xref: /linux/net/wireless/scan.c (revision ee975351cf0c2a11cdf97eae58265c126cb32850)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * cfg80211 scan result handling
4  *
5  * Copyright 2008 Johannes Berg <johannes@sipsolutions.net>
6  * Copyright 2013-2014  Intel Mobile Communications GmbH
7  * Copyright 2016	Intel Deutschland GmbH
8  * Copyright (C) 2018-2024 Intel Corporation
9  */
10 #include <linux/kernel.h>
11 #include <linux/slab.h>
12 #include <linux/module.h>
13 #include <linux/netdevice.h>
14 #include <linux/wireless.h>
15 #include <linux/nl80211.h>
16 #include <linux/etherdevice.h>
17 #include <linux/crc32.h>
18 #include <linux/bitfield.h>
19 #include <net/arp.h>
20 #include <net/cfg80211.h>
21 #include <net/cfg80211-wext.h>
22 #include <net/iw_handler.h>
23 #include <kunit/visibility.h>
24 #include "core.h"
25 #include "nl80211.h"
26 #include "wext-compat.h"
27 #include "rdev-ops.h"
28 
29 /**
30  * DOC: BSS tree/list structure
31  *
32  * At the top level, the BSS list is kept in both a list in each
33  * registered device (@bss_list) as well as an RB-tree for faster
34  * lookup. In the RB-tree, entries can be looked up using their
35  * channel, MESHID, MESHCONF (for MBSSes) or channel, BSSID, SSID
36  * for other BSSes.
37  *
38  * Due to the possibility of hidden SSIDs, there's a second level
39  * structure, the "hidden_list" and "hidden_beacon_bss" pointer.
40  * The hidden_list connects all BSSes belonging to a single AP
41  * that has a hidden SSID, and connects beacon and probe response
42  * entries. For a probe response entry for a hidden SSID, the
43  * hidden_beacon_bss pointer points to the BSS struct holding the
44  * beacon's information.
45  *
46  * Reference counting is done for all these references except for
47  * the hidden_list, so that a beacon BSS struct that is otherwise
48  * not referenced has one reference for being on the bss_list and
49  * one for each probe response entry that points to it using the
50  * hidden_beacon_bss pointer. When a BSS struct that has such a
51  * pointer is get/put, the refcount update is also propagated to
52  * the referenced struct, this ensure that it cannot get removed
53  * while somebody is using the probe response version.
54  *
55  * Note that the hidden_beacon_bss pointer never changes, due to
56  * the reference counting. Therefore, no locking is needed for
57  * it.
58  *
59  * Also note that the hidden_beacon_bss pointer is only relevant
60  * if the driver uses something other than the IEs, e.g. private
61  * data stored in the BSS struct, since the beacon IEs are
62  * also linked into the probe response struct.
63  */
64 
65 /*
66  * Limit the number of BSS entries stored in mac80211. Each one is
67  * a bit over 4k at most, so this limits to roughly 4-5M of memory.
68  * If somebody wants to really attack this though, they'd likely
69  * use small beacons, and only one type of frame, limiting each of
70  * the entries to a much smaller size (in order to generate more
71  * entries in total, so overhead is bigger.)
72  */
73 static int bss_entries_limit = 1000;
74 module_param(bss_entries_limit, int, 0644);
75 MODULE_PARM_DESC(bss_entries_limit,
76                  "limit to number of scan BSS entries (per wiphy, default 1000)");
77 
78 #define IEEE80211_SCAN_RESULT_EXPIRE	(30 * HZ)
79 
80 static void bss_free(struct cfg80211_internal_bss *bss)
81 {
82 	struct cfg80211_bss_ies *ies;
83 
84 	if (WARN_ON(atomic_read(&bss->hold)))
85 		return;
86 
87 	ies = (void *)rcu_access_pointer(bss->pub.beacon_ies);
88 	if (ies && !bss->pub.hidden_beacon_bss)
89 		kfree_rcu(ies, rcu_head);
90 	ies = (void *)rcu_access_pointer(bss->pub.proberesp_ies);
91 	if (ies)
92 		kfree_rcu(ies, rcu_head);
93 
94 	/*
95 	 * This happens when the module is removed, it doesn't
96 	 * really matter any more save for completeness
97 	 */
98 	if (!list_empty(&bss->hidden_list))
99 		list_del(&bss->hidden_list);
100 
101 	kfree(bss);
102 }
103 
104 static inline void bss_ref_get(struct cfg80211_registered_device *rdev,
105 			       struct cfg80211_internal_bss *bss)
106 {
107 	lockdep_assert_held(&rdev->bss_lock);
108 
109 	bss->refcount++;
110 
111 	if (bss->pub.hidden_beacon_bss)
112 		bss_from_pub(bss->pub.hidden_beacon_bss)->refcount++;
113 
114 	if (bss->pub.transmitted_bss)
115 		bss_from_pub(bss->pub.transmitted_bss)->refcount++;
116 }
117 
118 static inline void bss_ref_put(struct cfg80211_registered_device *rdev,
119 			       struct cfg80211_internal_bss *bss)
120 {
121 	lockdep_assert_held(&rdev->bss_lock);
122 
123 	if (bss->pub.hidden_beacon_bss) {
124 		struct cfg80211_internal_bss *hbss;
125 
126 		hbss = bss_from_pub(bss->pub.hidden_beacon_bss);
127 		hbss->refcount--;
128 		if (hbss->refcount == 0)
129 			bss_free(hbss);
130 	}
131 
132 	if (bss->pub.transmitted_bss) {
133 		struct cfg80211_internal_bss *tbss;
134 
135 		tbss = bss_from_pub(bss->pub.transmitted_bss);
136 		tbss->refcount--;
137 		if (tbss->refcount == 0)
138 			bss_free(tbss);
139 	}
140 
141 	bss->refcount--;
142 	if (bss->refcount == 0)
143 		bss_free(bss);
144 }
145 
146 static bool __cfg80211_unlink_bss(struct cfg80211_registered_device *rdev,
147 				  struct cfg80211_internal_bss *bss)
148 {
149 	lockdep_assert_held(&rdev->bss_lock);
150 
151 	if (!list_empty(&bss->hidden_list)) {
152 		/*
153 		 * don't remove the beacon entry if it has
154 		 * probe responses associated with it
155 		 */
156 		if (!bss->pub.hidden_beacon_bss)
157 			return false;
158 		/*
159 		 * if it's a probe response entry break its
160 		 * link to the other entries in the group
161 		 */
162 		list_del_init(&bss->hidden_list);
163 	}
164 
165 	list_del_init(&bss->list);
166 	list_del_init(&bss->pub.nontrans_list);
167 	rb_erase(&bss->rbn, &rdev->bss_tree);
168 	rdev->bss_entries--;
169 	WARN_ONCE((rdev->bss_entries == 0) ^ list_empty(&rdev->bss_list),
170 		  "rdev bss entries[%d]/list[empty:%d] corruption\n",
171 		  rdev->bss_entries, list_empty(&rdev->bss_list));
172 	bss_ref_put(rdev, bss);
173 	return true;
174 }
175 
176 bool cfg80211_is_element_inherited(const struct element *elem,
177 				   const struct element *non_inherit_elem)
178 {
179 	u8 id_len, ext_id_len, i, loop_len, id;
180 	const u8 *list;
181 
182 	if (elem->id == WLAN_EID_MULTIPLE_BSSID)
183 		return false;
184 
185 	if (elem->id == WLAN_EID_EXTENSION && elem->datalen > 1 &&
186 	    elem->data[0] == WLAN_EID_EXT_EHT_MULTI_LINK)
187 		return false;
188 
189 	if (!non_inherit_elem || non_inherit_elem->datalen < 2)
190 		return true;
191 
192 	/*
193 	 * non inheritance element format is:
194 	 * ext ID (56) | IDs list len | list | extension IDs list len | list
195 	 * Both lists are optional. Both lengths are mandatory.
196 	 * This means valid length is:
197 	 * elem_len = 1 (extension ID) + 2 (list len fields) + list lengths
198 	 */
199 	id_len = non_inherit_elem->data[1];
200 	if (non_inherit_elem->datalen < 3 + id_len)
201 		return true;
202 
203 	ext_id_len = non_inherit_elem->data[2 + id_len];
204 	if (non_inherit_elem->datalen < 3 + id_len + ext_id_len)
205 		return true;
206 
207 	if (elem->id == WLAN_EID_EXTENSION) {
208 		if (!ext_id_len)
209 			return true;
210 		loop_len = ext_id_len;
211 		list = &non_inherit_elem->data[3 + id_len];
212 		id = elem->data[0];
213 	} else {
214 		if (!id_len)
215 			return true;
216 		loop_len = id_len;
217 		list = &non_inherit_elem->data[2];
218 		id = elem->id;
219 	}
220 
221 	for (i = 0; i < loop_len; i++) {
222 		if (list[i] == id)
223 			return false;
224 	}
225 
226 	return true;
227 }
228 EXPORT_SYMBOL(cfg80211_is_element_inherited);
229 
230 static size_t cfg80211_copy_elem_with_frags(const struct element *elem,
231 					    const u8 *ie, size_t ie_len,
232 					    u8 **pos, u8 *buf, size_t buf_len)
233 {
234 	if (WARN_ON((u8 *)elem < ie || elem->data > ie + ie_len ||
235 		    elem->data + elem->datalen > ie + ie_len))
236 		return 0;
237 
238 	if (elem->datalen + 2 > buf + buf_len - *pos)
239 		return 0;
240 
241 	memcpy(*pos, elem, elem->datalen + 2);
242 	*pos += elem->datalen + 2;
243 
244 	/* Finish if it is not fragmented  */
245 	if (elem->datalen != 255)
246 		return *pos - buf;
247 
248 	ie_len = ie + ie_len - elem->data - elem->datalen;
249 	ie = (const u8 *)elem->data + elem->datalen;
250 
251 	for_each_element(elem, ie, ie_len) {
252 		if (elem->id != WLAN_EID_FRAGMENT)
253 			break;
254 
255 		if (elem->datalen + 2 > buf + buf_len - *pos)
256 			return 0;
257 
258 		memcpy(*pos, elem, elem->datalen + 2);
259 		*pos += elem->datalen + 2;
260 
261 		if (elem->datalen != 255)
262 			break;
263 	}
264 
265 	return *pos - buf;
266 }
267 
268 VISIBLE_IF_CFG80211_KUNIT size_t
269 cfg80211_gen_new_ie(const u8 *ie, size_t ielen,
270 		    const u8 *subie, size_t subie_len,
271 		    u8 *new_ie, size_t new_ie_len)
272 {
273 	const struct element *non_inherit_elem, *parent, *sub;
274 	u8 *pos = new_ie;
275 	u8 id, ext_id;
276 	unsigned int match_len;
277 
278 	non_inherit_elem = cfg80211_find_ext_elem(WLAN_EID_EXT_NON_INHERITANCE,
279 						  subie, subie_len);
280 
281 	/* We copy the elements one by one from the parent to the generated
282 	 * elements.
283 	 * If they are not inherited (included in subie or in the non
284 	 * inheritance element), then we copy all occurrences the first time
285 	 * we see this element type.
286 	 */
287 	for_each_element(parent, ie, ielen) {
288 		if (parent->id == WLAN_EID_FRAGMENT)
289 			continue;
290 
291 		if (parent->id == WLAN_EID_EXTENSION) {
292 			if (parent->datalen < 1)
293 				continue;
294 
295 			id = WLAN_EID_EXTENSION;
296 			ext_id = parent->data[0];
297 			match_len = 1;
298 		} else {
299 			id = parent->id;
300 			match_len = 0;
301 		}
302 
303 		/* Find first occurrence in subie */
304 		sub = cfg80211_find_elem_match(id, subie, subie_len,
305 					       &ext_id, match_len, 0);
306 
307 		/* Copy from parent if not in subie and inherited */
308 		if (!sub &&
309 		    cfg80211_is_element_inherited(parent, non_inherit_elem)) {
310 			if (!cfg80211_copy_elem_with_frags(parent,
311 							   ie, ielen,
312 							   &pos, new_ie,
313 							   new_ie_len))
314 				return 0;
315 
316 			continue;
317 		}
318 
319 		/* Already copied if an earlier element had the same type */
320 		if (cfg80211_find_elem_match(id, ie, (u8 *)parent - ie,
321 					     &ext_id, match_len, 0))
322 			continue;
323 
324 		/* Not inheriting, copy all similar elements from subie */
325 		while (sub) {
326 			if (!cfg80211_copy_elem_with_frags(sub,
327 							   subie, subie_len,
328 							   &pos, new_ie,
329 							   new_ie_len))
330 				return 0;
331 
332 			sub = cfg80211_find_elem_match(id,
333 						       sub->data + sub->datalen,
334 						       subie_len + subie -
335 						       (sub->data +
336 							sub->datalen),
337 						       &ext_id, match_len, 0);
338 		}
339 	}
340 
341 	/* The above misses elements that are included in subie but not in the
342 	 * parent, so do a pass over subie and append those.
343 	 * Skip the non-tx BSSID caps and non-inheritance element.
