1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Wireless utility functions 4 * 5 * Copyright 2007-2009 Johannes Berg <johannes@sipsolutions.net> 6 * Copyright 2013-2014 Intel Mobile Communications GmbH 7 * Copyright 2017 Intel Deutschland GmbH 8 * Copyright (C) 2018-2019 Intel Corporation 9 */ 10 #include <linux/export.h> 11 #include <linux/bitops.h> 12 #include <linux/etherdevice.h> 13 #include <linux/slab.h> 14 #include <linux/ieee80211.h> 15 #include <net/cfg80211.h> 16 #include <net/ip.h> 17 #include <net/dsfield.h> 18 #include <linux/if_vlan.h> 19 #include <linux/mpls.h> 20 #include <linux/gcd.h> 21 #include <linux/bitfield.h> 22 #include <linux/nospec.h> 23 #include "core.h" 24 #include "rdev-ops.h" 25 26 27 struct ieee80211_rate * 28 ieee80211_get_response_rate(struct ieee80211_supported_band *sband, 29 u32 basic_rates, int bitrate) 30 { 31 struct ieee80211_rate *result = &sband->bitrates[0]; 32 int i; 33 34 for (i = 0; i < sband->n_bitrates; i++) { 35 if (!(basic_rates & BIT(i))) 36 continue; 37 if (sband->bitrates[i].bitrate > bitrate) 38 continue; 39 result = &sband->bitrates[i]; 40 } 41 42 return result; 43 } 44 EXPORT_SYMBOL(ieee80211_get_response_rate); 45 46 u32 ieee80211_mandatory_rates(struct ieee80211_supported_band *sband, 47 enum nl80211_bss_scan_width scan_width) 48 { 49 struct ieee80211_rate *bitrates; 50 u32 mandatory_rates = 0; 51 enum ieee80211_rate_flags mandatory_flag; 52 int i; 53 54 if (WARN_ON(!sband)) 55 return 1; 56 57 if (sband->band == NL80211_BAND_2GHZ) { 58 if (scan_width == NL80211_BSS_CHAN_WIDTH_5 || 59 scan_width == NL80211_BSS_CHAN_WIDTH_10) 60 mandatory_flag = IEEE80211_RATE_MANDATORY_G; 61 else 62 mandatory_flag = IEEE80211_RATE_MANDATORY_B; 63 } else { 64 mandatory_flag = IEEE80211_RATE_MANDATORY_A; 65 } 66 67 bitrates = sband->bitrates; 68 for (i = 0; i < sband->n_bitrates; i++) 69 if (bitrates[i].flags & mandatory_flag) 70 mandatory_rates |= BIT(i); 71 return mandatory_rates; 72 } 73 EXPORT_SYMBOL(ieee80211_mandatory_rates); 74 75 int ieee80211_channel_to_frequency(int chan, enum nl80211_band band) 76 { 77 /* see 802.11 17.3.8.3.2 and Annex J 78 * there are overlapping channel numbers in 5GHz and 2GHz bands */ 79 if (chan <= 0) 80 return 0; /* not supported */ 81 switch (band) { 82 case NL80211_BAND_2GHZ: 83 if (chan == 14) 84 return 2484; 85 else if (chan < 14) 86 return 2407 + chan * 5; 87 break; 88 case NL80211_BAND_5GHZ: 89 if (chan >= 182 && chan <= 196) 90 return 4000 + chan * 5; 91 else 92 return 5000 + chan * 5; 93 break; 94 case NL80211_BAND_60GHZ: 95 if (chan < 7) 96 return 56160 + chan * 2160; 97 break; 98 default: 99 ; 100 } 101 return 0; /* not supported */ 102 } 103 EXPORT_SYMBOL(ieee80211_channel_to_frequency); 104 105 int ieee80211_frequency_to_channel(int freq) 106 { 107 /* see 802.11 17.3.8.3.2 and Annex J */ 108 if (freq == 2484) 109 return 14; 110 else if (freq < 2484) 111 return (freq - 2407) / 5; 112 else if (freq >= 4910 && freq <= 4980) 113 return (freq - 4000) / 5; 114 else if (freq <= 45000) /* DMG band lower limit */ 115 return (freq - 5000) / 5; 116 else if (freq >= 58320 && freq <= 70200) 117 return (freq - 56160) / 2160; 118 else 119 return 0; 120 } 121 EXPORT_SYMBOL(ieee80211_frequency_to_channel); 122 123 struct ieee80211_channel *ieee80211_get_channel(struct wiphy *wiphy, int freq) 124 { 125 enum nl80211_band band; 126 struct ieee80211_supported_band *sband; 127 int i; 128 129 for (band = 0; band < NUM_NL80211_BANDS; band++) { 130 sband = wiphy->bands[band]; 131 132 if (!sband) 133 continue; 134 135 for (i = 0; i < sband->n_channels; i++) { 136 if (sband->channels[i].center_freq == freq) 137 return &sband->channels[i]; 138 } 139 } 140 141 return NULL; 142 } 143 EXPORT_SYMBOL(ieee80211_get_channel); 144 145 static void set_mandatory_flags_band(struct ieee80211_supported_band *sband) 146 { 147 int i, want; 148 149 switch (sband->band) { 150 case NL80211_BAND_5GHZ: 151 want = 3; 152 for (i = 0; i < sband->n_bitrates; i++) { 153 if (sband->bitrates[i].bitrate == 60 || 154 sband->bitrates[i].bitrate == 120 || 155 sband->bitrates[i].bitrate == 240) { 156 sband->bitrates[i].flags |= 157 IEEE80211_RATE_MANDATORY_A; 158 want--; 159 } 160 } 161 WARN_ON(want); 162 break; 163 case NL80211_BAND_2GHZ: 164 want = 7; 165 for (i = 0; i < sband->n_bitrates; i++) { 166 switch (sband->bitrates[i].bitrate) { 167 case 10: 168 case 20: 169 case 55: 170 case 110: 171 sband->bitrates[i].flags |= 172 IEEE80211_RATE_MANDATORY_B | 173 IEEE80211_RATE_MANDATORY_G; 174 want--; 175 break; 176 case 60: 177 case 120: 178 case 240: 179 sband->bitrates[i].flags |= 180 IEEE80211_RATE_MANDATORY_G; 181 want--; 182 /* fall through */ 183 default: 184 sband->bitrates[i].flags |= 185 IEEE80211_RATE_ERP_G; 186 break; 187 } 188 } 189 WARN_ON(want != 0 && want != 3); 190 break; 191 case NL80211_BAND_60GHZ: 192 /* check for mandatory HT MCS 1..4 */ 193 WARN_ON(!sband->ht_cap.ht_supported); 194 WARN_ON((sband->ht_cap.mcs.rx_mask[0] & 0x1e) != 0x1e); 195 break; 196 case NUM_NL80211_BANDS: 197 default: 198 WARN_ON(1); 199 break; 200 } 201 } 202 203 void ieee80211_set_bitrate_flags(struct wiphy *wiphy) 204 { 205 enum nl80211_band band; 206 207 for (band = 0; band < NUM_NL80211_BANDS; band++) 208 if (wiphy->bands[band]) 209 set_mandatory_flags_band(wiphy->bands[band]); 210 } 211 212 bool cfg80211_supported_cipher_suite(struct wiphy *wiphy, u32 cipher) 213 { 214 int i; 215 for (i = 0; i < wiphy->n_cipher_suites; i++) 216 if (cipher == wiphy->cipher_suites[i]) 217 return true; 218 return false; 219 } 220 221 int cfg80211_validate_key_settings(struct cfg80211_registered_device *rdev, 222 struct key_params *params, int key_idx, 223 bool pairwise, const u8 *mac_addr) 224 { 225 if (key_idx < 0 || key_idx > 5) 226 return -EINVAL; 227 228 if (!pairwise && mac_addr && !(rdev->wiphy.flags & WIPHY_FLAG_IBSS_RSN)) 229 return -EINVAL; 230 231 if (pairwise && !mac_addr) 232 return -EINVAL; 233 234 switch (params->cipher) { 235 case WLAN_CIPHER_SUITE_TKIP: 236 case WLAN_CIPHER_SUITE_CCMP: 237 case WLAN_CIPHER_SUITE_CCMP_256: 238 case WLAN_CIPHER_SUITE_GCMP: 239 case WLAN_CIPHER_SUITE_GCMP_256: 240 /* IEEE802.11-2016 allows only 0 and - when using Extended Key 241 * ID - 1 as index for pairwise keys. 242 * @NL80211_KEY_NO_TX is only allowed for pairwise keys when 243 * the driver supports Extended Key ID. 244 * @NL80211_KEY_SET_TX can't be set when installing and 245 * validating a key. 246 */ 247 if (params->mode == NL80211_KEY_NO_TX) { 248 if (!wiphy_ext_feature_isset(&rdev->wiphy, 249 NL80211_EXT_FEATURE_EXT_KEY_ID)) 250 return -EINVAL; 251 else if (!pairwise || key_idx < 0 || key_idx > 1) 252 return -EINVAL; 253 } else if ((pairwise && key_idx) || 254 params->mode == NL80211_KEY_SET_TX) { 255 return -EINVAL; 256 } 257 break; 258 case WLAN_CIPHER_SUITE_AES_CMAC: 259 case WLAN_CIPHER_SUITE_BIP_CMAC_256: 260 case