xref: /linux/net/wireless/scan.c (revision fcc79e1714e8c2b8e216dc3149812edd37884eef)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * cfg80211 scan result handling
4  *
5  * Copyright 2008 Johannes Berg <johannes@sipsolutions.net>
6  * Copyright 2013-2014  Intel Mobile Communications GmbH
7  * Copyright 2016	Intel Deutschland GmbH
8  * Copyright (C) 2018-2024 Intel Corporation
9  */
10 #include <linux/kernel.h>
11 #include <linux/slab.h>
12 #include <linux/module.h>
13 #include <linux/netdevice.h>
14 #include <linux/wireless.h>
15 #include <linux/nl80211.h>
16 #include <linux/etherdevice.h>
17 #include <linux/crc32.h>
18 #include <linux/bitfield.h>
19 #include <net/arp.h>
20 #include <net/cfg80211.h>
21 #include <net/cfg80211-wext.h>
22 #include <net/iw_handler.h>
23 #include <kunit/visibility.h>
24 #include "core.h"
25 #include "nl80211.h"
26 #include "wext-compat.h"
27 #include "rdev-ops.h"
28 
29 /**
30  * DOC: BSS tree/list structure
31  *
32  * At the top level, the BSS list is kept in both a list in each
33  * registered device (@bss_list) as well as an RB-tree for faster
34  * lookup. In the RB-tree, entries can be looked up using their
35  * channel, MESHID, MESHCONF (for MBSSes) or channel, BSSID, SSID
36  * for other BSSes.
37  *
38  * Due to the possibility of hidden SSIDs, there's a second level
39  * structure, the "hidden_list" and "hidden_beacon_bss" pointer.
40  * The hidden_list connects all BSSes belonging to a single AP
41  * that has a hidden SSID, and connects beacon and probe response
42  * entries. For a probe response entry for a hidden SSID, the
43  * hidden_beacon_bss pointer points to the BSS struct holding the
44  * beacon's information.
45  *
46  * Reference counting is done for all these references except for
47  * the hidden_list, so that a beacon BSS struct that is otherwise
48  * not referenced has one reference for being on the bss_list and
49  * one for each probe response entry that points to it using the
50  * hidden_beacon_bss pointer. When a BSS struct that has such a
51  * pointer is get/put, the refcount update is also propagated to
52  * the referenced struct, this ensure that it cannot get removed
53  * while somebody is using the probe response version.
54  *
55  * Note that the hidden_beacon_bss pointer never changes, due to
56  * the reference counting. Therefore, no locking is needed for
57  * it.
58  *
59  * Also note that the hidden_beacon_bss pointer is only relevant
60  * if the driver uses something other than the IEs, e.g. private
61  * data stored in the BSS struct, since the beacon IEs are
62  * also linked into the probe response struct.
63  */
64 
65 /*
66  * Limit the number of BSS entries stored in mac80211. Each one is
67  * a bit over 4k at most, so this limits to roughly 4-5M of memory.
68  * If somebody wants to really attack this though, they'd likely
69  * use small beacons, and only one type of frame, limiting each of
70  * the entries to a much smaller size (in order to generate more
71  * entries in total, so overhead is bigger.)
72  */
73 static int bss_entries_limit = 1000;
74 module_param(bss_entries_limit, int, 0644);
75 MODULE_PARM_DESC(bss_entries_limit,
76                  "limit to number of scan BSS entries (per wiphy, default 1000)");
77 
78 #define IEEE80211_SCAN_RESULT_EXPIRE	(30 * HZ)
79 
80 static void bss_free(struct cfg80211_internal_bss *bss)
81 {
82 	struct cfg80211_bss_ies *ies;
83 
84 	if (WARN_ON(atomic_read(&bss->hold)))
85 		return;
86 
87 	ies = (void *)rcu_access_pointer(bss->pub.beacon_ies);
88 	if (ies && !bss->pub.hidden_beacon_bss)
89 		kfree_rcu(ies, rcu_head);
90 	ies = (void *)rcu_access_pointer(bss->pub.proberesp_ies);
91 	if (ies)
92 		kfree_rcu(ies, rcu_head);
93 
94 	/*
95 	 * This happens when the module is removed, it doesn't
96 	 * really matter any more save for completeness
97 	 */
98 	if (!list_empty(&bss->hidden_list))
99 		list_del(&bss->hidden_list);
100 
101 	kfree(bss);
102 }
103 
104 static inline void bss_ref_get(struct cfg80211_registered_device *rdev,
105 			       struct cfg80211_internal_bss *bss)
106 {
107 	lockdep_assert_held(&rdev->bss_lock);
108 
109 	bss->refcount++;
110 
111 	if (bss->pub.hidden_beacon_bss)
112 		bss_from_pub(bss->pub.hidden_beacon_bss)->refcount++;
113 
114 	if (bss->pub.transmitted_bss)
115 		bss_from_pub(bss->pub.transmitted_bss)->refcount++;
116 }
117 
118 static inline void bss_ref_put(struct cfg80211_registered_device *rdev,
119 			       struct cfg80211_internal_bss *bss)
120 {
121 	lockdep_assert_held(&rdev->bss_lock);
122 
123 	if (bss->pub.hidden_beacon_bss) {
124 		struct cfg80211_internal_bss *hbss;
125 
126 		hbss = bss_from_pub(bss->pub.hidden_beacon_bss);
127 		hbss->refcount--;
128 		if (hbss->refcount == 0)
129 			bss_free(hbss);
130 	}
131 
132 	if (bss->pub.transmitted_bss) {
133 		struct cfg80211_internal_bss *tbss;
134 
135 		tbss = bss_from_pub(bss->pub.transmitted_bss);
136 		tbss->refcount--;
137 		if (tbss->refcount == 0)
138 			bss_free(tbss);
139 	}
140 
141 	bss->refcount--;
142 	if (bss->refcount == 0)
143 		bss_free(bss);
144 }
145 
146 static bool __cfg80211_unlink_bss(struct cfg80211_registered_device *rdev,
147 				  struct cfg80211_internal_bss *bss)
148 {
149 	lockdep_assert_held(&rdev->bss_lock);
150 
151 	if (!list_empty(&bss->hidden_list)) {
152 		/*
153 		 * don't remove the beacon entry if it has
154 		 * probe responses associated with it
155 		 */
156 		if (!bss->pub.hidden_beacon_bss)
157 			return false;
158 		/*
159 		 * if it's a probe response entry break its
160 		 * link to the other entries in the group
161 		 */
162 		list_del_init(&bss->hidden_list);
163 	}
164 
165 	list_del_init(&bss->list);
166 	list_del_init(&bss->pub.nontrans_list);
167 	rb_erase(&bss->rbn, &rdev->bss_tree);
168 	rdev->bss_entries--;
169 	WARN_ONCE((rdev->bss_entries == 0) ^ list_empty(&rdev->bss_list),
170 		  "rdev bss entries[%d]/list[empty:%d] corruption\n",
171 		  rdev->bss_entries, list_empty(&rdev->bss_list));
172 	bss_ref_put(rdev, bss);
173 	return true;
174 }
175 
176 bool cfg80211_is_element_inherited(const struct element *elem,
177 				   const struct element *non_inherit_elem)
178 {
179 	u8 id_len, ext_id_len, i, loop_len, id;
180 	const u8 *list;
181 
182 	if (elem->id == WLAN_EID_MULTIPLE_BSSID)
183 		return false;
184 
185 	if (elem->id == WLAN_EID_EXTENSION && elem->datalen > 1 &&
186 	    elem->data[0] == WLAN_EID_EXT_EHT_MULTI_LINK)
187 		return false;
188 
189 	if (!non_inherit_elem || non_inherit_elem->datalen < 2)
190 		return true;
191 
192 	/*
193 	 * non inheritance element format is:
194 	 * ext ID (56) | IDs list len | list | extension IDs list len | list
195 	 * Both lists are optional. Both lengths are mandatory.
196 	 * This means valid length is:
197 	 * elem_len = 1 (extension ID) + 2 (list len fields) + list lengths
198 	 */
199 	id_len = non_inherit_elem->data[1];
200 	if (non_inherit_elem->datalen < 3 + id_len)
201 		return true;
202 
203 	ext_id_len = non_inherit_elem->data[2 + id_len];
204 	if (non_inherit_elem->datalen < 3 + id_len + ext_id_len)
205 		return true;
206 
207 	if (elem->id == WLAN_EID_EXTENSION) {
208 		if (!ext_id_len)
209 			return true;
210 		loop_len = ext_id_len;
211 		list = &non_inherit_elem->data[3 + id_len];
212 		id = elem->data[0];
213 	} else {
214 		if (!id_len)
215 			return true;
216 		loop_len = id_len;
217 		list = &non_inherit_elem->data[2];
218 		id = elem->id;
219 	}
220 
221 	for (i = 0; i < loop_len; i++) {
222 		if (list[i] == id)
223 			return false;
224 	}
225 
226 	return true;
227 }
228 EXPORT_SYMBOL(cfg80211_is_element_inherited);
229 
230 static size_t cfg80211_copy_elem_with_frags(const struct element *elem,
231 					    const u8 *ie, size_t ie_len,
232 					    u8 **pos, u8 *buf, size_t buf_len)
233 {
234 	if (WARN_ON((u8 *)elem < ie || elem->data > ie + ie_len ||
235 		    elem->data + elem->datalen > ie + ie_len))
236 		return 0;
237 
238 	if (elem->datalen + 2 > buf + buf_len - *pos)
239 		return 0;
240 
241 	memcpy(*pos, elem, elem->datalen + 2);
242 	*pos += elem->datalen + 2;
243 
244 	/* Finish if it is not fragmented  */
245 	if (elem->datalen != 255)
246 		return *pos - buf;
247 
248 	ie_len = ie + ie_len - elem->data - elem->datalen;
249 	ie = (const u8 *)elem->data + elem->datalen;
250 
251 	for_each_element(elem, ie, ie_len) {
252 		if (elem->id != WLAN_EID_FRAGMENT)
253 			break;
254 
255 		if (elem->datalen + 2 > buf + buf_len - *pos)
256 			return 0;
257 
258 		memcpy(*pos, elem, elem->datalen + 2);
259 		*pos += elem->datalen + 2;
260 
261 		if (elem->datalen != 255)
262 			break;
263 	}
264 
265 	return *pos - buf;
266 }
267 
268 VISIBLE_IF_CFG80211_KUNIT size_t
269 cfg80211_gen_new_ie(const u8 *ie, size_t ielen,
270 		    const u8 *subie, size_t subie_len,
271 		    u8 *new_ie, size_t new_ie_len)
272 {
273 	const struct element *non_inherit_elem, *parent, *sub;
274 	u8 *pos = new_ie;
275 	u8 id, ext_id;
276 	unsigned int match_len;
277 
278 	non_inherit_elem = cfg80211_find_ext_elem(WLAN_EID_EXT_NON_INHERITANCE,
279 						  subie, subie_len);
280 
281 	/* We copy the elements one by one from the parent to the generated
282 	 * elements.
283 	 * If they are not inherited (included in subie or in the non
284 	 * inheritance element), then we copy all occurrences the first time
285 	 * we see this element type.
286 	 */
287 	for_each_element(parent, ie, ielen) {
288 		if (parent->id == WLAN_EID_FRAGMENT)
289 			continue;
290 
291 		if (parent->id == WLAN_EID_EXTENSION) {
292 			if (parent->datalen < 1)
293 				continue;
294 
295 			id = WLAN_EID_EXTENSION;
296 			ext_id = parent->data[0];
297 			match_len = 1;
298 		} else {
299 			id = parent->id;
300 			match_len = 0;
301 		}
302 
303 		/* Find first occurrence in subie */
304 		sub = cfg80211_find_elem_match(id, subie, subie_len,
305 					       &ext_id, match_len, 0);
306 
307 		/* Copy from parent if not in subie and inherited */
308 		if (!sub &&
309 		    cfg80211_is_element_inherited(parent, non_inherit_elem)) {
310 			if (!cfg80211_copy_elem_with_frags(parent,
311 							   ie, ielen,
312 							   &pos, new_ie,
313 							   new_ie_len))
314 				return 0;
315 
316 			continue;
317 		}
318 
319 		/* Already copied if an earlier element had the same type */
320 		if (cfg80211_find_elem_match(id, ie, (u8 *)parent - ie,
321 					     &ext_id, match_len, 0))
322 			continue;
323 
324 		/* Not inheriting, copy all similar elements from subie */
325 		while (sub) {
326 			if (!cfg80211_copy_elem_with_frags(sub,
327 							   subie, subie_len,
328 							   &pos, new_ie,
329 							   new_ie_len))
330 				return 0;
331 
332 			sub = cfg80211_find_elem_match(id,
333 						       sub->data + sub->datalen,
334 						       subie_len + subie -
335 						       (sub->data +
336 							sub->datalen),
337 						       &ext_id, match_len, 0);
338 		}
339 	}
340 
341 	/* The above misses elements that are included in subie but not in the
342 	 * parent, so do a pass over subie and append those.
343 	 * Skip the non-tx BSSID caps and non-inheritance element.
344 	 */
345 	for_each_element(sub, subie, subie_len) {
346 		if (sub->id == WLAN_EID_NON_TX_BSSID_CAP)
347 			continue;
348 
349 		if (sub->id == WLAN_EID_FRAGMENT)
350 			continue;
351 
352 		if (sub->id == WLAN_EID_EXTENSION) {
353 			if (sub->datalen < 1)
354 				continue;
355 
356 			id = WLAN_EID_EXTENSION;
357 			ext_id = sub->data[0];
358 			match_len = 1;
359 
360 			if (ext_id == WLAN_EID_EXT_NON_INHERITANCE)
361 				continue;
362 		} else {
363 			id = sub->id;
364 			match_len = 0;
365 		}
366 
367 		/* Processed if one was included in the parent */
368 		if (cfg80211_find_elem_match(id, ie, ielen,
369 					     &ext_id, match_len, 0))
370 			continue;
371 
372 		if (!cfg80211_copy_elem_with_frags(sub, subie, subie_len,
373 						   &pos, new_ie, new_ie_len))
374 			return 0;
375 	}
376 
377 	return pos - new_ie;
378 }
379 EXPORT_SYMBOL_IF_CFG80211_KUNIT(cfg80211_gen_new_ie);
380 
381 static bool is_bss(struct cfg80211_bss *a, const u8 *bssid,
382 		   const u8 *ssid, size_t ssid_len)
383 {
384 	const struct cfg80211_bss_ies *ies;
385 	const struct element *ssid_elem;
386 
387 	if (bssid && !ether_addr_equal(a->bssid, bssid))
388 		return false;
389 
390 	if (!ssid)
391 		return true;
392 
393 	ies = rcu_access_pointer(a->ies);
394 	if (!ies)
395 		return false;
396 	ssid_elem = cfg80211_find_elem(WLAN_EID_SSID, ies->data, ies->len);
397 	if (!ssid_elem)
398 		return false;
399 	if (ssid_elem->datalen != ssid_len)
400 		return false;
401 	return memcmp(ssid_elem->data, ssid, ssid_len) == 0;
402 }
403 
404 static int
405 cfg80211_add_nontrans_list(struct cfg80211_bss *trans_bss,
406 			   struct cfg80211_bss *nontrans_bss)
407 {
408 	const struct element *ssid_elem;
409 	struct cfg80211_bss *bss = NULL;
410 
411 	rcu_read_lock();
412 	ssid_elem = ieee80211_bss_get_elem(nontrans_bss, WLAN_EID_SSID);
413 	if (!ssid_elem) {
414 		rcu_read_unlock();
415 		return -EINVAL;
416 	}
417 
418 	/* check if nontrans_bss is in the list */
419 	list_for_each_entry(bss, &trans_bss->nontrans_list, nontrans_list) {
420 		if (is_bss(bss, nontrans_bss->bssid, ssid_elem->data,
421 			   ssid_elem->datalen)) {
422 			rcu_read_unlock();
423 			return 0;
424 		}
425 	}
426 
427 	rcu_read_unlock();
428 
429 	/*
430 	 * This is a bit weird - it's not on the list, but already on another
431 	 * one! The only way that could happen is if there's some BSSID/SSID
432 	 * shared by multiple APs in their multi-BSSID profiles, potentially
433 	 * with hidden SSID mixed in ... ignore it.
434 	 */
435 	if (!list_empty(&nontrans_bss->nontrans_list))
436 		return -EINVAL;
437 
438 	/* add to the list */
439 	list_add_tail(&nontrans_bss->nontrans_list, &trans_bss->nontrans_list);
440 	return 0;
441 }
442 
443 static void __cfg80211_bss_expire(struct cfg80211_registered_device *rdev,
444 				  unsigned long expire_time)
445 {
446 	struct cfg80211_internal_bss *bss, *tmp;
447 	bool expired = false;
448 
449 	lockdep_assert_held(&rdev->bss_lock);
450 
451 	list_for_each_entry_safe(bss, tmp, &rdev->bss_list, list) {
452 		if (atomic_read(&bss->hold))
453 			continue;
454 		if (!time_after(expire_time, bss->ts))
455 			continue;
456 
457 		if (__cfg80211_unlink_bss(rdev, bss))
458 			expired = true;
459 	}
460 
461 	if (expired)
462 		rdev->bss_generation++;
463 }
464 
465 static bool cfg80211_bss_expire_oldest(struct cfg80211_registered_device *rdev)
466 {
467 	struct cfg80211_internal_bss *bss, *oldest = NULL;
468 	bool ret;
469 
470 	lockdep_assert_held(&rdev->bss_lock);
471 
472 	list_for_each_entry(bss, &rdev->bss_list, list) {
473 		if (atomic_read(&bss->hold))
474 			continue;
475 
476 		if (!list_empty(&bss->hidden_list) &&
477 		    !bss->pub.hidden_beacon_bss)
478 			continue;
479 
480 		if (oldest && time_before(oldest->ts, bss->ts))
481 			continue;
482 		oldest = bss;
483 	}
484 
485 	if (WARN_ON(!oldest))
486 		return false;
487 
488 	/*
489 	 * The callers make sure to increase rdev->bss_generation if anything
490 	 * gets removed (and a new entry added), so there's no need to also do
491 	 * it here.
