
546 	    !ether_addr_equal(hdr, bridge_tunnel_header))
547 		return false;
548 
549 	*proto = *hdr_proto;
550 
551 	return true;
552 }
553 EXPORT_SYMBOL(ieee80211_get_8023_tunnel_proto);
554 
555 int ieee80211_strip_8023_mesh_hdr(struct sk_buff *skb)
556 {
557 	const void *mesh_addr;
558 	struct {
559 		struct ethhdr eth;
560 		u8 flags;
561 	} payload;
562 	int hdrlen;
563 	int ret;
564 
565 	ret = skb_copy_bits(skb, 0, &payload, sizeof(payload));
566 	if (ret)
567 		return ret;
568 
569 	hdrlen = sizeof(payload.eth) + __ieee80211_get_mesh_hdrlen(payload.flags);
570 
571 	if (likely(pskb_may_pull(skb, hdrlen + 8) &&
572 		   ieee80211_get_8023_tunnel_proto(skb->data + hdrlen,
573 						   &payload.eth.h_proto)))
574 		hdrlen += ETH_ALEN + 2;
575 	else if (!pskb_may_pull(skb, hdrlen))
576 		return -EINVAL;
577 	else
578 		payload.eth.h_proto = htons(skb->len - hdrlen);
579 
580 	mesh_addr = skb->data + sizeof(payload.eth) + ETH_ALEN;
581 	switch (payload.flags & MESH_FLAGS_AE) {
582 	case MESH_FLAGS_AE_A4:
583 		memcpy(&payload.eth.h_source, mesh_addr, ETH_ALEN);
584 		break;
585 	case MESH_FLAGS_AE_A5_A6:
586 		memcpy(&payload.eth, mesh_addr, 2 * ETH_ALEN);
587 		break;
588 	default:
589 		break;
590 	}
591 
592 	pskb_pull(skb, hdrlen - sizeof(payload.eth));
593 	memcpy(skb->data, &payload.eth, sizeof(payload.eth));
594 
595 	return 0;
596 }
597 EXPORT_SYMBOL(ieee80211_strip_8023_mesh_hdr);
598 
599 int ieee80211_data_to_8023_exthdr(struct sk_buff *skb, struct ethhdr *ehdr,
600 				  const u8 *addr, enum nl80211_iftype iftype,
601 				  u8 data_offset, bool is_amsdu)
602 {
603 	struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data;
604 	struct {
605 		u8 hdr[ETH_ALEN] __aligned(2);
606 		__be16 proto;
607 	} payload;
608 	struct ethhdr tmp;
609 	u16 hdrlen;
610 
611 	if (unlikely(!ieee80211_is_data_present(hdr->frame_control)))
612 		return -1;
613 
614 	hdrlen = ieee80211_hdrlen(hdr->frame_control) + data_offset;
615 	if (skb->len < hdrlen)
616 		return -1;
617 
618 	/* convert IEEE 802.11 header + possible LLC headers into Ethernet
619 	 * header
620 	 * IEEE 802.11 address fields:
621 	 * ToDS FromDS Addr1 Addr2 Addr3 Addr4
622 	 *   0     0   DA    SA    BSSID n/a
623 	 *   0     1   DA    BSSID SA    n/a
624 	 *   1     0   BSSID SA    DA    n/a
625 	 *   1     1   RA    TA    DA    SA
626 	 */
627 	memcpy(tmp.h_dest, ieee80211_get_DA(hdr), ETH_ALEN);
628 	memcpy(tmp.h_source, ieee80211_get_SA(hdr), ETH_ALEN);
629 
630 	switch (hdr->frame_control &
631 		cpu_to_le16(IEEE80211_FCTL_TODS | IEEE80211_FCTL_FROMDS)) {
632 	case cpu_to_le16(IEEE80211_FCTL_TODS):
633 		if (unlikely(iftype != NL80211_IFTYPE_AP &&
634 			     iftype != NL80211_IFTYPE_AP_VLAN &&
635 			     iftype != NL80211_IFTYPE_P2P_GO))
636 			return -1;
637 		break;
638 	case cpu_to_le16(IEEE80211_FCTL_TODS | IEEE80211_FCTL_FROMDS):
639 		if (unlikely(iftype != NL80211_IFTYPE_MESH_POINT &&
640 			     iftype != NL80211_IFTYPE_AP_VLAN &&
641 			     iftype != NL80211_IFTYPE_STATION))
642 			return -1;
643 		break;
644 	case cpu_to_le16(IEEE80211_FCTL_FROMDS):
645 		if ((iftype != NL80211_IFTYPE_STATION &&
646 		     iftype != NL80211_IFTYPE_P2P_CLIENT &&
647 		     iftype != NL80211_IFTYPE_MESH_POINT) ||
648 		    (is_multicast_ether_addr(tmp.h_dest) &&
649 		     ether_addr_equal(tmp.h_source, addr)))
650 			return -1;
651 		break;
652 	case cpu_to_le16(0):
653 		if (iftype != NL80211_IFTYPE_ADHOC &&
654 		    iftype != NL80211_IFTYPE_STATION &&
655 		    iftype != NL80211_IFTYPE_OCB)
656 				return -1;
657 		break;
658 	}
659 
660 	if (likely(!is_amsdu && iftype != NL80211_IFTYPE_MESH_POINT &&
661 		   skb_copy_bits(skb, hdrlen, &payload, sizeof(payload)) == 0 &&
662 		   ieee80211_get_8023_tunnel_proto(&payload, &tmp.h_proto))) {
663 		/* remove RFC1042 or Bridge-Tunnel encapsulation */
664 		hdrlen += ETH_ALEN + 2;
665 		skb_postpull_rcsum(skb, &payload, ETH_ALEN + 2);
666 	} else {
667 		tmp.h_proto = htons(skb->len - hdrlen);
668 	}
669 
670 	pskb_pull(skb, hdrlen);
671 
672 	if (!ehdr)
673 		ehdr = skb_push(skb, sizeof(struct ethhdr));
674 	memcpy(ehdr, &tmp, sizeof(tmp));
675 
676 	return 0;
677 }
678 EXPORT_SYMBOL(ieee80211_data_to_8023_exthdr);
679 
680 static void
681 __frame_add_frag(struct sk_buff *skb, struct page *page,
682 		 void *ptr, int len, int size)
683 {
684 	struct skb_shared_info *sh = skb_shinfo(skb);
685 	int page_offset;
686 
687 	get_page(page);
688 	page_offset = ptr - page_address(page);
689 	skb_add_rx_frag(skb, sh->nr_frags, page, page_offset, len, size);
690 }
691 
692 static void
693 __ieee80211_amsdu_copy_frag(struct sk_buff *skb, struct sk_buff *frame,
694 			    int offset, int len)
695 {
696 	struct skb_shared_info *sh = skb_shinfo(skb);
697 	const skb_frag_t *frag = &sh->frags[0];
698 	struct page *frag_page;
699 	void *frag_ptr;
700 	int frag_len, frag_size;
701 	int head_size = skb->len - skb->data_len;
702 	int cur_len;
703 
704 	frag_page = virt_to_head_page(skb->head);
705 	frag_ptr = skb->data;
706 	frag_size = head_size;
707 
708 	while (offset >= frag_size) {
709 		offset -= frag_size;
710 		frag_page = skb_frag_page(frag);
711 		frag_ptr = skb_frag_address(frag);
712 		frag_size = skb_frag_size(frag);
713 		frag++;
714 	}
715 
716 	frag_ptr += offset;
717 	frag_len = frag_size - offset;
718 
719 	cur_len = min(len, frag_len);
720 
721 	__frame_add_frag(frame, frag_page, frag_ptr, cur_len, frag_size);
722 	len -= cur_len;
723 
724 	while (len > 0) {
725 		frag_len = skb_frag_size(frag);
726 		cur_len = min(len, frag_len);
727 		__frame_add_frag(frame, skb_frag_page(frag),
728 				 skb_frag_address(frag), cur_len, frag_len);
729 		len -= cur_len;
730 		frag++;
731 	}
732 }
733 
734 static struct sk_buff *
735 __ieee80211_amsdu_copy(struct sk_buff *skb, unsigned int hlen,
736 		       int offset, int len, bool reuse_frag,
737 		       int min_len)
738 {
739 	struct sk_buff *frame;
740 	int cur_len = len;
741 
742 	if (skb->len - offset < len)
743 		return NULL;
744 
745 	/*
746 	 * When reusing framents, copy some data to the head to simplify
747 	 * ethernet header handling and speed up protocol header processing
748 	 * in the stack later.
749 	 */
750 	if (reuse_frag)
751 		cur_len = min_t(int, len, min_len);
752 
753 	/*
754 	 * Allocate and reserve two bytes more for payload
755 	 * alignment since sizeof(struct ethhdr) is 14.
756 	 */
757 	frame = dev_alloc_skb(hlen + sizeof(struct ethhdr) + 2 + cur_len);
758 	if (!frame)
759 		return NULL;
760 
761 	frame->priority = skb->priority;
762 	skb_reserve(frame, hlen + sizeof(struct ethhdr) + 2);
763 	skb_copy_bits(skb, offset, skb_put(frame, cur_len), cur_len);
764 
765 	len -= cur_len;
766 	if (!len)
767 		return frame;
768 
769 	offset += cur_len;
770 	__ieee80211_amsdu_copy_frag(skb, frame, offset, len);
771 
772 	return frame;
773 }
774 
775 static u16
776 ieee80211_amsdu_subframe_length(void *field, u8 mesh_flags, u8 hdr_type)
777 {
778 	__le16 *field_le = field;
779 	__be16 *field_be = field;
780 	u16 len;
781 
782 	if (hdr_type >= 2)
783 		len = le16_to_cpu(*field_le);
784 	else
785 		len = be16_to_cpu(*field_be);
786 	if (hdr_type)
787 		len += __ieee80211_get_mesh_hdrlen(mesh_flags);
788 
789 	return len;
790 }
791 
792 bool ieee80211_is_valid_amsdu(struct sk_buff *skb, u8 mesh_hdr)
793 {
794 	int offset = 0, subframe_len, padding;
795 
796 	for (offset = 0; offset < skb->len; offset += subframe_len + padding) {
797 		int remaining = skb->len - offset;
798 		struct {
799 		    __be16 len;
800 		    u8 mesh_flags;
801 		} hdr;
802 		u16 len;
803 
804 		if (sizeof(hdr) > remaining)
805 			return false;
806 
807 		if (skb_copy_bits(skb, offset + 2 * ETH_ALEN, &hdr, sizeof(hdr)) < 0)
808 			return false;
809 
810 		len = ieee80211_amsdu_subframe_length(&hdr.len, hdr.mesh_flags,
811 						      mesh_hdr);
812 		subframe_len = sizeof(struct ethhdr) + len;
813 		padding = (4 - subframe_len) & 0x3;
814 
815 		if (subframe_len > remaining)
816 			return false;
817 	}
818 
819 	return true;
820 }
821 EXPORT_SYMBOL(ieee80211_is_valid_amsdu);
822 
823 void ieee80211_amsdu_to_8023s(struct sk_buff *skb, struct sk_buff_head *list,
824 			      const u8 *addr, enum nl80211_iftype iftype,
825 			      const unsigned int extra_headroom,
826 			      const u8 *check_da, const u8 *check_sa,
827 			      u8 mesh_control)
828 {
829 	unsigned int hlen = ALIGN(extra_headroom, 4);
830 	struct sk_buff *frame = NULL;
831 	int offset = 0;
832 	struct {
833 		struct ethhdr eth;
834 		uint8_t flags;
835 	} hdr;
836 	bool reuse_frag = skb->head_frag && !skb_has_frag_list(skb);
837 	bool reuse_skb = false;
838 	bool last = false;
839 	int copy_len = sizeof(hdr.eth);
840 
841 	if (iftype == NL80211_IFTYPE_MESH_POINT)
842 		copy_len = sizeof(hdr);
843 
844 	while (!last) {
845 		int remaining = skb->len - offset;
846 		unsigned int subframe_len;
847 		int len, mesh_len = 0;
848 		u8 padding;
849 
850 		if (copy_len > remaining)
851 			goto purge;
852 
853 		skb_copy_bits(skb, offset, &hdr, copy_len);
854 		if (iftype == NL80211_IFTYPE_MESH_POINT)
855 			mesh_len = __ieee80211_get_mesh_hdrlen(hdr.flags);
856 		len = ieee80211_amsdu_subframe_length(&hdr.eth.h_proto, hdr.flags,
857 						      mesh_control);
858 		subframe_len = sizeof(struct ethhdr) + len;
859 		padding = (4 - subframe_len) & 0x3;
860 
861 		/* the last MSDU has no padding */
862 		if (subframe_len > remaining)
863 			goto purge;
864 		/* mitigate A-MSDU aggregation injection attacks */
865 		if (ether_addr_equal(hdr.eth.h_dest, rfc1042_header))
866 			goto purge;
867 
868 		offset += sizeof(struct ethhdr);
869 		last = remaining <= subframe_len + padding;
870 
871 		/* FIXME: should we really accept multicast DA? */
872 		if ((check_da && !is_multicast_ether_addr(hdr.eth.h_dest) &&
873 		     !ether_addr_equal(check_da, hdr.eth.h_dest)) ||
874 		    (check_sa && !ether_addr_equal(check_sa, hdr.eth.h_source))) {
875 			offset += len + padding;
876 			continue;
877 		}
878 
879 		/* reuse skb for the last subframe */
880 		if (!skb_is_nonlinear(skb) && !reuse_frag && last) {
881 			skb_pull(skb, offset);
882 			frame = skb;
883 			reuse_skb = true;
884 		} else {
885 			frame = __ieee80211_amsdu_copy(skb, hlen, offset, len,
886 						       reuse_frag, 32 + mesh_len);
887 			if (!frame)
888 				goto purge;
889 
890 			offset += len + padding;
891 		}
892 
893 		skb_reset_network_header(frame);
894 		frame->dev = skb->dev;
895 		frame->priority = skb->priority;
896 
897 		if (likely(iftype != NL80211_IFTYPE_MESH_POINT &&
898 			   ieee80211_get_8023_tunnel_proto(frame->data, &hdr.eth.h_proto)))
899 			skb_pull(frame, ETH_ALEN + 2);
900 
901 		memcpy(skb_push(frame, sizeof(hdr.eth)), &hdr.eth, sizeof(hdr.eth));
902 		__skb_queue_tail(list, frame);
903 	}
904 
905 	if (!reuse_skb)
906 		dev_kfree_skb(skb);
907 
908 	return;
909 
910  purge:
911 	__skb_queue_purge(list);
912 	dev_kfree_skb(skb);
913 }
914 EXPORT_SYMBOL(ieee80211_amsdu_to_8023s);
915 
916 /* Given a data frame determine the 802.1p/1d tag to use. */
917 unsigned int cfg80211_classify8021d(struct sk_buff *skb,
918 				    struct cfg80211_qos_map *qos_map)
919 {
920 	unsigned int dscp;
921 	unsigned char vlan_priority;
922 	unsigned int ret;
923 
924 	/* skb->priority values from 256->263 are magic values to
925 	 * directly indicate a specific 802.1d priority.  This is used
926 	 * to allow 802.1d priority to be passed directly in from VLAN
927 	 * tags, etc.