WLAN_CIPHER_SUITE_BIP_GMAC_128: 261 case WLAN_CIPHER_SUITE_BIP_GMAC_256: 262 /* Disallow BIP (group-only) cipher as pairwise cipher */ 263 if (pairwise) 264 return -EINVAL; 265 if (key_idx < 4) 266 return -EINVAL; 267 break; 268 case WLAN_CIPHER_SUITE_WEP40: 269 case WLAN_CIPHER_SUITE_WEP104: 270 if (key_idx > 3) 271 return -EINVAL; 272 default: 273 break; 274 } 275 276 switch (params->cipher) { 277 case WLAN_CIPHER_SUITE_WEP40: 278 if (params->key_len != WLAN_KEY_LEN_WEP40) 279 return -EINVAL; 280 break; 281 case WLAN_CIPHER_SUITE_TKIP: 282 if (params->key_len != WLAN_KEY_LEN_TKIP) 283 return -EINVAL; 284 break; 285 case WLAN_CIPHER_SUITE_CCMP: 286 if (params->key_len != WLAN_KEY_LEN_CCMP) 287 return -EINVAL; 288 break; 289 case WLAN_CIPHER_SUITE_CCMP_256: 290 if (params->key_len != WLAN_KEY_LEN_CCMP_256) 291 return -EINVAL; 292 break; 293 case WLAN_CIPHER_SUITE_GCMP: 294 if (params->key_len != WLAN_KEY_LEN_GCMP) 295 return -EINVAL; 296 break; 297 case WLAN_CIPHER_SUITE_GCMP_256: 298 if (params->key_len != WLAN_KEY_LEN_GCMP_256) 299 return -EINVAL; 300 break; 301 case WLAN_CIPHER_SUITE_WEP104: 302 if (params->key_len != WLAN_KEY_LEN_WEP104) 303 return -EINVAL; 304 break; 305 case WLAN_CIPHER_SUITE_AES_CMAC: 306 if (params->key_len != WLAN_KEY_LEN_AES_CMAC) 307 return -EINVAL; 308 break; 309 case WLAN_CIPHER_SUITE_BIP_CMAC_256: 310 if (params->key_len != WLAN_KEY_LEN_BIP_CMAC_256) 311 return -EINVAL; 312 break; 313 case WLAN_CIPHER_SUITE_BIP_GMAC_128: 314 if (params->key_len != WLAN_KEY_LEN_BIP_GMAC_128) 315 return -EINVAL; 316 break; 317 case WLAN_CIPHER_SUITE_BIP_GMAC_256: 318 if (params->key_len != WLAN_KEY_LEN_BIP_GMAC_256) 319 return -EINVAL; 320 break; 321 default: 322 /* 323 * We don't know anything about this algorithm, 324 * allow using it -- but the driver must check 325 * all parameters! We still check below whether 326 * or not the driver supports this algorithm, 327 * of course. 328 */ 329 break; 330 } 331 332 if (params->seq) { 333 switch (params->cipher) { 334 case WLAN_CIPHER_SUITE_WEP40: 335 case WLAN_CIPHER_SUITE_WEP104: 336 /* These ciphers do not use key sequence */ 337 return -EINVAL; 338 case WLAN_CIPHER_SUITE_TKIP: 339 case WLAN_CIPHER_SUITE_CCMP: 340 case WLAN_CIPHER_SUITE_CCMP_256: 341 case WLAN_CIPHER_SUITE_GCMP: 342 case WLAN_CIPHER_SUITE_GCMP_256: 343 case WLAN_CIPHER_SUITE_AES_CMAC: 344 case WLAN_CIPHER_SUITE_BIP_CMAC_256: 345 case WLAN_CIPHER_SUITE_BIP_GMAC_128: 346 case WLAN_CIPHER_SUITE_BIP_GMAC_256: 347 if (params->seq_len != 6) 348 return -EINVAL; 349 break; 350 } 351 } 352 353 if (!cfg80211_supported_cipher_suite(&rdev->wiphy, params->cipher)) 354 return -EINVAL; 355 356 return 0; 357 } 358 359 unsigned int __attribute_const__ ieee80211_hdrlen(__le16 fc) 360 { 361 unsigned int hdrlen = 24; 362 363 if (ieee80211_is_data(fc)) { 364 if (ieee80211_has_a4(fc)) 365 hdrlen = 30; 366 if (ieee80211_is_data_qos(fc)) { 367 hdrlen += IEEE80211_QOS_CTL_LEN; 368 if (ieee80211_has_order(fc)) 369 hdrlen += IEEE80211_HT_CTL_LEN; 370 } 371 goto out; 372 } 373 374 if (ieee80211_is_mgmt(fc)) { 375 if (ieee80211_has_order(fc)) 376 hdrlen += IEEE80211_HT_CTL_LEN; 377 goto out; 378 } 379 380 if (ieee80211_is_ctl(fc)) { 381 /* 382 * ACK and CTS are 10 bytes, all others 16. To see how 383 * to get this condition consider 384 * subtype mask: 0b0000000011110000 (0x00F0) 385 * ACK subtype: 0b0000000011010000 (0x00D0) 386 * CTS subtype: 0b0000000011000000 (0x00C0) 387 * bits that matter: ^^^ (0x00E0) 388 * value of those: 0b0000000011000000 (0x00C0) 389 */ 390 if ((fc & cpu_to_le16(0x00E0)) == cpu_to_le16(0x00C0)) 391 hdrlen = 10; 392 else 393 hdrlen = 16; 394 } 395 out: 396 return hdrlen; 397 } 398 EXPORT_SYMBOL(ieee80211_hdrlen); 399 400 unsigned int ieee80211_get_hdrlen_from_skb(const struct sk_buff *skb) 401 { 402 const struct ieee80211_hdr *hdr = 403 (const struct ieee80211_hdr *)skb->data; 404 unsigned int hdrlen; 405 406 if (unlikely(skb->len < 10)) 407 return 0; 408 hdrlen = ieee80211_hdrlen(hdr->frame_control); 409 if (unlikely(hdrlen > skb->len)) 410 return 0; 411 return hdrlen; 412 } 413 EXPORT_SYMBOL(ieee80211_get_hdrlen_from_skb); 414 415 static unsigned int __ieee80211_get_mesh_hdrlen(u8 flags) 416 { 417 int ae = flags & MESH_FLAGS_AE; 418 /* 802.11-2012, 8.2.4.7.3 */ 419 switch (ae) { 420 default: 421 case 0: 422 return 6; 423 case MESH_FLAGS_AE_A4: 424 return 12; 425 case MESH_FLAGS_AE_A5_A6: 426 return 18; 427 } 428 } 429 430 unsigned int ieee80211_get_mesh_hdrlen(struct ieee80211s_hdr *meshhdr) 431 { 432 return __ieee80211_get_mesh_hdrlen(meshhdr->flags); 433 } 434 EXPORT_SYMBOL(ieee80211_get_mesh_hdrlen); 435 436 int ieee80211_data_to_8023_exthdr(struct sk_buff *skb, struct ethhdr *ehdr, 437 const u8 *addr, enum nl80211_iftype iftype, 438 u8 data_offset) 439 { 440 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data; 441 struct { 442 u8 hdr[ETH_ALEN] __aligned(2); 443 __be16 proto; 444 } payload; 445 struct ethhdr tmp; 446 u16 hdrlen; 447 u8 mesh_flags = 0; 448 449 if (unlikely(!ieee80211_is_data_present(hdr->frame_control))) 450 return -1; 451 452 hdrlen = ieee80211_hdrlen(hdr->frame_control) + data_offset; 453 if (skb->len < hdrlen + 8) 454 return -1; 455 456 /* convert IEEE 802.11 header + possible LLC headers into Ethernet 457 * header 458 * IEEE 802.11 address fields: 459 * ToDS FromDS Addr1 Addr2 Addr3 Addr4 460 * 0 0 DA SA BSSID n/a 461 * 0 1 DA BSSID SA n/a 462 * 1 0 BSSID SA DA n/a 463 * 1 1 RA TA DA SA 464 */ 465 memcpy(tmp.h_dest, ieee80211_get_DA(hdr), ETH_ALEN); 466 memcpy(tmp.h_source, ieee80211_get_SA(hdr), ETH_ALEN); 467 468 if (iftype == NL80211_IFTYPE_MESH_POINT) 469 skb_copy_bits(skb, hdrlen, &mesh_flags, 1); 470 471 mesh_flags &= MESH_FLAGS_AE; 472 473 switch (hdr->frame_control & 474 cpu_to_le16(IEEE80211_FCTL_TODS | IEEE80211_FCTL_FROMDS)) { 475 case cpu_to_le16(IEEE80211_FCTL_TODS): 476 if (unlikely(iftype != NL80211_IFTYPE_AP && 477 iftype != NL80211_IFTYPE_AP_VLAN && 478 iftype != NL80211_IFTYPE_P2P_GO)) 479 return -1; 480 break; 481 case cpu_to_le16(IEEE80211_FCTL_TODS | IEEE80211_FCTL_FROMDS): 482 if (unlikely(iftype != NL80211_IFTYPE_WDS && 483 iftype != NL80211_IFTYPE_MESH_POINT && 484 iftype != NL80211_IFTYPE_AP_VLAN && 485 iftype != NL80211_IFTYPE_STATION)) 486 return -1; 487 if (iftype == NL80211_IFTYPE_MESH_POINT) { 488 if (mesh_flags == MESH_FLAGS_AE_A4) 489 return -1; 490 if (mesh_flags == MESH_FLAGS_AE_A5_A6) { 491 skb_copy_bits(skb, hdrlen + 492 offsetof(struct ieee80211s_hdr, eaddr1), 493 tmp.h_dest, 2 * ETH_ALEN); 494 } 495 hdrlen += __ieee80211_get_mesh_hdrlen(mesh_flags); 496 } 497 break; 498 case cpu_to_le16(IEEE80211_FCTL_FROMDS): 499 if ((iftype != NL80211_IFTYPE_STATION && 500 iftype != NL80211_IFTYPE_P2P_CLIENT && 501 iftype != NL80211_IFTYPE_MESH_POINT) || 502 (is_multicast_ether_addr(tmp.h_dest) && 503 ether_addr_equal(tmp.h_source, addr))) 504 return -1; 505 if (iftype == NL80211_IFTYPE_MESH_POINT) { 506 if (mesh_flags == MESH_FLAGS_AE_A5_A6) 507 return -1; 508 if (mesh_flags == MESH_FLAGS_AE_A4) 509 skb_copy_bits(skb, hdrlen + 510 offsetof(struct ieee80211s_hdr, eaddr1), 511 tmp.h_source, ETH_ALEN); 512 hdrlen += __ieee80211_get_mesh_hdrlen(mesh_flags); 513 } 514 break; 515 case cpu_to_le16(0): 516 if (iftype != NL80211_IFTYPE_ADHOC && 517 iftype != NL80211_IFTYPE_STATION && 518 iftype != NL80211_IFTYPE_OCB) 519 return -1; 520 break; 521 } 522 523 skb_copy_bits(skb, hdrlen, &payload, sizeof(payload)); 524 tmp.h_proto = payload.proto; 525 526 if (likely((ether_addr_equal(payload.hdr, rfc1042_header) && 527 tmp.h_proto != htons(ETH_P_AARP) && 528 tmp.h_proto != htons(ETH_P_IPX)) || 529 ether_addr_equal(payload.hdr, bridge_tunnel_header))) 530 /* remove RFC1042 or Bridge-Tunnel encapsulation and 531 * replace EtherType */ 532 hdrlen += ETH_ALEN + 2; 533 else 534 tmp.h_proto = htons(skb->len - hdrlen); 535 536 pskb_pull(skb, hdrlen); 537 538 if (!ehdr) 539 ehdr = skb_push(skb, sizeof(struct ethhdr)); 540 memcpy(ehdr, &tmp, sizeof(tmp)); 541 542 return 0; 543 } 544 EXPORT_SYMBOL(ieee80211_data_to_8023_exthdr); 545 546 static void 547 __frame_add_frag(struct sk_buff *skb, struct page *page, 548 void *ptr, int len, int size) 549 { 550 struct skb_shared_info *sh = skb_shinfo(skb); 551 int page_offset; 552 553 page_ref_inc(page); 554 page_offset = ptr - page_address(page); 555 skb_add_rx_frag(skb, sh->nr_frags, page, page_offset, len, size); 556 } 557 558 static void 559 __ieee80211_amsdu_copy_frag(struct sk_buff *skb, struct sk_buff *frame, 560 int offset, int len) 561 { 562 struct skb_shared_info *sh = skb_shinfo(skb); 563 const skb_frag_t *frag = &sh->frags[0]; 564 struct page *frag_page; 565 void *frag_ptr; 566 int frag_len, frag_size; 567 int head_size = skb->len - skb->data_len; 568 int cur_len; 569 570 frag_page = virt_to_head_page(skb->head); 571 frag_ptr = skb->data; 572 frag_size = head_size; 573 574 while (offset >= frag_size) { 575 offset -= frag_size; 576 frag_page = skb_frag_page(frag); 577 frag_ptr = skb_frag_address(frag); 578 frag_size = skb_frag_size(frag); 579 frag++; 580 } 581 582 frag_ptr += offset; 583 frag_len = frag_size - offset; 584 585 cur_len = min(len, frag_len); 586 587 __frame_add_frag(frame, frag_page, frag_ptr, cur_len, frag_size); 588 len -= cur_len; 589 590 while (len > 0) { 591 frag_len = skb_frag_size(frag); 592 cur_len = min(len, frag_len); 593 __frame_add_frag(frame, skb_frag_page(frag), 594 skb_frag_address(frag), cur_len, frag_len); 595 len -= cur_len; 596 frag++; 597 } 598 } 599 600 static struct sk_buff * 601 __ieee80211_amsdu_copy(struct sk_buff *skb, unsigned int hlen, 602 int offset, int len, bool reuse_frag) 603 { 604 struct sk_buff *frame; 605 int cur_len = len; 606 607 if (skb->len - offset < len) 608 return NULL; 609 610 /* 611 * When reusing framents, copy some data to the head to simplify 612 * ethernet header handling and speed up protocol header processing 613 * in the stack later. 614 */ 615 if (reuse_frag) 616 cur_len = min_t(int, len, 32); 617 618 /* 619 * Allocate and reserve two bytes more for payload 620 * alignment since sizeof(struct ethhdr) is 14. 621 */ 622 frame = dev_alloc_skb(hlen + sizeof(struct ethhdr) + 2 + cur_len); 623 if (!frame) 624 return NULL; 625 626 skb_reserve(frame, hlen + sizeof(struct ethhdr) + 2); 627 skb_copy_bits(skb, offset, skb_put(frame, cur_len), cur_len); 628 629 len -= cur_len; 630 if (!len) 631 return frame; 632 633 offset += cur_len; 634 __ieee80211_amsdu_copy_frag(skb, frame, offset, len); 635 636 return frame; 637 } 638 639 void ieee80211_amsdu_to_8023s(struct sk_buff *skb, struct sk_buff_head *list, 640 const u8 *addr, enum nl80211_iftype iftype, 641 const unsigned int extra_headroom, 642 const u8 *check_da, const u8 *check_sa) 643 { 644 unsigned int hlen = ALIGN(extra_headroom, 4); 645 struct sk_buff *frame = NULL; 646 u16 ethertype; 647 u8 *payload; 648 int offset = 0, remaining; 649 struct ethhdr eth; 650 bool reuse_frag = skb->head_frag && !skb_has_frag_list(skb); 651 bool reuse_skb = false; 652 bool last = false; 653 654 while (!last) { 655 unsigned int subframe_len; 656 int len; 657 u8 padding; 658 659 skb_copy_bits(skb, offset, ð, sizeof(eth)); 660 len = ntohs(eth.h_proto); 661 subframe_len = sizeof(struct ethhdr) + len; 662 padding = (4 - subframe_len) & 0x3; 663 664 /* the last MSDU has no padding */ 665 remaining = skb->len - offset; 666 if (subframe_len > remaining) 667 goto purge; 668 669 offset += sizeof(struct ethhdr); 670 last = remaining <= subframe_len + padding; 671 672 /* FIXME: should we really accept multicast DA? */ 673 if ((check_da && !is_multicast_ether_addr(eth.h_dest) && 674 !ether_addr_equal(check_da, eth.h_dest)) || 675 (check_sa && !ether_addr_equal(check_sa, eth.h_source))) { 676 offset += len + padding; 677 continue; 678 } 679 680 /* reuse skb for the last subframe */ 681 if (!skb_is_nonlinear(skb) && !reuse_frag && last) { 682 skb_pull(skb, offset); 683 frame = skb; 684 reuse_skb = true; 685 } else { 686 frame = __ieee80211_amsdu_copy(skb, hlen, offset, len, 687 reuse_frag); 688 if (!frame) 689 goto purge; 690 691 offset += len + padding; 692 } 693 694 skb_reset_network_header(frame); 695 frame->dev = skb->dev; 696 frame->priority = skb->priority; 697 698 payload = frame->data; 699 ethertype = (payload[6] << 8) | payload[7]; 700 if (likely((ether_addr_equal(payload, rfc1042_header) && 701 ethertype != ETH_P_AARP && ethertype != ETH_P_IPX) || 702 ether_addr_equal(payload, bridge_tunnel_header))) { 703 eth.h_proto = htons(ethertype); 704 skb_pull(frame, ETH_ALEN + 2); 705 } 706 707 memcpy(skb_push(frame, sizeof(eth)), ð, sizeof(eth)); 708 __skb_queue_tail(list, frame); 709 } 710 711 if (!reuse_skb) 712 dev_kfree_skb(skb); 713 714 return; 715 716 purge: 717 __skb_queue_purge(list); 718 dev_kfree_skb(skb); 719 } 720 EXPORT_SYMBOL(ieee80211_amsdu_to_8023s); 721 722 /* Given a data frame determine the 802.1p/1d tag to use. */ 723 unsigned int cfg80211_classify8021d(struct sk_buff *skb, 724 struct cfg80211_qos_map *qos_map) 725 { 726 unsigned int dscp; 727 unsigned char vlan_priority; 728 unsigned int ret; 729 730 /* skb->priority values from 256->263 are magic values to 731 * directly indicate a specific 802.1d priority. This is used 732 * to allow 802.1d priority to be passed directly in from VLAN 733 * tags, etc. 734 */ 735 if (skb->priority >= 256 && skb->priority <= 263) { 736 ret = skb->priority - 256; 737 goto out; 738 } 739 740 if (skb_vlan_tag_present(skb)) { 741 vlan_priority = (skb_vlan_tag_get(skb) & VLAN_PRIO_MASK) 742 >> VLAN_PRIO_SHIFT; 743 if (vlan_priority > 0) { 744 ret = vlan_priority; 745 goto out; 746 } 747 } 748 749 switch (skb->protocol) { 750 case htons(ETH_P_IP): 751 dscp = ipv4_get_dsfield(ip_hdr(skb)) & 0xfc; 752 break; 753 case htons(ETH_P_IPV6): 754 