492 	 */
493 
494 	ret = __cfg80211_unlink_bss(rdev, oldest);
495 	WARN_ON(!ret);
496 	return ret;
497 }
498 
499 static u8 cfg80211_parse_bss_param(u8 data,
500 				   struct cfg80211_colocated_ap *coloc_ap)
501 {
502 	coloc_ap->oct_recommended =
503 		u8_get_bits(data, IEEE80211_RNR_TBTT_PARAMS_OCT_RECOMMENDED);
504 	coloc_ap->same_ssid =
505 		u8_get_bits(data, IEEE80211_RNR_TBTT_PARAMS_SAME_SSID);
506 	coloc_ap->multi_bss =
507 		u8_get_bits(data, IEEE80211_RNR_TBTT_PARAMS_MULTI_BSSID);
508 	coloc_ap->transmitted_bssid =
509 		u8_get_bits(data, IEEE80211_RNR_TBTT_PARAMS_TRANSMITTED_BSSID);
510 	coloc_ap->unsolicited_probe =
511 		u8_get_bits(data, IEEE80211_RNR_TBTT_PARAMS_PROBE_ACTIVE);
512 	coloc_ap->colocated_ess =
513 		u8_get_bits(data, IEEE80211_RNR_TBTT_PARAMS_COLOC_ESS);
514 
515 	return u8_get_bits(data, IEEE80211_RNR_TBTT_PARAMS_COLOC_AP);
516 }
517 
518 static int cfg80211_calc_short_ssid(const struct cfg80211_bss_ies *ies,
519 				    const struct element **elem, u32 *s_ssid)
520 {
521 
522 	*elem = cfg80211_find_elem(WLAN_EID_SSID, ies->data, ies->len);
523 	if (!*elem || (*elem)->datalen > IEEE80211_MAX_SSID_LEN)
524 		return -EINVAL;
525 
526 	*s_ssid = ~crc32_le(~0, (*elem)->data, (*elem)->datalen);
527 	return 0;
528 }
529 
530 VISIBLE_IF_CFG80211_KUNIT void
531 cfg80211_free_coloc_ap_list(struct list_head *coloc_ap_list)
532 {
533 	struct cfg80211_colocated_ap *ap, *tmp_ap;
534 
535 	list_for_each_entry_safe(ap, tmp_ap, coloc_ap_list, list) {
536 		list_del(&ap->list);
537 		kfree(ap);
538 	}
539 }
540 EXPORT_SYMBOL_IF_CFG80211_KUNIT(cfg80211_free_coloc_ap_list);
541 
542 static int cfg80211_parse_ap_info(struct cfg80211_colocated_ap *entry,
543 				  const u8 *pos, u8 length,
544 				  const struct element *ssid_elem,
545 				  u32 s_ssid_tmp)
546 {
547 	u8 bss_params;
548 
549 	entry->psd_20 = IEEE80211_RNR_TBTT_PARAMS_PSD_RESERVED;
550 
551 	/* The length is already verified by the caller to contain bss_params */
552 	if (length > sizeof(struct ieee80211_tbtt_info_7_8_9)) {
553 		struct ieee80211_tbtt_info_ge_11 *tbtt_info = (void *)pos;
554 
555 		memcpy(entry->bssid, tbtt_info->bssid, ETH_ALEN);
556 		entry->short_ssid = le32_to_cpu(tbtt_info->short_ssid);
557 		entry->short_ssid_valid = true;
558 
559 		bss_params = tbtt_info->bss_params;
560 
561 		/* Ignore disabled links */
562 		if (length >= offsetofend(typeof(*tbtt_info), mld_params)) {
563 			if (le16_get_bits(tbtt_info->mld_params.params,
564 					  IEEE80211_RNR_MLD_PARAMS_DISABLED_LINK))
565 				return -EINVAL;
566 		}
567 
568 		if (length >= offsetofend(struct ieee80211_tbtt_info_ge_11,
569 					  psd_20))
570 			entry->psd_20 = tbtt_info->psd_20;
571 	} else {
572 		struct ieee80211_tbtt_info_7_8_9 *tbtt_info = (void *)pos;
573 
574 		memcpy(entry->bssid, tbtt_info->bssid, ETH_ALEN);
575 
576 		bss_params = tbtt_info->bss_params;
577 
578 		if (length == offsetofend(struct ieee80211_tbtt_info_7_8_9,
579 					  psd_20))
580 			entry->psd_20 = tbtt_info->psd_20;
581 	}
582 
583 	/* ignore entries with invalid BSSID */
584 	if (!is_valid_ether_addr(entry->bssid))
585 		return -EINVAL;
586 
587 	/* skip non colocated APs */
588 	if (!cfg80211_parse_bss_param(bss_params, entry))
589 		return -EINVAL;
590 
591 	/* no information about the short ssid. Consider the entry valid
592 	 * for now. It would later be dropped in case there are explicit
593 	 * SSIDs that need to be matched
594 	 */
595 	if (!entry->same_ssid && !entry->short_ssid_valid)
596 		return 0;
597 
598 	if (entry->same_ssid) {
599 		entry->short_ssid = s_ssid_tmp;
600 		entry->short_ssid_valid = true;
601 
602 		/*
603 		 * This is safe because we validate datalen in
604 		 * cfg80211_parse_colocated_ap(), before calling this
605 		 * function.
606 		 */
607 		memcpy(&entry->ssid, &ssid_elem->data, ssid_elem->datalen);
608 		entry->ssid_len = ssid_elem->datalen;
609 	}
610 
611 	return 0;
612 }
613 
614 bool cfg80211_iter_rnr(const u8 *elems, size_t elems_len,
615 		       enum cfg80211_rnr_iter_ret
616 		       (*iter)(void *data, u8 type,
617 			       const struct ieee80211_neighbor_ap_info *info,
618 			       const u8 *tbtt_info, u8 tbtt_info_len),
619 		       void *iter_data)
620 {
621 	const struct element *rnr;
622 	const u8 *pos, *end;
623 
624 	for_each_element_id(rnr, WLAN_EID_REDUCED_NEIGHBOR_REPORT,
625 			    elems, elems_len) {
626 		const struct ieee80211_neighbor_ap_info *info;
627 
628 		pos = rnr->data;
629 		end = rnr->data + rnr->datalen;
630 
631 		/* RNR IE may contain more than one NEIGHBOR_AP_INFO */
632 		while (sizeof(*info) <= end - pos) {
633 			u8 length, i, count;
634 			u8 type;
635 
636 			info = (void *)pos;
637 			count = u8_get_bits(info->tbtt_info_hdr,
638 					    IEEE80211_AP_INFO_TBTT_HDR_COUNT) +
639 				1;
640 			length = info->tbtt_info_len;
641 
642 			pos += sizeof(*info);
643 
644 			if (count * length > end - pos)
645 				return false;
646 
647 			type = u8_get_bits(info->tbtt_info_hdr,
648 					   IEEE80211_AP_INFO_TBTT_HDR_TYPE);
649 
650 			for (i = 0; i < count; i++) {
651 				switch (iter(iter_data, type, info,
652 					     pos, length)) {
653 				case RNR_ITER_CONTINUE:
654 					break;
655 				case RNR_ITER_BREAK:
656 					return true;
657 				case RNR_ITER_ERROR:
658 					return false;
659 				}
660 
661 				pos += length;
662 			}
663 		}
664 
665 		if (pos != end)
666 			return false;
667 	}
668 
669 	return true;
670 }
671 EXPORT_SYMBOL_GPL(cfg80211_iter_rnr);
672 
673 struct colocated_ap_data {
674 	const struct element *ssid_elem;
675 	struct list_head ap_list;
676 	u32 s_ssid_tmp;
677 	int n_coloc;
678 };
679 
680 static enum cfg80211_rnr_iter_ret
681 cfg80211_parse_colocated_ap_iter(void *_data, u8 type,
682 				 const struct ieee80211_neighbor_ap_info *info,
683 				 const u8 *tbtt_info, u8 tbtt_info_len)
684 {
685 	struct colocated_ap_data *data = _data;
686 	struct cfg80211_colocated_ap *entry;
687 	enum nl80211_band band;
688 
689 	if (type != IEEE80211_TBTT_INFO_TYPE_TBTT)
690 		return RNR_ITER_CONTINUE;
691 
692 	if (!ieee80211_operating_class_to_band(info->op_class, &band))
693 		return RNR_ITER_CONTINUE;
694 
695 	/* TBTT info must include bss param + BSSID + (short SSID or
696 	 * same_ssid bit to be set). Ignore other options, and move to
697 	 * the next AP info
698 	 */
699 	if (band != NL80211_BAND_6GHZ ||
700 	    !(tbtt_info_len == offsetofend(struct ieee80211_tbtt_info_7_8_9,
701 					   bss_params) ||
702 	      tbtt_info_len == sizeof(struct ieee80211_tbtt_info_7_8_9) ||
703 	      tbtt_info_len >= offsetofend(struct ieee80211_tbtt_info_ge_11,
704 					   bss_params)))
705 		return RNR_ITER_CONTINUE;
706 
707 	entry = kzalloc(sizeof(*entry) + IEEE80211_MAX_SSID_LEN, GFP_ATOMIC);
708 	if (!entry)
709 		return RNR_ITER_ERROR;
710 
711 	entry->center_freq =
712 		ieee80211_channel_to_frequency(info->channel, band);
713 
714 	if (!cfg80211_parse_ap_info(entry, tbtt_info, tbtt_info_len,
715 				    data->ssid_elem, data->s_ssid_tmp)) {
716 		data->n_coloc++;
717 		list_add_tail(&entry->list, &data->ap_list);
718 	} else {
719 		kfree(entry);
720 	}
721 
722 	return RNR_ITER_CONTINUE;
723 }
724 
725 VISIBLE_IF_CFG80211_KUNIT int
726 cfg80211_parse_colocated_ap(const struct cfg80211_bss_ies *ies,
727 			    struct list_head *list)
728 {
729 	struct colocated_ap_data data = {};
730 	int ret;
731 
732 	INIT_LIST_HEAD(&data.ap_list);
733 
734 	ret = cfg80211_calc_short_ssid(ies, &data.ssid_elem, &data.s_ssid_tmp);
735 	if (ret)
736 		return 0;
737 
738 	if (!cfg80211_iter_rnr(ies->data, ies->len,
739 			       cfg80211_parse_colocated_ap_iter, &data)) {
740 		cfg80211_free_coloc_ap_list(&data.ap_list);
741 		return 0;
742 	}
743 
744 	list_splice_tail(&data.ap_list, list);
745 	return data.n_coloc;
746 }
747 EXPORT_SYMBOL_IF_CFG80211_KUNIT(cfg80211_parse_colocated_ap);
748 
749 static  void cfg80211_scan_req_add_chan(struct cfg80211_scan_request *request,
750 					struct ieee80211_channel *chan,
751 					bool add_to_6ghz)
752 {
753 	int i;
754 	u32 n_channels = request->n_channels;
755 	struct cfg80211_scan_6ghz_params *params =
756 		&request->scan_6ghz_params[request->n_6ghz_params];
757 
758 	for (i = 0; i < n_channels; i++) {
759 		if (request->channels[i] == chan) {
760 			if (add_to_6ghz)
761 				params->channel_idx = i;
762 			return;
763 		}
764 	}
765 
766 	request->channels[n_channels] = chan;
767 	if (add_to_6ghz)
768 		request->scan_6ghz_params[request->n_6ghz_params].channel_idx =
769 			n_channels;
770 
771 	request->n_channels++;
772 }
773 
774 static bool cfg80211_find_ssid_match(struct cfg80211_colocated_ap *ap,
775 				     struct cfg80211_scan_request *request)
776 {
777 	int i;
778 	u32 s_ssid;
779 
780 	for (i = 0; i < request->n_ssids; i++) {
781 		/* wildcard ssid in the scan request */
782 		if (!request->ssids[i].ssid_len) {
783 			if (ap->multi_bss && !ap->transmitted_bssid)
784 				continue;
785 
786 			return true;
787 		}
788 
789 		if (ap->ssid_len &&
790 		    ap->ssid_len == request->ssids[i].ssid_len) {
791 			if (!memcmp(request->ssids[i].ssid, ap->ssid,
792 				    ap->ssid_len))
793 				return true;
794 		} else if (ap->short_ssid_valid) {
795 			s_ssid = ~crc32_le(~0, request->ssids[i].ssid,
796 					   request->ssids[i].ssid_len);
797 
798 			if (ap->short_ssid == s_ssid)
799 				return true;
800 		}
801 	}
802 
803 	return false;
804 }
805 
806 static int cfg80211_scan_6ghz(struct cfg80211_registered_device *rdev)
807 {
808 	u8 i;
809 	struct cfg80211_colocated_ap *ap;
810 	int n_channels, count = 0, err;
811 	struct cfg80211_scan_request *request, *rdev_req = rdev->scan_req;
812 	LIST_HEAD(coloc_ap_list);
813 	bool need_scan_psc = true;
814 	const struct ieee80211_sband_iftype_data *iftd;
815 	size_t size, offs_ssids, offs_6ghz_params, offs_ies;
816 
817 	rdev_req->scan_6ghz = true;
818 
819 	if (!rdev->wiphy.bands[NL80211_BAND_6GHZ])
820 		return -EOPNOTSUPP;
821 
822 	iftd = ieee80211_get_sband_iftype_data(rdev->wiphy.bands[NL80211_BAND_6GHZ],
823 					       rdev_req->wdev->iftype);
824 	if (!iftd || !iftd->he_cap.has_he)
825 		return -EOPNOTSUPP;
826 
827 	n_channels = rdev->wiphy.bands[NL80211_BAND_6GHZ]->n_channels;
828 
829 	if (rdev_req->flags & NL80211_SCAN_FLAG_COLOCATED_6GHZ) {
830 		struct cfg80211_internal_bss *intbss;
831 
832 		spin_lock_bh(&rdev->bss_lock);
833 		list_for_each_entry(intbss, &rdev->bss_list, list) {
834 			struct cfg80211_bss *res = &intbss->pub;
835 			const struct cfg80211_bss_ies *ies;
836 			const struct element *ssid_elem;
837 			struct cfg80211_colocated_ap *entry;
838 			u32 s_ssid_tmp;
839 			int ret;
840 
841 			ies = rcu_access_pointer(res->ies);
842 			count += cfg80211_parse_colocated_ap(ies,
843 							     &coloc_ap_list);
844 
845 			/* In case the scan request specified a specific BSSID
846 			 * and the BSS is found and operating on 6GHz band then
847 			 * add this AP to the collocated APs list.
848 			 * This is relevant for ML probe requests when the lower
849 			 * band APs have not been discovered.
850 			 */
851 			if (is_broadcast_ether_addr(rdev_req->bssid) ||
852 			    !ether_addr_equal(rdev_req->bssid, res->bssid) ||
853 			    res->channel->band != NL80211_BAND_6GHZ)
854 				continue;
855 
856 			ret = cfg80211_calc_short_ssid(ies, &ssid_elem,
857 						       &s_ssid_tmp);
858 			if (ret)
859 				continue;
860 
861 			entry = kzalloc(sizeof(*entry) + IEEE80211_MAX_SSID_LEN,
862 					GFP_ATOMIC);
863 
864 			if (!entry)
865 				continue;
866 
867 			memcpy(entry->bssid, res->bssid, ETH_ALEN);
868 			entry->short_ssid = s_ssid_tmp;
869 			memcpy(entry->ssid, ssid_elem->data,
870 			       ssid_elem->datalen);
871 			entry->ssid_len = ssid_elem->datalen;
872 			entry->short_ssid_valid = true;
873 			entry->center_freq = res->channel->center_freq;
874 
875 			list_add_tail(&entry->list, &coloc_ap_list);
876 			count++;
877 		}
878 		spin_unlock_bh(&rdev->bss_lock);
879 	}
880 
881 	size = struct_size(request, channels, n_channels);
882 	offs_ssids = size;
883 	size += sizeof(*request->ssids) * rdev_req->n_ssids;
884 	offs_6ghz_params = size;
885 	size += sizeof(*request->scan_6ghz_params) * count;
886 	offs_ies = size;
887 	size += rdev_req->ie_len;
888 
889 	request = kzalloc(size, GFP_KERNEL);
890 	if (!request) {
891 		cfg80211_free_coloc_ap_list(&coloc_ap_list);
892 		return -ENOMEM;
893 	}
894 
895 	*request = *rdev_req;
896 	request->n_channels = 0;
897 	request->n_6ghz_params = 0;
898 	if (rdev_req->n_ssids) {
899 		/*
900 		 * Add the ssids from the parent scan request to the new
901 		 * scan request, so the driver would be able to use them
902 		 * in its probe requests to discover hidden APs on PSC
903 		 * channels.
904 		 */
905 		request->ssids = (void *)request + offs_ssids;
906 		memcpy(request->ssids, rdev_req->ssids,
907 		       sizeof(*request->ssids) * request->n_ssids);
908 	}
909 	request->scan_6ghz_params = (void *)request + offs_6ghz_params;
910 
911 	if (rdev_req->ie_len) {
912 		void *ie = (void *)request + offs_ies;
913 
914 		memcpy(ie, rdev_req->ie, rdev_req->ie_len);
915 		request->ie = ie;
916 	}
917 
918 	/*
919 	 * PSC channels should not be scanned in case of direct scan with 1 SSID
920 	 * and at least one of the reported co-located APs with same SSID
921 	 * indicating that all APs in the same ESS are co-located
922 	 */
923 	if (count && request->n_ssids == 1 && request->ssids[0].ssid_len) {
924 		list_for_each_entry(ap, &coloc_ap_list, list) {
925 			if (ap->colocated_ess &&
926 			    cfg80211_find_ssid_match(ap, request)) {
927 				need_scan_psc = false;
928 				break;
929 			}
930 		}
931 	}
932 
933 	/*
934 	 * add to the scan request the channels that need to be scanned
935 	 * regardless of the collocated APs (PSC channels or all channels
936 	 * in case that NL80211_SCAN_FLAG_COLOCATED_6GHZ is not set)
937 	 */
938 	for (i = 0; i < rdev_req->n_channels; i++) {
939 		if (rdev_req->channels[i]->band == NL80211_BAND_6GHZ &&
940 		    ((need_scan_psc &&
941 		      cfg80211_channel_is_psc(rdev_req->channels[i])) ||
942 		     !(rdev_req->flags & NL80211_SCAN_FLAG_COLOCATED_6GHZ))) {
943 			cfg80211_scan_req_add_chan(request,
944 						   rdev_req->channels[i],
945 						   false);
946 		}
947 	}
948 
949 	if (!(rdev_req->flags & NL80211_SCAN_FLAG_COLOCATED_6GHZ))
950 		goto skip;
951 
952 	list_for_each_entry(ap, &coloc_ap_list, list) {
953 		bool found = false;
954 		struct cfg80211_scan_6ghz_params *scan_6ghz_params =
955 			&request->scan_6ghz_params[request->n_6ghz_params];
956 		struct ieee80211_channel *chan =
957 			ieee80211_get_channel(&rdev->wiphy, ap->center_freq);
958 
959 		if (!chan || chan->flags & IEEE80211_CHAN_DISABLED ||
960 		    !cfg80211_wdev_channel_allowed(rdev_req->wdev, chan))
961 			continue;
962 
963 		for (i = 0; i < rdev_req->n_channels; i++) {
964 			if (rdev_req->channels[i] == chan)
965 				found = true;
966 		}
967 
968 		if (!found)
969 			continue;
970 
971 		if (request->n_ssids > 0 &&
972 		    !cfg80211_find_ssid_match(ap, request))
973 			continue;
974 
975 		if (!is_broadcast_ether_addr(request->bssid) &&
976 		    !ether_addr_equal(request->bssid, ap->bssid))
977 			continue;
978 
979 		if (!request->n_ssids && ap->multi_bss && !ap->transmitted_bssid)
980 			continue;
981 
982 		cfg80211_scan_req_add_chan(request, chan, true);
983 		memcpy(scan_6ghz_params->bssid, ap->bssid, ETH_ALEN);
984 		scan_6ghz_params->short_ssid = ap->short_ssid;
985 		scan_6ghz_params->short_ssid_valid = ap->short_ssid_valid;
986 		scan_6ghz_params->unsolicited_probe = ap->unsolicited_probe;
987 		scan_6ghz_params->psd_20 = ap->psd_20;
988 
989 		/*
990 		 * If a PSC channel is added to the scan and 'need_scan_psc' is
991 		 * set to false, then all the APs that the scan logic is
992 		 * interested with on the channel are collocated and thus there
993 		 * is no need to perform the initial PSC channel listen.
994 		 */
995 		if (cfg80211_channel_is_psc(chan) && !need_scan_psc)
996 			scan_6ghz_params->psc_no_listen = true;
997 
998 		request->n_6ghz_params++;
999 	}
1000 
1001 skip:
1002 	cfg80211_free_coloc_ap_list(&coloc_ap_list);
1003 
1004 	if (request->n_channels) {
1005 		struct cfg80211_scan_request *old = rdev->int_scan_req;
1006 
1007 		rdev->int_scan_req = request;
1008 
1009 		/*
1010 		 * If this scan follows a previous scan, save the scan start
1011 		 * info from the first part of the scan
1012 		 */
1013 		if (old)
1014 			rdev->int_scan_req->info = old->info;
1015 
1016 		err = rdev_scan(rdev, request);
1017 		if (err) {
1018 			rdev->int_scan_req = old;
1019 			kfree(request);
1020 		} else {
1021 			kfree(old);
1022 		}
1023 
1024 		return err;
1025 	}
1026 
1027 	kfree(request);
1028 	return -EINVAL;
1029 }
1030 
1031 int cfg80211_scan(struct cfg80211_registered_device *rdev)
1032 {
1033 	struct cfg80211_scan_request *request;
1034 	struct cfg80211_scan_request *rdev_req = rdev->scan_req;
1035 	u32 n_channels = 0, idx, i;
1036 
1037 	if (!(rdev->wiphy.flags & WIPHY_FLAG_SPLIT_SCAN_6GHZ))
1038 		return rdev_scan(rdev, rdev_req);
1039 
1040 	for (i = 0; i < rdev_req->n_channels; i++) {
1041 		if (rdev_req->channels[i]->band != NL80211_BAND_6GHZ)
1042 			n_channels++;
1043 	}
1044 
1045 	if (!n_channels)
1046 		return cfg80211_scan_6ghz(rdev);
1047 
1048 	request = kzalloc(struct_size(request, channels, n_channels),
1049 			  GFP_KERNEL);
1050 	if (!request)
1051 		return -ENOMEM;
1052 
1053 	*request = *rdev_req;
1054 	request->n_channels = n_channels;
1055 
1056 	for (i = idx = 0; i < rdev_req->n_channels; i++) {
1057 		if (rdev_req->channels[i]->band != NL80211_BAND_6GHZ)
1058 			request->channels[idx++] = rdev_req->channels[i];
1059 	}
1060 
1061 	rdev_req->scan_6ghz = false;
1062 	rdev->int_scan_req = request;
1063 	return rdev_scan(rdev, request);
1064 }
1065 
1066 void ___cfg80211_scan_done(struct cfg80211_registered_device *rdev,
1067 			   bool send_message)
1068 {
1069 	struct cfg80211_scan_request *request, *rdev_req;
1070 	struct wireless_dev *wdev;
1071 	struct sk_buff *msg;
1072 #ifdef CONFIG_CFG80211_WEXT
1073 	union iwreq_data wrqu;
1074 #endif
1075 
1076 	lockdep_assert_held(&rdev->wiphy.mtx);
1077 
1078 	if (rdev->scan_msg) {
1079 		nl80211_send_scan_msg(rdev, rdev->scan_msg);
1080 		rdev->scan_msg = NULL;
1081 		return;
1082 	}
1083 
1084 	rdev_req = rdev->scan_req;
1085 	if (!rdev_req)
1086 		return;
1087 
1088 	wdev = rdev_req->wdev;
1089 	request = rdev->int_scan_req ? rdev->int_scan_req : rdev_req;
1090 
1091 	if (wdev_running(wdev) &&
1092 	    (rdev->wiphy.flags & WIPHY_FLAG_SPLIT_SCAN_6GHZ) &&
1093 	    !rdev_req->scan_6ghz && !request->info.aborted &&
1094 	    !cfg80211_scan_6ghz(rdev))
1095 		return;
1096 
1097 	/*
1098 	 * This must be before sending the other events!
