1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Wireless utility functions 4 * 5 * Copyright 2007-2009 Johannes Berg <johannes@sipsolutions.net> 6 * Copyright 2013-2014 Intel Mobile Communications GmbH 7 * Copyright 2017 Intel Deutschland GmbH 8 * Copyright (C) 2018-2023, 2025 Intel Corporation 9 */ 10 #include <linux/export.h> 11 #include <linux/bitops.h> 12 #include <linux/etherdevice.h> 13 #include <linux/slab.h> 14 #include <linux/ieee80211.h> 15 #include <net/cfg80211.h> 16 #include <net/ip.h> 17 #include <net/dsfield.h> 18 #include <linux/if_vlan.h> 19 #include <linux/mpls.h> 20 #include <linux/gcd.h> 21 #include <linux/bitfield.h> 22 #include <linux/nospec.h> 23 #include "core.h" 24 #include "rdev-ops.h" 25 26 27 const struct ieee80211_rate * 28 ieee80211_get_response_rate(struct ieee80211_supported_band *sband, 29 u32 basic_rates, int bitrate) 30 { 31 struct ieee80211_rate *result = &sband->bitrates[0]; 32 int i; 33 34 for (i = 0; i < sband->n_bitrates; i++) { 35 if (!(basic_rates & BIT(i))) 36 continue; 37 if (sband->bitrates[i].bitrate > bitrate) 38 continue; 39 result = &sband->bitrates[i]; 40 } 41 42 return result; 43 } 44 EXPORT_SYMBOL(ieee80211_get_response_rate); 45 46 u32 ieee80211_mandatory_rates(struct ieee80211_supported_band *sband) 47 { 48 struct ieee80211_rate *bitrates; 49 u32 mandatory_rates = 0; 50 enum ieee80211_rate_flags mandatory_flag; 51 int i; 52 53 if (WARN_ON(!sband)) 54 return 1; 55 56 if (sband->band == NL80211_BAND_2GHZ) 57 mandatory_flag = IEEE80211_RATE_MANDATORY_B; 58 else 59 mandatory_flag = IEEE80211_RATE_MANDATORY_A; 60 61 bitrates = sband->bitrates; 62 for (i = 0; i < sband->n_bitrates; i++) 63 if (bitrates[i].flags & mandatory_flag) 64 mandatory_rates |= BIT(i); 65 return mandatory_rates; 66 } 67 EXPORT_SYMBOL(ieee80211_mandatory_rates); 68 69 u32 ieee80211_channel_to_freq_khz(int chan, enum nl80211_band band) 70 { 71 /* see 802.11 17.3.8.3.2 and Annex J 72 * there are overlapping channel numbers in 5GHz and 2GHz bands */ 73 if (chan <= 0) 74 return 0; /* not supported */ 75 switch (band) { 76 case NL80211_BAND_2GHZ: 77 case NL80211_BAND_LC: 78 if (chan == 14) 79 return MHZ_TO_KHZ(2484); 80 else if (chan < 14) 81 return MHZ_TO_KHZ(2407 + chan * 5); 82 break; 83 case NL80211_BAND_5GHZ: 84 if (chan >= 182 && chan <= 196) 85 return MHZ_TO_KHZ(4000 + chan * 5); 86 else 87 return MHZ_TO_KHZ(5000 + chan * 5); 88 break; 89 case NL80211_BAND_6GHZ: 90 /* see 802.11ax D6.1 27.3.23.2 */ 91 if (chan == 2) 92 return MHZ_TO_KHZ(5935); 93 if (chan <= 233) 94 return MHZ_TO_KHZ(5950 + chan * 5); 95 break; 96 case NL80211_BAND_60GHZ: 97 if (chan < 7) 98 return MHZ_TO_KHZ(56160 + chan * 2160); 99 break; 100 case NL80211_BAND_S1GHZ: 101 return 902000 + chan * 500; 102 default: 103 ; 104 } 105 return 0; /* not supported */ 106 } 107 EXPORT_SYMBOL(ieee80211_channel_to_freq_khz); 108 109 int ieee80211_freq_khz_to_channel(u32 freq) 110 { 111 /* TODO: just handle MHz for now */ 112 freq = KHZ_TO_MHZ(freq); 113 114 /* see 802.11 17.3.8.3.2 and Annex J */ 115 if (freq == 2484) 116 return 14; 117 else if (freq < 2484) 118 return (freq - 2407) / 5; 119 else if (freq >= 4910 && freq <= 4980) 120 return (freq - 4000) / 5; 121 else if (freq < 5925) 122 return (freq - 5000) / 5; 123 else if (freq == 5935) 124 return 2; 125 else if (freq <= 45000) /* DMG band lower limit */ 126 /* see 802.11ax D6.1 27.3.22.2 */ 127 return (freq - 5950) / 5; 128 else if (freq >= 58320 && freq <= 70200) 129 return (freq - 56160) / 2160; 130 else 131 return 0; 132 } 133 EXPORT_SYMBOL(ieee80211_freq_khz_to_channel); 134 135 struct ieee80211_channel *ieee80211_get_channel_khz(struct wiphy *wiphy, 136 u32 freq) 137 { 138 enum nl80211_band band; 139 struct ieee80211_supported_band *sband; 140 int i; 141 142 for (band = 0; band < NUM_NL80211_BANDS; band++) { 143 sband = wiphy->bands[band]; 144 145 if (!sband) 146 continue; 147 148 for (i = 0; i < sband->n_channels; i++) { 149 struct ieee80211_channel *chan = &sband->channels[i]; 150 151 if (ieee80211_channel_to_khz(chan) == freq) 152 return chan; 153 } 154 } 155 156 return NULL; 157 } 158 EXPORT_SYMBOL(ieee80211_get_channel_khz); 159 160 static void set_mandatory_flags_band(struct ieee80211_supported_band *sband) 161 { 162 int i, want; 163 164 switch (sband->band) { 165 case NL80211_BAND_5GHZ: 166 case NL80211_BAND_6GHZ: 167 want = 3; 168 for (i = 0; i < sband->n_bitrates; i++) { 169 if (sband->bitrates[i].bitrate == 60 || 170 sband->bitrates[i].bitrate == 120 || 171 sband->bitrates[i].bitrate == 240) { 172 sband->bitrates[i].flags |= 173 IEEE80211_RATE_MANDATORY_A; 174 want--; 175 } 176 } 177 WARN_ON(want); 178 break; 179 case NL80211_BAND_2GHZ: 180 case NL80211_BAND_LC: 181 want = 7; 182 for (i = 0; i < sband->n_bitrates; i++) { 183 switch (sband->bitrates[i].bitrate) { 184 case 10: 185 case 20: 186 case 55: 187 case 110: 188 sband->bitrates[i].flags |= 189 IEEE80211_RATE_MANDATORY_B | 190 IEEE80211_RATE_MANDATORY_G; 191 want--; 192 break; 193 case 60: 194 case 120: 195 case 240: 196 sband->bitrates[i].flags |= 197 IEEE80211_RATE_MANDATORY_G; 198 want--; 199 fallthrough; 200 default: 201 sband->bitrates[i].flags |= 202 IEEE80211_RATE_ERP_G; 203 break; 204 } 205 } 206 WARN_ON(want != 0 && want != 3); 207 break; 208 case NL80211_BAND_60GHZ: 209 /* check for mandatory HT MCS 1..4 */ 210 WARN_ON(!sband->ht_cap.ht_supported); 211 WARN_ON((sband->ht_cap.mcs.rx_mask[0] & 0x1e) != 0x1e); 212 break; 213 case NL80211_BAND_S1GHZ: 214 /* Figure 9-589bd: 3 means unsupported, so != 3 means at least 215 * mandatory is ok. 216 */ 217 WARN_ON((sband->s1g_cap.nss_mcs[0] & 0x3) == 0x3); 218 break; 219 case NUM_NL80211_BANDS: 220 default: 221 WARN_ON(1); 222 break; 223 } 224 } 225 226 void ieee80211_set_bitrate_flags(struct wiphy *wiphy) 227 { 228 enum nl80211_band band; 229 230 for (band = 0; band < NUM_NL80211_BANDS; band++) 231 if (wiphy->bands[band]) 232 set_mandatory_flags_band(wiphy->bands[band]); 233 } 234 235 bool cfg80211_supported_cipher_suite(struct wiphy *wiphy, u32 cipher) 236 { 237 int i; 238 for (i = 0; i < wiphy->n_cipher_suites; i++) 239 if (cipher == wiphy->cipher_suites[i]) 240 return true; 241 return false; 242 } 243 244 static bool 245 cfg80211_igtk_cipher_supported(struct cfg80211_registered_device *rdev) 246 { 247 struct wiphy *wiphy = &rdev->wiphy; 248 int i; 249 250 for (i = 0; i < wiphy->n_cipher_suites; i++) { 251 switch (wiphy->cipher_suites[i]) { 252 case WLAN_CIPHER_SUITE_AES_CMAC: 253 case WLAN_CIPHER_SUITE_BIP_CMAC_256: 254 case WLAN_CIPHER_SUITE_BIP_GMAC_128: 255 case WLAN_CIPHER_SUITE_BIP_GMAC_256: 256 return true; 257 } 258 } 259 260 return false; 261 } 262 263 bool cfg80211_valid_key_idx(struct cfg80211_registered_device *rdev, 264 int key_idx, bool pairwise) 265 { 266 int max_key_idx; 267 268 if (pairwise) 269 max_key_idx = 3; 270 else if (wiphy_ext_feature_isset(&rdev->wiphy, 271 NL80211_EXT_FEATURE_BEACON_PROTECTION) || 272 wiphy_ext_feature_isset(&rdev->wiphy, 273 NL80211_EXT_FEATURE_BEACON_PROTECTION_CLIENT)) 274 max_key_idx = 7; 275 else if (cfg80211_igtk_cipher_supported(rdev)) 276 max_key_idx = 5; 277 else 278 max_key_idx = 3; 279 280 if (key_idx < 0 || key_idx > max_key_idx) 281 return false; 282 283 return true; 284 } 285 286 int cfg80211_validate_key_settings(struct cfg80211_registered_device *rdev, 287 struct key_params *params, int key_idx, 288 bool pairwise, const u8 *mac_addr) 289 { 290 if (!cfg80211_valid_key_idx(rdev, key_idx, pairwise)) 291 return -EINVAL; 292 293 if (!pairwise && mac_addr && !(rdev->wiphy.flags & WIPHY_FLAG_IBSS_RSN)) 294 return -EINVAL; 295 296 if (pairwise && !mac_addr) 297 return -EINVAL; 298 299 switch (params->cipher) { 300 case WLAN_CIPHER_SUITE_TKIP: 301 /* Extended Key ID can only be used with CCMP/GCMP ciphers */ 302 if ((pairwise && key_idx) || 303 params->mode != NL80211_KEY_RX_TX) 304 return -EINVAL; 305 break; 306 case WLAN_CIPHER_SUITE_CCMP: 307 case WLAN_CIPHER_SUITE_CCMP_256: 308 case WLAN_CIPHER_SUITE_GCMP: 309 case WLAN_CIPHER_SUITE_GCMP_256: 310 /* IEEE802.11-2016 allows only 0 and - when supporting 311 * Extended Key ID - 1 as index for pairwise keys. 312 * @NL80211_KEY_NO_TX is only allowed for pairwise keys when 313 * the driver supports Extended Key ID. 314 * @NL80211_KEY_SET_TX can't be set when installing and 315 * validating a key. 316 */ 317 if ((params->mode == NL80211_KEY_NO_TX && !pairwise) || 318 params->mode == NL80211_KEY_SET_TX) 319 return -EINVAL; 320 if (wiphy_ext_feature_isset(&rdev->wiphy, 321 NL80211_EXT_FEATURE_EXT_KEY_ID)) { 322 if (pairwise && (key_idx < 0 || key_idx > 1)) 323 return -EINVAL; 324 } else if (pairwise && key_idx) { 325 return -EINVAL; 326 } 327 break; 328 case WLAN_CIPHER_SUITE_AES_CMAC: 329 case WLAN_CIPHER_SUITE_BIP_CMAC_256: 330 case WLAN_CIPHER_SUITE_BIP_GMAC_128: 331 case WLAN_CIPHER_SUITE_BIP_GMAC_256: 332 /* Disallow BIP (group-only) cipher as pairwise cipher */ 333 if (pairwise) 334 return -EINVAL; 335 if (key_idx < 4) 336 return -EINVAL; 337 break; 338 case WLAN_CIPHER_SUITE_WEP40: 339 case WLAN_CIPHER_SUITE_WEP104: 340 if (key_idx > 3) 341 return -EINVAL; 342 break; 343 default: 344 break; 345 } 346 347 switch (params->cipher) { 348 case WLAN_CIPHER_SUITE_WEP40: 349 if (params->key_len != WLAN_KEY_LEN_WEP40) 350 return -EINVAL; 351 break; 352 case WLAN_CIPHER_SUITE_TKIP: 353 if (params->key_len != WLAN_KEY_LEN_TKIP) 354 return -EINVAL; 355 break; 356 case WLAN_CIPHER_SUITE_CCMP: 357 if (params->key_len != WLAN_KEY_LEN_CCMP) 358 return -EINVAL; 359 break; 360 case WLAN_CIPHER_SUITE_CCMP_256: 361 if (params->key_len != WLAN_KEY_LEN_CCMP_256) 362 return -EINVAL; 363 break; 364 case WLAN_CIPHER_SUITE_GCMP: 365 if (params->key_len != WLAN_KEY_LEN_GCMP) 366 return -EINVAL; 367 break; 368 case WLAN_CIPHER_SUITE_GCMP_256: 369 if (params->key_len != WLAN_KEY_LEN_GCMP_256) 370 return -EINVAL; 371 break; 372 case WLAN_CIPHER_SUITE_WEP104: 373 if (params->key_len != WLAN_KEY_LEN_WEP104) 374 return -EINVAL; 375 break; 376 case WLAN_CIPHER_SUITE_AES_CMAC: 377 if (params->key_len != WLAN_KEY_LEN_AES_CMAC) 378 return -EINVAL; 379 break; 380 case WLAN_CIPHER_SUITE_BIP_CMAC_256: 381 if (params->key_len != WLAN_KEY_LEN_BIP_CMAC_256) 382 return -EINVAL; 383 break; 384 case WLAN_CIPHER_SUITE_BIP_GMAC_128: 385 if (params->key_len != WLAN_KEY_LEN_BIP_GMAC_128) 386 return -EINVAL; 387 break; 388 case WLAN_CIPHER_SUITE_BIP_GMAC_256: 389 if (params->key_len != WLAN_KEY_LEN_BIP_GMAC_256) 390 return -EINVAL; 391 break; 392 default: 393 /* 394 * We don't know anything about this algorithm, 395 * allow using it -- but the driver must check 396 * all parameters! We still check below whether 397 * or not the driver supports this algorithm, 398 * of course. 