dscp = ipv6_get_dsfield(ipv6_hdr(skb)) & 0xfc; 755 break; 756 case htons(ETH_P_MPLS_UC): 757 case htons(ETH_P_MPLS_MC): { 758 struct mpls_label mpls_tmp, *mpls; 759 760 mpls = skb_header_pointer(skb, sizeof(struct ethhdr), 761 sizeof(*mpls), &mpls_tmp); 762 if (!mpls) 763 return 0; 764 765 ret = (ntohl(mpls->entry) & MPLS_LS_TC_MASK) 766 >> MPLS_LS_TC_SHIFT; 767 goto out; 768 } 769 case htons(ETH_P_80221): 770 /* 802.21 is always network control traffic */ 771 return 7; 772 default: 773 return 0; 774 } 775 776 if (qos_map) { 777 unsigned int i, tmp_dscp = dscp >> 2; 778 779 for (i = 0; i < qos_map->num_des; i++) { 780 if (tmp_dscp == qos_map->dscp_exception[i].dscp) { 781 ret = qos_map->dscp_exception[i].up; 782 goto out; 783 } 784 } 785 786 for (i = 0; i < 8; i++) { 787 if (tmp_dscp >= qos_map->up[i].low && 788 tmp_dscp <= qos_map->up[i].high) { 789 ret = i; 790 goto out; 791 } 792 } 793 } 794 795 ret = dscp >> 5; 796 out: 797 return array_index_nospec(ret, IEEE80211_NUM_TIDS); 798 } 799 EXPORT_SYMBOL(cfg80211_classify8021d); 800 801 const struct element *ieee80211_bss_get_elem(struct cfg80211_bss *bss, u8 id) 802 { 803 const struct cfg80211_bss_ies *ies; 804 805 ies = rcu_dereference(bss->ies); 806 if (!ies) 807 return NULL; 808 809 return cfg80211_find_elem(id, ies->data, ies->len); 810 } 811 EXPORT_SYMBOL(ieee80211_bss_get_elem); 812 813 void cfg80211_upload_connect_keys(struct wireless_dev *wdev) 814 { 815 struct cfg80211_registered_device *rdev = wiphy_to_rdev(wdev->wiphy); 816 struct net_device *dev = wdev->netdev; 817 int i; 818 819 if (!wdev->connect_keys) 820 return; 821 822 for (i = 0; i < CFG80211_MAX_WEP_KEYS; i++) { 823 if (!wdev->connect_keys->params[i].cipher) 824 continue; 825 if (rdev_add_key(rdev, dev, i, false, NULL, 826 &wdev->connect_keys->params[i])) { 827 netdev_err(dev, "failed to set key %d\n", i); 828 continue; 829 } 830 if (wdev->connect_keys->def == i && 831 rdev_set_default_key(rdev, dev, i, true, true)) { 832 netdev_err(dev, "failed to set defkey %d\n", i); 833 continue; 834 } 835 } 836 837 kzfree(wdev->connect_keys); 838 wdev->connect_keys = NULL; 839 } 840 841 void cfg80211_process_wdev_events(struct wireless_dev *wdev) 842 { 843 struct cfg80211_event *ev; 844 unsigned long flags; 845 846 spin_lock_irqsave(&wdev->event_lock, flags); 847 while (!list_empty(&wdev->event_list)) { 848 ev = list_first_entry(&wdev->event_list, 849 struct cfg80211_event, list); 850 list_del(&ev->list); 851 spin_unlock_irqrestore(&wdev->event_lock, flags); 852 853 wdev_lock(wdev); 854 switch (ev->type) { 855 case EVENT_CONNECT_RESULT: 856 __cfg80211_connect_result( 857 wdev->netdev, 858 &ev->cr, 859 ev->cr.status == WLAN_STATUS_SUCCESS); 860 break; 861 case EVENT_ROAMED: 862 __cfg80211_roamed(wdev, &ev->rm); 863 break; 864 case EVENT_DISCONNECTED: 865 __cfg80211_disconnected(wdev->netdev, 866 ev->dc.ie, ev->dc.ie_len, 867 ev->dc.reason, 868 !ev->dc.locally_generated); 869 break; 870 case EVENT_IBSS_JOINED: 871 __cfg80211_ibss_joined(wdev->netdev, ev->ij.bssid, 872 ev->ij.channel); 873 break; 874 case EVENT_STOPPED: 875 __cfg80211_leave(wiphy_to_rdev(wdev->wiphy), wdev); 876 break; 877 case EVENT_PORT_AUTHORIZED: 878 __cfg80211_port_authorized(wdev, ev->pa.bssid); 879 break; 880 } 881 wdev_unlock(wdev); 882 883 kfree(ev); 884 885 spin_lock_irqsave(&wdev->event_lock, flags); 886 } 887 spin_unlock_irqrestore(&wdev->event_lock, flags); 888 } 889 890 void cfg80211_process_rdev_events(struct cfg80211_registered_device *rdev) 891 { 892 struct wireless_dev *wdev; 893 894 ASSERT_RTNL(); 895 896 list_for_each_entry(wdev, &rdev->wiphy.wdev_list, list) 897 cfg80211_process_wdev_events(wdev); 898 } 899 900 int cfg80211_change_iface(struct cfg80211_registered_device *rdev, 901 struct net_device *dev, enum nl80211_iftype ntype, 902 struct vif_params *params) 903 { 904 int err; 905 enum nl80211_iftype otype = dev->ieee80211_ptr->iftype; 906 907 ASSERT_RTNL(); 908 909 /* don't support changing VLANs, you just re-create them */ 910 if (otype == NL80211_IFTYPE_AP_VLAN) 911 return -EOPNOTSUPP; 912 913 /* cannot change into P2P device or NAN */ 914 if (ntype == NL80211_IFTYPE_P2P_DEVICE || 915 ntype == NL80211_IFTYPE_NAN) 916 return -EOPNOTSUPP; 917 918 if (!rdev->ops->change_virtual_intf || 919 !(rdev->wiphy.interface_modes & (1 << ntype))) 920 return -EOPNOTSUPP; 921 922 /* if it's part of a bridge, reject changing type to station/ibss */ 923 if ((dev->priv_flags & IFF_BRIDGE_PORT) && 924 (ntype == NL80211_IFTYPE_ADHOC || 925 ntype == NL80211_IFTYPE_STATION || 926 ntype == NL80211_IFTYPE_P2P_CLIENT)) 927 return -EBUSY; 928 929 if (ntype != otype) { 930 dev->ieee80211_ptr->use_4addr = false; 931 dev->ieee80211_ptr->mesh_id_up_len = 0; 932 wdev_lock(dev->ieee80211_ptr); 933 rdev_set_qos_map(rdev, dev, NULL); 934 wdev_unlock(dev->ieee80211_ptr); 935 936 switch (otype) { 937 case NL80211_IFTYPE_AP: 938 cfg80211_stop_ap(rdev, dev, true); 939 break; 940 case NL80211_IFTYPE_ADHOC: 941 cfg80211_leave_ibss(rdev, dev, false); 942 break; 943 case NL80211_IFTYPE_STATION: 944 case NL80211_IFTYPE_P2P_CLIENT: 945 wdev_lock(dev->ieee80211_ptr); 946 cfg80211_disconnect(rdev, dev, 947 WLAN_REASON_DEAUTH_LEAVING, true); 948 wdev_unlock(dev->ieee80211_ptr); 949 break; 950 case NL80211_IFTYPE_MESH_POINT: 951 /* mesh should be handled? */ 952 break; 953 default: 954 break; 955 } 956 957 cfg80211_process_rdev_events(rdev); 958 } 959 960 err = rdev_change_virtual_intf(rdev, dev, ntype, params); 961 962 WARN_ON(!err && dev->ieee80211_ptr->iftype != ntype); 963 964 if (!err && params && params->use_4addr != -1) 965 dev->ieee80211_ptr->use_4addr = params->use_4addr; 966 967 if (!err) { 968 dev->priv_flags &= ~IFF_DONT_BRIDGE; 969 switch (ntype) { 970 case NL80211_IFTYPE_STATION: 971 if (dev->ieee80211_ptr->use_4addr) 972 break; 973 /* fall through */ 974 case NL80211_IFTYPE_OCB: 975 case NL80211_IFTYPE_P2P_CLIENT: 976 case NL80211_IFTYPE_ADHOC: 977 dev->priv_flags |= IFF_DONT_BRIDGE; 978 break; 979 case NL80211_IFTYPE_P2P_GO: 980 case NL80211_IFTYPE_AP: 981 case NL80211_IFTYPE_AP_VLAN: 982 case NL80211_IFTYPE_WDS: 983 case NL80211_IFTYPE_MESH_POINT: 984 /* bridging OK */ 985 break; 986 case NL80211_IFTYPE_MONITOR: 987 /* monitor can't bridge anyway */ 988 break; 989 case NL80211_IFTYPE_UNSPECIFIED: 990 case NUM_NL80211_IFTYPES: 991 /* not happening */ 992 break; 993 case NL80211_IFTYPE_P2P_DEVICE: 994 case NL80211_IFTYPE_NAN: 995 WARN_ON(1); 996 break; 997 } 998 } 999 1000 if (!err && ntype != otype && netif_running(dev)) { 1001 cfg80211_update_iface_num(rdev, ntype, 1); 1002 cfg80211_update_iface_num(rdev, otype, -1); 1003 } 1004 1005 return err; 1006 } 1007 1008 static u32 cfg80211_calculate_bitrate_ht(struct rate_info *rate) 1009 { 1010 int modulation, streams, bitrate; 1011 1012 /* the formula below does only work for MCS values smaller than 32 */ 1013 if (WARN_ON_ONCE(rate->mcs >= 32)) 1014 return 0; 1015 1016 modulation = rate->mcs & 7; 1017 streams = (rate->mcs >> 3) + 1; 1018 1019 bitrate = (rate->bw == RATE_INFO_BW_40) ? 