1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * cfg80211 scan result handling 4 * 5 * Copyright 2008 Johannes Berg <johannes@sipsolutions.net> 6 * Copyright 2013-2014 Intel Mobile Communications GmbH 7 * Copyright 2016 Intel Deutschland GmbH 8 * Copyright (C) 2018-2024 Intel Corporation 9 */ 10 #include <linux/kernel.h> 11 #include <linux/slab.h> 12 #include <linux/module.h> 13 #include <linux/netdevice.h> 14 #include <linux/wireless.h> 15 #include <linux/nl80211.h> 16 #include <linux/etherdevice.h> 17 #include <linux/crc32.h> 18 #include <linux/bitfield.h> 19 #include <net/arp.h> 20 #include <net/cfg80211.h> 21 #include <net/cfg80211-wext.h> 22 #include <net/iw_handler.h> 23 #include <kunit/visibility.h> 24 #include "core.h" 25 #include "nl80211.h" 26 #include "wext-compat.h" 27 #include "rdev-ops.h" 28 29 /** 30 * DOC: BSS tree/list structure 31 * 32 * At the top level, the BSS list is kept in both a list in each 33 * registered device (@bss_list) as well as an RB-tree for faster 34 * lookup. In the RB-tree, entries can be looked up using their 35 * channel, MESHID, MESHCONF (for MBSSes) or channel, BSSID, SSID 36 * for other BSSes. 37 * 38 * Due to the possibility of hidden SSIDs, there's a second level 39 * structure, the "hidden_list" and "hidden_beacon_bss" pointer. 40 * The hidden_list connects all BSSes belonging to a single AP 41 * that has a hidden SSID, and connects beacon and probe response 42 * entries. For a probe response entry for a hidden SSID, the 43 * hidden_beacon_bss pointer points to the BSS struct holding the 44 * beacon's information. 45 * 46 * Reference counting is done for all these references except for 47 * the hidden_list, so that a beacon BSS struct that is otherwise 48 * not referenced has one reference for being on the bss_list and 49 * one for each probe response entry that points to it using the 50 * hidden_beacon_bss pointer. When a BSS struct that has such a 51 * pointer is get/put, the refcount update is also propagated to 52 * the referenced struct, this ensure that it cannot get removed 53 * while somebody is using the probe response version. 54 * 55 * Note that the hidden_beacon_bss pointer never changes, due to 56 * the reference counting. Therefore, no locking is needed for 57 * it. 58 * 59 * Also note that the hidden_beacon_bss pointer is only relevant 60 * if the driver uses something other than the IEs, e.g. private 61 * data stored in the BSS struct, since the beacon IEs are 62 * also linked into the probe response struct. 63 */ 64 65 /* 66 * Limit the number of BSS entries stored in mac80211. Each one is 67 * a bit over 4k at most, so this limits to roughly 4-5M of memory. 68 * If somebody wants to really attack this though, they'd likely 69 * use small beacons, and only one type of frame, limiting each of 70 * the entries to a much smaller size (in order to generate more 71 * entries in total, so overhead is bigger.) 72 */ 73 static int bss_entries_limit = 1000; 74 module_param(bss_entries_limit, int, 0644); 75 MODULE_PARM_DESC(bss_entries_limit, 76 "limit to number of scan BSS entries (per wiphy, default 1000)"); 77 78 #define IEEE80211_SCAN_RESULT_EXPIRE (30 * HZ) 79 80 static void bss_free(struct cfg80211_internal_bss *bss) 81 { 82 struct cfg80211_bss_ies *ies; 83 84 if (WARN_ON(atomic_read(&bss->hold))) 85 return; 86 87 ies = (void *)rcu_access_pointer(bss->pub.beacon_ies); 88 if (ies && !bss->pub.hidden_beacon_bss) 89 kfree_rcu(ies, rcu_head); 90 ies = (void *)rcu_access_pointer(bss->pub.proberesp_ies); 91 if (ies) 92 kfree_rcu(ies, rcu_head); 93 94 /* 95 * This happens when the module is removed, it doesn't 96 * really matter any more save for completeness 97 */ 98 if (!list_empty(&bss->hidden_list)) 99 list_del(&bss->hidden_list); 100 101 kfree(bss); 102 } 103 104 static inline void bss_ref_get(struct cfg80211_registered_device *rdev, 105 struct cfg80211_internal_bss *bss) 106 { 107 lockdep_assert_held(&rdev->bss_lock); 108 109 bss->refcount++; 110 111 if (bss->pub.hidden_beacon_bss) 112 bss_from_pub(bss->pub.hidden_beacon_bss)->refcount++; 113 114 if (bss->pub.transmitted_bss) 115 bss_from_pub(bss->pub.transmitted_bss)->refcount++; 116 } 117 118 static inline void bss_ref_put(struct cfg80211_registered_device *rdev, 119 struct cfg80211_internal_bss *bss) 120 { 121 lockdep_assert_held(&rdev->bss_lock); 122 123 if (bss->pub.hidden_beacon_bss) { 124 struct cfg80211_internal_bss *hbss; 125 126 hbss = bss_from_pub(bss->pub.hidden_beacon_bss); 127 hbss->refcount--; 128 if (hbss->refcount == 0) 129 bss_free(hbss); 130 } 131 132 if (bss->pub.transmitted_bss) { 133 struct cfg80211_internal_bss *tbss; 134 135 tbss = bss_from_pub(bss->pub.transmitted_bss); 136 tbss->refcount--; 137 if (tbss->refcount == 0) 138 bss_free(tbss); 139 } 140 141 bss->refcount--; 142 if (bss->refcount == 0) 143 bss_free(bss); 144 } 145 146 static bool __cfg80211_unlink_bss(struct cfg80211_registered_device *rdev, 147 struct cfg80211_internal_bss *bss) 148 { 149 lockdep_assert_held(&rdev->bss_lock); 150 151 if (!list_empty(&bss->hidden_list)) { 152 /* 153 * don't remove the beacon entry if it has 154 * probe responses associated with it 155 */ 156 if (!bss->pub.hidden_beacon_bss) 157 return false; 158 /* 159 * if it's a probe response entry break its 160 * link to the other entries in the group 161 */ 162 list_del_init(&bss->hidden_list); 163 } 164 165 list_del_init(&bss->list); 166 list_del_init(&bss->pub.nontrans_list); 167 rb_erase(&bss->rbn, &rdev->bss_tree); 168 rdev->bss_entries--; 169 WARN_ONCE((rdev->bss_entries == 0) ^ list_empty(&rdev->bss_list), 170 "rdev bss entries[%d]/list[empty:%d] corruption\n", 171 rdev->bss_entries, list_empty(&rdev->bss_list)); 172 bss_ref_put(rdev, bss); 173 return true; 174 } 175 176 bool cfg80211_is_element_inherited(const struct element *elem, 177 const struct element *non_inherit_elem) 178 { 179 u8 id_len, ext_id_len, i, loop_len, id; 180 const u8 *list; 181 182 if (elem->id == WLAN_EID_MULTIPLE_BSSID) 183 return false; 184 185 if (elem->id == WLAN_EID_EXTENSION && elem->datalen > 1 && 186 elem->data[0] == WLAN_EID_EXT_EHT_MULTI_LINK) 187 return false; 188 189 if (!non_inherit_elem || non_inherit_elem->datalen < 2) 190 return true; 191 192 /* 193 * non inheritance element format is: 194 * ext ID (56) | IDs list len | list | extension IDs list len | list 195 * Both lists are optional. Both lengths are mandatory. 196 * This means valid length is: 197 * elem_len = 1 (extension ID) + 2 (list len fields) + list lengths 198 */ 199 id_len = non_inherit_elem->data[1]; 200 if (non_inherit_elem->datalen < 3 + id_len) 201 return true; 202 203 ext_id_len = non_inherit_elem->data[2 + id_len]; 204 if (non_inherit_elem->datalen < 3 + id_len + ext_id_len) 205 return true; 206 207 if (elem->id == WLAN_EID_EXTENSION) { 208 if (!ext_id_len) 209 return true; 210 loop_len = ext_id_len; 211 list = &non_inherit_elem->data[3 + id_len]; 212 id = elem->data[0]; 213 } else { 214 if (!id_len) 215 return true; 216 loop_len = id_len; 217 list = &non_inherit_elem->data[2]; 218 id = elem->id; 219 } 220 221 for (i = 0; i < loop_len; i++) { 222 if (list[i] == id) 223 return false; 224 } 225 226 return true; 227 } 228 EXPORT_SYMBOL(cfg80211_is_element_inherited); 229 230 static size_t cfg80211_copy_elem_with_frags(const struct element *elem, 231 const u8 *ie, size_t ie_len, 232 u8 **pos, u8 *buf, size_t buf_len) 233 { 234 if (WARN_ON((u8 *)elem < ie || elem->data > ie + ie_len || 235 elem->data + elem->datalen > ie + ie_len)) 236 return 0; 237 238 if (elem->datalen + 2 > buf + buf_len - *pos) 239 return 0; 240 241 memcpy(*pos, elem, elem->datalen + 2); 242 *pos += elem->datalen + 2; 243 244 /* Finish if it is not fragmented */ 245 if (elem->datalen != 255) 246 return *pos - buf; 247 248 ie_len = ie + ie_len - elem->data - elem->datalen; 249 ie = (const u8 *)elem->data + elem->datalen; 250 251 for_each_element(elem, ie, ie_len) { 252 if (elem->id != WLAN_EID_FRAGMENT) 253 break; 254 255 if (elem->datalen + 2 > buf + buf_len - *pos) 256 return 0; 257 258 memcpy(*pos, elem, elem->datalen + 2); 259 *pos += elem->datalen + 2; 260 261 if (elem->datalen != 255) 262 break; 263 } 264 265 return *pos - buf; 266 } 267 268 VISIBLE_IF_CFG80211_KUNIT size_t 269 cfg80211_gen_new_ie(const u8 *ie, size_t ielen, 270 const u8 *subie, size_t subie_len, 271 u8 *new_ie, size_t new_ie_len) 272 { 273 const struct element *non_inherit_elem, *parent, *sub; 274 u8 *pos = new_ie; 275 u8 id, ext_id; 276 unsigned int match_len; 277 278 non_inherit_elem = cfg80211_find_ext_elem(WLAN_EID_EXT_NON_INHERITANCE, 279 subie, subie_len); 280 281 /* We copy the elements one by one from the parent to the generated 282 * elements. 283 * If they are not inherited (included in subie or in the non 284 * inheritance element), then we copy all occurrences the first time 285 * we see this element type. 286 */ 287 for_each_element(parent, ie, ielen) { 288 if (parent->id == WLAN_EID_FRAGMENT) 289 continue; 290 291 if (parent->id == WLAN_EID_EXTENSION) { 292 if (parent->datalen < 1) 293 continue; 294 295 id = WLAN_EID_EXTENSION; 296 ext_id = parent->data[0]; 297 match_len = 1; 298 } else { 299 id = parent->id; 300 match_len = 0; 301 } 302 303 /* Find first occurrence in subie */ 304 sub = cfg80211_find_elem_match(id, subie, subie_len, 305 &ext_id, match_len, 0); 306 307 /* Copy from parent if not in subie and inherited */ 308 if (!sub && 309 cfg80211_is_element_inherited(parent, non_inherit_elem)) { 310 if (!cfg80211_copy_elem_with_frags(parent, 311 ie, ielen, 312 &pos, new_ie, 313 new_ie_len)) 314 return 0; 315 316 continue; 317 } 318 319 /* Already copied if an earlier element had the same type */ 320 if (cfg80211_find_elem_match(id, ie, (u8 *)parent - ie, 321 &ext_id, match_len, 0)) 322 continue; 323 324 /* Not inheriting, copy all similar elements from subie */ 325 while (sub) { 326 if (!cfg80211_copy_elem_with_frags(sub, 327 subie, subie_len, 328 &pos, new_ie, 329 new_ie_len)) 330 return 0; 331 332 sub = cfg80211_find_elem_match(id, 333 sub->data + sub->datalen, 334 subie_len + subie - 335 (sub->data + 336 sub->datalen), 337 &ext_id, match_len, 0); 338 } 339 } 340 341 /* The above misses elements that are included in subie but not in the 342 * parent, so do a pass over subie and append those. 343 * Skip the non-tx BSSID caps and non-inheritance element. 344 */ 345 for_each_element(sub, subie, subie_len) { 346 if (sub->id == WLAN_EID_NON_TX_BSSID_CAP) 347 continue; 348 349 if (sub->id == WLAN_EID_FRAGMENT) 350 continue; 351 352 if (sub->id == WLAN_EID_EXTENSION) { 353 if (sub->datalen < 1) 354 continue; 355 356 id = WLAN_EID_EXTENSION; 357 ext_id = sub->data[0]; 358 match_len = 1; 359 360 if (ext_id == WLAN_EID_EXT_NON_INHERITANCE) 361 continue; 362 } else { 363 id = sub->id; 364 match_len = 0; 365 } 366 367 /* Processed if one was included in the parent */ 368 if (cfg80211_find_elem_match(id, ie, ielen, 369 &ext_id, match_len, 0)) 370 continue; 371 372 if (!cfg80211_copy_elem_with_frags(sub, subie, subie_len, 373 &pos, new_ie, new_ie_len)) 374 return 0; 375 } 376 377 return pos - new_ie; 378 } 379 EXPORT_SYMBOL_IF_CFG80211_KUNIT(cfg80211_gen_new_ie); 380 381 static bool is_bss(struct cfg80211_bss *a, const u8 *bssid, 382 const u8 *ssid, size_t ssid_len) 383 { 384 const struct cfg80211_bss_ies *ies; 385 const struct element *ssid_elem; 386 387 if (bssid && !ether_addr_equal(a->bssid, bssid)) 388 return false; 389 390 if (!ssid) 391 return true; 392 393 ies = rcu_access_pointer(a->ies); 394 if (!ies) 395 return false; 396 ssid_elem = cfg80211_find_elem(WLAN_EID_SSID, ies->data, ies->len); 397 if (!ssid_elem) 398 return false; 399 if (ssid_elem->datalen != ssid_len) 400 return false; 401 return memcmp(ssid_elem->data, ssid, ssid_len) == 0; 402 } 403 404 static int 405 cfg80211_add_nontrans_list(struct cfg80211_bss *trans_bss, 406 struct cfg80211_bss *nontrans_bss) 407 { 408 const struct element *ssid_elem; 409 struct cfg80211_bss *bss = NULL; 410 411 rcu_read_lock(); 412 ssid_elem = ieee80211_bss_get_elem(nontrans_bss, WLAN_EID_SSID); 413 if (!ssid_elem) { 414 rcu_read_unlock(); 415 return -EINVAL; 416 } 417 418 /* check if nontrans_bss is in the list */ 419 list_for_each_entry(bss, &trans_bss->nontrans_list, nontrans_list) { 420 if (is_bss(bss, nontrans_bss->bssid, ssid_elem->data, 421 ssid_elem->datalen)) { 422 rcu_read_unlock(); 423 return 0; 424 } 425 } 426 427 rcu_read_unlock(); 428 429 /* 430 * This is a bit weird - it's not on the list, but already on another 431 * one! The only way that could happen is if there's some BSSID/SSID 432 * shared by multiple APs in their multi-BSSID profiles, potentially 433 * with hidden SSID mixed in ... ignore it. 434 */ 435 if (!list_empty(&nontrans_bss->nontrans_list)) 436 return -EINVAL; 437 438 /* add to the list */ 439 list_add_tail(&nontrans_bss->nontrans_list, &trans_bss->nontrans_list); 440 return 0; 441 } 442 443 static void __cfg80211_bss_expire(struct cfg80211_registered_device *rdev, 444 unsigned long expire_time) 445 { 446 struct cfg80211_internal_bss *bss, *tmp; 447 bool expired = false; 448 449 lockdep_assert_held(&rdev->bss_lock); 450 451 list_for_each_entry_safe(bss, tmp, &rdev->bss_list, list) { 452 if (atomic_read(&bss->hold)) 453 continue; 454 if (!time_after(expire_time, bss->ts)) 455 continue; 456 457 if (__cfg80211_unlink_bss(rdev, bss)) 458 expired = true; 459 } 460 461 if (expired) 462 rdev->bss_generation++; 463 } 464 465 static bool cfg80211_bss_expire_oldest(struct cfg80211_registered_device *rdev) 466 { 467 struct cfg80211_internal_bss *bss, *oldest = NULL; 468 bool ret; 469 470 lockdep_assert_held(&rdev->bss_lock); 471 472 list_for_each_entry(bss, &rdev->bss_list, list) { 473 if (atomic_read(&bss->hold)) 474 continue; 475 476 if (!list_empty(&bss->hidden_list) && 477 !bss->pub.hidden_beacon_bss) 478 continue; 479 480 if (oldest && time_before(oldest->ts, bss->ts)) 481 continue; 482 oldest = bss; 483 } 484 485 if (WARN_ON(!oldest)) 486 return false; 487 488 /* 489 * The callers make sure to increase rdev->bss_generation if anything 490 * gets removed (and a new entry added), so there's no need to also do 491 * it here. 492 */ 493 494 ret = __cfg80211_unlink_bss(rdev, oldest); 495 WARN_ON(!ret); 496 return ret; 497 } 498 499 static u8 cfg80211_parse_bss_param(u8 data, 500 struct cfg80211_colocated_ap *coloc_ap) 501 { 502 coloc_ap->oct_recommended = 503 u8_get_bits(data, IEEE80211_RNR_TBTT_PARAMS_OCT_RECOMMENDED); 504 coloc_ap->same_ssid = 505 u8_get_bits(data, IEEE80211_RNR_TBTT_PARAMS_SAME_SSID); 506 coloc_ap->multi_bss = 507 u8_get_bits(data, IEEE80211_RNR_TBTT_PARAMS_MULTI_BSSID); 508 coloc_ap->transmitted_bssid = 509 u8_get_bits(data, IEEE80211_RNR_TBTT_PARAMS_TRANSMITTED_BSSID); 510 coloc_ap->unsolicited_probe = 511 u8_get_bits(data, IEEE80211_RNR_TBTT_PARAMS_PROBE_ACTIVE); 512 coloc_ap->colocated_ess = 513 u8_get_bits(data, IEEE80211_RNR_TBTT_PARAMS_COLOC_ESS); 514 515 return u8_get_bits(data, IEEE80211_RNR_TBTT_PARAMS_COLOC_AP); 516 } 517 518 static int cfg80211_calc_short_ssid(const struct cfg80211_bss_ies *ies, 519 const struct element **elem, u32 *s_ssid) 520 { 521 522 *elem = cfg80211_find_elem(WLAN_EID_SSID, ies->data, ies->len); 523 if (!