1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * cfg80211 scan result handling 4 * 5 * Copyright 2008 Johannes Berg <johannes@sipsolutions.net> 6 * Copyright 2013-2014 Intel Mobile Communications GmbH 7 * Copyright 2016 Intel Deutschland GmbH 8 * Copyright (C) 2018-2021 Intel Corporation 9 */ 10 #include <linux/kernel.h> 11 #include <linux/slab.h> 12 #include <linux/module.h> 13 #include <linux/netdevice.h> 14 #include <linux/wireless.h> 15 #include <linux/nl80211.h> 16 #include <linux/etherdevice.h> 17 #include <linux/crc32.h> 18 #include <linux/bitfield.h> 19 #include <net/arp.h> 20 #include <net/cfg80211.h> 21 #include <net/cfg80211-wext.h> 22 #include <net/iw_handler.h> 23 #include "core.h" 24 #include "nl80211.h" 25 #include "wext-compat.h" 26 #include "rdev-ops.h" 27 28 /** 29 * DOC: BSS tree/list structure 30 * 31 * At the top level, the BSS list is kept in both a list in each 32 * registered device (@bss_list) as well as an RB-tree for faster 33 * lookup. In the RB-tree, entries can be looked up using their 34 * channel, MESHID, MESHCONF (for MBSSes) or channel, BSSID, SSID 35 * for other BSSes. 36 * 37 * Due to the possibility of hidden SSIDs, there's a second level 38 * structure, the "hidden_list" and "hidden_beacon_bss" pointer. 39 * The hidden_list connects all BSSes belonging to a single AP 40 * that has a hidden SSID, and connects beacon and probe response 41 * entries. For a probe response entry for a hidden SSID, the 42 * hidden_beacon_bss pointer points to the BSS struct holding the 43 * beacon's information. 44 * 45 * Reference counting is done for all these references except for 46 * the hidden_list, so that a beacon BSS struct that is otherwise 47 * not referenced has one reference for being on the bss_list and 48 * one for each probe response entry that points to it using the 49 * hidden_beacon_bss pointer. When a BSS struct that has such a 50 * pointer is get/put, the refcount update is also propagated to 51 * the referenced struct, this ensure that it cannot get removed 52 * while somebody is using the probe response version. 53 * 54 * Note that the hidden_beacon_bss pointer never changes, due to 55 * the reference counting. Therefore, no locking is needed for 56 * it. 57 * 58 * Also note that the hidden_beacon_bss pointer is only relevant 59 * if the driver uses something other than the IEs, e.g. private 60 * data stored in the BSS struct, since the beacon IEs are 61 * also linked into the probe response struct. 62 */ 63 64 /* 65 * Limit the number of BSS entries stored in mac80211. Each one is 66 * a bit over 4k at most, so this limits to roughly 4-5M of memory. 67 * If somebody wants to really attack this though, they'd likely 68 * use small beacons, and only one type of frame, limiting each of 69 * the entries to a much smaller size (in order to generate more 70 * entries in total, so overhead is bigger.) 71 */ 72 static int bss_entries_limit = 1000; 73 module_param(bss_entries_limit, int, 0644); 74 MODULE_PARM_DESC(bss_entries_limit, 75 "limit to number of scan BSS entries (per wiphy, default 1000)"); 76 77 #define IEEE80211_SCAN_RESULT_EXPIRE (30 * HZ) 78 79 /** 80 * struct cfg80211_colocated_ap - colocated AP information 81 * 82 * @list: linked list to all colocated aPS 83 * @bssid: BSSID of the reported AP 84 * @ssid: SSID of the reported AP 85 * @ssid_len: length of the ssid 86 * @center_freq: frequency the reported AP is on 87 * @unsolicited_probe: the reported AP is part of an ESS, where all the APs 88 * that operate in the same channel as the reported AP and that might be 89 * detected by a STA receiving this frame, are transmitting unsolicited 90 * Probe Response frames every 20 TUs 91 * @oct_recommended: OCT is recommended to exchange MMPDUs with the reported AP 92 * @same_ssid: the reported AP has the same SSID as the reporting AP 93 * @multi_bss: the reported AP is part of a multiple BSSID set 94 * @transmitted_bssid: the reported AP is the transmitting BSSID 95 * @colocated_ess: all the APs that share the same ESS as the reported AP are 96 * colocated and can be discovered via legacy bands. 97 * @short_ssid_valid: short_ssid is valid and can be used 98 * @short_ssid: the short SSID for this SSID 99 */ 100 struct cfg80211_colocated_ap { 101 struct list_head list; 102 u8 bssid[ETH_ALEN]; 103 u8 ssid[IEEE80211_MAX_SSID_LEN]; 104 size_t ssid_len; 105 u32 short_ssid; 106 u32 center_freq; 107 u8 unsolicited_probe:1, 108 oct_recommended:1, 109 same_ssid:1, 110 multi_bss:1, 111 transmitted_bssid:1, 112 colocated_ess:1, 113 short_ssid_valid:1; 114 }; 115 116 static void bss_free(struct cfg80211_internal_bss *bss) 117 { 118 struct cfg80211_bss_ies *ies; 119 120 if (WARN_ON(atomic_read(&bss->hold))) 121 return; 122 123 ies = (void *)rcu_access_pointer(bss->pub.beacon_ies); 124 if (ies && !bss->pub.hidden_beacon_bss) 125 kfree_rcu(ies, rcu_head); 126 ies = (void *)rcu_access_pointer(bss->pub.proberesp_ies); 127 if (ies) 128 kfree_rcu(ies, rcu_head); 129 130 /* 131 * This happens when the module is removed, it doesn't 132 * really matter any more save for completeness 133 */ 134 if (!list_empty(&bss->hidden_list)) 135 list_del(&bss->hidden_list); 136 137 kfree(bss); 138 } 139 140 static inline void bss_ref_get(struct cfg80211_registered_device *rdev, 141 struct cfg80211_internal_bss *bss) 142 { 143 lockdep_assert_held(&rdev->bss_lock); 144 145 bss->refcount++; 146 if (bss->pub.hidden_beacon_bss) { 147 bss = container_of(bss->pub.hidden_beacon_bss, 148 struct cfg80211_internal_bss, 149 pub); 150 bss->refcount++; 151 } 152 if (bss->pub.transmitted_bss) { 153 bss = container_of(bss->pub.transmitted_bss, 154 struct cfg80211_internal_bss, 155 pub); 156 bss->refcount++; 157 } 158 } 159 160 static inline void bss_ref_put(struct cfg80211_registered_device *rdev, 161 struct cfg80211_internal_bss *bss) 162 { 163 lockdep_assert_held(&rdev->bss_lock); 164 165 if (bss->pub.hidden_beacon_bss) { 166 struct cfg80211_internal_bss *hbss; 167 hbss = container_of(bss->pub.hidden_beacon_bss, 168 struct cfg80211_internal_bss, 169 pub); 170 hbss->refcount--; 171 if (hbss->refcount == 0) 172 bss_free(hbss); 173 } 174 175 if (bss->pub.transmitted_bss) { 176 struct cfg80211_internal_bss *tbss; 177 178 tbss = container_of(bss->pub.transmitted_bss, 179 struct cfg80211_internal_bss, 180 pub); 181 tbss->refcount--; 182 if (tbss->refcount == 0) 183 bss_free(tbss); 184 } 185 186 bss->refcount--; 187 if (bss->refcount == 0) 188 bss_free(bss); 189 } 190 191 static bool __cfg80211_unlink_bss(struct cfg80211_registered_device *rdev, 192 struct cfg80211_internal_bss *bss) 193 { 194 lockdep_assert_held(&rdev->bss_lock); 195 196 if (!list_empty(&bss->hidden_list)) { 197 /* 198 * don't remove the beacon entry if it has 199 * probe responses associated with it 200 */ 201 if (!bss->pub.hidden_beacon_bss) 202 return false; 203 /* 204 * if it's a probe response entry break its 205 * link to the other entries in the group 206 */ 207 list_del_init(&bss->hidden_list); 208 } 209 210 list_del_init(&bss->list); 211 list_del_init(&bss->pub.nontrans_list); 212 rb_erase(&bss->rbn, &rdev->bss_tree); 213 rdev->bss_entries--; 214 WARN_ONCE((rdev->bss_entries == 0) ^ list_empty(&rdev->bss_list), 215 "rdev bss entries[%d]/list[empty:%d] corruption\n", 216 rdev->bss_entries, list_empty(&rdev->bss_list)); 217 bss_ref_put(rdev, bss); 218 return true; 219 } 220 221 bool cfg80211_is_element_inherited(const struct element *elem, 222 const struct element *non_inherit_elem) 223 { 224 u8 id_len, ext_id_len, i, loop_len, id; 225 const u8 *list; 226 227 if (elem->id == WLAN_EID_MULTIPLE_BSSID) 228 return false; 229 230 if (!non_inherit_elem || non_inherit_elem->datalen < 2) 231 return true; 232 233 /* 234 * non inheritance element format is: 235 * ext ID (56) | IDs list len | list | extension IDs list len | list 236 * Both lists are optional. Both lengths are mandatory. 237 * This means valid length is: 238 * elem_len = 1 (extension ID) + 2 (list len fields) + list lengths 239 */ 240 id_len = non_inherit_elem->data[1]; 241 if (non_inherit_elem->datalen < 3 + id_len) 242 return true; 243 244 ext_id_len = non_inherit_elem->data[2 + id_len]; 245 if (non_inherit_elem->datalen < 3 + id_len + ext_id_len) 246 return true; 247 248 if (elem->id == WLAN_EID_EXTENSION) { 249 if (!ext_id_len) 250 return true; 251 loop_len = ext_id_len; 252 list = &non_inherit_elem->data[3 + id_len]; 253 id = elem->data[0]; 254 } else { 255 if (!id_len) 256 return true; 257 loop_len = id_len; 258 list = &non_inherit_elem->data[2]; 259 id = elem->id; 260 } 261 262 for (i = 0; i < loop_len; i++) { 263 if (list[i] == id) 264 return false; 265 } 266 267 return true; 268 } 269 EXPORT_SYMBOL(cfg80211_is_element_inherited); 270 271 static size_t cfg80211_gen_new_ie(const u8 *ie, size_t ielen, 272 const u8 *subelement, size_t subie_len, 273 u8 *new_ie, gfp_t gfp) 274 { 275 u8 *pos, *tmp; 276 const u8 *tmp_old, *tmp_new; 277 const struct element *non_inherit_elem; 278 u8 *sub_copy; 279 280 /* copy subelement as we need to change its content to 281 * mark an ie after it is processed. 282 */ 283 sub_copy = kmemdup(subelement, subie_len, gfp); 284 if (!sub_copy) 285 return 0; 286 287 pos = &new_ie[0]; 288 289 /* set new ssid */ 290 tmp_new = cfg80211_find_ie(WLAN_EID_SSID, sub_copy, subie_len); 291 if (tmp_new) { 292 memcpy(pos, tmp_new, tmp_new[1] + 2); 293 pos += (tmp_new[1] + 2); 294 } 295 296 /* get non inheritance list if exists */ 297 non_inherit_elem = 298 cfg80211_find_ext_elem(WLAN_EID_EXT_NON_INHERITANCE, 299 sub_copy, subie_len); 300 301 /* go through IEs in ie (skip SSID) and subelement, 302 * merge them into new_ie 303 */ 304 tmp_old = cfg80211_find_ie(WLAN_EID_SSID, ie, ielen); 305 tmp_old = (tmp_old) ? tmp_old + tmp_old[1] + 2 : ie; 306 307 while (tmp_old + tmp_old[1] + 2 - ie <= ielen) { 308 if (tmp_old[0] == 0) { 309 tmp_old++; 310 continue; 311 } 312 313 if (tmp_old[0] == WLAN_EID_EXTENSION) 314 tmp = (u8 *)cfg80211_find_ext_ie(tmp_old[2], sub_copy, 315 subie_len); 316 else 317 tmp = (u8 *)cfg80211_find_ie(tmp_old[0], sub_copy, 318 subie_len); 319 320 if (!tmp) { 321 const struct element *old_elem = (void *)tmp_old; 322 323 /* ie in old ie but not in subelement */ 324 if (cfg80211_is_element_inherited(old_elem, 325 non_inherit_elem)) { 326 memcpy(pos, tmp_old, tmp_old[1] + 2); 327 pos += tmp_old[1] + 2; 328 } 329 } else { 330 /* ie in transmitting ie also in subelement, 331 * copy from subelement and flag the ie in subelement 332 * as copied (by setting eid field to WLAN_EID_SSID, 333 * which is skipped anyway). 334 * For vendor ie, compare OUI + type + subType to 335 * determine if they are the same ie. 336 */ 337 if (tmp_old[0] == WLAN_EID_VENDOR_SPECIFIC) { 338 if (!memcmp(tmp_old + 2, tmp + 2, 5)) { 339 /* same vendor ie, copy from 340 * subelement 341 */ 342 memcpy(pos, tmp, tmp[1] + 2); 343 pos += tmp[1] + 2; 344 tmp[0] = WLAN_EID_SSID; 345 } else { 346 memcpy(pos, tmp_old, tmp_old[1] + 2); 347 pos += tmp_old[1] + 2; 348 } 349 } else { 350 /* copy ie from subelement into new ie */ 351 memcpy(pos, tmp, tmp[1] + 2); 352 pos += tmp[1] + 2; 353 tmp[0] = WLAN_EID_SSID; 354 } 355 } 356 357 if (tmp_old + tmp_old[1] + 2 - ie == ielen) 358 break; 359 360 tmp_old += tmp_old[1] + 2; 361 } 362 363 /* go through subelement again to check if there is any ie not 364 * copied to new ie, skip ssid, capability, bssid-index ie 365 */ 366 tmp_new = sub_copy; 367 while (tmp_new + tmp_new[1] + 2 - sub_copy <= subie_len) { 368 if (!