1 /* 2 * Wireless utility functions 3 * 4 * Copyright 2007-2009 Johannes Berg <johannes@sipsolutions.net> 5 */ 6 #include <linux/export.h> 7 #include <linux/bitops.h> 8 #include <linux/etherdevice.h> 9 #include <linux/slab.h> 10 #include <net/cfg80211.h> 11 #include <net/ip.h> 12 #include <net/dsfield.h> 13 #include "core.h" 14 15 struct ieee80211_rate * 16 ieee80211_get_response_rate(struct ieee80211_supported_band *sband, 17 u32 basic_rates, int bitrate) 18 { 19 struct ieee80211_rate *result = &sband->bitrates[0]; 20 int i; 21 22 for (i = 0; i < sband->n_bitrates; i++) { 23 if (!(basic_rates & BIT(i))) 24 continue; 25 if (sband->bitrates[i].bitrate > bitrate) 26 continue; 27 result = &sband->bitrates[i]; 28 } 29 30 return result; 31 } 32 EXPORT_SYMBOL(ieee80211_get_response_rate); 33 34 int ieee80211_channel_to_frequency(int chan, enum ieee80211_band band) 35 { 36 /* see 802.11 17.3.8.3.2 and Annex J 37 * there are overlapping channel numbers in 5GHz and 2GHz bands */ 38 if (band == IEEE80211_BAND_5GHZ) { 39 if (chan >= 182 && chan <= 196) 40 return 4000 + chan * 5; 41 else 42 return 5000 + chan * 5; 43 } else { /* IEEE80211_BAND_2GHZ */ 44 if (chan == 14) 45 return 2484; 46 else if (chan < 14) 47 return 2407 + chan * 5; 48 else 49 return 0; /* not supported */ 50 } 51 } 52 EXPORT_SYMBOL(ieee80211_channel_to_frequency); 53 54 int ieee80211_frequency_to_channel(int freq) 55 { 56 /* see 802.11 17.3.8.3.2 and Annex J */ 57 if (freq == 2484) 58 return 14; 59 else if (freq < 2484) 60 return (freq - 2407) / 5; 61 else if (freq >= 4910 && freq <= 4980) 62 return (freq - 4000) / 5; 63 else 64 return (freq - 5000) / 5; 65 } 66 EXPORT_SYMBOL(ieee80211_frequency_to_channel); 67 68 struct ieee80211_channel *__ieee80211_get_channel(struct wiphy *wiphy, 69 int freq) 70 { 71 enum ieee80211_band band; 72 struct ieee80211_supported_band *sband; 73 int i; 74 75 for (band = 0; band < IEEE80211_NUM_BANDS; band++) { 76 sband = wiphy->bands[band]; 77 78 if (!sband) 79 continue; 80 81 for (i = 0; i < sband->n_channels; i++) { 82 if (sband->channels[i].center_freq == freq) 83 return &sband->channels[i]; 84 } 85 } 86 87 return NULL; 88 } 89 EXPORT_SYMBOL(__ieee80211_get_channel); 90 91 static void set_mandatory_flags_band(struct ieee80211_supported_band *sband, 92 enum ieee80211_band band) 93 { 94 int i, want; 95 96 switch (band) { 97 case IEEE80211_BAND_5GHZ: 98 want = 3; 99 for (i = 0; i < sband->n_bitrates; i++) { 100 if (sband->bitrates[i].bitrate == 60 || 101 sband->bitrates[i].bitrate == 120 || 102 sband->bitrates[i].bitrate == 240) { 103 sband->bitrates[i].flags |= 104 IEEE80211_RATE_MANDATORY_A; 105 want--; 106 } 107 } 108 WARN_ON(want); 109 break; 110 case IEEE80211_BAND_2GHZ: 111 want = 7; 112 for (i = 0; i < sband->n_bitrates; i++) { 113 if (sband->bitrates[i].bitrate == 10) { 114 sband->bitrates[i].flags |= 115 IEEE80211_RATE_MANDATORY_B | 116 IEEE80211_RATE_MANDATORY_G; 117 want--; 118 } 119 120 if (sband->bitrates[i].bitrate == 20 || 121 sband->bitrates[i].bitrate == 55 || 122 sband->bitrates[i].bitrate == 110 || 123 sband->bitrates[i].bitrate == 60 || 124 sband->bitrates[i].bitrate == 120 || 125 sband->bitrates[i].bitrate == 240) { 126 sband->bitrates[i].flags |= 127 IEEE80211_RATE_MANDATORY_G; 128 want--; 129 } 130 131 if (sband->bitrates[i].bitrate != 10 && 132 sband->bitrates[i].bitrate != 20 && 133 sband->bitrates[i].bitrate != 55 && 134 sband->bitrates[i].bitrate != 110) 135 sband->bitrates[i].flags |= 136 IEEE80211_RATE_ERP_G; 137 } 138 WARN_ON(want != 0 && want != 3 && want != 6); 139 break; 140 case IEEE80211_NUM_BANDS: 141 WARN_ON(1); 142 break; 143 } 