344 	 */
345 	for_each_element(sub, subie, subie_len) {
346 		if (sub->id == WLAN_EID_NON_TX_BSSID_CAP)
347 			continue;
348 
349 		if (sub->id == WLAN_EID_FRAGMENT)
350 			continue;
351 
352 		if (sub->id == WLAN_EID_EXTENSION) {
353 			if (sub->datalen < 1)
354 				continue;
355 
356 			id = WLAN_EID_EXTENSION;
357 			ext_id = sub->data[0];
358 			match_len = 1;
359 
360 			if (ext_id == WLAN_EID_EXT_NON_INHERITANCE)
361 				continue;
362 		} else {
363 			id = sub->id;
364 			match_len = 0;
365 		}
366 
367 		/* Processed if one was included in the parent */
368 		if (cfg80211_find_elem_match(id, ie, ielen,
369 					     &ext_id, match_len, 0))
370 			continue;
371 
372 		if (!cfg80211_copy_elem_with_frags(sub, subie, subie_len,
373 						   &pos, new_ie, new_ie_len))
374 			return 0;
375 	}
376 
377 	return pos - new_ie;
378 }
379 EXPORT_SYMBOL_IF_CFG80211_KUNIT(cfg80211_gen_new_ie);
380 
381 static bool is_bss(struct cfg80211_bss *a, const u8 *bssid,
382 		   const u8 *ssid, size_t ssid_len)
383 {
384 	const struct cfg80211_bss_ies *ies;
385 	const struct element *ssid_elem;
386 
387 	if (bssid && !ether_addr_equal(a->bssid, bssid))
388 		return false;
389 
390 	if (!ssid)
391 		return true;
392 
393 	ies = rcu_access_pointer(a->ies);
394 	if (!ies)
395 		return false;
396 	ssid_elem = cfg80211_find_elem(WLAN_EID_SSID, ies->data, ies->len);
397 	if (!ssid_elem)
398 		return false;
399 	if (ssid_elem->datalen != ssid_len)
400 		return false;
401 	return memcmp(ssid_elem->data, ssid, ssid_len) == 0;
402 }
403 
404 static int
405 cfg80211_add_nontrans_list(struct cfg80211_bss *trans_bss,
406 			   struct cfg80211_bss *nontrans_bss)
407 {
408 	const struct element *ssid_elem;
409 	struct cfg80211_bss *bss = NULL;
410 
411 	rcu_read_lock();
412 	ssid_elem = ieee80211_bss_get_elem(nontrans_bss, WLAN_EID_SSID);
413 	if (!ssid_elem) {
414 		rcu_read_unlock();
415 		return -EINVAL;
416 	}
417 
418 	/* check if nontrans_bss is in the list */
419 	list_for_each_entry(bss, &trans_bss->nontrans_list, nontrans_list) {
420 		if (is_bss(bss, nontrans_bss->bssid, ssid_elem->data,
421 			   ssid_elem->datalen)) {
422 			rcu_read_unlock();
423 			return 0;
424 		}
425 	}
426 
427 	rcu_read_unlock();
428 
429 	/*
430 	 * This is a bit weird - it's not on the list, but already on another
431 	 * one! The only way that could happen is if there's some BSSID/SSID
432 	 * shared by multiple APs in their multi-BSSID profiles, potentially
433 	 * with hidden SSID mixed in ... ignore it.
434 	 */
435 	if (!list_empty(&nontrans_bss->nontrans_list))
436 		return -EINVAL;
437 
438 	/* add to the list */
439 	list_add_tail(&nontrans_bss->nontrans_list, &trans_bss->nontrans_list);
440 	return 0;
441 }
442 
443 static void __cfg80211_bss_expire(struct cfg80211_registered_device *rdev,
444 				  unsigned long expire_time)
445 {
446 	struct cfg80211_internal_bss *bss, *tmp;
447 	bool expired = false;
448 
449 	lockdep_assert_held(&rdev->bss_lock);
450 
451 	list_for_each_entry_safe(bss, tmp, &rdev->bss_list, list) {
452 		if (atomic_read(&bss->hold))
453 			continue;
454 		if (!time_after(expire_time, bss->ts))
455 			continue;
456 
457 		if (__cfg80211_unlink_bss(rdev, bss))
458 			expired = true;
459 	}
460 
461 	if (expired)
462 		rdev->bss_generation++;
463 }
464 
465 static bool cfg80211_bss_expire_oldest(struct cfg80211_registered_device *rdev)
466 {
467 	struct cfg80211_internal_bss *bss, *oldest = NULL;
468 	bool ret;
469 
470 	lockdep_assert_held(&rdev->bss_lock);
471 
472 	list_for_each_entry(bss, &rdev->bss_list, list) {
473 		if (atomic_read(&bss->hold))
474 			continue;
475 
476 		if (!list_empty(&bss->hidden_list) &&
477 		    !bss->pub.hidden_beacon_bss)
478 			continue;
479 
480 		if (oldest && time_before(oldest->ts, bss->ts))
481 			continue;
482 		oldest = bss;
483 	}
484 
485 	if (WARN_ON(!oldest))
486 		return false;
487 
488 	/*
489 	 * The callers make sure to increase rdev->bss_generation if anything
490 	 * gets removed (and a new entry added), so there's no need to also do
491 	 * it here.
492 	 */
493 
494 	ret = __cfg80211_unlink_bss(rdev, oldest);
495 	WARN_ON(!ret);
496 	return ret;
497 }
498 
499 static u8 cfg80211_parse_bss_param(u8 data,
500 				   struct cfg80211_colocated_ap *coloc_ap)
501 {
502 	coloc_ap->oct_recommended =
503 		u8_get_bits(data, IEEE80211_RNR_TBTT_PARAMS_OCT_RECOMMENDED);
504 	coloc_ap->same_ssid =
505 		u8_get_bits(data, IEEE80211_RNR_TBTT_PARAMS_SAME_SSID);
506 	coloc_ap->multi_bss =
507 		u8_get_bits(data, IEEE80211_RNR_TBTT_PARAMS_MULTI_BSSID);
508 	coloc_ap->transmitted_bssid =
509 		u8_get_bits(data, IEEE80211_RNR_TBTT_PARAMS_TRANSMITTED_BSSID);
510 	coloc_ap->unsolicited_probe =
511 		u8_get_bits(data, IEEE80211_RNR_TBTT_PARAMS_PROBE_ACTIVE);
512 	coloc_ap->colocated_ess =
513 		u8_get_bits(data, IEEE80211_RNR_TBTT_PARAMS_COLOC_ESS);
514 
515 	return u8_get_bits(data, IEEE80211_RNR_TBTT_PARAMS_COLOC_AP);
516 }
517 
518 static int cfg80211_calc_short_ssid(const struct cfg80211_bss_ies *ies,
519 				    const struct element **elem, u32 *s_ssid)
520 {
521 
522 	*elem = cfg80211_find_elem(WLAN_EID_SSID, ies->data, ies->len);
523 	if (!*elem || (*elem)->datalen > IEEE80211_MAX_SSID_LEN)
524 		return -EINVAL;
525 
526 	*s_ssid = ~crc32_le(~0, (*elem)->data, (*elem)->datalen);
527 	return 0;
528 }
529 
530 VISIBLE_IF_CFG80211_KUNIT void
531 cfg80211_free_coloc_ap_list(struct list_head *coloc_ap_list)
532 {
533 	struct cfg80211_colocated_ap *ap, *tmp_ap;
534 
535 	list_for_each_entry_safe(ap, tmp_ap, coloc_ap_list, list) {
536 		list_del(&ap->list);
537 		kfree(ap);
538 	}
539 }
540 EXPORT_SYMBOL_IF_CFG80211_KUNIT(cfg80211_free_coloc_ap_list);
541 
542 static int cfg80211_parse_ap_info(struct cfg80211_colocated_ap *entry,
543 				  const u8 *pos, u8 length,
544 				  const struct element *ssid_elem,
545 				  u32 s_ssid_tmp)
546 {
547 	u8 bss_params;
548 
549 	entry->psd_20 = IEEE80211_RNR_TBTT_PARAMS_PSD_RESERVED;
550 
551 	/* The length is already verified by the caller to contain bss_params */
552 	if (length > sizeof(struct ieee80211_tbtt_info_7_8_9)) {
553 		struct ieee80211_tbtt_info_ge_11 *tbtt_info = (void *)pos;
554 
555 		memcpy(entry->bssid, tbtt_info->bssid, ETH_ALEN);
556 		entry->short_ssid = le32_to_cpu(tbtt_info->short_ssid);
557 		entry->short_ssid_valid = true;
558 
559 		bss_params = tbtt_info->bss_params;
560 
561 		/* Ignore disabled links */
562 		if (length >= offsetofend(typeof(*tbtt_info), mld_params)) {
563 			if (le16_get_bits(tbtt_info->mld_params.params,
564 					  IEEE80211_RNR_MLD_PARAMS_DISABLED_LINK))
565 				return -EINVAL;
566 		}
567 
568 		if (length >= offsetofend(struct ieee80211_tbtt_info_ge_11,
569 					  psd_20))
570 			entry->psd_20 = tbtt_info->psd_20;
571 	} else {
572 		struct ieee80211_tbtt_info_7_8_9 *tbtt_info = (void *)pos;
573 
574 		memcpy(entry->bssid, tbtt_info->bssid, ETH_ALEN);
575 
576 		bss_params = tbtt_info->bss_params;
577 
578 		if (length == offsetofend(struct ieee80211_tbtt_info_7_8_9,
579 					  psd_20))
580 			entry->psd_20 = tbtt_info->psd_20;
581 	}
582 
583 	/* ignore entries with invalid BSSID */
584 	if (!is_valid_ether_addr(entry->bssid))
585 		return -EINVAL;
586 
587 	/* skip non colocated APs */
588 	if (!cfg80211_parse_bss_param(bss_params, entry))
589 		return -EINVAL;
590 
591 	/* no information about the short ssid. Consider the entry valid
592 	 * for now. It would later be dropped in case there are explicit
593 	 * SSIDs that need to be matched
594 	 */
595 	if (!entry->same_ssid && !entry->short_ssid_valid)
596 		return 0;
597 
598 	if (entry->same_ssid) {
599 		entry->short_ssid = s_ssid_tmp;
600 		entry->short_ssid_valid = true;
601 
602 		/*
603 		 * This is safe because we validate datalen in
604 		 * cfg80211_parse_colocated_ap(), before calling this
605 		 * function.
606 		 */
607 		memcpy(&entry->ssid, &ssid_elem->data, ssid_elem->datalen);
608 		entry->ssid_len = ssid_elem->datalen;
609 	}
610 
611 	return 0;
612 }
613 
614 VISIBLE_IF_CFG80211_KUNIT int
615 cfg80211_parse_colocated_ap(const struct cfg80211_bss_ies *ies,
616 			    struct list_head *list)
617 {
618 	struct ieee80211_neighbor_ap_info *ap_info;
619 	const struct element *elem, *ssid_elem;
620 	const u8 *pos, *end;
621 	u32 s_ssid_tmp;
622 	int n_coloc = 0, ret;
623 	LIST_HEAD(ap_list);
624 
625 	ret = cfg80211_calc_short_ssid(ies, &ssid_elem, &s_ssid_tmp);
626 	if (ret)
627 		return 0;
628 
629 	for_each_element_id(elem, WLAN_EID_REDUCED_NEIGHBOR_REPORT,
630 			    ies->data, ies->len) {
631 		pos = elem->data;
632 		end = elem->data + elem->datalen;
633 
634 		/* RNR IE may contain more than one NEIGHBOR_AP_INFO */
635 		while (pos + sizeof(*ap_info) <= end) {
636 			enum nl80211_band band;
637 			int freq;
638 			u8 length, i, count;
639 
640 			ap_info = (void *)pos;
641 			count = u8_get_bits(ap_info->tbtt_info_hdr,
642 					    IEEE80211_AP_INFO_TBTT_HDR_COUNT) + 1;
643 			length = ap_info->tbtt_info_len;
644 
645 			pos += sizeof(*ap_info);
646 
647 			if (!ieee80211_operating_class_to_band(ap_info->op_class,
648 							       &band))
649 				break;
650 
651 			freq = ieee80211_channel_to_frequency(ap_info->channel,
652 							      band);
653 
654 			if (end - pos < count * length)
655 				break;
656 
657 			if (u8_get_bits(ap_info->tbtt_info_hdr,
658 					IEEE80211_AP_INFO_TBTT_HDR_TYPE) !=
659 			    IEEE80211_TBTT_INFO_TYPE_TBTT) {
660 				pos += count * length;
661 				continue;
662 			}
663 
664 			/* TBTT info must include bss param + BSSID +
665 			 * (short SSID or same_ssid bit to be set).
666 			 * ignore other options, and move to the
667 			 * next AP info
668 			 */
669 			if (band != NL80211_BAND_6GHZ ||
670 			    !(length == offsetofend(struct ieee80211_tbtt_info_7_8_9,
671 						    bss_params) ||
672 			      length == sizeof(struct ieee80211_tbtt_info_7_8_9) ||
673 			      length >= offsetofend(struct ieee80211_tbtt_info_ge_11,
674 						    bss_params))) {
675 				pos += count * length;
676 				continue;
677 			}
678 
679 			for (i = 0; i < count; i++) {
680 				struct cfg80211_colocated_ap *entry;
681 
682 				entry = kzalloc(sizeof(*entry) + IEEE80211_MAX_SSID_LEN,
683 						GFP_ATOMIC);
684 
685 				if (!entry)
686 					goto error;
687 
688 				entry->center_freq = freq;
689 
690 				if (!cfg80211_parse_ap_info(entry, pos, length,
691 							    ssid_elem,
692 							    s_ssid_tmp)) {
693 					n_coloc++;
694 					list_add_tail(&entry->list, &ap_list);
695 				} else {
696 					kfree(entry);
697 				}
698 
699 				pos += length;
700 			}
701 		}
702 
703 error:
704 		if (pos != end) {
705 			cfg80211_free_coloc_ap_list(&ap_list);
706 			return 0;
707 		}
708 	}
709 
710 	list_splice_tail(&ap_list, list);
711 	return n_coloc;
712 }
713 EXPORT_SYMBOL_IF_CFG80211_KUNIT(cfg80211_parse_colocated_ap);
714 
715 static  void cfg80211_scan_req_add_chan(struct cfg80211_scan_request *request,
716 					struct ieee80211_channel *chan,
717 					bool add_to_6ghz)
718 {
719 	int i;
720 	u32 n_channels = request->n_channels;
721 	struct cfg80211_scan_6ghz_params *params =
722 		&request->scan_6ghz_params[request->n_6ghz_params];
723 
724 	for (i = 0; i < n_channels; i++) {
725 		if (request->channels[i] == chan) {
726 			if (add_to_6ghz)
727 				params->channel_idx = i;
728 			return;
729 		}
730 	}
731 
732 	request->channels[n_channels] = chan;
733 	if (add_to_6ghz)
734 		request->scan_6ghz_params[request->n_6ghz_params].channel_idx =
735 			n_channels;
736 
737 	request->n_channels++;
738 }
739 
740 static bool cfg80211_find_ssid_match(struct cfg80211_colocated_ap *ap,
741 				     struct cfg80211_scan_request *request)
742 {
743 	int i;
744 	u32 s_ssid;
745 
746 	for (i = 0; i < request->n_ssids; i++) {
747 		/* wildcard ssid in the scan request */
748 		if (!request->ssids[i].ssid_len) {
749 			if (ap->multi_bss && !ap->transmitted_bssid)
750 				continue;
751 
752 			return true;
753 		}
754 
755 		if (ap->ssid_len &&
756 		    ap->ssid_len == request->ssids[i].ssid_len) {
757 			if (!memcmp(request->ssids[i].ssid, ap->ssid,
758 				    ap->ssid_len))
759 				return true;
760 		} else if (ap->short_ssid_valid) {
761 			s_ssid = ~crc32_le(~0, request->ssids[i].ssid,
762 					   request->ssids[i].ssid_len);
763 
764 			if (ap->short_ssid == s_ssid)
765 				return true;
766 		}
767 	}
768 
769 	return false;
770 }
771 
772 static int cfg80211_scan_6ghz(struct cfg80211_registered_device *rdev)
773 {
774 	u8 i;
775 	struct cfg80211_colocated_ap *ap;
776 	int n_channels, count = 0, err;
777 	struct cfg80211_scan_request *request, *rdev_req = rdev->scan_req;
778 	LIST_HEAD(coloc_ap_list);
779 	bool need_scan_psc = true;
780 	const struct ieee80211_sband_iftype_data *iftd;
781 
782 	rdev_req->scan_6ghz = true;
783 
784 	if (!rdev->wiphy.bands[NL80211_BAND_6GHZ])
785 		return -EOPNOTSUPP;
786 
787 	iftd = ieee80211_get_sband_iftype_data(rdev->wiphy.bands[NL80211_BAND_6GHZ],
788 					       rdev_req->wdev->iftype);
789 	if (!iftd || !iftd->he_cap.has_he)
790 		return -EOPNOTSUPP;
791 
792 	n_channels = rdev->wiphy.bands[NL80211_BAND_6GHZ]->n_channels;
793 
794 	if (rdev_req->flags & NL80211_SCAN_FLAG_COLOCATED_6GHZ) {
795 		struct cfg80211_internal_bss *intbss;
796 
797 		spin_lock_bh(&rdev->bss_lock);
798 		list_for_each_entry(intbss, &rdev->bss_list, list) {
799 			struct cfg80211_bss *res = &intbss->pub;
800 			const struct cfg80211_bss_ies *ies;
801 			const struct element *ssid_elem;
802 			struct cfg80211_colocated_ap *entry;
803 			u32 s_ssid_tmp;
804 			int ret;
805 
806 			ies = rcu_access_pointer(res->ies);
807 			count += cfg80211_parse_colocated_ap(ies,
808 							     &coloc_ap_list);
809 
810 			/* In case the scan request specified a specific BSSID
811 			 * and the BSS is found and operating on 6GHz band then
812 			 * add this AP to the collocated APs list.