(tmp_new[0] == WLAN_EID_NON_TX_BSSID_CAP || 369 tmp_new[0] == WLAN_EID_SSID)) { 370 memcpy(pos, tmp_new, tmp_new[1] + 2); 371 pos += tmp_new[1] + 2; 372 } 373 if (tmp_new + tmp_new[1] + 2 - sub_copy == subie_len) 374 break; 375 tmp_new += tmp_new[1] + 2; 376 } 377 378 kfree(sub_copy); 379 return pos - new_ie; 380 } 381 382 static bool is_bss(struct cfg80211_bss *a, const u8 *bssid, 383 const u8 *ssid, size_t ssid_len) 384 { 385 const struct cfg80211_bss_ies *ies; 386 const struct element *ssid_elem; 387 388 if (bssid && !ether_addr_equal(a->bssid, bssid)) 389 return false; 390 391 if (!ssid) 392 return true; 393 394 ies = rcu_access_pointer(a->ies); 395 if (!ies) 396 return false; 397 ssid_elem = cfg80211_find_elem(WLAN_EID_SSID, ies->data, ies->len); 398 if (!ssid_elem) 399 return false; 400 if (ssid_elem->datalen != ssid_len) 401 return false; 402 return memcmp(ssid_elem->data, ssid, ssid_len) == 0; 403 } 404 405 static int 406 cfg80211_add_nontrans_list(struct cfg80211_bss *trans_bss, 407 struct cfg80211_bss *nontrans_bss) 408 { 409 const struct element *ssid_elem; 410 struct cfg80211_bss *bss = NULL; 411 412 rcu_read_lock(); 413 ssid_elem = ieee80211_bss_get_elem(nontrans_bss, WLAN_EID_SSID); 414 if (!ssid_elem) { 415 rcu_read_unlock(); 416 return -EINVAL; 417 } 418 419 /* check if nontrans_bss is in the list */ 420 list_for_each_entry(bss, &trans_bss->nontrans_list, nontrans_list) { 421 if (is_bss(bss, nontrans_bss->bssid, ssid_elem->data, 422 ssid_elem->datalen)) { 423 rcu_read_unlock(); 424 return 0; 425 } 426 } 427 428 rcu_read_unlock(); 429 430 /* add to the list */ 431 list_add_tail(&nontrans_bss->nontrans_list, &trans_bss->nontrans_list); 432 return 0; 433 } 434 435 static void __cfg80211_bss_expire(struct cfg80211_registered_device *rdev, 436 unsigned long expire_time) 437 { 438 struct cfg80211_internal_bss *bss, *tmp; 439 bool expired = false; 440 441 lockdep_assert_held(&rdev->bss_lock); 442 443 list_for_each_entry_safe(bss, tmp, &rdev->bss_list, list) { 444 if (atomic_read(&bss->hold)) 445 continue; 446 if (!time_after(expire_time, bss->ts)) 447 continue; 448 449 if (__cfg80211_unlink_bss(rdev, bss)) 450 expired = true; 451 } 452 453 if (expired) 454 rdev->bss_generation++; 455 } 456 457 static bool cfg80211_bss_expire_oldest(struct cfg80211_registered_device *rdev) 458 { 459 struct cfg80211_internal_bss *bss, *oldest = NULL; 460 bool ret; 461 462 lockdep_assert_held(&rdev->bss_lock); 463 464 list_for_each_entry(bss, &rdev->bss_list, list) { 465 if (atomic_read(&bss->hold)) 466 continue; 467 468 if (!list_empty(&bss->hidden_list) && 469 !bss->pub.hidden_beacon_bss) 470 continue; 471 472 if (oldest && time_before(oldest->ts, bss->ts)) 473 continue; 474 oldest = bss; 475 } 476 477 if (WARN_ON(!oldest)) 478 return false; 479 480 /* 481 * The callers make sure to increase rdev->bss_generation if anything 482 * gets removed (and a new entry added), so there's no need to also do 483 * it here. 484 */ 485 486 ret = __cfg80211_unlink_bss(rdev, oldest); 487 WARN_ON(!ret); 488 return ret; 489 } 490 491 static u8 cfg80211_parse_bss_param(u8 data, 492 struct cfg80211_colocated_ap *coloc_ap) 493 { 494 coloc_ap->oct_recommended = 495 u8_get_bits(data, IEEE80211_RNR_TBTT_PARAMS_OCT_RECOMMENDED); 496 coloc_ap->same_ssid = 497 u8_get_bits(data, IEEE80211_RNR_TBTT_PARAMS_SAME_SSID); 498 coloc_ap->multi_bss = 499 u8_get_bits(data, IEEE80211_RNR_TBTT_PARAMS_MULTI_BSSID); 500 coloc_ap->transmitted_bssid = 501 u8_get_bits(data, IEEE80211_RNR_TBTT_PARAMS_TRANSMITTED_BSSID); 502 coloc_ap->unsolicited_probe = 503 u8_get_bits(data, IEEE80211_RNR_TBTT_PARAMS_PROBE_ACTIVE); 504 coloc_ap->colocated_ess = 505 u8_get_bits(data, IEEE80211_RNR_TBTT_PARAMS_COLOC_ESS); 506 507 return u8_get_bits(data, IEEE80211_RNR_TBTT_PARAMS_COLOC_AP); 508 } 509 510 static int cfg80211_calc_short_ssid(const struct cfg80211_bss_ies *ies, 511 const struct element **elem, u32 *s_ssid) 512 { 513 514 *elem = cfg80211_find_elem(WLAN_EID_SSID, ies->data, ies->len); 515 if (!*elem || (*elem)->datalen > IEEE80211_MAX_SSID_LEN) 516 return -EINVAL; 517 518 *s_ssid = ~crc32_le(~0, (*elem)->data, (*elem)->datalen); 519 return 0; 520 } 521 522 static void cfg80211_free_coloc_ap_list(struct list_head *coloc_ap_list) 523 { 524 struct cfg80211_colocated_ap *ap, *tmp_ap; 525 526 list_for_each_entry_safe(ap, tmp_ap, coloc_ap_list, list) { 527 list_del(&ap->list); 528 kfree(ap); 529 } 530 } 531 532 static int cfg80211_parse_ap_info(struct cfg80211_colocated_ap *entry, 533 const u8 *pos, u8 length, 534 const struct element *ssid_elem, 535 int s_ssid_tmp) 536 { 537 /* skip the TBTT offset */ 538 pos++; 539 540 memcpy(entry->bssid, pos, ETH_ALEN); 541 pos += ETH_ALEN; 542 543 if (length == IEEE80211_TBTT_INFO_OFFSET_BSSID_SSSID_BSS_PARAM) { 544 memcpy(&entry->short_ssid, pos, 545 sizeof(entry->short_ssid)); 546 entry->short_ssid_valid = true; 547 pos += 4; 548 } 549 550 /* skip non colocated APs */ 551 if (!cfg80211_parse_bss_param(*pos, entry)) 552 return -EINVAL; 553 pos++; 554 555 if (length == IEEE80211_TBTT_INFO_OFFSET_BSSID_BSS_PARAM) { 556 /* 557 * no information about the short ssid. Consider the entry valid 558 * for now. It would later be dropped in case there are explicit 559 * SSIDs that need to be matched 560 */ 561 if (!entry->same_ssid) 562 return 0; 563 } 564 565 if (entry->same_ssid) { 566 entry->short_ssid = s_ssid_tmp; 567 entry->short_ssid_valid = true; 568 569 /* 570 * This is safe because we validate datalen in 571 * cfg80211_parse_colocated_ap(), before calling this 572 * function. 573 */ 574 memcpy(&entry->ssid, &ssid_elem->data, 575 ssid_elem->datalen); 576 entry->ssid_len = ssid_elem->datalen; 577 } 578 return 0; 579 } 580 581 static int cfg80211_parse_colocated_ap(const struct cfg80211_bss_ies *ies, 582 struct list_head *list) 583 { 584 struct ieee80211_neighbor_ap_info *ap_info; 585 const struct element *elem, *ssid_elem; 586 const u8 *pos, *end; 587 u32 s_ssid_tmp; 588 int n_coloc = 0, ret; 589 LIST_HEAD(ap_list); 590 591 elem = cfg80211_find_elem(WLAN_EID_REDUCED_NEIGHBOR_REPORT, ies->data, 592 ies->len); 593 if (!elem) 594 return 0; 595 596 pos = elem->data; 597 end = pos + elem->datalen; 598 599 ret = cfg80211_calc_short_ssid(ies, &ssid_elem, &s_ssid_tmp); 600 if (ret) 601 return ret; 602 603 /* RNR IE may contain more than one NEIGHBOR_AP_INFO */ 604 while (pos + sizeof(*ap_info) <= end) { 605 enum nl80211_band band; 606 int freq; 607 u8 length, i, count; 608 609 ap_info = (void *)pos; 610 count = u8_get_bits(ap_info->tbtt_info_hdr, 611 IEEE80211_AP_INFO_TBTT_HDR_COUNT) + 1; 612 length = ap_info->tbtt_info_len; 613 614 pos += sizeof(*ap_info); 615 616 if (!ieee80211_operating_class_to_band(ap_info->op_class, 617 &band)) 618 break; 619 620 freq = ieee80211_channel_to_frequency(ap_info->channel, band); 621 622 if (end - pos < count * length) 623 break; 624 625 /* 626 * TBTT info must include bss param + BSSID + 627 * (short SSID or same_ssid bit to be set). 628 * ignore other options, and move to the 629 * next AP info 630 */ 631 if (band != NL80211_BAND_6GHZ || 632 (length != IEEE80211_TBTT_INFO_OFFSET_BSSID_BSS_PARAM && 633 length < IEEE80211_TBTT_INFO_OFFSET_BSSID_SSSID_BSS_PARAM)) { 634 pos += count * length; 635 continue; 636 } 637 638 for (i = 0; i < count; i++) { 639 struct cfg80211_colocated_ap *entry; 640 641 entry = kzalloc(sizeof(*entry) + IEEE80211_MAX_SSID_LEN, 642 GFP_ATOMIC); 643 644 if (!entry) 645 break; 646 647 entry->center_freq = freq; 648 649 if (!cfg80211_parse_ap_info(entry, pos, length, 650 ssid_elem, s_ssid_tmp)) { 651 n_coloc++; 652 list_add_tail(&entry->list, &ap_list); 653 } else { 654 kfree(entry); 655 } 656 657 pos += length; 658 } 659 } 660 661 if (pos != end) { 662 cfg80211_free_coloc_ap_list(&ap_list); 663 return 0; 664 } 665 666 list_splice_tail(&ap_list, list); 667 return n_coloc; 668 } 669 670 static void cfg80211_scan_req_add_chan(struct cfg80211_scan_request *request, 671 struct ieee80211_channel *chan, 672 bool add_to_6ghz) 673 { 674 int i; 675 u32 n_channels = request->n_channels; 676 struct cfg80211_scan_6ghz_params *params = 677 &request->scan_6ghz_params[request->n_6ghz_params]; 678 679 for (i = 0; i < n_channels; i++) { 680 if (request->channels[i] == chan) { 681 if (add_to_6ghz) 682 params->channel_idx = i; 683 return; 684 } 685 } 686 687 request->channels[n_channels] = chan; 688 if (add_to_6ghz) 689 request->scan_6ghz_params[request->n_6ghz_params].channel_idx = 690 n_channels; 691 692 request->n_channels++; 693 } 694 695 static bool cfg80211_find_ssid_match(struct cfg80211_colocated_ap *ap, 696 struct cfg80211_scan_request *request) 697 { 698 int i; 699 u32 s_ssid; 700 701 for (i = 0; i < request->n_ssids; i++) { 702 /* wildcard ssid in the scan request */ 703 if (!request->ssids[i].ssid_len) 704 return true; 705 706 if (ap->ssid_len && 707 ap->ssid_len == request->ssids[i].ssid_len) { 708 if (!memcmp(request->ssids[i].ssid, ap->ssid, 709 ap->ssid_len)) 710 return true; 711 } else if (ap->short_ssid_valid) { 712 s_ssid = ~crc32_le(~0, request->ssids[i].ssid, 713 request->ssids[i].ssid_len); 714 715 if (ap->short_ssid == s_ssid) 716 return true; 717 } 718 } 719 720 return false; 721 } 722 723 static int cfg80211_scan_6ghz(struct cfg80211_registered_device *rdev) 724 { 725 u8 i; 726 struct cfg80211_colocated_ap *ap; 727 int n_channels, count = 0, err; 728 struct cfg80211_scan_request *request, *rdev_req = rdev->scan_req; 729 LIST_HEAD(coloc_ap_list); 730 bool need_scan_psc = true; 731 const struct ieee80211_sband_iftype_data *iftd; 732 733 rdev_req->scan_6ghz = true; 734 735 if (!rdev->wiphy.bands[NL80211_BAND_6GHZ]) 736 return -EOPNOTSUPP; 737 738 iftd = ieee80211_get_sband_iftype_data(rdev->wiphy.bands[NL80211_BAND_6GHZ], 739 rdev_req->wdev->iftype); 740 if (!iftd || !iftd->he_cap.has_he) 741 return -EOPNOTSUPP; 742 743 n_channels = rdev->wiphy.bands[NL80211_BAND_6GHZ]->n_channels; 744 745 if (rdev_req->flags & NL80211_SCAN_FLAG_COLOCATED_6GHZ) { 746 struct cfg80211_internal_bss *intbss; 747 748 spin_lock_bh(&rdev->bss_lock); 749 list_for_each_entry(intbss, &rdev->bss_list, list) { 750 struct cfg80211_bss *res = &intbss->pub; 751 const struct cfg80211_bss_ies *ies; 752 753 ies = rcu_access_pointer(res->ies); 754 count += cfg80211_parse_colocated_ap(ies, 755 &coloc_ap_list); 756 } 757 spin_unlock_bh(&rdev->bss_lock); 758 } 759 760 request = kzalloc(struct_size(request, channels, n_channels) + 761 sizeof(*request->scan_6ghz_params) * count + 762 sizeof(*request->ssids) * rdev_req->n_ssids, 763 GFP_KERNEL); 764 if (!request) { 765 cfg80211_free_coloc_ap_list(&coloc_ap_list); 766 return -ENOMEM; 767 } 768 769 *request = *rdev_req; 770 request->n_channels = 0; 771 request->scan_6ghz_params = 772 (void *)&request->channels[n_channels]; 773 774 /* 775 * PSC channels should not be scanned in case of direct scan with 1 SSID 776 * and at least one of the reported co-located APs with same SSID 777 * indicating that all APs in the same ESS are co-located 778 */ 779 if (count && request->n_ssids == 1 && request->ssids[0].ssid_len) { 780 list_for_each_entry(ap, &coloc_ap_list, list) { 781 if (ap->colocated_ess && 782 cfg80211_find_ssid_match(ap, request)) { 783 need_scan_psc = false; 784 break; 785 } 786 } 787 } 788 789 /* 790 * add to the scan request the channels that need to be scanned 791 * regardless of the collocated APs (PSC channels or all channels 792 * in case that NL80211_SCAN_FLAG_COLOCATED_6GHZ is not set) 793 */ 794 for (i = 0; i < rdev_req->n_channels; i++) { 795 if (rdev_req->channels[i]->band == NL80211_BAND_6GHZ && 796 ((need_scan_psc && 797 cfg80211_channel_is_psc(rdev_req->channels[i])) || 798 !(rdev_req->flags & NL80211_SCAN_FLAG_COLOCATED_6GHZ))) { 799 cfg80211_scan_req_add_chan(request, 800 rdev_req->channels[i], 801 false); 802 } 803 } 804 805 if (!