144 } 145 146 void ieee80211_set_bitrate_flags(struct wiphy *wiphy) 147 { 148 enum ieee80211_band band; 149 150 for (band = 0; band < IEEE80211_NUM_BANDS; band++) 151 if (wiphy->bands[band]) 152 set_mandatory_flags_band(wiphy->bands[band], band); 153 } 154 155 bool cfg80211_supported_cipher_suite(struct wiphy *wiphy, u32 cipher) 156 { 157 int i; 158 for (i = 0; i < wiphy->n_cipher_suites; i++) 159 if (cipher == wiphy->cipher_suites[i]) 160 return true; 161 return false; 162 } 163 164 int cfg80211_validate_key_settings(struct cfg80211_registered_device *rdev, 165 struct key_params *params, int key_idx, 166 bool pairwise, const u8 *mac_addr) 167 { 168 if (key_idx > 5) 169 return -EINVAL; 170 171 if (!pairwise && mac_addr && !(rdev->wiphy.flags & WIPHY_FLAG_IBSS_RSN)) 172 return -EINVAL; 173 174 if (pairwise && !mac_addr) 175 return -EINVAL; 176 177 /* 178 * Disallow pairwise keys with non-zero index unless it's WEP 179 * or a vendor specific cipher (because current deployments use 180 * pairwise WEP keys with non-zero indices and for vendor specific 181 * ciphers this should be validated in the driver or hardware level 182 * - but 802.11i clearly specifies to use zero) 183 */ 184 if (pairwise && key_idx && 185 ((params->cipher == WLAN_CIPHER_SUITE_TKIP) || 186 (params->cipher == WLAN_CIPHER_SUITE_CCMP) || 187 (params->cipher == WLAN_CIPHER_SUITE_AES_CMAC))) 188 return -EINVAL; 189 190 switch (params->cipher) { 191 case WLAN_CIPHER_SUITE_WEP40: 192 if (params->key_len != WLAN_KEY_LEN_WEP40) 193 return -EINVAL; 194 break; 195 case WLAN_CIPHER_SUITE_TKIP: 196 if (params->key_len != WLAN_KEY_LEN_TKIP) 197 return -EINVAL; 198 break; 199 case WLAN_CIPHER_SUITE_CCMP: 200 if (params->key_len != WLAN_KEY_LEN_CCMP) 201 return -EINVAL; 202 break; 203 case WLAN_CIPHER_SUITE_WEP104: 204 if (params->key_len != WLAN_KEY_LEN_WEP104) 205 return -EINVAL; 206 break; 207 case WLAN_CIPHER_SUITE_AES_CMAC: 208 if (params->key_len != WLAN_KEY_LEN_AES_CMAC) 209 return -EINVAL; 210 break; 211 default: 212 /* 213 * We don't know anything about this algorithm, 214 * allow using it -- but the driver must check 215 * all parameters! We still check below whether 216 * or not the driver supports this algorithm, 217 * of course. 218 */ 219 break; 220 } 221 222 if (params->seq) { 223 switch (params->cipher) { 224 case WLAN_CIPHER_SUITE_WEP40: 225 case WLAN_CIPHER_SUITE_WEP104: 226 /* These ciphers do not use key sequence */ 227 return -EINVAL; 228 case WLAN_CIPHER_SUITE_TKIP: 229 case WLAN_CIPHER_SUITE_CCMP: 230 case WLAN_CIPHER_SUITE_AES_CMAC: 231 if (params->seq_len != 6) 232 return -EINVAL; 233 break; 234 } 235 } 236 237 if (!cfg80211_supported_cipher_suite(&rdev->wiphy, params->cipher)) 238 return -EINVAL; 239 240 return 0; 241 } 242 243 unsigned int __attribute_const__ ieee80211_hdrlen(__le16 fc) 244 { 245 unsigned int hdrlen = 24; 246 247 if (ieee80211_is_data(fc)) { 248 if (ieee80211_has_a4(fc)) 249 hdrlen = 30; 250 if (ieee80211_is_data_qos(fc)) { 251 hdrlen += IEEE80211_QOS_CTL_LEN; 252 if (ieee80211_has_order(fc)) 253 hdrlen += IEEE80211_HT_CTL_LEN; 254 } 255 goto out; 256 } 257 258 if (ieee80211_is_ctl(fc)) { 259 /* 260 * ACK and CTS are 10 bytes, all others 16. To see how 261 * to get this condition consider 262 * subtype mask: 0b0000000011110000 (0x00F0) 263 * ACK subtype: 0b0000000011010000 (0x00D0) 264 * CTS subtype: 0b0000000011000000 (0x00C0) 265 * bits that matter: ^^^ (0x00E0) 266 * value of those: 0b0000000011000000 (0x00C0) 267 */ 268 if ((fc & cpu_to_le16(0x00E0)) == cpu_to_le16(0x00C0)) 269 hdrlen = 10; 270 else 271 hdrlen = 16; 272 } 273 out: 274 return hdrlen; 275 } 