813 			 * This is relevant for ML probe requests when the lower
814 			 * band APs have not been discovered.
815 			 */
816 			if (is_broadcast_ether_addr(rdev_req->bssid) ||
817 			    !ether_addr_equal(rdev_req->bssid, res->bssid) ||
818 			    res->channel->band != NL80211_BAND_6GHZ)
819 				continue;
820 
821 			ret = cfg80211_calc_short_ssid(ies, &ssid_elem,
822 						       &s_ssid_tmp);
823 			if (ret)
824 				continue;
825 
826 			entry = kzalloc(sizeof(*entry) + IEEE80211_MAX_SSID_LEN,
827 					GFP_ATOMIC);
828 
829 			if (!entry)
830 				continue;
831 
832 			memcpy(entry->bssid, res->bssid, ETH_ALEN);
833 			entry->short_ssid = s_ssid_tmp;
834 			memcpy(entry->ssid, ssid_elem->data,
835 			       ssid_elem->datalen);
836 			entry->ssid_len = ssid_elem->datalen;
837 			entry->short_ssid_valid = true;
838 			entry->center_freq = res->channel->center_freq;
839 
840 			list_add_tail(&entry->list, &coloc_ap_list);
841 			count++;
842 		}
843 		spin_unlock_bh(&rdev->bss_lock);
844 	}
845 
846 	request = kzalloc(struct_size(request, channels, n_channels) +
847 			  sizeof(*request->scan_6ghz_params) * count +
848 			  sizeof(*request->ssids) * rdev_req->n_ssids,
849 			  GFP_KERNEL);
850 	if (!request) {
851 		cfg80211_free_coloc_ap_list(&coloc_ap_list);
852 		return -ENOMEM;
853 	}
854 
855 	*request = *rdev_req;
856 	request->n_channels = 0;
857 	request->scan_6ghz_params =
858 		(void *)&request->channels[n_channels];
859 
860 	/*
861 	 * PSC channels should not be scanned in case of direct scan with 1 SSID
862 	 * and at least one of the reported co-located APs with same SSID
863 	 * indicating that all APs in the same ESS are co-located
864 	 */
865 	if (count && request->n_ssids == 1 && request->ssids[0].ssid_len) {
866 		list_for_each_entry(ap, &coloc_ap_list, list) {
867 			if (ap->colocated_ess &&
868 			    cfg80211_find_ssid_match(ap, request)) {
869 				need_scan_psc = false;
870 				break;
871 			}
872 		}
873 	}
874 
875 	/*
876 	 * add to the scan request the channels that need to be scanned
877 	 * regardless of the collocated APs (PSC channels or all channels
878 	 * in case that NL80211_SCAN_FLAG_COLOCATED_6GHZ is not set)
879 	 */
880 	for (i = 0; i < rdev_req->n_channels; i++) {
881 		if (rdev_req->channels[i]->band == NL80211_BAND_6GHZ &&
882 		    ((need_scan_psc &&
883 		      cfg80211_channel_is_psc(rdev_req->channels[i])) ||
884 		     !(rdev_req->flags & NL80211_SCAN_FLAG_COLOCATED_6GHZ))) {
885 			cfg80211_scan_req_add_chan(request,
886 						   rdev_req->channels[i],
887 						   false);
888 		}
889 	}
890 
891 	if (!(rdev_req->flags & NL80211_SCAN_FLAG_COLOCATED_6GHZ))
892 		goto skip;
893 
894 	list_for_each_entry(ap, &coloc_ap_list, list) {
895 		bool found = false;
896 		struct cfg80211_scan_6ghz_params *scan_6ghz_params =
897 			&request->scan_6ghz_params[request->n_6ghz_params];
898 		struct ieee80211_channel *chan =
899 			ieee80211_get_channel(&rdev->wiphy, ap->center_freq);
900 
901 		if (!chan || chan->flags & IEEE80211_CHAN_DISABLED)
902 			continue;
903 
904 		for (i = 0; i < rdev_req->n_channels; i++) {
905 			if (rdev_req->channels[i] == chan)
906 				found = true;
907 		}
908 
909 		if (!found)
910 			continue;
911 
912 		if (request->n_ssids > 0 &&
913 		    !cfg80211_find_ssid_match(ap, request))
914 			continue;
915 
916 		if (!is_broadcast_ether_addr(request->bssid) &&
917 		    !ether_addr_equal(request->bssid, ap->bssid))
918 			continue;
919 
920 		if (!request->n_ssids && ap->multi_bss && !ap->transmitted_bssid)
921 			continue;
922 
923 		cfg80211_scan_req_add_chan(request, chan, true);
924 		memcpy(scan_6ghz_params->bssid, ap->bssid, ETH_ALEN);
925 		scan_6ghz_params->short_ssid = ap->short_ssid;
926 		scan_6ghz_params->short_ssid_valid = ap->short_ssid_valid;
927 		scan_6ghz_params->unsolicited_probe = ap->unsolicited_probe;
928 		scan_6ghz_params->psd_20 = ap->psd_20;
929 
930 		/*
931 		 * If a PSC channel is added to the scan and 'need_scan_psc' is
932 		 * set to false, then all the APs that the scan logic is
933 		 * interested with on the channel are collocated and thus there
934 		 * is no need to perform the initial PSC channel listen.
935 		 */
936 		if (cfg80211_channel_is_psc(chan) && !need_scan_psc)
937 			scan_6ghz_params->psc_no_listen = true;
938 
939 		request->n_6ghz_params++;
940 	}
941 
942 skip:
943 	cfg80211_free_coloc_ap_list(&coloc_ap_list);
944 
945 	if (request->n_channels) {
946 		struct cfg80211_scan_request *old = rdev->int_scan_req;
947 		rdev->int_scan_req = request;
948 
949 		/*
950 		 * Add the ssids from the parent scan request to the new scan
951 		 * request, so the driver would be able to use them in its
952 		 * probe requests to discover hidden APs on PSC channels.
953 		 */
954 		request->ssids = (void *)&request->channels[request->n_channels];
955 		request->n_ssids = rdev_req->n_ssids;
956 		memcpy(request->ssids, rdev_req->ssids, sizeof(*request->ssids) *
957 		       request->n_ssids);
958 
959 		/*
960 		 * If this scan follows a previous scan, save the scan start
961 		 * info from the first part of the scan
962 		 */
963 		if (old)
964 			rdev->int_scan_req->info = old->info;
965 
966 		err = rdev_scan(rdev, request);
967 		if (err) {
968 			rdev->int_scan_req = old;
969 			kfree(request);
970 		} else {
971 			kfree(old);
972 		}
973 
974 		return err;
975 	}
976 
977 	kfree(request);
978 	return -EINVAL;
979 }
980 
981 int cfg80211_scan(struct cfg80211_registered_device *rdev)
982 {
983 	struct cfg80211_scan_request *request;
984 	struct cfg80211_scan_request *rdev_req = rdev->scan_req;
985 	u32 n_channels = 0, idx, i;
986 
987 	if (!(rdev->wiphy.flags & WIPHY_FLAG_SPLIT_SCAN_6GHZ))
988 		return rdev_scan(rdev, rdev_req);
989 
990 	for (i = 0; i < rdev_req->n_channels; i++) {
991 		if (rdev_req->channels[i]->band != NL80211_BAND_6GHZ)
992 			n_channels++;
993 	}
994 
995 	if (!n_channels)
996 		return cfg80211_scan_6ghz(rdev);
997 
998 	request = kzalloc(struct_size(request, channels, n_channels),
999 			  GFP_KERNEL);
1000 	if (!request)
1001 		return -ENOMEM;
1002 
1003 	*request = *rdev_req;
1004 	request->n_channels = n_channels;
1005 
1006 	for (i = idx = 0; i < rdev_req->n_channels; i++) {
1007 		if (rdev_req->channels[i]->band != NL80211_BAND_6GHZ)
1008 			request->channels[idx++] = rdev_req->channels[i];
1009 	}
1010 
1011 	rdev_req->scan_6ghz = false;
1012 	rdev->int_scan_req = request;
1013 	return rdev_scan(rdev, request);
1014 }
1015 
1016 void ___cfg80211_scan_done(struct cfg80211_registered_device *rdev,
1017 			   bool send_message)
1018 {
1019 	struct cfg80211_scan_request *request, *rdev_req;
1020 	struct wireless_dev *wdev;
1021 	struct sk_buff *msg;
1022 #ifdef CONFIG_CFG80211_WEXT
1023 	union iwreq_data wrqu;
1024 #endif
1025 
1026 	lockdep_assert_held(&rdev->wiphy.mtx);
1027 
1028 	if (rdev->scan_msg) {
1029 		nl80211_send_scan_msg(rdev, rdev->scan_msg);
1030 		rdev->scan_msg = NULL;
1031 		return;
1032 	}
1033 
1034 	rdev_req = rdev->scan_req;
1035 	if (!rdev_req)
1036 		return;
1037 
1038 	wdev = rdev_req->wdev;
1039 	request = rdev->int_scan_req ? rdev->int_scan_req : rdev_req;
1040 
1041 	if (wdev_running(wdev) &&
1042 	    (rdev->wiphy.flags & WIPHY_FLAG_SPLIT_SCAN_6GHZ) &&
1043 	    !rdev_req->scan_6ghz && !request->info.aborted &&
1044 	    !cfg80211_scan_6ghz(rdev))
1045 		return;
1046 
1047 	/*
1048 	 * This must be before sending the other events!
1049 	 * Otherwise, wpa_supplicant gets completely confused with
1050 	 * wext events.
1051 	 */
1052 	if (wdev->netdev)
1053 		cfg80211_sme_scan_done(wdev->netdev);
1054 
1055 	if (!request->info.aborted &&
1056 	    request->flags & NL80211_SCAN_FLAG_FLUSH) {
1057 		/* flush entries from previous scans */
1058 		spin_lock_bh(&rdev->bss_lock);
1059 		__cfg80211_bss_expire(rdev, request->scan_start);
1060 		spin_unlock_bh(&rdev->bss_lock);
1061 	}
1062 
1063 	msg = nl80211_build_scan_msg(rdev, wdev, request->info.aborted);
1064 
1065 #ifdef CONFIG_CFG80211_WEXT
1066 	if (wdev->netdev && !request->info.aborted) {
1067 		memset(&wrqu, 0, sizeof(wrqu));
1068 
1069 		wireless_send_event(wdev->netdev, SIOCGIWSCAN, &wrqu, NULL);
1070 	}
1071 #endif
1072 
1073 	dev_put(wdev->netdev);
1074 
1075 	kfree(rdev->int_scan_req);
1076 	rdev->int_scan_req = NULL;
1077 
1078 	kfree(rdev->scan_req);
1079 	rdev->scan_req = NULL;
1080 
1081 	if (!send_message)
1082 		rdev->scan_msg = msg;
1083 	else
1084 		nl80211_send_scan_msg(rdev, msg);
1085 }
1086 
1087 void __cfg80211_scan_done(struct wiphy *wiphy, struct wiphy_work *wk)
1088 {
1089 	___cfg80211_scan_done(wiphy_to_rdev(wiphy), true);
1090 }
1091 
1092 void cfg80211_scan_done(struct cfg80211_scan_request *request,
1093 			struct cfg80211_scan_info *info)
1094 {
1095 	struct cfg80211_scan_info old_info = request->info;
1096 
1097 	trace_cfg80211_scan_done(request, info);
1098 	WARN_ON(request != wiphy_to_rdev(request->wiphy)->scan_req &&
1099 		request != wiphy_to_rdev(request->wiphy)->int_scan_req);
1100 
1101 	request->info = *info;
1102 
1103 	/*
1104 	 * In case the scan is split, the scan_start_tsf and tsf_bssid should
1105 	 * be of the first part. In such a case old_info.scan_start_tsf should
1106 	 * be non zero.