*elem || (*elem)->datalen > IEEE80211_MAX_SSID_LEN) 524 return -EINVAL; 525 526 *s_ssid = ~crc32_le(~0, (*elem)->data, (*elem)->datalen); 527 return 0; 528 } 529 530 VISIBLE_IF_CFG80211_KUNIT void 531 cfg80211_free_coloc_ap_list(struct list_head *coloc_ap_list) 532 { 533 struct cfg80211_colocated_ap *ap, *tmp_ap; 534 535 list_for_each_entry_safe(ap, tmp_ap, coloc_ap_list, list) { 536 list_del(&ap->list); 537 kfree(ap); 538 } 539 } 540 EXPORT_SYMBOL_IF_CFG80211_KUNIT(cfg80211_free_coloc_ap_list); 541 542 static int cfg80211_parse_ap_info(struct cfg80211_colocated_ap *entry, 543 const u8 *pos, u8 length, 544 const struct element *ssid_elem, 545 u32 s_ssid_tmp) 546 { 547 u8 bss_params; 548 549 entry->psd_20 = IEEE80211_RNR_TBTT_PARAMS_PSD_RESERVED; 550 551 /* The length is already verified by the caller to contain bss_params */ 552 if (length > sizeof(struct ieee80211_tbtt_info_7_8_9)) { 553 struct ieee80211_tbtt_info_ge_11 *tbtt_info = (void *)pos; 554 555 memcpy(entry->bssid, tbtt_info->bssid, ETH_ALEN); 556 entry->short_ssid = le32_to_cpu(tbtt_info->short_ssid); 557 entry->short_ssid_valid = true; 558 559 bss_params = tbtt_info->bss_params; 560 561 /* Ignore disabled links */ 562 if (length >= offsetofend(typeof(*tbtt_info), mld_params)) { 563 if (le16_get_bits(tbtt_info->mld_params.params, 564 IEEE80211_RNR_MLD_PARAMS_DISABLED_LINK)) 565 return -EINVAL; 566 } 567 568 if (length >= offsetofend(struct ieee80211_tbtt_info_ge_11, 569 psd_20)) 570 entry->psd_20 = tbtt_info->psd_20; 571 } else { 572 struct ieee80211_tbtt_info_7_8_9 *tbtt_info = (void *)pos; 573 574 memcpy(entry->bssid, tbtt_info->bssid, ETH_ALEN); 575 576 bss_params = tbtt_info->bss_params; 577 578 if (length == offsetofend(struct ieee80211_tbtt_info_7_8_9, 579 psd_20)) 580 entry->psd_20 = tbtt_info->psd_20; 581 } 582 583 /* ignore entries with invalid BSSID */ 584 if (!is_valid_ether_addr(entry->bssid)) 585 return -EINVAL; 586 587 /* skip non colocated APs */ 588 if (!cfg80211_parse_bss_param(bss_params, entry)) 589 return -EINVAL; 590 591 /* no information about the short ssid. Consider the entry valid 592 * for now. It would later be dropped in case there are explicit 593 * SSIDs that need to be matched 594 */ 595 if (!entry->same_ssid && !entry->short_ssid_valid) 596 return 0; 597 598 if (entry->same_ssid) { 599 entry->short_ssid = s_ssid_tmp; 600 entry->short_ssid_valid = true; 601 602 /* 603 * This is safe because we validate datalen in 604 * cfg80211_parse_colocated_ap(), before calling this 605 * function. 606 */ 607 memcpy(&entry->ssid, &ssid_elem->data, ssid_elem->datalen); 608 entry->ssid_len = ssid_elem->datalen; 609 } 610 611 return 0; 612 } 613 614 VISIBLE_IF_CFG80211_KUNIT int 615 cfg80211_parse_colocated_ap(const struct cfg80211_bss_ies *ies, 616 struct list_head *list) 617 { 618 struct ieee80211_neighbor_ap_info *ap_info; 619 const struct element *elem, *ssid_elem; 620 const u8 *pos, *end; 621 u32 s_ssid_tmp; 622 int n_coloc = 0, ret; 623 LIST_HEAD(ap_list); 624 625 ret = cfg80211_calc_short_ssid(ies, &ssid_elem, &s_ssid_tmp); 626 if (ret) 627 return 0; 628 629 for_each_element_id(elem, WLAN_EID_REDUCED_NEIGHBOR_REPORT, 630 ies->data, ies->len) { 631 pos = elem->data; 632 end = elem->data + elem->datalen; 633 634 /* RNR IE may contain more than one NEIGHBOR_AP_INFO */ 635 while (pos + sizeof(*ap_info) <= end) { 636 enum nl80211_band band; 637 int freq; 638 u8 length, i, count; 639 640 ap_info = (void *)pos; 641 count = u8_get_bits(ap_info->tbtt_info_hdr, 642 IEEE80211_AP_INFO_TBTT_HDR_COUNT) + 1; 643 length = ap_info->tbtt_info_len; 644 645 pos += sizeof(*ap_info); 646 647 if (!ieee80211_operating_class_to_band(ap_info->op_class, 648 &band)) 649 break; 650 651 freq = ieee80211_channel_to_frequency(ap_info->channel, 652 band); 653 654 if (end - pos < count * length) 655 break; 656 657 if (u8_get_bits(ap_info->tbtt_info_hdr, 658 IEEE80211_AP_INFO_TBTT_HDR_TYPE) != 659 IEEE80211_TBTT_INFO_TYPE_TBTT) { 660 pos += count * length; 661 continue; 662 } 663 664 /* TBTT info must include bss param + BSSID + 665 * (short SSID or same_ssid bit to be set). 666 * ignore other options, and move to the 667 * next AP info 668 */ 669 if (band != NL80211_BAND_6GHZ || 670 !(length == offsetofend(struct ieee80211_tbtt_info_7_8_9, 671 bss_params) || 672 length == sizeof(struct ieee80211_tbtt_info_7_8_9) || 673 length >= offsetofend(struct ieee80211_tbtt_info_ge_11, 674 bss_params))) { 675 pos += count * length; 676 continue; 677 } 678 679 for (i = 0; i < count; i++) { 680 struct cfg80211_colocated_ap *entry; 681 682 entry = kzalloc(sizeof(*entry) + IEEE80211_MAX_SSID_LEN, 683 GFP_ATOMIC); 684 685 if (!entry) 686 goto error; 687 688 entry->center_freq = freq; 689 690 if (!cfg80211_parse_ap_info(entry, pos, length, 691 ssid_elem, 692 s_ssid_tmp)) { 693 n_coloc++; 694 list_add_tail(&entry->list, &ap_list); 695 } else { 696 kfree(entry); 697 } 698 699 pos += length; 700 } 701 } 702 703 error: 704 if (pos != end) { 705 cfg80211_free_coloc_ap_list(&ap_list); 706 return 0; 707 } 708 } 709 710 list_splice_tail(&ap_list, list); 711 return n_coloc; 712 } 713 EXPORT_SYMBOL_IF_CFG80211_KUNIT(cfg80211_parse_colocated_ap); 714 715 static void cfg80211_scan_req_add_chan(struct cfg80211_scan_request *request, 716 struct ieee80211_channel *chan, 717 bool add_to_6ghz) 718 { 719 int i; 720 u32 n_channels = request->n_channels; 721 struct cfg80211_scan_6ghz_params *params = 722 &request->scan_6ghz_params[request->n_6ghz_params]; 723 724 for (i = 0; i < n_channels; i++) { 725 if (request->channels[i] == chan) { 726 if (add_to_6ghz) 727 params->channel_idx = i; 728 return; 729 } 730 } 731 732 request->channels[n_channels] = chan; 733 if (add_to_6ghz) 734 request->scan_6ghz_params[request->n_6ghz_params].channel_idx = 735 n_channels; 736 737 request->n_channels++; 738 } 739 740 static bool cfg80211_find_ssid_match(struct cfg80211_colocated_ap *ap, 741 struct cfg80211_scan_request *request) 742 { 743 int i; 744 u32 s_ssid; 745 746 for (i = 0; i < request->n_ssids; i++) { 747 /* wildcard ssid in the scan request */ 748 if (!request->ssids[i].ssid_len) { 749 if (ap->multi_bss && !ap->transmitted_bssid) 750 continue; 751 752 return true; 753 } 754 755 if (ap->ssid_len && 756 ap->ssid_len == request->ssids[i].ssid_len) { 757 if (!memcmp(request->ssids[i].ssid, ap->ssid, 758 ap->ssid_len)) 759 return true; 760 } else if (ap->short_ssid_valid) { 761 s_ssid = ~crc32_le(~0, request->ssids[i].ssid, 762 request->ssids[i].ssid_len); 763 764 if (ap->short_ssid == s_ssid) 765 return true; 766 } 767 } 768 769 return false; 770 } 771 772 static int cfg80211_scan_6ghz(struct cfg80211_registered_device *rdev) 773 { 774 u8 i; 775 struct cfg80211_colocated_ap *ap; 776 int n_channels, count = 0, err; 777 struct cfg80211_scan_request *request, *rdev_req = rdev->scan_req; 778 LIST_HEAD(coloc_ap_list); 779 bool need_scan_psc = true; 780 const struct ieee80211_sband_iftype_data *iftd; 781 782 rdev_req->scan_6ghz = true; 783 784 if (!rdev->wiphy.bands[NL80211_BAND_6GHZ]) 785 return -EOPNOTSUPP; 786 787 iftd = ieee80211_get_sband_iftype_data(rdev->wiphy.bands[NL80211_BAND_6GHZ], 788 rdev_req->wdev->iftype); 789 if (!iftd || !iftd->he_cap.has_he) 790 return -EOPNOTSUPP; 791 792 n_channels = rdev->wiphy.bands[NL80211_BAND_6GHZ]->n_channels; 793 794 if (rdev_req->flags & NL80211_SCAN_FLAG_COLOCATED_6GHZ) { 795 struct cfg80211_internal_bss *intbss; 796 797 spin_lock_bh(&rdev->bss_lock); 798 list_for_each_entry(intbss, &rdev->bss_list, list) { 799 struct cfg80211_bss *res = &intbss->pub; 800 const struct cfg80211_bss_ies *ies; 801 const struct element *ssid_elem; 802 struct cfg80211_colocated_ap *entry; 803 u32 s_ssid_tmp; 804 int ret; 805 806 ies = rcu_access_pointer(res->ies); 807 count += cfg80211_parse_colocated_ap(ies, 808 &coloc_ap_list); 809 810 /* In case the scan request specified a specific BSSID 811 * and the BSS is found and operating on 6GHz band then 812 * add this AP to the collocated APs list. 813 * This is relevant for ML probe requests when the lower 814 * band APs have not been discovered. 815 */ 816 if (is_broadcast_ether_addr(rdev_req->bssid) || 817 !ether_addr_equal(rdev_req->bssid, res->bssid) || 818 res->channel->band != NL80211_BAND_6GHZ) 819 continue; 820 821 ret = cfg80211_calc_short_ssid(ies, &ssid_elem, 822 &s_ssid_tmp); 823 if (ret) 824 continue; 825 826 entry = kzalloc(sizeof(*entry) + IEEE80211_MAX_SSID_LEN, 827 GFP_ATOMIC); 828 829 if (!entry) 830 continue; 831 832 memcpy(entry->bssid, res->bssid, ETH_ALEN); 833 entry->short_ssid = s_ssid_tmp; 834 memcpy(entry->ssid, ssid_elem->data, 835 ssid_elem->datalen); 836 entry->ssid_len = ssid_elem->datalen; 837 entry->short_ssid_valid = true; 838 entry->center_freq = res->channel->center_freq; 839 840 list_add_tail(&entry->list, &coloc_ap_list); 841 count++; 842 } 843 spin_unlock_bh(&rdev->bss_lock); 844 } 845 846 request = kzalloc(struct_size(request, channels, n_channels) + 847 sizeof(*request->scan_6ghz_params) * count + 848 sizeof(*request->ssids) * rdev_req->n_ssids, 849 GFP_KERNEL); 850 if (!request) { 851 cfg80211_free_coloc_ap_list(&coloc_ap_list); 852 return -ENOMEM; 853 } 854 855 *request = *rdev_req; 856 request->n_channels = 0; 857 request->scan_6ghz_params = 858 (void *)&request->channels[n_channels]; 859 860 /* 861 * PSC channels should not be scanned in case of direct scan with 1 SSID 862 * and at least one of the reported co-located APs with same SSID 863 * indicating that all APs in the same ESS are co-located 864 */ 865 if (count && request->n_ssids == 1 && request->ssids[0].ssid_len) { 866 list_for_each_entry(ap, &coloc_ap_list, list) { 867 if (ap->colocated_ess && 868 cfg80211_find_ssid_match(ap, request)) { 869 need_scan_psc = false; 870 break; 871 } 872 } 873 } 874 875 /* 876 * add to the scan request the channels that need to be scanned 877 * regardless of the collocated APs (PSC channels or all channels 878 * in case that NL80211_SCAN_FLAG_COLOCATED_6GHZ is not set) 879 */ 880 for (i = 0; i < rdev_req->n_channels; i++) { 881 if (rdev_req->channels[i]->band == NL80211_BAND_6GHZ && 882 ((need_scan_psc && 883 cfg80211_channel_is_psc(rdev_req->channels[i])) || 884 !(rdev_req->flags & NL80211_SCAN_FLAG_COLOCATED_6GHZ))) { 885 cfg80211_scan_req_add_chan(request, 886 rdev_req->channels[i], 887 false); 888 } 889 } 890 891 if (!(rdev_req->flags & NL80211_SCAN_FLAG_COLOCATED_6GHZ)) 892 goto skip; 893 894 list_for_each_entry(ap, &coloc_ap_list, list) { 895 bool found = false; 896 struct cfg80211_scan_6ghz_params *scan_6ghz_params = 897 &request->scan_6ghz_params[request->n_6ghz_params]; 898 struct ieee80211_channel *chan = 899 ieee80211_get_channel(&rdev->wiphy, ap->center_freq); 900 901 if (!chan || chan->flags & IEEE80211_CHAN_DISABLED) 902 continue; 903 904 for (i = 0; i < rdev_req->n_channels; i++) { 905 if (rdev_req->channels[i] == chan) 906 found = true; 907 } 908 909 if (!found) 910 continue; 911 912 if (request->n_ssids > 0 && 913 !cfg80211_find_ssid_match(ap, request)) 914 continue; 915 916 if (!is_broadcast_ether_addr(request->bssid) && 917 !ether_addr_equal(request->bssid, ap->bssid)) 918 continue; 919 920 if (!request->n_ssids && ap->multi_bss && !ap->transmitted_bssid) 921 continue; 922 923 cfg80211_scan_req_add_chan(request, chan, true); 924 memcpy(scan_6ghz_params->bssid, ap->bssid, ETH_ALEN); 925 scan_6ghz_params->short_ssid = ap->short_ssid; 926 scan_6ghz_params->short_ssid_valid = ap->short_ssid_valid; 927 scan_6ghz_params->unsolicited_probe = ap->unsolicited_probe; 928 scan_6ghz_params->psd_20 = ap->psd_20; 929 930 /* 931 * If a PSC channel is added to the scan and 'need_scan_psc' is 932 * set to false, then all the APs that the scan logic is 933 * interested with on the channel are collocated and thus there 934 * is no need to perform the initial PSC channel listen. 935 */ 936 if (cfg80211_channel_is_psc(chan) && !need_scan_psc) 937 scan_6ghz_params->psc_no_listen = true; 938 939 request->n_6ghz_params++; 940 } 941 942 skip: 943 cfg80211_free_coloc_ap_list(&coloc_ap_list); 944 945 if (request->n_channels) { 946 struct cfg80211_scan_request *old = rdev->int_scan_req; 947 rdev->int_scan_req = request; 948 949 /* 950 * Add the ssids from the parent scan request to the new scan 951 * request, so the driver would be able to use them in its 952 * probe requests to discover hidden APs on PSC channels. 953 */ 954 request->ssids = (void *)&request->channels[request->n_channels]; 955 request->n_ssids = rdev_req->n_ssids; 956 memcpy(request->ssids, rdev_req->ssids, sizeof(*request->ssids) * 957 request->n_ssids); 958 959 /* 960 * If this scan follows a previous scan, save the scan start 961 * info from the first part of the scan 962 */ 963 if (old) 964 rdev->int_scan_req->info = old->info; 965 966 err = rdev_scan(rdev, request); 967 if (err) { 968 rdev->int_scan_req = old; 969 kfree(request); 970 } else { 971 kfree(old); 972 } 973 974 return err; 975 } 976 977 kfree(request); 978 return -EINVAL; 979 } 980 981 int cfg80211_scan(struct cfg80211_registered_device *rdev) 982 { 983 struct cfg80211_scan_request *request; 984 struct cfg80211_scan_request *rdev_req = rdev->scan_req; 985 u32 n_channels = 0, idx, i; 986 987 if (!