1 /* 2 * Wireless utility functions 3 * 4 * Copyright 2007-2009 Johannes Berg <johannes@sipsolutions.net> 5 */ 6 #include <linux/export.h> 7 #include <linux/bitops.h> 8 #include <linux/etherdevice.h> 9 #include <linux/slab.h> 10 #include <net/cfg80211.h> 11 #include <net/ip.h> 12 #include <net/dsfield.h> 13 #include "core.h" 14 #include "rdev-ops.h" 15 16 17 struct ieee80211_rate * 18 ieee80211_get_response_rate(struct ieee80211_supported_band *sband, 19 u32 basic_rates, int bitrate) 20 { 21 struct ieee80211_rate *result = &sband->bitrates[0]; 22 int i; 23 24 for (i = 0; i < sband->n_bitrates; i++) { 25 if (!(basic_rates & BIT(i))) 26 continue; 27 if (sband->bitrates[i].bitrate > bitrate) 28 continue; 29 result = &sband->bitrates[i]; 30 } 31 32 return result; 33 } 34 EXPORT_SYMBOL(ieee80211_get_response_rate); 35 36 int ieee80211_channel_to_frequency(int chan, enum ieee80211_band band) 37 { 38 /* see 802.11 17.3.8.3.2 and Annex J 39 * there are overlapping channel numbers in 5GHz and 2GHz bands */ 40 if (chan <= 0) 41 return 0; /* not supported */ 42 switch (band) { 43 case IEEE80211_BAND_2GHZ: 44 if (chan == 14) 45 return 2484; 46 else if (chan < 14) 47 return 2407 + chan * 5; 48 break; 49 case IEEE80211_BAND_5GHZ: 50 if (chan >= 182 && chan <= 196) 51 return 4000 + chan * 5; 52 else 53 return 5000 + chan * 5; 54 break; 55 case IEEE80211_BAND_60GHZ: 56 if (chan < 5) 57 return 56160 + chan * 2160; 58 break; 59 default: 60 ; 61 } 62 return 0; /* not supported */ 63 } 64 EXPORT_SYMBOL(ieee80211_channel_to_frequency); 65 66 int ieee80211_frequency_to_channel(int freq) 67 { 68 /* see 802.11 17.3.8.3.2 and Annex J */ 69 if (freq == 2484) 70 return 14; 71 else if (freq < 2484) 72 return (freq - 2407) / 5; 73 else if (freq >= 4910 && freq <= 4980) 74 return (freq - 4000) / 5; 75 else if (freq <= 45000) /* DMG band lower limit */ 76 return (freq - 5000) / 5; 77 else if (freq >= 58320 && freq <= 64800) 78 return (freq - 56160) / 2160; 79 else 80 return 0; 81 } 82 EXPORT_SYMBOL(ieee80211_frequency_to_channel); 83 84 struct ieee80211_channel *__ieee80211_get_channel(struct wiphy *wiphy, 85 int freq) 86 { 87 enum ieee80211_band band; 88 struct ieee80211_supported_band *sband; 89 int i; 90 91 for (band = 0; band < IEEE80211_NUM_BANDS; band++) { 92 sband = wiphy->bands[band]; 93 94 if (!sband) 95 continue; 96 97 for (i = 0; i < sband->n_channels; i++) { 98 if (sband->channels[i].center_freq == freq) 99 return &sband->channels[i]; 100 } 101 } 102 103 return NULL; 104 } 105 EXPORT_SYMBOL(__ieee80211_get_channel); 106 107 static void set_mandatory_flags_band(struct ieee80211_supported_band *sband, 108 enum ieee80211_band band) 109 { 110 int i, want; 111 112 switch (band) { 113 case IEEE80211_BAND_5GHZ: 114 want = 3; 115 for (i = 0; i < sband->n_bitrates; i++) { 116 if (sband->bitrates[i].bitrate == 60 || 117 sband->bitrates[i].bitrate == 120 || 118 sband->bitrates[i].bitrate == 240) { 119 sband->bitrates[i].flags |= 120 IEEE80211_RATE_MANDATORY_A; 121 want--; 122 } 123 } 124 WARN_ON(want); 125 break; 126 case IEEE80211_BAND_2GHZ: 127 want = 7; 128 for (i = 0; i < sband->n_bitrates; i++) { 129 if (sband->bitrates[i].bitrate == 10) { 130 sband->bitrates[i].flags |= 131 IEEE80211_RATE_MANDATORY_B | 132 IEEE80211_RATE_MANDATORY_G; 133 want--; 134 } 135 136 if (sband->bitrates[i].bitrate == 20 || 137 sband->bitrates[i].bitrate == 55 || 138 sband->bitrates[i].bitrate == 110 || 139 sband->bitrates[i].bitrate == 60 || 140 sband->bitrates[i].bitrate == 120 || 141 sband->bitrates[i].bitrate == 240) { 142 sband->bitrates[i].flags |= 143 IEEE80211_RATE_MANDATORY_G; 144 want--; 145 } 146 147 if (sband->bitrates[i].bitrate != 10 && 148 sband->bitrates[i].bitrate != 20 && 149 sband->bitrates[i].bitrate != 55 && 150 sband->bitrates[i].bitrate != 110) 151 sband->bitrates[i].flags |= 152 IEEE80211_RATE_ERP_G; 153 } 154 WARN_ON(want != 0 && want != 3 && want != 6); 155 break; 156 case IEEE80211_BAND_60GHZ: 157 /* check for mandatory HT MCS 1..4 */ 158 WARN_ON(!sband->ht_cap.ht_supported); 159 WARN_ON((sband->ht_cap.mcs.rx_mask[0] & 0x1e) != 0x1e); 160 break; 161 case IEEE80211_NUM_BANDS: 162 WARN_ON(1); 163 break; 164 } 165 } 166 167 void ieee80211_set_bitrate_flags(struct wiphy *wiphy) 168 { 169 enum ieee80211_band band; 170 171 for (band = 0; band < IEEE80211_NUM_BANDS; band++) 172 if (wiphy->bands[band]) 173 set_mandatory_flags_band(wiphy->bands[band], band); 174 } 175 176 bool cfg80211_supported_cipher_suite(struct wiphy *wiphy, u32 cipher) 177 { 178 int i; 179 for (i = 0; i < wiphy->n_cipher_suites; i++) 180 if (cipher == wiphy->cipher_suites[i]) 181 return true; 182 return false; 183 } 184 185 int cfg80211_validate_key_settings(struct cfg80211_registered_device *rdev, 186 struct key_params *params, int key_idx, 187 bool pairwise, const u8 *mac_addr) 188 { 189 if (key_idx > 5) 190 return -EINVAL; 191 192 if (!pairwise && mac_addr && !