1107 	 */
1108 	if (request->scan_6ghz && old_info.scan_start_tsf) {
1109 		request->info.scan_start_tsf = old_info.scan_start_tsf;
1110 		memcpy(request->info.tsf_bssid, old_info.tsf_bssid,
1111 		       sizeof(request->info.tsf_bssid));
1112 	}
1113 
1114 	request->notified = true;
1115 	wiphy_work_queue(request->wiphy,
1116 			 &wiphy_to_rdev(request->wiphy)->scan_done_wk);
1117 }
1118 EXPORT_SYMBOL(cfg80211_scan_done);
1119 
1120 void cfg80211_add_sched_scan_req(struct cfg80211_registered_device *rdev,
1121 				 struct cfg80211_sched_scan_request *req)
1122 {
1123 	lockdep_assert_held(&rdev->wiphy.mtx);
1124 
1125 	list_add_rcu(&req->list, &rdev->sched_scan_req_list);
1126 }
1127 
1128 static void cfg80211_del_sched_scan_req(struct cfg80211_registered_device *rdev,
1129 					struct cfg80211_sched_scan_request *req)
1130 {
1131 	lockdep_assert_held(&rdev->wiphy.mtx);
1132 
1133 	list_del_rcu(&req->list);
1134 	kfree_rcu(req, rcu_head);
1135 }
1136 
1137 static struct cfg80211_sched_scan_request *
1138 cfg80211_find_sched_scan_req(struct cfg80211_registered_device *rdev, u64 reqid)
1139 {
1140 	struct cfg80211_sched_scan_request *pos;
1141 
1142 	list_for_each_entry_rcu(pos, &rdev->sched_scan_req_list, list,
1143 				lockdep_is_held(&rdev->wiphy.mtx)) {
1144 		if (pos->reqid == reqid)
1145 			return pos;
1146 	}
1147 	return NULL;
1148 }
1149 
1150 /*
1151  * Determines if a scheduled scan request can be handled. When a legacy
1152  * scheduled scan is running no other scheduled scan is allowed regardless
1153  * whether the request is for legacy or multi-support scan. When a multi-support
1154  * scheduled scan is running a request for legacy scan is not allowed. In this
1155  * case a request for multi-support scan can be handled if resources are
1156  * available, ie. struct wiphy::max_sched_scan_reqs limit is not yet reached.
1157  */
1158 int cfg80211_sched_scan_req_possible(struct cfg80211_registered_device *rdev,
1159 				     bool want_multi)
1160 {
1161 	struct cfg80211_sched_scan_request *pos;
1162 	int i = 0;
1163 
1164 	list_for_each_entry(pos, &rdev->sched_scan_req_list, list) {
1165 		/* request id zero means legacy in progress */
1166 		if (!i && !pos->reqid)
1167 			return -EINPROGRESS;
1168 		i++;
1169 	}
1170 
1171 	if (i) {
1172 		/* no legacy allowed when multi request(s) are active */
1173 		if (!want_multi)
1174 			return -EINPROGRESS;
1175 
1176 		/* resource limit reached */
1177 		if (i == rdev->wiphy.max_sched_scan_reqs)
1178 			return -ENOSPC;
1179 	}
1180 	return 0;
1181 }
1182 
1183 void cfg80211_sched_scan_results_wk(struct work_struct *work)
1184 {
1185 	struct cfg80211_registered_device *rdev;
1186 	struct cfg80211_sched_scan_request *req, *tmp;
1187 
1188 	rdev = container_of(work, struct cfg80211_registered_device,
1189 			   sched_scan_res_wk);
1190 
1191 	wiphy_lock(&rdev->wiphy);
1192 	list_for_each_entry_safe(req, tmp, &rdev->sched_scan_req_list, list) {
1193 		if (req->report_results) {
1194 			req->report_results = false;
1195 			if (req->flags & NL80211_SCAN_FLAG_FLUSH) {
1196 				/* flush entries from previous scans */
1197 				spin_lock_bh(&rdev->bss_lock);
1198 				__cfg80211_bss_expire(rdev, req->scan_start);
1199 				spin_unlock_bh(&rdev->bss_lock);
1200 				req->scan_start = jiffies;
1201 			}
1202 			nl80211_send_sched_scan(req,
1203 						NL80211_CMD_SCHED_SCAN_RESULTS);
1204 		}
1205 	}
1206 	wiphy_unlock(&rdev->wiphy);
1207 }
1208 
1209 void cfg80211_sched_scan_results(struct wiphy *wiphy, u64 reqid)
1210 {
1211 	struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
1212 	struct cfg80211_sched_scan_request *request;
1213 
1214 	trace_cfg80211_sched_scan_results(wiphy, reqid);
1215 	/* ignore if we're not scanning */
1216 
1217 	rcu_read_lock();
1218 	request = cfg80211_find_sched_scan_req(rdev, reqid);
1219 	if (request) {
1220 		request->report_results = true;
1221 		queue_work(cfg80211_wq, &rdev->sched_scan_res_wk);
1222 	}
1223 	rcu_read_unlock();
1224 }
1225 EXPORT_SYMBOL(cfg80211_sched_scan_results);
1226 
1227 void cfg80211_sched_scan_stopped_locked(struct wiphy *wiphy, u64 reqid)
1228 {
1229 	struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
1230 
1231 	lockdep_assert_held(&wiphy->mtx);
1232 
1233 	trace_cfg80211_sched_scan_stopped(wiphy, reqid);
1234 
1235 	__cfg80211_stop_sched_scan(rdev, reqid, true);
1236 }
1237 EXPORT_SYMBOL(cfg80211_sched_scan_stopped_locked);
1238 
1239 void cfg80211_sched_scan_stopped(struct wiphy *wiphy, u64 reqid)
1240 {
1241 	wiphy_lock(wiphy);
1242 	cfg80211_sched_scan_stopped_locked(wiphy, reqid);
1243 	wiphy_unlock(wiphy);
1244 }
1245 EXPORT_SYMBOL(cfg80211_sched_scan_stopped);
1246 
1247 int cfg80211_stop_sched_scan_req(struct cfg80211_registered_device *rdev,
1248 				 struct cfg80211_sched_scan_request *req,
1249 				 bool driver_initiated)
1250 {
1251 	lockdep_assert_held(&rdev->wiphy.mtx);
1252 
1253 	if (!driver_initiated) {
1254 		int err = rdev_sched_scan_stop(rdev, req->dev, req->reqid);
1255 		if (err)
1256 			return err;
1257 	}
1258 
1259 	nl80211_send_sched_scan(req, NL80211_CMD_SCHED_SCAN_STOPPED);
1260 
1261 	cfg80211_del_sched_scan_req(rdev, req);
1262 
1263 	return 0;
1264 }
1265 
1266 int __cfg80211_stop_sched_scan(struct cfg80211_registered_device *rdev,
1267 			       u64 reqid, bool driver_initiated)
1268 {
1269 	struct cfg80211_sched_scan_request *sched_scan_req;
1270 
1271 	lockdep_assert_held(&rdev->wiphy.mtx);
1272 
1273 	sched_scan_req = cfg80211_find_sched_scan_req(rdev, reqid);
1274 	if (!sched_scan_req)
1275 		return -ENOENT;
1276 
1277 	return cfg80211_stop_sched_scan_req(rdev, sched_scan_req,
1278 					    driver_initiated);
1279 }
1280 
1281 void cfg80211_bss_age(struct cfg80211_registered_device *rdev,
1282                       unsigned long age_secs)
1283 {
1284 	struct cfg80211_internal_bss *bss;
1285 	unsigned long age_jiffies = msecs_to_jiffies(age_secs * MSEC_PER_SEC);
1286 
1287 	spin_lock_bh(&rdev->bss_lock);
1288 	list_for_each_entry(bss, &rdev->bss_list, list)
1289 		bss->ts -= age_jiffies;
1290 	spin_unlock_bh(&rdev->bss_lock);
1291 }
1292 
1293 void cfg80211_bss_expire(struct cfg80211_registered_device *rdev)
1294 {
1295 	__cfg80211_bss_expire(rdev, jiffies - IEEE80211_SCAN_RESULT_EXPIRE);
1296 }
1297 
1298 void cfg80211_bss_flush(struct wiphy *wiphy)
1299 {
1300 	struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
1301 
1302 	spin_lock_bh(&rdev->bss_lock);
1303 	__cfg80211_bss_expire(rdev, jiffies);
1304 	spin_unlock_bh(&rdev->bss_lock);
1305 }
1306 EXPORT_SYMBOL(cfg80211_bss_flush);
1307 
1308 const struct element *
1309 cfg80211_find_elem_match(u8 eid, const u8 *ies, unsigned int len,
1310 			 const u8 *match, unsigned int match_len,
1311 			 unsigned int match_offset)
1312 {
1313 	const struct element *elem;
1314 
1315 	for_each_element_id(elem, eid, ies, len) {
1316 		if (elem->datalen >= match_offset + match_len &&
1317 		    !memcmp(elem->data + match_offset, match, match_len))
1318 			return elem;
1319 	}
1320 
1321 	return NULL;
1322 }
1323 EXPORT_SYMBOL(cfg80211_find_elem_match);
1324 
1325 const struct element *cfg80211_find_vendor_elem(unsigned int oui, int oui_type,
1326 						const u8 *ies,
1327 						unsigned int len)
1328 {
1329 	const struct element *elem;
1330 	u8 match[] = { oui >> 16, oui >> 8, oui, oui_type };
1331 	int match_len = (oui_type < 0) ? 3 : sizeof(match);
1332 
1333 	if (WARN_ON(oui_type > 0xff))
1334 		return NULL;
1335 
1336 	elem = cfg80211_find_elem_match(WLAN_EID_VENDOR_SPECIFIC, ies, len,
1337 					match, match_len, 0);
1338 
1339 	if (!elem || elem->datalen < 4)
1340 		return NULL;
1341 
1342 	return elem;
1343 }
1344 EXPORT_SYMBOL(cfg80211_find_vendor_elem);
1345 
1346 /**
1347  * enum bss_compare_mode - BSS compare mode
1348  * @BSS_CMP_REGULAR: regular compare mode (for insertion and normal find)
1349  * @BSS_CMP_HIDE_ZLEN: find hidden SSID with zero-length mode
1350  * @BSS_CMP_HIDE_NUL: find hidden SSID with NUL-ed out mode
1351  */
1352 enum bss_compare_mode {
1353 	BSS_CMP_REGULAR,
1354 	BSS_CMP_HIDE_ZLEN,
1355 	BSS_CMP_HIDE_NUL,
1356 };
1357 
1358 static int cmp_bss(struct cfg80211_bss *a,
1359 		   struct cfg80211_bss *b,
1360 		   enum bss_compare_mode mode)
1361 {
1362 	const struct cfg80211_bss_ies *a_ies, *b_ies;
1363 	const u8 *ie1 = NULL;
1364 	const u8 *ie2 = NULL;
1365 	int i, r;
1366 
1367 	if (a->channel != b->channel)
1368 		return (b->channel->center_freq * 1000 + b->channel->freq_offset) -
1369 		       (a->channel->center_freq * 1000 + a->channel->freq_offset);
1370 
1371 	a_ies = rcu_access_pointer(a->ies);
1372 	if (!a_ies)
1373 		return -1;
1374 	b_ies = rcu_access_pointer(b->ies);
1375 	if (!b_ies)
1376 		return 1;
1377 
1378 	if (WLAN_CAPABILITY_IS_STA_BSS(a->capability))
1379 		ie1 = cfg80211_find_ie(WLAN_EID_MESH_ID,
1380 				       a_ies->data, a_ies->len);
1381 	if (WLAN_CAPABILITY_IS_STA_BSS(b->capability))
1382 		ie2 = cfg80211_find_ie(WLAN_EID_MESH_ID,
1383 				       b_ies->data, b_ies->len);
1384 	if (ie1 && ie2) {
1385 		int mesh_id_cmp;
1386 
1387 		if (ie1[1] == ie2[1])
1388 			mesh_id_cmp = memcmp(ie1 + 2, ie2 + 2, ie1[1]);
1389 		else
1390 			mesh_id_cmp = ie2[1] - ie1[1];
1391 
1392 		ie1 = cfg80211_find_ie(WLAN_EID_MESH_CONFIG,
1393 				       a_ies->data, a_ies->len);
1394 		ie2 = cfg80211_find_ie(WLAN_EID_MESH_CONFIG,
1395 				       b_ies->data, b_ies->len);
1396 		if (ie1 && ie2) {
1397 			if (mesh_id_cmp)
1398 				return mesh_id_cmp;
1399 			if (ie1[1] != ie2[1])
1400 				return ie2[1] - ie1[1];
1401 			return memcmp(ie1 + 2, ie2 + 2, ie1[1]);
1402 		}
1403 	}
1404 
1405 	r = memcmp(a->bssid, b->bssid, sizeof(a->bssid));
1406 	if (r)
1407 		return r;
1408 
1409 	ie1 = cfg80211_find_ie(WLAN_EID_SSID, a_ies->data, a_ies->len);
1410 	ie2 = cfg80211_find_ie(WLAN_EID_SSID, b_ies->data, b_ies->len);
1411 
1412 	if (!ie1 && !ie2)
1413 		return 0;
1414 
1415 	/*
1416 	 * Note that with "hide_ssid", the function returns a match if
1417 	 * the already-present BSS ("b") is a hidden SSID beacon for
1418 	 * the new BSS ("a").
1419 	 */
1420 
1421 	/* sort missing IE before (left of) present IE */
1422 	if (!ie1)
1423 		return -1;
1424 	if (!ie2)
1425 		return 1;
1426 
1427 	switch (mode) {
1428 	case BSS_CMP_HIDE_ZLEN:
1429 		/*
1430 		 * In ZLEN mode we assume the BSS entry we're
1431 		 * looking for has a zero-length SSID. So if
1432 		 * the one we're looking at right now has that,
1433 		 * return 0. Otherwise, return the difference
1434 		 * in length, but since we're looking for the
1435 		 * 0-length it's really equivalent to returning
1436 		 * the length of the one we're looking at.
1437 		 *
1438 		 * No content comparison is needed as we assume
1439 		 * the content length is zero.