399 */ 400 break; 401 } 402 403 if (params->seq) { 404 switch (params->cipher) { 405 case WLAN_CIPHER_SUITE_WEP40: 406 case WLAN_CIPHER_SUITE_WEP104: 407 /* These ciphers do not use key sequence */ 408 return -EINVAL; 409 case WLAN_CIPHER_SUITE_TKIP: 410 case WLAN_CIPHER_SUITE_CCMP: 411 case WLAN_CIPHER_SUITE_CCMP_256: 412 case WLAN_CIPHER_SUITE_GCMP: 413 case WLAN_CIPHER_SUITE_GCMP_256: 414 case WLAN_CIPHER_SUITE_AES_CMAC: 415 case WLAN_CIPHER_SUITE_BIP_CMAC_256: 416 case WLAN_CIPHER_SUITE_BIP_GMAC_128: 417 case WLAN_CIPHER_SUITE_BIP_GMAC_256: 418 if (params->seq_len != 6) 419 return -EINVAL; 420 break; 421 } 422 } 423 424 if (!cfg80211_supported_cipher_suite(&rdev->wiphy, params->cipher)) 425 return -EINVAL; 426 427 return 0; 428 } 429 430 unsigned int __attribute_const__ ieee80211_hdrlen(__le16 fc) 431 { 432 unsigned int hdrlen = 24; 433 434 if (ieee80211_is_ext(fc)) { 435 hdrlen = 4; 436 goto out; 437 } 438 439 if (ieee80211_is_data(fc)) { 440 if (ieee80211_has_a4(fc)) 441 hdrlen = 30; 442 if (ieee80211_is_data_qos(fc)) { 443 hdrlen += IEEE80211_QOS_CTL_LEN; 444 if (ieee80211_has_order(fc)) 445 hdrlen += IEEE80211_HT_CTL_LEN; 446 } 447 goto out; 448 } 449 450 if (ieee80211_is_mgmt(fc)) { 451 if (ieee80211_has_order(fc)) 452 hdrlen += IEEE80211_HT_CTL_LEN; 453 goto out; 454 } 455 456 if (ieee80211_is_ctl(fc)) { 457 /* 458 * ACK and CTS are 10 bytes, all others 16. To see how 459 * to get this condition consider 460 * subtype mask: 0b0000000011110000 (0x00F0) 461 * ACK subtype: 0b0000000011010000 (0x00D0) 462 * CTS subtype: 0b0000000011000000 (0x00C0) 463 * bits that matter: ^^^ (0x00E0) 464 * value of those: 0b0000000011000000 (0x00C0) 465 */ 466 if ((fc & cpu_to_le16(0x00E0)) == cpu_to_le16(0x00C0)) 467 hdrlen = 10; 468 else 469 hdrlen = 16; 470 } 471 out: 472 return hdrlen; 473 } 474 EXPORT_SYMBOL(ieee80211_hdrlen); 475 476 unsigned int ieee80211_get_hdrlen_from_skb(const struct sk_buff *skb) 477 { 478 const struct ieee80211_hdr *hdr = 479 (const struct ieee80211_hdr *)skb->data; 480 unsigned int hdrlen; 481 482 if (unlikely(skb->len < 10)) 483 return 0; 484 hdrlen = ieee80211_hdrlen(hdr->frame_control); 485 if (unlikely(hdrlen > skb->len)) 486 return 0; 487 return hdrlen; 488 } 489 EXPORT_SYMBOL(ieee80211_get_hdrlen_from_skb); 490 491 static unsigned int __ieee80211_get_mesh_hdrlen(u8 flags) 492 { 493 int ae = flags & MESH_FLAGS_AE; 494 /* 802.11-2012, 8.2.4.7.3 */ 495 switch (ae) { 496 default: 497 case 0: 498 return 6; 499 case MESH_FLAGS_AE_A4: 500 return 12; 501 case MESH_FLAGS_AE_A5_A6: 502 return 18; 503 } 504 } 505 506 unsigned int ieee80211_get_mesh_hdrlen(struct ieee80211s_hdr *meshhdr) 507 { 508 return __ieee80211_get_mesh_hdrlen(meshhdr->flags); 509 } 510 EXPORT_SYMBOL(ieee80211_get_mesh_hdrlen); 511 512 bool ieee80211_get_8023_tunnel_proto(const void *hdr, __be16 *proto) 513 { 514 const __be16 *hdr_proto = hdr + ETH_ALEN; 515 516 if (!(ether_addr_equal(hdr, rfc1042_header) && 517 *hdr_proto != htons(ETH_P_AARP) && 518 *hdr_proto != htons(ETH_P_IPX)) && 519 !ether_addr_equal(hdr, bridge_tunnel_header)) 520 return false; 521 522 *proto = *hdr_proto; 523 524 return true; 525 } 526 EXPORT_SYMBOL(ieee80211_get_8023_tunnel_proto); 527 528 int ieee80211_strip_8023_mesh_hdr(struct sk_buff *skb) 529 { 530 const void *mesh_addr; 531 struct { 532 struct ethhdr eth; 533 u8 flags; 534 } payload; 535 int hdrlen; 536 int ret; 537 538 ret = skb_copy_bits(skb, 0, &payload, sizeof(payload)); 539 if (ret) 540 return ret; 541 542 hdrlen = sizeof(payload.eth) + __ieee80211_get_mesh_hdrlen(payload.flags); 543 544 if (likely(pskb_may_pull(skb, hdrlen + 8) && 545 ieee80211_get_8023_tunnel_proto(skb->data + hdrlen, 546 &payload.eth.h_proto))) 547 hdrlen += ETH_ALEN + 2; 548 else if (!pskb_may_pull(skb, hdrlen)) 549 return -EINVAL; 550 else 551 payload.eth.h_proto = htons(skb->len - hdrlen); 552 553 mesh_addr = skb->data + sizeof(payload.eth) + ETH_ALEN; 554 switch (payload.flags & MESH_FLAGS_AE) { 555 case MESH_FLAGS_AE_A4: 556 memcpy(&payload.eth.h_source, mesh_addr, ETH_ALEN); 557 break; 558 case MESH_FLAGS_AE_A5_A6: 559 memcpy(&payload.eth, mesh_addr, 2 * ETH_ALEN); 560 break; 561 default: 562 break; 563 } 564 565 pskb_pull(skb, hdrlen - sizeof(payload.eth)); 566 memcpy(skb->data, &payload.eth, sizeof(payload.eth)); 567 568 return 0; 569 } 570 EXPORT_SYMBOL(ieee80211_strip_8023_mesh_hdr); 571 572 int ieee80211_data_to_8023_exthdr(struct sk_buff *skb, struct ethhdr *ehdr, 573 const u8 *addr, enum nl80211_iftype iftype, 574 u8 data_offset, bool is_amsdu) 575 { 576 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data; 577 struct { 578 u8 hdr[ETH_ALEN] __aligned(2); 579 __be16 proto; 580 } payload; 581 struct ethhdr tmp; 582 u16 hdrlen; 583 584 if (unlikely(!ieee80211_is_data_present(hdr->frame_control))) 585 return -1; 586 587 hdrlen = ieee80211_hdrlen(hdr->frame_control) + data_offset; 588 if (skb->len < hdrlen) 589 return -1; 590 591 /* convert IEEE 802.11 header + possible LLC headers into Ethernet 592 * header 593 * IEEE 802.11 address fields: 594 * ToDS FromDS Addr1 Addr2 Addr3 Addr4 595 * 0 0 DA SA BSSID n/a 596 * 0 1 DA BSSID SA n/a 597 * 1 0 BSSID SA DA n/a 598 * 1 1 RA TA DA SA 599 */ 600 memcpy(tmp.h_dest, ieee80211_get_DA(hdr), ETH_ALEN); 601 memcpy(tmp.h_source, ieee80211_get_SA(hdr), ETH_ALEN); 602 603 switch (hdr->frame_control & 604 cpu_to_le16(IEEE80211_FCTL_TODS | IEEE80211_FCTL_FROMDS)) { 605 case cpu_to_le16(IEEE80211_FCTL_TODS): 606 if (unlikely(iftype != NL80211_IFTYPE_AP && 607 iftype != NL80211_IFTYPE_AP_VLAN && 608 iftype != NL80211_IFTYPE_P2P_GO)) 609 return -1; 610 break; 611 case cpu_to_le16(IEEE80211_FCTL_TODS | IEEE80211_FCTL_FROMDS): 612 if (unlikely(iftype != NL80211_IFTYPE_MESH_POINT && 613 iftype != NL80211_IFTYPE_AP_VLAN && 614 iftype != NL80211_IFTYPE_STATION)) 615 return -1; 616 break; 617 case cpu_to_le16(IEEE80211_FCTL_FROMDS): 618 if ((iftype != NL80211_IFTYPE_STATION && 619 iftype != NL80211_IFTYPE_P2P_CLIENT && 620 iftype != NL80211_IFTYPE_MESH_POINT) || 621 (is_multicast_ether_addr(tmp.h_dest) && 622 ether_addr_equal(tmp.h_source, addr))) 623 return -1; 624 break; 625 case cpu_to_le16(0): 626 if (iftype != NL80211_IFTYPE_ADHOC && 627 iftype != NL80211_IFTYPE_STATION && 628 iftype != NL80211_IFTYPE_OCB) 629 return -1; 630 break; 631 } 632 633 if (likely(!is_amsdu && iftype != NL80211_IFTYPE_MESH_POINT && 634 skb_copy_bits(skb, hdrlen, &payload, sizeof(payload)) == 0 && 635 ieee80211_get_8023_tunnel_proto(&payload, &tmp.h_proto))) { 636 /* remove RFC1042 or Bridge-Tunnel encapsulation */ 637 hdrlen += ETH_ALEN + 2; 638 skb_postpull_rcsum(skb, &payload, ETH_ALEN + 2); 639 } else { 640 tmp.h_proto = htons(skb->len - hdrlen); 641 } 642 643 pskb_pull(skb, hdrlen); 644 645 if (!ehdr) 646 ehdr = skb_push(skb, sizeof(struct ethhdr)); 647 memcpy(ehdr, &tmp, sizeof(tmp)); 648 649 return 0; 650 } 651 EXPORT_SYMBOL(ieee80211_data_to_8023_exthdr); 652 653 static void 654 __frame_add_frag(struct sk_buff *skb, struct page *page, 655 void *ptr, int len, int size) 656 { 657 struct skb_shared_info *sh = skb_shinfo(skb); 658 int page_offset; 659 660 get_page(page); 661 page_offset = ptr - page_address(page); 662 skb_add_rx_frag(skb, sh->nr_frags, page, page_offset, len, size); 663 } 664 665 static void 666 __ieee80211_amsdu_copy_frag(struct sk_buff *skb, struct sk_buff *frame, 667 int offset, int len) 668 { 669 struct skb_shared_info *sh = skb_shinfo(skb); 670 const skb_frag_t *frag = &sh->frags[0]; 671 struct page *frag_page; 672 void *frag_ptr; 673 int frag_len, frag_size; 674 int head_size = skb->len - skb->data_len; 675 int cur_len; 676 677 frag_page = virt_to_head_page(skb->head); 678 frag_ptr = skb->data; 679 frag_size = head_size; 680 681 while (offset >= frag_size) { 682 offset -= frag_size; 683 frag_page = skb_frag_page(frag); 684 frag_ptr = skb_frag_address(frag); 685 frag_size = skb_frag_size(frag); 686 frag++; 687 } 688 689 frag_ptr += offset; 690 frag_len = frag_size - offset; 691 692 cur_len = min(len, frag_len); 693 694 __frame_add_frag(frame, frag_page, frag_ptr, cur_len, frag_size); 695 len -= cur_len; 696 697 while (len > 0) { 698 frag_len = skb_frag_size(frag); 699 cur_len = min(len, frag_len); 700 __frame_add_frag(frame, skb_frag_page(frag), 701 skb_frag_address(frag), cur_len, frag_len); 702 len -= cur_len; 703 frag++; 704 } 705 } 706 707 static struct sk_buff * 708 __ieee80211_amsdu_copy(struct sk_buff *skb, unsigned int hlen, 709 int offset, int len, bool reuse_frag, 710 int min_len) 711 { 712 struct sk_buff *frame; 713 int cur_len = len; 714 715 if (skb->len - offset < len) 716 return NULL; 717 718 /* 719 * When reusing fragments, copy some data to the head to simplify 720 * ethernet header handling and speed up protocol header processing 721 * in the stack later. 722 */ 723 if (reuse_frag) 724 cur_len = min_t(int, len, min_len); 725 726 /* 727 * Allocate and reserve two bytes more for payload 728 * alignment since sizeof(struct ethhdr) is 14. 