928 	 */
929 	if (skb->priority >= 256 && skb->priority <= 263) {
930 		ret = skb->priority - 256;
931 		goto out;
932 	}
933 
934 	if (skb_vlan_tag_present(skb)) {
935 		vlan_priority = (skb_vlan_tag_get(skb) & VLAN_PRIO_MASK)
936 			>> VLAN_PRIO_SHIFT;
937 		if (vlan_priority > 0) {
938 			ret = vlan_priority;
939 			goto out;
940 		}
941 	}
942 
943 	switch (skb->protocol) {
944 	case htons(ETH_P_IP):
945 		dscp = ipv4_get_dsfield(ip_hdr(skb)) & 0xfc;
946 		break;
947 	case htons(ETH_P_IPV6):
948 		dscp = ipv6_get_dsfield(ipv6_hdr(skb)) & 0xfc;
949 		break;
950 	case htons(ETH_P_MPLS_UC):
951 	case htons(ETH_P_MPLS_MC): {
952 		struct mpls_label mpls_tmp, *mpls;
953 
954 		mpls = skb_header_pointer(skb, sizeof(struct ethhdr),
955 					  sizeof(*mpls), &mpls_tmp);
956 		if (!mpls)
957 			return 0;
958 
959 		ret = (ntohl(mpls->entry) & MPLS_LS_TC_MASK)
960 			>> MPLS_LS_TC_SHIFT;
961 		goto out;
962 	}
963 	case htons(ETH_P_80221):
964 		/* 802.21 is always network control traffic */
965 		return 7;
966 	default:
967 		return 0;
968 	}
969 
970 	if (qos_map) {
971 		unsigned int i, tmp_dscp = dscp >> 2;
972 
973 		for (i = 0; i < qos_map->num_des; i++) {
974 			if (tmp_dscp == qos_map->dscp_exception[i].dscp) {
975 				ret = qos_map->dscp_exception[i].up;
976 				goto out;
977 			}
978 		}
979 
980 		for (i = 0; i < 8; i++) {
981 			if (tmp_dscp >= qos_map->up[i].low &&
982 			    tmp_dscp <= qos_map->up[i].high) {
983 				ret = i;
984 				goto out;
985 			}
986 		}
987 	}
988 
989 	/* The default mapping as defined Section 2.3 in RFC8325: The three
990 	 * Most Significant Bits (MSBs) of the DSCP are used as the
991 	 * corresponding L2 markings.
992 	 */
993 	ret = dscp >> 5;
994 
995 	/* Handle specific DSCP values for which the default mapping (as
996 	 * described above) doesn't adhere to the intended usage of the DSCP
997 	 * value. See section 4 in RFC8325. Specifically, for the following
998 	 * Diffserv Service Classes no update is needed:
999 	 * - Standard: DF
1000 	 * - Low Priority Data: CS1
1001 	 * - Multimedia Streaming: AF31, AF32, AF33
1002 	 * - Multimedia Conferencing: AF41, AF42, AF43
1003 	 * - Network Control Traffic: CS7
1004 	 * - Real-Time Interactive: CS4
1005 	 */
1006 	switch (dscp >> 2) {
1007 	case 10:
1008 	case 12:
1009 	case 14:
1010 		/* High throughput data: AF11, AF12, AF13 */
1011 		ret = 0;
1012 		break;
1013 	case 16:
1014 		/* Operations, Administration, and Maintenance and Provisioning:
1015 		 * CS2
1016 		 */
1017 		ret = 0;
1018 		break;
1019 	case 18:
1020 	case 20:
1021 	case 22:
1022 		/* Low latency data: AF21, AF22, AF23 */
1023 		ret = 3;
1024 		break;
1025 	case 24:
1026 		/* Broadcasting video: CS3 */
1027 		ret = 4;
1028 		break;
1029 	case 40:
1030 		/* Signaling: CS5 */
1031 		ret = 5;
1032 		break;
1033 	case 44:
1034 		/* Voice Admit: VA */
1035 		ret = 6;
1036 		break;
1037 	case 46:
1038 		/* Telephony traffic: EF */
1039 		ret = 6;
1040 		break;
1041 	case 48:
1042 		/* Network Control Traffic: CS6 */
1043 		ret = 7;
1044 		break;
1045 	}
1046 out:
1047 	return array_index_nospec(ret, IEEE80211_NUM_TIDS);
1048 }
1049 EXPORT_SYMBOL(cfg80211_classify8021d);
1050 
1051 const struct element *ieee80211_bss_get_elem(struct cfg80211_bss *bss, u8 id)
1052 {
1053 	const struct cfg80211_bss_ies *ies;
1054 
1055 	ies = rcu_dereference(bss->ies);
1056 	if (!ies)
1057 		return NULL;
1058 
1059 	return cfg80211_find_elem(id, ies->data, ies->len);
1060 }
1061 EXPORT_SYMBOL(ieee80211_bss_get_elem);
1062 
1063 void cfg80211_upload_connect_keys(struct wireless_dev *wdev)
1064 {
1065 	struct cfg80211_registered_device *rdev = wiphy_to_rdev(wdev->wiphy);
1066 	struct net_device *dev = wdev->netdev;
1067 	int i;
1068 
1069 	if (!wdev->connect_keys)
1070 		return;
1071 
1072 	for (i = 0; i < 4; i++) {
1073 		if (!wdev->connect_keys->params[i].cipher)
1074 			continue;
1075 		if (rdev_add_key(rdev, dev, -1, i, false, NULL,
1076 				 &wdev->connect_keys->params[i])) {
1077 			netdev_err(dev, "failed to set key %d\n", i);
1078 			continue;
1079 		}
1080 		if (wdev->connect_keys->def == i &&
1081 		    rdev_set_default_key(rdev, dev, -1, i, true, true)) {
1082 			netdev_err(dev, "failed to set defkey %d\n", i);
1083 			continue;
1084 		}
1085 	}
1086 
1087 	kfree_sensitive(wdev->connect_keys);
1088 	wdev->connect_keys = NULL;
1089 }
1090 
1091 void cfg80211_process_wdev_events(struct wireless_dev *wdev)
1092 {
1093 	struct cfg80211_event *ev;
1094 	unsigned long flags;
1095 
1096 	spin_lock_irqsave(&wdev->event_lock, flags);
1097 	while (!list_empty(&wdev->event_list)) {
1098 		ev = list_first_entry(&wdev->event_list,
1099 				      struct cfg80211_event, list);
1100 		list_del(&ev->list);
1101 		spin_unlock_irqrestore(&wdev->event_lock, flags);
1102 
1103 		switch (ev->type) {
1104 		case EVENT_CONNECT_RESULT:
1105 			__cfg80211_connect_result(
1106 				wdev->netdev,
1107 				&ev->cr,
1108 				ev->cr.status == WLAN_STATUS_SUCCESS);
1109 			break;
1110 		case EVENT_ROAMED:
1111 			__cfg80211_roamed(wdev, &ev->rm);
1112 			break;
1113 		case EVENT_DISCONNECTED:
1114 			__cfg80211_disconnected(wdev->netdev,
1115 						ev->dc.ie, ev->dc.ie_len,
1116 						ev->dc.reason,
1117 						!ev->dc.locally_generated);
1118 			break;
1119 		case EVENT_IBSS_JOINED:
1120 			__cfg80211_ibss_joined(wdev->netdev, ev->ij.bssid,
1121 					       ev->ij.channel);
1122 			break;
1123 		case EVENT_STOPPED:
1124 			cfg80211_leave(wiphy_to_rdev(wdev->wiphy), wdev);
1125 			break;
1126 		case EVENT_PORT_AUTHORIZED:
1127 			__cfg80211_port_authorized(wdev, ev->pa.peer_addr,
1128 						   ev->pa.td_bitmap,
1129 						   ev->pa.td_bitmap_len);
1130 			break;
1131 		}
1132 
1133 		kfree(ev);
1134 
1135 		spin_lock_irqsave(&wdev->event_lock, flags);
1136 	}
1137 	spin_unlock_irqrestore(&wdev->event_lock, flags);
1138 }
1139 
1140 void cfg80211_process_rdev_events(struct cfg80211_registered_device *rdev)
1141 {
1142 	struct wireless_dev *wdev;
1143 
1144 	lockdep_assert_held(&rdev->wiphy.mtx);
1145 
1146 	list_for_each_entry(wdev, &rdev->wiphy.wdev_list, list)
1147 		cfg80211_process_wdev_events(wdev);
1148 }
1149 
1150 int cfg80211_change_iface(struct cfg80211_registered_device *rdev,
1151 			  struct net_device *dev, enum nl80211_iftype ntype,
1152 			  struct vif_params *params)
1153 {
1154 	int err;
1155 	enum nl80211_iftype otype = dev->ieee80211_ptr->iftype;
1156 
1157 	lockdep_assert_held(&rdev->wiphy.mtx);
1158 
1159 	/* don't support changing VLANs, you just re-create them */
1160 	if (otype == NL80211_IFTYPE_AP_VLAN)
1161 		return -EOPNOTSUPP;
1162 
1163 	/* cannot change into P2P device or NAN */
1164 	if (ntype == NL80211_IFTYPE_P2P_DEVICE ||
1165 	    ntype == NL80211_IFTYPE_NAN)
1166 		return -EOPNOTSUPP;
1167 
1168 	if (!rdev->ops->change_virtual_intf ||
1169 	    !(rdev->wiphy.interface_modes & (1 << ntype)))
1170 		return -EOPNOTSUPP;
1171 
1172 	if (ntype != otype) {
1173 		/* if it's part of a bridge, reject changing type to station/ibss */
1174 		if (netif_is_bridge_port(dev) &&
1175 		    (ntype == NL80211_IFTYPE_ADHOC ||
1176 		     ntype == NL80211_IFTYPE_STATION ||
1177 		     ntype == NL80211_IFTYPE_P2P_CLIENT))
1178 			return -EBUSY;
1179 
1180 		dev->ieee80211_ptr->use_4addr = false;
1181 		rdev_set_qos_map(rdev, dev, NULL);
1182 
1183 		switch (otype) {
1184 		case NL80211_IFTYPE_AP:
1185 		case NL80211_IFTYPE_P2P_GO:
1186 			cfg80211_stop_ap(rdev, dev, -1, true);
1187 			break;
1188 		case NL80211_IFTYPE_ADHOC:
1189 			cfg80211_leave_ibss(rdev, dev, false);
1190 			break;
1191 		case NL80211_IFTYPE_STATION:
1192 		case NL80211_IFTYPE_P2P_CLIENT:
1193 			cfg80211_disconnect(rdev, dev,
1194 					    WLAN_REASON_DEAUTH_LEAVING, true);
1195 			break;
1196 		case NL80211_IFTYPE_MESH_POINT:
1197 			/* mesh should be handled? */
1198 			break;
1199 		case NL80211_IFTYPE_OCB:
1200 			cfg80211_leave_ocb(rdev, dev);
1201 			break;
1202 		default:
1203 			break;
1204 		}
1205 
1206 		cfg80211_process_rdev_events(rdev);
1207 		cfg80211_mlme_purge_registrations(dev->ieee80211_ptr);
1208 
1209 		memset(&dev->ieee80211_ptr->u, 0,
1210 		       sizeof(dev->ieee80211_ptr->u));
1211 		memset(&dev->ieee80211_ptr->links, 0,
1212 		       sizeof(dev->ieee80211_ptr->links));
1213 	}
1214 
1215 	err = rdev_change_virtual_intf(rdev, dev, ntype, params);
1216 
1217 	WARN_ON(!err && dev->ieee80211_ptr->iftype != ntype);
1218 