276 EXPORT_SYMBOL(ieee80211_hdrlen); 277 278 unsigned int ieee80211_get_hdrlen_from_skb(const struct sk_buff *skb) 279 { 280 const struct ieee80211_hdr *hdr = 281 (const struct ieee80211_hdr *)skb->data; 282 unsigned int hdrlen; 283 284 if (unlikely(skb->len < 10)) 285 return 0; 286 hdrlen = ieee80211_hdrlen(hdr->frame_control); 287 if (unlikely(hdrlen > skb->len)) 288 return 0; 289 return hdrlen; 290 } 291 EXPORT_SYMBOL(ieee80211_get_hdrlen_from_skb); 292 293 static int ieee80211_get_mesh_hdrlen(struct ieee80211s_hdr *meshhdr) 294 { 295 int ae = meshhdr->flags & MESH_FLAGS_AE; 296 /* 7.1.3.5a.2 */ 297 switch (ae) { 298 case 0: 299 return 6; 300 case MESH_FLAGS_AE_A4: 301 return 12; 302 case MESH_FLAGS_AE_A5_A6: 303 return 18; 304 case (MESH_FLAGS_AE_A4 | MESH_FLAGS_AE_A5_A6): 305 return 24; 306 default: 307 return 6; 308 } 309 } 310 311 int ieee80211_data_to_8023(struct sk_buff *skb, const u8 *addr, 312 enum nl80211_iftype iftype) 313 { 314 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data; 315 u16 hdrlen, ethertype; 316 u8 *payload; 317 u8 dst[ETH_ALEN]; 318 u8 src[ETH_ALEN] __aligned(2); 319 320 if (unlikely(!ieee80211_is_data_present(hdr->frame_control))) 321 return -1; 322 323 hdrlen = ieee80211_hdrlen(hdr->frame_control); 324 325 /* convert IEEE 802.11 header + possible LLC headers into Ethernet 326 * header 327 * IEEE 802.11 address fields: 328 * ToDS FromDS Addr1 Addr2 Addr3 Addr4 329 * 0 0 DA SA BSSID n/a 330 * 0 1 DA BSSID SA n/a 331 * 1 0 BSSID SA DA n/a 332 * 1 1 RA TA DA SA 333 */ 334 memcpy(dst, ieee80211_get_DA(hdr), ETH_ALEN); 335 memcpy(src, ieee80211_get_SA(hdr), ETH_ALEN); 336 337 switch (hdr->frame_control & 338 cpu_to_le16(IEEE80211_FCTL_TODS | IEEE80211_FCTL_FROMDS)) { 339 case cpu_to_le16(IEEE80211_FCTL_TODS): 340 if (unlikely(iftype != NL80211_IFTYPE_AP && 341 iftype != NL80211_IFTYPE_AP_VLAN && 342 iftype != NL80211_IFTYPE_P2P_GO)) 343 return -1; 344 break; 345 case cpu_to_le16(IEEE80211_FCTL_TODS | IEEE80211_FCTL_FROMDS): 346 if (unlikely(iftype != NL80211_IFTYPE_WDS && 347 iftype != NL80211_IFTYPE_MESH_POINT && 348 iftype != NL80211_IFTYPE_AP_VLAN && 349 iftype != NL80211_IFTYPE_STATION)) 350 return -1; 351 if (iftype == NL80211_IFTYPE_MESH_POINT) { 352 struct ieee80211s_hdr *meshdr = 353 (struct ieee80211s_hdr *) (skb->data + hdrlen); 354 /* make sure meshdr->flags is on the linear part */ 355 if (!pskb_may_pull(skb, hdrlen + 1)) 356 return -1; 357 if (meshdr->flags & MESH_FLAGS_AE_A5_A6) { 358 skb_copy_bits(skb, hdrlen + 359 offsetof(struct ieee80211s_hdr, eaddr1), 360 dst, ETH_ALEN); 361 skb_copy_bits(skb, hdrlen + 362 offsetof(struct ieee80211s_hdr, eaddr2), 363 src, ETH_ALEN); 364 } 365 hdrlen += ieee80211_get_mesh_hdrlen(meshdr); 366 } 367 break; 368 case cpu_to_le16(IEEE80211_FCTL_FROMDS): 369 if ((iftype != NL80211_IFTYPE_STATION && 370 iftype != NL80211_IFTYPE_P2P_CLIENT && 371 iftype != NL80211_IFTYPE_MESH_POINT) || 372 (is_multicast_ether_addr(dst) && 373 ether_addr_equal(src, addr))) 374 return -1; 375 if (iftype == NL80211_IFTYPE_MESH_POINT) { 376 struct ieee80211s_hdr *meshdr = 377 (struct ieee80211s_hdr *) (skb->data + hdrlen); 378 /* make sure meshdr->flags is on the linear part */ 379 if (!pskb_may_pull(skb, hdrlen + 1)) 380 return -1; 381 if (meshdr->flags & MESH_FLAGS_AE_A4) 382 skb_copy_bits(skb, hdrlen + 383 offsetof(struct ieee80211s_hdr, eaddr1), 384 src, ETH_ALEN); 385 hdrlen += ieee80211_get_mesh_hdrlen(meshdr); 386 } 387 break; 388 case cpu_to_le16(0): 389 if (iftype != NL80211_IFTYPE_ADHOC && 390 iftype != NL80211_IFTYPE_STATION) 391 return -1; 392 break; 393 } 394 395 if (!pskb_may_pull(skb, hdrlen + 8)) 396 return -1; 397 398 payload = skb->data + hdrlen; 399 ethertype = (payload[6] << 8) | payload[7]; 400 401 if (likely((ether_addr_equal(payload, rfc1042_header) && 402 ethertype != ETH_P_AARP && ethertype != ETH_P_IPX) || 403 ether_addr_equal(payload, bridge_tunnel_header))) { 404 /* remove RFC1042 or Bridge-Tunnel encapsulation and 405 * replace EtherType */ 406 skb_pull(skb, hdrlen + 6); 407 memcpy(skb_push(skb, ETH_ALEN), src, ETH_ALEN); 408 memcpy(skb_push(skb, ETH_ALEN), dst, ETH_ALEN); 409 } else { 410 struct ethhdr *ehdr; 411 __be16 len; 412 413 skb_pull(skb, hdrlen); 414 len = htons(skb->len); 415 ehdr = (struct ethhdr *) skb_push(skb, sizeof(struct ethhdr)); 416 memcpy(ehdr->h_dest, dst, ETH_ALEN); 417 memcpy(ehdr->h_source, src, ETH_ALEN); 418 ehdr->h_proto = len; 419 } 420 return 0; 421 } 422 EXPORT_SYMBOL(ieee80211_data_to_8023); 423 424 int ieee80211_data_from_8023(struct sk_buff *skb, const u8 *addr, 425 enum nl80211_iftype iftype, u8 *bssid, bool qos) 426 { 427 struct ieee80211_hdr hdr; 428 u16 hdrlen, ethertype; 429 __le16 fc; 430 const u8 *encaps_data; 431 int encaps_len, skip_header_bytes; 432 int nh_pos, h_pos; 433 int head_need; 434 435 if (unlikely(skb->len < ETH_HLEN)) 436 return -EINVAL; 437 438 nh_pos = skb_network_header(skb) - skb->data; 439 h_pos = skb_transport_header(skb) - skb->data; 440 441 /* convert Ethernet header to proper 802.11 header (based on 442 * operation mode) */ 443 ethertype = (skb->data[12] << 8) | skb->data[13]; 444 fc = cpu_to_le16(IEEE80211_FTYPE_DATA | IEEE80211_STYPE_DATA); 445 446 switch (iftype) { 447 case NL80211_IFTYPE_AP: 448 case NL80211_IFTYPE_AP_VLAN: 449 case NL80211_IFTYPE_P2P_GO: 450 fc |= cpu_to_le16(IEEE80211_FCTL_FROMDS); 451 /* DA BSSID SA */ 452 memcpy(hdr.addr1, skb->data, ETH_ALEN); 453 memcpy(hdr.addr2, addr, ETH_ALEN); 454 memcpy(hdr.addr3, skb->data + ETH_ALEN, ETH_ALEN); 455 hdrlen = 24; 456 break; 457 case NL80211_IFTYPE_STATION: 458 case NL80211_IFTYPE_P2P_CLIENT: 459 fc |= cpu_to_le16(IEEE80211_FCTL_TODS); 460 /* BSSID SA DA */ 461 memcpy(hdr.addr1, bssid, ETH_ALEN); 462 memcpy(hdr.addr2, skb->data + ETH_ALEN, ETH_ALEN); 463 memcpy(hdr.addr3, skb->data, ETH_ALEN); 464 hdrlen = 24; 465 break; 466 case NL80211_IFTYPE_ADHOC: 467 /* DA SA BSSID */ 468 memcpy(hdr.addr1, skb->data, ETH_ALEN); 469 memcpy(hdr.addr2, skb->data + ETH_ALEN, ETH_ALEN); 470 memcpy(hdr.addr3, bssid, ETH_ALEN); 471 hdrlen = 24; 472 break; 473 default: 474 return -EOPNOTSUPP; 475 } 476 477 if (qos) { 478 fc |= cpu_to_le16(IEEE80211_STYPE_QOS_DATA); 479 hdrlen += 2; 480 } 481 482 hdr.frame_control = fc; 483 hdr.duration_id = 0; 484 hdr.seq_ctrl = 0; 485 486 skip_header_bytes = ETH_HLEN; 487 if (ethertype == ETH_P_AARP || ethertype == ETH_P_IPX) { 488 encaps_data = bridge_tunnel_header; 489 encaps_len = sizeof(bridge_tunnel_header); 490 skip_header_bytes -= 2; 491 } else if (ethertype > 0x600) { 492 encaps_data = rfc1042_header; 493 encaps_len = sizeof(rfc1042_header); 494 skip_header_bytes -= 2; 495 } else { 496 encaps_data = NULL; 497 encaps_len = 0; 498 } 499 500 skb_pull(skb, skip_header_bytes); 501 nh_pos -= skip_header_bytes; 502 h_pos -= skip_header_bytes; 503 504 head_need = hdrlen + encaps_len - skb_headroom(skb); 505 506 if (head_need > 0 || skb_cloned(skb)) { 507 head_need = max(head_need, 0); 508 if (head_need) 509 skb_orphan(skb); 510 511 if (pskb_expand_head(skb, head_need, 0, GFP_ATOMIC)) 512 return -ENOMEM; 513 514 skb->truesize += head_need; 515 } 516 517 if (encaps_data) { 518 memcpy(skb_push(skb, encaps_len), encaps_data, encaps_len); 519 nh_pos += encaps_len; 520 h_pos += encaps_len; 