729 */ 730 frame = dev_alloc_skb(hlen + sizeof(struct ethhdr) + 2 + cur_len); 731 if (!frame) 732 return NULL; 733 734 frame->priority = skb->priority; 735 skb_reserve(frame, hlen + sizeof(struct ethhdr) + 2); 736 skb_copy_bits(skb, offset, skb_put(frame, cur_len), cur_len); 737 738 len -= cur_len; 739 if (!len) 740 return frame; 741 742 offset += cur_len; 743 __ieee80211_amsdu_copy_frag(skb, frame, offset, len); 744 745 return frame; 746 } 747 748 static u16 749 ieee80211_amsdu_subframe_length(void *field, u8 mesh_flags, u8 hdr_type) 750 { 751 __le16 *field_le = field; 752 __be16 *field_be = field; 753 u16 len; 754 755 if (hdr_type >= 2) 756 len = le16_to_cpu(*field_le); 757 else 758 len = be16_to_cpu(*field_be); 759 if (hdr_type) 760 len += __ieee80211_get_mesh_hdrlen(mesh_flags); 761 762 return len; 763 } 764 765 bool ieee80211_is_valid_amsdu(struct sk_buff *skb, u8 mesh_hdr) 766 { 767 int offset = 0, subframe_len, padding; 768 769 for (offset = 0; offset < skb->len; offset += subframe_len + padding) { 770 int remaining = skb->len - offset; 771 struct { 772 __be16 len; 773 u8 mesh_flags; 774 } hdr; 775 u16 len; 776 777 if (sizeof(hdr) > remaining) 778 return false; 779 780 if (skb_copy_bits(skb, offset + 2 * ETH_ALEN, &hdr, sizeof(hdr)) < 0) 781 return false; 782 783 len = ieee80211_amsdu_subframe_length(&hdr.len, hdr.mesh_flags, 784 mesh_hdr); 785 subframe_len = sizeof(struct ethhdr) + len; 786 padding = (4 - subframe_len) & 0x3; 787 788 if (subframe_len > remaining) 789 return false; 790 } 791 792 return true; 793 } 794 EXPORT_SYMBOL(ieee80211_is_valid_amsdu); 795 796 797 /* 798 * Detects if an MSDU frame was maliciously converted into an A-MSDU 799 * frame by an adversary. This is done by parsing the received frame 800 * as if it were a regular MSDU, even though the A-MSDU flag is set. 801 * 802 * For non-mesh interfaces, detection involves checking whether the 803 * payload, when interpreted as an MSDU, begins with a valid RFC1042 804 * header. This is done by comparing the A-MSDU subheader's destination 805 * address to the start of the RFC1042 header. 806 * 807 * For mesh interfaces, the MSDU includes a 6-byte Mesh Control field 808 * and an optional variable-length Mesh Address Extension field before 809 * the RFC1042 header. The position of the RFC1042 header must therefore 810 * be calculated based on the mesh header length. 811 * 812 * Since this function intentionally parses an A-MSDU frame as an MSDU, 813 * it only assumes that the A-MSDU subframe header is present, and 814 * beyond this it performs its own bounds checks under the assumption 815 * that the frame is instead parsed as a non-aggregated MSDU. 816 */ 817 static bool 818 is_amsdu_aggregation_attack(struct ethhdr *eth, struct sk_buff *skb, 819 enum nl80211_iftype iftype) 820 { 821 int offset; 822 823 /* Non-mesh case can be directly compared */ 824 if (iftype != NL80211_IFTYPE_MESH_POINT) 825 return ether_addr_equal(eth->h_dest, rfc1042_header); 826 827 offset = __ieee80211_get_mesh_hdrlen(eth->h_dest[0]); 828 if (offset == 6) { 829 /* Mesh case with empty address extension field */ 830 return ether_addr_equal(eth->h_source, rfc1042_header); 831 } else if (offset + ETH_ALEN <= skb->len) { 832 /* Mesh case with non-empty address extension field */ 833 u8 temp[ETH_ALEN]; 834 835 skb_copy_bits(skb, offset, temp, ETH_ALEN); 836 return ether_addr_equal(temp, rfc1042_header); 837 } 838 839 return false; 840 } 841 842 void ieee80211_amsdu_to_8023s(struct sk_buff *skb, struct sk_buff_head *list, 843 const u8 *addr, enum nl80211_iftype iftype, 844 const unsigned int extra_headroom, 845 const u8 *check_da, const u8 *check_sa, 846 u8 mesh_control) 847 { 848 unsigned int hlen = ALIGN(extra_headroom, 4); 849 struct sk_buff *frame = NULL; 850 int offset = 0; 851 struct { 852 struct ethhdr eth; 853 uint8_t flags; 854 } hdr; 855 bool reuse_frag = skb->head_frag && !skb_has_frag_list(skb); 856 bool reuse_skb = false; 857 bool last = false; 858 int copy_len = sizeof(hdr.eth); 859 860 if (iftype == NL80211_IFTYPE_MESH_POINT) 861 copy_len = sizeof(hdr); 862 863 while (!last) { 864 int remaining = skb->len - offset; 865 unsigned int subframe_len; 866 int len, mesh_len = 0; 867 u8 padding; 868 869 if (copy_len > remaining) 870 goto purge; 871 872 skb_copy_bits(skb, offset, &hdr, copy_len); 873 if (iftype == NL80211_IFTYPE_MESH_POINT) 874 mesh_len = __ieee80211_get_mesh_hdrlen(hdr.flags); 875 len = ieee80211_amsdu_subframe_length(&hdr.eth.h_proto, hdr.flags, 876 mesh_control); 877 subframe_len = sizeof(struct ethhdr) + len; 878 padding = (4 - subframe_len) & 0x3; 879 880 /* the last MSDU has no padding */ 881 if (subframe_len > remaining) 882 goto purge; 883 /* mitigate A-MSDU aggregation injection attacks, to be 884 * checked when processing first subframe (offset == 0). 885 */ 886 if (offset == 0 && is_amsdu_aggregation_attack(&hdr.eth, skb, iftype)) 887 goto purge; 888 889 offset += sizeof(struct ethhdr); 890 last = remaining <= subframe_len + padding; 891 892 /* FIXME: should we really accept multicast DA? */ 893 if ((check_da && !is_multicast_ether_addr(hdr.eth.h_dest) && 894 !ether_addr_equal(check_da, hdr.eth.h_dest)) || 895 (check_sa && !ether_addr_equal(check_sa, hdr.eth.h_source))) { 896 offset += len + padding; 897 continue; 898 } 899 900 /* reuse skb for the last subframe */ 901 if (!skb_is_nonlinear(skb) && !reuse_frag && last) { 902 skb_pull(skb, offset); 903 frame = skb; 904 reuse_skb = true; 905 } else { 906 frame = __ieee80211_amsdu_copy(skb, hlen, offset, len, 907 reuse_frag, 32 + mesh_len); 908 if (!frame) 909 goto purge; 910 911 offset += len + padding; 912 } 913 914 skb_reset_network_header(frame); 915 frame->dev = skb->dev; 916 frame->priority = skb->priority; 917 918 if (likely(iftype != NL80211_IFTYPE_MESH_POINT && 919 ieee80211_get_8023_tunnel_proto(frame->data, &hdr.eth.h_proto))) 920 skb_pull(frame, ETH_ALEN + 2); 921 922 memcpy(skb_push(frame, sizeof(hdr.eth)), &hdr.eth, sizeof(hdr.eth)); 923 __skb_queue_tail(list, frame); 924 } 925 926 if (!reuse_skb) 927 dev_kfree_skb(skb); 928 929 return; 930 931 purge: 932 __skb_queue_purge(list); 933 dev_kfree_skb(skb); 934 } 935 EXPORT_SYMBOL(ieee80211_amsdu_to_8023s); 936 937 /* Given a data frame determine the 802.1p/1d tag to use. */ 938 unsigned int cfg80211_classify8021d(struct sk_buff *skb, 939 struct cfg80211_qos_map *qos_map) 940 { 941 unsigned int dscp; 942 unsigned char vlan_priority; 943 unsigned int ret; 944 945 /* skb->priority values from 256->263 are magic values to 946 * directly indicate a specific 802.1d priority. This is used 947 * to allow 802.1d priority to be passed directly in from VLAN 948 * tags, etc. 949 */ 950 if (skb->priority >= 256 && skb->priority <= 263) { 951 ret = skb->priority - 256; 952 goto out; 953 } 954 955 if (skb_vlan_tag_present(skb)) { 956 vlan_priority = (skb_vlan_tag_get(skb) & VLAN_PRIO_MASK) 957 >> VLAN_PRIO_SHIFT; 958 if (vlan_priority > 0) { 959 ret = vlan_priority; 960 goto out; 961 } 962 } 963 964 switch (skb->protocol) { 965 case htons(ETH_P_IP): 966 dscp = ipv4_get_dsfield(ip_hdr(skb)) & 0xfc; 967 break; 968 case htons(ETH_P_IPV6): 969 dscp = ipv6_get_dsfield(ipv6_hdr(skb)) & 0xfc; 970 break; 971 case htons(ETH_P_MPLS_UC): 972 case htons(ETH_P_MPLS_MC): { 973 struct mpls_label mpls_tmp, *mpls; 974 975 mpls = skb_header_pointer(skb, sizeof(struct ethhdr), 976 sizeof(*mpls), &mpls_tmp); 977 if (!mpls) 978 return 0; 979 980 ret = (ntohl(mpls->entry) & MPLS_LS_TC_MASK) 981 >> MPLS_LS_TC_SHIFT; 982 goto out; 983 } 984 case htons(ETH_P_80221): 985 /* 802.21 is always network control traffic */ 986 return 7; 987 default: 988 return 0; 989 } 990 991 if (qos_map) { 992 unsigned int i, tmp_dscp = dscp >> 2; 993 994 for (i = 0; i < qos_map->num_des; i++) { 995 if (tmp_dscp == qos_map->dscp_exception[i].dscp) { 996 ret = qos_map->dscp_exception[i].up; 997 goto out; 998 } 999 } 1000 1001 for (i = 0; i < 8; i++) { 1002 if (tmp_dscp >= qos_map->up[i].low && 1003 tmp_dscp <= qos_map->up[i].high) { 1004 ret = i; 1005 goto out; 1006 } 1007 } 1008 } 1009 1010 /* The default mapping as defined Section 2.3 in RFC8325: The three 1011 * Most Significant Bits (MSBs) of the DSCP are used as the 1012 * corresponding L2 markings. 1013 */ 1014 ret = dscp >> 5; 1015 1016 /* Handle specific DSCP values for which the default mapping (as 1017 * described above) doesn't adhere to the intended usage of the DSCP 1018 * value. See section 4 in RFC8325. Specifically, for the following 1019 * Diffserv Service Classes no update is needed: 1020 * - Standard: DF 1021 * - Low Priority Data: CS1 1022 * - Multimedia Conferencing: AF41, AF42, AF43 1023 * - Network Control Traffic: CS7 1024 * - Real-Time Interactive: CS4 1025 * - Signaling: CS5 1026 */ 1027 switch (dscp >> 2) { 1028 case 10: 1029 case 12: 1030 case 14: 1031 /* High throughput data: AF11, AF12, AF13 */ 1032 ret = 0; 1033 break; 1034 case 16: 1035 /* Operations, Administration, and Maintenance and Provisioning: 1036 * CS2 1037 */ 1038 ret = 0; 1039 break; 1040 case 18: 1041 case 20: 1042 case 22: 1043 /* Low latency data: AF21, AF22, AF23 */ 1044 ret = 3; 1045 break; 1046 case 24: 1047 /* Broadcasting video: CS3 */ 1048 ret = 4; 1049 break; 1050 case 26: 1051 case 28: 1052 case 30: 1053 /* Multimedia Streaming: AF31, AF32, AF33 */ 1054 ret = 4; 1055 break; 1056 case 44: 1057 /* Voice Admit: VA */ 1058 ret = 6; 1059 break; 1060 case 46: 1061 /* Telephony traffic: EF */ 1062 ret = 6; 1063 break; 1064 case 48: 1065 /* Network Control Traffic: CS6 */ 1066 ret = 7; 1067 break; 1068 } 1069 out: 1070 return array_index_nospec(ret, IEEE80211_NUM_TIDS); 1071 } 1072 EXPORT_SYMBOL(cfg80211_classify8021d); 1073 1074 const struct element *ieee80211_bss_get_elem(struct cfg80211_bss *bss, u8 id) 1075 { 1076 const struct cfg80211_bss_ies *ies; 1077 1078 ies = rcu_dereference(bss->ies); 1079 if (!ies) 1080 return NULL; 1081 1082 return cfg80211_find_elem(id, ies->data, ies->len); 1083 } 1084 EXPORT_SYMBOL(ieee80211_bss_get_elem); 1085 1086 void cfg80211_upload_connect_keys(struct wireless_dev *wdev) 1087 { 1088 struct cfg80211_registered_device *rdev = wiphy_to_rdev(wdev->wiphy); 1089 struct net_device *dev = wdev->netdev; 1090 int i; 1091 1092 if (!wdev->connect_keys) 1093 return; 1094 1095 for (i = 0; i < 4; i++) { 1096 if (!wdev->connect_keys->params[i].cipher) 1097 continue; 1098 if (rdev_add_key(rdev, dev, -1, i, false, NULL, 1099 &wdev->connect_keys->params[i])) { 1100 netdev_err(dev, "failed to set key %d\n", i); 1101 continue; 1102 } 1103 if (wdev->connect_keys->def == i && 1104 rdev_set_default_key(rdev, dev, -1, i, true, true)) { 1105 netdev_err(dev, "failed to set defkey %d\n", i); 1106 continue; 1107 } 1108 } 1109 1110 kfree_sensitive(wdev->connect_keys); 1111 wdev->connect_keys = NULL; 1112 } 1113 1114 void cfg80211_process_wdev_events(struct wireless_dev *wdev) 1115 { 1116 struct cfg80211_event *ev; 1117 unsigned long flags; 1118 1119 spin_lock_irqsave(&wdev->event_lock, flags); 1120 while (!list_empty(&wdev->event_list)) { 1121 ev = list_first_entry(&wdev->event_list, 1122 struct cfg80211_event, list); 1123 list_del(&ev->list); 1124 spin_unlock_irqrestore(&wdev->event_lock, flags); 