1219 	if (!err && params && params->use_4addr != -1)
1220 		dev->ieee80211_ptr->use_4addr = params->use_4addr;
1221 
1222 	if (!err) {
1223 		dev->priv_flags &= ~IFF_DONT_BRIDGE;
1224 		switch (ntype) {
1225 		case NL80211_IFTYPE_STATION:
1226 			if (dev->ieee80211_ptr->use_4addr)
1227 				break;
1228 			fallthrough;
1229 		case NL80211_IFTYPE_OCB:
1230 		case NL80211_IFTYPE_P2P_CLIENT:
1231 		case NL80211_IFTYPE_ADHOC:
1232 			dev->priv_flags |= IFF_DONT_BRIDGE;
1233 			break;
1234 		case NL80211_IFTYPE_P2P_GO:
1235 		case NL80211_IFTYPE_AP:
1236 		case NL80211_IFTYPE_AP_VLAN:
1237 		case NL80211_IFTYPE_MESH_POINT:
1238 			/* bridging OK */
1239 			break;
1240 		case NL80211_IFTYPE_MONITOR:
1241 			/* monitor can't bridge anyway */
1242 			break;
1243 		case NL80211_IFTYPE_UNSPECIFIED:
1244 		case NUM_NL80211_IFTYPES:
1245 			/* not happening */
1246 			break;
1247 		case NL80211_IFTYPE_P2P_DEVICE:
1248 		case NL80211_IFTYPE_WDS:
1249 		case NL80211_IFTYPE_NAN:
1250 			WARN_ON(1);
1251 			break;
1252 		}
1253 	}
1254 
1255 	if (!err && ntype != otype && netif_running(dev)) {
1256 		cfg80211_update_iface_num(rdev, ntype, 1);
1257 		cfg80211_update_iface_num(rdev, otype, -1);
1258 	}
1259 
1260 	return err;
1261 }
1262 
1263 static u32 cfg80211_calculate_bitrate_ht(struct rate_info *rate)
1264 {
1265 	int modulation, streams, bitrate;
1266 
1267 	/* the formula below does only work for MCS values smaller than 32 */
1268 	if (WARN_ON_ONCE(rate->mcs >= 32))
1269 		return 0;
1270 
1271 	modulation = rate->mcs & 7;
1272 	streams = (rate->mcs >> 3) + 1;
1273 
1274 	bitrate = (rate->bw == RATE_INFO_BW_40) ? 13500000 : 6500000;
1275 
1276 	if (modulation < 4)
1277 		bitrate *= (modulation + 1);
1278 	else if (modulation == 4)
1279 		bitrate *= (modulation + 2);
1280 	else
1281 		bitrate *= (modulation + 3);
1282 
1283 	bitrate *= streams;
1284 
1285 	if (rate->flags & RATE_INFO_FLAGS_SHORT_GI)
1286 		bitrate = (bitrate / 9) * 10;
1287 
1288 	/* do NOT round down here */
1289 	return (bitrate + 50000) / 100000;
1290 }
1291 
1292 static u32 cfg80211_calculate_bitrate_dmg(struct rate_info *rate)
1293 {
1294 	static const u32 __mcs2bitrate[] = {
1295 		/* control PHY */
1296 		[0] =   275,
1297 		/* SC PHY */
1298 		[1] =  3850,
1299 		[2] =  7700,
1300 		[3] =  9625,
1301 		[4] = 11550,
1302 		[5] = 12512, /* 1251.25 mbps */
1303 		[6] = 15400,
1304 		[7] = 19250,
1305 		[8] = 23100,
1306 		[9] = 25025,
1307 		[10] = 30800,
1308 		[11] = 38500,
1309 		[12] = 46200,
1310 		/* OFDM PHY */
1311 		[13] =  6930,
1312 		[14] =  8662, /* 866.25 mbps */
1313 		[15] = 13860,
1314 		[16] = 17325,
1315 		[17] = 20790,
1316 		[18] = 27720,
1317 		[19] = 34650,
1318 		[20] = 41580,
1319 		[21] = 45045,
1320 		[22] = 51975,
1321 		[23] = 62370,
1322 		[24] = 67568, /* 6756.75 mbps */
1323 		/* LP-SC PHY */
1324 		[25] =  6260,
1325 		[26] =  8340,
1326 		[27] = 11120,
1327 		[28] = 12510,
1328 		[29] = 16680,
1329 		[30] = 22240,
1330 		[31] = 25030,
1331 	};
1332 
1333 	if (WARN_ON_ONCE(rate->mcs >= ARRAY_SIZE(__mcs2bitrate)))
1334 		return 0;
1335 
1336 	return __mcs2bitrate[rate->mcs];
1337 }
1338 
1339 static u32 cfg80211_calculate_bitrate_extended_sc_dmg(struct rate_info *rate)
1340 {
1341 	static const u32 __mcs2bitrate[] = {
1342 		[6 - 6] = 26950, /* MCS 9.1 : 2695.0 mbps */
1343 		[7 - 6] = 50050, /* MCS 12.1 */
1344 		[8 - 6] = 53900,
1345 		[9 - 6] = 57750,
1346 		[10 - 6] = 63900,
1347 		[11 - 6] = 75075,
1348 		[12 - 6] = 80850,
1349 	};
1350 
1351 	/* Extended SC MCS not defined for base MCS below 6 or above 12 */
1352 	if (WARN_ON_ONCE(rate->mcs < 6 || rate->mcs > 12))
1353 		return 0;
1354 
1355 	return __mcs2bitrate[rate->mcs - 6];
1356 }
1357 
1358 static u32 cfg80211_calculate_bitrate_edmg(struct rate_info *rate)
1359 {
1360 	static const u32 __mcs2bitrate[] = {
1361 		/* control PHY */
1362 		[0] =   275,
1363 		/* SC PHY */
1364 		[1] =  3850,
1365 		[2] =  7700,
1366 		[3] =  9625,
1367 		[4] = 11550,
1368 		[5] = 12512, /* 1251.25 mbps */
1369 		[6] = 13475,
1370 		[7] = 15400,
1371 		[8] = 19250,
1372 		[9] = 23100,
1373 		[10] = 25025,
1374 		[11] = 26950,
1375 		[12] = 30800,
1376 		[13] = 38500,
1377 		[14] = 46200,
1378 		[15] = 50050,
1379 		[16] = 53900,
1380 		[17] = 57750,
1381 		[18] = 69300,
1382 		[19] = 75075,
1383 		[20] = 80850,
1384 	};
1385 
1386 	if (WARN_ON_ONCE(rate->mcs >= ARRAY_SIZE(__mcs2bitrate)))
1387 		return 0;
1388 
1389 	return __mcs2bitrate[rate->mcs] * rate->n_bonded_ch;
1390 }
1391 
1392 static u32 cfg80211_calculate_bitrate_vht(struct rate_info *rate)
1393 {
1394 	static const u32 base[4][12] = {
1395 		{   6500000,
1396 		   13000000,
1397 		   19500000,
1398 		   26000000,
1399 		   39000000,
1400 		   52000000,
1401 		   58500000,
1402 		   65000000,
1403 		   78000000,
1404 		/* not in the spec, but some devices use this: */
1405 		   86700000,
1406 		   97500000,
1407 		  108300000,
1408 		},
1409 		{  13500000,
1410 		   27000000,
1411 		   40500000,
1412 		   54000000,
1413 		   81000000,
1414 		  108000000,
1415 		  121500000,
1416 		  135000000,
1417 		  162000000,
1418 		  180000000,
1419 		  202500000,
1420 		  225000000,
1421 		},
1422 		{  29300000,
1423 		   58500000,
1424 		   87800000,
1425 		  117000000,
1426 		  175500000,
1427 		  234000000,
1428 		  263300000,
1429 		  292500000,
1430 		  351000000,
1431 		  390000000,
1432 		  438800000,
1433 		  487500000,
1434 		},
1435 		{  58500000,
1436 		  117000000,
1437 		  175500000,
1438 		  234000000,
1439 		  351000000,
1440 		  468000000,
1441 		  526500000,
1442 		  585000000,
1443 		  702000000,
1444 		  780000000,
1445 		  877500000,
1446 		  975000000,
1447 		},
1448 	};
1449 	u32 bitrate;
1450 	int idx;
1451 
1452 	if (rate->mcs > 11)
1453 		goto warn;
1454 
1455 	switch (rate->bw) {
1456 	case RATE_INFO_BW_160:
1457 		idx = 3;
1458 		break;
1459 	case RATE_INFO_BW_80:
1460 		idx = 2;
1461 		break;
1462 	case RATE_INFO_BW_40:
1463 		idx = 1;
1464 		break;
1465 	case RATE_INFO_BW_5:
1466 	case RATE_INFO_BW_10:
1467 	default:
1468 		goto warn;
1469 	case RATE_INFO_BW_20:
1470 		idx = 0;
1471 	}
1472 
1473 	bitrate = base[idx][rate->mcs];
1474 	bitrate *= rate->nss;
1475 
1476 	if (rate->flags & RATE_INFO_FLAGS_SHORT_GI)
1477 		bitrate = (bitrate / 9) * 10;
1478 
1479 	/* do NOT round down here */
1480 	return (bitrate + 50000) / 100000;
1481  warn:
1482 	WARN_ONCE(1, "invalid rate bw=%d, mcs=%d, nss=%d\n",
1483 		  rate->bw, rate->mcs, rate->nss);
1484 	return 0;
1485 }
1486 
1487 static u32 cfg80211_calculate_bitrate_he(struct rate_info *rate)
1488 {
1489 #define SCALE 6144
1490 	u32 mcs_divisors[14] = {
1491 		102399, /* 16.666666... */
1492 		 51201, /*  8.333333... */
1493 		 34134, /*  5.555555... */
1494 		 25599, /*  4.166666... */
1495 		 17067, /*  2.777777... */
1496 		 12801, /*  2.083333... */
1497 		 11377, /*  1.851725... */
1498 		 10239, /*  1.666666... */
1499 		  8532, /*  1.388888... */
1500 		  7680, /*  1.250000... */
1501 		  6828, /*  1.111111... */
1502 		  6144, /*  1.000000... */
1503 		  5690, /*  0.926106... */
1504 		  5120, /*  0.833333... */
1505 	};
1506 	u32 rates_160M[3] = { 960777777, 907400000, 816666666 };
1507 	u32 rates_996[3] =  { 480388888, 453700000, 408333333 };
1508 	u32 rates_484[3] =  { 229411111, 216666666, 195000000 };
1509 	u32 rates_242[3] =  { 114711111, 108333333,  97500000 };
1510 	u32 rates_106[3] =  {  40000000,  37777777,  34000000 };
1511 	u32 rates_52[3]  =  {  18820000,  17777777,  16000000 };
1512 	u32 rates_26[3]  =  {   9411111,   8888888,   8000000 };
1513 	u64 tmp;
1514 	u32 result;
1515 
1516 	if (WARN_ON_ONCE(rate->mcs > 13))
1517 		return 0;
1518 
1519 	if (WARN_ON_ONCE(rate->he_gi > NL80211_RATE_INFO_HE_GI_3_2))
1520 		return 0;
1521 	if (WARN_ON_ONCE(rate->he_ru_alloc >
1522 			 NL80211_RATE_INFO_HE_RU_ALLOC_2x996))
1523 		return 0;
1524 	if (WARN_ON_ONCE(rate->nss < 1 || rate->nss > 8))
1525 		return 0;
1526 
1527 	if (rate->bw == RATE_INFO_BW_160 ||
1528 	    (rate->bw == RATE_INFO_BW_HE_RU &&
1529 	     rate->he_ru_alloc == NL80211_RATE_INFO_HE_RU_ALLOC_2x996))
1530 		result = rates_160M[rate->he_gi];
1531 	else if (rate->bw == RATE_INFO_BW_80 ||
1532 		 (rate->bw == RATE_INFO_BW_HE_RU &&
1533 		  rate->he_ru_alloc == NL80211_RATE_INFO_HE_RU_ALLOC_996))
1534 		result = rates_996[rate->he_gi];
1535 	else if (rate->bw == RATE_INFO_BW_40 ||
1536 		 (rate->bw == RATE_INFO_BW_HE_RU &&