521 } 522 523 memcpy(skb_push(skb, hdrlen), &hdr, hdrlen); 524 525 nh_pos += hdrlen; 526 h_pos += hdrlen; 527 528 /* Update skb pointers to various headers since this modified frame 529 * is going to go through Linux networking code that may potentially 530 * need things like pointer to IP header. */ 531 skb_set_mac_header(skb, 0); 532 skb_set_network_header(skb, nh_pos); 533 skb_set_transport_header(skb, h_pos); 534 535 return 0; 536 } 537 EXPORT_SYMBOL(ieee80211_data_from_8023); 538 539 540 void ieee80211_amsdu_to_8023s(struct sk_buff *skb, struct sk_buff_head *list, 541 const u8 *addr, enum nl80211_iftype iftype, 542 const unsigned int extra_headroom, 543 bool has_80211_header) 544 { 545 struct sk_buff *frame = NULL; 546 u16 ethertype; 547 u8 *payload; 548 const struct ethhdr *eth; 549 int remaining, err; 550 u8 dst[ETH_ALEN], src[ETH_ALEN]; 551 552 if (has_80211_header) { 553 err = ieee80211_data_to_8023(skb, addr, iftype); 554 if (err) 555 goto out; 556 557 /* skip the wrapping header */ 558 eth = (struct ethhdr *) skb_pull(skb, sizeof(struct ethhdr)); 559 if (!eth) 560 goto out; 561 } else { 562 eth = (struct ethhdr *) skb->data; 563 } 564 565 while (skb != frame) { 566 u8 padding; 567 __be16 len = eth->h_proto; 568 unsigned int subframe_len = sizeof(struct ethhdr) + ntohs(len); 569 570 remaining = skb->len; 571 memcpy(dst, eth->h_dest, ETH_ALEN); 572 memcpy(src, eth->h_source, ETH_ALEN); 573 574 padding = (4 - subframe_len) & 0x3; 575 /* the last MSDU has no padding */ 576 if (subframe_len > remaining) 577 goto purge; 578 579 skb_pull(skb, sizeof(struct ethhdr)); 580 /* reuse skb for the last subframe */ 581 if (remaining <= subframe_len + padding) 582 frame = skb; 583 else { 584 unsigned int hlen = ALIGN(extra_headroom, 4); 585 /* 586 * Allocate and reserve two bytes more for payload 587 * alignment since sizeof(struct ethhdr) is 14. 588 */ 589 frame = dev_alloc_skb(hlen + subframe_len + 2); 590 if (!frame) 591 goto purge; 592 593 skb_reserve(frame, hlen + sizeof(struct ethhdr) + 2); 594 memcpy(skb_put(frame, ntohs(len)), skb->data, 595 ntohs(len)); 596 597 eth = (struct ethhdr *)skb_pull(skb, ntohs(len) + 598 padding); 599 if (!eth) { 600 dev_kfree_skb(frame); 601 goto purge; 602 } 603 } 604 605 skb_reset_network_header(frame); 606 frame->dev = skb->dev; 607 frame->priority = skb->priority; 608 609 payload = frame->data; 610 ethertype = (payload[6] << 8) | payload[7]; 611 612 if (likely((ether_addr_equal(payload, rfc1042_header) && 613 ethertype != ETH_P_AARP && ethertype != ETH_P_IPX) || 614 ether_addr_equal(payload, bridge_tunnel_header))) { 615 /* remove RFC1042 or Bridge-Tunnel 616 * encapsulation and replace EtherType */ 617 skb_pull(frame, 6); 618 memcpy(skb_push(frame, ETH_ALEN), src, ETH_ALEN); 619 memcpy(skb_push(frame, ETH_ALEN), dst, ETH_ALEN); 620 } else { 621 memcpy(skb_push(frame, sizeof(__be16)), &len, 622 sizeof(__be16)); 623 memcpy(skb_push(frame, ETH_ALEN), src, ETH_ALEN); 624 memcpy(skb_push(frame, ETH_ALEN), dst, ETH_ALEN); 625 } 626 __skb_queue_tail(list, frame); 627 } 628 629 return; 630 631 purge: 632 __skb_queue_purge(list); 633 out: 634 dev_kfree_skb(skb); 635 } 636 EXPORT_SYMBOL(ieee80211_amsdu_to_8023s); 637 638 /* Given a data frame determine the 802.1p/1d tag to use. */ 639 unsigned int cfg80211_classify8021d(struct sk_buff *skb) 640 { 641 unsigned int dscp; 642 643 /* skb->priority values from 256->263 are magic values to 644 * directly indicate a specific 802.1d priority. This is used 645 * to allow 802.1d priority to be passed directly in from VLAN 646 * tags, etc. 647 */ 648 if (skb->priority >= 256 && skb->priority <= 263) 649 return skb->priority - 256; 650 651 switch (skb->protocol) { 652 case htons(ETH_P_IP): 653 dscp = ipv4_get_dsfield(ip_hdr(skb)) & 0xfc; 654 break; 655 case htons(ETH_P_IPV6): 656 dscp = ipv6_get_dsfield(ipv6_hdr(skb)) & 0xfc; 657 break; 658 default: 659 return 0; 660 } 661 662 return dscp >> 5; 663 } 664 EXPORT_SYMBOL(cfg80211_classify8021d); 665 666 const u8 *ieee80211_bss_get_ie(struct cfg80211_bss *bss, u8 ie) 667 { 668 u8 *end, *pos; 669 670 pos = bss->information_elements; 671 if (pos == NULL) 672 return NULL; 673 end = pos + bss->len_information_elements; 674 675 while (pos + 1 < end) { 676 if (pos + 2 + pos[1] > end) 677 break; 678 if (pos[0] == ie) 679 return pos; 680 pos += 2 + pos[1]; 681 } 682 683 return NULL; 684 } 685 EXPORT_SYMBOL(ieee80211_bss_get_ie); 686 687 void cfg80211_upload_connect_keys(struct wireless_dev *wdev) 688 { 689 struct cfg80211_registered_device *rdev = wiphy_to_dev(wdev->wiphy); 690 struct net_device *dev = wdev->netdev; 691 int i; 692 693 if (!wdev->connect_keys) 694 return; 695 696 for (i = 0; i < 6; i++) { 697 if (!wdev->connect_keys->params[i].cipher) 698 continue; 699 if (rdev->ops->add_key(wdev->wiphy, dev, i, false, NULL, 700 &wdev->connect_keys->params[i])) { 701 netdev_err(dev, "failed to set key %d\n", i); 702 continue; 703 } 704 if (wdev->connect_keys->def == i) 705 if (rdev->ops->set_default_key(wdev->wiphy, dev, 706 i, true, true)) { 707 netdev_err(dev, "failed to set defkey %d\n", i); 708 continue; 709 } 710 if (wdev->connect_keys->defmgmt == i) 711 if (rdev->ops->set_default_mgmt_key(wdev->wiphy, dev, i)) 712 netdev_err(dev, "failed to set mgtdef %d\n", i); 713 } 714 715 kfree(wdev->connect_keys); 716 wdev->connect_keys = NULL; 717 } 718 719 static void cfg80211_process_wdev_events(struct wireless_dev *wdev) 720 { 721 struct cfg80211_event *ev; 722 unsigned long flags; 723 const u8 *bssid = NULL; 724 725 spin_lock_irqsave(&wdev->event_lock, flags); 726 while (!list_empty(&wdev->event_list)) { 727 ev = list_first_entry(&wdev->event_list, 728 struct cfg80211_event, list); 729 list_del(&ev->list); 730 spin_unlock_irqrestore(&wdev->event_lock, flags); 731 732 wdev_lock(wdev); 733 switch (ev->type) { 734 case EVENT_CONNECT_RESULT: 735 if (!is_zero_ether_addr(ev->cr.bssid)) 736 bssid = ev->cr.bssid; 737 __cfg80211_connect_result( 738 wdev->netdev, bssid, 739 ev->cr.req_ie, ev->cr.req_ie_len, 740 ev->cr.resp_ie, ev->cr.resp_ie_len, 741 ev->cr.status, 742 ev->cr.status == WLAN_STATUS_SUCCESS, 743 NULL); 744 break; 745 case EVENT_ROAMED: 746 __cfg80211_roamed(wdev, ev->rm.bss, ev->rm.req_ie, 747 ev->rm.req_ie_len, ev->rm.resp_ie, 748 ev->rm.resp_ie_len); 749 break; 750 case EVENT_DISCONNECTED: 751 __cfg80211_disconnected(wdev->netdev, 752 ev->dc.ie, ev->dc.ie_len, 753 ev->dc.reason, true); 754 break; 755 case EVENT_IBSS_JOINED: 756 __cfg80211_ibss_joined(wdev->netdev, ev->ij.bssid); 757 break; 758 } 759 wdev_unlock(wdev); 760 761 kfree(ev); 762 763 spin_lock_irqsave(&wdev->event_lock, flags); 764 } 765 spin_unlock_irqrestore(&wdev->event_lock, flags); 766 } 767 768 void cfg80211_process_rdev_events(struct cfg80211_registered_device *rdev) 769 { 770 struct wireless_dev *wdev; 771 772 ASSERT_RTNL(); 773 ASSERT_RDEV_LOCK(rdev); 774 775 mutex_lock(&rdev->devlist_mtx); 776 777 list_for_each_entry(wdev, &rdev->netdev_list, list) 778 cfg80211_process_wdev_events(wdev); 779 780 mutex_unlock(&rdev->devlist_mtx); 781 } 782 783 int cfg80211_change_iface(struct cfg80211_registered_device *rdev, 784 struct net_device *dev, enum nl80211_iftype ntype, 785 u32 *flags, struct vif_params *params) 786 { 787 int err; 788 enum nl80211_iftype otype = dev->ieee80211_ptr->iftype; 789 790 ASSERT_RDEV_LOCK(rdev); 791 792 /* don't support changing VLANs, you just re-create them */ 793 if (otype == NL80211_IFTYPE_AP_VLAN) 794 return -EOPNOTSUPP; 795 796 if (!rdev->ops->change_virtual_intf || 797 !