1125 1126 switch (ev->type) { 1127 case EVENT_CONNECT_RESULT: 1128 __cfg80211_connect_result( 1129 wdev->netdev, 1130 &ev->cr, 1131 ev->cr.status == WLAN_STATUS_SUCCESS); 1132 break; 1133 case EVENT_ROAMED: 1134 __cfg80211_roamed(wdev, &ev->rm); 1135 break; 1136 case EVENT_DISCONNECTED: 1137 __cfg80211_disconnected(wdev->netdev, 1138 ev->dc.ie, ev->dc.ie_len, 1139 ev->dc.reason, 1140 !ev->dc.locally_generated); 1141 break; 1142 case EVENT_IBSS_JOINED: 1143 __cfg80211_ibss_joined(wdev->netdev, ev->ij.bssid, 1144 ev->ij.channel); 1145 break; 1146 case EVENT_STOPPED: 1147 cfg80211_leave(wiphy_to_rdev(wdev->wiphy), wdev); 1148 break; 1149 case EVENT_PORT_AUTHORIZED: 1150 __cfg80211_port_authorized(wdev, ev->pa.peer_addr, 1151 ev->pa.td_bitmap, 1152 ev->pa.td_bitmap_len); 1153 break; 1154 } 1155 1156 kfree(ev); 1157 1158 spin_lock_irqsave(&wdev->event_lock, flags); 1159 } 1160 spin_unlock_irqrestore(&wdev->event_lock, flags); 1161 } 1162 1163 void cfg80211_process_rdev_events(struct cfg80211_registered_device *rdev) 1164 { 1165 struct wireless_dev *wdev; 1166 1167 lockdep_assert_held(&rdev->wiphy.mtx); 1168 1169 list_for_each_entry(wdev, &rdev->wiphy.wdev_list, list) 1170 cfg80211_process_wdev_events(wdev); 1171 } 1172 1173 int cfg80211_change_iface(struct cfg80211_registered_device *rdev, 1174 struct net_device *dev, enum nl80211_iftype ntype, 1175 struct vif_params *params) 1176 { 1177 int err; 1178 enum nl80211_iftype otype = dev->ieee80211_ptr->iftype; 1179 1180 lockdep_assert_held(&rdev->wiphy.mtx); 1181 1182 /* don't support changing VLANs, you just re-create them */ 1183 if (otype == NL80211_IFTYPE_AP_VLAN) 1184 return -EOPNOTSUPP; 1185 1186 /* cannot change into P2P device or NAN */ 1187 if (ntype == NL80211_IFTYPE_P2P_DEVICE || 1188 ntype == NL80211_IFTYPE_NAN) 1189 return -EOPNOTSUPP; 1190 1191 if (!rdev->ops->change_virtual_intf || 1192 !(rdev->wiphy.interface_modes & (1 << ntype))) 1193 return -EOPNOTSUPP; 1194 1195 if (ntype != otype) { 1196 /* if it's part of a bridge, reject changing type to station/ibss */ 1197 if (netif_is_bridge_port(dev) && 1198 (ntype == NL80211_IFTYPE_ADHOC || 1199 ntype == NL80211_IFTYPE_STATION || 1200 ntype == NL80211_IFTYPE_P2P_CLIENT)) 1201 return -EBUSY; 1202 1203 dev->ieee80211_ptr->use_4addr = false; 1204 rdev_set_qos_map(rdev, dev, NULL); 1205 1206 cfg80211_leave(rdev, dev->ieee80211_ptr); 1207 1208 cfg80211_process_rdev_events(rdev); 1209 cfg80211_mlme_purge_registrations(dev->ieee80211_ptr); 1210 1211 memset(&dev->ieee80211_ptr->u, 0, 1212 sizeof(dev->ieee80211_ptr->u)); 1213 memset(&dev->ieee80211_ptr->links, 0, 1214 sizeof(dev->ieee80211_ptr->links)); 1215 } 1216 1217 err = rdev_change_virtual_intf(rdev, dev, ntype, params); 1218 1219 WARN_ON(!err && dev->ieee80211_ptr->iftype != ntype); 1220 1221 if (!err && params && params->use_4addr != -1) 1222 dev->ieee80211_ptr->use_4addr = params->use_4addr; 1223 1224 if (!err) { 1225 dev->priv_flags &= ~IFF_DONT_BRIDGE; 1226 switch (ntype) { 1227 case NL80211_IFTYPE_STATION: 1228 if (dev->ieee80211_ptr->use_4addr) 1229 break; 1230 fallthrough; 1231 case NL80211_IFTYPE_OCB: 1232 case NL80211_IFTYPE_P2P_CLIENT: 1233 case NL80211_IFTYPE_ADHOC: 1234 dev->priv_flags |= IFF_DONT_BRIDGE; 1235 break; 1236 case NL80211_IFTYPE_P2P_GO: 1237 case NL80211_IFTYPE_AP: 1238 case NL80211_IFTYPE_AP_VLAN: 1239 case NL80211_IFTYPE_MESH_POINT: 1240 /* bridging OK */ 1241 break; 1242 case NL80211_IFTYPE_MONITOR: 1243 /* monitor can't bridge anyway */ 1244 break; 1245 case NL80211_IFTYPE_UNSPECIFIED: 1246 case NUM_NL80211_IFTYPES: 1247 /* not happening */ 1248 break; 1249 case NL80211_IFTYPE_P2P_DEVICE: 1250 case NL80211_IFTYPE_WDS: 1251 case NL80211_IFTYPE_NAN: 1252 WARN_ON(1); 1253 break; 1254 } 1255 } 1256 1257 if (!err && ntype != otype && netif_running(dev)) { 1258 cfg80211_update_iface_num(rdev, ntype, 1); 1259 cfg80211_update_iface_num(rdev, otype, -1); 1260 } 1261 1262 return err; 1263 } 1264 1265 static u32 cfg80211_calculate_bitrate_ht(struct rate_info *rate) 1266 { 1267 int modulation, streams, bitrate; 1268 1269 /* the formula below does only work for MCS values smaller than 32 */ 1270 if (WARN_ON_ONCE(rate->mcs >= 32)) 1271 return 0; 1272 1273 modulation = rate->mcs & 7; 1274 streams = (rate->mcs >> 3) + 1; 1275 1276 bitrate = (rate->bw == RATE_INFO_BW_40) ? 13500000 : 6500000; 1277 1278 if (modulation < 4) 1279 bitrate *= (modulation + 1); 1280 else if (modulation == 4) 1281 bitrate *= (modulation + 2); 1282 else 1283 bitrate *= (modulation + 3); 1284 1285 bitrate *= streams; 1286 1287 if (rate->flags & RATE_INFO_FLAGS_SHORT_GI) 1288 bitrate = (bitrate / 9) * 10; 1289 1290 /* do NOT round down here */ 1291 return (bitrate + 50000) / 100000; 1292 } 1293 1294 static u32 cfg80211_calculate_bitrate_dmg(struct rate_info *rate) 1295 { 1296 static const u32 __mcs2bitrate[] = { 1297 /* control PHY */ 1298 [0] = 275, 1299 /* SC PHY */ 1300 [1] = 3850, 1301 [2] = 7700, 1302 [3] = 9625, 1303 [4] = 11550, 1304 [5] = 12512, /* 1251.25 mbps */ 1305 [6] = 15400, 1306 [7] = 19250, 1307 [8] = 23100, 1308 [9] = 25025, 1309 [10] = 30800, 1310 [11] = 38500, 1311 [12] = 46200, 1312 /* OFDM PHY */ 1313 [13] = 6930, 1314 [14] = 8662, /* 866.25 mbps */ 1315 [15] = 13860, 1316 [16] = 17325, 1317 [17] = 20790, 1318 [18] = 27720, 1319 [19] = 34650, 1320 [20] = 41580, 1321 [21] = 45045, 1322 [22] = 51975, 1323 [23] = 62370, 1324 [24] = 67568, /* 6756.75 mbps */ 1325 /* LP-SC PHY */ 1326 [25] = 6260, 1327 [26] = 8340, 1328 [27] = 11120, 1329 [28] = 12510, 1330 [29] = 16680, 1331 [30] = 22240, 1332 [31] = 25030, 1333 }; 1334 1335 if (WARN_ON_ONCE(rate->mcs >= ARRAY_SIZE(__mcs2bitrate))) 1336 return 0; 1337 1338 return __mcs2bitrate[rate->mcs]; 1339 } 1340 1341 static u32 cfg80211_calculate_bitrate_extended_sc_dmg(struct rate_info *rate) 1342 { 1343 static const u32 __mcs2bitrate[] = { 1344 [6 - 6] = 26950, /* MCS 9.1 : 2695.0 mbps */ 1345 [7 - 6] = 50050, /* MCS 12.1 */ 1346 [8 - 6] = 53900, 1347 [9 - 6] = 57750, 1348 [10 - 6] = 63900, 1349 [11 - 6] = 75075, 1350 [12 - 6] = 80850, 1351 }; 1352 1353 /* Extended SC MCS not defined for base MCS below 6 or above 12 */ 1354 if (WARN_ON_ONCE(rate->mcs < 6 || rate->mcs > 12)) 1355 return 0; 1356 1357 return __mcs2bitrate[rate->mcs - 6]; 1358 } 1359 1360 static u32 cfg80211_calculate_bitrate_edmg(struct rate_info *rate) 1361 { 1362 static const u32 __mcs2bitrate[] = { 1363 /* control PHY */ 1364 [0] = 275, 1365 /* SC PHY */ 1366 [1] = 3850, 1367 [2] = 7700, 1368 [3] = 9625, 1369 [4] = 11550, 1370 [5] = 12512, /* 1251.25 mbps */ 1371 [6] = 13475, 1372 [7] = 15400, 1373 [8] = 19250, 1374 [9] = 23100, 1375 [10] = 25025, 1376 [11] = 26950, 1377 [12] = 30800, 1378 [13] = 38500, 1379 [14] = 46200, 1380 [15] = 50050, 1381 [16] = 53900, 1382 [17] = 57750, 1383 [18] = 69300, 1384 [19] = 75075, 1385 [20] = 80850, 1386 }; 1387 1388 if (WARN_ON_ONCE(rate->mcs >= ARRAY_SIZE(__mcs2bitrate))) 1389 return 0; 1390 1391 return __mcs2bitrate[rate->mcs] * rate->n_bonded_ch; 1392 } 1393 1394 static u32 cfg80211_calculate_bitrate_vht(struct rate_info *rate) 1395 { 1396 static const u32 base[4][12] = { 1397 { 6500000, 1398 13000000, 1399 19500000, 1400 26000000, 1401 39000000, 1402 52000000, 1403 58500000, 1404 65000000, 1405 78000000, 1406 /* not in the spec, but some devices use this: */ 1407 86700000, 1408 97500000, 1409 108300000, 1410 }, 1411 { 13500000, 1412 27000000, 1413 40500000, 1414 54000000, 1415 81000000, 1416 108000000, 1417 121500000, 1418 135000000, 1419 162000000, 1420 180000000, 1421 202500000, 1422 225000000, 1423 }, 1424 { 29300000, 1425 58500000, 1426 87800000, 1427 117000000, 1428 175500000, 1429 234000000, 1430 263300000, 1431 292500000, 1432 351000000, 1433 390000000, 1434 438800000, 1435 487500000, 1436 }, 1437 { 58500000, 1438 117000000, 1439 175500000, 1440 234000000, 1441 351000000, 1442 468000000, 1443 526500000, 1444 585000000, 1445 702000000, 1446 780000000, 1447 877500000, 1448 975000000, 1449 }, 1450 }; 1451 u32 bitrate; 1452 int idx; 1453 1454 if (rate->mcs > 11) 1455 goto warn; 1456 1457 switch (rate->bw) { 1458 case RATE_INFO_BW_160: 1459 idx = 3; 1460 break; 1461 case RATE_INFO_BW_80: 1462 idx = 2; 1463 break; 1464 case RATE_INFO_BW_40: 1465 idx = 1; 1466 break; 1467 case RATE_INFO_BW_5: 1468 case RATE_INFO_BW_10: 1469 default: 1470 goto warn; 1471 case RATE_INFO_BW_20: 1472 idx = 0; 1473 } 1474 1475 bitrate = base[idx][rate->mcs]; 1476 bitrate *= rate->nss; 1477 1478 if (rate->flags & RATE_INFO_FLAGS_SHORT_GI) 1479 bitrate = (bitrate / 9) * 10; 1480 1481 /* do NOT round down here */ 1482 return (bitrate + 50000) / 100000; 1483 warn: 1484 WARN_ONCE(1, "invalid rate bw=%d, mcs=%d, nss=%d\n", 1485 rate->bw, rate->mcs, rate->nss); 1486 return 0; 1487 } 1488 1489 static u32 cfg80211_calculate_bitrate_he(struct rate_info *rate) 1490 { 1491 #define SCALE 6144 1492 u32 mcs_divisors[14] = { 1493 102399, /* 16.666666... */ 1494 51201, /* 8.333333... */ 1495 34134, /* 5.555555... */ 1496 25599, /* 4.166666... */ 1497 17067, /* 2.777777... */ 1498 12801, /* 2.083333... */ 1499 11377, /* 1.851725... */ 1500 10239, /* 1.666666... */ 1501 8532, /* 1.388888... */ 1502 7680, /* 1.250000... */ 1503 6828, /* 1.111111... */ 1504 6144, /* 1.000000... */ 1505 5690, /* 0.926106... */ 1506 5120, /* 0.833333... */ 1507 }; 1508 u32 rates_160M[3] = { 960777777, 907400000, 816666666 }; 1509 u32 rates_996[3] = { 480388888, 453700000, 408333333 }; 1510 u32 rates_484[3] = { 229411111, 216666666, 195000000 }; 1511 u32 rates_242[3] = { 114711111, 108333333, 97500000 }; 1512 u32 rates_106[3] = { 40000000, 37777777, 34000000 }; 1513 u32 rates_52[3] = { 18820000, 17777777, 16000000 }; 1514 u32 rates_26[3] = { 9411111, 8888888, 8000000 }; 1515 u64 tmp; 1516 u32 result; 1517 1518 if (WARN_ON_ONCE(rate->mcs > 13)) 1519 return 0; 1520 1521 if (WARN_ON_ONCE(rate->he_gi > NL80211_RATE_INFO_HE_GI_3_2)) 1522 return 0; 1523 if (WARN_ON_ONCE(rate->he_ru_alloc > 1524 NL80211_RATE_INFO_HE_RU_ALLOC_2x996)) 1525 return 0; 1526 if (WARN_ON_ONCE(rate->nss < 1 || rate->nss > 8)) 1527 return 0; 1528 1529 if (rate->bw == RATE_INFO_BW_160 || 1530 (rate->bw == RATE_INFO_BW_HE_RU && 1531 rate->he_ru_alloc == NL80211_RATE_INFO_HE_RU_ALLOC_2x996)) 1532 result = rates_160M[rate->he_gi]; 1533 else if (rate->bw == RATE_INFO_BW_80 || 1534 (rate->bw == RATE_INFO_BW_HE_RU && 1535 rate->he_ru_alloc == NL80211_RATE_INFO_HE_RU_ALLOC_996)) 1536 result = rates_996[rate->he_gi]; 1537 else if (rate->bw == RATE_INFO_BW_40 || 1538 (rate->bw == RATE_INFO_BW_HE_RU && 1539 rate->he_ru_alloc == NL80211_RATE_INFO_HE_RU_ALLOC_484)) 1540 result = rates_484[rate->he_gi]; 1541 else if (rate->bw == RATE_INFO_BW_20 || 1542 (rate->bw == RATE_INFO_BW_HE_RU && 1543 rate->he_ru_alloc == NL80211_RATE_INFO_HE_RU_ALLOC_242)) 1544 result = rates_242[rate->he_gi]; 1545 else if (rate->bw == RATE_INFO_BW_HE_RU && 1546 rate->he_ru_alloc == NL80211_RATE_INFO_HE_RU_ALLOC_106) 1547 result = rates_106[rate->he_gi]; 1548 else if (rate->bw == RATE_INFO_BW_HE_RU && 1549 rate->he_ru_alloc == NL80211_RATE_INFO_HE_RU_ALLOC_52) 1550 result = rates_52[rate->he_gi]; 1551 else if (rate->bw == RATE_INFO_BW_HE_RU && 1552 rate->he_ru_alloc == NL80211_RATE_INFO_HE_RU_ALLOC_26) 1553 result = rates_26[rate->he_gi]; 1554 else { 1555 WARN(1, "invalid HE MCS: bw:%d, ru:%d\n", 1556 rate->bw, rate->he_ru_alloc); 1557 return 0; 1558 } 1559 1560 /* now scale to the appropriate MCS */ 1561 tmp = result; 1562 tmp *= SCALE; 1563 do_div(tmp, mcs_divisors[rate->mcs]); 1564 result = tmp; 1565 1566 /* and take NSS, DCM into account */ 1567 result = (result * rate->nss) / 8; 1568 if (rate->he_dcm) 1569 result /= 2; 1570 1571 return result / 10000; 1572 } 1573 1574 static u32 cfg80211_calculate_bitrate_eht(struct rate_info *rate) 1575 { 1576 #define SCALE 6144 1577 static const u32 mcs_divisors[16] = { 1578 102399, /* 16.666666... */ 1579 51201, /* 8.333333... */ 1580 34134, /* 5.555555... */ 1581 25599, /* 4.166666... */ 1582 17067, /* 2.777777... */ 1583 12801, /* 2.083333... */ 1584 11377, /* 1.851725... */ 1585 10239, /* 1.666666... */ 1586 8532, /* 1.388888... */ 1587 7680, /* 1.250000... */ 1588 6828, /* 1.111111... */ 1589 6144, /* 1.000000... */ 1590 5690, /* 0.926106... */ 1591 5120, /* 0.833333... */ 1592 409600, /* 66.666666... */ 1593 204800, /* 33.333333... */ 1594 }; 1595 static const u32 rates_996[3] = { 480388888, 453700000, 408333333 }; 1596 static const u32 rates_484[3] = { 229411111, 216666666, 195000000 }; 1597 static const u32 rates_242[3] = { 114711111, 108333333, 97500000 }; 1598 static const u32 rates_106[3] = { 40000000, 37777777, 34000000 }; 1599 static const u32 rates_52[3] = { 18820000, 17777777, 16000000 }; 1600 static const u32 rates_26[3] = { 9411111, 8888888, 8000000 }; 1601 u64 tmp; 1602 u32 result; 1603 1604 if (WARN_ON_ONCE(rate->mcs > 15)) 1605 return 0; 1606 if (WARN_ON_ONCE(rate->eht_gi > NL80211_RATE_INFO_EHT_GI_3_2)) 1607 return 0; 1608 if (WARN_ON_ONCE(rate->eht_ru_alloc > 1609 NL80211_RATE_INFO_EHT_RU_ALLOC_4x996)) 1610 return 0; 1611 if (WARN_ON_ONCE(rate->nss < 1 || rate->nss > 8)) 1612 return 0; 1613 1614 /* Bandwidth checks for MCS 14 */ 1615 if (rate->mcs == 14) { 1616 if ((rate->bw != RATE_INFO_BW_EHT_RU && 1617 rate->bw != RATE_INFO_BW_80 && 1618 rate->bw != RATE_INFO_BW_160 && 1619 rate->bw != RATE_INFO_BW_320) || 1620 (rate->bw == RATE_INFO_BW_EHT_RU && 1621 rate->eht_ru_alloc != NL80211_RATE_INFO_EHT_RU_ALLOC_996 && 1622 rate->eht_ru_alloc != NL80211_RATE_INFO_EHT_RU_ALLOC_2x996 && 1623 rate->eht_ru_alloc != NL80211_RATE_INFO_EHT_RU_ALLOC_4x996)) { 1624 WARN(1, "invalid EHT BW for MCS 14: bw:%d, ru:%d\n", 1625 rate->bw, rate->eht_ru_alloc); 1626 return 0; 1627 } 1628 } 1629 1630 if (rate->bw == RATE_INFO_BW_320 || 1631 (rate->bw == RATE_INFO_BW_EHT_RU && 1632 rate->eht_ru_alloc == NL80211_RATE_INFO_EHT_RU_ALLOC_4x996)) 1633 result = 4 * rates_996[rate->eht_gi]; 1634 else if (rate->bw == RATE_INFO_BW_EHT_RU && 1635 rate->eht_ru_alloc == NL80211_RATE_INFO_EHT_RU_ALLOC_3x996P484) 1636 result = 3 * rates_996[rate->eht_gi] + rates_484[rate->eht_gi]; 1637 else if (rate->bw == RATE_INFO_BW_EHT_RU && 1638 rate->eht_ru_alloc == NL80211_RATE_INFO_EHT_RU_ALLOC_3x996) 1639 result = 3 * rates_996[rate->eht_gi]; 1640 else if (rate->bw == RATE_INFO_BW_EHT_RU && 1641 rate->eht_ru_alloc == NL80211_RATE_INFO_EHT_RU_ALLOC_2x996P484) 1642 result = 2 * rates_996[rate->eht_gi] + rates_484[rate->eht_gi]; 1643 else if (rate->bw == RATE_INFO_BW_160 || 1644 (rate->bw == RATE_INFO_BW_EHT_RU && 1645 rate->eht_ru_alloc == NL80211_RATE_INFO_EHT_RU_ALLOC_2x996)) 1646 result = 2 * rates_996[rate->eht_gi]; 1647 else if (rate->bw == RATE_INFO_BW_EHT_RU && 1648 rate->eht_ru_alloc == 1649 NL80211_RATE_INFO_EHT_RU_ALLOC_996P484P242) 1650 result = rates_996[rate->eht_gi] + rates_484[rate->eht_gi] 1651 + rates_242[rate->eht_gi]; 1652 else if (rate->bw == RATE_INFO_BW_EHT_RU && 1653 rate->eht_ru_alloc == NL80211_RATE_INFO_EHT_RU_ALLOC_996P484) 1654 result = rates_996[rate->eht_gi] + rates_484[rate->eht_gi]; 1655 else if (rate->bw == RATE_INFO_BW_80 || 1656 (rate->bw == RATE_INFO_BW_EHT_RU && 1657 rate->eht_ru_alloc == NL80211_RATE_INFO_EHT_RU_ALLOC_996)) 1658 result = rates_996[rate->eht_gi]; 1659 else if (rate->bw == RATE_INFO_BW_EHT_RU && 1660 rate->eht_ru_alloc == NL80211_RATE_INFO_EHT_RU_ALLOC_484P242) 1661 result = rates_484[rate->eht_gi] + rates_242[rate->eht_gi]; 1662 else if (rate->bw == RATE_INFO_BW_40 || 1663 (rate->bw == RATE_INFO_BW_EHT_RU && 1664 rate->eht_ru_alloc == NL80211_RATE_INFO_EHT_RU_ALLOC_484)) 1665 result = rates_484[rate->eht_gi]; 1666 else if (rate->bw == RATE_INFO_BW_20 || 1667 (rate->bw == RATE_INFO_BW_EHT_RU && 1668 rate->eht_ru_alloc == NL80211_RATE_INFO_EHT_RU_ALLOC_242)) 1669 result = rates_242[rate->eht_gi]; 1670 else if (rate->bw == RATE_INFO_BW_EHT_RU && 1671 rate->eht_ru_alloc == NL80211_RATE_INFO_EHT_RU_ALLOC_106P26) 1672 result = rates_106[rate->eht_gi] + rates_26[rate->eht_gi]; 1673 else if (rate->bw == RATE_INFO_BW_EHT_RU && 1674 rate->eht_ru_alloc == NL80211_RATE_INFO_EHT_RU_ALLOC_106) 1675 result = rates_106[rate->eht_gi]; 1676 else if (rate->bw == RATE_INFO_BW_EHT_RU && 1677 rate->eht_ru_alloc == NL80211_RATE_INFO_EHT_RU_ALLOC_52P26) 1678 result = rates_52[rate->eht_gi] + rates_26[rate->eht_gi]; 1679 else if (rate->bw == RATE_INFO_BW_EHT_RU && 1680 rate->eht_ru_alloc == NL80211_RATE_INFO_EHT_RU_ALLOC_52) 1681 result = rates_52[rate->eht_gi]; 1682 else if (rate->bw == RATE_INFO_BW_EHT_RU && 1683 rate->eht_ru_alloc == NL80211_RATE_INFO_EHT_RU_ALLOC_26) 1684 result = rates_26[rate->eht_gi]; 1685 else { 1686 WARN(1, "invalid EHT MCS: bw:%d, ru:%d\n", 1687 rate->bw, rate->eht_ru_alloc); 1688 return 0; 1689 } 1690 1691 /* now scale to the appropriate MCS */ 1692 tmp = result; 1693 tmp *= SCALE; 1694 do_div(tmp, mcs_divisors[rate->mcs]); 1695 1696 /* and take NSS */ 1697 tmp *= rate->nss; 1698 do_div(tmp, 8); 1699 1700 result = tmp; 1701 1702 return result / 10000; 1703 } 1704 1705 static u32 cfg80211_calculate_bitrate_s1g(struct rate_info *rate) 1706 { 1707 /* For 1, 2, 4, 8 and 16 MHz channels */ 1708 static const u32 base[5][11] = { 1709 { 300000, 1710 600000, 1711 900000, 1712 1200000, 1713 1800000, 1714 2400000, 1715 2700000, 1716 3000000, 1717 3600000, 1718 4000000, 1719 /* MCS 10 supported in 1 MHz only */ 1720 150000, 1721 }, 1722 { 650000, 1723 1300000, 1724 1950000, 1725 2600000, 1726 3900000, 1727 5200000, 1728 5850000, 1729 6500000, 1730 7800000, 1731 /* MCS 9 not valid */ 1732 }, 1733 { 1350000, 1734 2700000, 1735 4050000, 1736 5400000, 1737 8100000, 1738 10800000, 1739 12150000, 1740 13500000, 1741 16200000, 1742 18000000, 1743 }, 1744 { 2925000, 1745 5850000, 1746 8775000, 1747 11700000, 1748 17550000, 1749 23400000, 1750 26325000, 1751 29250000, 1752 35100000, 1753 39000000, 1754 }, 1755 { 8580000, 1756 11700000, 1757 17550000, 1758 23400000, 1759 35100000, 1760 46800000, 1761 52650000, 1762 58500000, 1763 70200000, 1764 78000000, 1765 }, 1766 }; 1767 u32 bitrate; 1768 /* default is 1 MHz index */ 1769 int idx = 0; 1770 1771 if (rate->mcs >= 11) 1772 goto warn; 1773 1774 switch (rate->bw) { 1775 case RATE_INFO_BW_16: 1776 idx = 4; 1777 break; 1778 case RATE_INFO_BW_8: 1779 idx = 3; 1780 break; 1781 case RATE_INFO_BW_4: 1782 idx = 2; 1783 break; 1784 case RATE_INFO_BW_2: 1785 idx = 1; 1786 break; 1787 case RATE_INFO_BW_1: 1788 idx = 0; 1789 break; 1790 case RATE_INFO_BW_5: 1791 case RATE_INFO_BW_10: 1792 case RATE_INFO_BW_20: 1793 case RATE_INFO_BW_40: 1794 case RATE_INFO_BW_80: 1795 case RATE_INFO_BW_160: 1796 default: 1797 goto warn; 1798 } 1799 1800 bitrate = base[idx][rate->mcs]; 1801 bitrate *= rate->nss; 1802 1803 if (rate->flags & RATE_INFO_FLAGS_SHORT_GI) 1804 bitrate = (bitrate / 9) * 10; 1805 /* do NOT round down here */ 1806 return (bitrate + 50000) / 100000; 1807 warn: 1808 WARN_ONCE(1, "invalid rate bw=%d, mcs=%d, nss=%d\n", 1809 rate->bw, rate->mcs, rate->nss); 1810 return 0; 1811 } 1812 1813 u32 cfg80211_calculate_bitrate(struct rate_info *rate) 1814 { 1815 if (rate->flags & RATE_INFO_FLAGS_MCS) 1816 return cfg80211_calculate_bitrate_ht(rate); 1817 if (rate->flags & RATE_INFO_FLAGS_DMG) 1818 return cfg80211_calculate_bitrate_dmg(rate); 1819 if (rate->flags & RATE_INFO_FLAGS_EXTENDED_SC_DMG) 1820 return cfg80211_calculate_bitrate_extended_sc_dmg(rate); 1821 if (rate->flags & RATE_INFO_FLAGS_EDMG) 1822 return cfg80211_calculate_bitrate_edmg(rate); 1823 if (rate->flags & RATE_INFO_FLAGS_VHT_MCS) 1824 return cfg80211_calculate_bitrate_vht(rate); 1825 if (rate->flags & RATE_INFO_FLAGS_HE_MCS) 1826 return cfg80211_calculate_bitrate_he(rate); 1827 if (rate->flags & RATE_INFO_FLAGS_EHT_MCS) 1828 return cfg80211_calculate_bitrate_eht(rate); 1829 if (rate->flags & RATE_INFO_FLAGS_S1G_MCS) 1830 return cfg80211_calculate_bitrate_s1g(rate); 1831 1832 return rate->legacy; 1833 } 1834 EXPORT_SYMBOL(cfg80211_calculate_bitrate); 1835 1836 int cfg80211_get_p2p_attr(const u8 *ies, unsigned int len, 1837 enum ieee80211_p2p_attr_id attr, 1838 u8 *buf, unsigned int bufsize) 1839 { 1840 u8 *out = buf; 1841 u16 attr_remaining = 0; 1842 bool desired_attr = false; 1843 u16 desired_len = 0; 1844 1845 while (len > 0) { 1846 unsigned int iedatalen; 1847 unsigned int copy; 1848 const u8 *iedata; 1849 1850 if (len < 2) 1851 return -EILSEQ; 1852 iedatalen = ies[1]; 1853 if (iedatalen + 2 > len) 1854 return -EILSEQ; 1855 1856 if (ies[0] != WLAN_EID_VENDOR_SPECIFIC) 1857 goto cont; 1858 1859 if (iedatalen < 4) 1860 goto cont; 1861 1862 iedata = ies + 2; 1863 1864 /* check WFA OUI, P2P subtype */ 1865 if (iedata[0] != 