1537 		  rate->he_ru_alloc == NL80211_RATE_INFO_HE_RU_ALLOC_484))
1538 		result = rates_484[rate->he_gi];
1539 	else if (rate->bw == RATE_INFO_BW_20 ||
1540 		 (rate->bw == RATE_INFO_BW_HE_RU &&
1541 		  rate->he_ru_alloc == NL80211_RATE_INFO_HE_RU_ALLOC_242))
1542 		result = rates_242[rate->he_gi];
1543 	else if (rate->bw == RATE_INFO_BW_HE_RU &&
1544 		 rate->he_ru_alloc == NL80211_RATE_INFO_HE_RU_ALLOC_106)
1545 		result = rates_106[rate->he_gi];
1546 	else if (rate->bw == RATE_INFO_BW_HE_RU &&
1547 		 rate->he_ru_alloc == NL80211_RATE_INFO_HE_RU_ALLOC_52)
1548 		result = rates_52[rate->he_gi];
1549 	else if (rate->bw == RATE_INFO_BW_HE_RU &&
1550 		 rate->he_ru_alloc == NL80211_RATE_INFO_HE_RU_ALLOC_26)
1551 		result = rates_26[rate->he_gi];
1552 	else {
1553 		WARN(1, "invalid HE MCS: bw:%d, ru:%d\n",
1554 		     rate->bw, rate->he_ru_alloc);
1555 		return 0;
1556 	}
1557 
1558 	/* now scale to the appropriate MCS */
1559 	tmp = result;
1560 	tmp *= SCALE;
1561 	do_div(tmp, mcs_divisors[rate->mcs]);
1562 	result = tmp;
1563 
1564 	/* and take NSS, DCM into account */
1565 	result = (result * rate->nss) / 8;
1566 	if (rate->he_dcm)
1567 		result /= 2;
1568 
1569 	return result / 10000;
1570 }
1571 
1572 static u32 cfg80211_calculate_bitrate_eht(struct rate_info *rate)
1573 {
1574 #define SCALE 6144
1575 	static const u32 mcs_divisors[16] = {
1576 		102399, /* 16.666666... */
1577 		 51201, /*  8.333333... */
1578 		 34134, /*  5.555555... */
1579 		 25599, /*  4.166666... */
1580 		 17067, /*  2.777777... */
1581 		 12801, /*  2.083333... */
1582 		 11377, /*  1.851725... */
1583 		 10239, /*  1.666666... */
1584 		  8532, /*  1.388888... */
1585 		  7680, /*  1.250000... */
1586 		  6828, /*  1.111111... */
1587 		  6144, /*  1.000000... */
1588 		  5690, /*  0.926106... */
1589 		  5120, /*  0.833333... */
1590 		409600, /* 66.666666... */
1591 		204800, /* 33.333333... */
1592 	};
1593 	static const u32 rates_996[3] =  { 480388888, 453700000, 408333333 };
1594 	static const u32 rates_484[3] =  { 229411111, 216666666, 195000000 };
1595 	static const u32 rates_242[3] =  { 114711111, 108333333,  97500000 };
1596 	static const u32 rates_106[3] =  {  40000000,  37777777,  34000000 };
1597 	static const u32 rates_52[3]  =  {  18820000,  17777777,  16000000 };
1598 	static const u32 rates_26[3]  =  {   9411111,   8888888,   8000000 };
1599 	u64 tmp;
1600 	u32 result;
1601 
1602 	if (WARN_ON_ONCE(rate->mcs > 15))
1603 		return 0;
1604 	if (WARN_ON_ONCE(rate->eht_gi > NL80211_RATE_INFO_EHT_GI_3_2))
1605 		return 0;
1606 	if (WARN_ON_ONCE(rate->eht_ru_alloc >
1607 			 NL80211_RATE_INFO_EHT_RU_ALLOC_4x996))
1608 		return 0;
1609 	if (WARN_ON_ONCE(rate->nss < 1 || rate->nss > 8))
1610 		return 0;
1611 
1612 	/* Bandwidth checks for MCS 14 */
1613 	if (rate->mcs == 14) {
1614 		if ((rate->bw != RATE_INFO_BW_EHT_RU &&
1615 		     rate->bw != RATE_INFO_BW_80 &&
1616 		     rate->bw != RATE_INFO_BW_160 &&
1617 		     rate->bw != RATE_INFO_BW_320) ||
1618 		    (rate->bw == RATE_INFO_BW_EHT_RU &&
1619 		     rate->eht_ru_alloc != NL80211_RATE_INFO_EHT_RU_ALLOC_996 &&
1620 		     rate->eht_ru_alloc != NL80211_RATE_INFO_EHT_RU_ALLOC_2x996 &&
1621 		     rate->eht_ru_alloc != NL80211_RATE_INFO_EHT_RU_ALLOC_4x996)) {
1622 			WARN(1, "invalid EHT BW for MCS 14: bw:%d, ru:%d\n",
1623 			     rate->bw, rate->eht_ru_alloc);
1624 			return 0;
1625 		}
1626 	}
1627 
1628 	if (rate->bw == RATE_INFO_BW_320 ||
1629 	    (rate->bw == RATE_INFO_BW_EHT_RU &&
1630 	     rate->eht_ru_alloc == NL80211_RATE_INFO_EHT_RU_ALLOC_4x996))
1631 		result = 4 * rates_996[rate->eht_gi];
1632 	else if (rate->bw == RATE_INFO_BW_EHT_RU &&
1633 		 rate->eht_ru_alloc == NL80211_RATE_INFO_EHT_RU_ALLOC_3x996P484)
1634 		result = 3 * rates_996[rate->eht_gi] + rates_484[rate->eht_gi];
1635 	else if (rate->bw == RATE_INFO_BW_EHT_RU &&
1636 		 rate->eht_ru_alloc == NL80211_RATE_INFO_EHT_RU_ALLOC_3x996)
1637 		result = 3 * rates_996[rate->eht_gi];
1638 	else if (rate->bw == RATE_INFO_BW_EHT_RU &&
1639 		 rate->eht_ru_alloc == NL80211_RATE_INFO_EHT_RU_ALLOC_2x996P484)
1640 		result = 2 * rates_996[rate->eht_gi] + rates_484[rate->eht_gi];
1641 	else if (rate->bw == RATE_INFO_BW_160 ||
1642 		 (rate->bw == RATE_INFO_BW_EHT_RU &&
1643 		  rate->eht_ru_alloc == NL80211_RATE_INFO_EHT_RU_ALLOC_2x996))
1644 		result = 2 * rates_996[rate->eht_gi];
1645 	else if (rate->bw == RATE_INFO_BW_EHT_RU &&
1646 		 rate->eht_ru_alloc ==
1647 		 NL80211_RATE_INFO_EHT_RU_ALLOC_996P484P242)
1648 		result = rates_996[rate->eht_gi] + rates_484[rate->eht_gi]
1649 			 + rates_242[rate->eht_gi];
1650 	else if (rate->bw == RATE_INFO_BW_EHT_RU &&
1651 		 rate->eht_ru_alloc == NL80211_RATE_INFO_EHT_RU_ALLOC_996P484)
1652 		result = rates_996[rate->eht_gi] + rates_484[rate->eht_gi];
1653 	else if (rate->bw == RATE_INFO_BW_80 ||
1654 		 (rate->bw == RATE_INFO_BW_EHT_RU &&
1655 		  rate->eht_ru_alloc == NL80211_RATE_INFO_EHT_RU_ALLOC_996))
1656 		result = rates_996[rate->eht_gi];
1657 	else if (rate->bw == RATE_INFO_BW_EHT_RU &&
1658 		 rate->eht_ru_alloc == NL80211_RATE_INFO_EHT_RU_ALLOC_484P242)
1659 		result = rates_484[rate->eht_gi] + rates_242[rate->eht_gi];
1660 	else if (rate->bw == RATE_INFO_BW_40 ||
1661 		 (rate->bw == RATE_INFO_BW_EHT_RU &&
1662 		  rate->eht_ru_alloc == NL80211_RATE_INFO_EHT_RU_ALLOC_484))
1663 		result = rates_484[rate->eht_gi];
1664 	else if (rate->bw == RATE_INFO_BW_20 ||
1665 		 (rate->bw == RATE_INFO_BW_EHT_RU &&
1666 		  rate->eht_ru_alloc == NL80211_RATE_INFO_EHT_RU_ALLOC_242))
1667 		result = rates_242[rate->eht_gi];
1668 	else if (rate->bw == RATE_INFO_BW_EHT_RU &&
1669 		 rate->eht_ru_alloc == NL80211_RATE_INFO_EHT_RU_ALLOC_106P26)
1670 		result = rates_106[rate->eht_gi] + rates_26[rate->eht_gi];
1671 	else if (rate->bw == RATE_INFO_BW_EHT_RU &&
1672 		 rate->eht_ru_alloc == NL80211_RATE_INFO_EHT_RU_ALLOC_106)
1673 		result = rates_106[rate->eht_gi];
1674 	else if (rate->bw == RATE_INFO_BW_EHT_RU &&
1675 		 rate->eht_ru_alloc == NL80211_RATE_INFO_EHT_RU_ALLOC_52P26)
1676 		result = rates_52[rate->eht_gi] + rates_26[rate->eht_gi];
1677 	else if (rate->bw == RATE_INFO_BW_EHT_RU &&
1678 		 rate->eht_ru_alloc == NL80211_RATE_INFO_EHT_RU_ALLOC_52)
1679 		result = rates_52[rate->eht_gi];
1680 	else if (rate->bw == RATE_INFO_BW_EHT_RU &&
1681 		 rate->eht_ru_alloc == NL80211_RATE_INFO_EHT_RU_ALLOC_26)
1682 		result = rates_26[rate->eht_gi];
1683 	else {
1684 		WARN(1, "invalid EHT MCS: bw:%d, ru:%d\n",
1685 		     rate->bw, rate->eht_ru_alloc);
1686 		return 0;
1687 	}
1688 
1689 	/* now scale to the appropriate MCS */
1690 	tmp = result;
1691 	tmp *= SCALE;
1692 	do_div(tmp, mcs_divisors[rate->mcs]);
1693 
1694 	/* and take NSS */
1695 	tmp *= rate->nss;
1696 	do_div(tmp, 8);
1697 
1698 	result = tmp;
1699 
1700 	return result / 10000;
1701 }
1702 
1703 static u32 cfg80211_calculate_bitrate_s1g(struct rate_info *rate)
1704 {
1705 	/* For 1, 2, 4, 8 and 16 MHz channels */
1706 	static const u32 base[5][11] = {
1707 		{  300000,
1708 		   600000,
1709 		   900000,
1710 		  1200000,
1711 		  1800000,
1712 		  2400000,
1713 		  2700000,
1714 		  3000000,
1715 		  3600000,
1716 		  4000000,
1717 		  /* MCS 10 supported in 1 MHz only */
1718 		  150000,
1719 		},
1720 		{  650000,
1721 		  1300000,
1722 		  1950000,
1723 		  2600000,
1724 		  3900000,
1725 		  5200000,
1726 		  5850000,
1727 		  6500000,
1728 		  7800000,
1729 		  /* MCS 9 not valid */
1730 		},
1731 		{  1350000,
1732 		   2700000,
1733 		   4050000,
1734 		   5400000,
1735 		   8100000,
1736 		  10800000,
1737 		  12150000,
1738 		  13500000,
1739 		  16200000,
1740 		  18000000,
1741 		},
1742 		{  2925000,
1743 		   5850000,
1744 		   8775000,
1745 		  11700000,
1746 		  17550000,
1747 		  23400000,
1748 		  26325000,
1749 		  29250000,
1750 		  35100000,
1751 		  39000000,
1752 		},
1753 		{  8580000,
1754 		  11700000,
1755 		  17550000,
1756 		  23400000,
1757 		  35100000,
1758 		  46800000,
1759 		  52650000,
1760 		  58500000,
1761 		  70200000,
1762 		  78000000,
1763 		},
1764 	};
1765 	u32 bitrate;
1766 	/* default is 1 MHz index */
1767 	int idx = 0;
1768 
1769 	if (rate->mcs >= 11)
1770 		goto warn;
1771 
1772 	switch (rate->bw) {
1773 	case RATE_INFO_BW_16:
1774 		idx = 4;
1775 		break;
1776 	case RATE_INFO_BW_8:
1777 		idx = 3;
1778 		break;
1779 	case RATE_INFO_BW_4:
1780 		idx = 2;
1781 		break;
1782 	case RATE_INFO_BW_2:
1783 		idx = 1;