1440 		 */
1441 		return ie2[1];
1442 	case BSS_CMP_REGULAR:
1443 	default:
1444 		/* sort by length first, then by contents */
1445 		if (ie1[1] != ie2[1])
1446 			return ie2[1] - ie1[1];
1447 		return memcmp(ie1 + 2, ie2 + 2, ie1[1]);
1448 	case BSS_CMP_HIDE_NUL:
1449 		if (ie1[1] != ie2[1])
1450 			return ie2[1] - ie1[1];
1451 		/* this is equivalent to memcmp(zeroes, ie2 + 2, len) */
1452 		for (i = 0; i < ie2[1]; i++)
1453 			if (ie2[i + 2])
1454 				return -1;
1455 		return 0;
1456 	}
1457 }
1458 
1459 static bool cfg80211_bss_type_match(u16 capability,
1460 				    enum nl80211_band band,
1461 				    enum ieee80211_bss_type bss_type)
1462 {
1463 	bool ret = true;
1464 	u16 mask, val;
1465 
1466 	if (bss_type == IEEE80211_BSS_TYPE_ANY)
1467 		return ret;
1468 
1469 	if (band == NL80211_BAND_60GHZ) {
1470 		mask = WLAN_CAPABILITY_DMG_TYPE_MASK;
1471 		switch (bss_type) {
1472 		case IEEE80211_BSS_TYPE_ESS:
1473 			val = WLAN_CAPABILITY_DMG_TYPE_AP;
1474 			break;
1475 		case IEEE80211_BSS_TYPE_PBSS:
1476 			val = WLAN_CAPABILITY_DMG_TYPE_PBSS;
1477 			break;
1478 		case IEEE80211_BSS_TYPE_IBSS:
1479 			val = WLAN_CAPABILITY_DMG_TYPE_IBSS;
1480 			break;
1481 		default:
1482 			return false;
1483 		}
1484 	} else {
1485 		mask = WLAN_CAPABILITY_ESS | WLAN_CAPABILITY_IBSS;
1486 		switch (bss_type) {
1487 		case IEEE80211_BSS_TYPE_ESS:
1488 			val = WLAN_CAPABILITY_ESS;
1489 			break;
1490 		case IEEE80211_BSS_TYPE_IBSS:
1491 			val = WLAN_CAPABILITY_IBSS;
1492 			break;
1493 		case IEEE80211_BSS_TYPE_MBSS:
1494 			val = 0;
1495 			break;
1496 		default:
1497 			return false;
1498 		}
1499 	}
1500 
1501 	ret = ((capability & mask) == val);
1502 	return ret;
1503 }
1504 
1505 /* Returned bss is reference counted and must be cleaned up appropriately. */
1506 struct cfg80211_bss *__cfg80211_get_bss(struct wiphy *wiphy,
1507 					struct ieee80211_channel *channel,
1508 					const u8 *bssid,
1509 					const u8 *ssid, size_t ssid_len,
1510 					enum ieee80211_bss_type bss_type,
1511 					enum ieee80211_privacy privacy,
1512 					u32 use_for)
1513 {
1514 	struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
1515 	struct cfg80211_internal_bss *bss, *res = NULL;
1516 	unsigned long now = jiffies;
1517 	int bss_privacy;
1518 
1519 	trace_cfg80211_get_bss(wiphy, channel, bssid, ssid, ssid_len, bss_type,
1520 			       privacy);
1521 
1522 	spin_lock_bh(&rdev->bss_lock);
1523 
1524 	list_for_each_entry(bss, &rdev->bss_list, list) {
1525 		if (!cfg80211_bss_type_match(bss->pub.capability,
1526 					     bss->pub.channel->band, bss_type))
1527 			continue;
1528 
1529 		bss_privacy = (bss->pub.capability & WLAN_CAPABILITY_PRIVACY);
1530 		if ((privacy == IEEE80211_PRIVACY_ON && !bss_privacy) ||
1531 		    (privacy == IEEE80211_PRIVACY_OFF && bss_privacy))
1532 			continue;
1533 		if (channel && bss->pub.channel != channel)
1534 			continue;
1535 		if (!is_valid_ether_addr(bss->pub.bssid))
1536 			continue;
1537 		if ((bss->pub.use_for & use_for) != use_for)
1538 			continue;
1539 		/* Don't get expired BSS structs */
1540 		if (time_after(now, bss->ts + IEEE80211_SCAN_RESULT_EXPIRE) &&
1541 		    !atomic_read(&bss->hold))
1542 			continue;
1543 		if (is_bss(&bss->pub, bssid, ssid, ssid_len)) {
1544 			res = bss;
1545 			bss_ref_get(rdev, res);
1546 			break;
1547 		}
1548 	}
1549 
1550 	spin_unlock_bh(&rdev->bss_lock);
1551 	if (!res)
1552 		return NULL;
1553 	trace_cfg80211_return_bss(&res->pub);
1554 	return &res->pub;
1555 }
1556 EXPORT_SYMBOL(__cfg80211_get_bss);
1557 
1558 static void rb_insert_bss(struct cfg80211_registered_device *rdev,
1559 			  struct cfg80211_internal_bss *bss)
1560 {
1561 	struct rb_node **p = &rdev->bss_tree.rb_node;
1562 	struct rb_node *parent = NULL;
1563 	struct cfg80211_internal_bss *tbss;
1564 	int cmp;
1565 
1566 	while (*p) {
1567 		parent = *p;
1568 		tbss = rb_entry(parent, struct cfg80211_internal_bss, rbn);
1569 
1570 		cmp = cmp_bss(&bss->pub, &tbss->pub, BSS_CMP_REGULAR);
1571 
1572 		if (WARN_ON(!cmp)) {
1573 			/* will sort of leak this BSS */
1574 			return;
1575 		}
1576 
1577 		if (cmp < 0)
1578 			p = &(*p)->rb_left;
1579 		else
1580 			p = &(*p)->rb_right;
1581 	}
1582 
1583 	rb_link_node(&bss->rbn, parent, p);
1584 	rb_insert_color(&bss->rbn, &rdev->bss_tree);
1585 }
1586 
1587 static struct cfg80211_internal_bss *
1588 rb_find_bss(struct cfg80211_registered_device *rdev,
1589 	    struct cfg80211_internal_bss *res,
1590 	    enum bss_compare_mode mode)
1591 {
1592 	struct rb_node *n = rdev->bss_tree.rb_node;
1593 	struct cfg80211_internal_bss *bss;
1594 	int r;
1595 
1596 	while (n) {
1597 		bss = rb_entry(n, struct cfg80211_internal_bss, rbn);
1598 		r = cmp_bss(&res->pub, &bss->pub, mode);
1599 
1600 		if (r == 0)
1601 			return bss;
1602 		else if (r < 0)
1603 			n = n->rb_left;
1604 		else
1605 			n = n->rb_right;
1606 	}
1607 
1608 	return NULL;
1609 }
1610 
1611 static bool cfg80211_combine_bsses(struct cfg80211_registered_device *rdev,
1612 				   struct cfg80211_internal_bss *new)
1613 {
1614 	const struct cfg80211_bss_ies *ies;
1615 	struct cfg80211_internal_bss *bss;
1616 	const u8 *ie;
1617 	int i, ssidlen;
1618 	u8 fold = 0;
1619 	u32 n_entries = 0;
1620 
1621 	ies = rcu_access_pointer(new->pub.beacon_ies);
1622 	if (WARN_ON(!ies))
1623 		return false;
1624 
1625 	ie = cfg80211_find_ie(WLAN_EID_SSID, ies->data, ies->len);
1626 	if (!ie) {
1627 		/* nothing to do */
1628 		return true;
1629 	}
1630 
1631 	ssidlen = ie[1];
1632 	for (i = 0; i < ssidlen; i++)
1633 		fold |= ie[2 + i];
1634 
1635 	if (fold) {
1636 		/* not a hidden SSID */
1637 		return true;
1638 	}
1639 
1640 	/* This is the bad part ... */
1641 
1642 	list_for_each_entry(bss, &rdev->bss_list, list) {
1643 		/*
1644 		 * we're iterating all the entries anyway, so take the
1645 		 * opportunity to validate the list length accounting
1646 		 */
1647 		n_entries++;
1648 
1649 		if (!ether_addr_equal(bss->pub.bssid, new->pub.bssid))
1650 			continue;
1651 		if (bss->pub.channel != new->pub.channel)
1652 			continue;
1653 		if (rcu_access_pointer(bss->pub.beacon_ies))
1654 			continue;
1655 		ies = rcu_access_pointer(bss->pub.ies);
1656 		if (!ies)
1657 			continue;
1658 		ie = cfg80211_find_ie(WLAN_EID_SSID, ies->data, ies->len);
1659 		if (!ie)
1660 			continue;
1661 		if (ssidlen && ie[1] != ssidlen)
1662 			continue;
1663 		if (WARN_ON_ONCE(bss->pub.hidden_beacon_bss))
1664 			continue;
1665 		if (WARN_ON_ONCE(!list_empty(&bss->hidden_list)))
1666 			list_del(&bss->hidden_list);
1667 		/* combine them */
1668 		list_add(&bss->hidden_list, &new->hidden_list);
1669 		bss->pub.hidden_beacon_bss = &new->pub;
1670 		new->refcount += bss->refcount;
1671 		rcu_assign_pointer(bss->pub.beacon_ies,
1672 				   new->pub.beacon_ies);
1673 	}
1674 
1675 	WARN_ONCE(n_entries != rdev->bss_entries,
1676 		  "rdev bss entries[%d]/list[len:%d] corruption\n",
1677 		  rdev->bss_entries, n_entries);
1678 
1679 	return true;
1680 }
1681 
1682 static void cfg80211_update_hidden_bsses(struct cfg80211_internal_bss *known,
1683 					 const struct cfg80211_bss_ies *new_ies,
1684 					 const struct cfg80211_bss_ies *old_ies)
1685 {
1686 	struct cfg80211_internal_bss *bss;
1687 
1688 	/* Assign beacon IEs to all sub entries */
1689 	list_for_each_entry(bss, &known->hidden_list, hidden_list) {
1690 		const struct cfg80211_bss_ies *ies;
1691 
1692 		ies = rcu_access_pointer(bss->pub.beacon_ies);
1693 		WARN_ON(ies != old_ies);
1694 
1695 		rcu_assign_pointer(bss->pub.beacon_ies, new_ies);
1696 	}
1697 }
1698 
1699 static void cfg80211_check_stuck_ecsa(struct cfg80211_registered_device *rdev,
1700 				      struct cfg80211_internal_bss *known,
1701 				      const struct cfg80211_bss_ies *old)
1702 {
1703 	const struct ieee80211_ext_chansw_ie *ecsa;
1704 	const struct element *elem_new, *elem_old;
1705 	const struct cfg80211_bss_ies *new, *bcn;
1706 
1707 	if (known->pub.proberesp_ecsa_stuck)
1708 		return;
1709 
1710 	new = rcu_dereference_protected(known->pub.proberesp_ies,
1711 					lockdep_is_held(&rdev->bss_lock));
1712 	if (WARN_ON(!new))
1713 		return;
1714 
1715 	if (new->tsf - old->tsf < USEC_PER_SEC)
1716 		return;
1717 
1718 	elem_old = cfg80211_find_elem(WLAN_EID_EXT_CHANSWITCH_ANN,
1719 				      old->data, old->len);
1720 	if (!elem_old)
1721 		return;
1722 
1723 	elem_new = cfg80211_find_elem(WLAN_EID_EXT_CHANSWITCH_ANN,
1724 				      new->data, new->len);
1725 	if (!elem_new)
1726 		return;
1727 
1728 	bcn = rcu_dereference_protected(known->pub.beacon_ies,
1729 					lockdep_is_held(&rdev->bss_lock));
1730 	if (bcn &&
1731 	    cfg80211_find_elem(WLAN_EID_EXT_CHANSWITCH_ANN,
1732 			       bcn->data, bcn->len))
1733 		return;
1734 
1735 	if (elem_new->datalen != elem_old->datalen)
1736 		return;
1737 	if (elem_new->datalen < sizeof(struct ieee80211_ext_chansw_ie))
1738 		return;
1739 	if (memcmp(elem_new->data, elem_old->data, elem_new->datalen))
1740 		return;
1741 
1742 	ecsa = (void *)elem_new->data;
1743 
1744 	if (!ecsa->mode)
1745 		return;
1746 
1747 	if (ecsa->new_ch_num !=
1748 	    ieee80211_frequency_to_channel(known->pub.channel->center_freq))
1749 		return;
1750 
1751 	known->pub.proberesp_ecsa_stuck = 1;
1752 }
1753 
1754 static bool
1755 cfg80211_update_known_bss(struct cfg80211_registered_device *rdev,
1756 			  struct cfg80211_internal_bss *known,
1757 			  struct cfg80211_internal_bss *new,
1758 			  bool signal_valid)
1759 {
1760 	lockdep_assert_held(&rdev->bss_lock);
1761 
1762 	/* Update IEs */
1763 	if (rcu_access_pointer(new->pub.proberesp_ies)) {
1764 		const struct cfg80211_bss_ies *old;
1765 
1766 		old = rcu_access_pointer(known->pub.proberesp_ies);
1767 
1768 		rcu_assign_pointer(known->pub.proberesp_ies,
1769 				   new->pub.proberesp_ies);
1770 		/* Override possible earlier Beacon frame IEs */
1771 		rcu_assign_pointer(known->pub.ies,
1772 				   new->pub.proberesp_ies);
1773 		if (old) {
1774 			cfg80211_check_stuck_ecsa(rdev, known, old);
1775 			kfree_rcu((struct cfg80211_bss_ies *)old, rcu_head);
1776 		}
1777 	}
1778 
1779 	if (rcu_access_pointer(new->pub.beacon_ies)) {
1780 		const struct cfg80211_bss_ies *old;
1781 
1782 		if (known->pub.hidden_beacon_bss &&
1783 		    !list_empty(&known->hidden_list)) {
1784 			const struct cfg80211_bss_ies *f;
1785 
1786 			/* The known BSS struct is one of the probe
1787 			 * response members of a group, but we're
1788 			 * receiving a beacon (beacon_ies in the new
1789 			 * bss is used). This can only mean that the
1790 			 * AP changed its beacon from not having an
1791 			 * SSID to showing it, which is confusing so
1792 			 * drop this information.