0x50 || iedata[1] != 0x6f || 1866 iedata[2] != 0x9a || iedata[3] != 0x09) 1867 goto cont; 1868 1869 iedatalen -= 4; 1870 iedata += 4; 1871 1872 /* check attribute continuation into this IE */ 1873 copy = min_t(unsigned int, attr_remaining, iedatalen); 1874 if (copy && desired_attr) { 1875 desired_len += copy; 1876 if (out) { 1877 memcpy(out, iedata, min(bufsize, copy)); 1878 out += min(bufsize, copy); 1879 bufsize -= min(bufsize, copy); 1880 } 1881 1882 1883 if (copy == attr_remaining) 1884 return desired_len; 1885 } 1886 1887 attr_remaining -= copy; 1888 if (attr_remaining) 1889 goto cont; 1890 1891 iedatalen -= copy; 1892 iedata += copy; 1893 1894 while (iedatalen > 0) { 1895 u16 attr_len; 1896 1897 /* P2P attribute ID & size must fit */ 1898 if (iedatalen < 3) 1899 return -EILSEQ; 1900 desired_attr = iedata[0] == attr; 1901 attr_len = get_unaligned_le16(iedata + 1); 1902 iedatalen -= 3; 1903 iedata += 3; 1904 1905 copy = min_t(unsigned int, attr_len, iedatalen); 1906 1907 if (desired_attr) { 1908 desired_len += copy; 1909 if (out) { 1910 memcpy(out, iedata, min(bufsize, copy)); 1911 out += min(bufsize, copy); 1912 bufsize -= min(bufsize, copy); 1913 } 1914 1915 if (copy == attr_len) 1916 return desired_len; 1917 } 1918 1919 iedata += copy; 1920 iedatalen -= copy; 1921 attr_remaining = attr_len - copy; 1922 } 1923 1924 cont: 1925 len -= ies[1] + 2; 1926 ies += ies[1] + 2; 1927 } 1928 1929 if (attr_remaining && desired_attr) 1930 return -EILSEQ; 1931 1932 return -ENOENT; 1933 } 1934 EXPORT_SYMBOL(cfg80211_get_p2p_attr); 1935 1936 static bool ieee80211_id_in_list(const u8 *ids, int n_ids, u8 id, bool id_ext) 1937 { 1938 int i; 1939 1940 /* Make sure array values are legal */ 1941 if (WARN_ON(ids[n_ids - 1] == WLAN_EID_EXTENSION)) 1942 return false; 1943 1944 i = 0; 1945 while (i < n_ids) { 1946 if (ids[i] == WLAN_EID_EXTENSION) { 1947 if (id_ext && (ids[i + 1] == id)) 1948 return true; 1949 1950 i += 2; 1951 continue; 1952 } 1953 1954 if (ids[i] == id && !id_ext) 1955 return true; 1956 1957 i++; 1958 } 1959 return false; 1960 } 1961 1962 static size_t skip_ie(const u8 *ies, size_t ielen, size_t pos) 1963 { 1964 /* we assume a validly formed IEs buffer */ 1965 u8 len = ies[pos + 1]; 1966 1967 pos += 2 + len; 1968 1969 /* the IE itself must have 255 bytes for fragments to follow */ 1970 if (len < 255) 1971 return pos; 1972 1973 while (pos < ielen && ies[pos] == WLAN_EID_FRAGMENT) { 1974 len = ies[pos + 1]; 1975 pos += 2 + len; 1976 } 1977 1978 return pos; 1979 } 1980 1981 size_t ieee80211_ie_split_ric(const u8 *ies, size_t ielen, 1982 const u8 *ids, int n_ids, 1983 const u8 *after_ric, int n_after_ric, 1984 size_t offset) 1985 { 1986 size_t pos = offset; 1987 1988 while (pos < ielen) { 1989 u8 ext = 0; 1990 1991 if (ies[pos] == WLAN_EID_EXTENSION) 1992 ext = 2; 1993 if ((pos + ext) >= ielen) 1994 break; 1995 1996 if (!ieee80211_id_in_list(ids, n_ids, ies[pos + ext], 1997 ies[pos] == WLAN_EID_EXTENSION)) 1998 break; 1999 2000 if (ies[pos] == WLAN_EID_RIC_DATA && n_after_ric) { 2001 pos = skip_ie(ies, ielen, pos); 2002 2003 while (pos < ielen) { 2004 if (ies[pos] == WLAN_EID_EXTENSION) 2005 ext = 2; 2006 else 2007 ext = 0; 2008 2009 if ((pos + ext) >= ielen) 2010 break; 2011 2012 if (!ieee80211_id_in_list(after_ric, 2013 n_after_ric, 2014 ies[pos + ext], 2015 ext == 2)) 2016 pos = skip_ie(ies, ielen, pos); 2017 else 2018 break; 2019 } 2020 } else { 2021 pos = skip_ie(ies, ielen, pos); 2022 } 2023 } 2024 2025 return pos; 2026 } 2027 EXPORT_SYMBOL(ieee80211_ie_split_ric); 2028 2029 void ieee80211_fragment_element(struct sk_buff *skb, u8 *len_pos, u8 frag_id) 2030 { 2031 unsigned int elem_len; 2032 2033 if (!len_pos) 2034 return; 2035 2036 elem_len = skb->data + skb->len - len_pos - 1; 2037 2038 while (elem_len > 255) { 2039 /* this one is 255 */ 2040 *len_pos = 255; 2041 /* remaining data gets smaller */ 2042 elem_len -= 255; 2043 /* make space for the fragment ID/len in SKB */ 2044 skb_put(skb, 2); 2045 /* shift back the remaining data to place fragment ID/len */ 2046 memmove(len_pos + 255 + 3, len_pos + 255 + 1, elem_len); 2047 /* place the fragment ID */ 2048 len_pos += 255 + 1; 2049 *len_pos = frag_id; 2050 /* and point to fragment length to update later */ 2051 len_pos++; 2052 } 2053 2054 *len_pos = elem_len; 2055 } 2056 EXPORT_SYMBOL(ieee80211_fragment_element); 2057 2058 bool ieee80211_operating_class_to_band(u8 operating_class, 2059 enum nl80211_band *band) 2060 { 2061 switch (operating_class) { 2062 case 112: 2063 case 115 ... 127: 2064 case 128 ... 130: 2065 *band = NL80211_BAND_5GHZ; 2066 return true; 2067 case 131 ... 135: 2068 case 137: 2069 *band = NL80211_BAND_6GHZ; 2070 return true; 2071 case 81: 2072 case 82: 2073 case 83: 2074 case 84: 2075 *band = NL80211_BAND_2GHZ; 2076 return true; 2077 case 180: 2078 *band = NL80211_BAND_60GHZ; 2079 return true; 2080 } 2081 2082 return false; 2083 } 2084 EXPORT_SYMBOL(ieee80211_operating_class_to_band); 2085 2086 bool ieee80211_operating_class_to_chandef(u8 operating_class, 2087 struct ieee80211_channel *chan, 2088 struct cfg80211_chan_def *chandef) 2089 { 2090 u32 control_freq, offset = 0; 2091 enum nl80211_band band; 2092 2093 if (!ieee80211_operating_class_to_band(operating_class, &band) || 2094 !chan || band != chan->band) 2095 return false; 2096 2097 control_freq = chan->center_freq; 2098 chandef->chan = chan; 2099 2100 if (control_freq >= 5955) 2101 offset = control_freq - 5955; 2102 else if (control_freq >= 5745) 2103 offset = control_freq - 5745; 2104 else if (control_freq >= 5180) 2105 offset = control_freq - 5180; 2106 offset /= 20; 2107 2108 switch (operating_class) { 2109 case 81: /* 2 GHz band; 20 MHz; channels 1..13 */ 2110 case 82: /* 2 GHz band; 20 MHz; channel 14 */ 2111 case 115: /* 5 GHz band; 20 MHz; channels 36,40,44,48 */ 2112 case 118: /* 5 GHz band; 20 MHz; channels 52,56,60,64 */ 2113 case 121: /* 5 GHz band; 20 MHz; channels 100..144 */ 2114 case 124: /* 5 GHz band; 20 MHz; channels 149,153,157,161 */ 2115 case 125: /* 5 GHz band; 20 MHz; channels 149..177 */ 2116 case 131: /* 6 GHz band; 20 MHz; channels 1..233*/ 2117 case 136: /* 6 GHz band; 20 MHz; channel 2 */ 2118 chandef->center_freq1 = control_freq; 2119 chandef->width = NL80211_CHAN_WIDTH_20; 2120 return true; 2121 case 83: /* 2 GHz band; 40 MHz; channels 1..9 */ 2122 case 116: /* 5 GHz band; 40 MHz; channels 36,44 */ 2123 case 119: /* 5 GHz band; 40 MHz; channels 52,60 */ 2124 case 122: /* 5 GHz band; 40 MHz; channels 100,108,116,124,132,140 */ 2125 case 126: /* 5 GHz band; 40 MHz; channels 149,157,165,173 */ 2126 chandef->center_freq1 = control_freq + 10; 2127 chandef->width = NL80211_CHAN_WIDTH_40; 2128 return true; 2129 case 84: /* 2 GHz band; 40 MHz; channels 5..13 */ 2130 case 117: /* 5 GHz band; 40 MHz; channels 40,48 */ 2131 case 120: /* 5 GHz band; 40 MHz; channels 56,64 */ 2132 case 123: /* 5 GHz band; 40 MHz; channels 104,112,120,128,136,144 */ 2133 case 127: /* 5 GHz band; 40 MHz; channels 153,161,169,177 */ 2134 chandef->center_freq1 = control_freq - 10; 2135 chandef->width = NL80211_CHAN_WIDTH_40; 2136 return true; 2137 case 132: /* 6 GHz band; 40 MHz; channels 1,5,..,229*/ 2138 chandef->center_freq1 = control_freq + 10 - (offset & 1) * 20; 2139 chandef->width = NL80211_CHAN_WIDTH_40; 2140 return true; 2141 case 128: /* 5 GHz band; 80 MHz; channels 36..64,100..144,149..177 */ 2142 case 133: /* 6 GHz band; 80 MHz; channels 1,5,..,229 */ 2143 chandef->center_freq1 = control_freq + 30 - (offset & 3) * 20; 2144 chandef->width = NL80211_CHAN_WIDTH_80; 2145 return true; 2146 case 129: /* 5 GHz band; 160 MHz; channels 36..64,100..144,149..177 */ 2147 case 134: /* 6 GHz band; 160 MHz; channels 1,5,..,229 */ 2148 chandef->center_freq1 = control_freq + 70 - (offset & 7) * 20; 2149 chandef->width = NL80211_CHAN_WIDTH_160; 2150 return true; 2151 case 130: /* 5 GHz band; 80+80 MHz; channels 36..64,100..144,149..177 */ 2152 case 135: /* 6 GHz band; 80+80 MHz; channels 1,5,..,229 */ 2153 /* The center_freq2 of 80+80 MHz is unknown */ 2154 case 137: /* 6 GHz band; 320 MHz; channels 1,5,..,229 */ 2155 /* 320-1 or 320-2 channelization is unknown */ 2156 default: 2157 return false; 2158 } 2159 } 2160 EXPORT_SYMBOL(ieee80211_operating_class_to_chandef); 2161 2162 bool ieee80211_chandef_to_operating_class(struct cfg80211_chan_def *chandef, 2163 u8 *op_class) 2164 { 2165 u8 vht_opclass; 2166 u32 freq = chandef->center_freq1; 2167 2168 if (freq >= 2412 && freq <= 2472) { 2169 if (chandef->width > NL80211_CHAN_WIDTH_40) 2170 return false; 2171 2172 /* 2.407 GHz, channels 1..13 */ 2173 if (chandef->width == NL80211_CHAN_WIDTH_40) { 2174 if (freq > chandef->chan->center_freq) 2175 *op_class = 83; /* HT40+ */ 2176 else 2177 *op_class = 84; /* HT40- */ 2178 } else { 2179 *op_class = 81; 2180 } 2181 2182 return true; 2183 } 2184 2185 if (freq == 2484) { 2186 /* channel 14 is only for IEEE 802.11b */ 2187 if (chandef->width != NL80211_CHAN_WIDTH_20_NOHT) 2188 return false; 2189 2190 *op_class = 82; /* channel 14 */ 2191 return true; 2192 } 2193 2194 switch (chandef->width) { 2195 case NL80211_CHAN_WIDTH_80: 2196 vht_opclass = 128; 2197 break; 2198 case NL80211_CHAN_WIDTH_160: 2199 vht_opclass = 129; 2200 break; 2201 case NL80211_CHAN_WIDTH_80P80: 2202 vht_opclass = 130; 2203 break; 2204 case NL80211_CHAN_WIDTH_10: 2205 case NL80211_CHAN_WIDTH_5: 2206 return false; /* unsupported for now */ 2207 default: 2208 vht_opclass = 0; 2209 break; 2210 } 2211 2212 /* 5 GHz, channels 36..48 */ 2213 if (freq >= 5180 && freq <= 5240) { 2214 if (vht_opclass) { 2215 *op_class = vht_opclass; 2216 } else if (chandef->width == NL80211_CHAN_WIDTH_40) { 2217 if (freq > chandef->chan->center_freq) 2218 *op_class = 116; 2219 else 2220 *op_class = 117; 2221 } else { 2222 *op_class = 115; 2223 } 2224 2225 return true; 2226 } 2227 2228 /* 5 GHz, channels 52..64 */ 2229 if (freq >= 5260 && freq <= 5320) { 2230 if (vht_opclass) { 2231 *op_class = vht_opclass; 2232 } else if (chandef->width == NL80211_CHAN_WIDTH_40) { 2233 if (freq > chandef->chan->center_freq) 2234 *op_class = 119; 2235 else 2236 *op_class = 120; 2237 } else { 2238 *op_class = 118; 2239 } 2240 2241 return true; 2242 } 2243 2244 /* 5 GHz, channels 100..144 */ 2245 if (freq >= 5500 && freq <= 5720) { 2246 if (vht_opclass) { 