1784 		break;
1785 	case RATE_INFO_BW_1:
1786 		idx = 0;
1787 		break;
1788 	case RATE_INFO_BW_5:
1789 	case RATE_INFO_BW_10:
1790 	case RATE_INFO_BW_20:
1791 	case RATE_INFO_BW_40:
1792 	case RATE_INFO_BW_80:
1793 	case RATE_INFO_BW_160:
1794 	default:
1795 		goto warn;
1796 	}
1797 
1798 	bitrate = base[idx][rate->mcs];
1799 	bitrate *= rate->nss;
1800 
1801 	if (rate->flags & RATE_INFO_FLAGS_SHORT_GI)
1802 		bitrate = (bitrate / 9) * 10;
1803 	/* do NOT round down here */
1804 	return (bitrate + 50000) / 100000;
1805 warn:
1806 	WARN_ONCE(1, "invalid rate bw=%d, mcs=%d, nss=%d\n",
1807 		  rate->bw, rate->mcs, rate->nss);
1808 	return 0;
1809 }
1810 
1811 u32 cfg80211_calculate_bitrate(struct rate_info *rate)
1812 {
1813 	if (rate->flags & RATE_INFO_FLAGS_MCS)
1814 		return cfg80211_calculate_bitrate_ht(rate);
1815 	if (rate->flags & RATE_INFO_FLAGS_DMG)
1816 		return cfg80211_calculate_bitrate_dmg(rate);
1817 	if (rate->flags & RATE_INFO_FLAGS_EXTENDED_SC_DMG)
1818 		return cfg80211_calculate_bitrate_extended_sc_dmg(rate);
1819 	if (rate->flags & RATE_INFO_FLAGS_EDMG)
1820 		return cfg80211_calculate_bitrate_edmg(rate);
1821 	if (rate->flags & RATE_INFO_FLAGS_VHT_MCS)
1822 		return cfg80211_calculate_bitrate_vht(rate);
1823 	if (rate->flags & RATE_INFO_FLAGS_HE_MCS)
1824 		return cfg80211_calculate_bitrate_he(rate);
1825 	if (rate->flags & RATE_INFO_FLAGS_EHT_MCS)
1826 		return cfg80211_calculate_bitrate_eht(rate);
1827 	if (rate->flags & RATE_INFO_FLAGS_S1G_MCS)
1828 		return cfg80211_calculate_bitrate_s1g(rate);
1829 
1830 	return rate->legacy;
1831 }
1832 EXPORT_SYMBOL(cfg80211_calculate_bitrate);
1833 
1834 int cfg80211_get_p2p_attr(const u8 *ies, unsigned int len,
1835 			  enum ieee80211_p2p_attr_id attr,
1836 			  u8 *buf, unsigned int bufsize)
1837 {
1838 	u8 *out = buf;
1839 	u16 attr_remaining = 0;
1840 	bool desired_attr = false;
1841 	u16 desired_len = 0;
1842 
1843 	while (len > 0) {
1844 		unsigned int iedatalen;
1845 		unsigned int copy;
1846 		const u8 *iedata;
1847 
1848 		if (len < 2)
1849 			return -EILSEQ;
1850 		iedatalen = ies[1];
1851 		if (iedatalen + 2 > len)
1852 			return -EILSEQ;
1853 
1854 		if (ies[0] != WLAN_EID_VENDOR_SPECIFIC)
1855 			goto cont;
1856 
1857 		if (iedatalen < 4)
1858 			goto cont;
1859 
1860 		iedata = ies + 2;
1861 
1862 		/* check WFA OUI, P2P subtype */
1863 		if (iedata[0] != 0x50 || iedata[1] != 0x6f ||
1864 		    iedata[2] != 0x9a || iedata[3] != 0x09)
1865 			goto cont;
1866 
1867 		iedatalen -= 4;
1868 		iedata += 4;
1869 
1870 		/* check attribute continuation into this IE */
1871 		copy = min_t(unsigned int, attr_remaining, iedatalen);
1872 		if (copy && desired_attr) {
1873 			desired_len += copy;
1874 			if (out) {
1875 				memcpy(out, iedata, min(bufsize, copy));
1876 				out += min(bufsize, copy);
1877 				bufsize -= min(bufsize, copy);
1878 			}
1879 
1880 
1881 			if (copy == attr_remaining)
1882 				return desired_len;
1883 		}
1884 
1885 		attr_remaining -= copy;
1886 		if (attr_remaining)
1887 			goto cont;
1888 
1889 		iedatalen -= copy;
1890 		iedata += copy;
1891 
1892 		while (iedatalen > 0) {
1893 			u16 attr_len;
1894 
1895 			/* P2P attribute ID & size must fit */
1896 			if (iedatalen < 3)
1897 				return -EILSEQ;
1898 			desired_attr = iedata[0] == attr;
1899 			attr_len = get_unaligned_le16(iedata + 1);
1900 			iedatalen -= 3;
1901 			iedata += 3;
1902 
1903 			copy = min_t(unsigned int, attr_len, iedatalen);
1904 
1905 			if (desired_attr) {
1906 				desired_len += copy;
1907 				if (out) {
1908 					memcpy(out, iedata, min(bufsize, copy));
1909 					out += min(bufsize, copy);
1910 					bufsize -= min(bufsize, copy);
1911 				}
1912 
1913 				if (copy == attr_len)
1914 					return desired_len;
1915 			}
1916 
1917 			iedata += copy;
1918 			iedatalen -= copy;
1919 			attr_remaining = attr_len - copy;
1920 		}
1921 
1922  cont:
1923 		len -= ies[1] + 2;
1924 		ies += ies[1] + 2;
1925 	}
1926 
1927 	if (attr_remaining && desired_attr)
1928 		return -EILSEQ;
1929 
1930 	return -ENOENT;
1931 }
1932 EXPORT_SYMBOL(cfg80211_get_p2p_attr);
1933 
1934 static bool ieee80211_id_in_list(const u8 *ids, int n_ids, u8 id, bool id_ext)
1935 {
1936 	int i;
1937 
1938 	/* Make sure array values are legal */
1939 	if (WARN_ON(ids[n_ids - 1] == WLAN_EID_EXTENSION))
1940 		return false;
1941 
1942 	i = 0;
1943 	while (i < n_ids) {
1944 		if (ids[i] == WLAN_EID_EXTENSION) {
1945 			if (id_ext && (ids[i + 1] == id))
1946 				return true;
1947 
1948 			i += 2;
1949 			continue;
1950 		}
1951 
1952 		if (ids[i] == id && !id_ext)
1953 			return true;
1954 
1955 		i++;
1956 	}
1957 	return false;
1958 }
1959 
1960 static size_t skip_ie(const u8 *ies, size_t ielen, size_t pos)
1961 {
1962 	/* we assume a validly formed IEs buffer */
1963 	u8 len = ies[pos + 1];
1964 
1965 	pos += 2 + len;
1966 
1967 	/* the IE itself must have 255 bytes for fragments to follow */
1968 	if (len < 255)
1969 		return pos;
1970 
1971 	while (pos < ielen && ies[pos] == WLAN_EID_FRAGMENT) {
1972 		len = ies[pos + 1];
1973 		pos += 2 + len;
1974 	}
1975 
1976 	return pos;
1977 }
1978 
1979 size_t ieee80211_ie_split_ric(const u8 *ies, size_t ielen,
1980 			      const u8 *ids, int n_ids,
1981 			      const u8 *after_ric, int n_after_ric,
1982 			      size_t offset)
1983 {
1984 	size_t pos = offset;
1985 
1986 	while (pos < ielen) {
1987 		u8 ext = 0;
1988 
1989 		if (ies[pos] == WLAN_EID_EXTENSION)
1990 			ext = 2;
1991 		if ((pos + ext) >= ielen)
1992 			break;
1993 
1994 		if (!ieee80211_id_in_list(ids, n_ids, ies[pos + ext],
1995 					  ies[pos] == WLAN_EID_EXTENSION))
1996 			break;
1997 
1998 		if (ies[pos] == WLAN_EID_RIC_DATA && n_after_ric) {
1999 			pos = skip_ie(ies, ielen, pos);
2000 
2001 			while (pos < ielen) {
2002 				if (ies[pos] == WLAN_EID_EXTENSION)
2003 					ext = 2;
2004 				else
2005 					ext = 0;
2006 
2007 				if ((pos + ext) >= ielen)
2008 					break;
2009 
2010 				if (!ieee80211_id_in_list(after_ric,
2011 							  n_after_ric,
2012 							  ies[pos + ext],
2013 							  ext == 2))
2014 					pos = skip_ie(ies, ielen, pos);
2015 				else
2016 					break;
2017 			}
2018 		} else {
2019 			pos = skip_ie(ies, ielen, pos);
2020 		}
2021 	}
2022 
2023 	return pos;
2024 }
2025 EXPORT_SYMBOL(ieee80211_ie_split_ric);
2026 
2027 void ieee80211_fragment_element(struct sk_buff *skb, u8 *len_pos, u8 frag_id)
2028 {
2029 	unsigned int elem_len;
2030 
2031 	if (!len_pos)
2032 		return;
2033 
2034 	elem_len = skb->data + skb->len - len_pos - 1;
2035 
2036 	while (elem_len > 255) {
2037 		/* this one is 255 */
2038 		*len_pos = 255;
2039 		/* remaining data gets smaller */
2040 		elem_len -= 255;
2041 		/* make space for the fragment ID/len in SKB */
2042 		skb_put(skb, 2);
2043 		/* shift back the remaining data to place fragment ID/len */
2044 		memmove(len_pos + 255 + 3, len_pos + 255 + 1, elem_len);
2045 		/* place the fragment ID */
2046 		len_pos += 255 + 1;
2047 		*len_pos = frag_id;
2048 		/* and point to fragment length to update later */
2049 		len_pos++;
2050 	}
2051 
2052 	*len_pos = elem_len;
2053 }
2054 EXPORT_SYMBOL(ieee80211_fragment_element);
2055 
2056 bool ieee80211_operating_class_to_band(u8 operating_class,
2057 				       enum nl80211_band *band)
2058 {
2059 	switch (operating_class) {
2060 	case 112:
2061 	case 115 ... 127:
2062 	case 128 ... 130:
2063 		*band = NL80211_BAND_5GHZ;
2064 		return true;
2065 	case 131 ... 135:
2066 	case 137:
2067 		*band = NL80211_BAND_6GHZ;
2068 		return true;
2069 	case 81:
2070 	case 82:
2071 	case 83:
2072 	case 84:
2073 		*band = NL80211_BAND_2GHZ;
2074 		return true;
2075 	case 180:
2076 		*band = NL80211_BAND_60GHZ;
2077 		return true;
2078 	}
2079 
2080 	return false;
2081 }
2082 EXPORT_SYMBOL(ieee80211_operating_class_to_band);
2083 
2084 bool ieee80211_operating_class_to_chandef(u8 operating_class,
2085 					  struct ieee80211_channel *chan,
2086 					  struct cfg80211_chan_def *chandef)
2087 {
2088 	u32 control_freq, offset = 0;
2089 	enum nl80211_band band;
2090 
2091 	if (!ieee80211_operating_class_to_band(operating_class, &band) ||
2092 	    !chan || band != chan->band)
2093 		return false;
2094 
2095 	control_freq = chan->center_freq;
2096 	chandef->chan = chan;
2097 
2098 	if (control_freq >= 5955)
2099 		offset = control_freq - 5955;
2100 	else if (control_freq >= 5745)
2101 		offset = control_freq - 5745;
2102 	else if (control_freq >= 5180)