(rdev->wiphy.flags & WIPHY_FLAG_SPLIT_SCAN_6GHZ)) 988 return rdev_scan(rdev, rdev_req); 989 990 for (i = 0; i < rdev_req->n_channels; i++) { 991 if (rdev_req->channels[i]->band != NL80211_BAND_6GHZ) 992 n_channels++; 993 } 994 995 if (!n_channels) 996 return cfg80211_scan_6ghz(rdev); 997 998 request = kzalloc(struct_size(request, channels, n_channels), 999 GFP_KERNEL); 1000 if (!request) 1001 return -ENOMEM; 1002 1003 *request = *rdev_req; 1004 request->n_channels = n_channels; 1005 1006 for (i = idx = 0; i < rdev_req->n_channels; i++) { 1007 if (rdev_req->channels[i]->band != NL80211_BAND_6GHZ) 1008 request->channels[idx++] = rdev_req->channels[i]; 1009 } 1010 1011 rdev_req->scan_6ghz = false; 1012 rdev->int_scan_req = request; 1013 return rdev_scan(rdev, request); 1014 } 1015 1016 void ___cfg80211_scan_done(struct cfg80211_registered_device *rdev, 1017 bool send_message) 1018 { 1019 struct cfg80211_scan_request *request, *rdev_req; 1020 struct wireless_dev *wdev; 1021 struct sk_buff *msg; 1022 #ifdef CONFIG_CFG80211_WEXT 1023 union iwreq_data wrqu; 1024 #endif 1025 1026 lockdep_assert_held(&rdev->wiphy.mtx); 1027 1028 if (rdev->scan_msg) { 1029 nl80211_send_scan_msg(rdev, rdev->scan_msg); 1030 rdev->scan_msg = NULL; 1031 return; 1032 } 1033 1034 rdev_req = rdev->scan_req; 1035 if (!rdev_req) 1036 return; 1037 1038 wdev = rdev_req->wdev; 1039 request = rdev->int_scan_req ? rdev->int_scan_req : rdev_req; 1040 1041 if (wdev_running(wdev) && 1042 (rdev->wiphy.flags & WIPHY_FLAG_SPLIT_SCAN_6GHZ) && 1043 !rdev_req->scan_6ghz && !request->info.aborted && 1044 !cfg80211_scan_6ghz(rdev)) 1045 return; 1046 1047 /* 1048 * This must be before sending the other events! 1049 * Otherwise, wpa_supplicant gets completely confused with 1050 * wext events. 1051 */ 1052 if (wdev->netdev) 1053 cfg80211_sme_scan_done(wdev->netdev); 1054 1055 if (!request->info.aborted && 1056 request->flags & NL80211_SCAN_FLAG_FLUSH) { 1057 /* flush entries from previous scans */ 1058 spin_lock_bh(&rdev->bss_lock); 1059 __cfg80211_bss_expire(rdev, request->scan_start); 1060 spin_unlock_bh(&rdev->bss_lock); 1061 } 1062 1063 msg = nl80211_build_scan_msg(rdev, wdev, request->info.aborted); 1064 1065 #ifdef CONFIG_CFG80211_WEXT 1066 if (wdev->netdev && !request->info.aborted) { 1067 memset(&wrqu, 0, sizeof(wrqu)); 1068 1069 wireless_send_event(wdev->netdev, SIOCGIWSCAN, &wrqu, NULL); 1070 } 1071 #endif 1072 1073 dev_put(wdev->netdev); 1074 1075 kfree(rdev->int_scan_req); 1076 rdev->int_scan_req = NULL; 1077 1078 kfree(rdev->scan_req); 1079 rdev->scan_req = NULL; 1080 1081 if (!send_message) 1082 rdev->scan_msg = msg; 1083 else 1084 nl80211_send_scan_msg(rdev, msg); 1085 } 1086 1087 void __cfg80211_scan_done(struct wiphy *wiphy, struct wiphy_work *wk) 1088 { 1089 ___cfg80211_scan_done(wiphy_to_rdev(wiphy), true); 1090 } 1091 1092 void cfg80211_scan_done(struct cfg80211_scan_request *request, 1093 struct cfg80211_scan_info *info) 1094 { 1095 struct cfg80211_scan_info old_info = request->info; 1096 1097 trace_cfg80211_scan_done(request, info); 1098 WARN_ON(request != wiphy_to_rdev(request->wiphy)->scan_req && 1099 request != wiphy_to_rdev(request->wiphy)->int_scan_req); 1100 1101 request->info = *info; 1102 1103 /* 1104 * In case the scan is split, the scan_start_tsf and tsf_bssid should 1105 * be of the first part. In such a case old_info.scan_start_tsf should 1106 * be non zero. 1107 */ 1108 if (request->scan_6ghz && old_info.scan_start_tsf) { 1109 request->info.scan_start_tsf = old_info.scan_start_tsf; 1110 memcpy(request->info.tsf_bssid, old_info.tsf_bssid, 1111 sizeof(request->info.tsf_bssid)); 1112 } 1113 1114 request->notified = true; 1115 wiphy_work_queue(request->wiphy, 1116 &wiphy_to_rdev(request->wiphy)->scan_done_wk); 1117 } 1118 EXPORT_SYMBOL(cfg80211_scan_done); 1119 1120 void cfg80211_add_sched_scan_req(struct cfg80211_registered_device *rdev, 1121 struct cfg80211_sched_scan_request *req) 1122 { 1123 lockdep_assert_held(&rdev->wiphy.mtx); 1124 1125 list_add_rcu(&req->list, &rdev->sched_scan_req_list); 1126 } 1127 1128 static void cfg80211_del_sched_scan_req(struct cfg80211_registered_device *rdev, 1129 struct cfg80211_sched_scan_request *req) 1130 { 1131 lockdep_assert_held(&rdev->wiphy.mtx); 1132 1133 list_del_rcu(&req->list); 1134 kfree_rcu(req, rcu_head); 1135 } 1136 1137 static struct cfg80211_sched_scan_request * 1138 cfg80211_find_sched_scan_req(struct cfg80211_registered_device *rdev, u64 reqid) 1139 { 1140 struct cfg80211_sched_scan_request *pos; 1141 1142 list_for_each_entry_rcu(pos, &rdev->sched_scan_req_list, list, 1143 lockdep_is_held(&rdev->wiphy.mtx)) { 1144 if (pos->reqid == reqid) 1145 return pos; 1146 } 1147 return NULL; 1148 } 1149 1150 /* 1151 * Determines if a scheduled scan request can be handled. When a legacy 1152 * scheduled scan is running no other scheduled scan is allowed regardless 1153 * whether the request is for legacy or multi-support scan. When a multi-support 1154 * scheduled scan is running a request for legacy scan is not allowed. In this 1155 * case a request for multi-support scan can be handled if resources are 1156 * available, ie. struct wiphy::max_sched_scan_reqs limit is not yet reached. 1157 */ 1158 int cfg80211_sched_scan_req_possible(struct cfg80211_registered_device *rdev, 1159 bool want_multi) 1160 { 1161 struct cfg80211_sched_scan_request *pos; 1162 int i = 0; 1163 1164 list_for_each_entry(pos, &rdev->sched_scan_req_list, list) { 1165 /* request id zero means legacy in progress */ 1166 if (!i && !pos->reqid) 1167 return -EINPROGRESS; 1168 i++; 1169 } 1170 1171 if (i) { 1172 /* no legacy allowed when multi request(s) are active */ 1173 if (!want_multi) 1174 return -EINPROGRESS; 1175 1176 /* resource limit reached */ 1177 if (i == rdev->wiphy.max_sched_scan_reqs) 1178 return -ENOSPC; 1179 } 1180 return 0; 1181 } 1182 1183 void cfg80211_sched_scan_results_wk(struct work_struct *work) 1184 { 1185 struct cfg80211_registered_device *rdev; 1186 struct cfg80211_sched_scan_request *req, *tmp; 1187 1188 rdev = container_of(work, struct cfg80211_registered_device, 1189 sched_scan_res_wk); 1190 1191 wiphy_lock(&rdev->wiphy); 1192 list_for_each_entry_safe(req, tmp, &rdev->sched_scan_req_list, list) { 1193 if (req->report_results) { 1194 req->report_results = false; 1195 if (req->flags & NL80211_SCAN_FLAG_FLUSH) { 1196 /* flush entries from previous scans */ 1197 spin_lock_bh(&rdev->bss_lock); 1198 __cfg80211_bss_expire(rdev, req->scan_start); 1199 spin_unlock_bh(&rdev->bss_lock); 1200 req->scan_start = jiffies; 1201 } 1202 nl80211_send_sched_scan(req, 1203 NL80211_CMD_SCHED_SCAN_RESULTS); 1204 } 1205 } 1206 wiphy_unlock(&rdev->wiphy); 1207 } 1208 1209 void cfg80211_sched_scan_results(struct wiphy *wiphy, u64 reqid) 1210 { 1211 struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy); 1212 struct cfg80211_sched_scan_request *request; 1213 1214 trace_cfg80211_sched_scan_results(wiphy, reqid); 1215 /* ignore if we're not scanning */ 1216 1217 rcu_read_lock(); 1218 request = cfg80211_find_sched_scan_req(rdev, reqid); 1219 if (request) { 1220 request->report_results = true; 1221 queue_work(cfg80211_wq, &rdev->sched_scan_res_wk); 1222 } 1223 rcu_read_unlock(); 1224 } 1225 EXPORT_SYMBOL(cfg80211_sched_scan_results); 1226 1227 void cfg80211_sched_scan_stopped_locked(struct wiphy *wiphy, u64 reqid) 1228 { 1229 struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy); 1230 1231 lockdep_assert_held(&wiphy->mtx); 1232 1233 trace_cfg80211_sched_scan_stopped(wiphy, reqid); 1234 1235 __cfg80211_stop_sched_scan(rdev, reqid, true); 1236 } 1237 EXPORT_SYMBOL(cfg80211_sched_scan_stopped_locked); 1238 1239 void cfg80211_sched_scan_stopped(struct wiphy *wiphy, u64 reqid) 1240 { 1241 wiphy_lock(wiphy); 1242 cfg80211_sched_scan_stopped_locked(wiphy, reqid); 1243 wiphy_unlock(wiphy); 1244 } 1245 EXPORT_SYMBOL(cfg80211_sched_scan_stopped); 1246 1247 int cfg80211_stop_sched_scan_req(struct cfg80211_registered_device *rdev, 1248 struct cfg80211_sched_scan_request *req, 1249 bool driver_initiated) 1250 { 1251 lockdep_assert_held(&rdev->wiphy.mtx); 1252 1253 if (!driver_initiated) { 1254 int err = rdev_sched_scan_stop(rdev, req->dev, req->reqid); 1255 if (err) 1256 return err; 1257 } 1258 1259 nl80211_send_sched_scan(req, NL80211_CMD_SCHED_SCAN_STOPPED); 1260 1261 cfg80211_del_sched_scan_req(rdev, req); 1262 1263 return 0; 1264 } 1265 1266 int __cfg80211_stop_sched_scan(struct cfg80211_registered_device *rdev, 1267 u64 reqid, bool driver_initiated) 1268 { 1269 struct cfg80211_sched_scan_request *sched_scan_req; 1270 1271 lockdep_assert_held(&rdev->wiphy.mtx); 1272 1273 sched_scan_req = cfg80211_find_sched_scan_req(rdev, reqid); 1274 if (!sched_scan_req) 1275 return -ENOENT; 1276 1277 return cfg80211_stop_sched_scan_req(rdev, sched_scan_req, 1278 driver_initiated); 1279 } 1280 1281 void cfg80211_bss_age(struct cfg80211_registered_device *rdev, 1282 unsigned long age_secs) 1283 { 1284 struct cfg80211_internal_bss *bss; 1285 unsigned long age_jiffies = msecs_to_jiffies(age_secs * MSEC_PER_SEC); 1286 1287 spin_lock_bh(&rdev->bss_lock); 1288 list_for_each_entry(bss, &rdev->bss_list, list) 1289 bss->ts -= age_jiffies; 1290 spin_unlock_bh(&rdev->bss_lock); 1291 } 1292 1293 void cfg80211_bss_expire(struct cfg80211_registered_device *rdev) 1294 { 1295 __cfg80211_bss_expire(rdev, jiffies - IEEE80211_SCAN_RESULT_EXPIRE); 1296 } 1297 1298 void cfg80211_bss_flush(struct wiphy *wiphy) 1299 { 1300 struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy); 1301 1302 spin_lock_bh(&rdev->bss_lock); 1303 __cfg80211_bss_expire(rdev, jiffies); 1304 spin_unlock_bh(&rdev->bss_lock); 1305 } 1306 EXPORT_SYMBOL(cfg80211_bss_flush); 1307 1308 const struct element * 1309 cfg80211_find_elem_match(u8 eid, const u8 *ies, unsigned int len, 1310 const u8 *match, unsigned int match_len, 1311 unsigned int match_offset) 1312 { 1313 const struct element *elem; 1314 1315 for_each_element_id(elem, eid, ies, len) { 1316 if (elem->datalen >= match_offset + match_len && 1317 !memcmp(elem->data + match_offset, match, match_len)) 1318 return elem; 1319 } 1320 1321 return NULL; 1322 } 1323 EXPORT_SYMBOL(cfg80211_find_elem_match); 1324 1325 const struct element *cfg80211_find_vendor_elem(unsigned int oui, int oui_type, 1326 const u8 *ies, 1327 unsigned int len) 1328 { 1329 const struct element *elem; 1330 u8 match[] = { oui >> 16, oui >> 8, oui, oui_type }; 1331 int match_len = (oui_type < 0) ? 3 : sizeof(match); 1332 1333 if (WARN_ON(oui_type > 0xff)) 1334 return NULL; 1335 1336 elem = cfg80211_find_elem_match(WLAN_EID_VENDOR_SPECIFIC, ies, len, 1337 match, match_len, 0); 1338 1339 if (!elem || elem->datalen < 4) 1340 return NULL; 1341 1342 return elem; 1343 } 1344 EXPORT_SYMBOL(cfg80211_find_vendor_elem); 1345 1346 /** 1347 * enum bss_compare_mode - BSS compare mode 1348 * @BSS_CMP_REGULAR: regular compare mode (for insertion and normal find) 1349 * @BSS_CMP_HIDE_ZLEN: find hidden SSID with zero-length mode 1350 * @BSS_CMP_HIDE_NUL: find hidden SSID with NUL-ed out mode 1351 */ 1352 enum bss_compare_mode { 1353 BSS_CMP_REGULAR, 1354 BSS_CMP_HIDE_ZLEN, 1355 BSS_CMP_HIDE_NUL, 1356 }; 1357 1358 static int cmp_bss(struct cfg80211_bss *a, 1359 struct cfg80211_bss *b, 1360 enum bss_compare_mode mode) 1361 { 1362 const struct cfg80211_bss_ies *a_ies, *b_ies; 1363 const u8 *ie1 = NULL; 1364 const u8 *ie2 = NULL; 1365 int i, r; 1366 1367 if (a->channel != b->channel) 1368 return (b->channel->center_freq * 1000 + b->channel->freq_offset) - 1369 (a->channel->center_freq * 1000 + a->channel->freq_offset); 1370 1371 a_ies = rcu_access_pointer(a->ies); 1372 if (!a_ies) 1373 return -1; 1374 b_ies = rcu_access_pointer(b->ies); 1375 if (!b_ies) 1376 return 1; 1377 1378 if (WLAN_CAPABILITY_IS_STA_BSS(a->capability)) 1379 ie1 = cfg80211_find_ie(WLAN_EID_MESH_ID, 1380 a_ies->data, a_ies->len); 1381 if (WLAN_CAPABILITY_IS_STA_BSS(b->capability)) 1382 ie2 = cfg80211_find_ie(WLAN_EID_MESH_ID, 1383 b_ies->data, b_ies->len); 1384 if (ie1 && ie2) { 1385 int mesh_id_cmp; 1386 1387 if (ie1[1] == ie2[1]) 1388 mesh_id_cmp = memcmp(ie1 + 2, ie2 + 2, ie1[1]); 1389 else 1390 mesh_id_cmp = ie2[1] - ie1[1]; 1391 1392 ie1 = cfg80211_find_ie(WLAN_EID_MESH_CONFIG, 1393 a_ies->data, a_ies->len); 1394 ie2 = cfg80211_find_ie(WLAN_EID_MESH_CONFIG, 1395 b_ies->data, b_ies->len); 1396 if (ie1 && ie2) { 1397 if (mesh_id_cmp) 1398 return mesh_id_cmp; 1399 if (ie1[1] != ie2[1]) 1400 return ie2[1] - ie1[1]; 1401 return memcmp(ie1 + 2, ie2 + 2, ie1[1]); 1402 } 1403 } 1404 1405 r = memcmp(a->bssid, b->bssid, sizeof(a->bssid)); 1406 if (r) 1407 return r; 1408 1409 ie1 = cfg80211_find_ie(WLAN_EID_SSID, a_ies->data, a_ies->len); 1410 ie2 = cfg80211_find_ie(WLAN_EID_SSID, b_ies->data, b_ies->len); 1411 1412 if (!ie1 && !ie2) 1413 return 0; 1414 1415 /* 1416 * Note that with "hide_ssid", the function returns a match if 1417 * the already-present BSS ("b") is a hidden SSID beacon for 1418 * the new BSS ("a"). 