1099 	 * Otherwise, wpa_supplicant gets completely confused with
1100 	 * wext events.
1101 	 */
1102 	if (wdev->netdev)
1103 		cfg80211_sme_scan_done(wdev->netdev);
1104 
1105 	if (!request->info.aborted &&
1106 	    request->flags & NL80211_SCAN_FLAG_FLUSH) {
1107 		/* flush entries from previous scans */
1108 		spin_lock_bh(&rdev->bss_lock);
1109 		__cfg80211_bss_expire(rdev, request->scan_start);
1110 		spin_unlock_bh(&rdev->bss_lock);
1111 	}
1112 
1113 	msg = nl80211_build_scan_msg(rdev, wdev, request->info.aborted);
1114 
1115 #ifdef CONFIG_CFG80211_WEXT
1116 	if (wdev->netdev && !request->info.aborted) {
1117 		memset(&wrqu, 0, sizeof(wrqu));
1118 
1119 		wireless_send_event(wdev->netdev, SIOCGIWSCAN, &wrqu, NULL);
1120 	}
1121 #endif
1122 
1123 	dev_put(wdev->netdev);
1124 
1125 	kfree(rdev->int_scan_req);
1126 	rdev->int_scan_req = NULL;
1127 
1128 	kfree(rdev->scan_req);
1129 	rdev->scan_req = NULL;
1130 
1131 	if (!send_message)
1132 		rdev->scan_msg = msg;
1133 	else
1134 		nl80211_send_scan_msg(rdev, msg);
1135 }
1136 
1137 void __cfg80211_scan_done(struct wiphy *wiphy, struct wiphy_work *wk)
1138 {
1139 	___cfg80211_scan_done(wiphy_to_rdev(wiphy), true);
1140 }
1141 
1142 void cfg80211_scan_done(struct cfg80211_scan_request *request,
1143 			struct cfg80211_scan_info *info)
1144 {
1145 	struct cfg80211_scan_info old_info = request->info;
1146 
1147 	trace_cfg80211_scan_done(request, info);
1148 	WARN_ON(request != wiphy_to_rdev(request->wiphy)->scan_req &&
1149 		request != wiphy_to_rdev(request->wiphy)->int_scan_req);
1150 
1151 	request->info = *info;
1152 
1153 	/*
1154 	 * In case the scan is split, the scan_start_tsf and tsf_bssid should
1155 	 * be of the first part. In such a case old_info.scan_start_tsf should
1156 	 * be non zero.
1157 	 */
1158 	if (request->scan_6ghz && old_info.scan_start_tsf) {
1159 		request->info.scan_start_tsf = old_info.scan_start_tsf;
1160 		memcpy(request->info.tsf_bssid, old_info.tsf_bssid,
1161 		       sizeof(request->info.tsf_bssid));
1162 	}
1163 
1164 	request->notified = true;
1165 	wiphy_work_queue(request->wiphy,
1166 			 &wiphy_to_rdev(request->wiphy)->scan_done_wk);
1167 }
1168 EXPORT_SYMBOL(cfg80211_scan_done);
1169 
1170 void cfg80211_add_sched_scan_req(struct cfg80211_registered_device *rdev,
1171 				 struct cfg80211_sched_scan_request *req)
1172 {
1173 	lockdep_assert_held(&rdev->wiphy.mtx);
1174 
1175 	list_add_rcu(&req->list, &rdev->sched_scan_req_list);
1176 }
1177 
1178 static void cfg80211_del_sched_scan_req(struct cfg80211_registered_device *rdev,
1179 					struct cfg80211_sched_scan_request *req)
1180 {
1181 	lockdep_assert_held(&rdev->wiphy.mtx);
1182 
1183 	list_del_rcu(&req->list);
1184 	kfree_rcu(req, rcu_head);
1185 }
1186 
1187 static struct cfg80211_sched_scan_request *
1188 cfg80211_find_sched_scan_req(struct cfg80211_registered_device *rdev, u64 reqid)
1189 {
1190 	struct cfg80211_sched_scan_request *pos;
1191 
1192 	list_for_each_entry_rcu(pos, &rdev->sched_scan_req_list, list,
1193 				lockdep_is_held(&rdev->wiphy.mtx)) {
1194 		if (pos->reqid == reqid)
1195 			return pos;
1196 	}
1197 	return NULL;
1198 }
1199 
1200 /*
1201  * Determines if a scheduled scan request can be handled. When a legacy
1202  * scheduled scan is running no other scheduled scan is allowed regardless
1203  * whether the request is for legacy or multi-support scan. When a multi-support
1204  * scheduled scan is running a request for legacy scan is not allowed. In this
1205  * case a request for multi-support scan can be handled if resources are
1206  * available, ie. struct wiphy::max_sched_scan_reqs limit is not yet reached.
1207  */
1208 int cfg80211_sched_scan_req_possible(struct cfg80211_registered_device *rdev,
1209 				     bool want_multi)
1210 {
1211 	struct cfg80211_sched_scan_request *pos;
1212 	int i = 0;
1213 
1214 	list_for_each_entry(pos, &rdev->sched_scan_req_list, list) {
1215 		/* request id zero means legacy in progress */
1216 		if (!i && !pos->reqid)
1217 			return -EINPROGRESS;
1218 		i++;
1219 	}
1220 
1221 	if (i) {
1222 		/* no legacy allowed when multi request(s) are active */
1223 		if (!want_multi)
1224 			return -EINPROGRESS;
1225 
1226 		/* resource limit reached */
1227 		if (i == rdev->wiphy.max_sched_scan_reqs)
1228 			return -ENOSPC;
1229 	}
1230 	return 0;
1231 }
1232 
1233 void cfg80211_sched_scan_results_wk(struct work_struct *work)
1234 {
1235 	struct cfg80211_registered_device *rdev;
1236 	struct cfg80211_sched_scan_request *req, *tmp;
1237 
1238 	rdev = container_of(work, struct cfg80211_registered_device,
1239 			   sched_scan_res_wk);
1240 
1241 	wiphy_lock(&rdev->wiphy);
1242 	list_for_each_entry_safe(req, tmp, &rdev->sched_scan_req_list, list) {
1243 		if (req->report_results) {
1244 			req->report_results = false;
1245 			if (req->flags & NL80211_SCAN_FLAG_FLUSH) {
1246 				/* flush entries from previous scans */
1247 				spin_lock_bh(&rdev->bss_lock);
1248 				__cfg80211_bss_expire(rdev, req->scan_start);
1249 				spin_unlock_bh(&rdev->bss_lock);
1250 				req->scan_start = jiffies;
1251 			}
1252 			nl80211_send_sched_scan(req,
1253 						NL80211_CMD_SCHED_SCAN_RESULTS);
1254 		}
1255 	}
1256 	wiphy_unlock(&rdev->wiphy);
1257 }
1258 
1259 void cfg80211_sched_scan_results(struct wiphy *wiphy, u64 reqid)
1260 {
1261 	struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
1262 	struct cfg80211_sched_scan_request *request;
1263 
1264 	trace_cfg80211_sched_scan_results(wiphy, reqid);
1265 	/* ignore if we're not scanning */
1266 
1267 	rcu_read_lock();
1268 	request = cfg80211_find_sched_scan_req(rdev, reqid);
1269 	if (request) {
1270 		request->report_results = true;
1271 		queue_work(cfg80211_wq, &rdev->sched_scan_res_wk);
1272 	}
1273 	rcu_read_unlock();
1274 }
1275 EXPORT_SYMBOL(cfg80211_sched_scan_results);
1276 
1277 void cfg80211_sched_scan_stopped_locked(struct wiphy *wiphy, u64 reqid)
1278 {
1279 	struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
1280 
1281 	lockdep_assert_held(&wiphy->mtx);
1282 
1283 	trace_cfg80211_sched_scan_stopped(wiphy, reqid);
1284 
1285 	__cfg80211_stop_sched_scan(rdev, reqid, true);
1286 }
1287 EXPORT_SYMBOL(cfg80211_sched_scan_stopped_locked);
1288 
1289 void cfg80211_sched_scan_stopped(struct wiphy *wiphy, u64 reqid)
1290 {
1291 	wiphy_lock(wiphy);
1292 	cfg80211_sched_scan_stopped_locked(wiphy, reqid);
1293 	wiphy_unlock(wiphy);
1294 }
1295 EXPORT_SYMBOL(cfg80211_sched_scan_stopped);
1296 
1297 int cfg80211_stop_sched_scan_req(struct cfg80211_registered_device *rdev,
1298 				 struct cfg80211_sched_scan_request *req,
1299 				 bool driver_initiated)
1300 {
1301 	lockdep_assert_held(&rdev->wiphy.mtx);
1302 
1303 	if (!driver_initiated) {
1304 		int err = rdev_sched_scan_stop(rdev, req->dev, req->reqid);
1305 		if (err)
1306 			return err;
1307 	}
1308 
1309 	nl80211_send_sched_scan(req, NL80211_CMD_SCHED_SCAN_STOPPED);
1310 
1311 	cfg80211_del_sched_scan_req(rdev, req);
1312 
1313 	return 0;
1314 }
1315 
1316 int __cfg80211_stop_sched_scan(struct cfg80211_registered_device *rdev,
1317 			       u64 reqid, bool driver_initiated)
1318 {
1319 	struct cfg80211_sched_scan_request *sched_scan_req;
1320 
1321 	lockdep_assert_held(&rdev->wiphy.mtx);
1322 
1323 	sched_scan_req = cfg80211_find_sched_scan_req(rdev, reqid);
1324 	if (!sched_scan_req)
1325 		return -ENOENT;
1326 
1327 	return cfg80211_stop_sched_scan_req(rdev, sched_scan_req,
1328 					    driver_initiated);
1329 }
1330 
1331 void cfg80211_bss_age(struct cfg80211_registered_device *rdev,
1332                       unsigned long age_secs)
1333 {
1334 	struct cfg80211_internal_bss *bss;
1335 	unsigned long age_jiffies = msecs_to_jiffies(age_secs * MSEC_PER_SEC);
1336 
1337 	spin_lock_bh(&rdev->bss_lock);
1338 	list_for_each_entry(bss, &rdev->bss_list, list)
1339 		bss->ts -= age_jiffies;
1340 	spin_unlock_bh(&rdev->bss_lock);
1341 }
1342 
1343 void cfg80211_bss_expire(struct cfg80211_registered_device *rdev)
1344 {
1345 	__cfg80211_bss_expire(rdev, jiffies - IEEE80211_SCAN_RESULT_EXPIRE);
1346 }
1347 
1348 void cfg80211_bss_flush(struct wiphy *wiphy)
1349 {
1350 	struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
1351 
1352 	spin_lock_bh(&rdev->bss_lock);
1353 	__cfg80211_bss_expire(rdev, jiffies);
1354 	spin_unlock_bh(&rdev->bss_lock);
1355 }
1356 EXPORT_SYMBOL(cfg80211_bss_flush);
1357 
1358 const struct element *
1359 cfg80211_find_elem_match(u8 eid, const u8 *ies, unsigned int len,
1360 			 const u8 *match, unsigned int match_len,
1361 			 unsigned int match_offset)
1362 {
1363 	const struct element *elem;
1364 
1365 	for_each_element_id(elem, eid, ies, len) {
1366 		if (elem->datalen >= match_offset + match_len &&
1367 		    !memcmp(elem->data + match_offset, match, match_len))
1368 			return elem;
1369 	}
1370 
1371 	return NULL;
1372 }
1373 EXPORT_SYMBOL(cfg80211_find_elem_match);
1374 
1375 const struct element *cfg80211_find_vendor_elem(unsigned int oui, int oui_type,
1376 						const u8 *ies,
1377 						unsigned int len)
1378 {
1379 	const struct element *elem;
1380 	u8 match[] = { oui >> 16, oui >> 8, oui, oui_type };
1381 	int match_len = (oui_type < 0) ? 3 : sizeof(match);
1382 
1383 	if (WARN_ON(oui_type > 0xff))
1384 		return NULL;
1385 
1386 	elem = cfg80211_find_elem_match(WLAN_EID_VENDOR_SPECIFIC, ies, len,
1387 					match, match_len, 0);
1388 
1389 	if (!elem || elem->datalen < 4)
1390 		return NULL;
1391 
1392 	return elem;
1393 }
1394 EXPORT_SYMBOL(cfg80211_find_vendor_elem);
1395 
1396 /**
1397  * enum bss_compare_mode - BSS compare mode
1398  * @BSS_CMP_REGULAR: regular compare mode (for insertion and normal find)
1399  * @BSS_CMP_HIDE_ZLEN: find hidden SSID with zero-length mode
1400  * @BSS_CMP_HIDE_NUL: find hidden SSID with NUL-ed out mode
1401  */
1402 enum bss_compare_mode {
1403 	BSS_CMP_REGULAR,
1404 	BSS_CMP_HIDE_ZLEN,
1405 	BSS_CMP_HIDE_NUL,
1406 };
1407 
1408 static int cmp_bss(struct cfg80211_bss *a,
1409 		   struct cfg80211_bss *b,
1410 		   enum bss_compare_mode mode)
1411 {
1412 	const struct cfg80211_bss_ies *a_ies, *b_ies;
1413 	const u8 *ie1 = NULL;
1414 	const u8 *ie2 = NULL;
1415 	int i, r;
1416 
1417 	if (a->channel != b->channel)
1418 		return (b->channel->center_freq * 1000 + b->channel->freq_offset) -
1419 		       (a->channel->center_freq * 1000 + a->channel->freq_offset);
1420 
1421 	a_ies = rcu_access_pointer(a->ies);
1422 	if (!a_ies)
1423 		return -1;
1424 	b_ies = rcu_access_pointer(b->ies);
1425 	if (!b_ies)
1426 		return 1;
1427 
1428 	if (WLAN_CAPABILITY_IS_STA_BSS(a->capability))
1429 		ie1 = cfg80211_find_ie(WLAN_EID_MESH_ID,
1430 				       a_ies->data, a_ies->len);
1431 	if (WLAN_CAPABILITY_IS_STA_BSS(b->capability))
1432 		ie2 = cfg80211_find_ie(WLAN_EID_MESH_ID,
1433 				       b_ies->data, b_ies->len);
1434 	if (ie1 && ie2) {
1435 		int mesh_id_cmp;
1436 
1437 		if (ie1[1] == ie2[1])
1438 			mesh_id_cmp = memcmp(ie1 + 2, ie2 + 2, ie1[1]);
1439 		else
1440 			mesh_id_cmp = ie2[1] - ie1[1];
1441 
1442 		ie1 = cfg80211_find_ie(WLAN_EID_MESH_CONFIG,
1443 				       a_ies->data, a_ies->len);
1444 		ie2 = cfg80211_find_ie(WLAN_EID_MESH_CONFIG,
1445 				       b_ies->data, b_ies->len);
1446 		if (ie1 && ie2) {
1447 			if (mesh_id_cmp)
1448 				return mesh_id_cmp;
1449 			if (ie1[1] != ie2[1])
1450 				return ie2[1] - ie1[1];
1451 			return memcmp(ie1 + 2, ie2 + 2, ie1[1]);
1452 		}
1453 	}
1454 
1455 	r = memcmp(a->bssid, b->bssid, sizeof(a->bssid));
1456 	if (r)
1457 		return r;
1458 
1459 	ie1 = cfg80211_find_ie(WLAN_EID_SSID, a_ies->data, a_ies->len);
1460 	ie2 = cfg80211_find_ie(WLAN_EID_SSID, b_ies->data, b_ies->len);
1461 
1462 	if (!ie1 && !ie2)
1463 		return 0;
1464 
1465 	/*
1466 	 * Note that with "hide_ssid", the function returns a match if
1467 	 * the already-present BSS ("b") is a hidden SSID beacon for
1468 	 * the new BSS ("a").
1469 	 */
1470 
1471 	/* sort missing IE before (left of) present IE */
1472 	if (!ie1)
1473 		return -1;
1474 	if (!ie2)
1475 		return 1;
1476 
1477 	switch (mode) {
1478 	case BSS_CMP_HIDE_ZLEN:
1479 		/*
1480 		 * In ZLEN mode we assume the BSS entry we're
1481 		 * looking for has a zero-length SSID. So if
1482 		 * the one we're looking at right now has that,
1483 		 * return 0. Otherwise, return the difference
1484 		 * in length, but since we're looking for the
1485 		 * 0-length it's really equivalent to returning
1486 		 * the length of the one we're looking at.
1487 		 *
1488 		 * No content comparison is needed as we assume
1489 		 * the content length is zero.