2103 		offset = control_freq - 5180;
2104 	offset /= 20;
2105 
2106 	switch (operating_class) {
2107 	case 81:  /* 2 GHz band; 20 MHz; channels 1..13 */
2108 	case 82:  /* 2 GHz band; 20 MHz; channel 14 */
2109 	case 115: /* 5 GHz band; 20 MHz; channels 36,40,44,48 */
2110 	case 118: /* 5 GHz band; 20 MHz; channels 52,56,60,64 */
2111 	case 121: /* 5 GHz band; 20 MHz; channels 100..144 */
2112 	case 124: /* 5 GHz band; 20 MHz; channels 149,153,157,161 */
2113 	case 125: /* 5 GHz band; 20 MHz; channels 149..177 */
2114 	case 131: /* 6 GHz band; 20 MHz; channels 1..233*/
2115 	case 136: /* 6 GHz band; 20 MHz; channel 2 */
2116 		chandef->center_freq1 = control_freq;
2117 		chandef->width = NL80211_CHAN_WIDTH_20;
2118 		return true;
2119 	case 83:  /* 2 GHz band; 40 MHz; channels 1..9 */
2120 	case 116: /* 5 GHz band; 40 MHz; channels 36,44 */
2121 	case 119: /* 5 GHz band; 40 MHz; channels 52,60 */
2122 	case 122: /* 5 GHz band; 40 MHz; channels 100,108,116,124,132,140 */
2123 	case 126: /* 5 GHz band; 40 MHz; channels 149,157,165,173 */
2124 		chandef->center_freq1 = control_freq + 10;
2125 		chandef->width = NL80211_CHAN_WIDTH_40;
2126 		return true;
2127 	case 84:  /* 2 GHz band; 40 MHz; channels 5..13 */
2128 	case 117: /* 5 GHz band; 40 MHz; channels 40,48 */
2129 	case 120: /* 5 GHz band; 40 MHz; channels 56,64 */
2130 	case 123: /* 5 GHz band; 40 MHz; channels 104,112,120,128,136,144 */
2131 	case 127: /* 5 GHz band; 40 MHz; channels 153,161,169,177 */
2132 		chandef->center_freq1 = control_freq - 10;
2133 		chandef->width = NL80211_CHAN_WIDTH_40;
2134 		return true;
2135 	case 132: /* 6 GHz band; 40 MHz; channels 1,5,..,229*/
2136 		chandef->center_freq1 = control_freq + 10 - (offset & 1) * 20;
2137 		chandef->width = NL80211_CHAN_WIDTH_40;
2138 		return true;
2139 	case 128: /* 5 GHz band; 80 MHz; channels 36..64,100..144,149..177 */
2140 	case 133: /* 6 GHz band; 80 MHz; channels 1,5,..,229 */
2141 		chandef->center_freq1 = control_freq + 30 - (offset & 3) * 20;
2142 		chandef->width = NL80211_CHAN_WIDTH_80;
2143 		return true;
2144 	case 129: /* 5 GHz band; 160 MHz; channels 36..64,100..144,149..177 */
2145 	case 134: /* 6 GHz band; 160 MHz; channels 1,5,..,229 */
2146 		chandef->center_freq1 = control_freq + 70 - (offset & 7) * 20;
2147 		chandef->width = NL80211_CHAN_WIDTH_160;
2148 		return true;
2149 	case 130: /* 5 GHz band; 80+80 MHz; channels 36..64,100..144,149..177 */
2150 	case 135: /* 6 GHz band; 80+80 MHz; channels 1,5,..,229 */
2151 		  /* The center_freq2 of 80+80 MHz is unknown */
2152 	case 137: /* 6 GHz band; 320 MHz; channels 1,5,..,229 */
2153 		  /* 320-1 or 320-2 channelization is unknown */
2154 	default:
2155 		return false;
2156 	}
2157 }
2158 EXPORT_SYMBOL(ieee80211_operating_class_to_chandef);
2159 
2160 bool ieee80211_chandef_to_operating_class(struct cfg80211_chan_def *chandef,
2161 					  u8 *op_class)
2162 {
2163 	u8 vht_opclass;
2164 	u32 freq = chandef->center_freq1;
2165 
2166 	if (freq >= 2412 && freq <= 2472) {
2167 		if (chandef->width > NL80211_CHAN_WIDTH_40)
2168 			return false;
2169 
2170 		/* 2.407 GHz, channels 1..13 */
2171 		if (chandef->width == NL80211_CHAN_WIDTH_40) {
2172 			if (freq > chandef->chan->center_freq)
2173 				*op_class = 83; /* HT40+ */
2174 			else
2175 				*op_class = 84; /* HT40- */
2176 		} else {
2177 			*op_class = 81;
2178 		}
2179 
2180 		return true;
2181 	}
2182 
2183 	if (freq == 2484) {
2184 		/* channel 14 is only for IEEE 802.11b */
2185 		if (chandef->width != NL80211_CHAN_WIDTH_20_NOHT)
2186 			return false;
2187 
2188 		*op_class = 82; /* channel 14 */
2189 		return true;
2190 	}
2191 
2192 	switch (chandef->width) {
2193 	case NL80211_CHAN_WIDTH_80:
2194 		vht_opclass = 128;
2195 		break;
2196 	case NL80211_CHAN_WIDTH_160:
2197 		vht_opclass = 129;
2198 		break;
2199 	case NL80211_CHAN_WIDTH_80P80:
2200 		vht_opclass = 130;
2201 		break;
2202 	case NL80211_CHAN_WIDTH_10:
2203 	case NL80211_CHAN_WIDTH_5:
2204 		return false; /* unsupported for now */
2205 	default:
2206 		vht_opclass = 0;
2207 		break;
2208 	}
2209 
2210 	/* 5 GHz, channels 36..48 */
2211 	if (freq >= 5180 && freq <= 5240) {
2212 		if (vht_opclass) {
2213 			*op_class = vht_opclass;
2214 		} else if (chandef->width == NL80211_CHAN_WIDTH_40) {
2215 			if (freq > chandef->chan->center_freq)
2216 				*op_class = 116;
2217 			else
2218 				*op_class = 117;
2219 		} else {
2220 			*op_class = 115;
2221 		}
2222 
2223 		return true;
2224 	}
2225 
2226 	/* 5 GHz, channels 52..64 */
2227 	if (freq >= 5260 && freq <= 5320) {
2228 		if (vht_opclass) {
2229 			*op_class = vht_opclass;
2230 		} else if (chandef->width == NL80211_CHAN_WIDTH_40) {
2231 			if (freq > chandef->chan->center_freq)
2232 				*op_class = 119;
2233 			else
2234 				*op_class = 120;
2235 		} else {
2236 			*op_class = 118;
2237 		}
2238 
2239 		return true;
2240 	}
2241 
2242 	/* 5 GHz, channels 100..144 */
2243 	if (freq >= 5500 && freq <= 5720) {
2244 		if (vht_opclass) {
2245 			*op_class = vht_opclass;
2246 		} else if (chandef->width == NL80211_CHAN_WIDTH_40) {
2247 			if (freq > chandef->chan->center_freq)
2248 				*op_class = 122;
2249 			else
2250 				*op_class = 123;
2251 		} else {
2252 			*op_class = 121;
2253 		}
2254 
2255 		return true;
2256 	}
2257 
2258 	/* 5 GHz, channels 149..169 */
2259 	if (freq >= 5745 && freq <= 5845) {
2260 		if (vht_opclass) {
2261 			*op_class = vht_opclass;
2262 		} else if (chandef->width == NL80211_CHAN_WIDTH_40) {
2263 			if (freq > chandef->chan->center_freq)
2264 				*op_class = 126;
2265 			else
2266 				*op_class = 127;
2267 		} else if (freq <= 5805) {
2268 			*op_class = 124;
2269 		} else {
2270 			*op_class = 125;
2271 		}
2272 
2273 		return true;
2274 	}
2275 
2276 	/* 56.16 GHz, channel 1..4 */
2277 	if (freq >= 56160 + 2160 * 1 && freq <= 56160 + 2160 * 6) {
2278 		if (chandef->width >= NL80211_CHAN_WIDTH_40)
2279 			return false;
2280 
2281 		*op_class = 180;
2282 		return true;
2283 	}
2284 
2285 	/* not supported yet */
2286 	return false;
2287 }
2288 EXPORT_SYMBOL(ieee80211_chandef_to_operating_class);
2289 
2290 static int cfg80211_wdev_bi(struct wireless_dev *wdev)
2291 {
2292 	switch (wdev->iftype) {
2293 	case NL80211_IFTYPE_AP:
2294 	case NL80211_IFTYPE_P2P_GO:
2295 		WARN_ON(wdev->valid_links);
2296 		return wdev->links[0].ap.beacon_interval;
2297 	case NL80211_IFTYPE_MESH_POINT:
2298 		return wdev->u.mesh.beacon_interval;
2299 	case NL80211_IFTYPE_ADHOC:
2300 		return wdev->u.ibss.beacon_interval;
2301 	default:
2302 		break;
2303 	}
2304 
2305 	return 0;
2306 }
2307 
2308 static void cfg80211_calculate_bi_data(struct wiphy *wiphy, u32 new_beacon_int,
2309 				       u32 *beacon_int_gcd,
2310 				       bool *beacon_int_different,
2311 				       int radio_idx)
2312 {
2313 	struct cfg80211_registered_device *rdev;
2314 	struct wireless_dev *wdev;
2315 
2316 	*beacon_int_gcd = 0;
2317 	*beacon_int_different = false;
2318 
2319 	rdev = wiphy_to_rdev(wiphy);
2320 	list_for_each_entry(wdev, &wiphy->wdev_list, list) {
2321 		int wdev_bi;
2322 
2323 		/* this feature isn't supported with MLO */
2324 		if (wdev->valid_links)
2325 			continue;
2326 
2327 		/* skip wdevs not active on the given wiphy radio */
2328 		if (radio_idx >= 0 &&
2329 		    !(rdev_get_radio_mask(rdev, wdev->netdev) & BIT(radio_idx)))
2330 			continue;
2331 
2332 		wdev_bi = cfg80211_wdev_bi(wdev);
2333 
2334 		if (!wdev_bi)
2335 			continue;
2336 
2337 		if (!*beacon_int_gcd) {
2338 			*beacon_int_gcd = wdev_bi;
2339 			continue;
2340 		}
2341 
2342 		if (wdev_bi == *beacon_int_gcd)
2343 			continue;
2344 
2345 		*beacon_int_different = true;
2346 		*beacon_int_gcd = gcd(*beacon_int_gcd, wdev_bi);
2347 	}
2348 
2349 	if (new_beacon_int && *beacon_int_gcd != new_beacon_int) {
2350 		if (*beacon_int_gcd)
2351 			*beacon_int_different = true;
2352 		*beacon_int_gcd = gcd(*beacon_int_gcd, new_beacon_int);
2353 	}
2354 }
2355 
2356 int cfg80211_validate_beacon_int(struct cfg80211_registered_device *rdev,
2357 				 enum nl80211_iftype iftype, u32 beacon_int)
2358 {
2359 	/*
2360 	 * This is just a basic pre-condition check; if interface combinations
2361 	 * are possible the driver must already be checking those with a call
2362 	 * to cfg80211_check_combinations(), in which case we'll validate more
2363 	 * through the cfg80211_calculate_bi_data() call and code in
2364 	 * cfg80211_iter_combinations().