13500000 : 6500000; 1020 1021 if (modulation < 4) 1022 bitrate *= (modulation + 1); 1023 else if (modulation == 4) 1024 bitrate *= (modulation + 2); 1025 else 1026 bitrate *= (modulation + 3); 1027 1028 bitrate *= streams; 1029 1030 if (rate->flags & RATE_INFO_FLAGS_SHORT_GI) 1031 bitrate = (bitrate / 9) * 10; 1032 1033 /* do NOT round down here */ 1034 return (bitrate + 50000) / 100000; 1035 } 1036 1037 static u32 cfg80211_calculate_bitrate_60g(struct rate_info *rate) 1038 { 1039 static const u32 __mcs2bitrate[] = { 1040 /* control PHY */ 1041 [0] = 275, 1042 /* SC PHY */ 1043 [1] = 3850, 1044 [2] = 7700, 1045 [3] = 9625, 1046 [4] = 11550, 1047 [5] = 12512, /* 1251.25 mbps */ 1048 [6] = 15400, 1049 [7] = 19250, 1050 [8] = 23100, 1051 [9] = 25025, 1052 [10] = 30800, 1053 [11] = 38500, 1054 [12] = 46200, 1055 /* OFDM PHY */ 1056 [13] = 6930, 1057 [14] = 8662, /* 866.25 mbps */ 1058 [15] = 13860, 1059 [16] = 17325, 1060 [17] = 20790, 1061 [18] = 27720, 1062 [19] = 34650, 1063 [20] = 41580, 1064 [21] = 45045, 1065 [22] = 51975, 1066 [23] = 62370, 1067 [24] = 67568, /* 6756.75 mbps */ 1068 /* LP-SC PHY */ 1069 [25] = 6260, 1070 [26] = 8340, 1071 [27] = 11120, 1072 [28] = 12510, 1073 [29] = 16680, 1074 [30] = 22240, 1075 [31] = 25030, 1076 }; 1077 1078 if (WARN_ON_ONCE(rate->mcs >= ARRAY_SIZE(__mcs2bitrate))) 1079 return 0; 1080 1081 return __mcs2bitrate[rate->mcs]; 1082 } 1083 1084 static u32 cfg80211_calculate_bitrate_vht(struct rate_info *rate) 1085 { 1086 static const u32 base[4][10] = { 1087 { 6500000, 1088 13000000, 1089 19500000, 1090 26000000, 1091 39000000, 1092 52000000, 1093 58500000, 1094 65000000, 1095 78000000, 1096 /* not in the spec, but some devices use this: */ 1097 86500000, 1098 }, 1099 { 13500000, 1100 27000000, 1101 40500000, 1102 54000000, 1103 81000000, 1104 108000000, 1105 121500000, 1106 135000000, 1107 162000000, 1108 180000000, 1109 }, 1110 { 29300000, 1111 58500000, 1112 87800000, 1113 117000000, 1114 175500000, 1115 234000000, 1116 263300000, 1117 292500000, 1118 351000000, 1119 390000000, 1120 }, 1121 { 58500000, 1122 117000000, 1123 175500000, 1124 234000000, 1125 351000000, 1126 468000000, 1127 526500000, 1128 585000000, 1129 702000000, 1130 780000000, 1131 }, 1132 }; 1133 u32 bitrate; 1134 int idx; 1135 1136 if (rate->mcs > 9) 1137 goto warn; 1138 1139 switch (rate->bw) { 1140 case RATE_INFO_BW_160: 1141 idx = 3; 1142 break; 1143 case RATE_INFO_BW_80: 1144 idx = 2; 1145 break; 1146 case RATE_INFO_BW_40: 1147 idx = 1; 1148 break; 1149 case RATE_INFO_BW_5: 1150 case RATE_INFO_BW_10: 1151 default: 1152 goto warn; 1153 case RATE_INFO_BW_20: 1154 idx = 0; 1155 } 1156 1157 bitrate = base[idx][rate->mcs]; 1158 bitrate *= rate->nss; 1159 1160 if (rate->flags & RATE_INFO_FLAGS_SHORT_GI) 1161 bitrate = (bitrate / 9) * 10; 1162 1163 /* do NOT round down here */ 1164 return (bitrate + 50000) / 100000; 1165 warn: 1166 WARN_ONCE(1, "invalid rate bw=%d, mcs=%d, nss=%d\n", 1167 rate->bw, rate->mcs, rate->nss); 1168 return 0; 1169 } 1170 1171 static u32 cfg80211_calculate_bitrate_he(struct rate_info *rate) 1172 { 1173 #define SCALE 2048 1174 u16 mcs_divisors[12] = { 1175 34133, /* 16.666666... */ 1176 17067, /* 8.333333... */ 1177 11378, /* 5.555555... */ 1178 8533, /* 4.166666... */ 1179 5689, /* 2.777777... */ 1180 4267, /* 2.083333... */ 1181 3923, /* 1.851851... */ 1182 3413, /* 1.666666... */ 1183 2844, /* 1.388888... */ 1184 2560, /* 1.250000... */ 1185 2276, /* 1.111111... */ 1186 2048, /* 1.000000... */ 1187 }; 1188 u32 rates_160M[3] = { 960777777, 907400000, 816666666 }; 1189 u32 rates_969[3] = { 480388888, 453700000, 408333333 }; 1190 u32 rates_484[3] = { 229411111, 216666666, 195000000 }; 1191 u32 rates_242[3] = { 114711111, 108333333, 97500000 }; 1192 u32 rates_106[3] = { 40000000, 37777777, 34000000 }; 1193 u32 rates_52[3] = { 18820000, 17777777, 16000000 }; 1194 u32 rates_26[3] = { 9411111, 8888888, 8000000 }; 1195 u64 tmp; 1196 u32 result; 1197 1198 if (WARN_ON_ONCE(rate->mcs > 11)) 1199 return 0; 1200 1201 if (WARN_ON_ONCE(rate->he_gi > NL80211_RATE_INFO_HE_GI_3_2)) 1202 return 0; 1203 if (WARN_ON_ONCE(rate->he_ru_alloc > 1204 NL80211_RATE_INFO_HE_RU_ALLOC_2x996)) 1205 return 0; 1206 if (WARN_ON_ONCE(rate->nss < 1 || rate->nss > 8)) 1207 return 0; 1208 1209 if (rate->bw == RATE_INFO_BW_160) 1210 result = rates_160M[rate->he_gi]; 1211 else if (rate->bw == RATE_INFO_BW_80 || 1212 (rate->bw == RATE_INFO_BW_HE_RU && 1213 rate->he_ru_alloc == NL80211_RATE_INFO_HE_RU_ALLOC_996)) 1214 result = rates_969[rate->he_gi]; 1215 else if (rate->bw == RATE_INFO_BW_40 || 1216 (rate->bw == RATE_INFO_BW_HE_RU && 1217 rate->he_ru_alloc == NL80211_RATE_INFO_HE_RU_ALLOC_484)) 1218 result = rates_484[rate->he_gi]; 1219 else if (rate->bw == RATE_INFO_BW_20 || 1220 (rate->bw == RATE_INFO_BW_HE_RU && 1221 rate->he_ru_alloc == NL80211_RATE_INFO_HE_RU_ALLOC_242)) 1222 result = rates_242[rate->he_gi]; 1223 else if (rate->bw == RATE_INFO_BW_HE_RU && 1224 rate->he_ru_alloc == NL80211_RATE_INFO_HE_RU_ALLOC_106) 1225 result = rates_106[rate->he_gi]; 1226 else if (rate->bw == RATE_INFO_BW_HE_RU && 1227 rate->he_ru_alloc == NL80211_RATE_INFO_HE_RU_ALLOC_52) 1228 result = rates_52[rate->he_gi]; 1229 else if (rate->bw == RATE_INFO_BW_HE_RU && 1230 rate->he_ru_alloc == NL80211_RATE_INFO_HE_RU_ALLOC_26) 1231 result = rates_26[rate->he_gi]; 1232 else { 1233 WARN(1, "invalid HE MCS: bw:%d, ru:%d\n", 1234 rate->bw, rate->he_ru_alloc); 1235 return 0; 1236 } 1237 1238 /* now scale to the appropriate MCS */ 1239 tmp = result; 1240 tmp *= SCALE; 1241 do_div(tmp, mcs_divisors[rate->mcs]); 1242 result = tmp; 1243 1244 /* and take NSS, DCM into account */ 1245 result = (result * rate->nss) / 8; 1246 if (rate->he_dcm) 1247 result /= 2; 1248 1249 return result / 10000; 1250 } 1251 1252 u32 cfg80211_calculate_bitrate(struct rate_info *rate) 1253 { 1254 if (rate->flags & RATE_INFO_FLAGS_MCS) 1255 return cfg80211_calculate_bitrate_ht(rate); 1256 if (rate->flags & RATE_INFO_FLAGS_60G) 1257 return cfg80211_calculate_bitrate_60g(rate); 1258 if (rate->flags & RATE_INFO_FLAGS_VHT_MCS) 1259 return cfg80211_calculate_bitrate_vht(rate); 1260 if (rate->flags & RATE_INFO_FLAGS_HE_MCS) 1261 return cfg80211_calculate_bitrate_he(rate); 1262 1263 return rate->legacy; 1264 } 1265 EXPORT_SYMBOL(cfg80211_calculate_bitrate); 1266 1267 int cfg80211_get_p2p_attr(const u8 *ies, unsigned int len, 1268 enum ieee80211_p2p_attr_id attr, 1269 u8 *buf, unsigned int bufsize) 1270 { 1271 u8 *out = buf; 1272 u16 attr_remaining = 0; 1273 bool desired_attr = false; 1274 u16 desired_len = 0; 1275 1276 while (len > 0) { 1277 unsigned int iedatalen; 1278 unsigned int copy; 1279 const u8 *iedata; 1280 1281 if (len < 2) 1282 return -EILSEQ; 