1793 			 */
1794 
1795 			f = rcu_access_pointer(new->pub.beacon_ies);
1796 			kfree_rcu((struct cfg80211_bss_ies *)f, rcu_head);
1797 			return false;
1798 		}
1799 
1800 		old = rcu_access_pointer(known->pub.beacon_ies);
1801 
1802 		rcu_assign_pointer(known->pub.beacon_ies, new->pub.beacon_ies);
1803 
1804 		/* Override IEs if they were from a beacon before */
1805 		if (old == rcu_access_pointer(known->pub.ies))
1806 			rcu_assign_pointer(known->pub.ies, new->pub.beacon_ies);
1807 
1808 		cfg80211_update_hidden_bsses(known,
1809 					     rcu_access_pointer(new->pub.beacon_ies),
1810 					     old);
1811 
1812 		if (old)
1813 			kfree_rcu((struct cfg80211_bss_ies *)old, rcu_head);
1814 	}
1815 
1816 	known->pub.beacon_interval = new->pub.beacon_interval;
1817 
1818 	/* don't update the signal if beacon was heard on
1819 	 * adjacent channel.
1820 	 */
1821 	if (signal_valid)
1822 		known->pub.signal = new->pub.signal;
1823 	known->pub.capability = new->pub.capability;
1824 	known->ts = new->ts;
1825 	known->ts_boottime = new->ts_boottime;
1826 	known->parent_tsf = new->parent_tsf;
1827 	known->pub.chains = new->pub.chains;
1828 	memcpy(known->pub.chain_signal, new->pub.chain_signal,
1829 	       IEEE80211_MAX_CHAINS);
1830 	ether_addr_copy(known->parent_bssid, new->parent_bssid);
1831 	known->pub.max_bssid_indicator = new->pub.max_bssid_indicator;
1832 	known->pub.bssid_index = new->pub.bssid_index;
1833 	known->pub.use_for &= new->pub.use_for;
1834 	known->pub.cannot_use_reasons = new->pub.cannot_use_reasons;
1835 
1836 	return true;
1837 }
1838 
1839 /* Returned bss is reference counted and must be cleaned up appropriately. */
1840 static struct cfg80211_internal_bss *
1841 __cfg80211_bss_update(struct cfg80211_registered_device *rdev,
1842 		      struct cfg80211_internal_bss *tmp,
1843 		      bool signal_valid, unsigned long ts)
1844 {
1845 	struct cfg80211_internal_bss *found = NULL;
1846 	struct cfg80211_bss_ies *ies;
1847 
1848 	if (WARN_ON(!tmp->pub.channel))
1849 		goto free_ies;
1850 
1851 	tmp->ts = ts;
1852 
1853 	if (WARN_ON(!rcu_access_pointer(tmp->pub.ies)))
1854 		goto free_ies;
1855 
1856 	found = rb_find_bss(rdev, tmp, BSS_CMP_REGULAR);
1857 
1858 	if (found) {
1859 		if (!cfg80211_update_known_bss(rdev, found, tmp, signal_valid))
1860 			return NULL;
1861 	} else {
1862 		struct cfg80211_internal_bss *new;
1863 		struct cfg80211_internal_bss *hidden;
1864 
1865 		/*
1866 		 * create a copy -- the "res" variable that is passed in
1867 		 * is allocated on the stack since it's not needed in the
1868 		 * more common case of an update
1869 		 */
1870 		new = kzalloc(sizeof(*new) + rdev->wiphy.bss_priv_size,
1871 			      GFP_ATOMIC);
1872 		if (!new)
1873 			goto free_ies;
1874 		memcpy(new, tmp, sizeof(*new));
1875 		new->refcount = 1;
1876 		INIT_LIST_HEAD(&new->hidden_list);
1877 		INIT_LIST_HEAD(&new->pub.nontrans_list);
1878 		/* we'll set this later if it was non-NULL */
1879 		new->pub.transmitted_bss = NULL;
1880 
1881 		if (rcu_access_pointer(tmp->pub.proberesp_ies)) {
1882 			hidden = rb_find_bss(rdev, tmp, BSS_CMP_HIDE_ZLEN);
1883 			if (!hidden)
1884 				hidden = rb_find_bss(rdev, tmp,
1885 						     BSS_CMP_HIDE_NUL);
1886 			if (hidden) {
1887 				new->pub.hidden_beacon_bss = &hidden->pub;
1888 				list_add(&new->hidden_list,
1889 					 &hidden->hidden_list);
1890 				hidden->refcount++;
1891 
1892 				ies = (void *)rcu_access_pointer(new->pub.beacon_ies);
1893 				rcu_assign_pointer(new->pub.beacon_ies,
1894 						   hidden->pub.beacon_ies);
1895 				if (ies)
1896 					kfree_rcu(ies, rcu_head);
1897 			}
1898 		} else {
1899 			/*
1900 			 * Ok so we found a beacon, and don't have an entry. If
1901 			 * it's a beacon with hidden SSID, we might be in for an
1902 			 * expensive search for any probe responses that should
1903 			 * be grouped with this beacon for updates ...
1904 			 */
1905 			if (!cfg80211_combine_bsses(rdev, new)) {
1906 				bss_ref_put(rdev, new);
1907 				return NULL;
1908 			}
1909 		}
1910 
1911 		if (rdev->bss_entries >= bss_entries_limit &&
1912 		    !cfg80211_bss_expire_oldest(rdev)) {
1913 			bss_ref_put(rdev, new);
1914 			return NULL;
1915 		}
1916 
1917 		/* This must be before the call to bss_ref_get */
1918 		if (tmp->pub.transmitted_bss) {
1919 			new->pub.transmitted_bss = tmp->pub.transmitted_bss;
1920 			bss_ref_get(rdev, bss_from_pub(tmp->pub.transmitted_bss));
1921 		}
1922 
1923 		list_add_tail(&new->list, &rdev->bss_list);
1924 		rdev->bss_entries++;
1925 		rb_insert_bss(rdev, new);
1926 		found = new;
1927 	}
1928 
1929 	rdev->bss_generation++;
1930 	bss_ref_get(rdev, found);
1931 
1932 	return found;
1933 
1934 free_ies:
1935 	ies = (void *)rcu_dereference(tmp->pub.beacon_ies);
1936 	if (ies)
1937 		kfree_rcu(ies, rcu_head);
1938 	ies = (void *)rcu_dereference(tmp->pub.proberesp_ies);
1939 	if (ies)
1940 		kfree_rcu(ies, rcu_head);
1941 
1942 	return NULL;
1943 }
1944 
1945 struct cfg80211_internal_bss *
1946 cfg80211_bss_update(struct cfg80211_registered_device *rdev,
1947 		    struct cfg80211_internal_bss *tmp,
1948 		    bool signal_valid, unsigned long ts)
1949 {
1950 	struct cfg80211_internal_bss *res;
1951 
1952 	spin_lock_bh(&rdev->bss_lock);
1953 	res = __cfg80211_bss_update(rdev, tmp, signal_valid, ts);
1954 	spin_unlock_bh(&rdev->bss_lock);
1955 
1956 	return res;
1957 }
1958 
1959 int cfg80211_get_ies_channel_number(const u8 *ie, size_t ielen,
1960 				    enum nl80211_band band)
1961 {
1962 	const struct element *tmp;
1963 
1964 	if (band == NL80211_BAND_6GHZ) {
1965 		struct ieee80211_he_operation *he_oper;
1966 
1967 		tmp = cfg80211_find_ext_elem(WLAN_EID_EXT_HE_OPERATION, ie,
1968 					     ielen);
1969 		if (tmp && tmp->datalen >= sizeof(*he_oper) &&
1970 		    tmp->datalen >= ieee80211_he_oper_size(&tmp->data[1])) {
1971 			const struct ieee80211_he_6ghz_oper *he_6ghz_oper;
1972 
1973 			he_oper = (void *)&tmp->data[1];
1974 
1975 			he_6ghz_oper = ieee80211_he_6ghz_oper(he_oper);
1976 			if (!he_6ghz_oper)
1977 				return -1;
1978 
1979 			return he_6ghz_oper->primary;
1980 		}
1981 	} else if (band == NL80211_BAND_S1GHZ) {
1982 		tmp = cfg80211_find_elem(WLAN_EID_S1G_OPERATION, ie, ielen);
1983 		if (tmp && tmp->datalen >= sizeof(struct ieee80211_s1g_oper_ie)) {
1984 			struct ieee80211_s1g_oper_ie *s1gop = (void *)tmp->data;
1985 
1986 			return s1gop->oper_ch;
1987 		}
1988 	} else {
1989 		tmp = cfg80211_find_elem(WLAN_EID_DS_PARAMS, ie, ielen);
1990 		if (tmp && tmp->datalen == 1)
1991 			return tmp->data[0];
1992 
1993 		tmp = cfg80211_find_elem(WLAN_EID_HT_OPERATION, ie, ielen);
1994 		if (tmp &&
1995 		    tmp->datalen >= sizeof(struct ieee80211_ht_operation)) {
1996 			struct ieee80211_ht_operation *htop = (void *)tmp->data;
1997 
1998 			return htop->primary_chan;
1999 		}
2000 	}
2001 
2002 	return -1;
2003 }
2004 EXPORT_SYMBOL(cfg80211_get_ies_channel_number);
2005 
2006 /*
2007  * Update RX channel information based on the available frame payload
2008  * information. This is mainly for the 2.4 GHz band where frames can be received
2009  * from neighboring channels and the Beacon frames use the DSSS Parameter Set
2010  * element to indicate the current (transmitting) channel, but this might also
2011  * be needed on other bands if RX frequency does not match with the actual
2012  * operating channel of a BSS, or if the AP reports a different primary channel.
2013  */
2014 static struct ieee80211_channel *
2015 cfg80211_get_bss_channel(struct wiphy *wiphy, const u8 *ie, size_t ielen,
2016 			 struct ieee80211_channel *channel)
2017 {
2018 	u32 freq;
2019 	int channel_number;
2020 	struct ieee80211_channel *alt_channel;
2021 
2022 	channel_number = cfg80211_get_ies_channel_number(ie, ielen,
2023 							 channel->band);
2024 
2025 	if (channel_number < 0) {
2026 		/* No channel information in frame payload */
2027 		return channel;
2028 	}
2029 
2030 	freq = ieee80211_channel_to_freq_khz(channel_number, channel->band);
2031 
2032 	/*
2033 	 * Frame info (beacon/prob res) is the same as received channel,
2034 	 * no need for further processing.
2035 	 */
2036 	if (freq == ieee80211_channel_to_khz(channel))
2037 		return channel;
2038 
2039 	alt_channel = ieee80211_get_channel_khz(wiphy, freq);
2040 	if (!alt_channel) {
2041 		if (channel->band == NL80211_BAND_2GHZ ||
2042 		    channel->band == NL80211_BAND_6GHZ) {
2043 			/*
2044 			 * Better not allow unexpected channels when that could
2045 			 * be going beyond the 1-11 range (e.g., discovering
2046 			 * BSS on channel 12 when radio is configured for
2047 			 * channel 11) or beyond the 6 GHz channel range.
2048 			 */
2049 			return NULL;
2050 		}
2051 
2052 		/* No match for the payload channel number - ignore it */
2053 		return channel;
2054 	}
2055 
2056 	/*
2057 	 * Use the channel determined through the payload channel number
2058 	 * instead of the RX channel reported by the driver.
2059 	 */
2060 	if (alt_channel->flags & IEEE80211_CHAN_DISABLED)
2061 		return NULL;
2062 	return alt_channel;
2063 }
2064 
2065 struct cfg80211_inform_single_bss_data {
2066 	struct cfg80211_inform_bss *drv_data;
2067 	enum cfg80211_bss_frame_type ftype;
2068 	struct ieee80211_channel *channel;
2069 	u8 bssid[ETH_ALEN];
2070 	u64 tsf;
2071 	u16 capability;
2072 	u16 beacon_interval;
2073 	const u8 *ie;
2074 	size_t ielen;
2075 
2076 	enum {
2077 		BSS_SOURCE_DIRECT = 0,
2078 		BSS_SOURCE_MBSSID,
2079 		BSS_SOURCE_STA_PROFILE,
2080 	} bss_source;
2081 	/* Set if reporting bss_source != BSS_SOURCE_DIRECT */
2082 	struct cfg80211_bss *source_bss;
2083 	u8 max_bssid_indicator;
2084 	u8 bssid_index;
2085 
2086 	u8 use_for;
2087 	u64 cannot_use_reasons;
2088 };
2089 
2090 /* Returned bss is reference counted and must be cleaned up appropriately. */
2091 static struct cfg80211_bss *
2092 cfg80211_inform_single_bss_data(struct wiphy *wiphy,
2093 				struct cfg80211_inform_single_bss_data *data,
2094 				gfp_t gfp)
2095 {
2096 	struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
2097 	struct cfg80211_inform_bss *drv_data = data->drv_data;
2098 	struct cfg80211_bss_ies *ies;
2099 	struct ieee80211_channel *channel;
2100 	struct cfg80211_internal_bss tmp = {}, *res;
2101 	int bss_type;
2102 	bool signal_valid;
2103 	unsigned long ts;
2104 
2105 	if (WARN_ON(!wiphy))
2106 		return NULL;
2107 
2108 	if (WARN_ON(wiphy->signal_type == CFG80211_SIGNAL_TYPE_UNSPEC &&
2109 		    (drv_data->signal < 0 || drv_data->signal > 100)))
2110 		return NULL;
2111 
2112 	if (WARN_ON(data->bss_source != BSS_SOURCE_DIRECT && !data->source_bss))
2113 		return NULL;
2114 
2115 	channel = data->channel;
2116 	if (!channel)
2117 		channel = cfg80211_get_bss_channel(wiphy, data->ie, data->ielen,
2118 						   drv_data->chan);
2119 	if (!channel)
2120 		return NULL;
2121 
2122 	memcpy(tmp.pub.bssid, data->bssid, ETH_ALEN);
2123 	tmp.pub.channel = channel;
2124 	if (data->bss_source != BSS_SOURCE_STA_PROFILE)
2125 		tmp.pub.signal = drv_data->signal;
2126 	else
2127 		tmp.pub.signal = 0;
2128 	tmp.pub.beacon_interval = data->beacon_interval;
2129 	tmp.pub.capability = data->capability;
2130 	tmp.ts_boottime = drv_data->boottime_ns;
2131 	tmp.parent_tsf = drv_data->parent_tsf;
2132 	ether_addr_copy(tmp.parent_bssid, drv_data->parent_bssid);
2133 	tmp.pub.use_for = data->use_for;
2134 	tmp.pub.cannot_use_reasons = data->cannot_use_reasons;
2135 
2136 	if (data->bss_source != BSS_SOURCE_DIRECT) {
2137 		tmp.pub.transmitted_bss = data->source_bss;
2138 		ts = bss_from_pub(data->source_bss)->ts;
2139 		tmp.pub.bssid_index = data->bssid_index;
2140 		tmp.pub.max_bssid_indicator = data->max_bssid_indicator;
2141 	} else {
2142 		ts = jiffies;
2143 
2144 		if (channel->band == NL80211_BAND_60GHZ) {
2145 			bss_type = data->capability &
2146 				   WLAN_CAPABILITY_DMG_TYPE_MASK;
2147 			if (bss_type == WLAN_CAPABILITY_DMG_TYPE_AP ||
2148 			    bss_type == WLAN_CAPABILITY_DMG_TYPE_PBSS)
2149 				regulatory_hint_found_beacon(wiphy, channel,
2150 							     gfp);
2151 		} else {
2152 			if (data->capability & WLAN_CAPABILITY_ESS)
2153 				regulatory_hint_found_beacon(wiphy, channel,
2154 							     gfp);
2155 		}
2156 	}
2157 
2158 	/*
2159 	 * If we do not know here whether the IEs are from a Beacon or Probe
2160 	 * Response frame, we need to pick one of the options and only use it
2161 	 * with the driver that does not provide the full Beacon/Probe Response
2162 	 * frame. Use Beacon frame pointer to avoid indicating that this should
2163 	 * override the IEs pointer should we have received an earlier
2164 	 * indication of Probe Response data.