1419 */ 1420 1421 /* sort missing IE before (left of) present IE */ 1422 if (!ie1) 1423 return -1; 1424 if (!ie2) 1425 return 1; 1426 1427 switch (mode) { 1428 case BSS_CMP_HIDE_ZLEN: 1429 /* 1430 * In ZLEN mode we assume the BSS entry we're 1431 * looking for has a zero-length SSID. So if 1432 * the one we're looking at right now has that, 1433 * return 0. Otherwise, return the difference 1434 * in length, but since we're looking for the 1435 * 0-length it's really equivalent to returning 1436 * the length of the one we're looking at. 1437 * 1438 * No content comparison is needed as we assume 1439 * the content length is zero. 1440 */ 1441 return ie2[1]; 1442 case BSS_CMP_REGULAR: 1443 default: 1444 /* sort by length first, then by contents */ 1445 if (ie1[1] != ie2[1]) 1446 return ie2[1] - ie1[1]; 1447 return memcmp(ie1 + 2, ie2 + 2, ie1[1]); 1448 case BSS_CMP_HIDE_NUL: 1449 if (ie1[1] != ie2[1]) 1450 return ie2[1] - ie1[1]; 1451 /* this is equivalent to memcmp(zeroes, ie2 + 2, len) */ 1452 for (i = 0; i < ie2[1]; i++) 1453 if (ie2[i + 2]) 1454 return -1; 1455 return 0; 1456 } 1457 } 1458 1459 static bool cfg80211_bss_type_match(u16 capability, 1460 enum nl80211_band band, 1461 enum ieee80211_bss_type bss_type) 1462 { 1463 bool ret = true; 1464 u16 mask, val; 1465 1466 if (bss_type == IEEE80211_BSS_TYPE_ANY) 1467 return ret; 1468 1469 if (band == NL80211_BAND_60GHZ) { 1470 mask = WLAN_CAPABILITY_DMG_TYPE_MASK; 1471 switch (bss_type) { 1472 case IEEE80211_BSS_TYPE_ESS: 1473 val = WLAN_CAPABILITY_DMG_TYPE_AP; 1474 break; 1475 case IEEE80211_BSS_TYPE_PBSS: 1476 val = WLAN_CAPABILITY_DMG_TYPE_PBSS; 1477 break; 1478 case IEEE80211_BSS_TYPE_IBSS: 1479 val = WLAN_CAPABILITY_DMG_TYPE_IBSS; 1480 break; 1481 default: 1482 return false; 1483 } 1484 } else { 1485 mask = WLAN_CAPABILITY_ESS | WLAN_CAPABILITY_IBSS; 1486 switch (bss_type) { 1487 case IEEE80211_BSS_TYPE_ESS: 1488 val = WLAN_CAPABILITY_ESS; 1489 break; 1490 case IEEE80211_BSS_TYPE_IBSS: 1491 val = WLAN_CAPABILITY_IBSS; 1492 break; 1493 case IEEE80211_BSS_TYPE_MBSS: 1494 val = 0; 1495 break; 1496 default: 1497 return false; 1498 } 1499 } 1500 1501 ret = ((capability & mask) == val); 1502 return ret; 1503 } 1504 1505 /* Returned bss is reference counted and must be cleaned up appropriately. */ 1506 struct cfg80211_bss *__cfg80211_get_bss(struct wiphy *wiphy, 1507 struct ieee80211_channel *channel, 1508 const u8 *bssid, 1509 const u8 *ssid, size_t ssid_len, 1510 enum ieee80211_bss_type bss_type, 1511 enum ieee80211_privacy privacy, 1512 u32 use_for) 1513 { 1514 struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy); 1515 struct cfg80211_internal_bss *bss, *res = NULL; 1516 unsigned long now = jiffies; 1517 int bss_privacy; 1518 1519 trace_cfg80211_get_bss(wiphy, channel, bssid, ssid, ssid_len, bss_type, 1520 privacy); 1521 1522 spin_lock_bh(&rdev->bss_lock); 1523 1524 list_for_each_entry(bss, &rdev->bss_list, list) { 1525 if (!cfg80211_bss_type_match(bss->pub.capability, 1526 bss->pub.channel->band, bss_type)) 1527 continue; 1528 1529 bss_privacy = (bss->pub.capability & WLAN_CAPABILITY_PRIVACY); 1530 if ((privacy == IEEE80211_PRIVACY_ON && !bss_privacy) || 1531 (privacy == IEEE80211_PRIVACY_OFF && bss_privacy)) 1532 continue; 1533 if (channel && bss->pub.channel != channel) 1534 continue; 1535 if (!is_valid_ether_addr(bss->pub.bssid)) 1536 continue; 1537 if ((bss->pub.use_for & use_for) != use_for) 1538 continue; 1539 /* Don't get expired BSS structs */ 1540 if (time_after(now, bss->ts + IEEE80211_SCAN_RESULT_EXPIRE) && 1541 !atomic_read(&bss->hold)) 1542 continue; 1543 if (is_bss(&bss->pub, bssid, ssid, ssid_len)) { 1544 res = bss; 1545 bss_ref_get(rdev, res); 1546 break; 1547 } 1548 } 1549 1550 spin_unlock_bh(&rdev->bss_lock); 1551 if (!res) 1552 return NULL; 1553 trace_cfg80211_return_bss(&res->pub); 1554 return &res->pub; 1555 } 1556 EXPORT_SYMBOL(__cfg80211_get_bss); 1557 1558 static void rb_insert_bss(struct cfg80211_registered_device *rdev, 1559 struct cfg80211_internal_bss *bss) 1560 { 1561 struct rb_node **p = &rdev->bss_tree.rb_node; 1562 struct rb_node *parent = NULL; 1563 struct cfg80211_internal_bss *tbss; 1564 int cmp; 1565 1566 while (*p) { 1567 parent = *p; 1568 tbss = rb_entry(parent, struct cfg80211_internal_bss, rbn); 1569 1570 cmp = cmp_bss(&bss->pub, &tbss->pub, BSS_CMP_REGULAR); 1571 1572 if (WARN_ON(!cmp)) { 1573 /* will sort of leak this BSS */ 1574 return; 1575 } 1576 1577 if (cmp < 0) 1578 p = &(*p)->rb_left; 1579 else 1580 p = &(*p)->rb_right; 1581 } 1582 1583 rb_link_node(&bss->rbn, parent, p); 1584 rb_insert_color(&bss->rbn, &rdev->bss_tree); 1585 } 1586 1587 static struct cfg80211_internal_bss * 1588 rb_find_bss(struct cfg80211_registered_device *rdev, 1589 struct cfg80211_internal_bss *res, 1590 enum bss_compare_mode mode) 1591 { 1592 struct rb_node *n = rdev->bss_tree.rb_node; 1593 struct cfg80211_internal_bss *bss; 1594 int r; 1595 1596 while (n) { 1597 bss = rb_entry(n, struct cfg80211_internal_bss, rbn); 1598 r = cmp_bss(&res->pub, &bss->pub, mode); 1599 1600 if (r == 0) 1601 return bss; 1602 else if (r < 0) 1603 n = n->rb_left; 1604 else 1605 n = n->rb_right; 1606 } 1607 1608 return NULL; 1609 } 1610 1611 static bool cfg80211_combine_bsses(struct cfg80211_registered_device *rdev, 1612 struct cfg80211_internal_bss *new) 1613 { 1614 const struct cfg80211_bss_ies *ies; 1615 struct cfg80211_internal_bss *bss; 1616 const u8 *ie; 1617 int i, ssidlen; 1618 u8 fold = 0; 1619 u32 n_entries = 0; 1620 1621 ies = rcu_access_pointer(new->pub.beacon_ies); 1622 if (WARN_ON(!ies)) 1623 return false; 1624 1625 ie = cfg80211_find_ie(WLAN_EID_SSID, ies->data, ies->len); 1626 if (!ie) { 1627 /* nothing to do */ 1628 return true; 1629 } 1630 1631 ssidlen = ie[1]; 1632 for (i = 0; i < ssidlen; i++) 1633 fold |= ie[2 + i]; 1634 1635 if (fold) { 1636 /* not a hidden SSID */ 1637 return true; 1638 } 1639 1640 /* This is the bad part ... */ 1641 1642 list_for_each_entry(bss, &rdev->bss_list, list) { 1643 /* 1644 * we're iterating all the entries anyway, so take the 1645 * opportunity to validate the list length accounting 1646 */ 1647 n_entries++; 1648 1649 if (!ether_addr_equal(bss->pub.bssid, new->pub.bssid)) 1650 continue; 1651 if (bss->pub.channel != new->pub.channel) 1652 continue; 1653 if (rcu_access_pointer(bss->pub.beacon_ies)) 1654 continue; 1655 ies = rcu_access_pointer(bss->pub.ies); 1656 if (!ies) 1657 continue; 1658 ie = cfg80211_find_ie(WLAN_EID_SSID, ies->data, ies->len); 1659 if (!ie) 1660 continue; 1661 if (ssidlen && ie[1] != ssidlen) 1662 continue; 1663 if (WARN_ON_ONCE(bss->pub.hidden_beacon_bss)) 1664 continue; 1665 if (WARN_ON_ONCE(!list_empty(&bss->hidden_list))) 1666 list_del(&bss->hidden_list); 1667 /* combine them */ 1668 list_add(&bss->hidden_list, &new->hidden_list); 1669 bss->pub.hidden_beacon_bss = &new->pub; 1670 new->refcount += bss->refcount; 1671 rcu_assign_pointer(bss->pub.beacon_ies, 1672 new->pub.beacon_ies); 1673 } 1674 1675 WARN_ONCE(n_entries != rdev->bss_entries, 1676 "rdev bss entries[%d]/list[len:%d] corruption\n", 1677 rdev->bss_entries, n_entries); 1678 1679 return true; 1680 } 1681 1682 static void cfg80211_update_hidden_bsses(struct cfg80211_internal_bss *known, 1683 const struct cfg80211_bss_ies *new_ies, 1684 const struct cfg80211_bss_ies *old_ies) 1685 { 1686 struct cfg80211_internal_bss *bss; 1687 1688 /* Assign beacon IEs to all sub entries */ 1689 list_for_each_entry(bss, &known->hidden_list, hidden_list) { 1690 const struct cfg80211_bss_ies *ies; 1691 1692 ies = rcu_access_pointer(bss->pub.beacon_ies); 1693 WARN_ON(ies != old_ies); 1694 1695 rcu_assign_pointer(bss->pub.beacon_ies, new_ies); 1696 } 1697 } 1698 1699 static void cfg80211_check_stuck_ecsa(struct cfg80211_registered_device *rdev, 1700 struct cfg80211_internal_bss *known, 1701 const struct cfg80211_bss_ies *old) 1702 { 1703 const struct ieee80211_ext_chansw_ie *ecsa; 1704 const struct element *elem_new, *elem_old; 1705 const struct cfg80211_bss_ies *new, *bcn; 1706 1707 if (known->pub.proberesp_ecsa_stuck) 1708 return; 1709 1710 new = rcu_dereference_protected(known->pub.proberesp_ies, 1711 lockdep_is_held(&rdev->bss_lock)); 1712 if (WARN_ON(!new)) 1713 return; 1714 1715 if (new->tsf - old->tsf < USEC_PER_SEC) 1716 return; 1717 1718 elem_old = cfg80211_find_elem(WLAN_EID_EXT_CHANSWITCH_ANN, 1719 old->data, old->len); 1720 if (!elem_old) 1721 return; 1722 1723 elem_new = cfg80211_find_elem(WLAN_EID_EXT_CHANSWITCH_ANN, 1724 new->data, new->len); 1725 if (!elem_new) 1726 return; 1727 1728 bcn = rcu_dereference_protected(known->pub.beacon_ies, 1729 lockdep_is_held(&rdev->bss_lock)); 1730 if (bcn && 1731 cfg80211_find_elem(WLAN_EID_EXT_CHANSWITCH_ANN, 1732 bcn->data, bcn->len)) 1733 return; 1734 1735 if (elem_new->datalen != elem_old->datalen) 1736 return; 1737 if (elem_new->datalen < sizeof(struct ieee80211_ext_chansw_ie)) 1738 return; 1739 if (memcmp(elem_new->data, elem_old->data, elem_new->datalen)) 1740 return; 1741 1742 ecsa = (void *)elem_new->data; 1743 1744 if (!ecsa->mode) 1745 return; 1746 1747 if (ecsa->new_ch_num != 1748 ieee80211_frequency_to_channel(known->pub.channel->center_freq)) 1749 return; 1750 1751 known->pub.proberesp_ecsa_stuck = 1; 1752 } 1753 1754 static bool 1755 cfg80211_update_known_bss(struct cfg80211_registered_device *rdev, 1756 struct cfg80211_internal_bss *known, 1757 struct cfg80211_internal_bss *new, 1758 bool signal_valid) 1759 { 1760 lockdep_assert_held(&rdev->bss_lock); 1761 1762 /* Update IEs */ 1763 if (rcu_access_pointer(new->pub.proberesp_ies)) { 1764 const struct cfg80211_bss_ies *old; 1765 1766 old = rcu_access_pointer(known->pub.proberesp_ies); 1767 1768 rcu_assign_pointer(known->pub.proberesp_ies, 1769 new->pub.proberesp_ies); 1770 /* Override possible earlier Beacon frame IEs */ 1771 rcu_assign_pointer(known->pub.ies, 1772 new->pub.proberesp_ies); 1773 if (old) { 1774 cfg80211_check_stuck_ecsa(rdev, known, old); 1775 kfree_rcu((struct cfg80211_bss_ies *)old, rcu_head); 1776 } 1777 } 1778 1779 if (rcu_access_pointer(new->pub.beacon_ies)) { 1780 const struct cfg80211_bss_ies *old; 1781 1782 if (known->pub.hidden_beacon_bss && 1783 !list_empty(&known->hidden_list)) { 1784 const struct cfg80211_bss_ies *f; 1785 1786 /* The known BSS struct is one of the probe 1787 * response members of a group, but we're 1788 * receiving a beacon (beacon_ies in the new 1789 * bss is used). This can only mean that the 1790 * AP changed its beacon from not having an 1791 * SSID to showing it, which is confusing so 1792 * drop this information. 1793 */ 1794 1795 f = rcu_access_pointer(new->pub.beacon_ies); 1796 kfree_rcu((struct cfg80211_bss_ies *)f, rcu_head); 1797 return false; 1798 } 1799 1800 old = rcu_access_pointer(known->pub.beacon_ies); 1801 1802 rcu_assign_pointer(known->pub.beacon_ies, new->pub.beacon_ies); 1803 1804 /* Override IEs if they were from a beacon before */ 1805 if (old == rcu_access_pointer(known->pub.ies)) 1806 rcu_assign_pointer(known->pub.ies, new->pub.beacon_ies); 1807 1808 cfg80211_update_hidden_bsses(known, 1809 rcu_access_pointer(new->pub.beacon_ies), 1810 old); 1811 1812 if (old) 1813 kfree_rcu((struct cfg80211_bss_ies *)old, rcu_head); 1814 } 1815 1816 known->pub.beacon_interval = new->pub.beacon_interval; 1817 1818 /* don't update the signal if beacon was heard on 1819 * adjacent channel. 1820 */ 1821 if (signal_valid) 1822 known->pub.signal = new->pub.signal; 1823 known->pub.capability = new->pub.capability; 1824 known->ts = new->ts; 1825 known->ts_boottime = new->ts_boottime; 1826 known->parent_tsf = new->parent_tsf; 1827 known->pub.chains = new->pub.chains; 1828 memcpy(known->pub.chain_signal, new->pub.chain_signal, 1829 IEEE80211_MAX_CHAINS); 1830 ether_addr_copy(known->parent_bssid, new->parent_bssid); 1831 known->pub.max_bssid_indicator = new->pub.max_bssid_indicator; 1832 known->pub.bssid_index = new->pub.bssid_index; 1833 known->pub.use_for &= new->pub.use_for; 1834 known->pub.cannot_use_reasons = new->pub.cannot_use_reasons; 1835 1836 return true; 1837 } 1838 1839 /* Returned bss is reference counted and must be cleaned up appropriately. */ 1840 static struct cfg80211_internal_bss * 1841 __cfg80211_bss_update(struct cfg80211_registered_device *rdev, 1842 struct cfg80211_internal_bss *tmp, 1843 bool signal_valid, unsigned long ts) 1844 { 1845 struct cfg80211_internal_bss *found = NULL; 1846 struct cfg80211_bss_ies *ies; 1847 1848 if (WARN_ON(!tmp->pub.channel)) 1849 goto free_ies; 1850 1851 tmp->ts = ts; 1852 1853 if (WARN_ON(!rcu_access_pointer(tmp->pub.ies))) 1854 goto free_ies; 1855 1856 found = rb_find_bss(rdev, tmp, BSS_CMP_REGULAR); 1857 1858 if (found) { 1859 if (!cfg80211_update_known_bss(rdev, found, tmp, signal_valid)) 1860 return NULL; 1861 } else { 1862 struct cfg80211_internal_bss *new; 1863 struct cfg80211_internal_bss *hidden; 1864 1865 /* 1866 * create a copy -- the "res" variable that is passed in 1867 * is allocated on the stack since it's not needed in the 1868 * more common case of an update 1869 */ 1870 new = kzalloc(sizeof(*new) + rdev->wiphy.bss_priv_size, 1871 GFP_ATOMIC); 1872 if (!new) 1873 goto free_ies; 1874 memcpy(new, tmp, sizeof(*new)); 1875 new->refcount = 1; 1876 INIT_LIST_HEAD(&new->hidden_list); 1877 INIT_LIST_HEAD(&new->pub.nontrans_list); 1878 /* we'll set this later if it was non-NULL */ 1879 new->pub.transmitted_bss = NULL; 1880 1881 if (rcu_access_pointer(tmp->pub.proberesp_ies)) { 1882 hidden = rb_find_bss(rdev, tmp, BSS_CMP_HIDE_ZLEN); 1883 if (!hidden) 1884 hidden = rb_find_bss(rdev, tmp, 1885 BSS_CMP_HIDE_NUL); 1886 if (hidden) { 1887 new->pub.hidden_beacon_bss = &hidden->pub; 1888 list_add(&new->hidden_list, 1889 &hidden->hidden_list); 1890 hidden->refcount++; 1891 1892 ies = (void *)rcu_access_pointer(new->pub.beacon_ies); 1893 rcu_assign_pointer(new->pub.beacon_ies, 1894 hidden->pub.beacon_ies); 1895 if (ies) 1896 kfree_rcu(ies, rcu_head); 1897 } 1898 } else { 1899 /* 1900 * Ok so we found a beacon, and don't have an entry. If 1901 * it's a beacon with hidden SSID, we might be in for an 1902 * expensive search for any probe responses that should 1903 * be grouped with this beacon for updates ... 1904 */ 1905 if (!cfg80211_combine_bsses(rdev, new)) { 1906 bss_ref_put(rdev, new); 1907 return NULL; 1908 } 1909 } 1910 1911 if (rdev->bss_entries >= bss_entries_limit && 1912 !cfg80211_bss_expire_oldest(rdev)) { 1913 bss_ref_put(rdev, new); 1914 return NULL; 1915 } 1916 1917 /* This must be before the call to bss_ref_get */ 1918 if (tmp->pub.transmitted_bss) { 1919 new->pub.transmitted_bss = tmp->pub.transmitted_bss; 1920 bss_ref_get(rdev, bss_from_pub(tmp->pub.transmitted_bss)); 1921 } 1922 1923 list_add_tail(&new->list, &rdev->bss_list); 1924 rdev->bss_entries++; 1925 rb_insert_bss(rdev, new); 1926 found = new; 1927 } 1928 1929 rdev->bss_generation++; 1930 bss_ref_get(rdev, found); 1931 1932 return found; 1933 1934 free_ies: 1935 ies = (void *)rcu_dereference(tmp->pub.beacon_ies); 1936 if (ies) 1937 kfree_rcu(ies, rcu_head); 1938 ies = (void *)rcu_dereference(tmp->pub.proberesp_ies); 1939 if (ies) 1940 kfree_rcu(ies, rcu_head); 1941 1942 return NULL; 1943 } 1944 1945 struct cfg80211_internal_bss * 1946 cfg80211_bss_update(struct cfg80211_registered_device *rdev, 1947 struct cfg80211_internal_bss *tmp, 1948 bool signal_valid, unsigned long ts) 1949 { 1950 struct cfg80211_internal_bss *res; 1951 1952 spin_lock_bh(&rdev->bss_lock); 1953 res = __cfg80211_bss_update(rdev, tmp, signal_valid, ts); 1954 spin_unlock_bh(&rdev->bss_lock); 1955 1956 return res; 1957 } 1958 1959 int cfg80211_get_ies_channel_number(const u8 *ie, size_t ielen, 1960 enum nl80211_band band) 1961 { 1962 const struct element *tmp; 1963 1964 if (band == NL80211_BAND_6GHZ) { 1965 struct ieee80211_he_operation *he_oper; 1966 1967 tmp = cfg80211_find_ext_elem(WLAN_EID_EXT_HE_OPERATION, ie, 1968 ielen); 1969 if (tmp && tmp->datalen >= sizeof(*he_oper) && 1970 tmp->datalen >= ieee80211_he_oper_size(&tmp->data[1])) { 1971 const struct ieee80211_he_6ghz_oper *he_6ghz_oper; 1972 1973 he_oper = (void *)&tmp->data[1]; 1974 1975 he_6ghz_oper = ieee80211_he_6ghz_oper(he_oper); 1976 if (!he_6ghz_oper) 1977 return -1; 1978 1979 return he_6ghz_oper->primary; 1980 } 1981 } else if (band == NL80211_BAND_S1GHZ) { 1982 tmp = cfg80211_find_elem(WLAN_EID_S1G_OPERATION, ie, ielen); 1983 if (tmp && tmp->datalen >= sizeof(struct ieee80211_s1g_oper_ie)) { 1984 struct ieee80211_s1g_oper_ie *s1gop = (void *)tmp->data; 1985 1986 return s1gop->oper_ch; 1987 } 1988 } else { 1989 tmp = cfg80211_find_elem(WLAN_EID_DS_PARAMS, ie, ielen); 1990 if (tmp && tmp->datalen == 1) 1991 return tmp->data[0]; 1992 1993 tmp = cfg80211_find_elem(WLAN_EID_HT_OPERATION, ie, ielen); 1994 if (tmp && 1995 tmp->datalen >= sizeof(struct ieee80211_ht_operation)) { 1996 struct ieee80211_ht_operation *htop = (void *)tmp->data; 1997 1998 return htop->primary_chan; 1999 } 2000 } 2001 2002 return -1; 2003 } 2004 EXPORT_SYMBOL(cfg80211_get_ies_channel_number); 2005 2006 /* 2007 * Update RX channel information based on the available frame payload 2008 * information. This is mainly for the 2.4 GHz band where frames can be received 2009 * from neighboring channels and the Beacon frames use the DSSS Parameter Set 2010 * element to indicate the current (transmitting) channel, but this might also 2011 * be needed on other bands if RX frequency does not match with the actual 2012 * operating channel of a BSS, or if the AP reports a different primary channel. 