1490 		 */
1491 		return ie2[1];
1492 	case BSS_CMP_REGULAR:
1493 	default:
1494 		/* sort by length first, then by contents */
1495 		if (ie1[1] != ie2[1])
1496 			return ie2[1] - ie1[1];
1497 		return memcmp(ie1 + 2, ie2 + 2, ie1[1]);
1498 	case BSS_CMP_HIDE_NUL:
1499 		if (ie1[1] != ie2[1])
1500 			return ie2[1] - ie1[1];
1501 		/* this is equivalent to memcmp(zeroes, ie2 + 2, len) */
1502 		for (i = 0; i < ie2[1]; i++)
1503 			if (ie2[i + 2])
1504 				return -1;
1505 		return 0;
1506 	}
1507 }
1508 
1509 static bool cfg80211_bss_type_match(u16 capability,
1510 				    enum nl80211_band band,
1511 				    enum ieee80211_bss_type bss_type)
1512 {
1513 	bool ret = true;
1514 	u16 mask, val;
1515 
1516 	if (bss_type == IEEE80211_BSS_TYPE_ANY)
1517 		return ret;
1518 
1519 	if (band == NL80211_BAND_60GHZ) {
1520 		mask = WLAN_CAPABILITY_DMG_TYPE_MASK;
1521 		switch (bss_type) {
1522 		case IEEE80211_BSS_TYPE_ESS:
1523 			val = WLAN_CAPABILITY_DMG_TYPE_AP;
1524 			break;
1525 		case IEEE80211_BSS_TYPE_PBSS:
1526 			val = WLAN_CAPABILITY_DMG_TYPE_PBSS;
1527 			break;
1528 		case IEEE80211_BSS_TYPE_IBSS:
1529 			val = WLAN_CAPABILITY_DMG_TYPE_IBSS;
1530 			break;
1531 		default:
1532 			return false;
1533 		}
1534 	} else {
1535 		mask = WLAN_CAPABILITY_ESS | WLAN_CAPABILITY_IBSS;
1536 		switch (bss_type) {
1537 		case IEEE80211_BSS_TYPE_ESS:
1538 			val = WLAN_CAPABILITY_ESS;
1539 			break;
1540 		case IEEE80211_BSS_TYPE_IBSS:
1541 			val = WLAN_CAPABILITY_IBSS;
1542 			break;
1543 		case IEEE80211_BSS_TYPE_MBSS:
1544 			val = 0;
1545 			break;
1546 		default:
1547 			return false;
1548 		}
1549 	}
1550 
1551 	ret = ((capability & mask) == val);
1552 	return ret;
1553 }
1554 
1555 /* Returned bss is reference counted and must be cleaned up appropriately. */
1556 struct cfg80211_bss *__cfg80211_get_bss(struct wiphy *wiphy,
1557 					struct ieee80211_channel *channel,
1558 					const u8 *bssid,
1559 					const u8 *ssid, size_t ssid_len,
1560 					enum ieee80211_bss_type bss_type,
1561 					enum ieee80211_privacy privacy,
1562 					u32 use_for)
1563 {
1564 	struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
1565 	struct cfg80211_internal_bss *bss, *res = NULL;
1566 	unsigned long now = jiffies;
1567 	int bss_privacy;
1568 
1569 	trace_cfg80211_get_bss(wiphy, channel, bssid, ssid, ssid_len, bss_type,
1570 			       privacy);
1571 
1572 	spin_lock_bh(&rdev->bss_lock);
1573 
1574 	list_for_each_entry(bss, &rdev->bss_list, list) {
1575 		if (!cfg80211_bss_type_match(bss->pub.capability,
1576 					     bss->pub.channel->band, bss_type))
1577 			continue;
1578 
1579 		bss_privacy = (bss->pub.capability & WLAN_CAPABILITY_PRIVACY);
1580 		if ((privacy == IEEE80211_PRIVACY_ON && !bss_privacy) ||
1581 		    (privacy == IEEE80211_PRIVACY_OFF && bss_privacy))
1582 			continue;
1583 		if (channel && bss->pub.channel != channel)
1584 			continue;
1585 		if (!is_valid_ether_addr(bss->pub.bssid))
1586 			continue;
1587 		if ((bss->pub.use_for & use_for) != use_for)
1588 			continue;
1589 		/* Don't get expired BSS structs */
1590 		if (time_after(now, bss->ts + IEEE80211_SCAN_RESULT_EXPIRE) &&
1591 		    !atomic_read(&bss->hold))
1592 			continue;
1593 		if (is_bss(&bss->pub, bssid, ssid, ssid_len)) {
1594 			res = bss;
1595 			bss_ref_get(rdev, res);
1596 			break;
1597 		}
1598 	}
1599 
1600 	spin_unlock_bh(&rdev->bss_lock);
1601 	if (!res)
1602 		return NULL;
1603 	trace_cfg80211_return_bss(&res->pub);
1604 	return &res->pub;
1605 }
1606 EXPORT_SYMBOL(__cfg80211_get_bss);
1607 
1608 static bool rb_insert_bss(struct cfg80211_registered_device *rdev,
1609 			  struct cfg80211_internal_bss *bss)
1610 {
1611 	struct rb_node **p = &rdev->bss_tree.rb_node;
1612 	struct rb_node *parent = NULL;
1613 	struct cfg80211_internal_bss *tbss;
1614 	int cmp;
1615 
1616 	while (*p) {
1617 		parent = *p;
1618 		tbss = rb_entry(parent, struct cfg80211_internal_bss, rbn);
1619 
1620 		cmp = cmp_bss(&bss->pub, &tbss->pub, BSS_CMP_REGULAR);
1621 
1622 		if (WARN_ON(!cmp)) {
1623 			/* will sort of leak this BSS */
1624 			return false;
1625 		}
1626 
1627 		if (cmp < 0)
1628 			p = &(*p)->rb_left;
1629 		else
1630 			p = &(*p)->rb_right;
1631 	}
1632 
1633 	rb_link_node(&bss->rbn, parent, p);
1634 	rb_insert_color(&bss->rbn, &rdev->bss_tree);
1635 	return true;
1636 }
1637 
1638 static struct cfg80211_internal_bss *
1639 rb_find_bss(struct cfg80211_registered_device *rdev,
1640 	    struct cfg80211_internal_bss *res,
1641 	    enum bss_compare_mode mode)
1642 {
1643 	struct rb_node *n = rdev->bss_tree.rb_node;
1644 	struct cfg80211_internal_bss *bss;
1645 	int r;
1646 
1647 	while (n) {
1648 		bss = rb_entry(n, struct cfg80211_internal_bss, rbn);
1649 		r = cmp_bss(&res->pub, &bss->pub, mode);
1650 
1651 		if (r == 0)
1652 			return bss;
1653 		else if (r < 0)
1654 			n = n->rb_left;
1655 		else
1656 			n = n->rb_right;
1657 	}
1658 
1659 	return NULL;
1660 }
1661 
1662 static void cfg80211_insert_bss(struct cfg80211_registered_device *rdev,
1663 				struct cfg80211_internal_bss *bss)
1664 {
1665 	lockdep_assert_held(&rdev->bss_lock);
1666 
1667 	if (!rb_insert_bss(rdev, bss))
1668 		return;
1669 	list_add_tail(&bss->list, &rdev->bss_list);
1670 	rdev->bss_entries++;
1671 }
1672 
1673 static void cfg80211_rehash_bss(struct cfg80211_registered_device *rdev,
1674                                 struct cfg80211_internal_bss *bss)
1675 {
1676 	lockdep_assert_held(&rdev->bss_lock);
1677 
1678 	rb_erase(&bss->rbn, &rdev->bss_tree);
1679 	if (!rb_insert_bss(rdev, bss)) {
1680 		list_del(&bss->list);
1681 		if (!list_empty(&bss->hidden_list))
1682 			list_del_init(&bss->hidden_list);
1683 		if (!list_empty(&bss->pub.nontrans_list))
1684 			list_del_init(&bss->pub.nontrans_list);
1685 		rdev->bss_entries--;
1686 	}
1687 	rdev->bss_generation++;
1688 }
1689 
1690 static bool cfg80211_combine_bsses(struct cfg80211_registered_device *rdev,
1691 				   struct cfg80211_internal_bss *new)
1692 {
1693 	const struct cfg80211_bss_ies *ies;
1694 	struct cfg80211_internal_bss *bss;
1695 	const u8 *ie;
1696 	int i, ssidlen;
1697 	u8 fold = 0;
1698 	u32 n_entries = 0;
1699 
1700 	ies = rcu_access_pointer(new->pub.beacon_ies);
1701 	if (WARN_ON(!ies))
1702 		return false;
1703 
1704 	ie = cfg80211_find_ie(WLAN_EID_SSID, ies->data, ies->len);
1705 	if (!ie) {
1706 		/* nothing to do */
1707 		return true;
1708 	}
1709 
1710 	ssidlen = ie[1];
1711 	for (i = 0; i < ssidlen; i++)
1712 		fold |= ie[2 + i];
1713 
1714 	if (fold) {
1715 		/* not a hidden SSID */
1716 		return true;
1717 	}
1718 
1719 	/* This is the bad part ... */
1720 
1721 	list_for_each_entry(bss, &rdev->bss_list, list) {
1722 		/*
1723 		 * we're iterating all the entries anyway, so take the
1724 		 * opportunity to validate the list length accounting
1725 		 */
1726 		n_entries++;
1727 
1728 		if (!ether_addr_equal(bss->pub.bssid, new->pub.bssid))
1729 			continue;
1730 		if (bss->pub.channel != new->pub.channel)
1731 			continue;
1732 		if (rcu_access_pointer(bss->pub.beacon_ies))
1733 			continue;
1734 		ies = rcu_access_pointer(bss->pub.ies);
1735 		if (!ies)
1736 			continue;
1737 		ie = cfg80211_find_ie(WLAN_EID_SSID, ies->data, ies->len);
1738 		if (!ie)
1739 			continue;
1740 		if (ssidlen && ie[1] != ssidlen)
1741 			continue;
1742 		if (WARN_ON_ONCE(bss->pub.hidden_beacon_bss))
1743 			continue;
1744 		if (WARN_ON_ONCE(!list_empty(&bss->hidden_list)))
1745 			list_del(&bss->hidden_list);
1746 		/* combine them */
1747 		list_add(&bss->hidden_list, &new->hidden_list);
1748 		bss->pub.hidden_beacon_bss = &new->pub;
1749 		new->refcount += bss->refcount;
1750 		rcu_assign_pointer(bss->pub.beacon_ies,
1751 				   new->pub.beacon_ies);
1752 	}
1753 
1754 	WARN_ONCE(n_entries != rdev->bss_entries,
1755 		  "rdev bss entries[%d]/list[len:%d] corruption\n",
1756 		  rdev->bss_entries, n_entries);
1757 
1758 	return true;
1759 }
1760 
1761 static void cfg80211_update_hidden_bsses(struct cfg80211_internal_bss *known,
1762 					 const struct cfg80211_bss_ies *new_ies,
1763 					 const struct cfg80211_bss_ies *old_ies)
1764 {
1765 	struct cfg80211_internal_bss *bss;
1766 
1767 	/* Assign beacon IEs to all sub entries */
1768 	list_for_each_entry(bss, &known->hidden_list, hidden_list) {
1769 		const struct cfg80211_bss_ies *ies;
1770 
1771 		ies = rcu_access_pointer(bss->pub.beacon_ies);
1772 		WARN_ON(ies != old_ies);
1773 
1774 		rcu_assign_pointer(bss->pub.beacon_ies, new_ies);
1775 	}
1776 }
1777 
1778 static void cfg80211_check_stuck_ecsa(struct cfg80211_registered_device *rdev,
1779 				      struct cfg80211_internal_bss *known,
1780 				      const struct cfg80211_bss_ies *old)
1781 {
1782 	const struct ieee80211_ext_chansw_ie *ecsa;
1783 	const struct element *elem_new, *elem_old;
1784 	const struct cfg80211_bss_ies *new, *bcn;
1785 
1786 	if (known->pub.proberesp_ecsa_stuck)
1787 		return;
1788 
1789 	new = rcu_dereference_protected(known->pub.proberesp_ies,
1790 					lockdep_is_held(&rdev->bss_lock));
1791 	if (WARN_ON(!new))
1792 		return;
1793 
1794 	if (new->tsf - old->tsf < USEC_PER_SEC)
1795 		return;
1796 
1797 	elem_old = cfg80211_find_elem(WLAN_EID_EXT_CHANSWITCH_ANN,
1798 				      old->data, old->len);
1799 	if (!elem_old)
1800 		return;
1801 
1802 	elem_new = cfg80211_find_elem(WLAN_EID_EXT_CHANSWITCH_ANN,
1803 				      new->data, new->len);
1804 	if (!elem_new)
1805 		return;
1806 
1807 	bcn = rcu_dereference_protected(known->pub.beacon_ies,
1808 					lockdep_is_held(&rdev->bss_lock));
1809 	if (bcn &&
1810 	    cfg80211_find_elem(WLAN_EID_EXT_CHANSWITCH_ANN,
1811 			       bcn->data, bcn->len))
1812 		return;
1813 
1814 	if (elem_new->datalen != elem_old->datalen)
1815 		return;
1816 	if (elem_new->datalen < sizeof(struct ieee80211_ext_chansw_ie))
1817 		return;
1818 	if (memcmp(elem_new->data, elem_old->data, elem_new->datalen))
1819 		return;
1820 
1821 	ecsa = (void *)elem_new->data;
1822 
1823 	if (!ecsa->mode)
1824 		return;
1825 
1826 	if (ecsa->new_ch_num !=
1827 	    ieee80211_frequency_to_channel(known->pub.channel->center_freq))
1828 		return;
1829 
1830 	known->pub.proberesp_ecsa_stuck = 1;
1831 }
1832 
1833 static bool
1834 cfg80211_update_known_bss(struct cfg80211_registered_device *rdev,
1835 			  struct cfg80211_internal_bss *known,
1836 			  struct cfg80211_internal_bss *new,
1837 			  bool signal_valid)
1838 {
1839 	lockdep_assert_held(&rdev->bss_lock);
1840 
1841 	/* Update IEs */
1842 	if (rcu_access_pointer(new->pub.proberesp_ies)) {
1843 		const struct cfg80211_bss_ies *old;
1844 
1845 		old = rcu_access_pointer(known->pub.proberesp_ies);
1846 
1847 		rcu_assign_pointer(known->pub.proberesp_ies,
1848 				   new->pub.proberesp_ies);
1849 		/* Override possible earlier Beacon frame IEs */
1850 		rcu_assign_pointer(known->pub.ies,
1851 				   new->pub.proberesp_ies);
1852 		if (old) {
1853 			cfg80211_check_stuck_ecsa(rdev, known, old);
1854 			kfree_rcu((struct cfg80211_bss_ies *)old, rcu_head);
1855 		}
1856 	}
1857 
1858 	if (rcu_access_pointer(new->pub.beacon_ies)) {
1859 		const struct cfg80211_bss_ies *old;
1860 
1861 		if (known->pub.hidden_beacon_bss &&
1862 		    !list_empty(&known->hidden_list)) {
1863 			const struct cfg80211_bss_ies *f;
1864 
1865 			/* The known BSS struct is one of the probe
1866 			 * response members of a group, but we're
1867 			 * receiving a beacon (beacon_ies in the new
1868 			 * bss is used). This can only mean that the
1869 			 * AP changed its beacon from not having an
1870 			 * SSID to showing it, which is confusing so
1871 			 * drop this information.
1872 			 */
1873 
1874 			f = rcu_access_pointer(new->pub.beacon_ies);
1875 			kfree_rcu((struct cfg80211_bss_ies *)f, rcu_head);
1876 			return false;
1877 		}
1878 
1879 		old = rcu_access_pointer(known->pub.beacon_ies);
1880 
1881 		rcu_assign_pointer(known->pub.beacon_ies, new->pub.beacon_ies);
1882 
1883 		/* Override IEs if they were from a beacon before */
1884 		if (old == rcu_access_pointer(known->pub.ies))
1885 			rcu_assign_pointer(known->pub.ies, new->pub.beacon_ies);
1886 
1887 		cfg80211_update_hidden_bsses(known,
1888 					     rcu_access_pointer(new->pub.beacon_ies),
1889 					     old);
1890 
1891 		if (old)
1892 			kfree_rcu((struct cfg80211_bss_ies *)old, rcu_head);
1893 	}
1894 
1895 	known->pub.beacon_interval = new->pub.beacon_interval;
1896 
1897 	/* don't update the signal if beacon was heard on
1898 	 * adjacent channel.
1899 	 */
1900 	if (signal_valid)
1901 		known->pub.signal = new->pub.signal;
1902 	known->pub.capability = new->pub.capability;
1903 	known->ts = new->ts;
1904 	known->ts_boottime = new->ts_boottime;
1905 	known->parent_tsf = new->parent_tsf;
1906 	known->pub.chains = new->pub.chains;
1907 	memcpy(known->pub.chain_signal, new->pub.chain_signal,
1908 	       IEEE80211_MAX_CHAINS);
1909 	ether_addr_copy(known->parent_bssid, new->parent_bssid);
1910 	known->pub.max_bssid_indicator = new->pub.max_bssid_indicator;
1911 	known->pub.bssid_index = new->pub.bssid_index;
1912 	known->pub.use_for &= new->pub.use_for;
1913 	known->pub.cannot_use_reasons = new->pub.cannot_use_reasons;
1914 	known->bss_source = new->bss_source;
1915 
1916 	return true;
1917 }
1918 
1919 /* Returned bss is reference counted and must be cleaned up appropriately. */
1920 static struct cfg80211_internal_bss *
1921 __cfg80211_bss_update(struct cfg80211_registered_device *rdev,
1922 		      struct cfg80211_internal_bss *tmp,
1923 		      bool signal_valid, unsigned long ts)
1924 {
1925 	struct cfg80211_internal_bss *found = NULL;
1926 	struct cfg80211_bss_ies *ies;
1927 
1928 	if (WARN_ON(!tmp->pub.channel))
1929 		goto free_ies;
1930 
1931 	tmp->ts = ts;
1932 
1933 	if (WARN_ON(!rcu_access_pointer(tmp->pub.ies)))
1934 		goto free_ies;
1935 
1936 	found = rb_find_bss(rdev, tmp, BSS_CMP_REGULAR);
1937 
1938 	if (found) {
1939 		if (!cfg80211_update_known_bss(rdev, found, tmp, signal_valid))
1940 			return NULL;
1941 	} else {
1942 		struct cfg80211_internal_bss *new;
1943 		struct cfg80211_internal_bss *hidden;
1944 
1945 		/*
1946 		 * create a copy -- the "res" variable that is passed in
1947 		 * is allocated on the stack since it's not needed in the
1948 		 * more common case of an update
1949 		 */
1950 		new = kzalloc(sizeof(*new) + rdev->wiphy.bss_priv_size,
1951 			      GFP_ATOMIC);
1952 		if (!new)
1953 			goto free_ies;
1954 		memcpy(new, tmp, sizeof(*new));
1955 		new->refcount = 1;
1956 		INIT_LIST_HEAD(&new->hidden_list);
1957 		INIT_LIST_HEAD(&new->pub.nontrans_list);
1958 		/* we'll set this later if it was non-NULL */
1959 		new->pub.transmitted_bss = NULL;
1960 
1961 		if (rcu_access_pointer(tmp->pub.proberesp_ies)) {
1962 			hidden = rb_find_bss(rdev, tmp, BSS_CMP_HIDE_ZLEN);
1963 			if (!hidden)
1964 				hidden = rb_find_bss(rdev, tmp,
1965 						     BSS_CMP_HIDE_NUL);
1966 			if (hidden) {
1967 				new->pub.hidden_beacon_bss = &hidden->pub;
1968 				list_add(&new->hidden_list,
1969 					 &hidden->hidden_list);
1970 				hidden->refcount++;
1971 
1972 				ies = (void *)rcu_access_pointer(new->pub.beacon_ies);
1973 				rcu_assign_pointer(new->pub.beacon_ies,
1974 						   hidden->pub.beacon_ies);
1975 				if (ies)
1976 					kfree_rcu(ies, rcu_head);
1977 			}
1978 		} else {
1979 			/*
1980 			 * Ok so we found a beacon, and don't have an entry. If
1981 			 * it's a beacon with hidden SSID, we might be in for an
1982 			 * expensive search for any probe responses that should
1983 			 * be grouped with this beacon for updates ...
1984 			 */
1985 			if (!cfg80211_combine_bsses(rdev, new)) {
1986 				bss_ref_put(rdev, new);
1987 				return NULL;
1988 			}
1989 		}
1990 
1991 		if (rdev->bss_entries >= bss_entries_limit &&
1992 		    !cfg80211_bss_expire_oldest(rdev)) {
1993 			bss_ref_put(rdev, new);
1994 			return NULL;
1995 		}
1996 
1997 		/* This must be before the call to bss_ref_get */
1998 		if (tmp->pub.transmitted_bss) {
1999 			new->pub.transmitted_bss = tmp->pub.transmitted_bss;
2000 			bss_ref_get(rdev, bss_from_pub(tmp->pub.transmitted_bss));
2001 		}
2002 
2003 		cfg80211_insert_bss(rdev, new);
2004 		found = new;
2005 	}
2006 
2007 	rdev->bss_generation++;
2008 	bss_ref_get(rdev, found);
2009 
2010 	return found;
2011 
2012 free_ies:
2013 	ies = (void *)rcu_access_pointer(tmp->pub.beacon_ies);
2014 	if (ies)
2015 		kfree_rcu(ies, rcu_head);
2016 	ies = (void *)rcu_access_pointer(tmp->pub.proberesp_ies);
2017 	if (ies)
2018 		kfree_rcu(ies, rcu_head);
2019 
2020 	return NULL;
2021 }
2022 
2023 struct cfg80211_internal_bss *
2024 cfg80211_bss_update(struct cfg80211_registered_device *rdev,
2025 		    struct cfg80211_internal_bss *tmp,
2026 		    bool signal_valid, unsigned long ts)
2027 {
2028 	struct cfg80211_internal_bss *res;
2029 
2030 	spin_lock_bh(&rdev->bss_lock);
2031 	res = __cfg80211_bss_update(rdev, tmp, signal_valid, ts);
2032 	spin_unlock_bh(&rdev->bss_lock);
2033 
2034 	return res;
2035 }
2036 
2037 int cfg80211_get_ies_channel_number(const u8 *ie, size_t ielen,
2038 				    enum nl80211_band band)
2039 {
2040 	const struct element *tmp;
2041 
2042 	if (band == NL80211_BAND_6GHZ) {
2043 		struct ieee80211_he_operation *he_oper;
2044 
2045 		tmp = cfg80211_find_ext_elem(WLAN_EID_EXT_HE_OPERATION, ie,
2046 					     ielen);
2047 		if (tmp && tmp->datalen >= sizeof(*he_oper) &&
2048 		    tmp->datalen >= ieee80211_he_oper_size(&tmp->data[1])) {
2049 			const struct ieee80211_he_6ghz_oper *he_6ghz_oper;
2050 
2051 			he_oper = (void *)&tmp->data[1];
2052 
2053 			he_6ghz_oper = ieee80211_he_6ghz_oper(he_oper);
2054 			if (!he_6ghz_oper)
2055 				return -1;
2056 
2057 			return he_6ghz_oper->primary;
2058 		}
2059 	} else if (band == NL80211_BAND_S1GHZ) {
2060 		tmp = cfg80211_find_elem(WLAN_EID_S1G_OPERATION, ie, ielen);
2061 		if (tmp && tmp->datalen >= sizeof(struct ieee80211_s1g_oper_ie)) {
2062 			struct ieee80211_s1g_oper_ie *s1gop = (void *)tmp->data;
2063 
2064 			return s1gop->oper_ch;
2065 		}
2066 	} else {
2067 		tmp = cfg80211_find_elem(WLAN_EID_DS_PARAMS, ie, ielen);
2068 		if (tmp && tmp->datalen == 1)
2069 			return tmp->data[0];
2070 
2071 		tmp = cfg80211_find_elem(WLAN_EID_HT_OPERATION, ie, ielen);
2072 		if (tmp &&
2073 		    tmp->datalen >= sizeof(struct ieee80211_ht_operation)) {
2074 			struct ieee80211_ht_operation *htop = (void *)tmp->data;
2075 
2076 			return htop->primary_chan;
2077 		}
2078 	}
2079 
2080 	return -1;
2081 }
2082 EXPORT_SYMBOL(cfg80211_get_ies_channel_number);
2083 
2084 /*
2085  * Update RX channel information based on the available frame payload
2086  * information. This is mainly for the 2.4 GHz band where frames can be received
2087  * from neighboring channels and the Beacon frames use the DSSS Parameter Set
2088  * element to indicate the current (transmitting) channel, but this might also
2089  * be needed on other bands if RX frequency does not match with the actual
2090  * operating channel of a BSS, or if the AP reports a different primary channel.