2165 	 */
2166 	ies = kzalloc(sizeof(*ies) + data->ielen, gfp);
2167 	if (!ies)
2168 		return NULL;
2169 	ies->len = data->ielen;
2170 	ies->tsf = data->tsf;
2171 	ies->from_beacon = false;
2172 	memcpy(ies->data, data->ie, data->ielen);
2173 
2174 	switch (data->ftype) {
2175 	case CFG80211_BSS_FTYPE_BEACON:
2176 		ies->from_beacon = true;
2177 		fallthrough;
2178 	case CFG80211_BSS_FTYPE_UNKNOWN:
2179 		rcu_assign_pointer(tmp.pub.beacon_ies, ies);
2180 		break;
2181 	case CFG80211_BSS_FTYPE_PRESP:
2182 		rcu_assign_pointer(tmp.pub.proberesp_ies, ies);
2183 		break;
2184 	}
2185 	rcu_assign_pointer(tmp.pub.ies, ies);
2186 
2187 	signal_valid = drv_data->chan == channel;
2188 	spin_lock_bh(&rdev->bss_lock);
2189 	res = __cfg80211_bss_update(rdev, &tmp, signal_valid, ts);
2190 	if (!res)
2191 		goto drop;
2192 
2193 	rdev_inform_bss(rdev, &res->pub, ies, drv_data->drv_data);
2194 
2195 	if (data->bss_source == BSS_SOURCE_MBSSID) {
2196 		/* this is a nontransmitting bss, we need to add it to
2197 		 * transmitting bss' list if it is not there
2198 		 */
2199 		if (cfg80211_add_nontrans_list(data->source_bss, &res->pub)) {
2200 			if (__cfg80211_unlink_bss(rdev, res)) {
2201 				rdev->bss_generation++;
2202 				res = NULL;
2203 			}
2204 		}
2205 
2206 		if (!res)
2207 			goto drop;
2208 	}
2209 	spin_unlock_bh(&rdev->bss_lock);
2210 
2211 	trace_cfg80211_return_bss(&res->pub);
2212 	/* __cfg80211_bss_update gives us a referenced result */
2213 	return &res->pub;
2214 
2215 drop:
2216 	spin_unlock_bh(&rdev->bss_lock);
2217 	return NULL;
2218 }
2219 
2220 static const struct element
2221 *cfg80211_get_profile_continuation(const u8 *ie, size_t ielen,
2222 				   const struct element *mbssid_elem,
2223 				   const struct element *sub_elem)
2224 {
2225 	const u8 *mbssid_end = mbssid_elem->data + mbssid_elem->datalen;
2226 	const struct element *next_mbssid;
2227 	const struct element *next_sub;
2228 
2229 	next_mbssid = cfg80211_find_elem(WLAN_EID_MULTIPLE_BSSID,
2230 					 mbssid_end,
2231 					 ielen - (mbssid_end - ie));
2232 
2233 	/*
2234 	 * If it is not the last subelement in current MBSSID IE or there isn't
2235 	 * a next MBSSID IE - profile is complete.
2236 	*/
2237 	if ((sub_elem->data + sub_elem->datalen < mbssid_end - 1) ||
2238 	    !next_mbssid)
2239 		return NULL;
2240 
2241 	/* For any length error, just return NULL */
2242 
2243 	if (next_mbssid->datalen < 4)
2244 		return NULL;
2245 
2246 	next_sub = (void *)&next_mbssid->data[1];
2247 
2248 	if (next_mbssid->data + next_mbssid->datalen <
2249 	    next_sub->data + next_sub->datalen)
2250 		return NULL;
2251 
2252 	if (next_sub->id != 0 || next_sub->datalen < 2)
2253 		return NULL;
2254 
2255 	/*
2256 	 * Check if the first element in the next sub element is a start
2257 	 * of a new profile
2258 	 */
2259 	return next_sub->data[0] == WLAN_EID_NON_TX_BSSID_CAP ?
2260 	       NULL : next_mbssid;
2261 }
2262 
2263 size_t cfg80211_merge_profile(const u8 *ie, size_t ielen,
2264 			      const struct element *mbssid_elem,
2265 			      const struct element *sub_elem,
2266 			      u8 *merged_ie, size_t max_copy_len)
2267 {
2268 	size_t copied_len = sub_elem->datalen;
2269 	const struct element *next_mbssid;
2270 
2271 	if (sub_elem->datalen > max_copy_len)
2272 		return 0;
2273 
2274 	memcpy(merged_ie, sub_elem->data, sub_elem->datalen);
2275 
2276 	while ((next_mbssid = cfg80211_get_profile_continuation(ie, ielen,
2277 								mbssid_elem,
2278 								sub_elem))) {
2279 		const struct element *next_sub = (void *)&next_mbssid->data[1];
2280 
2281 		if (copied_len + next_sub->datalen > max_copy_len)
2282 			break;
2283 		memcpy(merged_ie + copied_len, next_sub->data,
2284 		       next_sub->datalen);
2285 		copied_len += next_sub->datalen;
2286 	}
2287 
2288 	return copied_len;
2289 }
2290 EXPORT_SYMBOL(cfg80211_merge_profile);
2291 
2292 static void
2293 cfg80211_parse_mbssid_data(struct wiphy *wiphy,
2294 			   struct cfg80211_inform_single_bss_data *tx_data,
2295 			   struct cfg80211_bss *source_bss,
2296 			   gfp_t gfp)
2297 {
2298 	struct cfg80211_inform_single_bss_data data = {
2299 		.drv_data = tx_data->drv_data,
2300 		.ftype = tx_data->ftype,
2301 		.tsf = tx_data->tsf,
2302 		.beacon_interval = tx_data->beacon_interval,
2303 		.source_bss = source_bss,
2304 		.bss_source = BSS_SOURCE_MBSSID,
2305 		.use_for = tx_data->use_for,
2306 		.cannot_use_reasons = tx_data->cannot_use_reasons,
2307 	};
2308 	const u8 *mbssid_index_ie;
2309 	const struct element *elem, *sub;
2310 	u8 *new_ie, *profile;
2311 	u64 seen_indices = 0;
2312 	struct cfg80211_bss *bss;
2313 
2314 	if (!source_bss)
2315 		return;
2316 	if (!cfg80211_find_elem(WLAN_EID_MULTIPLE_BSSID,
2317 				tx_data->ie, tx_data->ielen))
2318 		return;
2319 	if (!wiphy->support_mbssid)
2320 		return;
2321 	if (wiphy->support_only_he_mbssid &&
2322 	    !cfg80211_find_ext_elem(WLAN_EID_EXT_HE_CAPABILITY,
2323 				    tx_data->ie, tx_data->ielen))
2324 		return;
2325 
2326 	new_ie = kmalloc(IEEE80211_MAX_DATA_LEN, gfp);
2327 	if (!new_ie)
2328 		return;
2329 
2330 	profile = kmalloc(tx_data->ielen, gfp);
2331 	if (!profile)
2332 		goto out;
2333 
2334 	for_each_element_id(elem, WLAN_EID_MULTIPLE_BSSID,
2335 			    tx_data->ie, tx_data->ielen) {
2336 		if (elem->datalen < 4)
2337 			continue;
2338 		if (elem->data[0] < 1 || (int)elem->data[0] > 8)
2339 			continue;
2340 		for_each_element(sub, elem->data + 1, elem->datalen - 1) {
2341 			u8 profile_len;
2342 
2343 			if (sub->id != 0 || sub->datalen < 4) {
2344 				/* not a valid BSS profile */
2345 				continue;
2346 			}
2347 
2348 			if (sub->data[0] != WLAN_EID_NON_TX_BSSID_CAP ||
2349 			    sub->data[1] != 2) {
2350 				/* The first element within the Nontransmitted
2351 				 * BSSID Profile is not the Nontransmitted
2352 				 * BSSID Capability element.
2353 				 */
2354 				continue;
2355 			}
2356 
2357 			memset(profile, 0, tx_data->ielen);
2358 			profile_len = cfg80211_merge_profile(tx_data->ie,
2359 							     tx_data->ielen,
2360 							     elem,
2361 							     sub,
2362 							     profile,
2363 							     tx_data->ielen);
2364 
2365 			/* found a Nontransmitted BSSID Profile */
2366 			mbssid_index_ie = cfg80211_find_ie
2367 				(WLAN_EID_MULTI_BSSID_IDX,
2368 				 profile, profile_len);
2369 			if (!mbssid_index_ie || mbssid_index_ie[1] < 1 ||
2370 			    mbssid_index_ie[2] == 0 ||
2371 			    mbssid_index_ie[2] > 46) {
2372 				/* No valid Multiple BSSID-Index element */
2373 				continue;
2374 			}
2375 
2376 			if (seen_indices & BIT_ULL(mbssid_index_ie[2]))
2377 				/* We don't support legacy split of a profile */
2378 				net_dbg_ratelimited("Partial info for BSSID index %d\n",
2379 						    mbssid_index_ie[2]);
2380 
2381 			seen_indices |= BIT_ULL(mbssid_index_ie[2]);
2382 
2383 			data.bssid_index = mbssid_index_ie[2];
2384 			data.max_bssid_indicator = elem->data[0];
2385 
2386 			cfg80211_gen_new_bssid(tx_data->bssid,
2387 					       data.max_bssid_indicator,
2388 					       data.bssid_index,
2389 					       data.bssid);
2390 
2391 			memset(new_ie, 0, IEEE80211_MAX_DATA_LEN);
2392 			data.ie = new_ie;
2393 			data.ielen = cfg80211_gen_new_ie(tx_data->ie,
2394 							 tx_data->ielen,
2395 							 profile,
2396 							 profile_len,
2397 							 new_ie,
2398 							 IEEE80211_MAX_DATA_LEN);
2399 			if (!data.ielen)
2400 				continue;
2401 
2402 			data.capability = get_unaligned_le16(profile + 2);
2403 			bss = cfg80211_inform_single_bss_data(wiphy, &data, gfp);
2404 			if (!bss)
2405 				break;
2406 			cfg80211_put_bss(wiphy, bss);
2407 		}
2408 	}
2409 
2410 out:
2411 	kfree(new_ie);
2412 	kfree(profile);
2413 }
2414 
2415 ssize_t cfg80211_defragment_element(const struct element *elem, const u8 *ies,
2416 				    size_t ieslen, u8 *data, size_t data_len,
2417 				    u8 frag_id)
2418 {
2419 	const struct element *next;
2420 	ssize_t copied;
2421 	u8 elem_datalen;
2422 
2423 	if (!elem)
2424 		return -EINVAL;
2425 
2426 	/* elem might be invalid after the memmove */
2427 	next = (void *)(elem->data + elem->datalen);
2428 	elem_datalen = elem->datalen;
2429 
2430 	if (elem->id == WLAN_EID_EXTENSION) {
2431 		copied = elem->datalen - 1;
2432 		if (copied > data_len)
2433 			return -ENOSPC;
2434 
2435 		memmove(data, elem->data + 1, copied);
2436 	} else {
2437 		copied = elem->datalen;
2438 		if (copied > data_len)
2439 			return -ENOSPC;
2440 
2441 		memmove(data, elem->data, copied);
2442 	}
2443 
2444 	/* Fragmented elements must have 255 bytes */
2445 	if (elem_datalen < 255)
2446 		return copied;
2447 
2448 	for (elem = next;
2449 	     elem->data < ies + ieslen &&
2450 		elem->data + elem->datalen <= ies + ieslen;
2451 	     elem = next) {
2452 		/* elem might be invalid after the memmove */
2453 		next = (void *)(elem->data + elem->datalen);
2454 
2455 		if (elem->id != frag_id)
2456 			break;
2457 
2458 		elem_datalen = elem->datalen;
2459 
2460 		if (copied + elem_datalen > data_len)
2461 			return -ENOSPC;
2462 
2463 		memmove(data + copied, elem->data, elem_datalen);
2464 		copied += elem_datalen;
2465 
2466 		/* Only the last fragment may be short */
2467 		if (elem_datalen != 255)
2468 			break;
2469 	}
2470 
2471 	return copied;
2472 }
2473 EXPORT_SYMBOL(cfg80211_defragment_element);
2474 
2475 struct cfg80211_mle {
2476 	struct ieee80211_multi_link_elem *mle;
2477 	struct ieee80211_mle_per_sta_profile
2478 		*sta_prof[IEEE80211_MLD_MAX_NUM_LINKS];
2479 	ssize_t sta_prof_len[IEEE80211_MLD_MAX_NUM_LINKS];
2480 
2481 	u8 data[];
2482 };
2483 
2484 static struct cfg80211_mle *
2485 cfg80211_defrag_mle(const struct element *mle, const u8 *ie, size_t ielen,
2486 		    gfp_t gfp)
2487 {
2488 	const struct element *elem;
2489 	struct cfg80211_mle *res;
2490 	size_t buf_len;
2491 	ssize_t mle_len;
2492 	u8 common_size, idx;
2493 
2494 	if (!mle || !ieee80211_mle_size_ok(mle->data + 1, mle->datalen - 1))
2495 		return NULL;
2496 
2497 	/* Required length for first defragmentation */
2498 	buf_len = mle->datalen - 1;
2499 	for_each_element(elem, mle->data + mle->datalen,
2500 			 ielen - sizeof(*mle) + mle->datalen) {