2013 */ 2014 static struct ieee80211_channel * 2015 cfg80211_get_bss_channel(struct wiphy *wiphy, const u8 *ie, size_t ielen, 2016 struct ieee80211_channel *channel) 2017 { 2018 u32 freq; 2019 int channel_number; 2020 struct ieee80211_channel *alt_channel; 2021 2022 channel_number = cfg80211_get_ies_channel_number(ie, ielen, 2023 channel->band); 2024 2025 if (channel_number < 0) { 2026 /* No channel information in frame payload */ 2027 return channel; 2028 } 2029 2030 freq = ieee80211_channel_to_freq_khz(channel_number, channel->band); 2031 2032 /* 2033 * Frame info (beacon/prob res) is the same as received channel, 2034 * no need for further processing. 2035 */ 2036 if (freq == ieee80211_channel_to_khz(channel)) 2037 return channel; 2038 2039 alt_channel = ieee80211_get_channel_khz(wiphy, freq); 2040 if (!alt_channel) { 2041 if (channel->band == NL80211_BAND_2GHZ || 2042 channel->band == NL80211_BAND_6GHZ) { 2043 /* 2044 * Better not allow unexpected channels when that could 2045 * be going beyond the 1-11 range (e.g., discovering 2046 * BSS on channel 12 when radio is configured for 2047 * channel 11) or beyond the 6 GHz channel range. 2048 */ 2049 return NULL; 2050 } 2051 2052 /* No match for the payload channel number - ignore it */ 2053 return channel; 2054 } 2055 2056 /* 2057 * Use the channel determined through the payload channel number 2058 * instead of the RX channel reported by the driver. 2059 */ 2060 if (alt_channel->flags & IEEE80211_CHAN_DISABLED) 2061 return NULL; 2062 return alt_channel; 2063 } 2064 2065 struct cfg80211_inform_single_bss_data { 2066 struct cfg80211_inform_bss *drv_data; 2067 enum cfg80211_bss_frame_type ftype; 2068 struct ieee80211_channel *channel; 2069 u8 bssid[ETH_ALEN]; 2070 u64 tsf; 2071 u16 capability; 2072 u16 beacon_interval; 2073 const u8 *ie; 2074 size_t ielen; 2075 2076 enum { 2077 BSS_SOURCE_DIRECT = 0, 2078 BSS_SOURCE_MBSSID, 2079 BSS_SOURCE_STA_PROFILE, 2080 } bss_source; 2081 /* Set if reporting bss_source != BSS_SOURCE_DIRECT */ 2082 struct cfg80211_bss *source_bss; 2083 u8 max_bssid_indicator; 2084 u8 bssid_index; 2085 2086 u8 use_for; 2087 u64 cannot_use_reasons; 2088 }; 2089 2090 /* Returned bss is reference counted and must be cleaned up appropriately. */ 2091 static struct cfg80211_bss * 2092 cfg80211_inform_single_bss_data(struct wiphy *wiphy, 2093 struct cfg80211_inform_single_bss_data *data, 2094 gfp_t gfp) 2095 { 2096 struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy); 2097 struct cfg80211_inform_bss *drv_data = data->drv_data; 2098 struct cfg80211_bss_ies *ies; 2099 struct ieee80211_channel *channel; 2100 struct cfg80211_internal_bss tmp = {}, *res; 2101 int bss_type; 2102 bool signal_valid; 2103 unsigned long ts; 2104 2105 if (WARN_ON(!wiphy)) 2106 return NULL; 2107 2108 if (WARN_ON(wiphy->signal_type == CFG80211_SIGNAL_TYPE_UNSPEC && 2109 (drv_data->signal < 0 || drv_data->signal > 100))) 2110 return NULL; 2111 2112 if (WARN_ON(data->bss_source != BSS_SOURCE_DIRECT && !data->source_bss)) 2113 return NULL; 2114 2115 channel = data->channel; 2116 if (!channel) 2117 channel = cfg80211_get_bss_channel(wiphy, data->ie, data->ielen, 2118 drv_data->chan); 2119 if (!channel) 2120 return NULL; 2121 2122 memcpy(tmp.pub.bssid, data->bssid, ETH_ALEN); 2123 tmp.pub.channel = channel; 2124 if (data->bss_source != BSS_SOURCE_STA_PROFILE) 2125 tmp.pub.signal = drv_data->signal; 2126 else 2127 tmp.pub.signal = 0; 2128 tmp.pub.beacon_interval = data->beacon_interval; 2129 tmp.pub.capability = data->capability; 2130 tmp.ts_boottime = drv_data->boottime_ns; 2131 tmp.parent_tsf = drv_data->parent_tsf; 2132 ether_addr_copy(tmp.parent_bssid, drv_data->parent_bssid); 2133 tmp.pub.use_for = data->use_for; 2134 tmp.pub.cannot_use_reasons = data->cannot_use_reasons; 2135 2136 if (data->bss_source != BSS_SOURCE_DIRECT) { 2137 tmp.pub.transmitted_bss = data->source_bss; 2138 ts = bss_from_pub(data->source_bss)->ts; 2139 tmp.pub.bssid_index = data->bssid_index; 2140 tmp.pub.max_bssid_indicator = data->max_bssid_indicator; 2141 } else { 2142 ts = jiffies; 2143 2144 if (channel->band == NL80211_BAND_60GHZ) { 2145 bss_type = data->capability & 2146 WLAN_CAPABILITY_DMG_TYPE_MASK; 2147 if (bss_type == WLAN_CAPABILITY_DMG_TYPE_AP || 2148 bss_type == WLAN_CAPABILITY_DMG_TYPE_PBSS) 2149 regulatory_hint_found_beacon(wiphy, channel, 2150 gfp); 2151 } else { 2152 if (data->capability & WLAN_CAPABILITY_ESS) 2153 regulatory_hint_found_beacon(wiphy, channel, 2154 gfp); 2155 } 2156 } 2157 2158 /* 2159 * If we do not know here whether the IEs are from a Beacon or Probe 2160 * Response frame, we need to pick one of the options and only use it 2161 * with the driver that does not provide the full Beacon/Probe Response 2162 * frame. Use Beacon frame pointer to avoid indicating that this should 2163 * override the IEs pointer should we have received an earlier 2164 * indication of Probe Response data. 2165 */ 2166 ies = kzalloc(sizeof(*ies) + data->ielen, gfp); 2167 if (!ies) 2168 return NULL; 2169 ies->len = data->ielen; 2170 ies->tsf = data->tsf; 2171 ies->from_beacon = false; 2172 memcpy(ies->data, data->ie, data->ielen); 2173 2174 switch (data->ftype) { 2175 case CFG80211_BSS_FTYPE_BEACON: 2176 ies->from_beacon = true; 2177 fallthrough; 2178 case CFG80211_BSS_FTYPE_UNKNOWN: 2179 rcu_assign_pointer(tmp.pub.beacon_ies, ies); 2180 break; 2181 case CFG80211_BSS_FTYPE_PRESP: 2182 rcu_assign_pointer(tmp.pub.proberesp_ies, ies); 2183 break; 2184 } 2185 rcu_assign_pointer(tmp.pub.ies, ies); 2186 2187 signal_valid = drv_data->chan == channel; 2188 spin_lock_bh(&rdev->bss_lock); 2189 res = __cfg80211_bss_update(rdev, &tmp, signal_valid, ts); 2190 if (!res) 2191 goto drop; 2192 2193 rdev_inform_bss(rdev, &res->pub, ies, drv_data->drv_data); 2194 2195 if (data->bss_source == BSS_SOURCE_MBSSID) { 2196 /* this is a nontransmitting bss, we need to add it to 2197 * transmitting bss' list if it is not there 2198 */ 2199 if (cfg80211_add_nontrans_list(data->source_bss, &res->pub)) { 2200 if (__cfg80211_unlink_bss(rdev, res)) { 2201 rdev->bss_generation++; 2202 res = NULL; 2203 } 2204 } 2205 2206 if (!res) 2207 goto drop; 2208 } 2209 spin_unlock_bh(&rdev->bss_lock); 2210 2211 trace_cfg80211_return_bss(&res->pub); 2212 /* __cfg80211_bss_update gives us a referenced result */ 2213 return &res->pub; 2214 2215 drop: 2216 spin_unlock_bh(&rdev->bss_lock); 2217 return NULL; 2218 } 2219 2220 static const struct element 2221 *cfg80211_get_profile_continuation(const u8 *ie, size_t ielen, 2222 const struct element *mbssid_elem, 2223 const struct element *sub_elem) 2224 { 2225 const u8 *mbssid_end = mbssid_elem->data + mbssid_elem->datalen; 2226 const struct element *next_mbssid; 2227 const struct element *next_sub; 2228 2229 next_mbssid = cfg80211_find_elem(WLAN_EID_MULTIPLE_BSSID, 2230 mbssid_end, 2231 ielen - (mbssid_end - ie)); 2232 2233 /* 2234 * If it is not the last subelement in current MBSSID IE or there isn't 2235 * a next MBSSID IE - profile is complete. 2236 */ 2237 if ((sub_elem->data + sub_elem->datalen < mbssid_end - 1) || 2238 !next_mbssid) 2239 return NULL; 2240 2241 /* For any length error, just return NULL */ 2242 2243 if (next_mbssid->datalen < 4) 2244 return NULL; 2245 2246 next_sub = (void *)&next_mbssid->data[1]; 2247 2248 if (next_mbssid->data + next_mbssid->datalen < 2249 next_sub->data + next_sub->datalen) 2250 return NULL; 2251 2252 if (next_sub->id != 0 || next_sub->datalen < 2) 2253 return NULL; 2254 2255 /* 2256 * Check if the first element in the next sub element is a start 2257 * of a new profile 2258 */ 2259 return next_sub->data[0] == WLAN_EID_NON_TX_BSSID_CAP ? 2260 NULL : next_mbssid; 2261 } 2262 2263 size_t cfg80211_merge_profile(const u8 *ie, size_t ielen, 2264 const struct element *mbssid_elem, 2265 const struct element *sub_elem, 2266 u8 *merged_ie, size_t max_copy_len) 2267 { 2268 size_t copied_len = sub_elem->datalen; 2269 const struct element *next_mbssid; 2270 2271 if (sub_elem->datalen > max_copy_len) 2272 return 0; 2273 2274 memcpy(merged_ie, sub_elem->data, sub_elem->datalen); 2275 2276 while ((next_mbssid = cfg80211_get_profile_continuation(ie, ielen, 2277 mbssid_elem, 2278 sub_elem))) { 2279 const struct element *next_sub = (void *)&next_mbssid->data[1]; 2280 2281 if (copied_len + next_sub->datalen > max_copy_len) 2282 break; 2283 memcpy(merged_ie + copied_len, next_sub->data, 2284 next_sub->datalen); 2285 copied_len += next_sub->datalen; 2286 } 2287 2288 return copied_len; 2289 } 2290 EXPORT_SYMBOL(cfg80211_merge_profile); 2291 2292 static void 2293 cfg80211_parse_mbssid_data(struct wiphy *wiphy, 2294 struct cfg80211_inform_single_bss_data *tx_data, 2295 struct cfg80211_bss *source_bss, 2296 gfp_t gfp) 2297 { 2298 struct cfg80211_inform_single_bss_data data = { 2299 .drv_data = tx_data->drv_data, 2300 .ftype = tx_data->ftype, 2301 .tsf = tx_data->tsf, 2302 .beacon_interval = tx_data->beacon_interval, 2303 .source_bss = source_bss, 2304 .bss_source = BSS_SOURCE_MBSSID, 2305 .use_for = tx_data->use_for, 2306 .cannot_use_reasons = tx_data->cannot_use_reasons, 2307 }; 2308 const u8 *mbssid_index_ie; 2309 const struct element *elem, *sub; 2310 u8 *new_ie, *profile; 2311 u64 seen_indices = 0; 2312 struct cfg80211_bss *bss; 2313 2314 if (!source_bss) 2315 return; 2316 if (!cfg80211_find_elem(WLAN_EID_MULTIPLE_BSSID, 2317 tx_data->ie, tx_data->ielen)) 2318 return; 2319 if (!wiphy->support_mbssid) 2320 return; 2321 if (wiphy->support_only_he_mbssid && 2322 !cfg80211_find_ext_elem(WLAN_EID_EXT_HE_CAPABILITY, 2323 tx_data->ie, tx_data->ielen)) 2324 return; 2325 2326 new_ie = kmalloc(IEEE80211_MAX_DATA_LEN, gfp); 2327 if (!new_ie) 2328 return; 2329 2330 profile = kmalloc(tx_data->ielen, gfp); 2331 if (!profile) 2332 goto out; 2333 2334 for_each_element_id(elem, WLAN_EID_MULTIPLE_BSSID, 2335 tx_data->ie, tx_data->ielen) { 2336 if (elem->datalen < 4) 2337 continue; 2338 if (elem->data[0] < 1 || (int)elem->data[0] > 8) 2339 continue; 2340 for_each_element(sub, elem->data + 1, elem->datalen - 1) { 2341 u8 profile_len; 2342 2343 if (sub->id != 0 || sub->datalen < 4) { 2344 /* not a valid BSS profile */ 2345 continue; 2346 } 2347 2348 if (sub->data[0] != WLAN_EID_NON_TX_BSSID_CAP || 2349 sub->data[1] != 2) { 2350 /* The first element within the Nontransmitted 2351 * BSSID Profile is not the Nontransmitted 2352 * BSSID Capability element. 2353 */ 2354 continue; 2355 } 2356 2357 memset(profile, 0, tx_data->ielen); 2358 profile_len = cfg80211_merge_profile(tx_data->ie, 2359 tx_data->ielen, 2360 elem, 2361 sub, 2362 profile, 2363 tx_data->ielen); 2364 2365 /* found a Nontransmitted BSSID Profile */ 2366 mbssid_index_ie = cfg80211_find_ie 2367 (WLAN_EID_MULTI_BSSID_IDX, 2368 profile, profile_len); 2369 if (!mbssid_index_ie || mbssid_index_ie[1] < 1 || 2370 mbssid_index_ie[2] == 0 || 2371 mbssid_index_ie[2] > 46) { 2372 /* No valid Multiple BSSID-Index element */ 2373 continue; 2374 } 2375 2376 if (seen_indices & BIT_ULL(mbssid_index_ie[2])) 2377 /* We don't support legacy split of a profile */ 2378 net_dbg_ratelimited("Partial info for BSSID index %d\n", 2379 mbssid_index_ie[2]); 2380 2381 seen_indices |= BIT_ULL(mbssid_index_ie[2]); 2382 2383 data.bssid_index = mbssid_index_ie[2]; 2384 data.max_bssid_indicator = elem->data[0]; 2385 2386 cfg80211_gen_new_bssid(tx_data->bssid, 2387 data.max_bssid_indicator, 2388 data.bssid_index, 2389 data.bssid); 2390 2391 memset(new_ie, 0, IEEE80211_MAX_DATA_LEN); 2392 data.ie = new_ie; 2393 data.ielen = cfg80211_gen_new_ie(tx_data->ie, 2394 tx_data->ielen, 2395 profile, 2396 profile_len, 2397 new_ie, 2398 IEEE80211_MAX_DATA_LEN); 2399 if (!data.ielen) 2400 continue; 2401 2402 data.capability = get_unaligned_le16(profile + 2); 2403 bss = cfg80211_inform_single_bss_data(wiphy, &data, gfp); 2404 if (!bss) 2405 break; 2406 cfg80211_put_bss(wiphy, bss); 2407 } 2408 } 2409 2410 out: 2411 kfree(new_ie); 2412 kfree(profile); 2413 } 2414 2415 ssize_t cfg80211_defragment_element(const struct element *elem, const u8 *ies, 2416 size_t ieslen, u8 *data, size_t data_len, 2417 u8 frag_id) 2418 { 2419 const struct element *next; 2420 ssize_t copied; 2421 u8 elem_datalen; 2422 2423 if (!elem) 2424 return -EINVAL; 2425 2426 /* elem might be invalid after the memmove */ 2427 next = (void *)(elem->data + elem->datalen); 2428 elem_datalen = elem->datalen; 2429 2430 if (elem->id == WLAN_EID_EXTENSION) { 2431 copied = elem->datalen - 1; 2432 if (copied > data_len) 2433 return -ENOSPC; 2434 2435 memmove(data, elem->data + 1, copied); 2436 } else { 2437 copied = elem->datalen; 2438 if (copied > data_len) 2439 return -ENOSPC; 2440 2441 memmove(data, elem->data, copied); 2442 } 2443 2444 /* Fragmented elements must have 255 bytes */ 2445 if (elem_datalen < 255) 2446 return copied; 2447 2448 for (elem = next; 2449 elem->data < ies + ieslen && 2450 