1283 iedatalen = ies[1]; 1284 if (iedatalen + 2 > len) 1285 return -EILSEQ; 1286 1287 if (ies[0] != WLAN_EID_VENDOR_SPECIFIC) 1288 goto cont; 1289 1290 if (iedatalen < 4) 1291 goto cont; 1292 1293 iedata = ies + 2; 1294 1295 /* check WFA OUI, P2P subtype */ 1296 if (iedata[0] != 0x50 || iedata[1] != 0x6f || 1297 iedata[2] != 0x9a || iedata[3] != 0x09) 1298 goto cont; 1299 1300 iedatalen -= 4; 1301 iedata += 4; 1302 1303 /* check attribute continuation into this IE */ 1304 copy = min_t(unsigned int, attr_remaining, iedatalen); 1305 if (copy && desired_attr) { 1306 desired_len += copy; 1307 if (out) { 1308 memcpy(out, iedata, min(bufsize, copy)); 1309 out += min(bufsize, copy); 1310 bufsize -= min(bufsize, copy); 1311 } 1312 1313 1314 if (copy == attr_remaining) 1315 return desired_len; 1316 } 1317 1318 attr_remaining -= copy; 1319 if (attr_remaining) 1320 goto cont; 1321 1322 iedatalen -= copy; 1323 iedata += copy; 1324 1325 while (iedatalen > 0) { 1326 u16 attr_len; 1327 1328 /* P2P attribute ID & size must fit */ 1329 if (iedatalen < 3) 1330 return -EILSEQ; 1331 desired_attr = iedata[0] == attr; 1332 attr_len = get_unaligned_le16(iedata + 1); 1333 iedatalen -= 3; 1334 iedata += 3; 1335 1336 copy = min_t(unsigned int, attr_len, iedatalen); 1337 1338 if (desired_attr) { 1339 desired_len += copy; 1340 if (out) { 1341 memcpy(out, iedata, min(bufsize, copy)); 1342 out += min(bufsize, copy); 1343 bufsize -= min(bufsize, copy); 1344 } 1345 1346 if (copy == attr_len) 1347 return desired_len; 1348 } 1349 1350 iedata += copy; 1351 iedatalen -= copy; 1352 attr_remaining = attr_len - copy; 1353 } 1354 1355 cont: 1356 len -= ies[1] + 2; 1357 ies += ies[1] + 2; 1358 } 1359 1360 if (attr_remaining && desired_attr) 1361 return -EILSEQ; 1362 1363 return -ENOENT; 1364 } 1365 EXPORT_SYMBOL(cfg80211_get_p2p_attr); 1366 1367 static bool ieee80211_id_in_list(const u8 *ids, int n_ids, u8 id, bool id_ext) 1368 { 1369 int i; 1370 1371 /* Make sure array values are legal */ 1372 if (WARN_ON(ids[n_ids - 1] == WLAN_EID_EXTENSION)) 1373 return false; 1374 1375 i = 0; 1376 while (i < n_ids) { 1377 if (ids[i] == WLAN_EID_EXTENSION) { 1378 if (id_ext && (ids[i + 1] == id)) 1379 return true; 1380 1381 i += 2; 1382 continue; 1383 } 1384 1385 if (ids[i] == id && !id_ext) 1386 return true; 1387 1388 i++; 1389 } 1390 return false; 1391 } 1392 1393 static size_t skip_ie(const u8 *ies, size_t ielen, size_t pos) 1394 { 1395 /* we assume a validly formed IEs buffer */ 1396 u8 len = ies[pos + 1]; 1397 1398 pos += 2 + len; 1399 1400 /* the IE itself must have 255 bytes for fragments to follow */ 1401 if (len < 255) 1402 return pos; 1403 1404 while (pos < ielen && ies[pos] == WLAN_EID_FRAGMENT) { 1405 len = ies[pos + 1]; 1406 pos += 2 + len; 1407 } 1408 1409 return pos; 1410 } 1411 1412 size_t ieee80211_ie_split_ric(const u8 *ies, size_t ielen, 1413 const u8 *ids, int n_ids, 1414 const u8 *after_ric, int n_after_ric, 1415 size_t offset) 1416 { 1417 size_t pos = offset; 1418 1419 while (pos < ielen) { 1420 u8 ext = 0; 1421 1422 if (ies[pos] == WLAN_EID_EXTENSION) 1423 ext = 2; 1424 if ((pos + ext) >= ielen) 1425 break; 1426 1427 if (!ieee80211_id_in_list(ids, n_ids, ies[pos + ext], 1428 ies[pos] == WLAN_EID_EXTENSION)) 1429 break; 1430 1431 if (ies[pos] == WLAN_EID_RIC_DATA && n_after_ric) { 1432 pos = skip_ie(ies, ielen, pos); 1433 1434 while (pos < ielen) { 1435 if (ies[pos] == WLAN_EID_EXTENSION) 1436 ext = 2; 1437 else 1438 ext = 0; 1439 1440 if ((pos + ext) >= ielen) 1441 break; 1442 1443 if (!ieee80211_id_in_list(after_ric, 1444 n_after_ric, 1445 ies[pos + ext], 1446 ext == 2)) 1447 pos = skip_ie(ies, ielen, pos); 1448 else 1449 break; 1450 } 1451 } else { 1452 pos = skip_ie(ies, ielen, pos); 1453 } 1454 } 1455 1456 return pos; 1457 } 1458 EXPORT_SYMBOL(ieee80211_ie_split_ric); 1459 1460 bool ieee80211_operating_class_to_band(u8 operating_class, 1461 enum nl80211_band *band) 1462 { 1463 switch (operating_class) { 1464 case 112: 1465 case 115 ... 127: 1466 case 128 ... 130: 1467 *band = NL80211_BAND_5GHZ; 1468 return true; 1469 case 81: 1470 case 82: 1471 case 83: 1472 case 84: 1473 *band = NL80211_BAND_2GHZ; 1474 return true; 1475 case 180: 1476 *band = NL80211_BAND_60GHZ; 1477 return true; 1478 } 1479 1480 return false; 1481 } 1482 EXPORT_SYMBOL(ieee80211_operating_class_to_band); 1483 1484 bool ieee80211_chandef_to_operating_class(struct cfg80211_chan_def *chandef, 1485 u8 *op_class) 1486 { 1487 u8 vht_opclass; 1488 u32 freq = chandef->center_freq1; 1489 1490 if (freq >= 2412 && freq <= 2472) { 1491 if (chandef->width > NL80211_CHAN_WIDTH_40) 1492 return false; 1493 1494 /* 2.407 GHz, channels 1..13 */ 1495 if (chandef->width == NL80211_CHAN_WIDTH_40) { 1496 if (freq > chandef->chan->center_freq) 1497 *op_class = 83; /* HT40+ */ 1498 else 1499 *op_class = 84; /* HT40- */ 1500 } else { 1501 *op_class = 81; 1502 } 1503 1504 return true; 1505 } 1506 1507 if (freq == 2484) { 1508 if (chandef->width > NL80211_CHAN_WIDTH_40) 1509 return false; 1510 1511 *op_class = 82; /* channel 14 */ 1512 return true; 1513 } 1514 1515 switch (chandef->width) { 1516 case NL80211_CHAN_WIDTH_80: 1517 vht_opclass = 128; 1518 break; 1519 case NL80211_CHAN_WIDTH_160: 1520 vht_opclass = 129; 1521 break; 1522 case NL80211_CHAN_WIDTH_80P80: 1523 vht_opclass = 130; 1524 break; 1525 case NL80211_CHAN_WIDTH_10: 1526 case NL80211_CHAN_WIDTH_5: 1527 return false; /* unsupported for now */ 1528 default: 1529 vht_opclass = 0; 1530 break; 1531 } 1532 1533 /* 5 GHz, channels 36..48 */ 1534 if (freq >= 5180 && freq <= 5240) { 1535 if (vht_opclass) { 1536 *op_class = vht_opclass; 1537 } else if (chandef->width == NL80211_CHAN_WIDTH_40) { 1538 if (freq > chandef->chan->center_freq) 1539 *op_class = 116; 1540 else 1541 *op_class = 117; 1542 } else { 1543 *op_class = 115; 1544 } 1545 1546 return true; 1547 } 1548 1549 /* 5 GHz, channels 52..64 */ 1550 if (freq >= 5260 && freq <= 5320) { 1551 if (vht_opclass) { 1552 *op_class = vht_opclass; 1553 } else if (chandef->width == NL80211_CHAN_WIDTH_40) { 1554 if (freq > chandef->chan->center_freq) 1555 *op_class = 119; 1556 else 1557 *op_class = 120; 1558 } else { 1559 *op_class = 118; 1560 } 1561 1562 return true; 1563 } 1564 1565 /* 5 GHz, channels 100..144 */ 1566 if (freq >= 5500 && freq <= 5720) { 1567 if (vht_opclass) { 1568 *op_class = vht_opclass; 1569 } else if (chandef->width == NL80211_CHAN_WIDTH_40) { 1570 if (freq > chandef->chan->center_freq) 1571 *op_class = 122; 1572 else 1573 *op_class = 123; 1574 } else { 1575 *op_class = 121; 1576 } 1577 1578 return true; 1579 } 1580 1581 /* 5 GHz, channels 149..169 */ 1582 if (freq >= 5745 && freq <= 5845) { 1583 if (vht_opclass) { 1584 *op_class = vht_opclass; 1585 } else if (chandef->width == NL80211_CHAN_WIDTH_40) { 1586 if (freq > chandef->chan->center_freq) 1587 *op_class = 126; 1588 else 1589 *op_class = 127; 1590 } else if (freq <= 5805) { 1591 *op_class = 124; 1592 } else { 1593 *op_class = 125; 1594 } 1595 1596 return true; 1597 } 1598 1599 /* 56.16 GHz, channel 1..4 */ 1600 if (freq >= 56160 + 2160 * 1 && freq <= 56160 + 2160 * 6) { 1601 if (chandef->width >= NL80211_CHAN_WIDTH_40) 1602 return false; 1603 1604 *op_class = 180; 1605 return true; 1606 } 1607 1608 /* not supported yet */ 1609 return false; 1610 } 1611 EXPORT_SYMBOL(ieee80211_chandef_to_operating_class); 1612 1613 static void cfg80211_calculate_bi_data(struct wiphy *wiphy, u32 new_beacon_int, 1614 u32 *beacon_int_gcd, 1615 bool *beacon_int_different) 1616 { 1617 struct wireless_dev *wdev; 1618 1619 *beacon_int_gcd = 0; 1620 *beacon_int_different = false; 1621 1622 list_for_each_entry(wdev, &wiphy->wdev_list, list) { 1623 if (!wdev->beacon_interval) 1624 continue; 1625 1626 if (!