2091  */
2092 static struct ieee80211_channel *
2093 cfg80211_get_bss_channel(struct wiphy *wiphy, const u8 *ie, size_t ielen,
2094 			 struct ieee80211_channel *channel)
2095 {
2096 	u32 freq;
2097 	int channel_number;
2098 	struct ieee80211_channel *alt_channel;
2099 
2100 	channel_number = cfg80211_get_ies_channel_number(ie, ielen,
2101 							 channel->band);
2102 
2103 	if (channel_number < 0) {
2104 		/* No channel information in frame payload */
2105 		return channel;
2106 	}
2107 
2108 	freq = ieee80211_channel_to_freq_khz(channel_number, channel->band);
2109 
2110 	/*
2111 	 * Frame info (beacon/prob res) is the same as received channel,
2112 	 * no need for further processing.
2113 	 */
2114 	if (freq == ieee80211_channel_to_khz(channel))
2115 		return channel;
2116 
2117 	alt_channel = ieee80211_get_channel_khz(wiphy, freq);
2118 	if (!alt_channel) {
2119 		if (channel->band == NL80211_BAND_2GHZ ||
2120 		    channel->band == NL80211_BAND_6GHZ) {
2121 			/*
2122 			 * Better not allow unexpected channels when that could
2123 			 * be going beyond the 1-11 range (e.g., discovering
2124 			 * BSS on channel 12 when radio is configured for
2125 			 * channel 11) or beyond the 6 GHz channel range.
2126 			 */
2127 			return NULL;
2128 		}
2129 
2130 		/* No match for the payload channel number - ignore it */
2131 		return channel;
2132 	}
2133 
2134 	/*
2135 	 * Use the channel determined through the payload channel number
2136 	 * instead of the RX channel reported by the driver.
2137 	 */
2138 	if (alt_channel->flags & IEEE80211_CHAN_DISABLED)
2139 		return NULL;
2140 	return alt_channel;
2141 }
2142 
2143 struct cfg80211_inform_single_bss_data {
2144 	struct cfg80211_inform_bss *drv_data;
2145 	enum cfg80211_bss_frame_type ftype;
2146 	struct ieee80211_channel *channel;
2147 	u8 bssid[ETH_ALEN];
2148 	u64 tsf;
2149 	u16 capability;
2150 	u16 beacon_interval;
2151 	const u8 *ie;
2152 	size_t ielen;
2153 
2154 	enum bss_source_type bss_source;
2155 	/* Set if reporting bss_source != BSS_SOURCE_DIRECT */
2156 	struct cfg80211_bss *source_bss;
2157 	u8 max_bssid_indicator;
2158 	u8 bssid_index;
2159 
2160 	u8 use_for;
2161 	u64 cannot_use_reasons;
2162 };
2163 
2164 enum ieee80211_ap_reg_power
2165 cfg80211_get_6ghz_power_type(const u8 *elems, size_t elems_len)
2166 {
2167 	const struct ieee80211_he_6ghz_oper *he_6ghz_oper;
2168 	struct ieee80211_he_operation *he_oper;
2169 	const struct element *tmp;
2170 
2171 	tmp = cfg80211_find_ext_elem(WLAN_EID_EXT_HE_OPERATION,
2172 				     elems, elems_len);
2173 	if (!tmp || tmp->datalen < sizeof(*he_oper) + 1 ||
2174 	    tmp->datalen < ieee80211_he_oper_size(tmp->data + 1))
2175 		return IEEE80211_REG_UNSET_AP;
2176 
2177 	he_oper = (void *)&tmp->data[1];
2178 	he_6ghz_oper = ieee80211_he_6ghz_oper(he_oper);
2179 
2180 	if (!he_6ghz_oper)
2181 		return IEEE80211_REG_UNSET_AP;
2182 
2183 	switch (u8_get_bits(he_6ghz_oper->control,
2184 			    IEEE80211_HE_6GHZ_OPER_CTRL_REG_INFO)) {
2185 	case IEEE80211_6GHZ_CTRL_REG_LPI_AP:
2186 	case IEEE80211_6GHZ_CTRL_REG_INDOOR_LPI_AP:
2187 		return IEEE80211_REG_LPI_AP;
2188 	case IEEE80211_6GHZ_CTRL_REG_SP_AP:
2189 	case IEEE80211_6GHZ_CTRL_REG_INDOOR_SP_AP:
2190 		return IEEE80211_REG_SP_AP;
2191 	case IEEE80211_6GHZ_CTRL_REG_VLP_AP:
2192 		return IEEE80211_REG_VLP_AP;
2193 	default:
2194 		return IEEE80211_REG_UNSET_AP;
2195 	}
2196 }
2197 
2198 static bool cfg80211_6ghz_power_type_valid(const u8 *elems, size_t elems_len,
2199 					   const u32 flags)
2200 {
2201 	switch (cfg80211_get_6ghz_power_type(elems, elems_len)) {
2202 	case IEEE80211_REG_LPI_AP:
2203 		return true;
2204 	case IEEE80211_REG_SP_AP:
2205 		return !(flags & IEEE80211_CHAN_NO_6GHZ_AFC_CLIENT);
2206 	case IEEE80211_REG_VLP_AP:
2207 		return !(flags & IEEE80211_CHAN_NO_6GHZ_VLP_CLIENT);
2208 	default:
2209 		return false;
2210 	}
2211 }
2212 
2213 /* Returned bss is reference counted and must be cleaned up appropriately. */
2214 static struct cfg80211_bss *
2215 cfg80211_inform_single_bss_data(struct wiphy *wiphy,
2216 				struct cfg80211_inform_single_bss_data *data,
2217 				gfp_t gfp)
2218 {
2219 	struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
2220 	struct cfg80211_inform_bss *drv_data = data->drv_data;
2221 	struct cfg80211_bss_ies *ies;
2222 	struct ieee80211_channel *channel;
2223 	struct cfg80211_internal_bss tmp = {}, *res;
2224 	int bss_type;
2225 	bool signal_valid;
2226 	unsigned long ts;
2227 
2228 	if (WARN_ON(!wiphy))
2229 		return NULL;
2230 
2231 	if (WARN_ON(wiphy->signal_type == CFG80211_SIGNAL_TYPE_UNSPEC &&
2232 		    (drv_data->signal < 0 || drv_data->signal > 100)))
2233 		return NULL;
2234 
2235 	if (WARN_ON(data->bss_source != BSS_SOURCE_DIRECT && !data->source_bss))
2236 		return NULL;
2237 
2238 	channel = data->channel;
2239 	if (!channel)
2240 		channel = cfg80211_get_bss_channel(wiphy, data->ie, data->ielen,
2241 						   drv_data->chan);
2242 	if (!channel)
2243 		return NULL;
2244 
2245 	if (channel->band == NL80211_BAND_6GHZ &&
2246 	    !cfg80211_6ghz_power_type_valid(data->ie, data->ielen,
2247 					    channel->flags)) {
2248 		data->use_for = 0;
2249 		data->cannot_use_reasons =
2250 			NL80211_BSS_CANNOT_USE_6GHZ_PWR_MISMATCH;
2251 	}
2252 
2253 	memcpy(tmp.pub.bssid, data->bssid, ETH_ALEN);
2254 	tmp.pub.channel = channel;
2255 	if (data->bss_source != BSS_SOURCE_STA_PROFILE)
2256 		tmp.pub.signal = drv_data->signal;
2257 	else
2258 		tmp.pub.signal = 0;
2259 	tmp.pub.beacon_interval = data->beacon_interval;
2260 	tmp.pub.capability = data->capability;
2261 	tmp.ts_boottime = drv_data->boottime_ns;
2262 	tmp.parent_tsf = drv_data->parent_tsf;
2263 	ether_addr_copy(tmp.parent_bssid, drv_data->parent_bssid);
2264 	tmp.pub.chains = drv_data->chains;
2265 	memcpy(tmp.pub.chain_signal, drv_data->chain_signal,
2266 	       IEEE80211_MAX_CHAINS);
2267 	tmp.pub.use_for = data->use_for;
2268 	tmp.pub.cannot_use_reasons = data->cannot_use_reasons;
2269 	tmp.bss_source = data->bss_source;
2270 
2271 	switch (data->bss_source) {
2272 	case BSS_SOURCE_MBSSID:
2273 		tmp.pub.transmitted_bss = data->source_bss;
2274 		fallthrough;
2275 	case BSS_SOURCE_STA_PROFILE:
2276 		ts = bss_from_pub(data->source_bss)->ts;
2277 		tmp.pub.bssid_index = data->bssid_index;
2278 		tmp.pub.max_bssid_indicator = data->max_bssid_indicator;
2279 		break;
2280 	case BSS_SOURCE_DIRECT:
2281 		ts = jiffies;
2282 
2283 		if (channel->band == NL80211_BAND_60GHZ) {
2284 			bss_type = data->capability &
2285 				   WLAN_CAPABILITY_DMG_TYPE_MASK;
2286 			if (bss_type == WLAN_CAPABILITY_DMG_TYPE_AP ||
2287 			    bss_type == WLAN_CAPABILITY_DMG_TYPE_PBSS)
2288 				regulatory_hint_found_beacon(wiphy, channel,
2289 							     gfp);
2290 		} else {
2291 			if (data->capability & WLAN_CAPABILITY_ESS)
2292 				regulatory_hint_found_beacon(wiphy, channel,
2293 							     gfp);
2294 		}
2295 		break;
2296 	}
2297 
2298 	/*
2299 	 * If we do not know here whether the IEs are from a Beacon or Probe
2300 	 * Response frame, we need to pick one of the options and only use it
2301 	 * with the driver that does not provide the full Beacon/Probe Response
2302 	 * frame. Use Beacon frame pointer to avoid indicating that this should
2303 	 * override the IEs pointer should we have received an earlier
2304 	 * indication of Probe Response data.
2305 	 */
2306 	ies = kzalloc(sizeof(*ies) + data->ielen, gfp);
2307 	if (!ies)
2308 		return NULL;
2309 	ies->len = data->ielen;
2310 	ies->tsf = data->tsf;
2311 	ies->from_beacon = false;
2312 	memcpy(ies->data, data->ie, data->ielen);
2313 
2314 	switch (data->ftype) {
2315 	case CFG80211_BSS_FTYPE_BEACON:
2316 	case CFG80211_BSS_FTYPE_S1G_BEACON:
2317 		ies->from_beacon = true;
2318 		fallthrough;
2319 	case CFG80211_BSS_FTYPE_UNKNOWN:
2320 		rcu_assign_pointer(tmp.pub.beacon_ies, ies);
2321 		break;
2322 	case CFG80211_BSS_FTYPE_PRESP:
2323 		rcu_assign_pointer(tmp.pub.proberesp_ies, ies);
2324 		break;
2325 	}
2326 	rcu_assign_pointer(tmp.pub.ies, ies);
2327 
2328 	signal_valid = drv_data->chan == channel;
2329 	spin_lock_bh(&rdev->bss_lock);
2330 	res = __cfg80211_bss_update(rdev, &tmp, signal_valid, ts);
2331 	if (!res)
2332 		goto drop;
2333 
2334 	rdev_inform_bss(rdev, &res->pub, ies, drv_data->drv_data);
2335 
2336 	if (data->bss_source == BSS_SOURCE_MBSSID) {
2337 		/* this is a nontransmitting bss, we need to add it to
2338 		 * transmitting bss' list if it is not there
2339 		 */
2340 		if (cfg80211_add_nontrans_list(data->source_bss, &res->pub)) {
2341 			if (__cfg80211_unlink_bss(rdev, res)) {
2342 				rdev->bss_generation++;
2343 				res = NULL;
2344 			}
2345 		}
2346 
2347 		if (!res)
2348 			goto drop;
2349 	}
2350 	spin_unlock_bh(&rdev->bss_lock);
2351 
2352 	trace_cfg80211_return_bss(&res->pub);
2353 	/* __cfg80211_bss_update gives us a referenced result */
2354 	return &res->pub;
2355 
2356 drop:
2357 	spin_unlock_bh(&rdev->bss_lock);
2358 	return NULL;
2359 }
2360 
2361 static const struct element
2362 *cfg80211_get_profile_continuation(const u8 *ie, size_t ielen,
2363 				   const struct element *mbssid_elem,
2364 				   const struct element *sub_elem)
2365 {
2366 	const u8 *mbssid_end = mbssid_elem->data + mbssid_elem->datalen;
2367 	const struct element *next_mbssid;
2368 	const struct element *next_sub;
2369 
2370 	next_mbssid = cfg80211_find_elem(WLAN_EID_MULTIPLE_BSSID,
2371 					 mbssid_end,
2372 					 ielen - (mbssid_end - ie));
2373 
2374 	/*
2375 	 * If it is not the last subelement in current MBSSID IE or there isn't
2376 	 * a next MBSSID IE - profile is complete.
2377 	*/
2378 	if ((sub_elem->data + sub_elem->datalen < mbssid_end - 1) ||
2379 	    !next_mbssid)
2380 		return NULL;
2381 
2382 	/* For any length error, just return NULL */
2383 
2384 	if (next_mbssid->datalen < 4)
2385 		return NULL;
2386 
2387 	next_sub = (void *)&next_mbssid->data[1];
2388 
2389 	if (next_mbssid->data + next_mbssid->datalen <
2390 	    next_sub->data + next_sub->datalen)
2391 		return NULL;
2392 
2393 	if (next_sub->id != 0 || next_sub->datalen < 2)
2394 		return NULL;
2395 
2396 	/*
2397 	 * Check if the first element in the next sub element is a start
2398 	 * of a new profile
2399 	 */
2400 	return next_sub->data[0] == WLAN_EID_NON_TX_BSSID_CAP ?
2401 	       NULL : next_mbssid;
2402 }
2403 
2404 size_t cfg80211_merge_profile(const u8 *ie, size_t ielen,
2405 			      const struct element *mbssid_elem,
2406 			      const struct element *sub_elem,
2407 			      u8 *merged_ie, size_t max_copy_len)
2408 {
2409 	size_t copied_len = sub_elem->datalen;
2410 	const struct element *next_mbssid;
2411 
2412 	if (sub_elem->datalen > max_copy_len)
2413 		return 0;
2414 
2415 	memcpy(merged_ie, sub_elem->data, sub_elem->datalen);
2416 
2417 	while ((next_mbssid = cfg80211_get_profile_continuation(ie, ielen,
2418 								mbssid_elem,
2419 								sub_elem))) {
2420 		const struct element *next_sub = (void *)&next_mbssid->data[1];
2421 
2422 		if (copied_len + next_sub->datalen > max_copy_len)
2423 			break;
2424 		memcpy(merged_ie + copied_len, next_sub->data,
2425 		       next_sub->datalen);
2426 		copied_len += next_sub->datalen;
2427 	}
2428 
2429 	return copied_len;
2430 }
2431 EXPORT_SYMBOL(cfg80211_merge_profile);
2432 
2433 static void
2434 cfg80211_parse_mbssid_data(struct wiphy *wiphy,
2435 			   struct cfg80211_inform_single_bss_data *tx_data,
2436 			   struct cfg80211_bss *source_bss,
2437 			   gfp_t gfp)
2438 {
2439 	struct cfg80211_inform_single_bss_data data = {
2440 		.drv_data = tx_data->drv_data,
2441 		.ftype = tx_data->ftype,
2442 		.tsf = tx_data->tsf,
2443 		.beacon_interval = tx_data->beacon_interval,
2444 		.source_bss = source_bss,
2445 		.bss_source = BSS_SOURCE_MBSSID,
2446 		.use_for = tx_data->use_for,
2447 		.cannot_use_reasons = tx_data->cannot_use_reasons,
2448 	};
2449 	const u8 *mbssid_index_ie;
2450 	const struct element *elem, *sub;
2451 	u8 *new_ie, *profile;
2452 	u64 seen_indices = 0;
2453 	struct cfg80211_bss *bss;
2454 
2455 	if (!source_bss)
2456 		return;
2457 	if (!cfg80211_find_elem(WLAN_EID_MULTIPLE_BSSID,
2458 				tx_data->ie, tx_data->ielen))
2459 		return;
2460 	if (!wiphy->support_mbssid)
2461 		return;
2462 	if (wiphy->support_only_he_mbssid &&
2463 	    !cfg80211_find_ext_elem(WLAN_EID_EXT_HE_CAPABILITY,
2464 				    tx_data->ie, tx_data->ielen))
2465 		return;
2466 
2467 	new_ie = kmalloc(IEEE80211_MAX_DATA_LEN, gfp);
2468 	if (!new_ie)
2469 		return;
2470 
2471 	profile = kmalloc(tx_data->ielen, gfp);
2472 	if (!profile)
2473 		goto out;
2474 
2475 	for_each_element_id(elem, WLAN_EID_MULTIPLE_BSSID,
2476 			    tx_data->ie, tx_data->ielen) {
2477 		if (elem->datalen < 4)
2478 			continue;
2479 		if (elem->data[0] < 1 || (int)elem->data[0] > 8)
2480 			continue;
2481 		for_each_element(sub, elem->data + 1, elem->datalen - 1) {
2482 			u8 profile_len;
2483 
2484 			if (sub->id != 0 || sub->datalen < 4) {
2485 				/* not a valid BSS profile */
2486 				continue;
2487 			}
2488 
2489 			if (sub->data[0] != WLAN_EID_NON_TX_BSSID_CAP ||
2490 			    sub->data[1] != 2) {
2491 				/* The first element within the Nontransmitted
2492 				 * BSSID Profile is not the Nontransmitted
2493 				 * BSSID Capability element.