elem->data + elem->datalen <= ies + ieslen; 2451 elem = next) { 2452 /* elem might be invalid after the memmove */ 2453 next = (void *)(elem->data + elem->datalen); 2454 2455 if (elem->id != frag_id) 2456 break; 2457 2458 elem_datalen = elem->datalen; 2459 2460 if (copied + elem_datalen > data_len) 2461 return -ENOSPC; 2462 2463 memmove(data + copied, elem->data, elem_datalen); 2464 copied += elem_datalen; 2465 2466 /* Only the last fragment may be short */ 2467 if (elem_datalen != 255) 2468 break; 2469 } 2470 2471 return copied; 2472 } 2473 EXPORT_SYMBOL(cfg80211_defragment_element); 2474 2475 struct cfg80211_mle { 2476 struct ieee80211_multi_link_elem *mle; 2477 struct ieee80211_mle_per_sta_profile 2478 *sta_prof[IEEE80211_MLD_MAX_NUM_LINKS]; 2479 ssize_t sta_prof_len[IEEE80211_MLD_MAX_NUM_LINKS]; 2480 2481 u8 data[]; 2482 }; 2483 2484 static struct cfg80211_mle * 2485 cfg80211_defrag_mle(const struct element *mle, const u8 *ie, size_t ielen, 2486 gfp_t gfp) 2487 { 2488 const struct element *elem; 2489 struct cfg80211_mle *res; 2490 size_t buf_len; 2491 ssize_t mle_len; 2492 u8 common_size, idx; 2493 2494 if (!mle || !ieee80211_mle_size_ok(mle->data + 1, mle->datalen - 1)) 2495 return NULL; 2496 2497 /* Required length for first defragmentation */ 2498 buf_len = mle->datalen - 1; 2499 for_each_element(elem, mle->data + mle->datalen, 2500 ielen - sizeof(*mle) + mle->datalen) { 2501 if (elem->id != WLAN_EID_FRAGMENT) 2502 break; 2503 2504 buf_len += elem->datalen; 2505 } 2506 2507 res = kzalloc(struct_size(res, data, buf_len), gfp); 2508 if (!res) 2509 return NULL; 2510 2511 mle_len = cfg80211_defragment_element(mle, ie, ielen, 2512 res->data, buf_len, 2513 WLAN_EID_FRAGMENT); 2514 if (mle_len < 0) 2515 goto error; 2516 2517 res->mle = (void *)res->data; 2518 2519 /* Find the sub-element area in the buffer */ 2520 common_size = ieee80211_mle_common_size((u8 *)res->mle); 2521 ie = res->data + common_size; 2522 ielen = mle_len - common_size; 2523 2524 idx = 0; 2525 for_each_element_id(elem, IEEE80211_MLE_SUBELEM_PER_STA_PROFILE, 2526 ie, ielen) { 2527 res->sta_prof[idx] = (void *)elem->data; 2528 res->sta_prof_len[idx] = elem->datalen; 2529 2530 idx++; 2531 if (idx >= IEEE80211_MLD_MAX_NUM_LINKS) 2532 break; 2533 } 2534 if (!for_each_element_completed(elem, ie, ielen)) 2535 goto error; 2536 2537 /* Defragment sta_info in-place */ 2538 for (idx = 0; idx < IEEE80211_MLD_MAX_NUM_LINKS && res->sta_prof[idx]; 2539 idx++) { 2540 if (res->sta_prof_len[idx] < 255) 2541 continue; 2542 2543 elem = (void *)res->sta_prof[idx] - 2; 2544 2545 if (idx + 1 < ARRAY_SIZE(res->sta_prof) && 2546 res->sta_prof[idx + 1]) 2547 buf_len = (u8 *)res->sta_prof[idx + 1] - 2548 (u8 *)res->sta_prof[idx]; 2549 else 2550 buf_len = ielen + ie - (u8 *)elem; 2551 2552 res->sta_prof_len[idx] = 2553 cfg80211_defragment_element(elem, 2554 (u8 *)elem, buf_len, 2555 (u8 *)res->sta_prof[idx], 2556 buf_len, 2557 IEEE80211_MLE_SUBELEM_FRAGMENT); 2558 if (res->sta_prof_len[idx] < 0) 2559 goto error; 2560 } 2561 2562 return res; 2563 2564 error: 2565 kfree(res); 2566 return NULL; 2567 } 2568 2569 static u8 2570 cfg80211_tbtt_info_for_mld_ap(const u8 *ie, size_t ielen, u8 mld_id, u8 link_id, 2571 const struct ieee80211_neighbor_ap_info **ap_info, 2572 const u8 **tbtt_info) 2573 { 2574 const struct ieee80211_neighbor_ap_info *info; 2575 const struct element *rnr; 2576 const u8 *pos, *end; 2577 2578 for_each_element_id(rnr, WLAN_EID_REDUCED_NEIGHBOR_REPORT, ie, ielen) { 2579 pos = rnr->data; 2580 end = rnr->data + rnr->datalen; 2581 2582 /* RNR IE may contain more than one NEIGHBOR_AP_INFO */ 2583 while (sizeof(*info) <= end - pos) { 2584 const struct ieee80211_rnr_mld_params *mld_params; 2585 u16 params; 2586 u8 length, i, count, mld_params_offset; 2587 u8 type, lid; 2588 u32 use_for; 2589 2590 info = (void *)pos; 2591 count = u8_get_bits(info->tbtt_info_hdr, 2592 IEEE80211_AP_INFO_TBTT_HDR_COUNT) + 1; 2593 length = info->tbtt_info_len; 2594 2595 pos += sizeof(*info); 2596 2597 if (count * length > end - pos) 2598 return 0; 2599 2600 type = u8_get_bits(info->tbtt_info_hdr, 2601 IEEE80211_AP_INFO_TBTT_HDR_TYPE); 2602 2603 if (type == IEEE80211_TBTT_INFO_TYPE_TBTT && 2604 length >= 2605 offsetofend(struct ieee80211_tbtt_info_ge_11, 2606 mld_params)) { 2607 mld_params_offset = 2608 offsetof(struct ieee80211_tbtt_info_ge_11, mld_params); 2609 use_for = NL80211_BSS_USE_FOR_ALL; 2610 } else if (type == IEEE80211_TBTT_INFO_TYPE_MLD && 2611 length >= sizeof(struct ieee80211_rnr_mld_params)) { 2612 mld_params_offset = 0; 2613 use_for = NL80211_BSS_USE_FOR_MLD_LINK; 2614 } else { 2615 pos += count * length; 2616 continue; 2617 } 2618 2619 for (i = 0; i < count; i++) { 2620 mld_params = (void *)pos + mld_params_offset; 2621 params = le16_to_cpu(mld_params->params); 2622 2623 lid = u16_get_bits(params, 2624 IEEE80211_RNR_MLD_PARAMS_LINK_ID); 2625 2626 if (mld_id == mld_params->mld_id && 2627 link_id == lid) { 2628 *ap_info = info; 2629 *tbtt_info = pos; 2630 2631 return use_for; 2632 } 2633 2634 pos += length; 2635 } 2636 } 2637 } 2638 2639 return 0; 2640 } 2641 2642 static struct element * 2643 cfg80211_gen_reporter_rnr(struct cfg80211_bss *source_bss, bool is_mbssid, 2644 bool same_mld, u8 link_id, u8 bss_change_count, 2645 gfp_t gfp) 2646 { 2647 const struct cfg80211_bss_ies *ies; 2648 struct ieee80211_neighbor_ap_info ap_info; 2649 struct ieee80211_tbtt_info_ge_11 tbtt_info; 2650 u32 short_ssid; 2651 const struct element *elem; 2652 struct element *res; 2653 2654 /* 2655 * We only generate the RNR to permit ML lookups. For that we do not 2656 * need an entry for the corresponding transmitting BSS, lets just skip 2657 * it even though it would be easy to add. 2658 */ 2659 if (!same_mld) 2660 return NULL; 2661 2662 /* We could use tx_data->ies if we change cfg80211_calc_short_ssid */ 2663 rcu_read_lock(); 2664 ies = rcu_dereference(source_bss->ies); 2665 2666 ap_info.tbtt_info_len = offsetofend(typeof(tbtt_info), mld_params); 2667 ap_info.tbtt_info_hdr = 2668 u8_encode_bits(IEEE80211_TBTT_INFO_TYPE_TBTT, 2669 IEEE80211_AP_INFO_TBTT_HDR_TYPE) | 2670 u8_encode_bits(0, IEEE80211_AP_INFO_TBTT_HDR_COUNT); 2671 2672 ap_info.channel = ieee80211_frequency_to_channel(source_bss->channel->center_freq); 2673 2674 /* operating class */ 2675 elem = cfg80211_find_elem(WLAN_EID_SUPPORTED_REGULATORY_CLASSES, 2676 ies->data, ies->len); 2677 if (elem && elem->datalen >= 1) { 2678 ap_info.op_class = elem->data[0]; 2679 } else { 2680 struct cfg80211_chan_def chandef; 2681 2682 /* The AP is not providing us with anything to work with. So 2683 * make up a somewhat reasonable operating class, but don't 2684 * bother with it too much as no one will ever use the 2685 * information. 2686 */ 2687 cfg80211_chandef_create(&chandef, source_bss->channel, 2688 NL80211_CHAN_NO_HT); 2689 2690 if (!ieee80211_chandef_to_operating_class(&chandef, 2691 &ap_info.op_class)) 2692 goto out_unlock; 2693 } 2694 2695 /* Just set TBTT offset and PSD 20 to invalid/unknown */ 2696 tbtt_info.tbtt_offset = 255; 2697 tbtt_info.psd_20 = IEEE80211_RNR_TBTT_PARAMS_PSD_RESERVED; 2698 2699 memcpy(tbtt_info.bssid, source_bss->bssid, ETH_ALEN); 2700 if (cfg80211_calc_short_ssid(ies, &elem, &short_ssid)) 2701 goto out_unlock; 2702 2703 rcu_read_unlock(); 2704 2705 tbtt_info.short_ssid = cpu_to_le32(short_ssid); 2706 2707 tbtt_info.bss_params = IEEE80211_RNR_TBTT_PARAMS_SAME_SSID; 2708 2709 if (is_mbssid) { 2710 tbtt_info.bss_params |= IEEE80211_RNR_TBTT_PARAMS_MULTI_BSSID; 2711 tbtt_info.bss_params |= IEEE80211_RNR_TBTT_PARAMS_TRANSMITTED_BSSID; 2712 } 2713 2714 tbtt_info.mld_params.mld_id = 0; 2715 tbtt_info.mld_params.params = 2716 le16_encode_bits(link_id, IEEE80211_RNR_MLD_PARAMS_LINK_ID) | 2717 le16_encode_bits(bss_change_count, 2718 IEEE80211_RNR_MLD_PARAMS_BSS_CHANGE_COUNT); 2719 2720 res = kzalloc(struct_size(res, data, 2721 sizeof(ap_info) + ap_info.tbtt_info_len), 2722 gfp); 2723 if (!res) 2724 return NULL; 2725 2726 /* Copy the data */ 2727 res->id = WLAN_EID_REDUCED_NEIGHBOR_REPORT; 2728 res->datalen = sizeof(ap_info) + ap_info.tbtt_info_len; 2729 memcpy(res->data, &ap_info, sizeof(ap_info)); 2730 memcpy(res->data + sizeof(ap_info), &tbtt_info, ap_info.tbtt_info_len); 2731 2732 return res; 2733 2734 out_unlock: 2735 rcu_read_unlock(); 2736 return NULL; 2737 } 2738 2739 static void 2740 cfg80211_parse_ml_elem_sta_data(struct wiphy *wiphy, 2741 struct cfg80211_inform_single_bss_data *tx_data, 2742 struct cfg80211_bss *source_bss, 2743 const struct element *elem, 2744 gfp_t gfp) 2745 { 2746 struct cfg80211_inform_single_bss_data data = { 2747 .drv_data = tx_data->drv_data, 2748 .ftype = tx_data->ftype, 2749 .source_bss = source_bss, 2750 .bss_source = BSS_SOURCE_STA_PROFILE, 2751 }; 2752 struct element *reporter_rnr = NULL; 2753 struct ieee80211_multi_link_elem *ml_elem; 2754 struct cfg80211_mle *mle; 2755 u16 control; 2756 u8 ml_common_len; 2757 u8 *new_ie = NULL; 2758 struct cfg80211_bss *bss; 2759 u8 mld_id, reporter_link_id, bss_change_count; 2760 u16 seen_links = 0; 2761 const u8 *pos; 2762 u8 i; 2763 2764 if (!ieee80211_mle_size_ok(elem->data + 1, elem->datalen - 1)) 2765 return; 2766 2767 ml_elem = (void *)elem->data + 1; 2768 control = le16_to_cpu(ml_elem->control); 2769 if (u16_get_bits(control, IEEE80211_ML_CONTROL_TYPE) != 2770 IEEE80211_ML_CONTROL_TYPE_BASIC) 2771 return; 2772 2773 /* Must be present when transmitted by an AP (in a probe response) */ 2774 if (!(control & IEEE80211_MLC_BASIC_PRES_BSS_PARAM_CH_CNT) || 2775 !(control & IEEE80211_MLC_BASIC_PRES_LINK_ID) || 2776 !(control & IEEE80211_MLC_BASIC_PRES_MLD_CAPA_OP)) 2777 return; 2778 2779 ml_common_len = ml_elem->variable[0]; 2780 2781 /* length + MLD MAC address */ 2782 pos = ml_elem->variable + 1 + 6; 2783 2784 reporter_link_id = pos[0]; 2785 pos += 1; 2786 2787 bss_change_count = pos[0]; 2788 pos += 1; 2789 2790 if (u16_get_bits(control, IEEE80211_MLC_BASIC_PRES_MED_SYNC_DELAY)) 2791 pos += 2; 2792 if (u16_get_bits(control, IEEE80211_MLC_BASIC_PRES_EML_CAPA)) 2793 pos += 2; 2794 2795 /* MLD capabilities and operations */ 2796 pos += 2; 2797 2798 /* 2799 * The MLD ID of the reporting AP is always zero. It is set if the AP 2800 * is part of an MBSSID set and will be non-zero for ML Elements 2801 * relating to a nontransmitted BSS (matching the Multi-BSSID Index, 2802 * Draft P802.11be_D3.2, 35.3.4.2) 2803 */ 2804 if (u16_get_bits(control, IEEE80211_MLC_BASIC_PRES_MLD_ID)) { 2805 mld_id = *pos; 2806 pos += 1; 2807 } else { 2808 mld_id = 0; 2809 } 2810 2811 /* Extended MLD capabilities and operations */ 2812 pos += 2; 2813 2814 /* Fully defrag the ML element for sta information/profile iteration */ 2815 mle = cfg80211_defrag_mle(elem, tx_data->ie, tx_data->ielen, gfp); 2816 if (!mle) 2817 return; 2818 2819 /* No point in doing anything if there is no per-STA profile */ 2820 if (!mle->sta_prof[0]) 2821 goto out; 2822 2823 new_ie = kmalloc(IEEE80211_MAX_DATA_LEN, gfp); 2824 if (!new_ie) 2825 goto out; 2826 2827 reporter_rnr = cfg80211_gen_reporter_rnr(source_bss, 2828 u16_get_bits(control, 2829 IEEE80211_MLC_BASIC_PRES_MLD_ID), 2830 mld_id == 0, reporter_link_id, 2831 bss_change_count, 2832 gfp); 2833 2834 for (i = 0; i < ARRAY_SIZE(mle->sta_prof) && mle->sta_prof[i]; i++) { 2835 const struct ieee80211_neighbor_ap_info *ap_info; 2836 enum nl80211_band band; 2837 u32 freq; 2838 const u8 *profile; 2839 const u8 *tbtt_info; 2840 ssize_t profile_len; 2841 u8 link_id, use_for; 2842 2843 if (!ieee80211_mle_basic_sta_prof_size_ok((u8 *)mle->sta_prof[i], 2844 mle->sta_prof_len[i])) 2845 continue; 2846 2847 control = le16_to_cpu(mle->sta_prof[i]->control); 2848 2849 if (!(control & IEEE80211_MLE_STA_CONTROL_COMPLETE_PROFILE)) 2850 continue; 2851 2852 link_id = u16_get_bits(control, 2853 IEEE80211_MLE_STA_CONTROL_LINK_ID); 2854 if (seen_links & BIT(link_id)) 2855 break; 2856 seen_links |= BIT(link_id); 2857 2858 if (!(control & IEEE80211_MLE_STA_CONTROL_BEACON_INT_PRESENT) || 2859 !(control & IEEE80211_MLE_STA_CONTROL_TSF_OFFS_PRESENT) || 2860 !(control & IEEE80211_MLE_STA_CONTROL_STA_MAC_ADDR_PRESENT)) 2861 continue; 2862 2863 memcpy(data.bssid, mle->sta_prof[i]->variable, ETH_ALEN); 2864 data.beacon_interval = 2865 get_unaligned_le16(mle->sta_prof[i]->variable + 6); 2866 data.tsf = tx_data->tsf + 2867 get_unaligned_le64(mle->sta_prof[i]->variable + 8); 2868 2869 /* sta_info_len counts itself */ 2870 profile = mle->sta_prof[i]->variable + 2871 mle->sta_prof[i]->sta_info_len - 1; 2872 profile_len = (u8 *)mle->sta_prof[i] + mle->sta_prof_len[i] - 2873 profile; 2874 2875 if (profile_len < 2) 2876 continue; 2877 2878 data.capability = get_unaligned_le16(profile); 2879 profile += 2; 2880 profile_len -= 2; 2881 2882 /* Find in RNR to look up channel information */ 2883 use_for = cfg80211_tbtt_info_for_mld_ap(tx_data->ie, 2884 tx_data->ielen, 2885 mld_id, link_id, 2886 &ap_info, &tbtt_info); 2887 if (!use_for) 2888 continue; 2889 2890 /* We could sanity check the BSSID is included */ 2891 2892 if (!ieee80211_operating_class_to_band(ap_info->op_class, 2893 &band)) 2894 continue; 2895 2896 freq = ieee80211_channel_to_freq_khz(ap_info->channel, band); 2897 data.channel = ieee80211_get_channel_khz(wiphy, freq); 2898 2899 if (use_for == NL80211_BSS_USE_FOR_MLD_LINK && 2900 !