*beacon_int_gcd) { 1627 *beacon_int_gcd = wdev->beacon_interval; 1628 continue; 1629 } 1630 1631 if (wdev->beacon_interval == *beacon_int_gcd) 1632 continue; 1633 1634 *beacon_int_different = true; 1635 *beacon_int_gcd = gcd(*beacon_int_gcd, wdev->beacon_interval); 1636 } 1637 1638 if (new_beacon_int && *beacon_int_gcd != new_beacon_int) { 1639 if (*beacon_int_gcd) 1640 *beacon_int_different = true; 1641 *beacon_int_gcd = gcd(*beacon_int_gcd, new_beacon_int); 1642 } 1643 } 1644 1645 int cfg80211_validate_beacon_int(struct cfg80211_registered_device *rdev, 1646 enum nl80211_iftype iftype, u32 beacon_int) 1647 { 1648 /* 1649 * This is just a basic pre-condition check; if interface combinations 1650 * are possible the driver must already be checking those with a call 1651 * to cfg80211_check_combinations(), in which case we'll validate more 1652 * through the cfg80211_calculate_bi_data() call and code in 1653 * cfg80211_iter_combinations(). 1654 */ 1655 1656 if (beacon_int < 10 || beacon_int > 10000) 1657 return -EINVAL; 1658 1659 return 0; 1660 } 1661 1662 int cfg80211_iter_combinations(struct wiphy *wiphy, 1663 struct iface_combination_params *params, 1664 void (*iter)(const struct ieee80211_iface_combination *c, 1665 void *data), 1666 void *data) 1667 { 1668 const struct ieee80211_regdomain *regdom; 1669 enum nl80211_dfs_regions region = 0; 1670 int i, j, iftype; 1671 int num_interfaces = 0; 1672 u32 used_iftypes = 0; 1673 u32 beacon_int_gcd; 1674 bool beacon_int_different; 1675 1676 /* 1677 * This is a bit strange, since the iteration used to rely only on 1678 * the data given by the driver, but here it now relies on context, 1679 * in form of the currently operating interfaces. 1680 * This is OK for all current users, and saves us from having to 1681 * push the GCD calculations into all the drivers. 1682 * In the future, this should probably rely more on data that's in 1683 * cfg80211 already - the only thing not would appear to be any new 1684 * interfaces (while being brought up) and channel/radar data. 1685 */ 1686 cfg80211_calculate_bi_data(wiphy, params->new_beacon_int, 1687 &beacon_int_gcd, &beacon_int_different); 1688 1689 if (params->radar_detect) { 1690 rcu_read_lock(); 1691 regdom = rcu_dereference(cfg80211_regdomain); 1692 if (regdom) 1693 region = regdom->dfs_region; 1694 rcu_read_unlock(); 1695 } 1696 1697 for (iftype = 0; iftype < NUM_NL80211_IFTYPES; iftype++) { 1698 num_interfaces += params->iftype_num[iftype]; 1699 if (params->iftype_num[iftype] > 0 && 1700 !(wiphy->software_iftypes & BIT(iftype))) 1701 used_iftypes |= BIT(iftype); 1702 } 1703 1704 for (i = 0; i < wiphy->n_iface_combinations; i++) { 1705 const struct ieee80211_iface_combination *c; 1706 struct ieee80211_iface_limit *limits; 1707 u32 all_iftypes = 0; 1708 1709 c = &wiphy->iface_combinations[i]; 1710 1711 if (num_interfaces > c->max_interfaces) 1712 continue; 1713 if (params->num_different_channels > c->num_different_channels) 1714 continue; 1715 1716 limits = kmemdup(c->limits, sizeof(limits[0]) * c->n_limits, 1717 GFP_KERNEL); 1718 if (!limits) 1719 return -ENOMEM; 1720 1721 for (iftype = 0; iftype < NUM_NL80211_IFTYPES; iftype++) { 1722 if (wiphy->software_iftypes & BIT(iftype)) 1723 continue; 1724 for (j = 0; j < c->n_limits; j++) { 1725 all_iftypes |= limits[j].types; 1726 if (!(limits[j].types & BIT(iftype))) 1727 continue; 1728 if (limits[j].max < params->iftype_num[iftype]) 1729 goto cont; 1730 limits[j].max -= params->iftype_num[iftype]; 1731 } 1732 } 1733 1734 if (params->radar_detect != 1735 (c->radar_detect_widths & params->radar_detect)) 1736 goto cont; 1737 1738 if (params->radar_detect && c->radar_detect_regions && 1739 !(c->radar_detect_regions & BIT(region))) 1740 goto cont; 1741 1742 /* Finally check that all iftypes that we're currently 1743 * using are actually part of this combination. If they 1744 * aren't then we can't use this combination and have 1745 * to continue to the next. 1746 */ 1747 if ((all_iftypes & used_iftypes) != used_iftypes) 1748 goto cont; 1749 1750 if (beacon_int_gcd) { 1751 if (c->beacon_int_min_gcd && 1752 beacon_int_gcd < c->beacon_int_min_gcd) 1753 goto cont; 1754 if (!c->beacon_int_min_gcd && beacon_int_different) 1755 goto cont; 1756 } 1757 1758 /* This combination covered all interface types and 1759 * supported the requested numbers, so we're good. 1760 */ 1761 1762 (*iter)(c, data); 1763 cont: 1764 kfree(limits); 1765 } 1766 1767 return 0; 1768 } 1769 EXPORT_SYMBOL(cfg80211_iter_combinations); 1770 1771 static void 1772 cfg80211_iter_sum_ifcombs(const struct ieee80211_iface_combination *c, 1773 void *data) 1774 { 1775 int *num = data; 1776 (*num)++; 1777 } 1778 1779 int cfg80211_check_combinations(struct wiphy *wiphy, 1780 struct iface_combination_params *params) 1781 { 1782 int err, num = 0; 1783 1784 err = cfg80211_iter_combinations(wiphy, params, 1785 cfg80211_iter_sum_ifcombs, &num); 1786 if (err) 1787 return err; 1788 if (num == 0) 1789 return -EBUSY; 1790 1791 return 0; 1792 } 1793 EXPORT_SYMBOL(cfg80211_check_combinations); 1794 1795 int ieee80211_get_ratemask(struct ieee80211_supported_band *sband, 1796 const u8 *rates, unsigned int n_rates, 1797 u32 *mask) 1798 { 1799 int i, j; 1800 1801 if (!sband) 1802 return -EINVAL; 1803 1804 if (n_rates == 0 || n_rates > NL80211_MAX_SUPP_RATES) 1805 return -EINVAL; 1806 1807 *mask = 0; 1808 1809 for (i = 0; i < n_rates; i++) { 1810 int rate = (rates[i] & 0x7f) * 5; 1811 bool found = false; 1812 1813 for (j = 0; j < sband->n_bitrates; j++) { 1814 if (sband->bitrates[j].bitrate == rate) { 1815 found = true; 1816 *mask |= BIT(j); 1817 break; 1818 } 1819 } 1820 if (!found) 1821 return -EINVAL; 1822 } 1823 1824 /* 1825 * mask must have at least one bit set here since we 1826 * didn't accept a 0-length rates array nor allowed 1827 * entries in the array that didn't exist 1828 */ 1829 1830 return 0; 1831 } 1832 1833 unsigned int ieee80211_get_num_supported_channels(struct wiphy *wiphy) 1834 { 1835 enum nl80211_band band; 1836 