(rdev->wiphy.flags & WIPHY_FLAG_IBSS_RSN)) 193 return -EINVAL; 194 195 if (pairwise && !mac_addr) 196 return -EINVAL; 197 198 /* 199 * Disallow pairwise keys with non-zero index unless it's WEP 200 * or a vendor specific cipher (because current deployments use 201 * pairwise WEP keys with non-zero indices and for vendor specific 202 * ciphers this should be validated in the driver or hardware level 203 * - but 802.11i clearly specifies to use zero) 204 */ 205 if (pairwise && key_idx && 206 ((params->cipher == WLAN_CIPHER_SUITE_TKIP) || 207 (params->cipher == WLAN_CIPHER_SUITE_CCMP) || 208 (params->cipher == WLAN_CIPHER_SUITE_AES_CMAC))) 209 return -EINVAL; 210 211 switch (params->cipher) { 212 case WLAN_CIPHER_SUITE_WEP40: 213 if (params->key_len != WLAN_KEY_LEN_WEP40) 214 return -EINVAL; 215 break; 216 case WLAN_CIPHER_SUITE_TKIP: 217 if (params->key_len != WLAN_KEY_LEN_TKIP) 218 return -EINVAL; 219 break; 220 case WLAN_CIPHER_SUITE_CCMP: 221 if (params->key_len != WLAN_KEY_LEN_CCMP) 222 return -EINVAL; 223 break; 224 case WLAN_CIPHER_SUITE_WEP104: 225 if (params->key_len != WLAN_KEY_LEN_WEP104) 226 return -EINVAL; 227 break; 228 case WLAN_CIPHER_SUITE_AES_CMAC: 229 if (params->key_len != WLAN_KEY_LEN_AES_CMAC) 230 return -EINVAL; 231 break; 232 default: 233 /* 234 * We don't know anything about this algorithm, 235 * allow using it -- but the driver must check 236 * all parameters! We still check below whether 237 * or not the driver supports this algorithm, 238 * of course. 239 */ 240 break; 241 } 242 243 if (params->seq) { 244 switch (params->cipher) { 245 case WLAN_CIPHER_SUITE_WEP40: 246 case WLAN_CIPHER_SUITE_WEP104: 247 /* These ciphers do not use key sequence */ 248 return -EINVAL; 249 case WLAN_CIPHER_SUITE_TKIP: 250 case WLAN_CIPHER_SUITE_CCMP: 251 case WLAN_CIPHER_SUITE_AES_CMAC: 252 if (params->seq_len != 6) 253 return -EINVAL; 254 break; 255 } 256 } 257 258 if (!cfg80211_supported_cipher_suite(&rdev->wiphy, params->cipher)) 259 return -EINVAL; 260 261 return 0; 262 } 263 264 unsigned int __attribute_const__ ieee80211_hdrlen(__le16 fc) 265 { 266 unsigned int hdrlen = 24; 267 268 if (ieee80211_is_data(fc)) { 269 if (ieee80211_has_a4(fc)) 270 hdrlen = 30; 271 if (ieee80211_is_data_qos(fc)) { 272 hdrlen += IEEE80211_QOS_CTL_LEN; 273 if (ieee80211_has_order(fc)) 274 hdrlen += IEEE80211_HT_CTL_LEN; 275 } 276 goto out; 277 } 278 279 if (ieee80211_is_ctl(fc)) { 280 /* 281 * ACK and CTS are 10 bytes, all others 16. To see how 282 * to get this condition consider 283 * subtype mask: 0b0000000011110000 (0x00F0) 284 * ACK subtype: 0b0000000011010000 (0x00D0) 285 * CTS subtype: 0b0000000011000000 (0x00C0) 286 * bits that matter: ^^^ (0x00E0) 287 * value of those: 0b0000000011000000 (0x00C0) 288 */ 289 if ((fc & cpu_to_le16(0x00E0)) == cpu_to_le16(0x00C0)) 290 hdrlen = 10; 291 else 292 hdrlen = 16; 293 } 294 out: 295 return hdrlen; 296 } 297 EXPORT_SYMBOL(ieee80211_hdrlen); 298 299 unsigned int ieee80211_get_hdrlen_from_skb(const struct sk_buff *skb) 300 { 301 const struct ieee80211_hdr *hdr = 302 (const struct ieee80211_hdr *)skb->data; 303 unsigned int hdrlen; 304 305 if (unlikely(skb->len < 10)) 306 return 0; 307 hdrlen = ieee80211_hdrlen(hdr->frame_control); 308 if (unlikely(hdrlen > skb->len)) 309 return 0; 310 return hdrlen; 311 } 312 EXPORT_SYMBOL(ieee80211_get_hdrlen_from_skb); 313 314 unsigned int ieee80211_get_mesh_hdrlen(struct ieee80211s_hdr *meshhdr) 315 { 316 int ae = meshhdr->flags & MESH_FLAGS_AE; 317 /* 802.11-2012, 8.2.4.7.3 */ 318 switch (ae) { 319 default: 320 case 0: 321 return 6; 322 case MESH_FLAGS_AE_A4: 323 return 12; 324 case MESH_FLAGS_AE_A5_A6: 325 return 18; 326 } 327 } 328 EXPORT_SYMBOL(ieee80211_get_mesh_hdrlen); 329 330 int ieee80211_data_to_8023(struct sk_buff *skb, const u8 *addr, 331 enum nl80211_iftype iftype) 332 { 333 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data; 334 u16 hdrlen, ethertype; 335 u8 *payload; 336 u8 dst[ETH_ALEN]; 337 u8 src[ETH_ALEN] __aligned(2); 338 339 if (unlikely(!ieee80211_is_data_present(hdr->frame_control))) 340 return -1; 341 342 hdrlen = ieee80211_hdrlen(hdr->frame_control); 343 344 /* convert IEEE 802.11 header + possible LLC headers into Ethernet 345 * header 346 * IEEE 802.11 address fields: 347 * ToDS FromDS Addr1 Addr2 Addr3 Addr4 348 * 0 0 DA SA BSSID n/a 349 * 0 1 DA BSSID SA n/a 350 * 1 0 BSSID SA DA n/a 351 * 1 1 RA TA DA SA 352 */ 353 memcpy(dst, ieee80211_get_DA(hdr), ETH_ALEN); 354 memcpy(src, ieee80211_get_SA(hdr), ETH_ALEN); 355 356 switch (hdr->frame_control & 357 cpu_to_le16(IEEE80211_FCTL_TODS | IEEE80211_FCTL_FROMDS)) { 358 case cpu_to_le16(IEEE80211_FCTL_TODS): 359 if (unlikely(iftype != NL80211_IFTYPE_AP && 360 iftype != NL80211_IFTYPE_AP_VLAN && 361 iftype != NL80211_IFTYPE_P2P_GO)) 362 return -1; 363 break; 364 case cpu_to_le16(IEEE80211_FCTL_TODS | IEEE80211_FCTL_FROMDS): 365 if (unlikely(iftype != NL80211_IFTYPE_WDS && 366 iftype != NL80211_IFTYPE_MESH_POINT && 367 iftype != NL80211_IFTYPE_AP_VLAN && 368 iftype != NL80211_IFTYPE_STATION)) 369 return -1; 370 if (iftype == NL80211_IFTYPE_MESH_POINT) { 371 struct ieee80211s_hdr *meshdr = 372 (struct ieee80211s_hdr *) (skb->data + hdrlen); 373 /* make sure meshdr->flags is on the linear part */ 374 if (!pskb_may_pull(skb, hdrlen + 1)) 375 return -1; 376 if (meshdr->flags & MESH_FLAGS_AE_A4) 377 return -1; 378 if (meshdr->flags & MESH_FLAGS_AE_A5_A6) { 379 skb_copy_bits(skb, hdrlen + 380 offsetof(struct ieee80211s_hdr, eaddr1), 381 dst, ETH_ALEN); 382 skb_copy_bits(skb, hdrlen + 383 offsetof(struct ieee80211s_hdr, eaddr2), 384 src, ETH_ALEN); 385 } 386 hdrlen += ieee80211_get_mesh_hdrlen(meshdr); 387 } 388 break; 389 case cpu_to_le16(IEEE80211_FCTL_FROMDS): 390 if ((iftype != NL80211_IFTYPE_STATION && 391 iftype != NL80211_IFTYPE_P2P_CLIENT && 392 iftype != NL80211_IFTYPE_MESH_POINT) || 393 (is_multicast_ether_addr(dst) && 394 ether_addr_equal(src, addr))) 395 return -1; 396 if (iftype == NL80211_IFTYPE_MESH_POINT) { 397 struct ieee80211s_hdr *meshdr = 398 (struct ieee80211s_hdr *) (skb->data + hdrlen); 399 /* make sure meshdr->flags is on the linear part */ 400 if (!pskb_may_pull(skb, hdrlen + 1)) 401 return -1; 402 if (meshdr->flags & MESH_FLAGS_AE_A5_A6) 403 return -1; 404 if (meshdr->flags & MESH_FLAGS_AE_A4) 405 skb_copy_bits(skb, hdrlen + 406 offsetof(struct ieee80211s_hdr, eaddr1), 407 src, ETH_ALEN); 408 hdrlen += ieee80211_get_mesh_hdrlen(meshdr); 409 } 410 break; 411 case cpu_to_le16(0): 412 if (iftype != NL80211_IFTYPE_ADHOC && 413 iftype != NL80211_IFTYPE_STATION) 414 return -1; 415 break; 416 } 417 418 if (!pskb_may_pull(skb, hdrlen + 8)) 419 return -1; 420 421 payload = skb->data + hdrlen; 422 ethertype = (payload[6] << 8) | payload[7]; 423 424 if (likely((ether_addr_equal(payload, rfc1042_header) && 425 ethertype != ETH_P_AARP && ethertype != ETH_P_IPX) || 426 ether_addr_equal(payload, bridge_tunnel_header))) { 427 /* remove RFC1042 or Bridge-Tunnel encapsulation and 428 * replace EtherType */ 429 skb_pull(skb, hdrlen + 6); 430 memcpy(skb_push(skb, ETH_ALEN), src, ETH_ALEN); 431 memcpy(skb_push(skb, ETH_ALEN), dst, ETH_ALEN); 432 } else { 433 struct ethhdr *ehdr; 434 __be16 len; 435 436 skb_pull(skb, hdrlen); 437 len = htons(skb->len); 438 ehdr = (struct ethhdr *) skb_push(skb, sizeof(struct ethhdr)); 439 memcpy(ehdr->h_dest, dst, ETH_ALEN); 440 memcpy(ehdr->h_source, src, ETH_ALEN); 441 ehdr->h_proto = len; 442 } 443 return 0; 444 } 445 EXPORT_SYMBOL(ieee80211_data_to_8023); 446 447 int ieee80211_data_from_8023(struct sk_buff *skb, const u8 *addr, 448 enum nl80211_iftype iftype, u8 *bssid, bool qos) 449 { 450 struct ieee80211_hdr hdr; 451 u16 hdrlen, ethertype; 452 __le16 fc; 453 const u8 *encaps_data; 454 int encaps_len, skip_header_bytes; 455 int nh_pos, h_pos; 456 int head_need; 457 458 if (unlikely(skb->len < ETH_HLEN)) 459 return -EINVAL; 460 461 nh_pos = skb_network_header(skb) - skb->data; 462 h_pos = skb_transport_header(skb) - skb->data; 463 464 /* convert Ethernet header to proper 802.11 header (based on 465 * operation mode) */ 466 ethertype = (skb->data[12] << 8) | skb->data[13]; 467 fc = cpu_to_le16(IEEE80211_FTYPE_DATA | IEEE80211_STYPE_DATA); 468 469 switch (iftype) { 470 case NL80211_IFTYPE_AP: 471 case NL80211_IFTYPE_AP_VLAN: 472 case NL80211_IFTYPE_P2P_GO: 473 fc |= cpu_to_le16(IEEE80211_FCTL_FROMDS); 474 /* DA BSSID SA */ 475 memcpy(hdr.addr1, skb->data, ETH_ALEN); 476 memcpy(hdr.addr2, addr, ETH_ALEN); 477 memcpy(hdr.addr3, skb->data + ETH_ALEN, ETH_ALEN); 478 hdrlen = 24; 479 break; 480 case NL80211_IFTYPE_STATION: 481 case NL80211_IFTYPE_P2P_CLIENT: 482 fc |= cpu_to_le16(IEEE80211_FCTL_TODS); 483 /* BSSID SA DA */ 484 memcpy(hdr.addr1, bssid, ETH_ALEN); 485 memcpy(hdr.addr2, skb->data + ETH_ALEN, ETH_ALEN); 486 