(rdev_req->flags & NL80211_SCAN_FLAG_COLOCATED_6GHZ)) 806 goto skip; 807 808 list_for_each_entry(ap, &coloc_ap_list, list) { 809 bool found = false; 810 struct cfg80211_scan_6ghz_params *scan_6ghz_params = 811 &request->scan_6ghz_params[request->n_6ghz_params]; 812 struct ieee80211_channel *chan = 813 ieee80211_get_channel(&rdev->wiphy, ap->center_freq); 814 815 if (!chan || chan->flags & IEEE80211_CHAN_DISABLED) 816 continue; 817 818 for (i = 0; i < rdev_req->n_channels; i++) { 819 if (rdev_req->channels[i] == chan) 820 found = true; 821 } 822 823 if (!found) 824 continue; 825 826 if (request->n_ssids > 0 && 827 !cfg80211_find_ssid_match(ap, request)) 828 continue; 829 830 cfg80211_scan_req_add_chan(request, chan, true); 831 memcpy(scan_6ghz_params->bssid, ap->bssid, ETH_ALEN); 832 scan_6ghz_params->short_ssid = ap->short_ssid; 833 scan_6ghz_params->short_ssid_valid = ap->short_ssid_valid; 834 scan_6ghz_params->unsolicited_probe = ap->unsolicited_probe; 835 836 /* 837 * If a PSC channel is added to the scan and 'need_scan_psc' is 838 * set to false, then all the APs that the scan logic is 839 * interested with on the channel are collocated and thus there 840 * is no need to perform the initial PSC channel listen. 841 */ 842 if (cfg80211_channel_is_psc(chan) && !need_scan_psc) 843 scan_6ghz_params->psc_no_listen = true; 844 845 request->n_6ghz_params++; 846 } 847 848 skip: 849 cfg80211_free_coloc_ap_list(&coloc_ap_list); 850 851 if (request->n_channels) { 852 struct cfg80211_scan_request *old = rdev->int_scan_req; 853 rdev->int_scan_req = request; 854 855 /* 856 * Add the ssids from the parent scan request to the new scan 857 * request, so the driver would be able to use them in its 858 * probe requests to discover hidden APs on PSC channels. 859 */ 860 request->ssids = (void *)&request->channels[request->n_channels]; 861 request->n_ssids = rdev_req->n_ssids; 862 memcpy(request->ssids, rdev_req->ssids, sizeof(*request->ssids) * 863 request->n_ssids); 864 865 /* 866 * If this scan follows a previous scan, save the scan start 867 * info from the first part of the scan 868 */ 869 if (old) 870 rdev->int_scan_req->info = old->info; 871 872 err = rdev_scan(rdev, request); 873 if (err) { 874 rdev->int_scan_req = old; 875 kfree(request); 876 } else { 877 kfree(old); 878 } 879 880 return err; 881 } 882 883 kfree(request); 884 return -EINVAL; 885 } 886 887 int cfg80211_scan(struct cfg80211_registered_device *rdev) 888 { 889 struct cfg80211_scan_request *request; 890 struct cfg80211_scan_request *rdev_req = rdev->scan_req; 891 u32 n_channels = 0, idx, i; 892 893 if (!(rdev->wiphy.flags & WIPHY_FLAG_SPLIT_SCAN_6GHZ)) 894 return rdev_scan(rdev, rdev_req); 895 896 for (i = 0; i < rdev_req->n_channels; i++) { 897 if (rdev_req->channels[i]->band != NL80211_BAND_6GHZ) 898 n_channels++; 899 } 900 901 if (!n_channels) 902 return cfg80211_scan_6ghz(rdev); 903 904 request = kzalloc(struct_size(request, channels, n_channels), 905 GFP_KERNEL); 906 if (!request) 907 return -ENOMEM; 908 909 *request = *rdev_req; 910 request->n_channels = n_channels; 911 912 for (i = idx = 0; i < rdev_req->n_channels; i++) { 913 if (rdev_req->channels[i]->band != NL80211_BAND_6GHZ) 914 request->channels[idx++] = rdev_req->channels[i]; 915 } 916 917 rdev_req->scan_6ghz = false; 918 rdev->int_scan_req = request; 919 return rdev_scan(rdev, request); 920 } 921 922 void ___cfg80211_scan_done(struct cfg80211_registered_device *rdev, 923 bool send_message) 924 { 925 struct cfg80211_scan_request *request, *rdev_req; 926 struct wireless_dev *wdev; 927 struct sk_buff *msg; 928 #ifdef CONFIG_CFG80211_WEXT 929 union iwreq_data wrqu; 930 #endif 931 932 lockdep_assert_held(&rdev->wiphy.mtx); 933 934 if (rdev->scan_msg) { 935 nl80211_send_scan_msg(rdev, rdev->scan_msg); 936 rdev->scan_msg = NULL; 937 return; 938 } 939 940 rdev_req = rdev->scan_req; 941 if (!rdev_req) 942 return; 943 944 wdev = rdev_req->wdev; 945 request = rdev->int_scan_req ? rdev->int_scan_req : rdev_req; 946 947 if (wdev_running(wdev) && 948 (rdev->wiphy.flags & WIPHY_FLAG_SPLIT_SCAN_6GHZ) && 949 !rdev_req->scan_6ghz && !request->info.aborted && 950 !cfg80211_scan_6ghz(rdev)) 951 return; 952 953 /* 954 * This must be before sending the other events! 955 * Otherwise, wpa_supplicant gets completely confused with 956 * wext events. 957 */ 958 if (wdev->netdev) 959 cfg80211_sme_scan_done(wdev->netdev); 960 961 if (!request->info.aborted && 962 request->flags & NL80211_SCAN_FLAG_FLUSH) { 963 /* flush entries from previous scans */ 964 spin_lock_bh(&rdev->bss_lock); 965 __cfg80211_bss_expire(rdev, request->scan_start); 966 spin_unlock_bh(&rdev->bss_lock); 967 } 968 969 msg = nl80211_build_scan_msg(rdev, wdev, request->info.aborted); 970 971 #ifdef CONFIG_CFG80211_WEXT 972 if (wdev->netdev && !request->info.aborted) { 973 memset(&wrqu, 0, sizeof(wrqu)); 974 975 wireless_send_event(wdev->netdev, SIOCGIWSCAN, &wrqu, NULL); 976 } 977 #endif 978 979 dev_put(wdev->netdev); 980 981 kfree(rdev->int_scan_req); 982 rdev->int_scan_req = NULL; 983 984 kfree(rdev->scan_req); 985 rdev->scan_req = NULL; 986 987 if (!send_message) 988 rdev->scan_msg = msg; 989 else 990 nl80211_send_scan_msg(rdev, msg); 991 } 992 993 void __cfg80211_scan_done(struct work_struct *wk) 994 { 995 struct cfg80211_registered_device *rdev; 996 997 rdev = container_of(wk, struct cfg80211_registered_device, 998 scan_done_wk); 999 1000 wiphy_lock(&rdev->wiphy); 1001 ___cfg80211_scan_done(rdev, true); 1002 wiphy_unlock(&rdev->wiphy); 1003 } 1004 1005 void cfg80211_scan_done(struct cfg80211_scan_request *request, 1006 struct cfg80211_scan_info *info) 1007 { 1008 struct cfg80211_scan_info old_info = request->info; 1009 1010 trace_cfg80211_scan_done(request, info); 1011 WARN_ON(request != wiphy_to_rdev(request->wiphy)->scan_req && 1012 request != wiphy_to_rdev(request->wiphy)->int_scan_req); 1013 1014 request->info = *info; 1015 1016 /* 1017 * In case the scan is split, the scan_start_tsf and tsf_bssid should 1018 * be of the first part. In such a case old_info.scan_start_tsf should 1019 * be non zero. 1020 */ 1021 if (request->scan_6ghz && old_info.scan_start_tsf) { 1022 request->info.scan_start_tsf = old_info.scan_start_tsf; 1023 memcpy(request->info.tsf_bssid, old_info.tsf_bssid, 1024 sizeof(request->info.tsf_bssid)); 1025 } 1026 1027 request->notified = true; 1028 queue_work(cfg80211_wq, &wiphy_to_rdev(request->wiphy)->scan_done_wk); 1029 } 1030 EXPORT_SYMBOL(cfg80211_scan_done); 1031 1032 void cfg80211_add_sched_scan_req(struct cfg80211_registered_device *rdev, 1033 struct cfg80211_sched_scan_request *req) 1034 { 1035 lockdep_assert_held(&rdev->wiphy.mtx); 1036 1037 list_add_rcu(&req->list, &rdev->sched_scan_req_list); 1038 } 1039 1040 static void cfg80211_del_sched_scan_req(struct cfg80211_registered_device *rdev, 1041 struct cfg80211_sched_scan_request *req) 1042 { 1043 lockdep_assert_held(&rdev->wiphy.mtx); 1044 1045 list_del_rcu(&req->list); 1046 kfree_rcu(req, rcu_head); 1047 } 1048 1049 static struct cfg80211_sched_scan_request * 1050 cfg80211_find_sched_scan_req(struct cfg80211_registered_device *rdev, u64 reqid) 1051 { 1052 struct cfg80211_sched_scan_request *pos; 1053 1054 list_for_each_entry_rcu(pos, &rdev->sched_scan_req_list, list, 1055 lockdep_is_held(&rdev->wiphy.mtx)) { 1056 if (pos->reqid == reqid) 1057 return pos; 1058 } 1059 return NULL; 1060 } 1061 1062 /* 1063 * Determines if a scheduled scan request can be handled. When a legacy 1064 * scheduled scan is running no other scheduled scan is allowed regardless 1065 * whether the request is for legacy or multi-support scan. When a multi-support 1066 * scheduled scan is running a request for legacy scan is not allowed. In this 1067 * case a request for multi-support scan can be handled if resources are 1068 * available, ie. struct wiphy::max_sched_scan_reqs limit is not yet reached. 1069 */ 1070 int cfg80211_sched_scan_req_possible(struct cfg80211_registered_device *rdev, 1071 bool want_multi) 1072 { 1073 struct cfg80211_sched_scan_request *pos; 1074 int i = 0; 1075 1076 list_for_each_entry(pos, &rdev->sched_scan_req_list, list) { 1077 /* request id zero means legacy in progress */ 1078 if (!i && !pos->reqid) 1079 return -EINPROGRESS; 1080 i++; 1081 } 1082 1083 if (i) { 1084 /* no legacy allowed when multi request(s) are active */ 1085 if (!want_multi) 1086 return -EINPROGRESS; 1087 1088 /* resource limit reached */ 1089 if (i == rdev->wiphy.max_sched_scan_reqs) 1090 return -ENOSPC; 1091 } 1092 return 0; 1093 } 1094 1095 void cfg80211_sched_scan_results_wk(struct work_struct *work) 1096 { 1097 struct cfg80211_registered_device *rdev; 1098 struct cfg80211_sched_scan_request *req, *tmp; 1099 1100 rdev = container_of(work, struct cfg80211_registered_device, 1101 sched_scan_res_wk); 1102 1103 wiphy_lock(&rdev->wiphy); 1104 list_for_each_entry_safe(req, tmp, &rdev->sched_scan_req_list, list) { 1105 if (req->report_results) { 1106 req->report_results = false; 1107 if (req->flags & NL80211_SCAN_FLAG_FLUSH) { 1108 /* flush entries from previous scans */ 1109 spin_lock_bh(&rdev->bss_lock); 1110 __cfg80211_bss_expire(rdev, req->scan_start); 1111 spin_unlock_bh(&rdev->bss_lock); 1112 req->scan_start = jiffies; 1113 } 1114 nl80211_send_sched_scan(req, 1115 NL80211_CMD_SCHED_SCAN_RESULTS); 1116 } 1117 } 1118 wiphy_unlock(&rdev->wiphy); 1119 } 1120 1121 void cfg80211_sched_scan_results(struct wiphy *wiphy, u64 reqid) 1122 { 1123 struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy); 1124 struct cfg80211_sched_scan_request *request; 1125 1126 trace_cfg80211_sched_scan_results(wiphy, reqid); 1127 /* ignore if we're not scanning */ 1128 1129 rcu_read_lock(); 1130 request = cfg80211_find_sched_scan_req(rdev, reqid); 1131 if (request) { 1132 request->report_results = true; 1133 queue_work(cfg80211_wq, &rdev->sched_scan_res_wk); 1134 } 1135 rcu_read_unlock(); 1136 } 1137 EXPORT_SYMBOL(cfg80211_sched_scan_results); 1138 1139 void cfg80211_sched_scan_stopped_locked(struct wiphy *wiphy, u64 reqid) 1140 { 1141 struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy); 1142 1143 lockdep_assert_held(&wiphy->mtx); 1144 1145 trace_cfg80211_sched_scan_stopped(wiphy, reqid); 1146 1147 __cfg80211_stop_sched_scan(rdev, reqid, true); 1148 } 1149 EXPORT_SYMBOL(cfg80211_sched_scan_stopped_locked); 1150 1151 void cfg80211_sched_scan_stopped(struct wiphy *wiphy, u64 reqid) 1152 { 1153 wiphy_lock(wiphy); 1154 cfg80211_sched_scan_stopped_locked(wiphy, reqid); 1155 wiphy_unlock(wiphy); 1156 } 1157 EXPORT_SYMBOL(cfg80211_sched_scan_stopped); 1158 1159 int cfg80211_stop_sched_scan_req(struct cfg80211_registered_device *rdev, 1160 struct cfg80211_sched_scan_request *req, 1161 bool driver_initiated) 1162 { 1163 lockdep_assert_held(&rdev->wiphy.mtx); 1164 1165 if (!driver_initiated) { 1166 int err = rdev_sched_scan_stop(rdev, req->dev, req->reqid); 1167 if (err) 1168 return err; 1169 } 1170 1171 nl80211_send_sched_scan(req, NL80211_CMD_SCHED_SCAN_STOPPED); 1172 1173 cfg80211_del_sched_scan_req(rdev, req); 1174 1175 return 0; 1176 } 1177 1178 int __cfg80211_stop_sched_scan(struct cfg80211_registered_device *rdev, 1179 u64 reqid, bool driver_initiated) 1180 { 1181 struct cfg80211_sched_scan_request *sched_scan_req; 1182 1183 lockdep_assert_held(&rdev->wiphy.mtx); 1184 1185 sched_scan_req = cfg80211_find_sched_scan_req(rdev, reqid); 1186 if (!sched_scan_req) 1187 return -ENOENT; 1188 1189 return cfg80211_stop_sched_scan_req(rdev, sched_scan_req, 1190 driver_initiated); 1191 } 1192 1193 void cfg80211_bss_age(struct cfg80211_registered_device *rdev, 1194 unsigned long age_secs) 1195 { 1196 struct cfg80211_internal_bss *bss; 1197 unsigned long age_jiffies = msecs_to_jiffies(age_secs * MSEC_PER_SEC); 1198 1199 spin_lock_bh(&rdev->bss_lock); 1200 list_for_each_entry(bss, &rdev->bss_list, list) 1201 bss->ts -= age_jiffies; 1202 spin_unlock_bh(&rdev->bss_lock); 1203 } 1204 1205 void cfg80211_bss_expire(struct cfg80211_registered_device *rdev) 1206 { 1207 __cfg80211_bss_expire(rdev, jiffies - IEEE80211_SCAN_RESULT_EXPIRE); 1208 } 1209 1210 void cfg80211_bss_flush(struct wiphy *wiphy) 1211 { 1212 struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy); 1213 1214 spin_lock_bh(&rdev->bss_lock); 1215 __cfg80211_bss_expire(rdev, jiffies); 1216 spin_unlock_bh(&rdev->bss_lock); 1217 } 1218 EXPORT_SYMBOL(cfg80211_bss_flush); 1219 1220 const struct element * 1221 cfg80211_find_elem_match(u8 eid, const u8 *ies, unsigned int len, 1222 const u8 *match, unsigned int match_len, 1223 unsigned int match_offset) 1224 { 1225 const struct element *elem; 1226 1227 for_each_element_id(elem, eid, ies, len) { 1228 if (elem->datalen >= match_offset + match_len && 1229 !memcmp(elem->data + match_offset, match, match_len)) 1230 return elem; 1231 } 1232 1233 return NULL; 1234 } 1235 EXPORT_SYMBOL(cfg80211_find_elem_match); 1236 1237 const struct element *cfg80211_find_vendor_elem(unsigned int oui, int oui_type, 1238 const u8 *ies, 1239 unsigned int len) 1240 { 1241 const struct element *elem; 1242 u8 match[] = { oui >> 16, oui >> 8, oui, oui_type }; 1243 int match_len = (oui_type < 0) ? 