unsigned int n_channels = 0; 1837 1838 for (band = 0; band < NUM_NL80211_BANDS; band++) 1839 if (wiphy->bands[band]) 1840 n_channels += wiphy->bands[band]->n_channels; 1841 1842 return n_channels; 1843 } 1844 EXPORT_SYMBOL(ieee80211_get_num_supported_channels); 1845 1846 int cfg80211_get_station(struct net_device *dev, const u8 *mac_addr, 1847 struct station_info *sinfo) 1848 { 1849 struct cfg80211_registered_device *rdev; 1850 struct wireless_dev *wdev; 1851 1852 wdev = dev->ieee80211_ptr; 1853 if (!wdev) 1854 return -EOPNOTSUPP; 1855 1856 rdev = wiphy_to_rdev(wdev->wiphy); 1857 if (!rdev->ops->get_station) 1858 return -EOPNOTSUPP; 1859 1860 memset(sinfo, 0, sizeof(*sinfo)); 1861 1862 return rdev_get_station(rdev, dev, mac_addr, sinfo); 1863 } 1864 EXPORT_SYMBOL(cfg80211_get_station); 1865 1866 void cfg80211_free_nan_func(struct cfg80211_nan_func *f) 1867 { 1868 int i; 1869 1870 if (!f) 1871 return; 1872 1873 kfree(f->serv_spec_info); 1874 kfree(f->srf_bf); 1875 kfree(f->srf_macs); 1876 for (i = 0; i < f->num_rx_filters; i++) 1877 kfree(f->rx_filters[i].filter); 1878 1879 for (i = 0; i < f->num_tx_filters; i++) 1880 kfree(f->tx_filters[i].filter); 1881 1882 kfree(f->rx_filters); 1883 kfree(f->tx_filters); 1884 kfree(f); 1885 } 1886 EXPORT_SYMBOL(cfg80211_free_nan_func); 1887 1888 bool cfg80211_does_bw_fit_range(const struct ieee80211_freq_range *freq_range, 1889 u32 center_freq_khz, u32 bw_khz) 1890 { 1891 u32 start_freq_khz, end_freq_khz; 1892 1893 start_freq_khz = center_freq_khz - (bw_khz / 2); 1894 end_freq_khz = center_freq_khz + (bw_khz / 2); 1895 1896 if (start_freq_khz >= freq_range->start_freq_khz && 1897 end_freq_khz <= freq_range->end_freq_khz) 1898 return true; 1899 1900 return false; 1901 } 1902 1903 int cfg80211_sinfo_alloc_tid_stats(struct station_info *sinfo, gfp_t gfp) 1904 { 1905 sinfo->pertid = kcalloc(IEEE80211_NUM_TIDS + 1, 1906 sizeof(*(sinfo->pertid)), 1907 gfp); 1908 if (!sinfo->pertid) 1909 return -ENOMEM; 1910 1911 return 0; 1912 } 1913 EXPORT_SYMBOL(cfg80211_sinfo_alloc_tid_stats); 1914 1915 /* See IEEE 802.1H for LLC/SNAP encapsulation/decapsulation */ 1916 /* Ethernet-II snap header (RFC1042 for most EtherTypes) */ 1917 const unsigned char rfc1042_header[] __aligned(2) = 1918 { 0xaa, 0xaa, 0x03, 0x00, 0x00, 0x00 }; 1919 EXPORT_SYMBOL(rfc1042_header); 1920 1921 /* Bridge-Tunnel header (for EtherTypes ETH_P_AARP and ETH_P_IPX) */ 1922 const unsigned char bridge_tunnel_header[] __aligned(2) = 1923 { 0xaa, 0xaa, 0x03, 0x00, 0x00, 0xf8 }; 1924 EXPORT_SYMBOL(bridge_tunnel_header); 1925 1926 /* Layer 2 Update frame (802.2 Type 1 LLC XID Update response) */ 1927 struct iapp_layer2_update { 1928 u8 da[ETH_ALEN]; /* broadcast */ 1929 u8 sa[ETH_ALEN]; /* STA addr */ 1930 __be16 len; /* 6 */ 1931 u8 dsap; /* 0 */ 1932 u8 ssap; /* 0 */ 1933 u8 control; 1934 u8 xid_info[3]; 1935 } __packed; 1936 1937 void cfg80211_send_layer2_update(struct net_device *dev, const u8 *addr) 1938 { 1939 struct iapp_layer2_update *msg; 1940 struct sk_buff *skb; 1941 1942 /* Send Level 2 Update Frame to update forwarding tables in layer 2 1943 * bridge devices */ 1944 1945 skb = dev_alloc_skb(sizeof(*msg)); 1946 if (!skb) 1947 return; 1948 msg = skb_put(skb, sizeof(*msg)); 1949 1950 /* 802.2 Type 1 Logical Link Control (LLC) Exchange Identifier (XID) 1951 * Update response frame; IEEE Std 802.2-1998, 5.4.1.2.1 */ 1952 1953 eth_broadcast_addr(msg->da); 1954 ether_addr_copy(msg->sa, addr); 1955 msg->len = htons(6); 1956 msg->dsap = 0; 1957 msg->ssap = 0x01; /* NULL LSAP, CR Bit: Response */ 1958 msg->control = 0xaf; /* XID response lsb.1111F101. 1959 * F=0 (no poll command; unsolicited frame) */ 1960 msg->xid_info[0] = 0x81; /* XID format identifier */ 1961 msg->xid_info[1] = 1; /* LLC types/classes: Type 1 LLC */ 1962 msg->xid_info[2] = 0; /* XID sender's receive window size (RW) */ 1963 1964 skb->dev = dev; 1965 skb->protocol = eth_type_trans(skb, dev); 1966 memset(skb->cb, 0, sizeof(skb->cb)); 1967 netif_rx_ni(skb); 1968 } 1969 EXPORT_SYMBOL(cfg80211_send_layer2_update); 1970 1971 int ieee80211_get_vht_max_nss(struct ieee80211_vht_cap *cap, 1972 enum ieee80211_vht_chanwidth bw, 1973 int mcs, bool ext_nss_bw_capable) 1974 { 1975 u16 map = le16_to_cpu(cap->supp_mcs.rx_mcs_map); 1976 int max_vht_nss = 0; 1977 int ext_nss_bw; 1978 int supp_width; 1979 int i, mcs_encoding; 1980 1981 if (map == 0xffff) 1982 return 0; 1983 1984 if (WARN_ON(mcs > 9)) 1985 return 0; 1986 if (mcs <= 7) 1987 mcs_encoding = 0; 1988 else if (mcs == 8) 1989 mcs_encoding = 1; 1990 else 1991 mcs_encoding = 2; 1992 1993 /* find max_vht_nss for the given MCS */ 1994 for (i = 7; i >= 0; i--) { 1995 int supp = (map >> (2 * i)) & 3; 1996 1997 if (supp == 3) 1998 continue; 1999 2000 if (supp >= mcs_encoding) { 2001 max_vht_nss = i + 1; 2002 break; 2003 } 2004 } 2005 2006 if (!(cap->supp_mcs.tx_mcs_map & 2007 cpu_to_le16(IEEE80211_VHT_EXT_NSS_BW_CAPABLE))) 2008 return max_vht_nss; 2009 2010 ext_nss_bw = le32_get_bits(cap->vht_cap_info, 2011 IEEE80211_VHT_CAP_EXT_NSS_BW_MASK); 2012 supp_width = le32_get_bits(cap->vht_cap_info, 2013 IEEE80211_VHT_CAP_SUPP_CHAN_WIDTH_MASK); 2014 2015 /* if not capable, treat ext_nss_bw as 0 */ 2016 if (!ext_nss_bw_capable) 2017 ext_nss_bw = 0; 2018 2019 /* This is invalid */ 2020 if (supp_width == 3) 2021 return 0; 2022 2023 /* This is an invalid combination so pretend nothing is supported */ 2024 if (supp_width == 2 && (ext_nss_bw == 1 || ext_nss_bw == 2)) 2025 return 0; 2026 2027 /* 2028 * Cover all the special cases according to IEEE 802.11-2016 2029 * Table 9-250. All other cases are either factor of 1 or not 2030 * valid/supported. 2031 */ 2032 switch (bw) { 2033 case IEEE80211_VHT_CHANWIDTH_USE_HT: 2034 case IEEE80211_VHT_CHANWIDTH_80MHZ: 2035 if ((supp_width == 1 || supp_width == 2) && 2036 ext_nss_bw == 3) 2037 return 2 * max_vht_nss; 2038 break; 2039 case IEEE80211_VHT_CHANWIDTH_160MHZ: 2040 if (supp_width == 0 && 2041 (ext_nss_bw == 1 || ext_nss_bw == 2)) 2042 return max_vht_nss / 2; 2043 if (supp_width == 0 && 2044 ext_nss_bw == 3) 2045 return (3 * max_vht_nss) / 4; 2046 if (supp_width == 1 && 2047 ext_nss_bw == 3) 2048 return 2 * max_vht_nss; 2049 break; 2050 case IEEE80211_VHT_CHANWIDTH_80P80MHZ: 2051 if (supp_width == 0 && ext_nss_bw == 1) 2052 return 0; /* not possible */ 2053 if (supp_width == 0 && 2054 ext_nss_bw == 2) 2055 return max_vht_nss / 2; 2056 if (supp_width == 0 && 2057 ext_nss_bw == 3) 2058 return (3 * max_vht_nss) / 4; 2059 if (supp_width == 1 && 2060 ext_nss_bw == 0) 2061 return 0; /* not possible */ 2062 if (supp_width == 1 && 2063 ext_nss_bw == 1) 2064 return max_vht_nss / 2; 2065 if (supp_width == 1 && 2066 ext_nss_bw == 2) 2067 return (3 * max_vht_nss) / 4; 2068 break; 2069 } 2070 2071 /* not covered or invalid combination received */ 2072 return max_vht_nss; 2073 } 2074 EXPORT_SYMBOL(ieee80211_get_vht_max_nss); 2075