2494 				 */
2495 				continue;
2496 			}
2497 
2498 			memset(profile, 0, tx_data->ielen);
2499 			profile_len = cfg80211_merge_profile(tx_data->ie,
2500 							     tx_data->ielen,
2501 							     elem,
2502 							     sub,
2503 							     profile,
2504 							     tx_data->ielen);
2505 
2506 			/* found a Nontransmitted BSSID Profile */
2507 			mbssid_index_ie = cfg80211_find_ie
2508 				(WLAN_EID_MULTI_BSSID_IDX,
2509 				 profile, profile_len);
2510 			if (!mbssid_index_ie || mbssid_index_ie[1] < 1 ||
2511 			    mbssid_index_ie[2] == 0 ||
2512 			    mbssid_index_ie[2] > 46 ||
2513 			    mbssid_index_ie[2] >= (1 << elem->data[0])) {
2514 				/* No valid Multiple BSSID-Index element */
2515 				continue;
2516 			}
2517 
2518 			if (seen_indices & BIT_ULL(mbssid_index_ie[2]))
2519 				/* We don't support legacy split of a profile */
2520 				net_dbg_ratelimited("Partial info for BSSID index %d\n",
2521 						    mbssid_index_ie[2]);
2522 
2523 			seen_indices |= BIT_ULL(mbssid_index_ie[2]);
2524 
2525 			data.bssid_index = mbssid_index_ie[2];
2526 			data.max_bssid_indicator = elem->data[0];
2527 
2528 			cfg80211_gen_new_bssid(tx_data->bssid,
2529 					       data.max_bssid_indicator,
2530 					       data.bssid_index,
2531 					       data.bssid);
2532 
2533 			memset(new_ie, 0, IEEE80211_MAX_DATA_LEN);
2534 			data.ie = new_ie;
2535 			data.ielen = cfg80211_gen_new_ie(tx_data->ie,
2536 							 tx_data->ielen,
2537 							 profile,
2538 							 profile_len,
2539 							 new_ie,
2540 							 IEEE80211_MAX_DATA_LEN);
2541 			if (!data.ielen)
2542 				continue;
2543 
2544 			data.capability = get_unaligned_le16(profile + 2);
2545 			bss = cfg80211_inform_single_bss_data(wiphy, &data, gfp);
2546 			if (!bss)
2547 				break;
2548 			cfg80211_put_bss(wiphy, bss);
2549 		}
2550 	}
2551 
2552 out:
2553 	kfree(new_ie);
2554 	kfree(profile);
2555 }
2556 
2557 ssize_t cfg80211_defragment_element(const struct element *elem, const u8 *ies,
2558 				    size_t ieslen, u8 *data, size_t data_len,
2559 				    u8 frag_id)
2560 {
2561 	const struct element *next;
2562 	ssize_t copied;
2563 	u8 elem_datalen;
2564 
2565 	if (!elem)
2566 		return -EINVAL;
2567 
2568 	/* elem might be invalid after the memmove */
2569 	next = (void *)(elem->data + elem->datalen);
2570 	elem_datalen = elem->datalen;
2571 
2572 	if (elem->id == WLAN_EID_EXTENSION) {
2573 		copied = elem->datalen - 1;
2574 
2575 		if (data) {
2576 			if (copied > data_len)
2577 				return -ENOSPC;
2578 
2579 			memmove(data, elem->data + 1, copied);
2580 		}
2581 	} else {
2582 		copied = elem->datalen;
2583 
2584 		if (data) {
2585 			if (copied > data_len)
2586 				return -ENOSPC;
2587 
2588 			memmove(data, elem->data, copied);
2589 		}
2590 	}
2591 
2592 	/* Fragmented elements must have 255 bytes */
2593 	if (elem_datalen < 255)
2594 		return copied;
2595 
2596 	for (elem = next;
2597 	     elem->data < ies + ieslen &&
2598 		elem->data + elem->datalen <= ies + ieslen;
2599 	     elem = next) {
2600 		/* elem might be invalid after the memmove */
2601 		next = (void *)(elem->data + elem->datalen);
2602 
2603 		if (elem->id != frag_id)
2604 			break;
2605 
2606 		elem_datalen = elem->datalen;
2607 
2608 		if (data) {
2609 			if (copied + elem_datalen > data_len)
2610 				return -ENOSPC;
2611 
2612 			memmove(data + copied, elem->data, elem_datalen);
2613 		}
2614 
2615 		copied += elem_datalen;
2616 
2617 		/* Only the last fragment may be short */
2618 		if (elem_datalen != 255)
2619 			break;
2620 	}
2621 
2622 	return copied;
2623 }
2624 EXPORT_SYMBOL(cfg80211_defragment_element);
2625 
2626 struct cfg80211_mle {
2627 	struct ieee80211_multi_link_elem *mle;
2628 	struct ieee80211_mle_per_sta_profile
2629 		*sta_prof[IEEE80211_MLD_MAX_NUM_LINKS];
2630 	ssize_t sta_prof_len[IEEE80211_MLD_MAX_NUM_LINKS];
2631 
2632 	u8 data[];
2633 };
2634 
2635 static struct cfg80211_mle *
2636 cfg80211_defrag_mle(const struct element *mle, const u8 *ie, size_t ielen,
2637 		    gfp_t gfp)
2638 {
2639 	const struct element *elem;
2640 	struct cfg80211_mle *res;
2641 	size_t buf_len;
2642 	ssize_t mle_len;
2643 	u8 common_size, idx;
2644 
2645 	if (!mle || !ieee80211_mle_size_ok(mle->data + 1, mle->datalen - 1))
2646 		return NULL;
2647 
2648 	/* Required length for first defragmentation */
2649 	buf_len = mle->datalen - 1;
2650 	for_each_element(elem, mle->data + mle->datalen,
2651 			 ielen - sizeof(*mle) + mle->datalen) {
2652 		if (elem->id != WLAN_EID_FRAGMENT)
2653 			break;
2654 
2655 		buf_len += elem->datalen;
2656 	}
2657 
2658 	res = kzalloc(struct_size(res, data, buf_len), gfp);
2659 	if (!res)
2660 		return NULL;
2661 
2662 	mle_len = cfg80211_defragment_element(mle, ie, ielen,
2663 					      res->data, buf_len,
2664 					      WLAN_EID_FRAGMENT);
2665 	if (mle_len < 0)
2666 		goto error;
2667 
2668 	res->mle = (void *)res->data;
2669 
2670 	/* Find the sub-element area in the buffer */
2671 	common_size = ieee80211_mle_common_size((u8 *)res->mle);
2672 	ie = res->data + common_size;
2673 	ielen = mle_len - common_size;
2674 
2675 	idx = 0;
2676 	for_each_element_id(elem, IEEE80211_MLE_SUBELEM_PER_STA_PROFILE,
2677 			    ie, ielen) {
2678 		res->sta_prof[idx] = (void *)elem->data;
2679 		res->sta_prof_len[idx] = elem->datalen;
2680 
2681 		idx++;
2682 		if (idx >= IEEE80211_MLD_MAX_NUM_LINKS)
2683 			break;
2684 	}
2685 	if (!for_each_element_completed(elem, ie, ielen))
2686 		goto error;
2687 
2688 	/* Defragment sta_info in-place */
2689 	for (idx = 0; idx < IEEE80211_MLD_MAX_NUM_LINKS && res->sta_prof[idx];
2690 	     idx++) {
2691 		if (res->sta_prof_len[idx] < 255)
2692 			continue;
2693 
2694 		elem = (void *)res->sta_prof[idx] - 2;
2695 
2696 		if (idx + 1 < ARRAY_SIZE(res->sta_prof) &&
2697 		    res->sta_prof[idx + 1])
2698 			buf_len = (u8 *)res->sta_prof[idx + 1] -
2699 				  (u8 *)res->sta_prof[idx];
2700 		else
2701 			buf_len = ielen + ie - (u8 *)elem;
2702 
2703 		res->sta_prof_len[idx] =
2704 			cfg80211_defragment_element(elem,
2705 						    (u8 *)elem, buf_len,
2706 						    (u8 *)res->sta_prof[idx],
2707 						    buf_len,
2708 						    IEEE80211_MLE_SUBELEM_FRAGMENT);
2709 		if (res->sta_prof_len[idx] < 0)
2710 			goto error;
2711 	}
2712 
2713 	return res;
2714 
2715 error:
2716 	kfree(res);
2717 	return NULL;
2718 }
2719 
2720 struct tbtt_info_iter_data {
2721 	const struct ieee80211_neighbor_ap_info *ap_info;
2722 	u8 param_ch_count;
2723 	u32 use_for;
2724 	u8 mld_id, link_id;
2725 	bool non_tx;
2726 };
2727 
2728 static enum cfg80211_rnr_iter_ret
2729 cfg802121_mld_ap_rnr_iter(void *_data, u8 type,
2730 			  const struct ieee80211_neighbor_ap_info *info,
2731 			  const u8 *tbtt_info, u8 tbtt_info_len)
2732 {
2733 	const struct ieee80211_rnr_mld_params *mld_params;
2734 	struct tbtt_info_iter_data *data = _data;
2735 	u8 link_id;
2736 	bool non_tx = false;
2737 
2738 	if (type == IEEE80211_TBTT_INFO_TYPE_TBTT &&
2739 	    tbtt_info_len >= offsetofend(struct ieee80211_tbtt_info_ge_11,
2740 					 mld_params)) {
2741 		const struct ieee80211_tbtt_info_ge_11 *tbtt_info_ge_11 =
2742 			(void *)tbtt_info;
2743 
2744 		non_tx = (tbtt_info_ge_11->bss_params &
2745 			  (IEEE80211_RNR_TBTT_PARAMS_MULTI_BSSID |
2746 			   IEEE80211_RNR_TBTT_PARAMS_TRANSMITTED_BSSID)) ==
2747 			 IEEE80211_RNR_TBTT_PARAMS_MULTI_BSSID;
2748 		mld_params = &tbtt_info_ge_11->mld_params;
2749 	} else if (type == IEEE80211_TBTT_INFO_TYPE_MLD &&
2750 		 tbtt_info_len >= sizeof(struct ieee80211_rnr_mld_params))
2751 		mld_params = (void *)tbtt_info;
2752 	else
2753 		return RNR_ITER_CONTINUE;
2754 
2755 	link_id = le16_get_bits(mld_params->params,
2756 				IEEE80211_RNR_MLD_PARAMS_LINK_ID);
2757 
2758 	if (data->mld_id != mld_params->mld_id)
2759 		return RNR_ITER_CONTINUE;
2760 
2761 	if (data->link_id != link_id)
2762 		return RNR_ITER_CONTINUE;
2763 
2764 	data->ap_info = info;
2765 	data->param_ch_count =
2766 		le16_get_bits(mld_params->params,
2767 			      IEEE80211_RNR_MLD_PARAMS_BSS_CHANGE_COUNT);
2768 	data->non_tx = non_tx;
2769 
2770 	if (type == IEEE80211_TBTT_INFO_TYPE_TBTT)
2771 		data->use_for = NL80211_BSS_USE_FOR_ALL;
2772 	else
2773 		data->use_for = NL80211_BSS_USE_FOR_MLD_LINK;
2774 	return RNR_ITER_BREAK;
2775 }
2776 
2777 static u8
2778 cfg80211_rnr_info_for_mld_ap(const u8 *ie, size_t ielen, u8 mld_id, u8 link_id,
2779 			     const struct ieee80211_neighbor_ap_info **ap_info,
2780 			     u8 *param_ch_count, bool *non_tx)
2781 {
2782 	struct tbtt_info_iter_data data = {
2783 		.mld_id = mld_id,
2784 		.link_id = link_id,
2785 	};
2786 
2787 	cfg80211_iter_rnr(ie, ielen, cfg802121_mld_ap_rnr_iter, &data);
2788 
2789 	*ap_info = data.ap_info;
2790 	*param_ch_count = data.param_ch_count;
2791 	*non_tx = data.non_tx;
2792 
2793 	return data.use_for;
2794 }
2795 
2796 static struct element *
2797 cfg80211_gen_reporter_rnr(struct cfg80211_bss *source_bss, bool is_mbssid,
2798 			  bool same_mld, u8 link_id, u8 bss_change_count,
2799 			  gfp_t gfp)
2800 {
2801 	const struct cfg80211_bss_ies *ies;
2802 	struct ieee80211_neighbor_ap_info ap_info;
2803 	struct ieee80211_tbtt_info_ge_11 tbtt_info;
2804 	u32 short_ssid;
2805 	const struct element *elem;
2806 	struct element *res;
2807 
2808 	/*
2809 	 * We only generate the RNR to permit ML lookups. For that we do not
2810 	 * need an entry for the corresponding transmitting BSS, lets just skip
2811 	 * it even though it would be easy to add.
2812 	 */
2813 	if (!same_mld)
2814 		return NULL;
2815 
2816 	/* We could use tx_data->ies if we change cfg80211_calc_short_ssid */
2817 	rcu_read_lock();
2818 	ies = rcu_dereference(source_bss->ies);
2819 
2820 	ap_info.tbtt_info_len = offsetofend(typeof(tbtt_info), mld_params);
2821 	ap_info.tbtt_info_hdr =
2822 			u8_encode_bits(IEEE80211_TBTT_INFO_TYPE_TBTT,
2823 				       IEEE80211_AP_INFO_TBTT_HDR_TYPE) |
2824 			u8_encode_bits(0, IEEE80211_AP_INFO_TBTT_HDR_COUNT);
2825 
2826 	ap_info.channel = ieee80211_frequency_to_channel(source_bss->channel->center_freq);
2827 
2828 	/* operating class */
2829 	elem = cfg80211_find_elem(WLAN_EID_SUPPORTED_REGULATORY_CLASSES,
2830 				  ies->data, ies->len);
2831 	if (elem && elem->datalen >= 1) {
2832 		ap_info.op_class = elem->data[0];
2833 	} else {
2834 		struct cfg80211_chan_def chandef;
2835 
2836 		/* The AP is not providing us with anything to work with. So
2837 		 * make up a somewhat reasonable operating class, but don't
2838 		 * bother with it too much as no one will ever use the
2839 		 * information.
2840 		 */
2841 		cfg80211_chandef_create(&chandef, source_bss->channel,
2842 					NL80211_CHAN_NO_HT);
2843 
2844 		if (!ieee80211_chandef_to_operating_class(&chandef,
2845 							  &ap_info.op_class))
2846 			goto out_unlock;
2847 	}
2848 
2849 	/* Just set TBTT offset and PSD 20 to invalid/unknown */
2850 	tbtt_info.tbtt_offset = 255;
2851 	tbtt_info.psd_20 = IEEE80211_RNR_TBTT_PARAMS_PSD_RESERVED;
2852 
2853 	memcpy(tbtt_info.bssid, source_bss->bssid, ETH_ALEN);
2854 	if (cfg80211_calc_short_ssid(ies, &elem, &short_ssid))
2855 		goto out_unlock;
2856 
2857 	rcu_read_unlock();
2858 
2859 	tbtt_info.short_ssid = cpu_to_le32(short_ssid);
2860 
2861 	tbtt_info.bss_params = IEEE80211_RNR_TBTT_PARAMS_SAME_SSID;
2862 
2863 	if (is_mbssid) {
2864 		tbtt_info.bss_params |= IEEE80211_RNR_TBTT_PARAMS_MULTI_BSSID;
2865 		tbtt_info.bss_params |= IEEE80211_RNR_TBTT_PARAMS_TRANSMITTED_BSSID;
2866 	}
2867 
2868 	tbtt_info.mld_params.mld_id = 0;
2869 	tbtt_info.mld_params.params =
2870 		le16_encode_bits(link_id, IEEE80211_RNR_MLD_PARAMS_LINK_ID) |
2871 		le16_encode_bits(bss_change_count,
2872 				 IEEE80211_RNR_MLD_PARAMS_BSS_CHANGE_COUNT);
2873 
2874 	res = kzalloc(struct_size(res, data,
2875 				  sizeof(ap_info) + ap_info.tbtt_info_len),
2876 		      gfp);
2877 	if (!res)
2878 		return NULL;
2879 
2880 	/* Copy the data */
2881 	res->id = WLAN_EID_REDUCED_NEIGHBOR_REPORT;
2882 	res->datalen = sizeof(ap_info) + ap_info.tbtt_info_len;
2883 	memcpy(res->data, &ap_info, sizeof(ap_info));
2884 	memcpy(res->data + sizeof(ap_info), &tbtt_info, ap_info.tbtt_info_len);
2885 
2886 	return res;
2887 
2888 out_unlock:
2889 	rcu_read_unlock();
2890 	return NULL;
2891 }
2892 
2893 static void
2894 cfg80211_parse_ml_elem_sta_data(struct wiphy *wiphy,
2895 				struct cfg80211_inform_single_bss_data *tx_data,
2896 				struct cfg80211_bss *source_bss,
2897 				const struct element *elem,
2898 				gfp_t gfp)
2899 {
2900 	struct cfg80211_inform_single_bss_data data = {
2901 		.drv_data = tx_data->drv_data,
2902 		.ftype = tx_data->ftype,
2903 		.source_bss = source_bss,
2904 		.bss_source = BSS_SOURCE_STA_PROFILE,
2905 	};
2906 	struct element *reporter_rnr = NULL;
2907 	struct ieee80211_multi_link_elem *ml_elem;
2908 	struct cfg80211_mle *mle;
2909 	const struct element *ssid_elem;
2910 	const u8 *ssid = NULL;
2911 	size_t ssid_len = 0;
2912 	u16 control;
2913 	u8 ml_common_len;
2914 	u8 *new_ie = NULL;
2915 	struct cfg80211_bss *bss;
2916 	u8 mld_id, reporter_link_id, bss_change_count;
2917 	u16 seen_links = 0;
2918 	u8 i;
2919 
2920 	if (!ieee80211_mle_type_ok(elem->data + 1,
2921 				   IEEE80211_ML_CONTROL_TYPE_BASIC,
2922 				   elem->datalen - 1))
2923 		return;
2924 
2925 	ml_elem = (void *)(elem->data + 1);
2926 	control = le16_to_cpu(ml_elem->control);
2927 	ml_common_len = ml_elem->variable[0];
2928 
2929 	/* Must be present when transmitted by an AP (in a probe response) */
2930 	if (!(control & IEEE80211_MLC_BASIC_PRES_BSS_PARAM_CH_CNT) ||
2931 	    !(control & IEEE80211_MLC_BASIC_PRES_LINK_ID) ||
2932 	    !(control & IEEE80211_MLC_BASIC_PRES_MLD_CAPA_OP))
2933 		return;
2934 
2935 	reporter_link_id = ieee80211_mle_get_link_id(elem->data + 1);
2936 	bss_change_count = ieee80211_mle_get_bss_param_ch_cnt(elem->data + 1);
2937 
2938 	/*
2939 	 * The MLD ID of the reporting AP is always zero. It is set if the AP
2940 	 * is part of an MBSSID set and will be non-zero for ML Elements
2941 	 * relating to a nontransmitted BSS (matching the Multi-BSSID Index,
2942 	 * Draft P802.11be_D3.2, 35.3.4.2)
2943 	 */
2944 	mld_id = ieee80211_mle_get_mld_id(elem->data + 1);
2945 
2946 	/* Fully defrag the ML element for sta information/profile iteration */
2947 	mle = cfg80211_defrag_mle(elem, tx_data->ie, tx_data->ielen, gfp);
2948 	if (!mle)
2949 		return;
2950 
2951 	/* No point in doing anything if there is no per-STA profile */
2952 	if (!mle->sta_prof[0])
2953 		goto out;
2954 
2955 	new_ie = kmalloc(IEEE80211_MAX_DATA_LEN, gfp);
2956 	if (!new_ie)
2957 		goto out;
2958 
2959 	reporter_rnr = cfg80211_gen_reporter_rnr(source_bss,
2960 						 u16_get_bits(control,
2961 							      IEEE80211_MLC_BASIC_PRES_MLD_ID),
2962 						 mld_id == 0, reporter_link_id,
2963 						 bss_change_count,
2964 						 gfp);
2965 
2966 	ssid_elem = cfg80211_find_elem(WLAN_EID_SSID, tx_data->ie,
2967 				       tx_data->ielen);
2968 	if (ssid_elem) {
2969 		ssid = ssid_elem->data;
2970 		ssid_len = ssid_elem->datalen;
2971 	}
2972 
2973 	for (i = 0; i < ARRAY_SIZE(mle->sta_prof) && mle->sta_prof[i]; i++) {
2974 		const struct ieee80211_neighbor_ap_info *ap_info;
2975 		enum nl80211_band band;
2976 		u32 freq;
2977 		const u8 *profile;
2978 		ssize_t profile_len;
2979 		u8 param_ch_count;
2980 		u8 link_id, use_for;
2981 		bool non_tx;
2982 
2983 		if (!ieee80211_mle_basic_sta_prof_size_ok((u8 *)mle->sta_prof[i],
2984 							  mle->sta_prof_len[i]))
2985 			continue;
2986 
2987 		control = le16_to_cpu(mle->sta_prof[i]->control);
2988 
2989 		if (!(control & IEEE80211_MLE_STA_CONTROL_COMPLETE_PROFILE))
2990 			continue;
2991 
2992 		link_id = u16_get_bits(control,
2993 				       IEEE80211_MLE_STA_CONTROL_LINK_ID);
2994 		if (seen_links & BIT(link_id))
2995 			break;
2996 		seen_links |= BIT(link_id);
2997 
2998 		if (!(control & IEEE80211_MLE_STA_CONTROL_BEACON_INT_PRESENT) ||
2999 		    !(control & IEEE80211_MLE_STA_CONTROL_TSF_OFFS_PRESENT) ||
3000 		    !(control & IEEE80211_MLE_STA_CONTROL_STA_MAC_ADDR_PRESENT))
3001 			continue;
3002 
3003 		memcpy(data.bssid, mle->sta_prof[i]->variable, ETH_ALEN);
3004 		data.beacon_interval =
3005 			get_unaligned_le16(mle->sta_prof[i]->variable + 6);
3006 		data.tsf = tx_data->tsf +
3007 			   get_unaligned_le64(mle->sta_prof[i]->variable + 8);
3008 
3009 		/* sta_info_len counts itself */
3010 		profile = mle->sta_prof[i]->variable +
3011 			  mle->sta_prof[i]->sta_info_len - 1;
3012 		profile_len = (u8 *)mle->sta_prof[i] + mle->sta_prof_len[i] -
3013 			      profile;
3014 
3015 		if (profile_len < 2)
3016 			continue;
3017 
3018 		data.capability = get_unaligned_le16(profile);
3019 		profile += 2;
3020 		profile_len -= 2;
3021 
3022 		/* Find in RNR to look up channel information */
3023 		use_for = cfg80211_rnr_info_for_mld_ap(tx_data->ie,
3024 						       tx_data->ielen,
3025 						       mld_id, link_id,
3026 						       &ap_info,
3027 						       &param_ch_count,
3028 						       &non_tx);
3029 		if (!use_for)
3030 			continue;
3031 
3032 		/*
3033 		 * As of 802.11be_D5.0, the specification does not give us any
3034 		 * way of discovering both the MaxBSSID and the Multiple-BSSID
3035 		 * Index. It does seem like the Multiple-BSSID Index element
3036 		 * may be provided, but section 9.4.2.45 explicitly forbids
3037 		 * including a Multiple-BSSID Element (in this case without any
3038 		 * subelements).