3 : sizeof(match); 1244 1245 if (WARN_ON(oui_type > 0xff)) 1246 return NULL; 1247 1248 elem = cfg80211_find_elem_match(WLAN_EID_VENDOR_SPECIFIC, ies, len, 1249 match, match_len, 0); 1250 1251 if (!elem || elem->datalen < 4) 1252 return NULL; 1253 1254 return elem; 1255 } 1256 EXPORT_SYMBOL(cfg80211_find_vendor_elem); 1257 1258 /** 1259 * enum bss_compare_mode - BSS compare mode 1260 * @BSS_CMP_REGULAR: regular compare mode (for insertion and normal find) 1261 * @BSS_CMP_HIDE_ZLEN: find hidden SSID with zero-length mode 1262 * @BSS_CMP_HIDE_NUL: find hidden SSID with NUL-ed out mode 1263 */ 1264 enum bss_compare_mode { 1265 BSS_CMP_REGULAR, 1266 BSS_CMP_HIDE_ZLEN, 1267 BSS_CMP_HIDE_NUL, 1268 }; 1269 1270 static int cmp_bss(struct cfg80211_bss *a, 1271 struct cfg80211_bss *b, 1272 enum bss_compare_mode mode) 1273 { 1274 const struct cfg80211_bss_ies *a_ies, *b_ies; 1275 const u8 *ie1 = NULL; 1276 const u8 *ie2 = NULL; 1277 int i, r; 1278 1279 if (a->channel != b->channel) 1280 return b->channel->center_freq - a->channel->center_freq; 1281 1282 a_ies = rcu_access_pointer(a->ies); 1283 if (!a_ies) 1284 return -1; 1285 b_ies = rcu_access_pointer(b->ies); 1286 if (!b_ies) 1287 return 1; 1288 1289 if (WLAN_CAPABILITY_IS_STA_BSS(a->capability)) 1290 ie1 = cfg80211_find_ie(WLAN_EID_MESH_ID, 1291 a_ies->data, a_ies->len); 1292 if (WLAN_CAPABILITY_IS_STA_BSS(b->capability)) 1293 ie2 = cfg80211_find_ie(WLAN_EID_MESH_ID, 1294 b_ies->data, b_ies->len); 1295 if (ie1 && ie2) { 1296 int mesh_id_cmp; 1297 1298 if (ie1[1] == ie2[1]) 1299 mesh_id_cmp = memcmp(ie1 + 2, ie2 + 2, ie1[1]); 1300 else 1301 mesh_id_cmp = ie2[1] - ie1[1]; 1302 1303 ie1 = cfg80211_find_ie(WLAN_EID_MESH_CONFIG, 1304 a_ies->data, a_ies->len); 1305 ie2 = cfg80211_find_ie(WLAN_EID_MESH_CONFIG, 1306 b_ies->data, b_ies->len); 1307 if (ie1 && ie2) { 1308 if (mesh_id_cmp) 1309 return mesh_id_cmp; 1310 if (ie1[1] != ie2[1]) 1311 return ie2[1] - ie1[1]; 1312 return memcmp(ie1 + 2, ie2 + 2, ie1[1]); 1313 } 1314 } 1315 1316 r = memcmp(a->bssid, b->bssid, sizeof(a->bssid)); 1317 if (r) 1318 return r; 1319 1320 ie1 = cfg80211_find_ie(WLAN_EID_SSID, a_ies->data, a_ies->len); 1321 ie2 = cfg80211_find_ie(WLAN_EID_SSID, b_ies->data, b_ies->len); 1322 1323 if (!ie1 && !ie2) 1324 return 0; 1325 1326 /* 1327 * Note that with "hide_ssid", the function returns a match if 1328 * the already-present BSS ("b") is a hidden SSID beacon for 1329 * the new BSS ("a"). 1330 */ 1331 1332 /* sort missing IE before (left of) present IE */ 1333 if (!ie1) 1334 return -1; 1335 if (!ie2) 1336 return 1; 1337 1338 switch (mode) { 1339 case BSS_CMP_HIDE_ZLEN: 1340 /* 1341 * In ZLEN mode we assume the BSS entry we're 1342 * looking for has a zero-length SSID. So if 1343 * the one we're looking at right now has that, 1344 * return 0. Otherwise, return the difference 1345 * in length, but since we're looking for the 1346 * 0-length it's really equivalent to returning 1347 * the length of the one we're looking at. 1348 * 1349 * No content comparison is needed as we assume 1350 * the content length is zero. 1351 */ 1352 return ie2[1]; 1353 case BSS_CMP_REGULAR: 1354 default: 1355 /* sort by length first, then by contents */ 1356 if (ie1[1] != ie2[1]) 1357 return ie2[1] - ie1[1]; 1358 return memcmp(ie1 + 2, ie2 + 2, ie1[1]); 1359 case BSS_CMP_HIDE_NUL: 1360 if (ie1[1] != ie2[1]) 1361 return ie2[1] - ie1[1]; 1362 /* this is equivalent to memcmp(zeroes, ie2 + 2, len) */ 1363 for (i = 0; i < ie2[1]; i++) 1364 if (ie2[i + 2]) 1365 return -1; 1366 return 0; 1367 } 1368 } 1369 1370 static bool cfg80211_bss_type_match(u16 capability, 1371 enum nl80211_band band, 1372 enum ieee80211_bss_type bss_type) 1373 { 1374 bool ret = true; 1375 u16 mask, val; 1376 1377 if (bss_type == IEEE80211_BSS_TYPE_ANY) 1378 return ret; 1379 1380 if (band == NL80211_BAND_60GHZ) { 1381 mask = WLAN_CAPABILITY_DMG_TYPE_MASK; 1382 switch (bss_type) { 1383 case IEEE80211_BSS_TYPE_ESS: 1384 val = WLAN_CAPABILITY_DMG_TYPE_AP; 1385 break; 1386 case IEEE80211_BSS_TYPE_PBSS: 1387 val = WLAN_CAPABILITY_DMG_TYPE_PBSS; 1388 break; 1389 case IEEE80211_BSS_TYPE_IBSS: 1390 val = WLAN_CAPABILITY_DMG_TYPE_IBSS; 1391 break; 1392 default: 1393 return false; 1394 } 1395 } else { 1396 mask = WLAN_CAPABILITY_ESS | WLAN_CAPABILITY_IBSS; 1397 switch (bss_type) { 1398 case IEEE80211_BSS_TYPE_ESS: 1399 val = WLAN_CAPABILITY_ESS; 1400 break; 1401 case IEEE80211_BSS_TYPE_IBSS: 1402 val = WLAN_CAPABILITY_IBSS; 1403 break; 1404 case IEEE80211_BSS_TYPE_MBSS: 1405 val = 0; 1406 break; 1407 default: 1408 return false; 1409 } 1410 } 1411 1412 ret = ((capability & mask) == val); 1413 return ret; 1414 } 1415 1416 /* Returned bss is reference counted and must be cleaned up appropriately. */ 1417 struct cfg80211_bss *cfg80211_get_bss(struct wiphy *wiphy, 1418 struct ieee80211_channel *channel, 1419 const u8 *bssid, 1420 const u8 *ssid, size_t ssid_len, 1421 enum ieee80211_bss_type bss_type, 1422 enum ieee80211_privacy privacy) 1423 { 1424 struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy); 1425 struct cfg80211_internal_bss *bss, *res = NULL; 1426 unsigned long now = jiffies; 1427 int bss_privacy; 1428 1429 trace_cfg80211_get_bss(wiphy, channel, bssid, ssid, ssid_len, bss_type, 1430 privacy); 1431 1432 spin_lock_bh(&rdev->bss_lock); 1433 1434 list_for_each_entry(bss, &rdev->bss_list, list) { 1435 if (!cfg80211_bss_type_match(bss->pub.capability, 1436 bss->pub.channel->band, bss_type)) 1437 continue; 1438 1439 bss_privacy = (bss->pub.capability & WLAN_CAPABILITY_PRIVACY); 1440 if ((privacy == IEEE80211_PRIVACY_ON && !bss_privacy) || 1441 (privacy == IEEE80211_PRIVACY_OFF && bss_privacy)) 1442 continue; 1443 if (channel && bss->pub.channel != channel) 1444 continue; 1445 if (!is_valid_ether_addr(bss->pub.bssid)) 1446 continue; 1447 /* Don't get expired BSS structs */ 1448 if (time_after(now, bss->ts + IEEE80211_SCAN_RESULT_EXPIRE) && 1449 !atomic_read(&bss->hold)) 1450 continue; 1451 if (is_bss(&bss->pub, bssid, ssid, ssid_len)) { 1452 res = bss; 1453 bss_ref_get(rdev, res); 1454 break; 1455 } 1456 } 1457 1458 spin_unlock_bh(&rdev->bss_lock); 1459 if (!res) 1460 return NULL; 1461 trace_cfg80211_return_bss(&res->pub); 1462 return &res->pub; 1463 } 1464 EXPORT_SYMBOL(cfg80211_get_bss); 1465 1466 static void rb_insert_bss(struct cfg80211_registered_device *rdev, 1467 struct cfg80211_internal_bss *bss) 1468 { 1469 struct rb_node **p = &rdev->bss_tree.rb_node; 1470 struct rb_node *parent = NULL; 1471 struct cfg80211_internal_bss *tbss; 1472 int cmp; 1473 1474 while (*p) { 1475 parent = *p; 1476 tbss = rb_entry(parent, struct cfg80211_internal_bss, rbn); 1477 1478 cmp = cmp_bss(&bss->pub, &tbss->pub, BSS_CMP_REGULAR); 1479 1480 if (WARN_ON(!cmp)) { 1481 /* will sort of leak this BSS */ 1482 return; 1483 } 1484 1485 if (cmp < 0) 1486 p = &(*p)->rb_left; 1487 else 1488 p = &(*p)->rb_right; 1489 } 1490 1491 rb_link_node(&bss->rbn, parent, p); 1492 rb_insert_color(&bss->rbn, &rdev->bss_tree); 1493 } 1494 1495 static struct cfg80211_internal_bss * 1496 rb_find_bss(struct cfg80211_registered_device *rdev, 1497 struct cfg80211_internal_bss *res, 1498 enum bss_compare_mode mode) 1499 { 1500 struct rb_node *n = rdev->bss_tree.rb_node; 1501 struct cfg80211_internal_bss *bss; 1502 int r; 1503 1504 while (n) { 1505 bss = rb_entry(n, struct cfg80211_internal_bss, rbn); 1506 r = cmp_bss(&res->pub, &bss->pub, mode); 1507 1508 if (r == 0) 1509 return bss; 1510 else if (r < 0) 1511 n = n->rb_left; 1512 else 1513 n = n->rb_right; 1514 } 1515 1516 return NULL; 1517 } 1518 1519 static bool cfg80211_combine_bsses(struct cfg80211_registered_device *rdev, 1520 struct cfg80211_internal_bss *new) 1521 { 1522 const struct cfg80211_bss_ies *ies; 1523 struct cfg80211_internal_bss *bss; 1524 const u8 *ie; 1525 int i, ssidlen; 1526 u8 fold = 0; 1527 u32 n_entries = 0; 1528 1529 ies = rcu_access_pointer(new->pub.beacon_ies); 1530 if (WARN_ON(!ies)) 1531 return false; 1532 1533 ie = cfg80211_find_ie(WLAN_EID_SSID, ies->data, ies->len); 1534 if (!ie) { 1535 /* nothing to do */ 1536 return true; 1537 } 1538 1539 ssidlen = ie[1]; 1540 for (i = 0; i < ssidlen; i++) 1541 fold |= ie[2 + i]; 1542 1543 if (fold) { 1544 /* not a hidden SSID */ 1545 return true; 1546 } 1547 1548 /* This is the bad part ... */ 1549 1550 list_for_each_entry(bss, &rdev->bss_list, list) { 1551 /* 1552 * we're iterating all the entries anyway, so take the 1553 * opportunity to validate the list length accounting 1554 */ 1555 n_entries++; 1556 1557 if (!ether_addr_equal(bss->pub.bssid, new->pub.bssid)) 1558 continue; 1559 if (bss->pub.channel != new->pub.channel) 1560 continue; 1561 if (bss->pub.scan_width != new->pub.scan_width) 1562 continue; 1563 if (rcu_access_pointer(bss->pub.beacon_ies)) 1564 continue; 1565 ies = rcu_access_pointer(bss->pub.ies); 1566 if (!ies) 1567 continue; 1568 ie = cfg80211_find_ie(WLAN_EID_SSID, ies->data, ies->len); 1569 if (!ie) 1570 continue; 1571 if (ssidlen && ie[1] != ssidlen) 1572 continue; 1573 if (WARN_ON_ONCE(bss->pub.hidden_beacon_bss)) 1574 continue; 1575 if (WARN_ON_ONCE(!list_empty(&bss->hidden_list))) 1576 list_del(&bss->hidden_list); 1577 /* combine them */ 1578 list_add(&bss->hidden_list, &new->hidden_list); 1579 bss->pub.hidden_beacon_bss = &new->pub; 1580 new->refcount += bss->refcount; 1581 rcu_assign_pointer(bss->pub.beacon_ies, 1582 new->pub.beacon_ies); 1583 } 1584 1585 WARN_ONCE(n_entries != rdev->bss_entries, 1586 "rdev bss entries[%d]/list[len:%d] corruption\n", 1587 rdev->bss_entries, n_entries); 1588 1589 return true; 1590 } 1591 1592 struct cfg80211_non_tx_bss { 1593 struct cfg80211_bss *tx_bss; 1594 u8 max_bssid_indicator; 1595 u8 bssid_index; 1596 }; 1597 1598 static bool 1599 cfg80211_update_known_bss(struct cfg80211_registered_device *rdev, 1600 struct cfg80211_internal_bss *known, 1601 struct cfg80211_internal_bss *new, 1602 bool signal_valid) 1603 { 1604 lockdep_assert_held(&rdev->bss_lock); 1605 1606 /* Update IEs */ 1607 if (rcu_access_pointer(new->pub.proberesp_ies)) { 1608 const struct cfg80211_bss_ies *old; 1609 1610 old = rcu_access_pointer(known->pub.proberesp_ies); 1611 1612 rcu_assign_pointer(known->pub.proberesp_ies, 1613 new->pub.proberesp_ies); 1614 /* Override possible earlier Beacon frame IEs */ 1615 rcu_assign_pointer(known->pub.ies, 1616 new->pub.proberesp_ies); 1617 if (old) 1618 kfree_rcu((struct cfg80211_bss_ies *)old, rcu_head); 1619 } else if (rcu_access_pointer(new->pub.beacon_ies)) { 1620 const struct cfg80211_bss_ies *old; 1621 struct cfg80211_internal_bss *bss; 1622 1623 if (known->pub.hidden_beacon_bss && 1624 !list_empty(&known->hidden_list)) { 1625 const struct cfg80211_bss_ies *f; 1626 1627 /* The known BSS struct is one of the probe 1628 * response members of a group, but we're 1629 * receiving a beacon (beacon_ies in the new 1630 * bss is used). This can only mean that the 1631 * AP changed its beacon from not having an 1632 * SSID to showing it, which is confusing so 1633 * drop this information. 