memcpy(hdr.addr3, skb->data, ETH_ALEN); 487 hdrlen = 24; 488 break; 489 case NL80211_IFTYPE_ADHOC: 490 /* DA SA BSSID */ 491 memcpy(hdr.addr1, skb->data, ETH_ALEN); 492 memcpy(hdr.addr2, skb->data + ETH_ALEN, ETH_ALEN); 493 memcpy(hdr.addr3, bssid, ETH_ALEN); 494 hdrlen = 24; 495 break; 496 default: 497 return -EOPNOTSUPP; 498 } 499 500 if (qos) { 501 fc |= cpu_to_le16(IEEE80211_STYPE_QOS_DATA); 502 hdrlen += 2; 503 } 504 505 hdr.frame_control = fc; 506 hdr.duration_id = 0; 507 hdr.seq_ctrl = 0; 508 509 skip_header_bytes = ETH_HLEN; 510 if (ethertype == ETH_P_AARP || ethertype == ETH_P_IPX) { 511 encaps_data = bridge_tunnel_header; 512 encaps_len = sizeof(bridge_tunnel_header); 513 skip_header_bytes -= 2; 514 } else if (ethertype > 0x600) { 515 encaps_data = rfc1042_header; 516 encaps_len = sizeof(rfc1042_header); 517 skip_header_bytes -= 2; 518 } else { 519 encaps_data = NULL; 520 encaps_len = 0; 521 } 522 523 skb_pull(skb, skip_header_bytes); 524 nh_pos -= skip_header_bytes; 525 h_pos -= skip_header_bytes; 526 527 head_need = hdrlen + encaps_len - skb_headroom(skb); 528 529 if (head_need > 0 || skb_cloned(skb)) { 530 head_need = max(head_need, 0); 531 if (head_need) 532 skb_orphan(skb); 533 534 if (pskb_expand_head(skb, head_need, 0, GFP_ATOMIC)) 535 return -ENOMEM; 536 537 skb->truesize += head_need; 538 } 539 540 if (encaps_data) { 541 memcpy(skb_push(skb, encaps_len), encaps_data, encaps_len); 542 nh_pos += encaps_len; 543 h_pos += encaps_len; 544 } 545 546 memcpy(skb_push(skb, hdrlen), &hdr, hdrlen); 547 548 nh_pos += hdrlen; 549 h_pos += hdrlen; 550 551 /* Update skb pointers to various headers since this modified frame 552 * is going to go through Linux networking code that may potentially 553 * need things like pointer to IP header. */ 554 skb_set_mac_header(skb, 0); 555 skb_set_network_header(skb, nh_pos); 556 skb_set_transport_header(skb, h_pos); 557 558 return 0; 559 } 560 EXPORT_SYMBOL(ieee80211_data_from_8023); 561 562 563 void ieee80211_amsdu_to_8023s(struct sk_buff *skb, struct sk_buff_head *list, 564 const u8 *addr, enum nl80211_iftype iftype, 565 const unsigned int extra_headroom, 566 bool has_80211_header) 567 { 568 struct sk_buff *frame = NULL; 569 u16 ethertype; 570 u8 *payload; 571 const struct ethhdr *eth; 572 int remaining, err; 573 u8 dst[ETH_ALEN], src[ETH_ALEN]; 574 575 if (has_80211_header) { 576 err = ieee80211_data_to_8023(skb, addr, iftype); 577 if (err) 578 goto out; 579 580 /* skip the wrapping header */ 581 eth = (struct ethhdr *) skb_pull(skb, sizeof(struct ethhdr)); 582 if (!eth) 583 goto out; 584 } else { 585 eth = (struct ethhdr *) skb->data; 586 } 587 588 while (skb != frame) { 589 u8 padding; 590 __be16 len = eth->h_proto; 591 unsigned int subframe_len = sizeof(struct ethhdr) + ntohs(len); 592 593 remaining = skb->len; 594 memcpy(dst, eth->h_dest, ETH_ALEN); 595 memcpy(src, eth->h_source, ETH_ALEN); 596 597 padding = (4 - subframe_len) & 0x3; 598 /* the last MSDU has no padding */ 599 if (subframe_len > remaining) 600 goto purge; 601 602 skb_pull(skb, sizeof(struct ethhdr)); 603 /* reuse skb for the last subframe */ 604 if (remaining <= subframe_len + padding) 605 frame = skb; 606 else { 607 unsigned int hlen = ALIGN(extra_headroom, 4); 608 /* 609 * Allocate and reserve two bytes more for payload 610 * alignment since sizeof(struct ethhdr) is 14. 611 */ 612 frame = dev_alloc_skb(hlen + subframe_len + 2); 613 if (!frame) 614 goto purge; 615 616 skb_reserve(frame, hlen + sizeof(struct ethhdr) + 2); 617 memcpy(skb_put(frame, ntohs(len)), skb->data, 618 ntohs(len)); 619 620 eth = (struct ethhdr *)skb_pull(skb, ntohs(len) + 621 padding); 622 if (!eth) { 623 dev_kfree_skb(frame); 624 goto purge; 625 } 626 } 627 628 skb_reset_network_header(frame); 629 frame->dev = skb->dev; 630 frame->priority = skb->priority; 631 632 payload = frame->data; 633 ethertype = (payload[6] << 8) | payload[7]; 634 635 if (likely((ether_addr_equal(payload, rfc1042_header) && 636 ethertype != ETH_P_AARP && ethertype != ETH_P_IPX) || 637 ether_addr_equal(payload, bridge_tunnel_header))) { 638 /* remove RFC1042 or Bridge-Tunnel 639 * encapsulation and replace EtherType */ 640 skb_pull(frame, 6); 641 memcpy(skb_push(frame, ETH_ALEN), src, ETH_ALEN); 642 memcpy(skb_push(frame, ETH_ALEN), dst, ETH_ALEN); 643 } else { 644 memcpy(skb_push(frame, sizeof(__be16)), &len, 645 sizeof(__be16)); 646 memcpy(skb_push(frame, ETH_ALEN), src, ETH_ALEN); 647 memcpy(skb_push(frame, ETH_ALEN), dst, ETH_ALEN); 648 } 649 __skb_queue_tail(list, frame); 650 } 651 652 return; 653 654 purge: 655 __skb_queue_purge(list); 656 out: 657 dev_kfree_skb(skb); 658 } 659 EXPORT_SYMBOL(ieee80211_amsdu_to_8023s); 660 661 /* Given a data frame determine the 802.1p/1d tag to use. */ 662 unsigned int cfg80211_classify8021d(struct sk_buff *skb) 663 { 664 unsigned int dscp; 665 666 /* skb->priority values from 256->263 are magic values to 667 * directly indicate a specific 802.1d priority. This is used 668 * to allow 802.1d priority to be passed directly in from VLAN 669 * tags, etc. 670 */ 671 if (skb->priority >= 256 && skb->priority <= 263) 672 return skb->priority - 256; 673 674 switch (skb->protocol) { 675 case htons(ETH_P_IP): 676 dscp = ipv4_get_dsfield(ip_hdr(skb)) & 0xfc; 677 break; 678 case htons(ETH_P_IPV6): 679 dscp = ipv6_get_dsfield(ipv6_hdr(skb)) & 0xfc; 680 break; 681 default: 682 return 0; 683 } 684 685 return dscp >> 5; 686 } 687 EXPORT_SYMBOL(cfg80211_classify8021d); 688 689 const u8 *ieee80211_bss_get_ie(struct cfg80211_bss *bss, u8 ie) 690 { 691 const struct cfg80211_bss_ies *ies; 692 693 ies = rcu_dereference(bss->ies); 694 if (!ies) 695 return NULL; 696 697 return cfg80211_find_ie(ie, ies->data, ies->len); 698 } 699 EXPORT_SYMBOL(ieee80211_bss_get_ie); 700 701 void cfg80211_upload_connect_keys(struct wireless_dev *wdev) 702 { 703 struct cfg80211_registered_device *rdev = wiphy_to_dev(wdev->wiphy); 704 struct net_device *dev = wdev->netdev; 705 int i; 706 707 if (!wdev->connect_keys) 708 return; 709 710 for (i = 0; i < 6; i++) { 711 if (!wdev->connect_keys->params[i].cipher) 712 continue; 713 if (rdev_add_key(rdev, dev, i, false, NULL, 714 &wdev->connect_keys->params[i])) { 715 netdev_err(dev, "failed to set key %d\n", i); 716 continue; 717 } 718 if (wdev->connect_keys->def == i) 719 if (rdev_set_default_key(rdev, dev, i, true, true)) { 720 netdev_err(dev, "failed to set defkey %d\n", i); 721 continue; 722 } 723 if (wdev->connect_keys->defmgmt == i) 724 if (rdev_set_default_mgmt_key(rdev, dev, i)) 725 netdev_err(dev, "failed to set mgtdef %d\n", i); 726 } 727 728 kfree(wdev->connect_keys); 729 wdev->connect_keys = NULL; 730 } 731 732 void cfg80211_process_wdev_events(struct wireless_dev *wdev) 733 { 734 struct cfg80211_event *ev; 735 unsigned long flags; 736 const u8 *bssid = NULL; 737 738 spin_lock_irqsave(&wdev->event_lock, flags); 739 while (!list_empty(&wdev->event_list)) { 740 ev = list_first_entry(&wdev->event_list, 741 struct cfg80211_event, list); 742 list_del(&ev->list); 743 spin_unlock_irqrestore(&wdev->event_lock, flags); 744 745 wdev_lock(wdev); 746 switch (ev->type) { 747 case EVENT_CONNECT_RESULT: 748 if (!is_zero_ether_addr(ev->cr.bssid)) 749 bssid = ev->cr.bssid; 750 __cfg80211_connect_result( 751 wdev->netdev, bssid, 752 ev->cr.req_ie, ev->cr.req_ie_len, 753 ev->cr.resp_ie, ev->cr.resp_ie_len, 754 ev->cr.status, 755 ev->cr.status == WLAN_STATUS_SUCCESS, 756 NULL); 757 break; 758 case EVENT_ROAMED: 759 __cfg80211_roamed(wdev, ev->rm.bss, ev->rm.req_ie, 760 ev->rm.req_ie_len, ev->rm.resp_ie, 761 ev->rm.resp_ie_len); 762 break; 763 case EVENT_DISCONNECTED: 764 __cfg80211_disconnected(wdev->netdev, 765 ev->dc.ie, ev->dc.ie_len, 766 ev->dc.reason, true); 767 break; 768 case EVENT_IBSS_JOINED: 769 __cfg80211_ibss_joined(wdev->netdev, ev->ij.bssid); 770 break; 771 } 772 wdev_unlock(wdev); 773 774 kfree(ev); 775 776 spin_lock_irqsave(&wdev->event_lock, flags); 777 } 778 spin_unlock_irqrestore(&wdev->event_lock, flags); 779 } 780 781 void cfg80211_process_rdev_events(struct cfg80211_registered_device *rdev) 782 { 783 struct wireless_dev *wdev; 784 785 ASSERT_RTNL(); 786 ASSERT_RDEV_LOCK(rdev); 787 788 mutex_lock(&rdev->devlist_mtx); 789 790 list_for_each_entry(wdev, &rdev->wdev_list, list) 791 cfg80211_process_wdev_events(wdev); 792 793 mutex_unlock(&rdev->devlist_mtx); 794 } 795 796 int cfg80211_change_iface(struct cfg80211_registered_device *rdev, 797 struct net_device *dev, enum nl80211_iftype ntype, 798 u32 *flags, struct vif_params *params) 799 { 800 int err; 801 enum nl80211_iftype otype = dev->ieee80211_ptr->iftype; 802 803 ASSERT_RDEV_LOCK(rdev); 804 805 /* don't support changing VLANs, you just re-create them */ 806 if (otype == NL80211_IFTYPE_AP_VLAN) 807 return -EOPNOTSUPP; 808 809 /* cannot change into P2P device type */ 810 if (ntype == NL80211_IFTYPE_P2P_DEVICE) 811 return -EOPNOTSUPP; 812 813 if (!rdev->ops->change_virtual_intf || 814 !