3039 		 * Without both pieces of information we cannot calculate the
3040 		 * reference BSSID, so simply ignore the BSS.
3041 		 */
3042 		if (non_tx)
3043 			continue;
3044 
3045 		/* We could sanity check the BSSID is included */
3046 
3047 		if (!ieee80211_operating_class_to_band(ap_info->op_class,
3048 						       &band))
3049 			continue;
3050 
3051 		freq = ieee80211_channel_to_freq_khz(ap_info->channel, band);
3052 		data.channel = ieee80211_get_channel_khz(wiphy, freq);
3053 
3054 		/* Skip if RNR element specifies an unsupported channel */
3055 		if (!data.channel)
3056 			continue;
3057 
3058 		/* Skip if BSS entry generated from MBSSID or DIRECT source
3059 		 * frame data available already.
3060 		 */
3061 		bss = cfg80211_get_bss(wiphy, data.channel, data.bssid, ssid,
3062 				       ssid_len, IEEE80211_BSS_TYPE_ANY,
3063 				       IEEE80211_PRIVACY_ANY);
3064 		if (bss) {
3065 			struct cfg80211_internal_bss *ibss = bss_from_pub(bss);
3066 
3067 			if (data.capability == bss->capability &&
3068 			    ibss->bss_source != BSS_SOURCE_STA_PROFILE) {
3069 				cfg80211_put_bss(wiphy, bss);
3070 				continue;
3071 			}
3072 			cfg80211_put_bss(wiphy, bss);
3073 		}
3074 
3075 		if (use_for == NL80211_BSS_USE_FOR_MLD_LINK &&
3076 		    !(wiphy->flags & WIPHY_FLAG_SUPPORTS_NSTR_NONPRIMARY)) {
3077 			use_for = 0;
3078 			data.cannot_use_reasons =
3079 				NL80211_BSS_CANNOT_USE_NSTR_NONPRIMARY;
3080 		}
3081 		data.use_for = use_for;
3082 
3083 		/* Generate new elements */
3084 		memset(new_ie, 0, IEEE80211_MAX_DATA_LEN);
3085 		data.ie = new_ie;
3086 		data.ielen = cfg80211_gen_new_ie(tx_data->ie, tx_data->ielen,
3087 						 profile, profile_len,
3088 						 new_ie,
3089 						 IEEE80211_MAX_DATA_LEN);
3090 		if (!data.ielen)
3091 			continue;
3092 
3093 		/* The generated elements do not contain:
3094 		 *  - Basic ML element
3095 		 *  - A TBTT entry in the RNR for the transmitting AP
3096 		 *
3097 		 * This information is needed both internally and in userspace
3098 		 * as such, we should append it here.
3099 		 */
3100 		if (data.ielen + 3 + sizeof(*ml_elem) + ml_common_len >
3101 		    IEEE80211_MAX_DATA_LEN)
3102 			continue;
3103 
3104 		/* Copy the Basic Multi-Link element including the common
3105 		 * information, and then fix up the link ID and BSS param
3106 		 * change count.
3107 		 * Note that the ML element length has been verified and we
3108 		 * also checked that it contains the link ID.
3109 		 */
3110 		new_ie[data.ielen++] = WLAN_EID_EXTENSION;
3111 		new_ie[data.ielen++] = 1 + sizeof(*ml_elem) + ml_common_len;
3112 		new_ie[data.ielen++] = WLAN_EID_EXT_EHT_MULTI_LINK;
3113 		memcpy(new_ie + data.ielen, ml_elem,
3114 		       sizeof(*ml_elem) + ml_common_len);
3115 
3116 		new_ie[data.ielen + sizeof(*ml_elem) + 1 + ETH_ALEN] = link_id;
3117 		new_ie[data.ielen + sizeof(*ml_elem) + 1 + ETH_ALEN + 1] =
3118 			param_ch_count;
3119 
3120 		data.ielen += sizeof(*ml_elem) + ml_common_len;
3121 
3122 		if (reporter_rnr && (use_for & NL80211_BSS_USE_FOR_NORMAL)) {
3123 			if (data.ielen + sizeof(struct element) +
3124 			    reporter_rnr->datalen > IEEE80211_MAX_DATA_LEN)
3125 				continue;
3126 
3127 			memcpy(new_ie + data.ielen, reporter_rnr,
3128 			       sizeof(struct element) + reporter_rnr->datalen);
3129 			data.ielen += sizeof(struct element) +
3130 				      reporter_rnr->datalen;
3131 		}
3132 
3133 		bss = cfg80211_inform_single_bss_data(wiphy, &data, gfp);
3134 		if (!bss)
3135 			break;
3136 		cfg80211_put_bss(wiphy, bss);
3137 	}
3138 
3139 out:
3140 	kfree(reporter_rnr);
3141 	kfree(new_ie);
3142 	kfree(mle);
3143 }
3144 
3145 static void cfg80211_parse_ml_sta_data(struct wiphy *wiphy,
3146 				       struct cfg80211_inform_single_bss_data *tx_data,
3147 				       struct cfg80211_bss *source_bss,
3148 				       gfp_t gfp)
3149 {
3150 	const struct element *elem;
3151 
3152 	if (!source_bss)
3153 		return;
3154 
3155 	if (tx_data->ftype != CFG80211_BSS_FTYPE_PRESP)
3156 		return;
3157 
3158 	for_each_element_extid(elem, WLAN_EID_EXT_EHT_MULTI_LINK,
3159 			       tx_data->ie, tx_data->ielen)
3160 		cfg80211_parse_ml_elem_sta_data(wiphy, tx_data, source_bss,
3161 						elem, gfp);
3162 }
3163 
3164 struct cfg80211_bss *
3165 cfg80211_inform_bss_data(struct wiphy *wiphy,
3166 			 struct cfg80211_inform_bss *data,
3167 			 enum cfg80211_bss_frame_type ftype,
3168 			 const u8 *bssid, u64 tsf, u16 capability,
3169 			 u16 beacon_interval, const u8 *ie, size_t ielen,
3170 			 gfp_t gfp)
3171 {
3172 	struct cfg80211_inform_single_bss_data inform_data = {
3173 		.drv_data = data,
3174 		.ftype = ftype,
3175 		.tsf = tsf,
3176 		.capability = capability,
3177 		.beacon_interval = beacon_interval,
3178 		.ie = ie,
3179 		.ielen = ielen,
3180 		.use_for = data->restrict_use ?
3181 				data->use_for :
3182 				NL80211_BSS_USE_FOR_ALL,
3183 		.cannot_use_reasons = data->cannot_use_reasons,
3184 	};
3185 	struct cfg80211_bss *res;
3186 
3187 	memcpy(inform_data.bssid, bssid, ETH_ALEN);
3188 
3189 	res = cfg80211_inform_single_bss_data(wiphy, &inform_data, gfp);
3190 	if (!res)
3191 		return NULL;
3192 
3193 	/* don't do any further MBSSID/ML handling for S1G */
3194 	if (ftype == CFG80211_BSS_FTYPE_S1G_BEACON)
3195 		return res;
3196 
3197 	cfg80211_parse_mbssid_data(wiphy, &inform_data, res, gfp);
3198 
3199 	cfg80211_parse_ml_sta_data(wiphy, &inform_data, res, gfp);
3200 
3201 	return res;
3202 }
3203 EXPORT_SYMBOL(cfg80211_inform_bss_data);
3204 
3205 struct cfg80211_bss *
3206 cfg80211_inform_bss_frame_data(struct wiphy *wiphy,
3207 			       struct cfg80211_inform_bss *data,
3208 			       struct ieee80211_mgmt *mgmt, size_t len,
3209 			       gfp_t gfp)
3210 {
3211 	size_t min_hdr_len;
3212 	struct ieee80211_ext *ext = NULL;
3213 	enum cfg80211_bss_frame_type ftype;
3214 	u16 beacon_interval;
3215 	const u8 *bssid;
3216 	u16 capability;
3217 	const u8 *ie;
3218 	size_t ielen;
3219 	u64 tsf;
3220 
3221 	if (WARN_ON(!mgmt))
3222 		return NULL;
3223 
3224 	if (WARN_ON(!wiphy))
3225 		return NULL;
3226 
3227 	BUILD_BUG_ON(offsetof(struct ieee80211_mgmt, u.probe_resp.variable) !=
3228 		     offsetof(struct ieee80211_mgmt, u.beacon.variable));
3229 
3230 	trace_cfg80211_inform_bss_frame(wiphy, data, mgmt, len);
3231 
3232 	if (ieee80211_is_s1g_beacon(mgmt->frame_control)) {
3233 		ext = (void *) mgmt;
3234 		if (ieee80211_is_s1g_short_beacon(mgmt->frame_control))
3235 			min_hdr_len = offsetof(struct ieee80211_ext,
3236 					       u.s1g_short_beacon.variable);
3237 		else
3238 			min_hdr_len = offsetof(struct ieee80211_ext,
3239 					       u.s1g_beacon.variable);
3240 	} else {
3241 		/* same for beacons */
3242 		min_hdr_len = offsetof(struct ieee80211_mgmt,
3243 				       u.probe_resp.variable);
3244 	}
3245 
3246 	if (WARN_ON(len < min_hdr_len))
3247 		return NULL;
3248 
3249 	ielen = len - min_hdr_len;
3250 	ie = mgmt->u.probe_resp.variable;
3251 	if (ext) {
3252 		const struct ieee80211_s1g_bcn_compat_ie *compat;
3253 		const struct element *elem;
3254 
3255 		if (ieee80211_is_s1g_short_beacon(mgmt->frame_control))
3256 			ie = ext->u.s1g_short_beacon.variable;
3257 		else
3258 			ie = ext->u.s1g_beacon.variable;
3259 
3260 		elem = cfg80211_find_elem(WLAN_EID_S1G_BCN_COMPAT, ie, ielen);
3261 		if (!elem)
3262 			return NULL;
3263 		if (elem->datalen < sizeof(*compat))
3264 			return NULL;
3265 		compat = (void *)elem->data;
3266 		bssid = ext->u.s1g_beacon.sa;
3267 		capability = le16_to_cpu(compat->compat_info);
3268 		beacon_interval = le16_to_cpu(compat->beacon_int);
3269 	} else {
3270 		bssid = mgmt->bssid;
3271 		beacon_interval = le16_to_cpu(mgmt->u.probe_resp.beacon_int);
3272 		capability = le16_to_cpu(mgmt->u.probe_resp.capab_info);
3273 	}
3274 
3275 	tsf = le64_to_cpu(mgmt->u.probe_resp.timestamp);
3276 
3277 	if (ieee80211_is_probe_resp(mgmt->frame_control))
3278 		ftype = CFG80211_BSS_FTYPE_PRESP;
3279 	else if (ext)
3280 		ftype = CFG80211_BSS_FTYPE_S1G_BEACON;
3281 	else
3282 		ftype = CFG80211_BSS_FTYPE_BEACON;
3283 
3284 	return cfg80211_inform_bss_data(wiphy, data, ftype,
3285 					bssid, tsf, capability,
3286 					beacon_interval, ie, ielen,
3287 					gfp);
3288 }
3289 EXPORT_SYMBOL(cfg80211_inform_bss_frame_data);
3290 
3291 void cfg80211_ref_bss(struct wiphy *wiphy, struct cfg80211_bss *pub)
3292 {
3293 	struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
3294 
3295 	if (!pub)
3296 		return;
3297 
3298 	spin_lock_bh(&rdev->bss_lock);
3299 	bss_ref_get(rdev, bss_from_pub(pub));
3300 	spin_unlock_bh(&rdev->bss_lock);
3301 }
3302 EXPORT_SYMBOL(cfg80211_ref_bss);
3303 
3304 void cfg80211_put_bss(struct wiphy *wiphy, struct cfg80211_bss *pub)
3305 {
3306 	struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
3307 
3308 	if (!pub)
3309 		return;
3310 
3311 	spin_lock_bh(&rdev->bss_lock);
3312 	bss_ref_put(rdev, bss_from_pub(pub));
3313 	spin_unlock_bh(&rdev->bss_lock);
3314 }
3315 EXPORT_SYMBOL(cfg80211_put_bss);
3316 
3317 void cfg80211_unlink_bss(struct wiphy *wiphy, struct cfg80211_bss *pub)
3318 {
3319 	struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
3320 	struct cfg80211_internal_bss *bss, *tmp1;
3321 	struct cfg80211_bss *nontrans_bss, *tmp;
3322 
3323 	if (WARN_ON(!pub))
3324 		return;
3325 
3326 	bss = bss_from_pub(pub);
3327 
3328 	spin_lock_bh(&rdev->bss_lock);
3329 	if (list_empty(&bss->list))
3330 		goto out;
3331 
3332 	list_for_each_entry_safe(nontrans_bss, tmp,
3333 				 &pub->nontrans_list,
3334 				 nontrans_list) {
3335 		tmp1 = bss_from_pub(nontrans_bss);
3336 		if (__cfg80211_unlink_bss(rdev, tmp1))
3337 			rdev->bss_generation++;
3338 	}
3339 
3340 	if (__cfg80211_unlink_bss(rdev, bss))
3341 		rdev->bss_generation++;
3342 out:
3343 	spin_unlock_bh(&rdev->bss_lock);
3344 }
3345 EXPORT_SYMBOL(cfg80211_unlink_bss);
3346 
3347 void cfg80211_bss_iter(struct wiphy *wiphy,
3348 		       struct cfg80211_chan_def *chandef,
3349 		       void (*iter)(struct wiphy *wiphy,
3350 				    struct cfg80211_bss *bss,
3351 				    void *data),
3352 		       void *iter_data)
3353 {
3354 	struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
3355 	struct cfg80211_internal_bss *bss;
3356 
3357 	spin_lock_bh(&rdev->bss_lock);
3358 
3359 	list_for_each_entry(bss, &rdev->bss_list, list) {
3360 		if (!chandef || cfg80211_is_sub_chan(chandef, bss->pub.channel,
3361 						     false))
3362 			iter(wiphy, &bss->pub, iter_data);
3363 	}
3364 
3365 	spin_unlock_bh(&rdev->bss_lock);
3366 }
3367 EXPORT_SYMBOL(cfg80211_bss_iter);
3368 
3369 void cfg80211_update_assoc_bss_entry(struct wireless_dev *wdev,
3370 				     unsigned int link_id,
3371 				     struct ieee80211_channel *chan)
3372 {
3373 	struct wiphy *wiphy = wdev->wiphy;
3374 	struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
3375 	struct cfg80211_internal_bss *cbss = wdev->links[link_id].client.current_bss;
3376 	struct cfg80211_internal_bss *new = NULL;
3377 	struct cfg80211_internal_bss *bss;
3378 	struct cfg80211_bss *nontrans_bss;
3379 	struct cfg80211_bss *tmp;
3380 
3381 	spin_lock_bh(&rdev->bss_lock);
3382 
3383 	/*
3384 	 * Some APs use CSA also for bandwidth changes, i.e., without actually
3385 	 * changing the control channel, so no need to update in such a case.
3386 	 */
3387 	if (cbss->pub.channel == chan)
3388 		goto done;
3389 
3390 	/* use transmitting bss */
3391 	if (cbss->pub.transmitted_bss)
3392 		cbss = bss_from_pub(cbss->pub.transmitted_bss);
3393 
3394 	cbss->pub.channel = chan;
3395 
3396 	list_for_each_entry(bss, &rdev->bss_list, list) {
3397 		if (!cfg80211_bss_type_match(bss->pub.capability,
3398 					     bss->pub.channel->band,
3399 					     wdev->conn_bss_type))
3400 			continue;
3401 
3402 		if (bss == cbss)
3403 			continue;
3404 
3405 		if (!cmp_bss(&bss->pub, &cbss->pub, BSS_CMP_REGULAR)) {
3406 			new = bss;
3407 			break;
3408 		}
3409 	}
3410 
3411 	if (new) {
3412 		/* to save time, update IEs for transmitting bss only */
3413 		cfg80211_update_known_bss(rdev, cbss, new, false);
3414 		new->pub.proberesp_ies = NULL;
3415 		new->pub.beacon_ies = NULL;
3416 
3417 		list_for_each_entry_safe(nontrans_bss, tmp,
3418 					 &new->pub.nontrans_list,
3419 					 nontrans_list) {
3420 			bss = bss_from_pub(nontrans_bss);
3421 			if (__cfg80211_unlink_bss(rdev, bss))
3422 				rdev->bss_generation++;
3423 		}
3424 
3425 		WARN_ON(atomic_read(&new->hold));
3426 		if (!WARN_ON(!__cfg80211_unlink_bss(rdev, new)))
3427 			rdev->bss_generation++;
3428 	}
3429 	cfg80211_rehash_bss(rdev, cbss);
3430 
3431 	list_for_each_entry_safe(nontrans_bss, tmp,
3432 				 &cbss->pub.nontrans_list,
3433 				 nontrans_list) {
3434 		bss = bss_from_pub(nontrans_bss);
3435 		bss->pub.channel = chan;
3436 		cfg80211_rehash_bss(rdev, bss);
3437 	}
3438 
3439 done:
3440 	spin_unlock_bh(&rdev->bss_lock);
3441 }
3442 
3443 #ifdef CONFIG_CFG80211_WEXT
3444 static struct cfg80211_registered_device *
3445 cfg80211_get_dev_from_ifindex(struct net *net, int ifindex)
3446 {
3447 	struct cfg80211_registered_device *rdev;
3448 	struct net_device *dev;
3449 
3450 	ASSERT_RTNL();
3451 
3452 	dev = dev_get_by_index(net, ifindex);
3453 	if (!dev)
3454 		return ERR_PTR(-ENODEV);
3455 	if (dev->ieee80211_ptr)
3456 		rdev = wiphy_to_rdev(dev->ieee80211_ptr->wiphy);
3457 	else
3458 		rdev = ERR_PTR(-ENODEV);
3459 	dev_put(dev);
3460 	return rdev;
3461 }
3462 
3463 int cfg80211_wext_siwscan(struct net_device *dev,
3464 			  struct iw_request_info *info,
3465 			  union iwreq_data *wrqu, char *extra)
3466 {
3467 	struct cfg80211_registered_device *rdev;
3468 	struct wiphy *wiphy;
3469 	struct iw_scan_req *wreq = NULL;
3470 	struct cfg80211_scan_request *creq;
3471 	int i, err, n_channels = 0;
3472 	enum nl80211_band band;
3473 
3474 	if (!netif_running(dev))
3475 		return -ENETDOWN;
3476 
3477 	if (wrqu->data.length == sizeof(struct iw_scan_req))
3478 		wreq = (struct iw_scan_req *)extra;
3479 
3480 	rdev = cfg80211_get_dev_from_ifindex(dev_net(dev), dev->ifindex);
3481 
3482 	if (IS_ERR(rdev))
3483 		return PTR_ERR(rdev);
3484 
3485 	if (rdev->scan_req || rdev->scan_msg)
3486 		return -EBUSY;
3487 
3488 	wiphy = &rdev->wiphy;
3489 
3490 	/* Determine number of channels, needed to allocate creq */
3491 	if (wreq && wreq->num_channels) {
3492 		/* Passed from userspace so should be checked */
3493 		if (unlikely(wreq->num_channels > IW_MAX_FREQUENCIES))
3494 			return -EINVAL;
3495 		n_channels = wreq->num_channels;
3496 	} else {
3497 		n_channels = ieee80211_get_num_supported_channels(wiphy);
3498 	}
3499 
3500 	creq = kzalloc(struct_size(creq, channels, n_channels) +
3501 		       sizeof(struct cfg80211_ssid),
3502 		       GFP_ATOMIC);
3503 	if (!creq)
3504 		return -ENOMEM;
3505 
3506 	creq->wiphy = wiphy;
3507 	creq->wdev = dev->ieee80211_ptr;
3508 	/* SSIDs come after channels */
3509 	creq->ssids = (void *)creq + struct_size(creq, channels, n_channels);
3510 	creq->n_channels = n_channels;
3511 	creq->n_ssids = 1;
3512 	creq->scan_start = jiffies;
3513 
3514 	/* translate "Scan on frequencies" request */
3515 	i = 0;
3516 	for (band = 0; band < NUM_NL80211_BANDS; band++) {
3517 		int j;
3518 
3519 		if (!wiphy->bands[band])
3520 			continue;
3521 
3522 		for (j = 0; j < wiphy->bands[band]->n_channels; j++) {
3523 			struct ieee80211_channel *chan;
3524 
3525 			/* ignore disabled channels */
3526 			chan = &wiphy->bands[band]->channels[j];
3527 			if (chan->flags & IEEE80211_CHAN_DISABLED ||
3528 			    !cfg80211_wdev_channel_allowed(creq->wdev, chan))
3529 				continue;
3530 
3531 			/* If we have a wireless request structure and the
3532 			 * wireless request specifies frequencies, then search
3533 			 * for the matching hardware channel.