(rdev->wiphy.interface_modes & (1 << ntype))) 798 return -EOPNOTSUPP; 799 800 /* if it's part of a bridge, reject changing type to station/ibss */ 801 if ((dev->priv_flags & IFF_BRIDGE_PORT) && 802 (ntype == NL80211_IFTYPE_ADHOC || 803 ntype == NL80211_IFTYPE_STATION || 804 ntype == NL80211_IFTYPE_P2P_CLIENT)) 805 return -EBUSY; 806 807 if (ntype != otype && netif_running(dev)) { 808 err = cfg80211_can_change_interface(rdev, dev->ieee80211_ptr, 809 ntype); 810 if (err) 811 return err; 812 813 dev->ieee80211_ptr->use_4addr = false; 814 dev->ieee80211_ptr->mesh_id_up_len = 0; 815 816 switch (otype) { 817 case NL80211_IFTYPE_ADHOC: 818 cfg80211_leave_ibss(rdev, dev, false); 819 break; 820 case NL80211_IFTYPE_STATION: 821 case NL80211_IFTYPE_P2P_CLIENT: 822 cfg80211_disconnect(rdev, dev, 823 WLAN_REASON_DEAUTH_LEAVING, true); 824 break; 825 case NL80211_IFTYPE_MESH_POINT: 826 /* mesh should be handled? */ 827 break; 828 default: 829 break; 830 } 831 832 cfg80211_process_rdev_events(rdev); 833 } 834 835 err = rdev->ops->change_virtual_intf(&rdev->wiphy, dev, 836 ntype, flags, params); 837 838 WARN_ON(!err && dev->ieee80211_ptr->iftype != ntype); 839 840 if (!err && params && params->use_4addr != -1) 841 dev->ieee80211_ptr->use_4addr = params->use_4addr; 842 843 if (!err) { 844 dev->priv_flags &= ~IFF_DONT_BRIDGE; 845 switch (ntype) { 846 case NL80211_IFTYPE_STATION: 847 if (dev->ieee80211_ptr->use_4addr) 848 break; 849 /* fall through */ 850 case NL80211_IFTYPE_P2P_CLIENT: 851 case NL80211_IFTYPE_ADHOC: 852 dev->priv_flags |= IFF_DONT_BRIDGE; 853 break; 854 case NL80211_IFTYPE_P2P_GO: 855 case NL80211_IFTYPE_AP: 856 case NL80211_IFTYPE_AP_VLAN: 857 case NL80211_IFTYPE_WDS: 858 case NL80211_IFTYPE_MESH_POINT: 859 /* bridging OK */ 860 break; 861 case NL80211_IFTYPE_MONITOR: 862 /* monitor can't bridge anyway */ 863 break; 864 case NL80211_IFTYPE_UNSPECIFIED: 865 case NUM_NL80211_IFTYPES: 866 /* not happening */ 867 break; 868 } 869 } 870 871 return err; 872 } 873 874 u16 cfg80211_calculate_bitrate(struct rate_info *rate) 875 { 876 int modulation, streams, bitrate; 877 878 if (!(rate->flags & RATE_INFO_FLAGS_MCS)) 879 return rate->legacy; 880 881 /* the formula below does only work for MCS values smaller than 32 */ 882 if (WARN_ON_ONCE(rate->mcs >= 32)) 883 return 0; 884 885 modulation = rate->mcs & 7; 886 streams = (rate->mcs >> 3) + 1; 887 888 bitrate = (rate->flags & RATE_INFO_FLAGS_40_MHZ_WIDTH) ? 889 13500000 : 6500000; 890 891 if (modulation < 4) 892 bitrate *= (modulation + 1); 893 else if (modulation == 4) 894 bitrate *= (modulation + 2); 895 else 896 bitrate *= (modulation + 3); 897 898 bitrate *= streams; 899 900 if (rate->flags & RATE_INFO_FLAGS_SHORT_GI) 901 bitrate = (bitrate / 9) * 10; 902 903 /* do NOT round down here */ 904 return (bitrate + 50000) / 100000; 905 } 906 EXPORT_SYMBOL(cfg80211_calculate_bitrate); 907 908 int cfg80211_validate_beacon_int(struct cfg80211_registered_device *rdev, 909 u32 beacon_int) 910 { 911 struct wireless_dev *wdev; 912 int res = 0; 913 914 if (!beacon_int) 915 return -EINVAL; 916 917 mutex_lock(&rdev->devlist_mtx); 918 919 list_for_each_entry(wdev, &rdev->netdev_list, list) { 920 if (!wdev->beacon_interval) 921 continue; 922 if (wdev->beacon_interval != beacon_int) { 923 res = -EINVAL; 924 break; 925 } 926 } 927 928 mutex_unlock(&rdev->devlist_mtx); 