2247 *op_class = vht_opclass; 2248 } else if (chandef->width == NL80211_CHAN_WIDTH_40) { 2249 if (freq > chandef->chan->center_freq) 2250 *op_class = 122; 2251 else 2252 *op_class = 123; 2253 } else { 2254 *op_class = 121; 2255 } 2256 2257 return true; 2258 } 2259 2260 /* 5 GHz, channels 149..169 */ 2261 if (freq >= 5745 && freq <= 5845) { 2262 if (vht_opclass) { 2263 *op_class = vht_opclass; 2264 } else if (chandef->width == NL80211_CHAN_WIDTH_40) { 2265 if (freq > chandef->chan->center_freq) 2266 *op_class = 126; 2267 else 2268 *op_class = 127; 2269 } else if (freq <= 5805) { 2270 *op_class = 124; 2271 } else { 2272 *op_class = 125; 2273 } 2274 2275 return true; 2276 } 2277 2278 /* 56.16 GHz, channel 1..4 */ 2279 if (freq >= 56160 + 2160 * 1 && freq <= 56160 + 2160 * 6) { 2280 if (chandef->width >= NL80211_CHAN_WIDTH_40) 2281 return false; 2282 2283 *op_class = 180; 2284 return true; 2285 } 2286 2287 /* not supported yet */ 2288 return false; 2289 } 2290 EXPORT_SYMBOL(ieee80211_chandef_to_operating_class); 2291 2292 static int cfg80211_wdev_bi(struct wireless_dev *wdev) 2293 { 2294 switch (wdev->iftype) { 2295 case NL80211_IFTYPE_AP: 2296 case NL80211_IFTYPE_P2P_GO: 2297 WARN_ON(wdev->valid_links); 2298 return wdev->links[0].ap.beacon_interval; 2299 case NL80211_IFTYPE_MESH_POINT: 2300 return wdev->u.mesh.beacon_interval; 2301 case NL80211_IFTYPE_ADHOC: 2302 return wdev->u.ibss.beacon_interval; 2303 default: 2304 break; 2305 } 2306 2307 return 0; 2308 } 2309 2310 static void cfg80211_calculate_bi_data(struct wiphy *wiphy, u32 new_beacon_int, 2311 u32 *beacon_int_gcd, 2312 bool *beacon_int_different, 2313 int radio_idx) 2314 { 2315 struct cfg80211_registered_device *rdev; 2316 struct wireless_dev *wdev; 2317 2318 *beacon_int_gcd = 0; 2319 *beacon_int_different = false; 2320 2321 rdev = wiphy_to_rdev(wiphy); 2322 list_for_each_entry(wdev, &wiphy->wdev_list, list) { 2323 int wdev_bi; 2324 2325 /* this feature isn't supported with MLO */ 2326 if (wdev->valid_links) 2327 continue; 2328 2329 /* skip wdevs not active on the given wiphy radio */ 2330 if (radio_idx >= 0 && 2331 !(rdev_get_radio_mask(rdev, wdev->netdev) & BIT(radio_idx))) 2332 continue; 2333 2334 wdev_bi = cfg80211_wdev_bi(wdev); 2335 2336 if (!wdev_bi) 2337 continue; 2338 2339 if (!*beacon_int_gcd) { 2340 *beacon_int_gcd = wdev_bi; 2341 continue; 2342 } 2343 2344 if (wdev_bi == *beacon_int_gcd) 2345 continue; 2346 2347 *beacon_int_different = true; 2348 *beacon_int_gcd = gcd(*beacon_int_gcd, wdev_bi); 2349 } 2350 2351 if (new_beacon_int && *beacon_int_gcd != new_beacon_int) { 2352 if (*beacon_int_gcd) 2353 *beacon_int_different = true; 2354 *beacon_int_gcd = gcd(*beacon_int_gcd, new_beacon_int); 2355 } 2356 } 2357 2358 int cfg80211_validate_beacon_int(struct cfg80211_registered_device *rdev, 2359 enum nl80211_iftype iftype, u32 beacon_int) 2360 { 2361 /* 2362 * This is just a basic pre-condition check; if interface combinations 2363 * are possible the driver must already be checking those with a call 2364 * to cfg80211_check_combinations(), in which case we'll validate more 2365 * through the cfg80211_calculate_bi_data() call and code in 2366 * cfg80211_iter_combinations(). 2367 */ 2368 2369 if (beacon_int < 10 || beacon_int > 10000) 2370 return -EINVAL; 2371 2372 return 0; 2373 } 2374 2375 int cfg80211_iter_combinations(struct wiphy *wiphy, 2376 struct iface_combination_params *params, 2377 void (*iter)(const struct ieee80211_iface_combination *c, 2378 void *data), 2379 void *data) 2380 { 2381 const struct wiphy_radio *radio = NULL; 2382 const struct ieee80211_iface_combination *c, *cs; 2383 const struct ieee80211_regdomain *regdom; 2384 enum nl80211_dfs_regions region = 0; 2385 int i, j, n, iftype; 2386 int num_interfaces = 0; 2387 u32 used_iftypes = 0; 2388 u32 beacon_int_gcd; 2389 bool beacon_int_different; 2390 2391 if (params->radio_idx >= 0) 2392 radio = &wiphy->radio[params->radio_idx]; 2393 2394 /* 2395 * This is a bit strange, since the iteration used to rely only on 2396 * the data given by the driver, but here it now relies on context, 2397 * in form of the currently operating interfaces. 2398 * This is OK for all current users, and saves us from having to 2399 * push the GCD calculations into all the drivers. 2400 * In the future, this should probably rely more on data that's in 2401 * cfg80211 already - the only thing not would appear to be any new 2402 * interfaces (while being brought up) and channel/radar data. 2403 */ 2404 cfg80211_calculate_bi_data(wiphy, params->new_beacon_int, 2405 &beacon_int_gcd, &beacon_int_different, 2406 params->radio_idx); 2407 2408 if (params->radar_detect) { 2409 rcu_read_lock(); 2410 regdom = rcu_dereference(cfg80211_regdomain); 2411 if (regdom) 2412 region = regdom->dfs_region; 2413 rcu_read_unlock(); 2414 } 2415 2416 for (iftype = 0; iftype < NUM_NL80211_IFTYPES; iftype++) { 2417 num_interfaces += params->iftype_num[iftype]; 2418 if (params->iftype_num[iftype] > 0 && 2419 !cfg80211_iftype_allowed(wiphy, iftype, 0, 1)) 2420 used_iftypes |= BIT(iftype); 2421 } 2422 2423 if (radio) { 2424 cs = radio->iface_combinations; 2425 n = radio->n_iface_combinations; 2426 } else { 2427 cs = wiphy->iface_combinations; 2428 n = wiphy->n_iface_combinations; 2429 } 2430 for (i = 0; i < n; i++) { 2431 struct ieee80211_iface_limit *limits; 2432 u32 all_iftypes = 0; 2433 2434 c = &cs[i]; 2435 if (num_interfaces > c->max_interfaces) 2436 continue; 2437 if (params->num_different_channels > c->num_different_channels) 2438 continue; 2439 2440 limits = kmemdup_array(c->limits, c->n_limits, sizeof(*limits), 2441 GFP_KERNEL); 2442 if (!limits) 2443 return -ENOMEM; 2444 2445 for (iftype = 0; iftype < NUM_NL80211_IFTYPES; iftype++) { 2446 if (cfg80211_iftype_allowed(wiphy, iftype, 0, 1)) 2447 continue; 2448 for (j = 0; j < c->n_limits; j++) { 2449 all_iftypes |= limits[j].types; 2450 if (!(limits[j].types & BIT(iftype))) 2451 continue; 2452 if (limits[j].max < params->iftype_num[iftype]) 2453 goto cont; 2454 limits[j].max -= params->iftype_num[iftype]; 2455 } 2456 } 2457 2458 if (params->radar_detect != 2459 (c->radar_detect_widths & params->radar_detect)) 2460 goto cont; 2461 2462 if (params->radar_detect && c->radar_detect_regions && 2463 !(c->radar_detect_regions & BIT(region))) 2464 goto cont; 2465 2466 /* Finally check that all iftypes that we're currently 2467 * using are actually part of this combination. If they 2468 * aren't then we can't use this combination and have 2469 * to continue to the next. 2470 */ 2471 if ((all_iftypes & used_iftypes) != used_iftypes) 2472 goto cont; 2473 2474 if (beacon_int_gcd) { 2475 if (c->beacon_int_min_gcd && 2476 beacon_int_gcd < c->beacon_int_min_gcd) 2477 goto cont; 2478 if (!c->beacon_int_min_gcd && beacon_int_different) 2479 goto cont; 2480 } 2481 2482 /* This combination covered all interface types and 2483 * supported the requested numbers, so we're good. 2484 */ 2485 2486 (*iter)(c, data); 2487 cont: 2488 kfree(limits); 2489 } 2490 2491 return 0; 2492 } 2493 EXPORT_SYMBOL(cfg80211_iter_combinations); 2494 2495 static void 2496 cfg80211_iter_sum_ifcombs(const struct ieee80211_iface_combination *c, 2497 void *data) 2498 { 2499 int *num = data; 2500 (*num)++; 2501 } 2502 2503 int cfg80211_check_combinations(struct wiphy *wiphy, 2504 struct iface_combination_params *params) 2505 { 2506 int err, num = 0; 2507 2508 err = cfg80211_iter_combinations(wiphy, params, 2509 cfg80211_iter_sum_ifcombs, &num); 2510 if (err) 2511 return err; 2512 if (num == 0) 2513 return -EBUSY; 2514 2515 return 0; 2516 } 2517 EXPORT_SYMBOL(cfg80211_check_combinations); 2518 2519 int cfg80211_get_radio_idx_by_chan(struct wiphy *wiphy, 2520 const struct ieee80211_channel *chan) 2521 { 2522 const struct wiphy_radio *radio; 2523 int i, j; 2524 u32 freq; 2525 2526 if (!chan) 2527 return -EINVAL; 2528 2529 freq = ieee80211_channel_to_khz(chan); 2530 for (i = 0; i < wiphy->n_radio; i++) { 2531 radio = &wiphy->radio[i]; 2532 for (j = 0; j < radio->n_freq_range; j++) { 2533 if (freq >= radio->freq_range[j].start_freq && 2534 freq < radio->freq_range[j].end_freq) 2535 return i; 2536 } 2537 } 2538 2539 return -EINVAL; 2540 } 2541 EXPORT_SYMBOL(cfg80211_get_radio_idx_by_chan); 2542 2543 int ieee80211_get_ratemask(struct ieee80211_supported_band *sband, 2544 const u8 *rates, unsigned int n_rates, 2545 u32 *mask) 2546 { 2547 int i, j; 2548 2549 if (!sband) 2550 return -EINVAL; 2551 2552 if (n_rates == 0 || n_rates > NL80211_MAX_SUPP_RATES) 2553 return -EINVAL; 2554 2555 *mask = 0; 2556 2557 for (i = 0; i < n_rates; i++) { 2558 int rate = (rates[i] & 0x7f) * 5; 2559 bool found = false; 2560 2561 for (j = 0; j < sband->n_bitrates; j++) { 2562 if (sband->bitrates[j].bitrate == rate) { 2563 found = true; 2564 *mask |= BIT(j); 2565 break; 2566 } 2567 } 2568 if (!found) 2569 return -EINVAL; 2570 } 2571 2572 /* 2573 * mask must have at least one bit set here since we 2574 * didn't accept a 0-length rates array nor allowed 2575 * entries in the array that didn't exist 2576 */ 2577 2578 return 0; 2579 } 2580 2581 unsigned int ieee80211_get_num_supported_channels(struct wiphy *wiphy) 2582 { 2583 enum nl80211_band band; 2584 unsigned int n_channels = 0; 2585 2586 for (band = 0; band < NUM_NL80211_BANDS; band++) 2587 if (wiphy->bands[band]) 2588 n_channels += wiphy->bands[band]->n_channels; 2589 2590 return n_channels; 2591 } 2592 EXPORT_SYMBOL(ieee80211_get_num_supported_channels); 2593 2594 int cfg80211_get_station(struct net_device *dev, const u8 *mac_addr, 2595 struct station_info *sinfo) 2596 { 2597 struct cfg80211_registered_device *rdev; 2598 struct wireless_dev *wdev; 2599 2600 wdev = dev->ieee80211_ptr; 2601 if (!wdev) 2602 return -EOPNOTSUPP; 2603 2604 rdev = wiphy_to_rdev(wdev->wiphy); 2605 if (!rdev->ops->get_station) 2606 return -EOPNOTSUPP; 2607 2608 memset(sinfo, 0, sizeof(*sinfo)); 2609 2610 guard(wiphy)(&rdev->wiphy); 2611 2612 return rdev_get_station(rdev, dev, mac_addr, sinfo); 2613 } 2614 EXPORT_SYMBOL(cfg80211_get_station); 2615 2616 void cfg80211_free_nan_func(struct cfg80211_nan_func *f) 2617 { 2618 int i; 2619 2620 if (!f) 2621 return; 2622 2623 kfree(f->serv_spec_info); 2624 kfree(f->srf_bf); 2625 kfree(f->srf_macs); 2626 for (i = 0; i < f->num_rx_filters; i++) 2627 