(wiphy->flags & WIPHY_FLAG_SUPPORTS_NSTR_NONPRIMARY)) { 2901 use_for = 0; 2902 data.cannot_use_reasons = 2903 NL80211_BSS_CANNOT_USE_NSTR_NONPRIMARY; 2904 } 2905 data.use_for = use_for; 2906 2907 /* Generate new elements */ 2908 memset(new_ie, 0, IEEE80211_MAX_DATA_LEN); 2909 data.ie = new_ie; 2910 data.ielen = cfg80211_gen_new_ie(tx_data->ie, tx_data->ielen, 2911 profile, profile_len, 2912 new_ie, 2913 IEEE80211_MAX_DATA_LEN); 2914 if (!data.ielen) 2915 continue; 2916 2917 /* The generated elements do not contain: 2918 * - Basic ML element 2919 * - A TBTT entry in the RNR for the transmitting AP 2920 * 2921 * This information is needed both internally and in userspace 2922 * as such, we should append it here. 2923 */ 2924 if (data.ielen + 3 + sizeof(*ml_elem) + ml_common_len > 2925 IEEE80211_MAX_DATA_LEN) 2926 continue; 2927 2928 /* Copy the Basic Multi-Link element including the common 2929 * information, and then fix up the link ID. 2930 * Note that the ML element length has been verified and we 2931 * also checked that it contains the link ID. 2932 */ 2933 new_ie[data.ielen++] = WLAN_EID_EXTENSION; 2934 new_ie[data.ielen++] = 1 + sizeof(*ml_elem) + ml_common_len; 2935 new_ie[data.ielen++] = WLAN_EID_EXT_EHT_MULTI_LINK; 2936 memcpy(new_ie + data.ielen, ml_elem, 2937 sizeof(*ml_elem) + ml_common_len); 2938 2939 new_ie[data.ielen + sizeof(*ml_elem) + 1 + ETH_ALEN] = link_id; 2940 2941 data.ielen += sizeof(*ml_elem) + ml_common_len; 2942 2943 if (reporter_rnr && (use_for & NL80211_BSS_USE_FOR_NORMAL)) { 2944 if (data.ielen + sizeof(struct element) + 2945 reporter_rnr->datalen > IEEE80211_MAX_DATA_LEN) 2946 continue; 2947 2948 memcpy(new_ie + data.ielen, reporter_rnr, 2949 sizeof(struct element) + reporter_rnr->datalen); 2950 data.ielen += sizeof(struct element) + 2951 reporter_rnr->datalen; 2952 } 2953 2954 bss = cfg80211_inform_single_bss_data(wiphy, &data, gfp); 2955 if (!bss) 2956 break; 2957 cfg80211_put_bss(wiphy, bss); 2958 } 2959 2960 out: 2961 kfree(reporter_rnr); 2962 kfree(new_ie); 2963 kfree(mle); 2964 } 2965 2966 static void cfg80211_parse_ml_sta_data(struct wiphy *wiphy, 2967 struct cfg80211_inform_single_bss_data *tx_data, 2968 struct cfg80211_bss *source_bss, 2969 gfp_t gfp) 2970 { 2971 const struct element *elem; 2972 2973 if (!source_bss) 2974 return; 2975 2976 if (tx_data->ftype != CFG80211_BSS_FTYPE_PRESP) 2977 return; 2978 2979 for_each_element_extid(elem, WLAN_EID_EXT_EHT_MULTI_LINK, 2980 tx_data->ie, tx_data->ielen) 2981 cfg80211_parse_ml_elem_sta_data(wiphy, tx_data, source_bss, 2982 elem, gfp); 2983 } 2984 2985 struct cfg80211_bss * 2986 cfg80211_inform_bss_data(struct wiphy *wiphy, 2987 struct cfg80211_inform_bss *data, 2988 enum cfg80211_bss_frame_type ftype, 2989 const u8 *bssid, u64 tsf, u16 capability, 2990 u16 beacon_interval, const u8 *ie, size_t ielen, 2991 gfp_t gfp) 2992 { 2993 struct cfg80211_inform_single_bss_data inform_data = { 2994 .drv_data = data, 2995 .ftype = ftype, 2996 .tsf = tsf, 2997 .capability = capability, 2998 .beacon_interval = beacon_interval, 2999 .ie = ie, 3000 .ielen = ielen, 3001 .use_for = data->restrict_use ? 3002 data->use_for : 3003 NL80211_BSS_USE_FOR_ALL, 3004 .cannot_use_reasons = data->cannot_use_reasons, 3005 }; 3006 struct cfg80211_bss *res; 3007 3008 memcpy(inform_data.bssid, bssid, ETH_ALEN); 3009 3010 res = cfg80211_inform_single_bss_data(wiphy, &inform_data, gfp); 3011 if (!res) 3012 return NULL; 3013 3014 cfg80211_parse_mbssid_data(wiphy, &inform_data, res, gfp); 3015 3016 cfg80211_parse_ml_sta_data(wiphy, &inform_data, res, gfp); 3017 3018 return res; 3019 } 3020 EXPORT_SYMBOL(cfg80211_inform_bss_data); 3021 3022 static bool cfg80211_uhb_power_type_valid(const u8 *ie, 3023 size_t ielen, 3024 const u32 flags) 3025 { 3026 const struct element *tmp; 3027 struct ieee80211_he_operation *he_oper; 3028 3029 tmp = cfg80211_find_ext_elem(WLAN_EID_EXT_HE_OPERATION, ie, ielen); 3030 if (tmp && tmp->datalen >= sizeof(*he_oper) + 1) { 3031 const struct ieee80211_he_6ghz_oper *he_6ghz_oper; 3032 3033 he_oper = (void *)&tmp->data[1]; 3034 he_6ghz_oper = ieee80211_he_6ghz_oper(he_oper); 3035 3036 if (!he_6ghz_oper) 3037 return false; 3038 3039 switch (u8_get_bits(he_6ghz_oper->control, 3040 IEEE80211_HE_6GHZ_OPER_CTRL_REG_INFO)) { 3041 case IEEE80211_6GHZ_CTRL_REG_LPI_AP: 3042 return true; 3043 case IEEE80211_6GHZ_CTRL_REG_SP_AP: 3044 return !(flags & IEEE80211_CHAN_NO_6GHZ_AFC_CLIENT); 3045 case IEEE80211_6GHZ_CTRL_REG_VLP_AP: 3046 return !(flags & IEEE80211_CHAN_NO_6GHZ_VLP_CLIENT); 3047 } 3048 } 3049 return false; 3050 } 3051 3052 /* cfg80211_inform_bss_width_frame helper */ 3053 static struct cfg80211_bss * 3054 cfg80211_inform_single_bss_frame_data(struct wiphy *wiphy, 3055 struct cfg80211_inform_bss *data, 3056 struct ieee80211_mgmt *mgmt, size_t len, 3057 gfp_t gfp) 3058 { 3059 struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy); 3060 struct cfg80211_internal_bss tmp = {}, *res; 3061 struct cfg80211_bss_ies *ies; 3062 struct ieee80211_channel *channel; 3063 bool signal_valid; 3064 struct ieee80211_ext *ext = NULL; 3065 u8 *bssid, *variable; 3066 u16 capability, beacon_int; 3067 size_t ielen, min_hdr_len = offsetof(struct ieee80211_mgmt, 3068 u.probe_resp.variable); 3069 int bss_type; 3070 3071 BUILD_BUG_ON(offsetof(struct ieee80211_mgmt, u.probe_resp.variable) != 3072 offsetof(struct ieee80211_mgmt, u.beacon.variable)); 3073 3074 trace_cfg80211_inform_bss_frame(wiphy, data, mgmt, len); 3075 3076 if (WARN_ON(!mgmt)) 3077 return NULL; 3078 3079 if (WARN_ON(!wiphy)) 3080 return NULL; 3081 3082 if (WARN_ON(wiphy->signal_type == CFG80211_SIGNAL_TYPE_UNSPEC && 3083 (data->signal < 0 || data->signal > 100))) 3084 return NULL; 3085 3086 if (ieee80211_is_s1g_beacon(mgmt->frame_control)) { 3087 ext = (void *) mgmt; 3088 min_hdr_len = offsetof(struct ieee80211_ext, u.s1g_beacon); 3089 if (ieee80211_is_s1g_short_beacon(mgmt->frame_control)) 3090 min_hdr_len = offsetof(struct ieee80211_ext, 3091 u.s1g_short_beacon.variable); 3092 } 3093 3094 if (WARN_ON(len < min_hdr_len)) 3095 return NULL; 3096 3097 ielen = len - min_hdr_len; 3098 variable = mgmt->u.probe_resp.variable; 3099 if (ext) { 3100 if (ieee80211_is_s1g_short_beacon(mgmt->frame_control)) 3101 variable = ext->u.s1g_short_beacon.variable; 3102 else 3103 variable = ext->u.s1g_beacon.variable; 3104 } 3105 3106 channel = cfg80211_get_bss_channel(wiphy, variable, ielen, data->chan); 3107 if (!channel) 3108 return NULL; 3109 3110 if (channel->band == NL80211_BAND_6GHZ && 3111 !cfg80211_uhb_power_type_valid(variable, ielen, channel->flags)) { 3112 data->restrict_use = 1; 3113 data->use_for = 0; 3114 data->cannot_use_reasons = 3115 NL80211_BSS_CANNOT_USE_6GHZ_PWR_MISMATCH; 3116 } 3117 3118 if (ext) { 3119 const struct ieee80211_s1g_bcn_compat_ie *compat; 3120 const struct element *elem; 3121 3122 elem = cfg80211_find_elem(WLAN_EID_S1G_BCN_COMPAT, 3123 variable, ielen); 3124 if (!elem) 3125 return NULL; 3126 if (elem->datalen < sizeof(*compat)) 3127 return NULL; 3128 compat = (void *)elem->data; 3129 bssid = ext->u.s1g_beacon.sa; 3130 capability = le16_to_cpu(compat->compat_info); 3131 beacon_int = le16_to_cpu(compat->beacon_int); 3132 } else { 3133 bssid = mgmt->bssid; 3134 beacon_int = le16_to_cpu(mgmt->u.probe_resp.beacon_int); 3135 capability = le16_to_cpu(mgmt->u.probe_resp.capab_info); 3136 } 3137 3138 if (channel->band == NL80211_BAND_60GHZ) { 3139 bss_type = capability & WLAN_CAPABILITY_DMG_TYPE_MASK; 3140 if (bss_type == WLAN_CAPABILITY_DMG_TYPE_AP || 3141 bss_type == WLAN_CAPABILITY_DMG_TYPE_PBSS) 3142 regulatory_hint_found_beacon(wiphy, channel, gfp); 3143 } else { 3144 if (capability & WLAN_CAPABILITY_ESS) 3145 regulatory_hint_found_beacon(wiphy, channel, gfp); 3146 } 3147 3148 ies = kzalloc(sizeof(*ies) + ielen, gfp); 3149 if (!ies) 3150 return NULL; 3151 ies->len = ielen; 3152 ies->tsf = le64_to_cpu(mgmt->u.probe_resp.timestamp); 3153 ies->from_beacon = ieee80211_is_beacon(mgmt->frame_control) || 3154 ieee80211_is_s1g_beacon(mgmt->frame_control); 3155 memcpy(ies->data, variable, ielen); 3156 3157 if (ieee80211_is_probe_resp(mgmt->frame_control)) 3158 rcu_assign_pointer(tmp.pub.proberesp_ies, ies); 3159 else 3160 rcu_assign_pointer(tmp.pub.beacon_ies, ies); 3161 rcu_assign_pointer(tmp.pub.ies, ies); 3162 3163 memcpy(tmp.pub.bssid, bssid, ETH_ALEN); 3164 tmp.pub.beacon_interval = beacon_int; 3165 tmp.pub.capability = capability; 3166 tmp.pub.channel = channel; 3167 tmp.pub.signal = data->signal; 3168 tmp.ts_boottime = data->boottime_ns; 3169 tmp.parent_tsf = data->parent_tsf; 3170 tmp.pub.chains = data->chains; 3171 memcpy(tmp.pub.chain_signal, data->chain_signal, IEEE80211_MAX_CHAINS); 3172 ether_addr_copy(tmp.parent_bssid, data->parent_bssid); 3173 tmp.pub.use_for = data->restrict_use ? 3174 data->use_for : 3175 NL80211_BSS_USE_FOR_ALL; 3176 tmp.pub.cannot_use_reasons = data->cannot_use_reasons; 3177 3178 signal_valid = data->chan == channel; 3179 spin_lock_bh(&rdev->bss_lock); 3180 res = __cfg80211_bss_update(rdev, &tmp, signal_valid, jiffies); 3181 if (!res) 3182 goto drop; 3183 3184 rdev_inform_bss(rdev, &res->pub, ies, data->drv_data); 3185 3186 spin_unlock_bh(&rdev->bss_lock); 3187 3188 trace_cfg80211_return_bss(&res->pub); 3189 /* __cfg80211_bss_update gives us a referenced result */ 3190 return &res->pub; 3191 3192 drop: 3193 spin_unlock_bh(&rdev->bss_lock); 3194 return NULL; 3195 } 3196 3197 struct cfg80211_bss * 3198 cfg80211_inform_bss_frame_data(struct wiphy *wiphy, 3199 struct cfg80211_inform_bss *data, 3200 struct ieee80211_mgmt *mgmt, size_t len, 3201 gfp_t gfp) 3202 { 3203 struct cfg80211_inform_single_bss_data inform_data = { 3204 .drv_data = data, 3205 .ie = mgmt->u.probe_resp.variable, 3206 .ielen = len - offsetof(struct ieee80211_mgmt, 3207 u.probe_resp.variable), 3208 .use_for = data->restrict_use ? 3209 data->use_for : 3210 NL80211_BSS_USE_FOR_ALL, 3211 .cannot_use_reasons = data->cannot_use_reasons, 3212 }; 3213 struct cfg80211_bss *res; 3214 3215 res = cfg80211_inform_single_bss_frame_data(wiphy, data, mgmt, 3216 len, gfp); 3217 if (!res) 3218 return NULL; 3219 3220 /* don't do any further MBSSID/ML handling for S1G */ 3221 if (ieee80211_is_s1g_beacon(mgmt->frame_control)) 3222 return res; 3223 3224 inform_data.ftype = ieee80211_is_beacon(mgmt->frame_control) ? 3225 CFG80211_BSS_FTYPE_BEACON : CFG80211_BSS_FTYPE_PRESP; 3226 memcpy(inform_data.bssid, mgmt->bssid, ETH_ALEN); 3227 inform_data.tsf = le64_to_cpu(mgmt->u.probe_resp.timestamp); 3228 inform_data.beacon_interval = 3229 le16_to_cpu(mgmt->u.probe_resp.beacon_int); 3230 3231 /* process each non-transmitting bss */ 3232 cfg80211_parse_mbssid_data(wiphy, &inform_data, res, gfp); 3233 3234 cfg80211_parse_ml_sta_data(wiphy, &inform_data, res, gfp); 3235 3236 return res; 3237 } 3238 EXPORT_SYMBOL(cfg80211_inform_bss_frame_data); 3239 3240 void cfg80211_ref_bss(struct wiphy *wiphy, struct cfg80211_bss *pub) 3241 { 3242 struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy); 3243 3244 if (!pub) 3245 return; 3246 3247 spin_lock_bh(&rdev->bss_lock); 3248 bss_ref_get(rdev, bss_from_pub(pub)); 3249 spin_unlock_bh(&rdev->bss_lock); 3250 } 3251 EXPORT_SYMBOL(cfg80211_ref_bss); 3252 3253 void cfg80211_put_bss(struct wiphy *wiphy, struct cfg80211_bss *pub) 3254 { 3255 struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy); 3256 3257 if (!pub) 3258 return; 3259 3260 spin_lock_bh(&rdev->bss_lock); 3261 bss_ref_put(rdev, bss_from_pub(pub)); 3262 spin_unlock_bh(&rdev->bss_lock); 3263 } 3264 EXPORT_SYMBOL(cfg80211_put_bss); 3265 3266 void cfg80211_unlink_bss(struct wiphy *wiphy, struct cfg80211_bss *pub) 3267 { 3268 struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy); 3269 struct cfg80211_internal_bss *bss, *tmp1; 3270 struct cfg80211_bss *nontrans_bss, *tmp; 3271 3272 if (WARN_ON(!pub)) 3273 return; 3274 3275 bss = bss_from_pub(pub); 3276 3277 spin_lock_bh(&rdev->bss_lock); 3278 if (list_empty(&bss->list)) 3279 goto out; 3280 3281 list_for_each_entry_safe(nontrans_bss, tmp, 3282 &pub->nontrans_list, 3283 nontrans_list) { 3284 tmp1 = bss_from_pub(nontrans_bss); 3285 if (__cfg80211_unlink_bss(rdev, tmp1)) 3286 rdev->bss_generation++; 3287 } 3288 3289 if (__cfg80211_unlink_bss(rdev, bss)) 3290 rdev->bss_generation++; 3291 out: 3292 spin_unlock_bh(&rdev->bss_lock); 3293 } 3294 EXPORT_SYMBOL(cfg80211_unlink_bss); 3295 3296 void cfg80211_bss_iter(struct wiphy *wiphy, 3297 struct cfg80211_chan_def *chandef, 3298 void (*iter)(struct wiphy *wiphy, 3299 struct cfg80211_bss *bss, 3300 void *data), 3301 void *iter_data) 3302 { 3303 struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy); 3304 struct cfg80211_internal_bss *bss; 3305 3306 spin_lock_bh(&rdev->bss_lock); 3307 3308 list_for_each_entry(bss, &rdev->bss_list, list) { 3309 if (!chandef || cfg80211_is_sub_chan(chandef, bss->pub.channel, 3310 false)) 3311 iter(wiphy, &bss->pub, iter_data); 3312 } 3313 3314 spin_unlock_bh(&rdev->bss_lock); 3315 } 3316 EXPORT_SYMBOL(cfg80211_bss_iter); 3317 3318 void cfg80211_update_assoc_bss_entry(struct wireless_dev *wdev, 3319 unsigned int link_id, 3320 struct ieee80211_channel *chan) 3321 { 3322 struct wiphy *wiphy = wdev->wiphy; 3323 struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy); 3324 struct cfg80211_internal_bss *cbss = wdev->links[link_id].client.current_bss; 3325 struct cfg80211_internal_bss *new = NULL; 3326 struct cfg80211_internal_bss *bss; 3327 struct cfg80211_bss *nontrans_bss; 3328 struct cfg80211_bss *tmp; 3329 3330 spin_lock_bh(&rdev->bss_lock); 3331 3332 /* 3333 * Some APs use CSA also for bandwidth changes, i.e., without actually 3334 * changing the control channel, so no need to update in such a case. 3335 */ 3336 if (cbss->pub.channel == chan) 3337 goto done; 3338 3339 /* use transmitting bss */ 3340 if (cbss->pub.transmitted_bss) 3341 cbss = bss_from_pub(cbss->pub.transmitted_bss); 3342 3343 cbss->pub.channel = chan; 3344 3345 list_for_each_entry(bss, &rdev->bss_list, list) { 3346 if (!cfg80211_bss_type_match(bss->pub.capability, 3347 bss->pub.channel->band, 3348 wdev->conn_bss_type)) 3349 continue; 3350 3351 if (bss == cbss) 3352 continue; 3353 3354 if (!cmp_bss(&bss->pub, &cbss->pub, BSS_CMP_REGULAR)) { 3355 new = bss; 3356 break; 3357 } 3358 } 3359 3360 if (new) { 3361 /* to save time, update IEs for transmitting bss only */ 3362 cfg80211_update_known_bss(rdev, cbss, new, false); 3363 new->pub.proberesp_ies = NULL; 3364 new->pub.beacon_ies = NULL; 3365 3366 list_for_each_entry_safe(nontrans_bss, tmp, 3367 &new->pub.nontrans_list, 3368 nontrans_list) { 3369 bss = bss_from_pub(nontrans_bss); 3370 if (__cfg80211_unlink_bss(rdev, bss)) 3371 rdev->bss_generation++; 3372 } 3373 3374 WARN_ON(atomic_read(&new->hold)); 3375 if (!WARN_ON(!