(rdev->wiphy.interface_modes & (1 << ntype))) 815 return -EOPNOTSUPP; 816 817 /* if it's part of a bridge, reject changing type to station/ibss */ 818 if ((dev->priv_flags & IFF_BRIDGE_PORT) && 819 (ntype == NL80211_IFTYPE_ADHOC || 820 ntype == NL80211_IFTYPE_STATION || 821 ntype == NL80211_IFTYPE_P2P_CLIENT)) 822 return -EBUSY; 823 824 if (ntype != otype && netif_running(dev)) { 825 mutex_lock(&rdev->devlist_mtx); 826 err = cfg80211_can_change_interface(rdev, dev->ieee80211_ptr, 827 ntype); 828 mutex_unlock(&rdev->devlist_mtx); 829 if (err) 830 return err; 831 832 dev->ieee80211_ptr->use_4addr = false; 833 dev->ieee80211_ptr->mesh_id_up_len = 0; 834 835 switch (otype) { 836 case NL80211_IFTYPE_AP: 837 cfg80211_stop_ap(rdev, dev); 838 break; 839 case NL80211_IFTYPE_ADHOC: 840 cfg80211_leave_ibss(rdev, dev, false); 841 break; 842 case NL80211_IFTYPE_STATION: 843 case NL80211_IFTYPE_P2P_CLIENT: 844 cfg80211_disconnect(rdev, dev, 845 WLAN_REASON_DEAUTH_LEAVING, true); 846 break; 847 case NL80211_IFTYPE_MESH_POINT: 848 /* mesh should be handled? */ 849 break; 850 default: 851 break; 852 } 853 854 cfg80211_process_rdev_events(rdev); 855 } 856 857 err = rdev_change_virtual_intf(rdev, dev, ntype, flags, params); 858 859 WARN_ON(!err && dev->ieee80211_ptr->iftype != ntype); 860 861 if (!err && params && params->use_4addr != -1) 862 dev->ieee80211_ptr->use_4addr = params->use_4addr; 863 864 if (!err) { 865 dev->priv_flags &= ~IFF_DONT_BRIDGE; 866 switch (ntype) { 867 case NL80211_IFTYPE_STATION: 868 if (dev->ieee80211_ptr->use_4addr) 869 break; 870 /* fall through */ 871 case NL80211_IFTYPE_P2P_CLIENT: 872 case NL80211_IFTYPE_ADHOC: 873 dev->priv_flags |= IFF_DONT_BRIDGE; 874 break; 875 case NL80211_IFTYPE_P2P_GO: 876 case NL80211_IFTYPE_AP: 877 case NL80211_IFTYPE_AP_VLAN: 878 case NL80211_IFTYPE_WDS: 879 case NL80211_IFTYPE_MESH_POINT: 880 /* bridging OK */ 881 break; 882 case NL80211_IFTYPE_MONITOR: 883 /* monitor can't bridge anyway */ 884 break; 885 case NL80211_IFTYPE_UNSPECIFIED: 886 case NUM_NL80211_IFTYPES: 887 /* not happening */ 888 break; 889 case NL80211_IFTYPE_P2P_DEVICE: 890 WARN_ON(1); 891 break; 892 } 893 } 894 895 if (!err && ntype != otype && netif_running(dev)) { 896 cfg80211_update_iface_num(rdev, ntype, 1); 897 cfg80211_update_iface_num(rdev, otype, -1); 898 } 899 900 return err; 901 } 902 903 static u32 cfg80211_calculate_bitrate_60g(struct rate_info *rate) 904 { 905 static const u32 __mcs2bitrate[] = { 906 /* control PHY */ 907 [0] = 275, 908 /* SC PHY */ 909 [1] = 3850, 910 [2] = 7700, 911 [3] = 9625, 912 [4] = 11550, 913 [5] = 12512, /* 1251.25 mbps */ 914 [6] = 15400, 915 [7] = 19250, 916 [8] = 23100, 917 [9] = 25025, 918 [10] = 30800, 919 [11] = 38500, 920 [12] = 46200, 921 /* OFDM PHY */ 922 [13] = 6930, 923 [14] = 8662, /* 866.25 mbps */ 924 [15] = 13860, 925 [16] = 17325, 926 [17] = 20790, 927 [18] = 27720, 928 [19] = 34650, 929 [20] = 41580, 930 [21] = 45045, 931 [22] = 51975, 932 [23] = 62370, 933 [24] = 67568, /* 6756.75 mbps */ 934 /* LP-SC PHY */ 935 [25] = 6260, 936 [26] = 8340, 937 [27] = 11120, 938 [28] = 12510, 939 [29] = 16680, 940 [30] = 22240, 941 [31] = 25030, 942 }; 943 944 if (WARN_ON_ONCE(rate->mcs >= ARRAY_SIZE(__mcs2bitrate))) 945 return 0; 946 947 return __mcs2bitrate[rate->mcs]; 948 } 949 950 static u32 cfg80211_calculate_bitrate_vht(struct rate_info *rate) 951 { 952 static const u32 base[4][10] = { 953 { 6500000, 954 13000000, 955 19500000, 956 26000000, 957 39000000, 958 52000000, 959 58500000, 960 65000000, 961 78000000, 962 0, 963 }, 964 { 13500000, 965 27000000, 966 40500000, 967 54000000, 968 81000000, 969 108000000, 970 121500000, 971 135000000, 972 162000000, 973 180000000, 974 }, 975 { 29300000, 976 58500000, 977 87800000, 978 117000000, 979 175500000, 980 234000000, 981 263300000, 982 292500000, 983 351000000, 984 390000000, 985 }, 986 { 58500000, 987 117000000, 988 175500000, 989 234000000, 990 351000000, 991 468000000, 992 526500000, 993 585000000, 994 702000000, 995 780000000, 996 }, 997 }; 998 u32 bitrate; 999 int idx; 1000 1001 if (WARN_ON_ONCE(rate->mcs > 9)) 1002 return 0; 1003 1004 idx = rate->flags & (RATE_INFO_FLAGS_160_MHZ_WIDTH | 1005 RATE_INFO_FLAGS_80P80_MHZ_WIDTH) ? 3 : 1006 rate->flags & RATE_INFO_FLAGS_80_MHZ_WIDTH ? 2 : 1007 rate->flags & RATE_INFO_FLAGS_40_MHZ_WIDTH ? 1 : 0; 1008 1009 bitrate = base[idx][rate->mcs]; 1010 bitrate *= rate->nss; 1011 1012 if (rate->flags & RATE_INFO_FLAGS_SHORT_GI) 1013 bitrate = (bitrate / 9) * 10; 1014 1015 /* do NOT round down here */ 1016 return (bitrate + 50000) / 100000; 1017 } 1018 1019 u32 cfg80211_calculate_bitrate(struct rate_info *rate) 1020 { 1021 int modulation, streams, bitrate; 1022 1023 if (!(rate->flags & RATE_INFO_FLAGS_MCS) && 1024 !