2365 	 */
2366 
2367 	if (beacon_int < 10 || beacon_int > 10000)
2368 		return -EINVAL;
2369 
2370 	return 0;
2371 }
2372 
2373 int cfg80211_iter_combinations(struct wiphy *wiphy,
2374 			       struct iface_combination_params *params,
2375 			       void (*iter)(const struct ieee80211_iface_combination *c,
2376 					    void *data),
2377 			       void *data)
2378 {
2379 	const struct wiphy_radio *radio = NULL;
2380 	const struct ieee80211_iface_combination *c, *cs;
2381 	const struct ieee80211_regdomain *regdom;
2382 	enum nl80211_dfs_regions region = 0;
2383 	int i, j, n, iftype;
2384 	int num_interfaces = 0;
2385 	u32 used_iftypes = 0;
2386 	u32 beacon_int_gcd;
2387 	bool beacon_int_different;
2388 
2389 	if (params->radio_idx >= 0)
2390 		radio = &wiphy->radio[params->radio_idx];
2391 
2392 	/*
2393 	 * This is a bit strange, since the iteration used to rely only on
2394 	 * the data given by the driver, but here it now relies on context,
2395 	 * in form of the currently operating interfaces.
2396 	 * This is OK for all current users, and saves us from having to
2397 	 * push the GCD calculations into all the drivers.
2398 	 * In the future, this should probably rely more on data that's in
2399 	 * cfg80211 already - the only thing not would appear to be any new
2400 	 * interfaces (while being brought up) and channel/radar data.
2401 	 */
2402 	cfg80211_calculate_bi_data(wiphy, params->new_beacon_int,
2403 				   &beacon_int_gcd, &beacon_int_different,
2404 				   params->radio_idx);
2405 
2406 	if (params->radar_detect) {
2407 		rcu_read_lock();
2408 		regdom = rcu_dereference(cfg80211_regdomain);
2409 		if (regdom)
2410 			region = regdom->dfs_region;
2411 		rcu_read_unlock();
2412 	}
2413 
2414 	for (iftype = 0; iftype < NUM_NL80211_IFTYPES; iftype++) {
2415 		num_interfaces += params->iftype_num[iftype];
2416 		if (params->iftype_num[iftype] > 0 &&
2417 		    !cfg80211_iftype_allowed(wiphy, iftype, 0, 1))
2418 			used_iftypes |= BIT(iftype);
2419 	}
2420 
2421 	if (radio) {
2422 		cs = radio->iface_combinations;
2423 		n = radio->n_iface_combinations;
2424 	} else {
2425 		cs = wiphy->iface_combinations;
2426 		n = wiphy->n_iface_combinations;
2427 	}
2428 	for (i = 0; i < n; i++) {
2429 		struct ieee80211_iface_limit *limits;
2430 		u32 all_iftypes = 0;
2431 
2432 		c = &cs[i];
2433 		if (num_interfaces > c->max_interfaces)
2434 			continue;
2435 		if (params->num_different_channels > c->num_different_channels)
2436 			continue;
2437 
2438 		limits = kmemdup(c->limits, sizeof(limits[0]) * c->n_limits,
2439 				 GFP_KERNEL);
2440 		if (!limits)
2441 			return -ENOMEM;
2442 
2443 		for (iftype = 0; iftype < NUM_NL80211_IFTYPES; iftype++) {
2444 			if (cfg80211_iftype_allowed(wiphy, iftype, 0, 1))
2445 				continue;
2446 			for (j = 0; j < c->n_limits; j++) {
2447 				all_iftypes |= limits[j].types;
2448 				if (!(limits[j].types & BIT(iftype)))
2449 					continue;
2450 				if (limits[j].max < params->iftype_num[iftype])
2451 					goto cont;
2452 				limits[j].max -= params->iftype_num[iftype];
2453 			}
2454 		}
2455 
2456 		if (params->radar_detect !=
2457 			(c->radar_detect_widths & params->radar_detect))
2458 			goto cont;
2459 
2460 		if (params->radar_detect && c->radar_detect_regions &&
2461 		    !(c->radar_detect_regions & BIT(region)))
2462 			goto cont;
2463 
2464 		/* Finally check that all iftypes that we're currently
2465 		 * using are actually part of this combination. If they
2466 		 * aren't then we can't use this combination and have
2467 		 * to continue to the next.
2468 		 */
2469 		if ((all_iftypes & used_iftypes) != used_iftypes)
2470 			goto cont;
2471 
2472 		if (beacon_int_gcd) {
2473 			if (c->beacon_int_min_gcd &&
2474 			    beacon_int_gcd < c->beacon_int_min_gcd)
2475 				goto cont;
2476 			if (!c->beacon_int_min_gcd && beacon_int_different)
2477 				goto cont;
2478 		}
2479 
2480 		/* This combination covered all interface types and
2481 		 * supported the requested numbers, so we're good.
2482 		 */
2483 
2484 		(*iter)(c, data);
2485  cont:
2486 		kfree(limits);
2487 	}
2488 
2489 	return 0;
2490 }
2491 EXPORT_SYMBOL(cfg80211_iter_combinations);
2492 
2493 static void
2494 cfg80211_iter_sum_ifcombs(const struct ieee80211_iface_combination *c,
2495 			  void *data)
2496 {
2497 	int *num = data;
2498 	(*num)++;
2499 }
2500 
2501 int cfg80211_check_combinations(struct wiphy *wiphy,
2502 				struct iface_combination_params *params)
2503 {
2504 	int err, num = 0;
2505 
2506 	err = cfg80211_iter_combinations(wiphy, params,
2507 					 cfg80211_iter_sum_ifcombs, &num);
2508 	if (err)
2509 		return err;
2510 	if (num == 0)
2511 		return -EBUSY;
2512 
2513 	return 0;
2514 }
2515 EXPORT_SYMBOL(cfg80211_check_combinations);
2516 
2517 int ieee80211_get_ratemask(struct ieee80211_supported_band *sband,
2518 			   const u8 *rates, unsigned int n_rates,
2519 			   u32 *mask)
2520 {
2521 	int i, j;
2522 
2523 	if (!sband)
2524 		return -EINVAL;
2525 
2526 	if (n_rates == 0 || n_rates > NL80211_MAX_SUPP_RATES)
2527 		return -EINVAL;
2528 
2529 	*mask = 0;
2530 
2531 	for (i = 0; i < n_rates; i++) {
2532 		int rate = (rates[i] & 0x7f) * 5;
2533 		bool found = false;
2534 
2535 		for (j = 0; j < sband->n_bitrates; j++) {
2536 			if (sband->bitrates[j].bitrate == rate) {
2537 				found = true;
2538 				*mask |= BIT(j);
2539 				break;
2540 			}
2541 		}
2542 		if (!found)
2543 			return -EINVAL;
2544 	}
2545 
2546 	/*
2547 	 * mask must have at least one bit set here since we
2548 	 * didn't accept a 0-length rates array nor allowed
2549 	 * entries in the array that didn't exist
2550 	 */
2551 
2552 	return 0;
2553 }
2554 
2555 unsigned int ieee80211_get_num_supported_channels(struct wiphy *wiphy)
2556 {
2557 	enum nl80211_band band;
2558 	unsigned int n_channels = 0;
2559 
2560 	for (band = 0; band < NUM_NL80211_BANDS; band++)
2561 		if (wiphy->bands[band])
2562 			n_channels += wiphy->bands[band]->n_channels;
2563 
2564 	return n_channels;
2565 }
2566 EXPORT_SYMBOL(ieee80211_get_num_supported_channels);
2567 
2568 int cfg80211_get_station(struct net_device *dev, const u8 *mac_addr,
2569 			 struct station_info *sinfo)
2570 {
2571 	struct cfg80211_registered_device *rdev;
2572 	struct wireless_dev *wdev;
2573 	int ret;
2574 
2575 	wdev = dev->ieee80211_ptr;
2576 	if (!wdev)
2577 		return -EOPNOTSUPP;
2578 
2579 	rdev = wiphy_to_rdev(wdev->wiphy);
2580 	if (!rdev->ops->get_station)
2581 		return -EOPNOTSUPP;
2582 
2583 	memset(sinfo, 0, sizeof(*sinfo));
2584 
2585 	wiphy_lock(&rdev->wiphy);
2586 	ret = rdev_get_station(rdev, dev, mac_addr, sinfo);
2587 	wiphy_unlock(&rdev->wiphy);
2588 
2589 	return ret;
2590 }
2591 EXPORT_SYMBOL(cfg80211_get_station);
2592 
2593 void cfg80211_free_nan_func(struct cfg80211_nan_func *f)
2594 {
2595 	int i;
2596 
2597 	if (!f)
2598 		return;
2599 
2600 	kfree(f->serv_spec_info);
2601 	kfree(f->srf_bf);
2602 	kfree(f->srf_macs);
2603 	for (i = 0; i < f->num_rx_filters; i++)
2604 		kfree(f->rx_filters[i].filter);
2605 
2606 	for (i = 0; i < f->num_tx_filters; i++)
2607 		kfree(f->tx_filters[i].filter);
2608 
2609 	kfree(f->rx_filters);
2610 	kfree(f->tx_filters);
2611 	kfree(f);
2612 }
2613 EXPORT_SYMBOL(cfg80211_free_nan_func);
2614 
2615 bool cfg80211_does_bw_fit_range(const struct ieee80211_freq_range *freq_range,
2616 				u32 center_freq_khz, u32 bw_khz)
2617 {
2618 	u32 start_freq_khz, end_freq_khz;
2619 
2620 	start_freq_khz = center_freq_khz - (bw_khz / 2);
2621 	end_freq_khz = center_freq_khz + (bw_khz / 2);
2622 
2623 	if (start_freq_khz >= freq_range->start_freq_khz &&
2624 	    end_freq_khz <= freq_range->end_freq_khz)
2625 		return true;
2626 
2627 	return false;
2628 }
2629 
2630 int cfg80211_sinfo_alloc_tid_stats(struct station_info *sinfo, gfp_t gfp)
2631 {
2632 	sinfo->pertid = kcalloc(IEEE80211_NUM_TIDS + 1,
2633 				sizeof(*(sinfo->pertid)),
2634 				gfp);
2635 	if (!sinfo->pertid)
2636 		return -ENOMEM;
2637 
2638 	return 0;
2639 }
2640 EXPORT_SYMBOL(cfg80211_sinfo_alloc_tid_stats);
2641 
2642 /* See IEEE 802.1H for LLC/SNAP encapsulation/decapsulation */
2643 /* Ethernet-II snap header (RFC1042 for most EtherTypes) */
2644 const unsigned char rfc1042_header[] __aligned(2) =
2645 	{ 0xaa, 0xaa, 0x03, 0x00, 0x00, 0x00 };
2646 EXPORT_SYMBOL(rfc1042_header);
2647 
2648 /* Bridge-Tunnel header (for EtherTypes ETH_P_AARP and ETH_P_IPX) */
2649 const unsigned char bridge_tunnel_header[] __aligned(2) =
2650 	{ 0xaa, 0xaa, 0x03, 0x00, 0x00, 0xf8 };
2651 EXPORT_SYMBOL(bridge_tunnel_header);
2652 
2653 /* Layer 2 Update frame (802.2 Type 1 LLC XID Update response) */
2654 struct iapp_layer2_update {
2655 	u8 da[ETH_ALEN];	/* broadcast */
2656 	u8 sa[ETH_ALEN];	/* STA addr */
2657 	__be16 len;		/* 6 */
2658 	u8 dsap;		/* 0 */
2659 	u8 ssap;		/* 0 */
2660 	u8 control;
2661 	u8 xid_info[3];
2662 } __packed;
2663 
2664 void cfg80211_send_layer2_update(struct net_device *dev, const u8 *addr)
2665 {
2666 	struct iapp_layer2_update *msg;
2667 	struct sk_buff *skb;
2668 
2669 	/* Send Level 2 Update Frame to update forwarding tables in layer 2
2670 	 * bridge devices */
2671 
2672 	skb = dev_alloc_skb(sizeof(*msg));
2673 	if (!skb)
2674 		return;
2675 	msg = skb_put(skb, sizeof(*msg));
2676 
2677 	/* 802.2 Type 1 Logical Link Control (LLC) Exchange Identifier (XID)
2678 	 * Update response frame; IEEE Std 802.2-1998, 5.4.1.2.1 */
2679 
2680 	eth_broadcast_addr(msg->da);
2681 	ether_addr_copy(msg->sa, addr);
2682 	msg->len = htons(6);
2683 	msg->dsap = 0;
2684 	msg->ssap = 0x01;	/* NULL LSAP, CR Bit: Response */
2685 	msg->control = 0xaf;	/* XID response lsb.1111F101.