929 930 return res; 931 } 932 933 int cfg80211_can_change_interface(struct cfg80211_registered_device *rdev, 934 struct wireless_dev *wdev, 935 enum nl80211_iftype iftype) 936 { 937 struct wireless_dev *wdev_iter; 938 u32 used_iftypes = BIT(iftype); 939 int num[NUM_NL80211_IFTYPES]; 940 int total = 1; 941 int i, j; 942 943 ASSERT_RTNL(); 944 945 /* Always allow software iftypes */ 946 if (rdev->wiphy.software_iftypes & BIT(iftype)) 947 return 0; 948 949 memset(num, 0, sizeof(num)); 950 951 num[iftype] = 1; 952 953 mutex_lock(&rdev->devlist_mtx); 954 list_for_each_entry(wdev_iter, &rdev->netdev_list, list) { 955 if (wdev_iter == wdev) 956 continue; 957 if (!netif_running(wdev_iter->netdev)) 958 continue; 959 960 if (rdev->wiphy.software_iftypes & BIT(wdev_iter->iftype)) 961 continue; 962 963 num[wdev_iter->iftype]++; 964 total++; 965 used_iftypes |= BIT(wdev_iter->iftype); 966 } 967 mutex_unlock(&rdev->devlist_mtx); 968 969 if (total == 1) 970 return 0; 971 972 for (i = 0; i < rdev->wiphy.n_iface_combinations; i++) { 973 const struct ieee80211_iface_combination *c; 974 struct ieee80211_iface_limit *limits; 975 u32 all_iftypes = 0; 976 977 c = &rdev->wiphy.iface_combinations[i]; 978 979 limits = kmemdup(c->limits, sizeof(limits[0]) * c->n_limits, 980 GFP_KERNEL); 981 if (!limits) 982 return -ENOMEM; 983 if (total > c->max_interfaces) 984 goto cont; 985 986 for (iftype = 0; iftype < NUM_NL80211_IFTYPES; iftype++) { 987 if (rdev->wiphy.software_iftypes & BIT(iftype)) 988 continue; 989 for (j = 0; j < c->n_limits; j++) { 990 all_iftypes |= limits[j].types; 991 if (!(limits[j].types & BIT(iftype))) 992 continue; 993 if (limits[j].max < num[iftype]) 994 goto cont; 995 limits[j].max -= num[iftype]; 996 } 997 } 998 999 /* 1000 * Finally check that all iftypes that we're currently 1001 * using are actually part of this combination. If they 1002 * aren't then we can't use this combination and have 1003 * to continue to the next. 1004 */ 1005 if ((all_iftypes & used_iftypes) != used_iftypes) 1006 goto cont; 1007 1008 /* 1009 * This combination covered all interface types and 1010 * supported the requested numbers, so we're good. 1011 */ 1012 kfree(limits); 1013 return 0; 1014 cont: 1015 kfree(limits); 1016 } 1017 1018 return -EBUSY; 1019 } 1020 1021 int ieee80211_get_ratemask(struct ieee80211_supported_band *sband, 1022 const u8 *rates, unsigned int n_rates, 1023 u32 *mask) 1024 { 1025 int i, j; 1026 1027 if (!sband) 1028 return -EINVAL; 1029 1030 if (n_rates == 0 || n_rates > NL80211_MAX_SUPP_RATES) 1031 return -EINVAL; 1032 1033 *mask = 0; 1034 1035 for (i = 0; i < n_rates; i++) { 1036 int rate = (rates[i] & 0x7f) * 5; 1037 bool found = false; 1038 1039 for (j = 0; j < sband->n_bitrates; j++) { 1040 if (sband->bitrates[j].bitrate == rate) { 1041 found = true; 1042 *mask |= BIT(j); 1043 break; 1044 } 1045 } 1046 if (!found) 1047 return -EINVAL; 1048 } 1049 1050 /* 1051 * mask must have at least one bit set here since we 1052 * didn't accept a 0-length rates array nor allowed 1053 * entries in the array that didn't exist 1054 */ 1055 1056 return 0; 1057 } 1058 1059 /* See IEEE 802.1H for LLC/SNAP encapsulation/decapsulation */ 1060 /* Ethernet-II snap header (RFC1042 for most EtherTypes) */ 1061 const unsigned char rfc1042_header[] __aligned(2) = 1062 { 0xaa, 0xaa, 0x03, 0x00, 0x00, 0x00 }; 1063 EXPORT_SYMBOL(rfc1042_header); 1064 1065 /* Bridge-Tunnel header (for EtherTypes ETH_P_AARP and ETH_P_IPX) */ 1066 const unsigned char bridge_tunnel_header[] __aligned(2) = 1067 { 0xaa, 0xaa, 0x03, 0x00, 0x00, 0xf8 }; 1068 EXPORT_SYMBOL(bridge_tunnel_header); 1069