(rate->flags & RATE_INFO_FLAGS_VHT_MCS)) 1025 return rate->legacy; 1026 if (rate->flags & RATE_INFO_FLAGS_60G) 1027 return cfg80211_calculate_bitrate_60g(rate); 1028 if (rate->flags & RATE_INFO_FLAGS_VHT_MCS) 1029 return cfg80211_calculate_bitrate_vht(rate); 1030 1031 /* the formula below does only work for MCS values smaller than 32 */ 1032 if (WARN_ON_ONCE(rate->mcs >= 32)) 1033 return 0; 1034 1035 modulation = rate->mcs & 7; 1036 streams = (rate->mcs >> 3) + 1; 1037 1038 bitrate = (rate->flags & RATE_INFO_FLAGS_40_MHZ_WIDTH) ? 1039 13500000 : 6500000; 1040 1041 if (modulation < 4) 1042 bitrate *= (modulation + 1); 1043 else if (modulation == 4) 1044 bitrate *= (modulation + 2); 1045 else 1046 bitrate *= (modulation + 3); 1047 1048 bitrate *= streams; 1049 1050 if (rate->flags & RATE_INFO_FLAGS_SHORT_GI) 1051 bitrate = (bitrate / 9) * 10; 1052 1053 /* do NOT round down here */ 1054 return (bitrate + 50000) / 100000; 1055 } 1056 EXPORT_SYMBOL(cfg80211_calculate_bitrate); 1057 1058 int cfg80211_get_p2p_attr(const u8 *ies, unsigned int len, 1059 enum ieee80211_p2p_attr_id attr, 1060 u8 *buf, unsigned int bufsize) 1061 { 1062 u8 *out = buf; 1063 u16 attr_remaining = 0; 1064 bool desired_attr = false; 1065 u16 desired_len = 0; 1066 1067 while (len > 0) { 1068 unsigned int iedatalen; 1069 unsigned int copy; 1070 const u8 *iedata; 1071 1072 if (len < 2) 1073 return -EILSEQ; 1074 iedatalen = ies[1]; 1075 if (iedatalen + 2 > len) 1076 return -EILSEQ; 1077 1078 if (ies[0] != WLAN_EID_VENDOR_SPECIFIC) 1079 goto cont; 1080 1081 if (iedatalen < 4) 1082 goto cont; 1083 1084 iedata = ies + 2; 1085 1086 /* check WFA OUI, P2P subtype */ 1087 if (iedata[0] != 0x50 || iedata[1] != 0x6f || 1088 iedata[2] != 0x9a || iedata[3] != 0x09) 1089 goto cont; 1090 1091 iedatalen -= 4; 1092 iedata += 4; 1093 1094 /* check attribute continuation into this IE */ 1095 copy = min_t(unsigned int, attr_remaining, iedatalen); 1096 if (copy && desired_attr) { 1097 desired_len += copy; 1098 if (out) { 1099 memcpy(out, iedata, min(bufsize, copy)); 1100 out += min(bufsize, copy); 1101 bufsize -= min(bufsize, copy); 1102 } 1103 1104 1105 if (copy == attr_remaining) 1106 return desired_len; 1107 } 1108 1109 attr_remaining -= copy; 1110 if (attr_remaining) 1111 goto cont; 1112 1113 iedatalen -= copy; 1114 iedata += copy; 1115 1116 while (iedatalen > 0) { 1117 u16 attr_len; 1118 1119 /* P2P attribute ID & size must fit */ 1120 if (iedatalen < 3) 1121 return -EILSEQ; 1122 desired_attr = iedata[0] == attr; 1123 attr_len = get_unaligned_le16(iedata + 1); 1124 iedatalen -= 3; 1125 iedata += 3; 1126 1127 copy = min_t(unsigned int, attr_len, iedatalen); 1128 1129 if (desired_attr) { 1130 desired_len += copy; 1131 if (out) { 1132 memcpy(out, iedata, min(bufsize, copy)); 1133 out += min(bufsize, copy); 1134 bufsize -= min(bufsize, copy); 1135 } 1136 1137 if (copy == attr_len) 1138 return desired_len; 1139 } 1140 1141 iedata += copy; 1142 iedatalen -= copy; 1143 attr_remaining = attr_len - copy; 1144 } 1145 1146 cont: 1147 len -= ies[1] + 2; 1148 ies += ies[1] + 2; 1149 } 1150 1151 if (attr_remaining && desired_attr) 1152 return -EILSEQ; 1153 1154 return -ENOENT; 1155 } 1156 EXPORT_SYMBOL(cfg80211_get_p2p_attr); 1157 1158 int cfg80211_validate_beacon_int(struct cfg80211_registered_device *rdev, 1159 u32 beacon_int) 1160 { 1161 struct wireless_dev *wdev; 1162 int res = 0; 1163 1164 if (!beacon_int) 1165 return -EINVAL; 1166 1167 mutex_lock(&rdev->devlist_mtx); 1168 1169 list_for_each_entry(wdev, &rdev->wdev_list, list) { 1170 if (!wdev->beacon_interval) 1171 continue; 1172 if (wdev->beacon_interval != beacon_int) { 1173 res = -EINVAL; 1174 break; 1175 } 1176 } 1177 1178 mutex_unlock(&rdev->devlist_mtx); 1179 1180 return res; 1181 } 1182 1183 int cfg80211_can_use_iftype_chan(struct cfg80211_registered_device *rdev, 1184 struct wireless_dev *wdev, 1185 enum nl80211_iftype iftype, 1186 struct ieee80211_channel *chan, 1187 enum cfg80211_chan_mode chanmode) 1188 { 1189 struct wireless_dev *wdev_iter; 1190 u32 used_iftypes = BIT(iftype); 1191 int num[NUM_NL80211_IFTYPES]; 1192 struct ieee80211_channel 1193 *used_channels[CFG80211_MAX_NUM_DIFFERENT_CHANNELS]; 1194 struct ieee80211_channel *ch; 1195 enum cfg80211_chan_mode chmode; 1196 int num_different_channels = 0; 1197 int total = 1; 1198 int i, j; 1199 1200 ASSERT_RTNL(); 1201 lockdep_assert_held(&rdev->devlist_mtx); 1202 1203 /* Always allow software iftypes */ 1204 if (rdev->wiphy.software_iftypes & BIT(iftype)) 1205 return 0; 1206 1207 memset(num, 0, sizeof(num)); 1208 memset(used_channels, 