2686 				 * F=0 (no poll command; unsolicited frame) */
2687 	msg->xid_info[0] = 0x81;	/* XID format identifier */
2688 	msg->xid_info[1] = 1;	/* LLC types/classes: Type 1 LLC */
2689 	msg->xid_info[2] = 0;	/* XID sender's receive window size (RW) */
2690 
2691 	skb->dev = dev;
2692 	skb->protocol = eth_type_trans(skb, dev);
2693 	memset(skb->cb, 0, sizeof(skb->cb));
2694 	netif_rx(skb);
2695 }
2696 EXPORT_SYMBOL(cfg80211_send_layer2_update);
2697 
2698 int ieee80211_get_vht_max_nss(struct ieee80211_vht_cap *cap,
2699 			      enum ieee80211_vht_chanwidth bw,
2700 			      int mcs, bool ext_nss_bw_capable,
2701 			      unsigned int max_vht_nss)
2702 {
2703 	u16 map = le16_to_cpu(cap->supp_mcs.rx_mcs_map);
2704 	int ext_nss_bw;
2705 	int supp_width;
2706 	int i, mcs_encoding;
2707 
2708 	if (map == 0xffff)
2709 		return 0;
2710 
2711 	if (WARN_ON(mcs > 9 || max_vht_nss > 8))
2712 		return 0;
2713 	if (mcs <= 7)
2714 		mcs_encoding = 0;
2715 	else if (mcs == 8)
2716 		mcs_encoding = 1;
2717 	else
2718 		mcs_encoding = 2;
2719 
2720 	if (!max_vht_nss) {
2721 		/* find max_vht_nss for the given MCS */
2722 		for (i = 7; i >= 0; i--) {
2723 			int supp = (map >> (2 * i)) & 3;
2724 
2725 			if (supp == 3)
2726 				continue;
2727 
2728 			if (supp >= mcs_encoding) {
2729 				max_vht_nss = i + 1;
2730 				break;
2731 			}
2732 		}
2733 	}
2734 
2735 	if (!(cap->supp_mcs.tx_mcs_map &
2736 			cpu_to_le16(IEEE80211_VHT_EXT_NSS_BW_CAPABLE)))
2737 		return max_vht_nss;
2738 
2739 	ext_nss_bw = le32_get_bits(cap->vht_cap_info,
2740 				   IEEE80211_VHT_CAP_EXT_NSS_BW_MASK);
2741 	supp_width = le32_get_bits(cap->vht_cap_info,
2742 				   IEEE80211_VHT_CAP_SUPP_CHAN_WIDTH_MASK);
2743 
2744 	/* if not capable, treat ext_nss_bw as 0 */
2745 	if (!ext_nss_bw_capable)
2746 		ext_nss_bw = 0;
2747 
2748 	/* This is invalid */
2749 	if (supp_width == 3)
2750 		return 0;
2751 
2752 	/* This is an invalid combination so pretend nothing is supported */
2753 	if (supp_width == 2 && (ext_nss_bw == 1 || ext_nss_bw == 2))
2754 		return 0;
2755 
2756 	/*
2757 	 * Cover all the special cases according to IEEE 802.11-2016
2758 	 * Table 9-250. All other cases are either factor of 1 or not
2759 	 * valid/supported.
2760 	 */
2761 	switch (bw) {
2762 	case IEEE80211_VHT_CHANWIDTH_USE_HT:
2763 	case IEEE80211_VHT_CHANWIDTH_80MHZ:
2764 		if ((supp_width == 1 || supp_width == 2) &&
2765 		    ext_nss_bw == 3)
2766 			return 2 * max_vht_nss;
2767 		break;
2768 	case IEEE80211_VHT_CHANWIDTH_160MHZ:
2769 		if (supp_width == 0 &&
2770 		    (ext_nss_bw == 1 || ext_nss_bw == 2))
2771 			return max_vht_nss / 2;
2772 		if (supp_width == 0 &&
2773 		    ext_nss_bw == 3)
2774 			return (3 * max_vht_nss) / 4;
2775 		if (supp_width == 1 &&
2776 		    ext_nss_bw == 3)
2777 			return 2 * max_vht_nss;
2778 		break;
2779 	case IEEE80211_VHT_CHANWIDTH_80P80MHZ:
2780 		if (supp_width == 0 && ext_nss_bw == 1)
2781 			return 0; /* not possible */
2782 		if (supp_width == 0 &&
2783 		    ext_nss_bw == 2)
2784 			return max_vht_nss / 2;
2785 		if (supp_width == 0 &&
2786 		    ext_nss_bw == 3)
2787 			return (3 * max_vht_nss) / 4;
2788 		if (supp_width == 1 &&
2789 		    ext_nss_bw == 0)
2790 			return 0; /* not possible */
2791 		if (supp_width == 1 &&
2792 		    ext_nss_bw == 1)
2793 			return max_vht_nss / 2;
2794 		if (supp_width == 1 &&
2795 		    ext_nss_bw == 2)
2796 			return (3 * max_vht_nss) / 4;
2797 		break;
2798 	}
2799 
2800 	/* not covered or invalid combination received */
2801 	return max_vht_nss;
2802 }
2803 EXPORT_SYMBOL(ieee80211_get_vht_max_nss);
2804 
2805 bool cfg80211_iftype_allowed(struct wiphy *wiphy, enum nl80211_iftype iftype,
2806 			     bool is_4addr, u8 check_swif)
2807 
2808 {
2809 	bool is_vlan = iftype == NL80211_IFTYPE_AP_VLAN;
2810 
2811 	switch (check_swif) {
2812 	case 0:
2813 		if (is_vlan && is_4addr)
2814 			return wiphy->flags & WIPHY_FLAG_4ADDR_AP;
2815 		return wiphy->interface_modes & BIT(iftype);
2816 	case 1:
2817 		if (!(wiphy->software_iftypes & BIT(iftype)) && is_vlan)
2818 			return wiphy->flags & WIPHY_FLAG_4ADDR_AP;
2819 		return wiphy->software_iftypes & BIT(iftype);
2820 	default:
2821 		break;
2822 	}
2823 
2824 	return false;
2825 }
2826 EXPORT_SYMBOL(cfg80211_iftype_allowed);
2827 
2828 void cfg80211_remove_link(struct wireless_dev *wdev, unsigned int link_id)
2829 {
2830 	struct cfg80211_registered_device *rdev = wiphy_to_rdev(wdev->wiphy);
2831 
2832 	lockdep_assert_wiphy(wdev->wiphy);
2833 
2834 	switch (wdev->iftype) {
2835 	case NL80211_IFTYPE_AP:
2836 	case NL80211_IFTYPE_P2P_GO:
2837 		cfg80211_stop_ap(rdev, wdev->netdev, link_id, true);
2838 		break;
2839 	default:
2840 		/* per-link not relevant */
2841 		break;
2842 	}
2843 
2844 	wdev->valid_links &= ~BIT(link_id);
2845 
2846 	rdev_del_intf_link(rdev, wdev, link_id);
2847 
2848 	eth_zero_addr(wdev->links[link_id].addr);
2849 }
2850 
2851 void cfg80211_remove_links(struct wireless_dev *wdev)
2852 {
2853 	unsigned int link_id;
2854 
2855 	/*
2856 	 * links are controlled by upper layers (userspace/cfg)
2857 	 * only for AP mode, so only remove them here for AP
2858 	 */
2859 	if (wdev->iftype != NL80211_IFTYPE_AP)
2860 		return;
2861 
2862 	if (wdev->valid_links) {
2863 		for_each_valid_link(wdev, link_id)
2864 			cfg80211_remove_link(wdev, link_id);
2865 	}
2866 }
2867 
2868 int cfg80211_remove_virtual_intf(struct cfg80211_registered_device *rdev,
2869 				 struct wireless_dev *wdev)
2870 {
2871 	cfg80211_remove_links(wdev);
2872 
2873 	return rdev_del_virtual_intf(rdev, wdev);
2874 }
2875 
2876 const struct wiphy_iftype_ext_capab *
2877 cfg80211_get_iftype_ext_capa(struct wiphy *wiphy, enum nl80211_iftype type)
2878 {
2879 	int i;
2880 
2881 	for (i = 0; i < wiphy->num_iftype_ext_capab; i++) {
2882 		if (wiphy->iftype_ext_capab[i].iftype == type)
2883 			return &wiphy->iftype_ext_capab[i];
2884 	}
2885 
2886 	return NULL;
2887 }
2888 EXPORT_SYMBOL(cfg80211_get_iftype_ext_capa);
2889 
2890 static bool
2891 ieee80211_radio_freq_range_valid(const struct wiphy_radio *radio,
2892 				 u32 freq, u32 width)
2893 {
2894 	const struct wiphy_radio_freq_range *r;
2895 	int i;
2896 
2897 	for (i = 0; i < radio->n_freq_range; i++) {
2898 		r = &radio->freq_range[i];
2899 		if (freq - width / 2 >= r->start_freq &&
2900 		    freq + width / 2 <= r->end_freq)
2901 			return true;
2902 	}
2903 
2904 	return false;
2905 }
2906 
2907 bool cfg80211_radio_chandef_valid(const struct wiphy_radio *radio,
2908 				  const struct cfg80211_chan_def *chandef)
2909 {
2910 	u32 freq, width;
2911 
2912 	freq = ieee80211_chandef_to_khz(chandef);
2913 	width = nl80211_chan_width_to_mhz(chandef->width);
2914 	if (!ieee80211_radio_freq_range_valid(radio, freq, width))
2915 		return false;
2916 
2917 	freq = MHZ_TO_KHZ(chandef->center_freq2);
2918 	if (freq && !ieee80211_radio_freq_range_valid(radio, freq, width))
2919 		return false;
2920 
2921 	return true;
2922 }
2923 EXPORT_SYMBOL(cfg80211_radio_chandef_valid);
2924