1634 */ 1635 1636 f = rcu_access_pointer(new->pub.beacon_ies); 1637 kfree_rcu((struct cfg80211_bss_ies *)f, rcu_head); 1638 return false; 1639 } 1640 1641 old = rcu_access_pointer(known->pub.beacon_ies); 1642 1643 rcu_assign_pointer(known->pub.beacon_ies, new->pub.beacon_ies); 1644 1645 /* Override IEs if they were from a beacon before */ 1646 if (old == rcu_access_pointer(known->pub.ies)) 1647 rcu_assign_pointer(known->pub.ies, new->pub.beacon_ies); 1648 1649 /* Assign beacon IEs to all sub entries */ 1650 list_for_each_entry(bss, &known->hidden_list, hidden_list) { 1651 const struct cfg80211_bss_ies *ies; 1652 1653 ies = rcu_access_pointer(bss->pub.beacon_ies); 1654 WARN_ON(ies != old); 1655 1656 rcu_assign_pointer(bss->pub.beacon_ies, 1657 new->pub.beacon_ies); 1658 } 1659 1660 if (old) 1661 kfree_rcu((struct cfg80211_bss_ies *)old, rcu_head); 1662 } 1663 1664 known->pub.beacon_interval = new->pub.beacon_interval; 1665 1666 /* don't update the signal if beacon was heard on 1667 * adjacent channel. 1668 */ 1669 if (signal_valid) 1670 known->pub.signal = new->pub.signal; 1671 known->pub.capability = new->pub.capability; 1672 known->ts = new->ts; 1673 known->ts_boottime = new->ts_boottime; 1674 known->parent_tsf = new->parent_tsf; 1675 known->pub.chains = new->pub.chains; 1676 memcpy(known->pub.chain_signal, new->pub.chain_signal, 1677 IEEE80211_MAX_CHAINS); 1678 ether_addr_copy(known->parent_bssid, new->parent_bssid); 1679 known->pub.max_bssid_indicator = new->pub.max_bssid_indicator; 1680 known->pub.bssid_index = new->pub.bssid_index; 1681 1682 return true; 1683 } 1684 1685 /* Returned bss is reference counted and must be cleaned up appropriately. */ 1686 struct cfg80211_internal_bss * 1687 cfg80211_bss_update(struct cfg80211_registered_device *rdev, 1688 struct cfg80211_internal_bss *tmp, 1689 bool signal_valid, unsigned long ts) 1690 { 1691 struct cfg80211_internal_bss *found = NULL; 1692 1693 if (WARN_ON(!tmp->pub.channel)) 1694 return NULL; 1695 1696 tmp->ts = ts; 1697 1698 spin_lock_bh(&rdev->bss_lock); 1699 1700 if (WARN_ON(!rcu_access_pointer(tmp->pub.ies))) { 1701 spin_unlock_bh(&rdev->bss_lock); 1702 return NULL; 1703 } 1704 1705 found = rb_find_bss(rdev, tmp, BSS_CMP_REGULAR); 1706 1707 if (found) { 1708 if (!cfg80211_update_known_bss(rdev, found, tmp, signal_valid)) 1709 goto drop; 1710 } else { 1711 struct cfg80211_internal_bss *new; 1712 struct cfg80211_internal_bss *hidden; 1713 struct cfg80211_bss_ies *ies; 1714 1715 /* 1716 * create a copy -- the "res" variable that is passed in 1717 * is allocated on the stack since it's not needed in the 1718 * more common case of an update 1719 */ 1720 new = kzalloc(sizeof(*new) + rdev->wiphy.bss_priv_size, 1721 GFP_ATOMIC); 1722 if (!new) { 1723 ies = (void *)rcu_dereference(tmp->pub.beacon_ies); 1724 if (ies) 1725 kfree_rcu(ies, rcu_head); 1726 ies = (void *)rcu_dereference(tmp->pub.proberesp_ies); 1727 if (ies) 1728 kfree_rcu(ies, rcu_head); 1729 goto drop; 1730 } 1731 memcpy(new, tmp, sizeof(*new)); 1732 new->refcount = 1; 1733 INIT_LIST_HEAD(&new->hidden_list); 1734 INIT_LIST_HEAD(&new->pub.nontrans_list); 1735 1736 if (rcu_access_pointer(tmp->pub.proberesp_ies)) { 1737 hidden = rb_find_bss(rdev, tmp, BSS_CMP_HIDE_ZLEN); 1738 if (!hidden) 1739 hidden = rb_find_bss(rdev, tmp, 1740 BSS_CMP_HIDE_NUL); 1741 if (hidden) { 1742 new->pub.hidden_beacon_bss = &hidden->pub; 1743 list_add(&new->hidden_list, 1744 &hidden->hidden_list); 1745 hidden->refcount++; 1746 rcu_assign_pointer(new->pub.beacon_ies, 1747 hidden->pub.beacon_ies); 1748 } 1749 } else { 1750 /* 1751 * Ok so we found a beacon, and don't have an entry. If 1752 * it's a beacon with hidden SSID, we might be in for an 1753 * expensive search for any probe responses that should 1754 * be grouped with this beacon for updates ... 1755 */ 1756 if (!cfg80211_combine_bsses(rdev, new)) { 1757 bss_ref_put(rdev, new); 1758 goto drop; 1759 } 1760 } 1761 1762 if (rdev->bss_entries >= bss_entries_limit && 1763 !cfg80211_bss_expire_oldest(rdev)) { 1764 bss_ref_put(rdev, new); 1765 goto drop; 1766 } 1767 1768 /* This must be before the call to bss_ref_get */ 1769 if (tmp->pub.transmitted_bss) { 1770 struct cfg80211_internal_bss *pbss = 1771 container_of(tmp->pub.transmitted_bss, 1772 struct cfg80211_internal_bss, 1773 pub); 1774 1775 new->pub.transmitted_bss = tmp->pub.transmitted_bss; 1776 bss_ref_get(rdev, pbss); 1777 } 1778 1779 list_add_tail(&new->list, &rdev->bss_list); 1780 rdev->bss_entries++; 1781 rb_insert_bss(rdev, new); 1782 found = new; 1783 } 1784 1785 rdev->bss_generation++; 1786 bss_ref_get(rdev, found); 1787 spin_unlock_bh(&rdev->bss_lock); 1788 1789 return found; 1790 drop: 1791 spin_unlock_bh(&rdev->bss_lock); 1792 return NULL; 1793 } 1794 1795 int cfg80211_get_ies_channel_number(const u8 *ie, size_t ielen, 1796 enum nl80211_band band, 1797 enum cfg80211_bss_frame_type ftype) 1798 { 1799 const struct element *tmp; 1800 1801 if (band == NL80211_BAND_6GHZ) { 1802 struct ieee80211_he_operation *he_oper; 1803 1804 tmp = cfg80211_find_ext_elem(WLAN_EID_EXT_HE_OPERATION, ie, 1805 ielen); 1806 if (tmp && tmp->datalen >= sizeof(*he_oper) && 1807 tmp->datalen >= ieee80211_he_oper_size(&tmp->data[1])) { 1808 const struct ieee80211_he_6ghz_oper *he_6ghz_oper; 1809 1810 he_oper = (void *)&tmp->data[1]; 1811 1812 he_6ghz_oper = ieee80211_he_6ghz_oper(he_oper); 1813 if (!he_6ghz_oper) 1814 return -1; 1815 1816 if (ftype != CFG80211_BSS_FTYPE_BEACON || 1817 he_6ghz_oper->control & IEEE80211_HE_6GHZ_OPER_CTRL_DUP_BEACON) 1818 return he_6ghz_oper->primary; 1819 } 1820 } else if (band == NL80211_BAND_S1GHZ) { 1821 tmp = cfg80211_find_elem(WLAN_EID_S1G_OPERATION, ie, ielen); 1822 if (tmp && tmp->datalen >= sizeof(struct ieee80211_s1g_oper_ie)) { 1823 struct ieee80211_s1g_oper_ie *s1gop = (void *)tmp->data; 1824 1825 return s1gop->primary_ch; 1826 } 1827 } else { 1828 tmp = cfg80211_find_elem(WLAN_EID_DS_PARAMS, ie, ielen); 1829 if (tmp && tmp->datalen == 1) 1830 return tmp->data[0]; 1831 1832 tmp = cfg80211_find_elem(WLAN_EID_HT_OPERATION, ie, ielen); 1833 if (tmp && 1834 tmp->datalen >= sizeof(struct ieee80211_ht_operation)) { 1835 struct ieee80211_ht_operation *htop = (void *)tmp->data; 1836 1837 return htop->primary_chan; 1838 } 1839 } 1840 1841 return -1; 1842 } 1843 EXPORT_SYMBOL(cfg80211_get_ies_channel_number); 1844 1845 /* 1846 * Update RX channel information based on the available frame payload 1847 * information. This is mainly for the 2.4 GHz band where frames can be received 1848 * from neighboring channels and the Beacon frames use the DSSS Parameter Set 1849 * element to indicate the current (transmitting) channel, but this might also 1850 * be needed on other bands if RX frequency does not match with the actual 1851 * operating channel of a BSS, or if the AP reports a different primary channel. 1852 */ 1853 static struct ieee80211_channel * 1854 cfg80211_get_bss_channel(struct wiphy *wiphy, const u8 *ie, size_t ielen, 1855 struct ieee80211_channel *channel, 1856 enum nl80211_bss_scan_width scan_width, 1857 enum cfg80211_bss_frame_type ftype) 1858 { 1859 u32 freq; 1860 int channel_number; 1861 struct ieee80211_channel *alt_channel; 1862 1863 channel_number = cfg80211_get_ies_channel_number(ie, ielen, 1864 channel->band, ftype); 1865 1866 if (channel_number < 0) { 1867 /* No channel information in frame payload */ 1868 return channel; 1869 } 1870 1871 freq = ieee80211_channel_to_freq_khz(channel_number, channel->band); 1872 1873 /* 1874 * In 6GHz, duplicated beacon indication is relevant for 1875 * beacons only. 1876 */ 1877 if (channel->band == NL80211_BAND_6GHZ && 1878 (freq == channel->center_freq || 1879 abs(freq - channel->center_freq) > 80)) 1880 return channel; 1881 1882 alt_channel = ieee80211_get_channel_khz(wiphy, freq); 1883 if (!alt_channel) { 1884 if (channel->band == NL80211_BAND_2GHZ) { 1885 /* 1886 * Better not allow unexpected channels when that could 1887 * be going beyond the 1-11 range (e.g., discovering 1888 * BSS on channel 12 when radio is configured for 1889 * channel 11. 1890 */ 1891 return NULL; 1892 } 1893 1894 /* No match for the payload channel number - ignore it */ 1895 return channel; 1896 } 1897 1898 if (scan_width == NL80211_BSS_CHAN_WIDTH_10 || 1899 scan_width == NL80211_BSS_CHAN_WIDTH_5) { 1900 /* 1901 * Ignore channel number in 5 and 10 MHz channels where there 1902 * may not be an n:1 or 1:n mapping between frequencies and 1903 * channel numbers. 1904 */ 1905 return channel; 1906 } 1907 1908 /* 1909 * Use the channel determined through the payload channel number 1910 * instead of the RX channel reported by the driver. 1911 */ 1912 if (alt_channel->flags & IEEE80211_CHAN_DISABLED) 1913 return NULL; 1914 return alt_channel; 1915 } 1916 1917 /* Returned bss is reference counted and must be cleaned up appropriately. */ 1918 static struct cfg80211_bss * 1919 cfg80211_inform_single_bss_data(struct wiphy *wiphy, 1920 struct cfg80211_inform_bss *data, 1921 enum cfg80211_bss_frame_type ftype, 1922 const u8 *bssid, u64 tsf, u16 capability, 1923 u16 beacon_interval, const u8 *ie, size_t ielen, 1924 struct cfg80211_non_tx_bss *non_tx_data, 1925 gfp_t gfp) 1926 { 1927 struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy); 1928 struct cfg80211_bss_ies *ies; 1929 struct ieee80211_channel *channel; 1930 struct cfg80211_internal_bss tmp = {}, *res; 1931 int bss_type; 1932 bool signal_valid; 1933 unsigned long ts; 1934 1935 if (WARN_ON(!wiphy)) 1936 return NULL; 1937 1938 if (WARN_ON(wiphy->signal_type == CFG80211_SIGNAL_TYPE_UNSPEC && 1939 (data->signal < 0 || data->signal > 100))) 1940 return NULL; 1941 1942 channel = cfg80211_get_bss_channel(wiphy, ie, ielen, data->chan, 1943 data->scan_width, ftype); 1944 if (!channel) 1945 return NULL; 1946 1947 memcpy(tmp.pub.bssid, bssid, ETH_ALEN); 1948 tmp.pub.channel = channel; 1949 tmp.pub.scan_width = data->scan_width; 1950 tmp.pub.signal = data->signal; 1951 tmp.pub.beacon_interval = beacon_interval; 1952 tmp.pub.capability = capability; 1953 tmp.ts_boottime = data->boottime_ns; 1954 tmp.parent_tsf = data->parent_tsf; 1955 ether_addr_copy(tmp.parent_bssid, data->parent_bssid); 1956 1957 if (non_tx_data) { 1958 tmp.pub.transmitted_bss = non_tx_data->tx_bss; 1959 ts = bss_from_pub(non_tx_data->tx_bss)->ts; 1960 tmp.pub.bssid_index = non_tx_data->bssid_index; 1961 tmp.pub.max_bssid_indicator = non_tx_data->max_bssid_indicator; 1962 } else { 1963 ts = jiffies; 1964 } 1965 1966 /* 1967 * If we do not know here whether the IEs are from a Beacon or Probe 1968 * Response frame, we need to pick one of the options and only use it 1969 * with the driver that does not provide the full Beacon/Probe Response 1970 * frame. Use Beacon frame pointer to avoid indicating that this should 1971 * override the IEs pointer should we have received an earlier 1972 * indication of Probe Response data. 1973 */ 1974 ies = kzalloc(sizeof(*ies) + ielen, gfp); 1975 if (!ies) 1976 return NULL; 1977 ies->len = ielen; 1978 ies->tsf = tsf; 1979 ies->from_beacon = false; 1980 memcpy(ies->data, ie, ielen); 1981 1982 switch (ftype) { 1983 case CFG80211_BSS_FTYPE_BEACON: 1984 ies->from_beacon = true; 1985 fallthrough; 1986 case CFG80211_BSS_FTYPE_UNKNOWN: 1987 rcu_assign_pointer(tmp.pub.beacon_ies, ies); 1988 break; 1989 case CFG80211_BSS_FTYPE_PRESP: 1990 rcu_assign_pointer(tmp.pub.proberesp_ies, ies); 1991 break; 1992 } 1993 rcu_assign_pointer(tmp.pub.ies, ies); 1994 1995 signal_valid = data->chan == channel; 1996 res = cfg80211_bss_update(wiphy_to_rdev(wiphy), &tmp, signal_valid, ts); 1997 if (!res) 1998 return NULL; 1999 2000 if (channel->band == NL80211_BAND_60GHZ) { 2001 bss_type = res->pub.capability & WLAN_CAPABILITY_DMG_TYPE_MASK; 2002 if (bss_type == WLAN_CAPABILITY_DMG_TYPE_AP || 2003 bss_type == WLAN_CAPABILITY_DMG_TYPE_PBSS) 2004 regulatory_hint_found_beacon(wiphy, channel, gfp); 2005 } else { 2006 if (res->pub.capability & WLAN_CAPABILITY_ESS) 2007 regulatory_hint_found_beacon(wiphy, channel, gfp); 2008 } 2009 2010 if (non_tx_data) { 2011 /* this is a nontransmitting bss, we need to add it to 2012 * transmitting bss' list if it is not there 2013 */ 2014 if (cfg80211_add_nontrans_list(non_tx_data->tx_bss, 2015 &res->pub)) { 2016 if (__cfg80211_unlink_bss(rdev, res)) 2017 rdev->bss_generation++; 2018 } 2019 } 2020 2021 trace_cfg80211_return_bss(&res->pub); 2022 /* cfg80211_bss_update gives us a referenced result */ 2023 return &res->pub; 2024 } 2025 2026 static const struct element 2027 *cfg80211_get_profile_continuation(const u8 *ie, size_t ielen, 2028 const struct element *mbssid_elem, 2029 const struct element *sub_elem) 2030 { 2031 const u8 *mbssid_end = mbssid_elem->data + mbssid_elem->datalen; 2032 const struct element *next_mbssid; 2033 const struct element *next_sub; 2034 2035 next_mbssid = cfg80211_find_elem(WLAN_EID_MULTIPLE_BSSID, 2036 mbssid_end, 2037 ielen - (mbssid_end - ie)); 2038 2039 /* 2040 * If it is not the last subelement in current MBSSID IE or there isn't 2041 * a next MBSSID IE - profile is complete. 