kfree(f->rx_filters[i].filter); 2628 2629 for (i = 0; i < f->num_tx_filters; i++) 2630 kfree(f->tx_filters[i].filter); 2631 2632 kfree(f->rx_filters); 2633 kfree(f->tx_filters); 2634 kfree(f); 2635 } 2636 EXPORT_SYMBOL(cfg80211_free_nan_func); 2637 2638 bool cfg80211_does_bw_fit_range(const struct ieee80211_freq_range *freq_range, 2639 u32 center_freq_khz, u32 bw_khz) 2640 { 2641 u32 start_freq_khz, end_freq_khz; 2642 2643 start_freq_khz = center_freq_khz - (bw_khz / 2); 2644 end_freq_khz = center_freq_khz + (bw_khz / 2); 2645 2646 if (start_freq_khz >= freq_range->start_freq_khz && 2647 end_freq_khz <= freq_range->end_freq_khz) 2648 return true; 2649 2650 return false; 2651 } 2652 2653 int cfg80211_link_sinfo_alloc_tid_stats(struct link_station_info *link_sinfo, 2654 gfp_t gfp) 2655 { 2656 link_sinfo->pertid = kcalloc(IEEE80211_NUM_TIDS + 1, 2657 sizeof(*link_sinfo->pertid), gfp); 2658 if (!link_sinfo->pertid) 2659 return -ENOMEM; 2660 2661 return 0; 2662 } 2663 EXPORT_SYMBOL(cfg80211_link_sinfo_alloc_tid_stats); 2664 2665 int cfg80211_sinfo_alloc_tid_stats(struct station_info *sinfo, gfp_t gfp) 2666 { 2667 sinfo->pertid = kcalloc(IEEE80211_NUM_TIDS + 1, 2668 sizeof(*(sinfo->pertid)), 2669 gfp); 2670 if (!sinfo->pertid) 2671 return -ENOMEM; 2672 2673 return 0; 2674 } 2675 EXPORT_SYMBOL(cfg80211_sinfo_alloc_tid_stats); 2676 2677 /* See IEEE 802.1H for LLC/SNAP encapsulation/decapsulation */ 2678 /* Ethernet-II snap header (RFC1042 for most EtherTypes) */ 2679 const unsigned char rfc1042_header[] __aligned(2) = 2680 { 0xaa, 0xaa, 0x03, 0x00, 0x00, 0x00 }; 2681 EXPORT_SYMBOL(rfc1042_header); 2682 2683 /* Bridge-Tunnel header (for EtherTypes ETH_P_AARP and ETH_P_IPX) */ 2684 const unsigned char bridge_tunnel_header[] __aligned(2) = 2685 { 0xaa, 0xaa, 0x03, 0x00, 0x00, 0xf8 }; 2686 EXPORT_SYMBOL(bridge_tunnel_header); 2687 2688 /* Layer 2 Update frame (802.2 Type 1 LLC XID Update response) */ 2689 struct iapp_layer2_update { 2690 u8 da[ETH_ALEN]; /* broadcast */ 2691 u8 sa[ETH_ALEN]; /* STA addr */ 2692 __be16 len; /* 6 */ 2693 u8 dsap; /* 0 */ 2694 u8 ssap; /* 0 */ 2695 u8 control; 2696 u8 xid_info[3]; 2697 } __packed; 2698 2699 void cfg80211_send_layer2_update(struct net_device *dev, const u8 *addr) 2700 { 2701 struct iapp_layer2_update *msg; 2702 struct sk_buff *skb; 2703 2704 /* Send Level 2 Update Frame to update forwarding tables in layer 2 2705 * bridge devices */ 2706 2707 skb = dev_alloc_skb(sizeof(*msg)); 2708 if (!skb) 2709 return; 2710 msg = skb_put(skb, sizeof(*msg)); 2711 2712 /* 802.2 Type 1 Logical Link Control (LLC) Exchange Identifier (XID) 2713 * Update response frame; IEEE Std 802.2-1998, 5.4.1.2.1 */ 2714 2715 eth_broadcast_addr(msg->da); 2716 ether_addr_copy(msg->sa, addr); 2717 msg->len = htons(6); 2718 msg->dsap = 0; 2719 msg->ssap = 0x01; /* NULL LSAP, CR Bit: Response */ 2720 msg->control = 0xaf; /* XID response lsb.1111F101. 2721 * F=0 (no poll command; unsolicited frame) */ 2722 msg->xid_info[0] = 0x81; /* XID format identifier */ 2723 msg->xid_info[1] = 1; /* LLC types/classes: Type 1 LLC */ 2724 msg->xid_info[2] = 0; /* XID sender's receive window size (RW) */ 2725 2726 skb->dev = dev; 2727 skb->protocol = eth_type_trans(skb, dev); 2728 memset(skb->cb, 0, sizeof(skb->cb)); 2729 netif_rx(skb); 2730 } 2731 EXPORT_SYMBOL(cfg80211_send_layer2_update); 2732 2733 int ieee80211_get_vht_max_nss(struct ieee80211_vht_cap *cap, 2734 enum ieee80211_vht_chanwidth bw, 2735 int mcs, bool ext_nss_bw_capable, 2736 unsigned int max_vht_nss) 2737 { 2738 u16 map = le16_to_cpu(cap->supp_mcs.rx_mcs_map); 2739 int ext_nss_bw; 2740 int supp_width; 2741 int i, mcs_encoding; 2742 2743 if (map == 0xffff) 2744 return 0; 2745 2746 if (WARN_ON(mcs > 9 || max_vht_nss > 8)) 2747 return 0; 2748 if (mcs <= 7) 2749 mcs_encoding = 0; 2750 else if (mcs == 8) 2751 mcs_encoding = 1; 2752 else 2753 mcs_encoding = 2; 2754 2755 if (!max_vht_nss) { 2756 /* find max_vht_nss for the given MCS */ 2757 for (i = 7; i >= 0; i--) { 2758 int supp = (map >> (2 * i)) & 3; 2759 2760 if (supp == 3) 2761 continue; 2762 2763 if (supp >= mcs_encoding) { 2764 max_vht_nss = i + 1; 2765 break; 2766 } 2767 } 2768 } 2769 2770 if (!(cap->supp_mcs.tx_mcs_map & 2771 cpu_to_le16(IEEE80211_VHT_EXT_NSS_BW_CAPABLE))) 2772 return max_vht_nss; 2773 2774 ext_nss_bw = le32_get_bits(cap->vht_cap_info, 2775 IEEE80211_VHT_CAP_EXT_NSS_BW_MASK); 2776 supp_width = le32_get_bits(cap->vht_cap_info, 2777 IEEE80211_VHT_CAP_SUPP_CHAN_WIDTH_MASK); 2778 2779 /* if not capable, treat ext_nss_bw as 0 */ 2780 if (!ext_nss_bw_capable) 2781 ext_nss_bw = 0; 2782 2783 /* This is invalid */ 2784 if (supp_width == 3) 2785 return 0; 2786 2787 /* This is an invalid combination so pretend nothing is supported */ 2788 if (supp_width == 2 && (ext_nss_bw == 1 || ext_nss_bw == 2)) 2789 return 0; 2790 2791 /* 2792 * Cover all the special cases according to IEEE 802.11-2016 2793 * Table 9-250. All other cases are either factor of 1 or not 2794 * valid/supported. 2795 */ 2796 switch (bw) { 2797 case IEEE80211_VHT_CHANWIDTH_USE_HT: 2798 case IEEE80211_VHT_CHANWIDTH_80MHZ: 2799 if ((supp_width == 1 || supp_width == 2) && 2800 ext_nss_bw == 3) 2801 return 2 * max_vht_nss; 2802 break; 2803 case IEEE80211_VHT_CHANWIDTH_160MHZ: 2804 if (supp_width == 0 && 2805 (ext_nss_bw == 1 || ext_nss_bw == 2)) 2806 return max_vht_nss / 2; 2807 if (supp_width == 0 && 2808 ext_nss_bw == 3) 2809 return (3 * max_vht_nss) / 4; 2810 if (supp_width == 1 && 2811 ext_nss_bw == 3) 2812 return 2 * max_vht_nss; 2813 break; 2814 case IEEE80211_VHT_CHANWIDTH_80P80MHZ: 2815 if (supp_width == 0 && ext_nss_bw == 1) 2816 return 0; /* not possible */ 2817 if (supp_width == 0 && 2818 ext_nss_bw == 2) 2819 return max_vht_nss / 2; 2820 if (supp_width == 0 && 2821 ext_nss_bw == 3) 2822 return (3 * max_vht_nss) / 4; 2823 if (supp_width == 1 && 2824 ext_nss_bw == 0) 2825 return 0; /* not possible */ 2826 if (supp_width == 1 && 2827 ext_nss_bw == 1) 2828 return max_vht_nss / 2; 2829 if (supp_width == 1 && 2830 ext_nss_bw == 2) 2831 return (3 * max_vht_nss) / 4; 2832 break; 2833 } 2834 2835 /* not covered or invalid combination received */ 2836 return max_vht_nss; 2837 } 2838 EXPORT_SYMBOL(ieee80211_get_vht_max_nss); 2839 2840 bool cfg80211_iftype_allowed(struct wiphy *wiphy, enum nl80211_iftype iftype, 2841 bool is_4addr, u8 check_swif) 2842 2843 { 2844 bool is_vlan = iftype == NL80211_IFTYPE_AP_VLAN; 2845 2846 switch (check_swif) { 2847 case 0: 2848 if (is_vlan && is_4addr) 2849 return wiphy->flags & WIPHY_FLAG_4ADDR_AP; 2850 return wiphy->interface_modes & BIT(iftype); 2851 case 1: 2852 if (!(wiphy->software_iftypes & BIT(iftype)) && is_vlan) 2853 return wiphy->flags & WIPHY_FLAG_4ADDR_AP; 2854 return wiphy->software_iftypes & BIT(iftype); 2855 default: 2856 break; 2857 } 2858 2859 return false; 2860 } 2861 EXPORT_SYMBOL(cfg80211_iftype_allowed); 2862 2863 void cfg80211_remove_link(struct wireless_dev *wdev, unsigned int link_id) 2864 { 2865 struct cfg80211_registered_device *rdev = wiphy_to_rdev(wdev->wiphy); 2866 2867 lockdep_assert_wiphy(wdev->wiphy); 2868 2869 switch (wdev->iftype) { 2870 case NL80211_IFTYPE_AP: 2871 case NL80211_IFTYPE_P2P_GO: 2872 cfg80211_stop_ap(rdev, wdev->netdev, link_id, true); 2873 break; 2874 default: 2875 /* per-link not relevant */ 2876 break; 2877 } 2878 2879 rdev_del_intf_link(rdev, wdev, link_id); 2880 2881 wdev->valid_links &= ~BIT(link_id); 2882 eth_zero_addr(wdev->links[link_id].addr); 2883 } 2884 2885 void cfg80211_remove_links(struct wireless_dev *wdev) 2886 { 2887 unsigned int link_id; 2888 2889 /* 2890 * links are controlled by upper layers (userspace/cfg) 2891 * only for AP mode, so only remove them here for AP 2892 */ 2893 if (wdev->iftype != NL80211_IFTYPE_AP) 2894 return; 2895 2896 if (wdev->valid_links) { 2897 for_each_valid_link(wdev, link_id) 2898 cfg80211_remove_link(wdev, link_id); 2899 } 2900 } 2901 2902 int cfg80211_remove_virtual_intf(struct cfg80211_registered_device *rdev, 2903 struct wireless_dev *wdev) 2904 { 2905 cfg80211_remove_links(wdev); 2906 2907 return rdev_del_virtual_intf(rdev, wdev); 2908 } 2909 2910 const struct wiphy_iftype_ext_capab * 2911 cfg80211_get_iftype_ext_capa(struct wiphy *wiphy, enum nl80211_iftype type) 2912 { 2913 int i; 2914 2915 for (i = 0; i < wiphy->num_iftype_ext_capab; i++) { 2916 if (wiphy->iftype_ext_capab[i].iftype == type) 2917 return &wiphy->iftype_ext_capab[i]; 2918 } 2919 2920 return NULL; 2921 } 2922 EXPORT_SYMBOL(cfg80211_get_iftype_ext_capa); 2923 2924 bool ieee80211_radio_freq_range_valid(const struct wiphy_radio *radio, 2925 u32 freq, u32 width) 2926 { 2927 const struct wiphy_radio_freq_range *r; 2928 int i; 2929 2930 for (i = 0; i < radio->n_freq_range; i++) { 2931 r = &radio->freq_range[i]; 2932 if (freq - width / 2 >= r->start_freq && 2933 freq + width / 2 <= r->end_freq) 2934 return true; 2935 } 2936 2937 return false; 2938 } 2939 EXPORT_SYMBOL(ieee80211_radio_freq_range_valid); 2940 2941 bool cfg80211_radio_chandef_valid(const struct wiphy_radio *radio, 2942 const struct cfg80211_chan_def *chandef) 2943 { 2944 u32 freq, width; 2945 2946 freq = ieee80211_chandef_to_khz(chandef); 2947 width = MHZ_TO_KHZ(cfg80211_chandef_get_width(chandef)); 2948 if (!ieee80211_radio_freq_range_valid(radio, freq, width)) 2949 return false; 2950 2951 freq = MHZ_TO_KHZ(chandef->center_freq2); 2952 if (freq && !ieee80211_radio_freq_range_valid(radio, freq, width)) 2953 return false; 2954 2955 return true; 2956 } 2957 EXPORT_SYMBOL(cfg80211_radio_chandef_valid); 2958 2959 bool cfg80211_wdev_channel_allowed(struct wireless_dev *wdev, 2960 struct ieee80211_channel *chan) 2961 { 2962 struct wiphy *wiphy = wdev->wiphy; 2963 const struct wiphy_radio *radio; 2964 struct cfg80211_chan_def chandef; 2965 u32 radio_mask; 2966 int i; 2967 2968 radio_mask = wdev->radio_mask; 2969 if (!wiphy->n_radio || radio_mask == BIT(wiphy->n_radio) - 1) 2970 return true; 2971 2972 cfg80211_chandef_create(&chandef, chan, NL80211_CHAN_HT20); 2973 for (i = 0; i < wiphy->n_radio; i++) { 2974 if (!(radio_mask & BIT(i))) 2975 continue; 2976 2977 radio = &wiphy->radio[i]; 2978 if (!cfg80211_radio_chandef_valid(radio, &chandef)) 2979 continue; 2980 2981 return true; 2982 } 2983 2984 return false; 2985 } 2986 EXPORT_SYMBOL(cfg80211_wdev_channel_allowed); 2987