0, sizeof(used_channels)); 1209 1210 num[iftype] = 1; 1211 1212 switch (chanmode) { 1213 case CHAN_MODE_UNDEFINED: 1214 break; 1215 case CHAN_MODE_SHARED: 1216 WARN_ON(!chan); 1217 used_channels[0] = chan; 1218 num_different_channels++; 1219 break; 1220 case CHAN_MODE_EXCLUSIVE: 1221 num_different_channels++; 1222 break; 1223 } 1224 1225 list_for_each_entry(wdev_iter, &rdev->wdev_list, list) { 1226 if (wdev_iter == wdev) 1227 continue; 1228 if (wdev_iter->netdev) { 1229 if (!netif_running(wdev_iter->netdev)) 1230 continue; 1231 } else if (wdev_iter->iftype == NL80211_IFTYPE_P2P_DEVICE) { 1232 if (!wdev_iter->p2p_started) 1233 continue; 1234 } else { 1235 WARN_ON(1); 1236 } 1237 1238 if (rdev->wiphy.software_iftypes & BIT(wdev_iter->iftype)) 1239 continue; 1240 1241 /* 1242 * We may be holding the "wdev" mutex, but now need to lock 1243 * wdev_iter. This is OK because once we get here wdev_iter 1244 * is not wdev (tested above), but we need to use the nested 1245 * locking for lockdep. 1246 */ 1247 mutex_lock_nested(&wdev_iter->mtx, 1); 1248 __acquire(wdev_iter->mtx); 1249 cfg80211_get_chan_state(wdev_iter, &ch, &chmode); 1250 wdev_unlock(wdev_iter); 1251 1252 switch (chmode) { 1253 case CHAN_MODE_UNDEFINED: 1254 break; 1255 case CHAN_MODE_SHARED: 1256 for (i = 0; i < CFG80211_MAX_NUM_DIFFERENT_CHANNELS; i++) 1257 if (!used_channels[i] || used_channels[i] == ch) 1258 break; 1259 1260 if (i == CFG80211_MAX_NUM_DIFFERENT_CHANNELS) 1261 return -EBUSY; 1262 1263 if (used_channels[i] == NULL) { 1264 used_channels[i] = ch; 1265 num_different_channels++; 1266 } 1267 break; 1268 case CHAN_MODE_EXCLUSIVE: 1269 num_different_channels++; 1270 break; 1271 } 1272 1273 num[wdev_iter->iftype]++; 1274 total++; 1275 used_iftypes |= BIT(wdev_iter->iftype); 1276 } 1277 1278 if (total == 1) 1279 return 0; 1280 1281 for (i = 0; i < rdev->wiphy.n_iface_combinations; i++) { 1282 const struct ieee80211_iface_combination *c; 1283 struct ieee80211_iface_limit *limits; 1284 u32 all_iftypes = 0; 1285 1286 c = &rdev->wiphy.iface_combinations[i]; 1287 1288 if (total > c->max_interfaces) 1289 continue; 1290 if (num_different_channels > c->num_different_channels) 1291 continue; 1292 1293 limits = kmemdup(c->limits, sizeof(limits[0]) * c->n_limits, 1294 GFP_KERNEL); 1295 if (!limits) 1296 return -ENOMEM; 1297 1298 for (iftype = 0; iftype < NUM_NL80211_IFTYPES; iftype++) { 1299 if (rdev->wiphy.software_iftypes & BIT(iftype)) 1300 continue; 1301 for (j = 0; j < c->n_limits; j++) { 1302 all_iftypes |= limits[j].types; 1303 if (!(limits[j].types & BIT(iftype))) 1304 continue; 1305 if (limits[j].max < num[iftype]) 1306 goto cont; 1307 limits[j].max -= num[iftype]; 1308 } 1309 } 1310 1311 /* 1312 * Finally check that all iftypes that we're currently 1313 * using are actually part of this combination. If they 1314 * aren't then we can't use this combination and have 1315 * to continue to the next. 1316 */ 1317 if ((all_iftypes & used_iftypes) != used_iftypes) 1318 goto cont; 1319 1320 /* 1321 * This combination covered all interface types and 1322 * supported the requested numbers, so we're good. 1323 */ 1324 kfree(limits); 1325 return 0; 1326 cont: 1327 kfree(limits); 1328 } 1329 1330 return -EBUSY; 1331 } 1332 1333 int ieee80211_get_ratemask(struct ieee80211_supported_band *sband, 1334 const u8 *rates, unsigned int n_rates, 1335 u32 *mask) 1336 { 1337 int i, j; 1338 1339 if (!sband) 1340 return -EINVAL; 1341 1342 if (n_rates == 0 || n_rates > NL80211_MAX_SUPP_RATES) 1343 return -EINVAL; 1344 1345 *mask = 0; 1346 1347 for (i = 0; i < n_rates; i++) { 1348 int rate = (rates[i] & 0x7f) * 5; 1349 bool found = false; 1350 1351 for (j = 0; j < sband->n_bitrates; j++) { 1352 if (sband->bitrates[j].bitrate == rate) { 1353 found = true; 1354 *mask |= BIT(j); 1355 break; 1356 } 1357 } 1358 if (!found) 1359 return -EINVAL; 1360 } 1361 1362 /* 1363 * mask must have at least one bit set here since we 1364 * didn't accept a 0-length rates array nor allowed 1365 * entries in the array that didn't exist 1366 */ 1367 1368 return 0; 1369 } 1370 1371 /* See IEEE 802.1H for LLC/SNAP encapsulation/decapsulation */ 1372 /* Ethernet-II snap header (RFC1042 for most EtherTypes) */ 1373 const unsigned char rfc1042_header[] __aligned(2) = 1374 { 0xaa, 0xaa, 0x03, 0x00, 0x00, 0x00 }; 1375 EXPORT_SYMBOL(rfc1042_header); 1376 1377 /* Bridge-Tunnel header (for EtherTypes ETH_P_AARP and ETH_P_IPX) */ 1378 const unsigned char bridge_tunnel_header[] __aligned(2) = 1379 { 0xaa, 0xaa, 0x03, 0x00, 0x00, 0xf8 }; 1380 EXPORT_SYMBOL(bridge_tunnel_header); 1381