2042 */ 2043 if ((sub_elem->data + sub_elem->datalen < mbssid_end - 1) || 2044 !next_mbssid) 2045 return NULL; 2046 2047 /* For any length error, just return NULL */ 2048 2049 if (next_mbssid->datalen < 4) 2050 return NULL; 2051 2052 next_sub = (void *)&next_mbssid->data[1]; 2053 2054 if (next_mbssid->data + next_mbssid->datalen < 2055 next_sub->data + next_sub->datalen) 2056 return NULL; 2057 2058 if (next_sub->id != 0 || next_sub->datalen < 2) 2059 return NULL; 2060 2061 /* 2062 * Check if the first element in the next sub element is a start 2063 * of a new profile 2064 */ 2065 return next_sub->data[0] == WLAN_EID_NON_TX_BSSID_CAP ? 2066 NULL : next_mbssid; 2067 } 2068 2069 size_t cfg80211_merge_profile(const u8 *ie, size_t ielen, 2070 const struct element *mbssid_elem, 2071 const struct element *sub_elem, 2072 u8 *merged_ie, size_t max_copy_len) 2073 { 2074 size_t copied_len = sub_elem->datalen; 2075 const struct element *next_mbssid; 2076 2077 if (sub_elem->datalen > max_copy_len) 2078 return 0; 2079 2080 memcpy(merged_ie, sub_elem->data, sub_elem->datalen); 2081 2082 while ((next_mbssid = cfg80211_get_profile_continuation(ie, ielen, 2083 mbssid_elem, 2084 sub_elem))) { 2085 const struct element *next_sub = (void *)&next_mbssid->data[1]; 2086 2087 if (copied_len + next_sub->datalen > max_copy_len) 2088 break; 2089 memcpy(merged_ie + copied_len, next_sub->data, 2090 next_sub->datalen); 2091 copied_len += next_sub->datalen; 2092 } 2093 2094 return copied_len; 2095 } 2096 EXPORT_SYMBOL(cfg80211_merge_profile); 2097 2098 static void cfg80211_parse_mbssid_data(struct wiphy *wiphy, 2099 struct cfg80211_inform_bss *data, 2100 enum cfg80211_bss_frame_type ftype, 2101 const u8 *bssid, u64 tsf, 2102 u16 beacon_interval, const u8 *ie, 2103 size_t ielen, 2104 struct cfg80211_non_tx_bss *non_tx_data, 2105 gfp_t gfp) 2106 { 2107 const u8 *mbssid_index_ie; 2108 const struct element *elem, *sub; 2109 size_t new_ie_len; 2110 u8 new_bssid[ETH_ALEN]; 2111 u8 *new_ie, *profile; 2112 u64 seen_indices = 0; 2113 u16 capability; 2114 struct cfg80211_bss *bss; 2115 2116 if (!non_tx_data) 2117 return; 2118 if (!cfg80211_find_elem(WLAN_EID_MULTIPLE_BSSID, ie, ielen)) 2119 return; 2120 if (!wiphy->support_mbssid) 2121 return; 2122 if (wiphy->support_only_he_mbssid && 2123 !cfg80211_find_ext_elem(WLAN_EID_EXT_HE_CAPABILITY, ie, ielen)) 2124 return; 2125 2126 new_ie = kmalloc(IEEE80211_MAX_DATA_LEN, gfp); 2127 if (!new_ie) 2128 return; 2129 2130 profile = kmalloc(ielen, gfp); 2131 if (!profile) 2132 goto out; 2133 2134 for_each_element_id(elem, WLAN_EID_MULTIPLE_BSSID, ie, ielen) { 2135 if (elem->datalen < 4) 2136 continue; 2137 for_each_element(sub, elem->data + 1, elem->datalen - 1) { 2138 u8 profile_len; 2139 2140 if (sub->id != 0 || sub->datalen < 4) { 2141 /* not a valid BSS profile */ 2142 continue; 2143 } 2144 2145 if (sub->data[0] != WLAN_EID_NON_TX_BSSID_CAP || 2146 sub->data[1] != 2) { 2147 /* The first element within the Nontransmitted 2148 * BSSID Profile is not the Nontransmitted 2149 * BSSID Capability element. 2150 */ 2151 continue; 2152 } 2153 2154 memset(profile, 0, ielen); 2155 profile_len = cfg80211_merge_profile(ie, ielen, 2156 elem, 2157 sub, 2158 profile, 2159 ielen); 2160 2161 /* found a Nontransmitted BSSID Profile */ 2162 mbssid_index_ie = cfg80211_find_ie 2163 (WLAN_EID_MULTI_BSSID_IDX, 2164 profile, profile_len); 2165 if (!mbssid_index_ie || mbssid_index_ie[1] < 1 || 2166 mbssid_index_ie[2] == 0 || 2167 mbssid_index_ie[2] > 46) { 2168 /* No valid Multiple BSSID-Index element */ 2169 continue; 2170 } 2171 2172 if (seen_indices & BIT_ULL(mbssid_index_ie[2])) 2173 /* We don't support legacy split of a profile */ 2174 net_dbg_ratelimited("Partial info for BSSID index %d\n", 2175 mbssid_index_ie[2]); 2176 2177 seen_indices |= BIT_ULL(mbssid_index_ie[2]); 2178 2179 non_tx_data->bssid_index = mbssid_index_ie[2]; 2180 non_tx_data->max_bssid_indicator = elem->data[0]; 2181 2182 cfg80211_gen_new_bssid(bssid, 2183 non_tx_data->max_bssid_indicator, 2184 non_tx_data->bssid_index, 2185 new_bssid); 2186 memset(new_ie, 0, IEEE80211_MAX_DATA_LEN); 2187 new_ie_len = cfg80211_gen_new_ie(ie, ielen, 2188 profile, 2189 profile_len, new_ie, 2190 gfp); 2191 if (!new_ie_len) 2192 continue; 2193 2194 capability = get_unaligned_le16(profile + 2); 2195 bss = cfg80211_inform_single_bss_data(wiphy, data, 2196 ftype, 2197 new_bssid, tsf, 2198 capability, 2199 beacon_interval, 2200 new_ie, 2201 new_ie_len, 2202 non_tx_data, 2203 gfp); 2204 if (!bss) 2205 break; 2206 cfg80211_put_bss(wiphy, bss); 2207 } 2208 } 2209 2210 out: 2211 kfree(new_ie); 2212 kfree(profile); 2213 } 2214 2215 struct cfg80211_bss * 2216 cfg80211_inform_bss_data(struct wiphy *wiphy, 2217 struct cfg80211_inform_bss *data, 2218 enum cfg80211_bss_frame_type ftype, 2219 const u8 *bssid, u64 tsf, u16 capability, 2220 u16 beacon_interval, const u8 *ie, size_t ielen, 2221 gfp_t gfp) 2222 { 2223 struct cfg80211_bss *res; 2224 struct cfg80211_non_tx_bss non_tx_data; 2225 2226 res = cfg80211_inform_single_bss_data(wiphy, data, ftype, bssid, tsf, 2227 capability, beacon_interval, ie, 2228 ielen, NULL, gfp); 2229 if (!res) 2230 return NULL; 2231 non_tx_data.tx_bss = res; 2232 cfg80211_parse_mbssid_data(wiphy, data, ftype, bssid, tsf, 2233 beacon_interval, ie, ielen, &non_tx_data, 2234 gfp); 2235 return res; 2236 } 2237 EXPORT_SYMBOL(cfg80211_inform_bss_data); 2238 2239 static void 2240 cfg80211_parse_mbssid_frame_data(struct wiphy *wiphy, 2241 struct cfg80211_inform_bss *data, 2242 struct ieee80211_mgmt *mgmt, size_t len, 2243 struct cfg80211_non_tx_bss *non_tx_data, 2244 gfp_t gfp) 2245 { 2246 enum cfg80211_bss_frame_type ftype; 2247 const u8 *ie = mgmt->u.probe_resp.variable; 2248 size_t ielen = len - offsetof(struct ieee80211_mgmt, 2249 u.probe_resp.variable); 2250 2251 ftype = ieee80211_is_beacon(mgmt->frame_control) ? 2252 CFG80211_BSS_FTYPE_BEACON : CFG80211_BSS_FTYPE_PRESP; 2253 2254 cfg80211_parse_mbssid_data(wiphy, data, ftype, mgmt->bssid, 2255 le64_to_cpu(mgmt->u.probe_resp.timestamp), 2256 le16_to_cpu(mgmt->u.probe_resp.beacon_int), 2257 ie, ielen, non_tx_data, gfp); 2258 } 2259 2260 static void 2261 cfg80211_update_notlisted_nontrans(struct wiphy *wiphy, 2262 struct cfg80211_bss *nontrans_bss, 2263 struct ieee80211_mgmt *mgmt, size_t len) 2264 { 2265 u8 *ie, *new_ie, *pos; 2266 const struct element *nontrans_ssid; 2267 const u8 *trans_ssid, *mbssid; 2268 size_t ielen = len - offsetof(struct ieee80211_mgmt, 2269 u.probe_resp.variable); 2270 size_t new_ie_len; 2271 struct cfg80211_bss_ies *new_ies; 2272 const struct cfg80211_bss_ies *old; 2273 u8 cpy_len; 2274 2275 lockdep_assert_held(&wiphy_to_rdev(wiphy)->bss_lock); 2276 2277 ie = mgmt->u.probe_resp.variable; 2278 2279 new_ie_len = ielen; 2280 trans_ssid = cfg80211_find_ie(WLAN_EID_SSID, ie, ielen); 2281 if (!trans_ssid) 2282 return; 2283 new_ie_len -= trans_ssid[1]; 2284 mbssid = cfg80211_find_ie(WLAN_EID_MULTIPLE_BSSID, ie, ielen); 2285 /* 2286 * It's not valid to have the MBSSID element before SSID 2287 * ignore if that happens - the code below assumes it is 2288 * after (while copying things inbetween). 2289 */ 2290 if (!mbssid || mbssid < trans_ssid) 2291 return; 2292 new_ie_len -= mbssid[1]; 2293 2294 nontrans_ssid = ieee80211_bss_get_elem(nontrans_bss, WLAN_EID_SSID); 2295 if (!nontrans_ssid) 2296 return; 2297 2298 new_ie_len += nontrans_ssid->datalen; 2299 2300 /* generate new ie for nontrans BSS 2301 * 1. replace SSID with nontrans BSS' SSID 2302 * 2. skip MBSSID IE 2303 */ 2304 new_ie = kzalloc(new_ie_len, GFP_ATOMIC); 2305 if (!new_ie) 2306 return; 2307 2308 new_ies = kzalloc(sizeof(*new_ies) + new_ie_len, GFP_ATOMIC); 2309 if (!new_ies) 2310 goto out_free; 2311 2312 pos = new_ie; 2313 2314 /* copy the nontransmitted SSID */ 2315 cpy_len = nontrans_ssid->datalen + 2; 2316 memcpy(pos, nontrans_ssid, cpy_len); 2317 pos += cpy_len; 2318 /* copy the IEs between SSID and MBSSID */ 2319 cpy_len = trans_ssid[1] + 2; 2320 memcpy(pos, (trans_ssid + cpy_len), (mbssid - (trans_ssid + cpy_len))); 2321 pos += (mbssid - (trans_ssid + cpy_len)); 2322 /* copy the IEs after MBSSID */ 2323 cpy_len = mbssid[1] + 2; 2324 memcpy(pos, mbssid + cpy_len, ((ie + ielen) - (mbssid + cpy_len))); 2325 2326 /* update ie */ 2327 new_ies->len = new_ie_len; 2328 new_ies->tsf = le64_to_cpu(mgmt->u.probe_resp.timestamp); 2329 new_ies->from_beacon = ieee80211_is_beacon(mgmt->frame_control); 2330 memcpy(new_ies->data, new_ie, new_ie_len); 2331 if (ieee80211_is_probe_resp(mgmt->frame_control)) { 2332 old = rcu_access_pointer(nontrans_bss->proberesp_ies); 2333 rcu_assign_pointer(nontrans_bss->proberesp_ies, new_ies); 2334 rcu_assign_pointer(nontrans_bss->ies, new_ies); 2335 if (old) 2336 kfree_rcu((struct cfg80211_bss_ies *)old, rcu_head); 2337 } else { 2338 old = rcu_access_pointer(nontrans_bss->beacon_ies); 2339 rcu_assign_pointer(nontrans_bss->beacon_ies, new_ies); 2340 rcu_assign_pointer(nontrans_bss->ies, new_ies); 2341 if (old) 2342 kfree_rcu((struct cfg80211_bss_ies *)old, rcu_head); 2343 } 2344 2345 out_free: 2346 kfree(new_ie); 2347 } 2348 2349 /* cfg80211_inform_bss_width_frame helper */ 2350 static struct cfg80211_bss * 2351 cfg80211_inform_single_bss_frame_data(struct wiphy *wiphy, 2352 struct cfg80211_inform_bss *data, 2353 struct ieee80211_mgmt *mgmt, size_t len, 2354 gfp_t gfp) 2355 { 2356 struct cfg80211_internal_bss tmp = {}, *res; 2357 struct cfg80211_bss_ies *ies; 2358 struct ieee80211_channel *channel; 2359 bool signal_valid; 2360 struct ieee80211_ext *ext = NULL; 2361 u8 *bssid, *variable; 2362 u16 capability, beacon_int; 2363 size_t ielen, min_hdr_len = offsetof(struct ieee80211_mgmt, 2364 u.probe_resp.variable); 2365 int bss_type; 2366 enum cfg80211_bss_frame_type ftype; 2367 2368 BUILD_BUG_ON(offsetof(struct ieee80211_mgmt, u.probe_resp.variable) != 2369 offsetof(struct ieee80211_mgmt, u.beacon.variable)); 2370 2371 trace_cfg80211_inform_bss_frame(wiphy, data, mgmt, len); 2372 2373 if (WARN_ON(!mgmt)) 2374 return NULL; 2375 2376 if (WARN_ON(!wiphy)) 2377 return NULL; 2378 2379 if (WARN_ON(wiphy->signal_type == CFG80211_SIGNAL_TYPE_UNSPEC && 2380 (data->signal < 0 || data->signal > 100))) 2381 return NULL; 2382 2383 if (ieee80211_is_s1g_beacon(mgmt->frame_control)) { 2384 ext = (void *) mgmt; 2385 min_hdr_len = offsetof(struct ieee80211_ext, u.s1g_beacon); 2386 if (ieee80211_is_s1g_short_beacon(mgmt->frame_control)) 2387 min_hdr_len = offsetof(struct ieee80211_ext, 2388 u.s1g_short_beacon.variable); 2389 } 2390 2391 if (WARN_ON(len < min_hdr_len)) 2392 return NULL; 2393 2394 ielen = len - min_hdr_len; 2395 variable = mgmt->u.probe_resp.variable; 2396 if (ext) { 2397 if (ieee80211_is_s1g_short_beacon(mgmt->frame_control)) 2398 variable = ext->u.s1g_short_beacon.variable; 2399 else 2400 variable = ext->u.s1g_beacon.variable; 2401 } 2402 2403 if (ieee80211_is_beacon(mgmt->frame_control)) 2404 ftype = CFG80211_BSS_FTYPE_BEACON; 2405 else if (ieee80211_is_probe_resp(mgmt->frame_control)) 2406 ftype = CFG80211_BSS_FTYPE_PRESP; 2407 else 2408 ftype = CFG80211_BSS_FTYPE_UNKNOWN; 2409 2410 channel = cfg80211_get_bss_channel(wiphy, variable, 2411 ielen, data->chan, data->scan_width, 2412 ftype); 2413 if (!channel) 2414 return NULL; 2415 2416 if (ext) { 2417 const struct ieee80211_s1g_bcn_compat_ie *compat; 2418 const struct element *elem; 2419 2420 elem = cfg80211_find_elem(WLAN_EID_S1G_BCN_COMPAT, 2421 variable, ielen); 2422 if (!elem) 2423 return NULL; 2424 if (elem->datalen < sizeof(*compat)) 2425 return NULL; 2426 compat = (void *)elem->data; 2427 bssid = ext->u.s1g_beacon.sa; 2428 capability = le16_to_cpu(compat->compat_info); 2429 beacon_int = le16_to_cpu(compat->beacon_int); 2430 } else { 2431 bssid = mgmt->bssid; 2432 beacon_int = le16_to_cpu(mgmt->u.probe_resp.beacon_int); 2433 capability = le16_to_cpu(mgmt->u.probe_resp.capab_info); 2434 } 2435 2436 ies = kzalloc(sizeof(*ies) + ielen, gfp); 2437 if (!ies) 2438 return NULL; 2439 ies->len = ielen; 2440 ies->tsf = le64_to_cpu(mgmt->u.probe_resp.timestamp); 2441 ies->from_beacon = ieee80211_is_beacon(mgmt->frame_control) || 2442 ieee80211_is_s1g_beacon(mgmt->frame_control); 2443 memcpy(ies->data, variable, ielen); 2444 2445 if (ieee80211_is_probe_resp(mgmt->frame_control)) 2446 rcu_assign_pointer(tmp.pub.proberesp_ies, ies); 2447 else 2448 rcu_assign_pointer(tmp.pub.beacon_ies, ies); 2449 rcu_assign_pointer(tmp.pub.ies, ies); 2450 2451 memcpy(tmp.pub.bssid, bssid, ETH_ALEN); 2452 tmp.pub.beacon_interval = beacon_int; 2453 tmp.pub.capability = capability; 2454 tmp.pub.channel = channel; 2455 tmp.pub.scan_width = data->scan_width; 2456 tmp.pub.signal = data->signal; 2457 tmp.ts_boottime = data->boottime_ns; 2458 tmp.parent_tsf = data->parent_tsf; 2459 tmp.pub.chains = data->chains; 2460 memcpy(tmp.pub.chain_signal, data->chain_signal, IEEE80211_MAX_CHAINS); 2461 ether_addr_copy(tmp.parent_bssid, data->parent_bssid); 2462 2463 signal_valid = data->chan == channel; 2464 res = cfg80211_bss_update(wiphy_to_rdev(wiphy), &tmp, signal_valid, 2465 jiffies); 2466 if (!res) 2467 return NULL; 2468 2469 if (channel->band == NL80211_BAND_60GHZ) { 2470 bss_type = res->pub.capability & WLAN_CAPABILITY_DMG_TYPE_MASK; 2471 if (bss_type == WLAN_CAPABILITY_DMG_TYPE_AP || 2472 bss_type == WLAN_CAPABILITY_DMG_TYPE_PBSS) 2473 regulatory_hint_found_beacon(wiphy, channel, gfp); 2474 } else { 2475 if (res->pub.capability & WLAN_CAPABILITY_ESS) 2476 regulatory_hint_found_beacon(wiphy, channel, gfp); 2477 } 2478 2479 trace_cfg80211_return_bss(&res->pub); 2480 /* cfg80211_bss_update gives us a referenced result */ 2481 return &res->pub; 2482 } 2483 2484 struct cfg80211_bss * 2485 cfg80211_inform_bss_frame_data(struct wiphy *wiphy, 2486 struct cfg80211_inform_bss *data, 2487 struct ieee80211_mgmt *mgmt, size_t len, 2488 gfp_t gfp) 2489 { 2490 struct cfg80211_bss *res, *tmp_bss; 2491 const u8 *ie = mgmt->u.probe_resp.variable; 2492 const struct cfg80211_bss_ies *ies1, *ies2; 2493 size_t ielen = len - offsetof(struct ieee80211_mgmt, 2494 u.probe_resp.variable); 2495 struct cfg80211_non_tx_bss non_tx_data; 2496 2497 res = cfg80211_inform_single_bss_frame_data(wiphy, data, mgmt, 2498 len, gfp); 2499 if (!res || !wiphy->support_mbssid || 2500 !cfg80211_find_elem(WLAN_EID_MULTIPLE_BSSID, ie, ielen)) 2501 return res; 2502 if (wiphy->support_only_he_mbssid && 2503 !cfg80211_find_ext_elem(WLAN_EID_EXT_HE_CAPABILITY, ie, ielen)) 2504 return res; 2505 2506 non_tx_data.tx_bss = res; 2507 /* process each non-transmitting bss */ 2508 cfg80211_parse_mbssid_frame_data(wiphy, data, mgmt, len, 2509 &non_tx_data, gfp); 2510 2511 spin_lock_bh(&wiphy_to_rdev(wiphy)->bss_lock); 2512 2513 /* check if the res has other nontransmitting bss which is not 2514 * in MBSSID IE 2515 */ 2516 ies1 = rcu_access_pointer(res->ies); 2517 2518 /* go through nontrans_list, if the timestamp of the BSS is 2519 * earlier than the timestamp of the transmitting BSS then 2520 * update it 2521 */ 2522 list_for_each_entry(tmp_bss, &res->nontrans_list, 2523 nontrans_list) { 2524 ies2 = rcu_access_pointer(tmp_bss->ies); 2525 if (ies2->tsf < ies1->tsf) 2526 cfg80211_update_notlisted_nontrans(wiphy, tmp_bss, 2527 mgmt, len); 2528 } 2529 spin_unlock_bh(&wiphy_to_rdev(wiphy)->bss_lock); 2530 2531 return res; 2532 } 2533 EXPORT_SYMBOL(cfg80211_inform_bss_frame_data); 2534 2535 void cfg80211_ref_bss(struct wiphy *wiphy, struct cfg80211_bss *pub) 2536 { 2537 struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy); 2538 struct cfg80211_internal_bss *bss; 2539 2540 if (!pub) 2541 return; 2542 2543 bss = container_of(pub, struct cfg80211_internal_bss, pub); 2544 2545 spin_lock_bh(&rdev->bss_lock); 2546 bss_ref_get(rdev, bss); 2547 spin_unlock_bh(&rdev->bss_lock); 2548 } 2549 EXPORT_SYMBOL(cfg80211_ref_bss); 2550 2551 void cfg80211_put_bss(struct wiphy *wiphy, struct cfg80211_bss *pub) 2552 { 2553 struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy); 2554 struct cfg80211_internal_bss *bss; 2555 2556 if (!pub) 2557 return; 2558 2559 bss = container_of(pub, struct cfg80211_internal_bss, pub); 2560 2561 spin_lock_bh(&rdev->bss_lock); 2562 bss_ref_put(rdev, bss); 2563 spin_unlock_bh(&rdev->bss_lock); 2564 } 2565 EXPORT_SYMBOL(cfg80211_put_bss); 2566 2567 void cfg80211_unlink_bss(struct wiphy *wiphy, struct cfg80211_bss *pub) 2568 { 2569 struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy); 2570 struct cfg80211_internal_bss *bss, *tmp1; 2571 struct cfg80211_bss *nontrans_bss, *tmp; 2572 2573 if (WARN_ON(!pub)) 2574 return; 2575 2576 bss = container_of(pub, struct cfg80211_internal_bss, pub); 2577 2578 spin_lock_bh(&rdev->bss_lock); 2579 if (list_empty(&bss->list)) 2580 goto out; 2581 2582 list_for_each_entry_safe(nontrans_bss, tmp, 2583 &pub->nontrans_list, 2584 nontrans_list) { 2585 tmp1 = container_of(nontrans_bss, 2586 struct cfg80211_internal_bss, pub); 2587 if (__cfg80211_unlink_bss(rdev, tmp1)) 2588 rdev->bss_generation++; 2589 } 2590 2591 if (__cfg80211_unlink_bss(rdev, bss)) 2592 rdev->bss_generation++; 2593 out: 2594 spin_unlock_bh(&rdev->bss_lock); 2595 } 2596 EXPORT_SYMBOL(cfg80211_unlink_bss); 2597 2598 void cfg80211_bss_iter(struct wiphy *wiphy, 2599 struct cfg80211_chan_def *chandef, 2600 void (*iter)(struct wiphy *wiphy, 2601 struct cfg80211_bss *bss, 2602 void *data), 2603 void *iter_data) 2604 { 2605 struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy); 2606 struct cfg80211_internal_bss *bss; 2607 2608 spin_lock_bh(&rdev->bss_lock); 2609 2610 list_for_each_entry(bss, &rdev->bss_list, list) { 2611 if (!chandef || cfg80211_is_sub_chan(chandef, bss->pub.channel)) 2612 iter(wiphy, &bss->pub, iter_data); 2613 } 2614 2615 spin_unlock_bh(&rdev->bss_lock); 2616 } 2617 EXPORT_SYMBOL(cfg80211_bss_iter); 2618 2619 void cfg80211_update_assoc_bss_entry(struct wireless_dev *wdev, 2620 struct ieee80211_channel *chan) 2621 { 2622 struct wiphy *wiphy = wdev->wiphy; 2623 struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy); 2624 struct cfg80211_internal_bss *cbss = wdev->current_bss; 2625 struct cfg80211_internal_bss *new = NULL; 2626 struct cfg80211_internal_bss *bss; 2627 struct cfg80211_bss *nontrans_bss; 2628 struct cfg80211_bss *tmp; 2629 2630 spin_lock_bh(&rdev->bss_lock); 2631 2632 /* 2633 * Some APs use CSA also for bandwidth changes, i.e., without actually 2634 * changing the control channel, so no need to update in such a case. 2635 */ 2636 if (cbss->pub.channel == chan) 2637 goto done; 2638 2639 /* use transmitting bss */ 2640 if (cbss->pub.transmitted_bss) 2641 cbss = container_of(cbss->pub.transmitted_bss, 2642 struct cfg80211_internal_bss, 2643 pub); 2644 2645 cbss->pub.channel = chan; 2646 2647 list_for_each_entry(bss, &rdev->bss_list, list) { 2648 if (!cfg80211_bss_type_match(bss->pub.capability, 2649 bss->pub.channel->band, 2650 wdev->conn_bss_type)) 2651 continue; 2652 2653 if (bss == cbss) 2654 continue; 2655 2656 if (!cmp_bss(&bss->pub, &cbss->pub, BSS_CMP_REGULAR)) { 2657 new = bss; 2658 break; 2659 } 2660 } 2661 2662 if (new) { 2663 /* to save time, update IEs for transmitting bss only */ 2664 if (cfg80211_update_known_bss(rdev, cbss, new, false)) { 2665 new->pub.proberesp_ies = NULL; 2666 new->pub.beacon_ies = NULL; 2667 } 2668 2669 list_for_each_entry_safe(nontrans_bss, tmp, 2670 &new->pub.nontrans_list, 2671 nontrans_list) { 2672 bss = container_of(nontrans_bss, 2673 struct cfg80211_internal_bss, pub); 2674 if (__cfg80211_unlink_bss(rdev, bss)) 2675 rdev->bss_generation++; 2676 } 2677 2678 WARN_ON(atomic_read(&new->hold)); 2679 if (!WARN_ON(!__cfg80211_unlink_bss(rdev, new))) 2680 rdev->bss_generation++; 2681 } 2682 2683 rb_erase(&cbss->rbn, &rdev->bss_tree); 2684 rb_insert_bss(rdev, cbss); 2685 rdev->bss_generation++; 2686 2687 list_for_each_entry_safe(nontrans_bss, tmp, 2688 &cbss->pub.nontrans_list, 2689 nontrans_list) { 2690 bss = container_of(nontrans_bss, 2691 struct cfg80211_internal_bss, pub); 2692 bss->pub.channel = chan; 2693 rb_erase(&bss->rbn, &rdev->bss_tree); 2694 rb_insert_bss(rdev, bss); 2695 rdev->bss_generation++; 2696 } 2697 2698 done: 2699 spin_unlock_bh(&rdev->bss_lock); 2700 } 2701 2702 #ifdef CONFIG_CFG80211_WEXT 2703 static struct cfg80211_registered_device * 2704 cfg80211_get_dev_from_ifindex(struct net *net, int ifindex) 2705 { 2706 struct cfg80211_registered_device *rdev; 2707 struct net_device *dev; 2708 2709 ASSERT_RTNL(); 2710 2711 dev = dev_get_by_index(net, ifindex); 2712 if (!dev) 2713 return ERR_PTR(-ENODEV); 2714 if (dev->ieee80211_ptr) 2715 rdev = wiphy_to_rdev(dev->ieee80211_ptr->wiphy); 2716 else 2717 rdev = ERR_PTR(-ENODEV); 2718 dev_put(dev); 2719 return rdev; 2720 } 2721 2722 int cfg80211_wext_siwscan(struct net_device *dev, 2723 struct iw_request_info *info, 2724 union iwreq_data *wrqu, char *extra) 2725 { 2726 struct cfg80211_registered_device *rdev; 2727 struct wiphy *wiphy; 2728 struct iw_scan_req *wreq = NULL; 2729 struct cfg80211_scan_request *creq; 2730 int i, err, n_channels = 0; 2731 enum nl80211_band band; 2732 2733 if (!netif_running(dev)) 2734 return -ENETDOWN; 2735 2736 if (wrqu->data.length == sizeof(struct iw_scan_req)) 2737 wreq = (struct iw_scan_req *)extra; 2738 2739 rdev = cfg80211_get_dev_from_ifindex(dev_net(dev), dev->ifindex); 2740 2741 if (IS_ERR(rdev)) 2742 return PTR_ERR(rdev); 2743 2744 if (rdev->scan_req || rdev->scan_msg) 2745 return -EBUSY; 2746 2747 wiphy = &rdev->wiphy; 2748 2749 /* Determine number of channels, needed to allocate creq */ 2750 if (wreq && wreq->num_channels) 2751 n_channels = wreq->num_channels; 2752 else 2753 n_channels = ieee80211_get_num_supported_channels(wiphy); 2754 2755 creq = kzalloc(sizeof(*creq) + sizeof(struct cfg80211_ssid) + 2756 n_channels * sizeof(void *), 2757 GFP_ATOMIC); 2758 if (!creq) 2759 return -ENOMEM; 2760 2761 creq->wiphy = wiphy; 2762 creq->wdev = dev->ieee80211_ptr; 2763 /* SSIDs come after channels */ 2764 creq->ssids = (void *)&creq->channels[n_channels]; 2765 creq->n_channels = n_channels; 2766 creq->n_ssids = 1; 2767 creq->scan_start = jiffies; 2768 2769 /* translate "Scan on frequencies" request */ 2770 i = 0; 2771 for (band = 0; band < NUM_NL80211_BANDS; band++) { 2772 int j; 2773 2774 if (!wiphy->bands[band]) 2775 continue; 2776 2777 for (j = 0; j < wiphy->bands[band]->n_channels; j++) { 2778 /* ignore disabled channels */ 2779 if (wiphy->bands[band]->channels[j].flags & 2780 IEEE80211_CHAN_DISABLED) 2781 continue; 2782 2783 /* If we have a wireless request structure and the 2784 * wireless request specifies frequencies, then search 2785 * for the matching hardware channel. 