3534 			 */
3535 			if (wreq && wreq->num_channels) {
3536 				int k;
3537 				int wiphy_freq = wiphy->bands[band]->channels[j].center_freq;
3538 				for (k = 0; k < wreq->num_channels; k++) {
3539 					struct iw_freq *freq =
3540 						&wreq->channel_list[k];
3541 					int wext_freq =
3542 						cfg80211_wext_freq(freq);
3543 
3544 					if (wext_freq == wiphy_freq)
3545 						goto wext_freq_found;
3546 				}
3547 				goto wext_freq_not_found;
3548 			}
3549 
3550 		wext_freq_found:
3551 			creq->channels[i] = &wiphy->bands[band]->channels[j];
3552 			i++;
3553 		wext_freq_not_found: ;
3554 		}
3555 	}
3556 	/* No channels found? */
3557 	if (!i) {
3558 		err = -EINVAL;
3559 		goto out;
3560 	}
3561 
3562 	/* Set real number of channels specified in creq->channels[] */
3563 	creq->n_channels = i;
3564 
3565 	/* translate "Scan for SSID" request */
3566 	if (wreq) {
3567 		if (wrqu->data.flags & IW_SCAN_THIS_ESSID) {
3568 			if (wreq->essid_len > IEEE80211_MAX_SSID_LEN) {
3569 				err = -EINVAL;
3570 				goto out;
3571 			}
3572 			memcpy(creq->ssids[0].ssid, wreq->essid, wreq->essid_len);
3573 			creq->ssids[0].ssid_len = wreq->essid_len;
3574 		}
3575 		if (wreq->scan_type == IW_SCAN_TYPE_PASSIVE) {
3576 			creq->ssids = NULL;
3577 			creq->n_ssids = 0;
3578 		}
3579 	}
3580 
3581 	for (i = 0; i < NUM_NL80211_BANDS; i++)
3582 		if (wiphy->bands[i])
3583 			creq->rates[i] = (1 << wiphy->bands[i]->n_bitrates) - 1;
3584 
3585 	eth_broadcast_addr(creq->bssid);
3586 
3587 	wiphy_lock(&rdev->wiphy);
3588 
3589 	rdev->scan_req = creq;
3590 	err = rdev_scan(rdev, creq);
3591 	if (err) {
3592 		rdev->scan_req = NULL;
3593 		/* creq will be freed below */
3594 	} else {
3595 		nl80211_send_scan_start(rdev, dev->ieee80211_ptr);
3596 		/* creq now owned by driver */
3597 		creq = NULL;
3598 		dev_hold(dev);
3599 	}
3600 	wiphy_unlock(&rdev->wiphy);
3601  out:
3602 	kfree(creq);
3603 	return err;
3604 }
3605 
3606 static char *ieee80211_scan_add_ies(struct iw_request_info *info,
3607 				    const struct cfg80211_bss_ies *ies,
3608 				    char *current_ev, char *end_buf)
3609 {
3610 	const u8 *pos, *end, *next;
3611 	struct iw_event iwe;
3612 
3613 	if (!ies)
3614 		return current_ev;
3615 
3616 	/*
3617 	 * If needed, fragment the IEs buffer (at IE boundaries) into short
3618 	 * enough fragments to fit into IW_GENERIC_IE_MAX octet messages.
3619 	 */
3620 	pos = ies->data;
3621 	end = pos + ies->len;
3622 
3623 	while (end - pos > IW_GENERIC_IE_MAX) {
3624 		next = pos + 2 + pos[1];
3625 		while (next + 2 + next[1] - pos < IW_GENERIC_IE_MAX)
3626 			next = next + 2 + next[1];
3627 
3628 		memset(&iwe, 0, sizeof(iwe));
3629 		iwe.cmd = IWEVGENIE;
3630 		iwe.u.data.length = next - pos;
3631 		current_ev = iwe_stream_add_point_check(info, current_ev,
3632 							end_buf, &iwe,
3633 							(void *)pos);
3634 		if (IS_ERR(current_ev))
3635 			return current_ev;
3636 		pos = next;
3637 	}
3638 
3639 	if (end > pos) {
3640 		memset(&iwe, 0, sizeof(iwe));
3641 		iwe.cmd = IWEVGENIE;
3642 		iwe.u.data.length = end - pos;
3643 		current_ev = iwe_stream_add_point_check(info, current_ev,
3644 							end_buf, &iwe,
3645 							(void *)pos);
3646 		if (IS_ERR(current_ev))
3647 			return current_ev;
3648 	}
3649 
3650 	return current_ev;
3651 }
3652 
3653 static char *
3654 ieee80211_bss(struct wiphy *wiphy, struct iw_request_info *info,
3655 	      struct cfg80211_internal_bss *bss, char *current_ev,
3656 	      char *end_buf)
3657 {
3658 	const struct cfg80211_bss_ies *ies;
3659 	struct iw_event iwe;
3660 	const u8 *ie;
3661 	u8 buf[50];
3662 	u8 *cfg, *p, *tmp;
3663 	int rem, i, sig;
3664 	bool ismesh = false;
3665 
3666 	memset(&iwe, 0, sizeof(iwe));
3667 	iwe.cmd = SIOCGIWAP;
3668 	iwe.u.ap_addr.sa_family = ARPHRD_ETHER;
3669 	memcpy(iwe.u.ap_addr.sa_data, bss->pub.bssid, ETH_ALEN);
3670 	current_ev = iwe_stream_add_event_check(info, current_ev, end_buf, &iwe,
3671 						IW_EV_ADDR_LEN);
3672 	if (IS_ERR(current_ev))
3673 		return current_ev;
3674 
3675 	memset(&iwe, 0, sizeof(iwe));
3676 	iwe.cmd = SIOCGIWFREQ;
3677 	iwe.u.freq.m = ieee80211_frequency_to_channel(bss->pub.channel->center_freq);
3678 	iwe.u.freq.e = 0;
3679 	current_ev = iwe_stream_add_event_check(info, current_ev, end_buf, &iwe,
3680 						IW_EV_FREQ_LEN);
3681 	if (IS_ERR(current_ev))
3682 		return current_ev;
3683 
3684 	memset(&iwe, 0, sizeof(iwe));
3685 	iwe.cmd = SIOCGIWFREQ;
3686 	iwe.u.freq.m = bss->pub.channel->center_freq;
3687 	iwe.u.freq.e = 6;
3688 	current_ev = iwe_stream_add_event_check(info, current_ev, end_buf, &iwe,
3689 						IW_EV_FREQ_LEN);
3690 	if (IS_ERR(current_ev))
3691 		return current_ev;
3692 
3693 	if (wiphy->signal_type != CFG80211_SIGNAL_TYPE_NONE) {
3694 		memset(&iwe, 0, sizeof(iwe));
3695 		iwe.cmd = IWEVQUAL;
3696 		iwe.u.qual.updated = IW_QUAL_LEVEL_UPDATED |
3697 				     IW_QUAL_NOISE_INVALID |
3698 				     IW_QUAL_QUAL_UPDATED;
3699 		switch (wiphy->signal_type) {
3700 		case CFG80211_SIGNAL_TYPE_MBM:
3701 			sig = bss->pub.signal / 100;
3702 			iwe.u.qual.level = sig;
3703 			iwe.u.qual.updated |= IW_QUAL_DBM;
3704 			if (sig < -110)		/* rather bad */
3705 				sig = -110;
3706 			else if (sig > -40)	/* perfect */
3707 				sig = -40;
3708 			/* will give a range of 0 .. 70 */
3709 			iwe.u.qual.qual = sig + 110;
3710 			break;
3711 		case CFG80211_SIGNAL_TYPE_UNSPEC:
3712 			iwe.u.qual.level = bss->pub.signal;
3713 			/* will give range 0 .. 100 */
3714 			iwe.u.qual.qual = bss->pub.signal;
3715 			break;
3716 		default:
3717 			/* not reached */
3718 			break;
3719 		}
3720 		current_ev = iwe_stream_add_event_check(info, current_ev,
3721 							end_buf, &iwe,
3722 							IW_EV_QUAL_LEN);
3723 		if (IS_ERR(current_ev))
3724 			return current_ev;
3725 	}
3726 
3727 	memset(&iwe, 0, sizeof(iwe));
3728 	iwe.cmd = SIOCGIWENCODE;
3729 	if (bss->pub.capability & WLAN_CAPABILITY_PRIVACY)
3730 		iwe.u.data.flags = IW_ENCODE_ENABLED | IW_ENCODE_NOKEY;
3731 	else
3732 		iwe.u.data.flags = IW_ENCODE_DISABLED;
3733 	iwe.u.data.length = 0;
3734 	current_ev = iwe_stream_add_point_check(info, current_ev, end_buf,
3735 						&iwe, "");
3736 	if (IS_ERR(current_ev))
3737 		return current_ev;
3738 
3739 	rcu_read_lock();
3740 	ies = rcu_dereference(bss->pub.ies);
3741 	rem = ies->len;
3742 	ie = ies->data;
3743 
3744 	while (rem >= 2) {
3745 		/* invalid data */
3746 		if (ie[1] > rem - 2)
3747 			break;
3748 
3749 		switch (ie[0]) {
3750 		case WLAN_EID_SSID:
3751 			memset(&iwe, 0, sizeof(iwe));
3752 			iwe.cmd = SIOCGIWESSID;
3753 			iwe.u.data.length = ie[1];
3754 			iwe.u.data.flags = 1;
3755 			current_ev = iwe_stream_add_point_check(info,
3756 								current_ev,
3757 								end_buf, &iwe,
3758 								(u8 *)ie + 2);
3759 			if (IS_ERR(current_ev))
3760 				goto unlock;
3761 			break;
3762 		case WLAN_EID_MESH_ID:
3763 			memset(&iwe, 0, sizeof(iwe));
3764 			iwe.cmd = SIOCGIWESSID;
3765 			iwe.u.data.length = ie[1];
3766 			iwe.u.data.flags = 1;
3767 			current_ev = iwe_stream_add_point_check(info,
3768 								current_ev,
3769 								end_buf, &iwe,
3770 								(u8 *)ie + 2);
3771 			if (IS_ERR(current_ev))
3772 				goto unlock;
3773 			break;
3774 		case WLAN_EID_MESH_CONFIG:
3775 			ismesh = true;
3776 			if (ie[1] != sizeof(struct ieee80211_meshconf_ie))
3777 				break;
3778 			cfg = (u8 *)ie + 2;
3779 			memset(&iwe, 0, sizeof(iwe));
3780 			iwe.cmd = IWEVCUSTOM;
3781 			iwe.u.data.length = sprintf(buf,
3782 						    "Mesh Network Path Selection Protocol ID: 0x%02X",
3783 						    cfg[0]);
3784 			current_ev = iwe_stream_add_point_check(info,
3785 								current_ev,
3786 								end_buf,
3787 								&iwe, buf);
3788 			if (IS_ERR(current_ev))
3789 				goto unlock;
3790 			iwe.u.data.length = sprintf(buf,
3791 						    "Path Selection Metric ID: 0x%02X",
3792 						    cfg[1]);
3793 			current_ev = iwe_stream_add_point_check(info,
3794 								current_ev,
3795 								end_buf,
3796 								&iwe, buf);
3797 			if (IS_ERR(current_ev))
3798 				goto unlock;
3799 			iwe.u.data.length = sprintf(buf,
3800 						    "Congestion Control Mode ID: 0x%02X",
3801 						    cfg[2]);
3802 			current_ev = iwe_stream_add_point_check(info,
3803 								current_ev,
3804 								end_buf,
3805 								&iwe, buf);
3806 			if (IS_ERR(current_ev))
3807 				goto unlock;
3808 			iwe.u.data.length = sprintf(buf,
3809 						    "Synchronization ID: 0x%02X",
3810 						    cfg[3]);
3811 			current_ev = iwe_stream_add_point_check(info,
3812 								current_ev,
3813 								end_buf,
3814 								&iwe, buf);
3815 			if (IS_ERR(current_ev))
3816 				goto unlock;
3817 			iwe.u.data.length = sprintf(buf,
3818 						    "Authentication ID: 0x%02X",
3819 						    cfg[4]);
3820 			current_ev = iwe_stream_add_point_check(info,
3821 								current_ev,
3822 								end_buf,
3823 								&iwe, buf);
3824 			if (IS_ERR(current_ev))
3825 				goto unlock;
3826 			iwe.u.data.length = sprintf(buf,
3827 						    "Formation Info: 0x%02X",
3828 						    cfg[5]);
3829 			current_ev = iwe_stream_add_point_check(info,
3830 								current_ev,
3831 								end_buf,
3832 								&iwe, buf);
3833 			if (IS_ERR(current_ev))
3834 				goto unlock;
3835 			iwe.u.data.length = sprintf(buf,
3836 						    "Capabilities: 0x%02X",
3837 						    cfg[6]);
3838 			current_ev = iwe_stream_add_point_check(info,
3839 								current_ev,
3840 								end_buf,
3841 								&iwe, buf);
3842 			if (IS_ERR(current_ev))
3843 				goto unlock;
3844 			break;
3845 		case WLAN_EID_SUPP_RATES:
3846 		case WLAN_EID_EXT_SUPP_RATES:
3847 			/* display all supported rates in readable format */
3848 			p = current_ev + iwe_stream_lcp_len(info);
3849 
3850 			memset(&iwe, 0, sizeof(iwe));
3851 			iwe.cmd = SIOCGIWRATE;
3852 			/* Those two flags are ignored... */
3853 			iwe.u.bitrate.fixed = iwe.u.bitrate.disabled = 0;
3854 
3855 			for (i = 0; i < ie[1]; i++) {
3856 				iwe.u.bitrate.value =
3857 					((ie[i + 2] & 0x7f) * 500000);
3858 				tmp = p;
3859 				p = iwe_stream_add_value(info, current_ev, p,
3860 							 end_buf, &iwe,
3861 							 IW_EV_PARAM_LEN);
3862 				if (p == tmp) {
3863 					current_ev = ERR_PTR(-E2BIG);
3864 					goto unlock;
3865 				}
3866 			}
3867 			current_ev = p;
3868 			break;
3869 		}
3870 		rem -= ie[1] + 2;
3871 		ie += ie[1] + 2;
3872 	}
3873 
3874 	if (bss->pub.capability & (WLAN_CAPABILITY_ESS | WLAN_CAPABILITY_IBSS) ||
3875 	    ismesh) {
3876 		memset(&iwe, 0, sizeof(iwe));
3877 		iwe.cmd = SIOCGIWMODE;
3878 		if (ismesh)
3879 			iwe.u.mode = IW_MODE_MESH;
3880 		else if (bss->pub.capability & WLAN_CAPABILITY_ESS)
3881 			iwe.u.mode = IW_MODE_MASTER;
3882 		else
3883 			iwe.u.mode = IW_MODE_ADHOC;
3884 		current_ev = iwe_stream_add_event_check(info, current_ev,
3885 							end_buf, &iwe,
3886 							IW_EV_UINT_LEN);
3887 		if (IS_ERR(current_ev))
3888 			goto unlock;
3889 	}
3890 
3891 	memset(&iwe, 0, sizeof(iwe));
3892 	iwe.cmd = IWEVCUSTOM;
3893 	iwe.u.data.length = sprintf(buf, "tsf=%016llx",
3894 				    (unsigned long long)(ies->tsf));
3895 	current_ev = iwe_stream_add_point_check(info, current_ev, end_buf,
3896 						&iwe, buf);
3897 	if (IS_ERR(current_ev))
3898 		goto unlock;
3899 	memset(&iwe, 0, sizeof(iwe));
3900 	iwe.cmd = IWEVCUSTOM;
3901 	iwe.u.data.length = sprintf(buf, " Last beacon: %ums ago",
3902 				    elapsed_jiffies_msecs(bss->ts));
3903 	current_ev = iwe_stream_add_point_check(info, current_ev,
3904 						end_buf, &iwe, buf);
3905 	if (IS_ERR(current_ev))
3906 		goto unlock;
3907 
3908 	current_ev = ieee80211_scan_add_ies(info, ies, current_ev, end_buf);
3909 
3910  unlock:
3911 	rcu_read_unlock();
3912 	return current_ev;
3913 }
3914 
3915 
3916 static int ieee80211_scan_results(struct cfg80211_registered_device *rdev,
3917 				  struct iw_request_info *info,
3918 				  char *buf, size_t len)
3919 {
3920 	char *current_ev = buf;
3921 	char *end_buf = buf + len;
3922 	struct cfg80211_internal_bss *bss;
3923 	int err = 0;
3924 
3925 	spin_lock_bh(&rdev->bss_lock);
3926 	cfg80211_bss_expire(rdev);
3927 
3928 	list_for_each_entry(bss, &rdev->bss_list, list) {
3929 		if (buf + len - current_ev <= IW_EV_ADDR_LEN) {
3930 			err = -E2BIG;
3931 			break;
3932 		}
3933 		current_ev = ieee80211_bss(&rdev->wiphy, info, bss,
3934 					   current_ev, end_buf);
3935 		if (IS_ERR(current_ev)) {
3936 			err = PTR_ERR(current_ev);
3937 			break;
3938 		}
3939 	}
3940 	spin_unlock_bh(&rdev->bss_lock);
3941 
3942 	if (err)
3943 		return err;
3944 	return current_ev - buf;
3945 }
3946 
3947 
3948 int cfg80211_wext_giwscan(struct net_device *dev,
3949 			  struct iw_request_info *info,
3950 			  union iwreq_data *wrqu, char *extra)
3951 {
3952 	struct iw_point *data = &wrqu->data;
3953 	struct cfg80211_registered_device *rdev;
3954 	int res;
3955 
3956 	if (!netif_running(dev))
3957 		return -ENETDOWN;
3958 
3959 	rdev = cfg80211_get_dev_from_ifindex(dev_net(dev), dev->ifindex);
3960 
3961 	if (IS_ERR(rdev))
3962 		return PTR_ERR(rdev);
3963 
3964 	if (rdev->scan_req || rdev->scan_msg)
3965 		return -EAGAIN;
3966 
3967 	res = ieee80211_scan_results(rdev, info, extra, data->length);
3968 	data->length = 0;
3969 	if (res >= 0) {
3970 		data->length = res;
3971 		res = 0;
3972 	}
3973 
3974 	return res;
3975 }
3976 #endif
3977