__cfg80211_unlink_bss(rdev, new))) 3376 rdev->bss_generation++; 3377 } 3378 3379 rb_erase(&cbss->rbn, &rdev->bss_tree); 3380 rb_insert_bss(rdev, cbss); 3381 rdev->bss_generation++; 3382 3383 list_for_each_entry_safe(nontrans_bss, tmp, 3384 &cbss->pub.nontrans_list, 3385 nontrans_list) { 3386 bss = bss_from_pub(nontrans_bss); 3387 bss->pub.channel = chan; 3388 rb_erase(&bss->rbn, &rdev->bss_tree); 3389 rb_insert_bss(rdev, bss); 3390 rdev->bss_generation++; 3391 } 3392 3393 done: 3394 spin_unlock_bh(&rdev->bss_lock); 3395 } 3396 3397 #ifdef CONFIG_CFG80211_WEXT 3398 static struct cfg80211_registered_device * 3399 cfg80211_get_dev_from_ifindex(struct net *net, int ifindex) 3400 { 3401 struct cfg80211_registered_device *rdev; 3402 struct net_device *dev; 3403 3404 ASSERT_RTNL(); 3405 3406 dev = dev_get_by_index(net, ifindex); 3407 if (!dev) 3408 return ERR_PTR(-ENODEV); 3409 if (dev->ieee80211_ptr) 3410 rdev = wiphy_to_rdev(dev->ieee80211_ptr->wiphy); 3411 else 3412 rdev = ERR_PTR(-ENODEV); 3413 dev_put(dev); 3414 return rdev; 3415 } 3416 3417 int cfg80211_wext_siwscan(struct net_device *dev, 3418 struct iw_request_info *info, 3419 union iwreq_data *wrqu, char *extra) 3420 { 3421 struct cfg80211_registered_device *rdev; 3422 struct wiphy *wiphy; 3423 struct iw_scan_req *wreq = NULL; 3424 struct cfg80211_scan_request *creq; 3425 int i, err, n_channels = 0; 3426 enum nl80211_band band; 3427 3428 if (!netif_running(dev)) 3429 return -ENETDOWN; 3430 3431 if (wrqu->data.length == sizeof(struct iw_scan_req)) 3432 wreq = (struct iw_scan_req *)extra; 3433 3434 rdev = cfg80211_get_dev_from_ifindex(dev_net(dev), dev->ifindex); 3435 3436 if (IS_ERR(rdev)) 3437 return PTR_ERR(rdev); 3438 3439 if (rdev->scan_req || rdev->scan_msg) 3440 return -EBUSY; 3441 3442 wiphy = &rdev->wiphy; 3443 3444 /* Determine number of channels, needed to allocate creq */ 3445 if (wreq && wreq->num_channels) 3446 n_channels = wreq->num_channels; 3447 else 3448 n_channels = ieee80211_get_num_supported_channels(wiphy); 3449 3450 creq = kzalloc(sizeof(*creq) + sizeof(struct cfg80211_ssid) + 3451 n_channels * sizeof(void *), 3452 GFP_ATOMIC); 3453 if (!creq) 3454 return -ENOMEM; 3455 3456 creq->wiphy = wiphy; 3457 creq->wdev = dev->ieee80211_ptr; 3458 /* SSIDs come after channels */ 3459 creq->ssids = (void *)&creq->channels[n_channels]; 3460 creq->n_channels = n_channels; 3461 creq->n_ssids = 1; 3462 creq->scan_start = jiffies; 3463 3464 /* translate "Scan on frequencies" request */ 3465 i = 0; 3466 for (band = 0; band < NUM_NL80211_BANDS; band++) { 3467 int j; 3468 3469 if (!wiphy->bands[band]) 3470 continue; 3471 3472 for (j = 0; j < wiphy->bands[band]->n_channels; j++) { 3473 /* ignore disabled channels */ 3474 if (wiphy->bands[band]->channels[j].flags & 3475 IEEE80211_CHAN_DISABLED) 3476 continue; 3477 3478 /* If we have a wireless request structure and the 3479 * wireless request specifies frequencies, then search 3480 * for the matching hardware channel. 3481 */ 3482 if (wreq && wreq->num_channels) { 3483 int k; 3484 int wiphy_freq = wiphy->bands[band]->channels[j].center_freq; 3485 for (k = 0; k < wreq->num_channels; k++) { 3486 struct iw_freq *freq = 3487 &wreq->channel_list[k]; 3488 int wext_freq = 3489 cfg80211_wext_freq(freq); 3490 3491 if (wext_freq == wiphy_freq) 3492 goto wext_freq_found; 3493 } 3494 goto wext_freq_not_found; 3495 } 3496 3497 wext_freq_found: 3498 creq->channels[i] = &wiphy->bands[band]->channels[j]; 3499 i++; 3500 wext_freq_not_found: ; 3501 } 3502 } 3503 /* No channels found? */ 3504 if (!i) { 3505 err = -EINVAL; 3506 goto out; 3507 } 3508 3509 /* Set real number of channels specified in creq->channels[] */ 3510 creq->n_channels = i; 3511 3512 /* translate "Scan for SSID" request */ 3513 if (wreq) { 3514 if (wrqu->data.flags & IW_SCAN_THIS_ESSID) { 3515 if (wreq->essid_len > IEEE80211_MAX_SSID_LEN) { 3516 err = -EINVAL; 3517 goto out; 3518 } 3519 memcpy(creq->ssids[0].ssid, wreq->essid, wreq->essid_len); 3520 creq->ssids[0].ssid_len = wreq->essid_len; 3521 } 3522 if (wreq->scan_type == IW_SCAN_TYPE_PASSIVE) 3523 creq->n_ssids = 0; 3524 } 3525 3526 for (i = 0; i < NUM_NL80211_BANDS; i++) 3527 if (wiphy->bands[i]) 3528 creq->rates[i] = (1 << wiphy->bands[i]->n_bitrates) - 1; 3529 3530 eth_broadcast_addr(creq->bssid); 3531 3532 wiphy_lock(&rdev->wiphy); 3533 3534 rdev->scan_req = creq; 3535 err = rdev_scan(rdev, creq); 3536 if (err) { 3537 rdev->scan_req = NULL; 3538 /* creq will be freed below */ 3539 } else { 3540 nl80211_send_scan_start(rdev, dev->ieee80211_ptr); 3541 /* creq now owned by driver */ 3542 creq = NULL; 3543 dev_hold(dev); 3544 } 3545 wiphy_unlock(&rdev->wiphy); 3546 out: 3547 kfree(creq); 3548 return err; 3549 } 3550 EXPORT_WEXT_HANDLER(cfg80211_wext_siwscan); 3551 3552 static char *ieee80211_scan_add_ies(struct iw_request_info *info, 3553 const struct cfg80211_bss_ies *ies, 3554 char *current_ev, char *end_buf) 3555 { 3556 const u8 *pos, *end, *next; 3557 struct iw_event iwe; 3558 3559 if (!ies) 3560 return current_ev; 3561 3562 /* 3563 * If needed, fragment the IEs buffer (at IE boundaries) into short 3564 * enough fragments to fit into IW_GENERIC_IE_MAX octet messages. 3565 */ 3566 pos = ies->data; 3567 end = pos + ies->len; 3568 3569 while (end - pos > IW_GENERIC_IE_MAX) { 3570 next = pos + 2 + pos[1]; 3571 while (next + 2 + next[1] - pos < IW_GENERIC_IE_MAX) 3572 next = next + 2 + next[1]; 3573 3574 memset(&iwe, 0, sizeof(iwe)); 3575 iwe.cmd = IWEVGENIE; 3576 iwe.u.data.length = next - pos; 3577 current_ev = iwe_stream_add_point_check(info, current_ev, 3578 end_buf, &iwe, 3579 (void *)pos); 3580 if (IS_ERR(current_ev)) 3581 return current_ev; 3582 pos = next; 3583 } 3584 3585 if (end > pos) { 3586 memset(&iwe, 0, sizeof(iwe)); 3587 iwe.cmd = IWEVGENIE; 3588 iwe.u.data.length = end - pos; 3589 current_ev = iwe_stream_add_point_check(info, current_ev, 3590 end_buf, &iwe, 3591 (void *)pos); 3592 if (IS_ERR(current_ev)) 3593 return current_ev; 3594 } 3595 3596 return current_ev; 3597 } 3598 3599 static char * 3600 ieee80211_bss(struct wiphy *wiphy, struct iw_request_info *info, 3601 struct cfg80211_internal_bss *bss, char *current_ev, 3602 char *end_buf) 3603 { 3604 const struct cfg80211_bss_ies *ies; 3605 struct iw_event iwe; 3606 const u8 *ie; 3607 u8 buf[50]; 3608 u8 *cfg, *p, *tmp; 3609 int rem, i, sig; 3610 bool ismesh = false; 3611 3612 memset(&iwe, 0, sizeof(iwe)); 3613 iwe.cmd = SIOCGIWAP; 3614 iwe.u.ap_addr.sa_family = ARPHRD_ETHER; 3615 memcpy(iwe.u.ap_addr.sa_data, bss->pub.bssid, ETH_ALEN); 3616 current_ev = iwe_stream_add_event_check(info, current_ev, end_buf, &iwe, 3617 IW_EV_ADDR_LEN); 3618 if (IS_ERR(current_ev)) 3619 return current_ev; 3620 3621 memset(&iwe, 0, sizeof(iwe)); 3622 iwe.cmd = SIOCGIWFREQ; 3623 iwe.u.freq.m = ieee80211_frequency_to_channel(bss->pub.channel->center_freq); 3624 iwe.u.freq.e = 0; 3625 current_ev = iwe_stream_add_event_check(info, current_ev, end_buf, &iwe, 3626 IW_EV_FREQ_LEN); 3627 if (IS_ERR(current_ev)) 3628 return current_ev; 3629 3630 memset(&iwe, 0, sizeof(iwe)); 3631 iwe.cmd = SIOCGIWFREQ; 3632 iwe.u.freq.m = bss->pub.channel->center_freq; 3633 iwe.u.freq.e = 6; 3634 current_ev = iwe_stream_add_event_check(info, current_ev, end_buf, &iwe, 3635 IW_EV_FREQ_LEN); 3636 if (IS_ERR(current_ev)) 3637 return current_ev; 3638 3639 if (wiphy->signal_type != CFG80211_SIGNAL_TYPE_NONE) { 3640 memset(&iwe, 0, sizeof(iwe)); 3641 iwe.cmd = IWEVQUAL; 3642 iwe.u.qual.updated = IW_QUAL_LEVEL_UPDATED | 3643 IW_QUAL_NOISE_INVALID | 3644 IW_QUAL_QUAL_UPDATED; 3645 switch (wiphy->signal_type) { 3646 case CFG80211_SIGNAL_TYPE_MBM: 3647 sig = bss->pub.signal / 100; 3648 iwe.u.qual.level = sig; 3649 iwe.u.qual.updated |= IW_QUAL_DBM; 3650 if (sig < -110) /* rather bad */ 3651 sig = -110; 3652 else if (sig > -40) /* perfect */ 3653 sig = -40; 3654 /* will give a range of 0 .. 70 */ 3655 iwe.u.qual.qual = sig + 110; 3656 break; 3657 case CFG80211_SIGNAL_TYPE_UNSPEC: 3658 iwe.u.qual.level = bss->pub.signal; 3659 /* will give range 0 .. 100 */ 3660 iwe.u.qual.qual = bss->pub.signal; 3661 break; 3662 default: 3663 /* not reached */ 3664 break; 3665 } 3666 current_ev = iwe_stream_add_event_check(info, current_ev, 3667 end_buf, &iwe, 3668 IW_EV_QUAL_LEN); 3669 if (IS_ERR(current_ev)) 3670 return current_ev; 3671 } 3672 3673 memset(&iwe, 0, sizeof(iwe)); 3674 iwe.cmd = SIOCGIWENCODE; 3675 if (bss->pub.capability & WLAN_CAPABILITY_PRIVACY) 3676 iwe.u.data.flags = IW_ENCODE_ENABLED | IW_ENCODE_NOKEY; 3677 else 3678 iwe.u.data.flags = IW_ENCODE_DISABLED; 3679 iwe.u.data.length = 0; 3680 current_ev = iwe_stream_add_point_check(info, current_ev, end_buf, 3681 &iwe, ""); 3682 if (IS_ERR(current_ev)) 3683 return current_ev; 3684 3685 rcu_read_lock(); 3686 ies = rcu_dereference(bss->pub.ies); 3687 rem = ies->len; 3688 ie = ies->data; 3689 3690 while (rem >= 2) { 3691 /* invalid data */ 3692 if (ie[1] > rem - 2) 3693 break; 3694 3695 switch (ie[0]) { 3696 case WLAN_EID_SSID: 3697 memset(&iwe, 0, sizeof(iwe)); 3698 iwe.cmd = SIOCGIWESSID; 3699 iwe.u.data.length = ie[1]; 3700 iwe.u.data.flags = 1; 3701 current_ev = iwe_stream_add_point_check(info, 3702 current_ev, 3703 end_buf, &iwe, 3704 (u8 *)ie + 2); 3705 if (IS_ERR(current_ev)) 3706 goto unlock; 3707 break; 3708 case WLAN_EID_MESH_ID: 3709 memset(&iwe, 0, sizeof(iwe)); 3710 iwe.cmd = SIOCGIWESSID; 3711 iwe.u.data.length = ie[1]; 3712 iwe.u.data.flags = 1; 3713 current_ev = iwe_stream_add_point_check(info, 3714 current_ev, 3715 end_buf, &iwe, 3716 (u8 *)ie + 2); 3717 if (IS_ERR(current_ev)) 3718 goto unlock; 3719 break; 3720 case WLAN_EID_MESH_CONFIG: 3721 ismesh = true; 3722 if (ie[1] != sizeof(struct ieee80211_meshconf_ie)) 3723 break; 3724 cfg = (u8 *)ie + 2; 3725 memset(&iwe, 0, sizeof(iwe)); 3726 iwe.cmd = IWEVCUSTOM; 3727 iwe.u.data.length = sprintf(buf, 3728 "Mesh Network Path Selection Protocol ID: 0x%02X", 3729 cfg[0]); 3730 current_ev = iwe_stream_add_point_check(info, 3731 current_ev, 3732 end_buf, 3733 &iwe, buf); 3734 if (IS_ERR(current_ev)) 3735 goto unlock; 3736 iwe.u.data.length = sprintf(buf, 3737 "Path Selection Metric ID: 0x%02X", 3738 cfg[1]); 3739 current_ev = iwe_stream_add_point_check(info, 3740 current_ev, 3741 end_buf, 3742 &iwe, buf); 3743 if (IS_ERR(current_ev)) 3744 goto unlock; 3745 iwe.u.data.length = sprintf(buf, 3746 "Congestion Control Mode ID: 0x%02X", 3747 cfg[2]); 3748 current_ev = iwe_stream_add_point_check(info, 3749 current_ev, 3750 end_buf, 3751 &iwe, buf); 3752 if (IS_ERR(current_ev)) 3753 goto unlock; 3754 iwe.u.data.length = sprintf(buf, 3755 "Synchronization ID: 0x%02X", 3756 cfg[3]); 3757 current_ev = iwe_stream_add_point_check(info, 3758 current_ev, 3759 end_buf, 3760 &iwe, buf); 3761 if (IS_ERR(current_ev)) 3762 goto unlock; 3763 iwe.u.data.length = sprintf(buf, 3764 "Authentication ID: 0x%02X", 3765 cfg[4]); 3766 current_ev = iwe_stream_add_point_check(info, 3767 current_ev, 3768 end_buf, 3769 &iwe, buf); 3770 if (IS_ERR(current_ev)) 3771 goto unlock; 3772 iwe.u.data.length = sprintf(buf, 3773 "Formation Info: 0x%02X", 3774 cfg[5]); 3775 current_ev = iwe_stream_add_point_check(info, 3776 current_ev, 3777 end_buf, 3778 &iwe, buf); 3779 if (IS_ERR(current_ev)) 3780 goto unlock; 3781 iwe.u.data.length = sprintf(buf, 3782 "Capabilities: 0x%02X", 3783 cfg[6]); 3784 current_ev = iwe_stream_add_point_check(info, 3785 current_ev, 3786 end_buf, 3787 &iwe, buf); 3788 if (IS_ERR(current_ev)) 3789 goto unlock; 3790 break; 3791 case WLAN_EID_SUPP_RATES: 3792 case WLAN_EID_EXT_SUPP_RATES: 3793 /* display all supported rates in readable format */ 3794 p = current_ev + iwe_stream_lcp_len(info); 3795 3796 memset(&iwe, 0, sizeof(iwe)); 3797 iwe.cmd = SIOCGIWRATE; 3798 /* Those two flags are ignored... */ 3799 iwe.u.bitrate.fixed = iwe.u.bitrate.disabled = 0; 3800 3801 for (i = 0; i < ie[1]; i++) { 3802 iwe.u.bitrate.value = 3803 ((ie[i + 2] & 0x7f) * 500000); 3804 tmp = p; 3805 p = iwe_stream_add_value(info, current_ev, p, 3806 end_buf, &iwe, 3807 IW_EV_PARAM_LEN); 3808 if (p == tmp) { 3809 current_ev = ERR_PTR(-E2BIG); 3810 goto unlock; 3811 } 3812 } 3813 current_ev = p; 3814 break; 3815 } 3816 rem -= ie[1] + 2; 3817 ie += ie[1] + 2; 3818 } 3819 3820 if (bss->pub.capability & (WLAN_CAPABILITY_ESS | WLAN_CAPABILITY_IBSS) || 3821 ismesh) { 3822 memset(&iwe, 0, sizeof(iwe)); 3823 iwe.cmd = SIOCGIWMODE; 3824 if (ismesh) 3825 iwe.u.mode = IW_MODE_MESH; 3826 else if (bss->pub.capability & WLAN_CAPABILITY_ESS) 3827 iwe.u.mode = IW_MODE_MASTER; 3828 else 3829 iwe.u.mode = IW_MODE_ADHOC; 3830 current_ev = iwe_stream_add_event_check(info, current_ev, 3831 end_buf, &iwe, 3832 IW_EV_UINT_LEN); 3833 if (IS_ERR(current_ev)) 3834 goto unlock; 3835 } 3836 3837 memset(&iwe, 0, sizeof(iwe)); 3838 iwe.cmd = IWEVCUSTOM; 3839 iwe.u.data.length = sprintf(buf, "tsf=%016llx", 3840 (unsigned long long)(ies->tsf)); 3841 current_ev = iwe_stream_add_point_check(info, current_ev, end_buf, 3842 &iwe, buf); 3843 if (IS_ERR(current_ev)) 3844 goto unlock; 3845 memset(&iwe, 0, sizeof(iwe)); 3846 iwe.cmd = IWEVCUSTOM; 3847 iwe.u.data.length = sprintf(buf, " Last beacon: %ums ago", 3848 elapsed_jiffies_msecs(bss->ts)); 3849 current_ev = iwe_stream_add_point_check(info, current_ev, 3850 end_buf, &iwe, buf); 3851 if (IS_ERR(current_ev)) 3852 goto unlock; 3853 3854 current_ev = ieee80211_scan_add_ies(info, ies, current_ev, end_buf); 3855 3856 unlock: 3857 rcu_read_unlock(); 3858 return current_ev; 3859 } 3860 3861 3862 static int ieee80211_scan_results(struct cfg80211_registered_device *rdev, 3863 struct iw_request_info *info, 3864 char *buf, size_t len) 3865 { 3866 char *current_ev = buf; 3867 char *end_buf = buf + len; 3868 struct cfg80211_internal_bss *bss; 3869 int err = 0; 3870 3871 spin_lock_bh(&rdev->bss_lock); 3872 cfg80211_bss_expire(rdev); 3873 3874 list_for_each_entry(bss, &rdev->bss_list, list) { 3875 if (buf + len - current_ev <= IW_EV_ADDR_LEN) { 3876 err = -E2BIG; 3877 break; 3878 } 3879 current_ev = ieee80211_bss(&rdev->wiphy, info, bss, 3880 current_ev, end_buf); 3881 if (IS_ERR(current_ev)) { 3882 err = PTR_ERR(current_ev); 3883 break; 3884 } 3885 } 3886 spin_unlock_bh(&rdev->bss_lock); 3887 3888 if (err) 3889 return err; 3890 return current_ev - buf; 3891 } 3892 3893 3894 int cfg80211_wext_giwscan(struct net_device *dev, 3895 struct iw_request_info *info, 3896 union iwreq_data *wrqu, char *extra) 3897 { 3898 struct iw_point *data = &wrqu->data; 3899 struct cfg80211_registered_device *rdev; 3900 int res; 3901 3902 if (!netif_running(dev)) 3903 return -ENETDOWN; 3904 3905 rdev = cfg80211_get_dev_from_ifindex(dev_net(dev), dev->ifindex); 3906 3907 if (IS_ERR(rdev)) 3908 return PTR_ERR(rdev); 3909 3910 if (rdev->scan_req || rdev->scan_msg) 3911 return -EAGAIN; 3912 3913 res = ieee80211_scan_results(rdev, info, extra, data->length); 3914 data->length = 0; 3915 if (res >= 0) { 3916 data->length = res; 3917 res = 0; 3918 } 3919 3920 return res; 3921 } 3922 EXPORT_WEXT_HANDLER(cfg80211_wext_giwscan); 3923 #endif 3924