2786 */ 2787 if (wreq && wreq->num_channels) { 2788 int k; 2789 int wiphy_freq = wiphy->bands[band]->channels[j].center_freq; 2790 for (k = 0; k < wreq->num_channels; k++) { 2791 struct iw_freq *freq = 2792 &wreq->channel_list[k]; 2793 int wext_freq = 2794 cfg80211_wext_freq(freq); 2795 2796 if (wext_freq == wiphy_freq) 2797 goto wext_freq_found; 2798 } 2799 goto wext_freq_not_found; 2800 } 2801 2802 wext_freq_found: 2803 creq->channels[i] = &wiphy->bands[band]->channels[j]; 2804 i++; 2805 wext_freq_not_found: ; 2806 } 2807 } 2808 /* No channels found? */ 2809 if (!i) { 2810 err = -EINVAL; 2811 goto out; 2812 } 2813 2814 /* Set real number of channels specified in creq->channels[] */ 2815 creq->n_channels = i; 2816 2817 /* translate "Scan for SSID" request */ 2818 if (wreq) { 2819 if (wrqu->data.flags & IW_SCAN_THIS_ESSID) { 2820 if (wreq->essid_len > IEEE80211_MAX_SSID_LEN) { 2821 err = -EINVAL; 2822 goto out; 2823 } 2824 memcpy(creq->ssids[0].ssid, wreq->essid, wreq->essid_len); 2825 creq->ssids[0].ssid_len = wreq->essid_len; 2826 } 2827 if (wreq->scan_type == IW_SCAN_TYPE_PASSIVE) 2828 creq->n_ssids = 0; 2829 } 2830 2831 for (i = 0; i < NUM_NL80211_BANDS; i++) 2832 if (wiphy->bands[i]) 2833 creq->rates[i] = (1 << wiphy->bands[i]->n_bitrates) - 1; 2834 2835 eth_broadcast_addr(creq->bssid); 2836 2837 wiphy_lock(&rdev->wiphy); 2838 2839 rdev->scan_req = creq; 2840 err = rdev_scan(rdev, creq); 2841 if (err) { 2842 rdev->scan_req = NULL; 2843 /* creq will be freed below */ 2844 } else { 2845 nl80211_send_scan_start(rdev, dev->ieee80211_ptr); 2846 /* creq now owned by driver */ 2847 creq = NULL; 2848 dev_hold(dev); 2849 } 2850 wiphy_unlock(&rdev->wiphy); 2851 out: 2852 kfree(creq); 2853 return err; 2854 } 2855 EXPORT_WEXT_HANDLER(cfg80211_wext_siwscan); 2856 2857 static char *ieee80211_scan_add_ies(struct iw_request_info *info, 2858 const struct cfg80211_bss_ies *ies, 2859 char *current_ev, char *end_buf) 2860 { 2861 const u8 *pos, *end, *next; 2862 struct iw_event iwe; 2863 2864 if (!ies) 2865 return current_ev; 2866 2867 /* 2868 * If needed, fragment the IEs buffer (at IE boundaries) into short 2869 * enough fragments to fit into IW_GENERIC_IE_MAX octet messages. 2870 */ 2871 pos = ies->data; 2872 end = pos + ies->len; 2873 2874 while (end - pos > IW_GENERIC_IE_MAX) { 2875 next = pos + 2 + pos[1]; 2876 while (next + 2 + next[1] - pos < IW_GENERIC_IE_MAX) 2877 next = next + 2 + next[1]; 2878 2879 memset(&iwe, 0, sizeof(iwe)); 2880 iwe.cmd = IWEVGENIE; 2881 iwe.u.data.length = next - pos; 2882 current_ev = iwe_stream_add_point_check(info, current_ev, 2883 end_buf, &iwe, 2884 (void *)pos); 2885 if (IS_ERR(current_ev)) 2886 return current_ev; 2887 pos = next; 2888 } 2889 2890 if (end > pos) { 2891 memset(&iwe, 0, sizeof(iwe)); 2892 iwe.cmd = IWEVGENIE; 2893 iwe.u.data.length = end - pos; 2894 current_ev = iwe_stream_add_point_check(info, current_ev, 2895 end_buf, &iwe, 2896 (void *)pos); 2897 if (IS_ERR(current_ev)) 2898 return current_ev; 2899 } 2900 2901 return current_ev; 2902 } 2903 2904 static char * 2905 ieee80211_bss(struct wiphy *wiphy, struct iw_request_info *info, 2906 struct cfg80211_internal_bss *bss, char *current_ev, 2907 char *end_buf) 2908 { 2909 const struct cfg80211_bss_ies *ies; 2910 struct iw_event iwe; 2911 const u8 *ie; 2912 u8 buf[50]; 2913 u8 *cfg, *p, *tmp; 2914 int rem, i, sig; 2915 bool ismesh = false; 2916 2917 memset(&iwe, 0, sizeof(iwe)); 2918 iwe.cmd = SIOCGIWAP; 2919 iwe.u.ap_addr.sa_family = ARPHRD_ETHER; 2920 memcpy(iwe.u.ap_addr.sa_data, bss->pub.bssid, ETH_ALEN); 2921 current_ev = iwe_stream_add_event_check(info, current_ev, end_buf, &iwe, 2922 IW_EV_ADDR_LEN); 2923 if (IS_ERR(current_ev)) 2924 return current_ev; 2925 2926 memset(&iwe, 0, sizeof(iwe)); 2927 iwe.cmd = SIOCGIWFREQ; 2928 iwe.u.freq.m = ieee80211_frequency_to_channel(bss->pub.channel->center_freq); 2929 iwe.u.freq.e = 0; 2930 current_ev = iwe_stream_add_event_check(info, current_ev, end_buf, &iwe, 2931 IW_EV_FREQ_LEN); 2932 if (IS_ERR(current_ev)) 2933 return current_ev; 2934 2935 memset(&iwe, 0, sizeof(iwe)); 2936 iwe.cmd = SIOCGIWFREQ; 2937 iwe.u.freq.m = bss->pub.channel->center_freq; 2938 iwe.u.freq.e = 6; 2939 current_ev = iwe_stream_add_event_check(info, current_ev, end_buf, &iwe, 2940 IW_EV_FREQ_LEN); 2941 if (IS_ERR(current_ev)) 2942 return current_ev; 2943 2944 if (wiphy->signal_type != CFG80211_SIGNAL_TYPE_NONE) { 2945 memset(&iwe, 0, sizeof(iwe)); 2946 iwe.cmd = IWEVQUAL; 2947 iwe.u.qual.updated = IW_QUAL_LEVEL_UPDATED | 2948 IW_QUAL_NOISE_INVALID | 2949 IW_QUAL_QUAL_UPDATED; 2950 switch (wiphy->signal_type) { 2951 case CFG80211_SIGNAL_TYPE_MBM: 2952 sig = bss->pub.signal / 100; 2953 iwe.u.qual.level = sig; 2954 iwe.u.qual.updated |= IW_QUAL_DBM; 2955 if (sig < -110) /* rather bad */ 2956 sig = -110; 2957 else if (sig > -40) /* perfect */ 2958 sig = -40; 2959 /* will give a range of 0 .. 70 */ 2960 iwe.u.qual.qual = sig + 110; 2961 break; 2962 case CFG80211_SIGNAL_TYPE_UNSPEC: 2963 iwe.u.qual.level = bss->pub.signal; 2964 /* will give range 0 .. 100 */ 2965 iwe.u.qual.qual = bss->pub.signal; 2966 break; 2967 default: 2968 /* not reached */ 2969 break; 2970 } 2971 current_ev = iwe_stream_add_event_check(info, current_ev, 2972 end_buf, &iwe, 2973 IW_EV_QUAL_LEN); 2974 if (IS_ERR(current_ev)) 2975 return current_ev; 2976 } 2977 2978 memset(&iwe, 0, sizeof(iwe)); 2979 iwe.cmd = SIOCGIWENCODE; 2980 if (bss->pub.capability & WLAN_CAPABILITY_PRIVACY) 2981 iwe.u.data.flags = IW_ENCODE_ENABLED | IW_ENCODE_NOKEY; 2982 else 2983 iwe.u.data.flags = IW_ENCODE_DISABLED; 2984 iwe.u.data.length = 0; 2985 current_ev = iwe_stream_add_point_check(info, current_ev, end_buf, 2986 &iwe, ""); 2987 if (IS_ERR(current_ev)) 2988 return current_ev; 2989 2990 rcu_read_lock(); 2991 ies = rcu_dereference(bss->pub.ies); 2992 rem = ies->len; 2993 ie = ies->data; 2994 2995 while (rem >= 2) { 2996 /* invalid data */ 2997 if (ie[1] > rem - 2) 2998 break; 2999 3000 switch (ie[0]) { 3001 case WLAN_EID_SSID: 3002 memset(&iwe, 0, sizeof(iwe)); 3003 iwe.cmd = SIOCGIWESSID; 3004 iwe.u.data.length = ie[1]; 3005 iwe.u.data.flags = 1; 3006 current_ev = iwe_stream_add_point_check(info, 3007 current_ev, 3008 end_buf, &iwe, 3009 (u8 *)ie + 2); 3010 if (IS_ERR(current_ev)) 3011 goto unlock; 3012 break; 3013 case WLAN_EID_MESH_ID: 3014 memset(&iwe, 0, sizeof(iwe)); 3015 iwe.cmd = SIOCGIWESSID; 3016 iwe.u.data.length = ie[1]; 3017 iwe.u.data.flags = 1; 3018 current_ev = iwe_stream_add_point_check(info, 3019 current_ev, 3020 end_buf, &iwe, 3021 (u8 *)ie + 2); 3022 if (IS_ERR(current_ev)) 3023 goto unlock; 3024 break; 3025 case WLAN_EID_MESH_CONFIG: 3026 ismesh = true; 3027 if (ie[1] != sizeof(struct ieee80211_meshconf_ie)) 3028 break; 3029 cfg = (u8 *)ie + 2; 3030 memset(&iwe, 0, sizeof(iwe)); 3031 iwe.cmd = IWEVCUSTOM; 3032 sprintf(buf, "Mesh Network Path Selection Protocol ID: " 3033 "0x%02X", cfg[0]); 3034 iwe.u.data.length = strlen(buf); 3035 current_ev = iwe_stream_add_point_check(info, 3036 current_ev, 3037 end_buf, 3038 &iwe, buf); 3039 if (IS_ERR(current_ev)) 3040 goto unlock; 3041 sprintf(buf, "Path Selection Metric ID: 0x%02X", 3042 cfg[1]); 3043 iwe.u.data.length = strlen(buf); 3044 current_ev = iwe_stream_add_point_check(info, 3045 current_ev, 3046 end_buf, 3047 &iwe, buf); 3048 if (IS_ERR(current_ev)) 3049 goto unlock; 3050 sprintf(buf, "Congestion Control Mode ID: 0x%02X", 3051 cfg[2]); 3052 iwe.u.data.length = strlen(buf); 3053 current_ev = iwe_stream_add_point_check(info, 3054 current_ev, 3055 end_buf, 3056 &iwe, buf); 3057 if (IS_ERR(current_ev)) 3058 goto unlock; 3059 sprintf(buf, "Synchronization ID: 0x%02X", cfg[3]); 3060 iwe.u.data.length = strlen(buf); 3061 current_ev = iwe_stream_add_point_check(info, 3062 current_ev, 3063 end_buf, 3064 &iwe, buf); 3065 if (IS_ERR(current_ev)) 3066 goto unlock; 3067 sprintf(buf, "Authentication ID: 0x%02X", cfg[4]); 3068 iwe.u.data.length = strlen(buf); 3069 current_ev = iwe_stream_add_point_check(info, 3070 current_ev, 3071 end_buf, 3072 &iwe, buf); 3073 if (IS_ERR(current_ev)) 3074 goto unlock; 3075 sprintf(buf, "Formation Info: 0x%02X", cfg[5]); 3076 iwe.u.data.length = strlen(buf); 3077 current_ev = iwe_stream_add_point_check(info, 3078 current_ev, 3079 end_buf, 3080 &iwe, buf); 3081 if (IS_ERR(current_ev)) 3082 goto unlock; 3083 sprintf(buf, "Capabilities: 0x%02X", cfg[6]); 3084 iwe.u.data.length = strlen(buf); 3085 current_ev = iwe_stream_add_point_check(info, 3086 current_ev, 3087 end_buf, 3088 &iwe, buf); 3089 if (IS_ERR(current_ev)) 3090 goto unlock; 3091 break; 3092 case WLAN_EID_SUPP_RATES: 3093 case WLAN_EID_EXT_SUPP_RATES: 3094 /* display all supported rates in readable format */ 3095 p = current_ev + iwe_stream_lcp_len(info); 3096 3097 memset(&iwe, 0, sizeof(iwe)); 3098 iwe.cmd = SIOCGIWRATE; 3099 /* Those two flags are ignored... */ 3100 iwe.u.bitrate.fixed = iwe.u.bitrate.disabled = 0; 3101 3102 for (i = 0; i < ie[1]; i++) { 3103 iwe.u.bitrate.value = 3104 ((ie[i + 2] & 0x7f) * 500000); 3105 tmp = p; 3106 p = iwe_stream_add_value(info, current_ev, p, 3107 end_buf, &iwe, 3108 IW_EV_PARAM_LEN); 3109 if (p == tmp) { 3110 current_ev = ERR_PTR(-E2BIG); 3111 goto unlock; 3112 } 3113 } 3114 current_ev = p; 3115 break; 3116 } 3117 rem -= ie[1] + 2; 3118 ie += ie[1] + 2; 3119 } 3120 3121 if (bss->pub.capability & (WLAN_CAPABILITY_ESS | WLAN_CAPABILITY_IBSS) || 3122 ismesh) { 3123 memset(&iwe, 0, sizeof(iwe)); 3124 iwe.cmd = SIOCGIWMODE; 3125 if (ismesh) 3126 iwe.u.mode = IW_MODE_MESH; 3127 else if (bss->pub.capability & WLAN_CAPABILITY_ESS) 3128 iwe.u.mode = IW_MODE_MASTER; 3129 else 3130 iwe.u.mode = IW_MODE_ADHOC; 3131 current_ev = iwe_stream_add_event_check(info, current_ev, 3132 end_buf, &iwe, 3133 IW_EV_UINT_LEN); 3134 if (IS_ERR(current_ev)) 3135 goto unlock; 3136 } 3137 3138 memset(&iwe, 0, sizeof(iwe)); 3139 iwe.cmd = IWEVCUSTOM; 3140 sprintf(buf, "tsf=%016llx", (unsigned long long)(ies->tsf)); 3141 iwe.u.data.length = strlen(buf); 3142 current_ev = iwe_stream_add_point_check(info, current_ev, end_buf, 3143 &iwe, buf); 3144 if (IS_ERR(current_ev)) 3145 goto unlock; 3146 memset(&iwe, 0, sizeof(iwe)); 3147 iwe.cmd = IWEVCUSTOM; 3148 sprintf(buf, " Last beacon: %ums ago", 3149 elapsed_jiffies_msecs(bss->ts)); 3150 iwe.u.data.length = strlen(buf); 3151 current_ev = iwe_stream_add_point_check(info, current_ev, 3152 end_buf, &iwe, buf); 3153 if (IS_ERR(current_ev)) 3154 goto unlock; 3155 3156 current_ev = ieee80211_scan_add_ies(info, ies, current_ev, end_buf); 3157 3158 unlock: 3159 rcu_read_unlock(); 3160 return current_ev; 3161 } 3162 3163 3164 static int ieee80211_scan_results(struct cfg80211_registered_device *rdev, 3165 struct iw_request_info *info, 3166 char *buf, size_t len) 3167 { 3168 char *current_ev = buf; 3169 char *end_buf = buf + len; 3170 struct cfg80211_internal_bss *bss; 3171 int err = 0; 3172 3173 spin_lock_bh(&rdev->bss_lock); 3174 cfg80211_bss_expire(rdev); 3175 3176 list_for_each_entry(bss, &rdev->bss_list, list) { 3177 if (buf + len - current_ev <= IW_EV_ADDR_LEN) { 3178 err = -E2BIG; 3179 break; 3180 } 3181 current_ev = ieee80211_bss(&rdev->wiphy, info, bss, 3182 current_ev, end_buf); 3183 if (IS_ERR(current_ev)) { 3184 err = PTR_ERR(current_ev); 3185 break; 3186 } 3187 } 3188 spin_unlock_bh(&rdev->bss_lock); 3189 3190 if (err) 3191 return err; 3192 return current_ev - buf; 3193 } 3194 3195 3196 int cfg80211_wext_giwscan(struct net_device *dev, 3197 struct iw_request_info *info, 3198 struct iw_point *data, char *extra) 3199 { 3200 struct cfg80211_registered_device *rdev; 3201 int res; 3202 3203 if (!netif_running(dev)) 3204 return -ENETDOWN; 3205 3206 rdev = cfg80211_get_dev_from_ifindex(dev_net(dev), dev->ifindex); 3207 3208 if (IS_ERR(rdev)) 3209 return PTR_ERR(rdev); 3210 3211 if (rdev->scan_req || rdev->scan_msg) 3212 return -EAGAIN; 3213 3214 res = ieee80211_scan_results(rdev, info, extra, data->length); 3215 data->length = 0; 3216 if (res >= 0) { 3217 data->length = res; 3218 res = 0; 3219 } 3220 3221 return res; 3222 } 3223 EXPORT_WEXT_HANDLER(cfg80211_wext_giwscan); 3224 #endif 3225