2501 		if (elem->id != WLAN_EID_FRAGMENT)
2502 			break;
2503 
2504 		buf_len += elem->datalen;
2505 	}
2506 
2507 	res = kzalloc(struct_size(res, data, buf_len), gfp);
2508 	if (!res)
2509 		return NULL;
2510 
2511 	mle_len = cfg80211_defragment_element(mle, ie, ielen,
2512 					      res->data, buf_len,
2513 					      WLAN_EID_FRAGMENT);
2514 	if (mle_len < 0)
2515 		goto error;
2516 
2517 	res->mle = (void *)res->data;
2518 
2519 	/* Find the sub-element area in the buffer */
2520 	common_size = ieee80211_mle_common_size((u8 *)res->mle);
2521 	ie = res->data + common_size;
2522 	ielen = mle_len - common_size;
2523 
2524 	idx = 0;
2525 	for_each_element_id(elem, IEEE80211_MLE_SUBELEM_PER_STA_PROFILE,
2526 			    ie, ielen) {
2527 		res->sta_prof[idx] = (void *)elem->data;
2528 		res->sta_prof_len[idx] = elem->datalen;
2529 
2530 		idx++;
2531 		if (idx >= IEEE80211_MLD_MAX_NUM_LINKS)
2532 			break;
2533 	}
2534 	if (!for_each_element_completed(elem, ie, ielen))
2535 		goto error;
2536 
2537 	/* Defragment sta_info in-place */
2538 	for (idx = 0; idx < IEEE80211_MLD_MAX_NUM_LINKS && res->sta_prof[idx];
2539 	     idx++) {
2540 		if (res->sta_prof_len[idx] < 255)
2541 			continue;
2542 
2543 		elem = (void *)res->sta_prof[idx] - 2;
2544 
2545 		if (idx + 1 < ARRAY_SIZE(res->sta_prof) &&
2546 		    res->sta_prof[idx + 1])
2547 			buf_len = (u8 *)res->sta_prof[idx + 1] -
2548 				  (u8 *)res->sta_prof[idx];
2549 		else
2550 			buf_len = ielen + ie - (u8 *)elem;
2551 
2552 		res->sta_prof_len[idx] =
2553 			cfg80211_defragment_element(elem,
2554 						    (u8 *)elem, buf_len,
2555 						    (u8 *)res->sta_prof[idx],
2556 						    buf_len,
2557 						    IEEE80211_MLE_SUBELEM_FRAGMENT);
2558 		if (res->sta_prof_len[idx] < 0)
2559 			goto error;
2560 	}
2561 
2562 	return res;
2563 
2564 error:
2565 	kfree(res);
2566 	return NULL;
2567 }
2568 
2569 static u8
2570 cfg80211_tbtt_info_for_mld_ap(const u8 *ie, size_t ielen, u8 mld_id, u8 link_id,
2571 			      const struct ieee80211_neighbor_ap_info **ap_info,
2572 			      const u8 **tbtt_info)
2573 {
2574 	const struct ieee80211_neighbor_ap_info *info;
2575 	const struct element *rnr;
2576 	const u8 *pos, *end;
2577 
2578 	for_each_element_id(rnr, WLAN_EID_REDUCED_NEIGHBOR_REPORT, ie, ielen) {
2579 		pos = rnr->data;
2580 		end = rnr->data + rnr->datalen;
2581 
2582 		/* RNR IE may contain more than one NEIGHBOR_AP_INFO */
2583 		while (sizeof(*info) <= end - pos) {
2584 			const struct ieee80211_rnr_mld_params *mld_params;
2585 			u16 params;
2586 			u8 length, i, count, mld_params_offset;
2587 			u8 type, lid;
2588 			u32 use_for;
2589 
2590 			info = (void *)pos;
2591 			count = u8_get_bits(info->tbtt_info_hdr,
2592 					    IEEE80211_AP_INFO_TBTT_HDR_COUNT) + 1;
2593 			length = info->tbtt_info_len;
2594 
2595 			pos += sizeof(*info);
2596 
2597 			if (count * length > end - pos)
2598 				return 0;
2599 
2600 			type = u8_get_bits(info->tbtt_info_hdr,
2601 					   IEEE80211_AP_INFO_TBTT_HDR_TYPE);
2602 
2603 			if (type == IEEE80211_TBTT_INFO_TYPE_TBTT &&
2604 			    length >=
2605 			    offsetofend(struct ieee80211_tbtt_info_ge_11,
2606 					mld_params)) {
2607 				mld_params_offset =
2608 					offsetof(struct ieee80211_tbtt_info_ge_11, mld_params);
2609 				use_for = NL80211_BSS_USE_FOR_ALL;
2610 			} else if (type == IEEE80211_TBTT_INFO_TYPE_MLD &&
2611 				   length >= sizeof(struct ieee80211_rnr_mld_params)) {
2612 				mld_params_offset = 0;
2613 				use_for = NL80211_BSS_USE_FOR_MLD_LINK;
2614 			} else {
2615 				pos += count * length;
2616 				continue;
2617 			}
2618 
2619 			for (i = 0; i < count; i++) {
2620 				mld_params = (void *)pos + mld_params_offset;
2621 				params = le16_to_cpu(mld_params->params);
2622 
2623 				lid = u16_get_bits(params,
2624 						   IEEE80211_RNR_MLD_PARAMS_LINK_ID);
2625 
2626 				if (mld_id == mld_params->mld_id &&
2627 				    link_id == lid) {
2628 					*ap_info = info;
2629 					*tbtt_info = pos;
2630 
2631 					return use_for;
2632 				}
2633 
2634 				pos += length;
2635 			}
2636 		}
2637 	}
2638 
2639 	return 0;
2640 }
2641 
2642 static struct element *
2643 cfg80211_gen_reporter_rnr(struct cfg80211_bss *source_bss, bool is_mbssid,
2644 			  bool same_mld, u8 link_id, u8 bss_change_count,
2645 			  gfp_t gfp)
2646 {
2647 	const struct cfg80211_bss_ies *ies;
2648 	struct ieee80211_neighbor_ap_info ap_info;
2649 	struct ieee80211_tbtt_info_ge_11 tbtt_info;
2650 	u32 short_ssid;
2651 	const struct element *elem;
2652 	struct element *res;
2653 
2654 	/*
2655 	 * We only generate the RNR to permit ML lookups. For that we do not
2656 	 * need an entry for the corresponding transmitting BSS, lets just skip
2657 	 * it even though it would be easy to add.
2658 	 */
2659 	if (!same_mld)
2660 		return NULL;
2661 
2662 	/* We could use tx_data->ies if we change cfg80211_calc_short_ssid */
2663 	rcu_read_lock();
2664 	ies = rcu_dereference(source_bss->ies);
2665 
2666 	ap_info.tbtt_info_len = offsetofend(typeof(tbtt_info), mld_params);
2667 	ap_info.tbtt_info_hdr =
2668 			u8_encode_bits(IEEE80211_TBTT_INFO_TYPE_TBTT,
2669 				       IEEE80211_AP_INFO_TBTT_HDR_TYPE) |
2670 			u8_encode_bits(0, IEEE80211_AP_INFO_TBTT_HDR_COUNT);
2671 
2672 	ap_info.channel = ieee80211_frequency_to_channel(source_bss->channel->center_freq);
2673 
2674 	/* operating class */
2675 	elem = cfg80211_find_elem(WLAN_EID_SUPPORTED_REGULATORY_CLASSES,
2676 				  ies->data, ies->len);
2677 	if (elem && elem->datalen >= 1) {
2678 		ap_info.op_class = elem->data[0];
2679 	} else {
2680 		struct cfg80211_chan_def chandef;
2681 
2682 		/* The AP is not providing us with anything to work with. So
2683 		 * make up a somewhat reasonable operating class, but don't
2684 		 * bother with it too much as no one will ever use the
2685 		 * information.
2686 		 */
2687 		cfg80211_chandef_create(&chandef, source_bss->channel,
2688 					NL80211_CHAN_NO_HT);
2689 
2690 		if (!ieee80211_chandef_to_operating_class(&chandef,
2691 							  &ap_info.op_class))
2692 			goto out_unlock;
2693 	}
2694 
2695 	/* Just set TBTT offset and PSD 20 to invalid/unknown */
2696 	tbtt_info.tbtt_offset = 255;
2697 	tbtt_info.psd_20 = IEEE80211_RNR_TBTT_PARAMS_PSD_RESERVED;
2698 
2699 	memcpy(tbtt_info.bssid, source_bss->bssid, ETH_ALEN);
2700 	if (cfg80211_calc_short_ssid(ies, &elem, &short_ssid))
2701 		goto out_unlock;
2702 
2703 	rcu_read_unlock();
2704 
2705 	tbtt_info.short_ssid = cpu_to_le32(short_ssid);
2706 
2707 	tbtt_info.bss_params = IEEE80211_RNR_TBTT_PARAMS_SAME_SSID;
2708 
2709 	if (is_mbssid) {
2710 		tbtt_info.bss_params |= IEEE80211_RNR_TBTT_PARAMS_MULTI_BSSID;
2711 		tbtt_info.bss_params |= IEEE80211_RNR_TBTT_PARAMS_TRANSMITTED_BSSID;
2712 	}
2713 
2714 	tbtt_info.mld_params.mld_id = 0;
2715 	tbtt_info.mld_params.params =
2716 		le16_encode_bits(link_id, IEEE80211_RNR_MLD_PARAMS_LINK_ID) |
2717 		le16_encode_bits(bss_change_count,
2718 				 IEEE80211_RNR_MLD_PARAMS_BSS_CHANGE_COUNT);
2719 
2720 	res = kzalloc(struct_size(res, data,
2721 				  sizeof(ap_info) + ap_info.tbtt_info_len),
2722 		      gfp);
2723 	if (!res)
2724 		return NULL;
2725 
2726 	/* Copy the data */
2727 	res->id = WLAN_EID_REDUCED_NEIGHBOR_REPORT;
2728 	res->datalen = sizeof(ap_info) + ap_info.tbtt_info_len;
2729 	memcpy(res->data, &ap_info, sizeof(ap_info));
2730 	memcpy(res->data + sizeof(ap_info), &tbtt_info, ap_info.tbtt_info_len);
2731 
2732 	return res;
2733 
2734 out_unlock:
2735 	rcu_read_unlock();
2736 	return NULL;
2737 }
2738 
2739 static void
2740 cfg80211_parse_ml_elem_sta_data(struct wiphy *wiphy,
2741 				struct cfg80211_inform_single_bss_data *tx_data,
2742 				struct cfg80211_bss *source_bss,
2743 				const struct element *elem,
2744 				gfp_t gfp)
2745 {
2746 	struct cfg80211_inform_single_bss_data data = {
2747 		.drv_data = tx_data->drv_data,
2748 		.ftype = tx_data->ftype,
2749 		.source_bss = source_bss,
2750 		.bss_source = BSS_SOURCE_STA_PROFILE,
2751 	};
2752 	struct element *reporter_rnr = NULL;
2753 	struct ieee80211_multi_link_elem *ml_elem;
2754 	struct cfg80211_mle *mle;
2755 	u16 control;
2756 	u8 ml_common_len;
2757 	u8 *new_ie = NULL;
2758 	struct cfg80211_bss *bss;
2759 	u8 mld_id, reporter_link_id, bss_change_count;
2760 	u16 seen_links = 0;
2761 	const u8 *pos;
2762 	u8 i;
2763 
2764 	if (!ieee80211_mle_size_ok(elem->data + 1, elem->datalen - 1))
2765 		return;
2766 
2767 	ml_elem = (void *)elem->data + 1;
2768 	control = le16_to_cpu(ml_elem->control);
2769 	if (u16_get_bits(control, IEEE80211_ML_CONTROL_TYPE) !=
2770 	    IEEE80211_ML_CONTROL_TYPE_BASIC)
2771 		return;
2772 
2773 	/* Must be present when transmitted by an AP (in a probe response) */
2774 	if (!(control & IEEE80211_MLC_BASIC_PRES_BSS_PARAM_CH_CNT) ||
2775 	    !(control & IEEE80211_MLC_BASIC_PRES_LINK_ID) ||
2776 	    !(control & IEEE80211_MLC_BASIC_PRES_MLD_CAPA_OP))
2777 		return;
2778 
2779 	ml_common_len = ml_elem->variable[0];
2780 
2781 	/* length + MLD MAC address */
2782 	pos = ml_elem->variable + 1 + 6;
2783 
2784 	reporter_link_id = pos[0];
2785 	pos += 1;
2786 
2787 	bss_change_count = pos[0];
2788 	pos += 1;
2789 
2790 	if (u16_get_bits(control, IEEE80211_MLC_BASIC_PRES_MED_SYNC_DELAY))
2791 		pos += 2;
2792 	if (u16_get_bits(control, IEEE80211_MLC_BASIC_PRES_EML_CAPA))
2793 		pos += 2;
2794 
2795 	/* MLD capabilities and operations */
2796 	pos += 2;
2797 
2798 	/*
2799 	 * The MLD ID of the reporting AP is always zero. It is set if the AP
2800 	 * is part of an MBSSID set and will be non-zero for ML Elements
2801 	 * relating to a nontransmitted BSS (matching the Multi-BSSID Index,
2802 	 * Draft P802.11be_D3.2, 35.3.4.2)
2803 	 */
2804 	if (u16_get_bits(control, IEEE80211_MLC_BASIC_PRES_MLD_ID)) {
2805 		mld_id = *pos;
2806 		pos += 1;
2807 	} else {
2808 		mld_id = 0;
2809 	}
2810 
2811 	/* Extended MLD capabilities and operations */
2812 	pos += 2;
2813 
2814 	/* Fully defrag the ML element for sta information/profile iteration */
2815 	mle = cfg80211_defrag_mle(elem, tx_data->ie, tx_data->ielen, gfp);
2816 	if (!mle)
2817 		return;
2818 
2819 	/* No point in doing anything if there is no per-STA profile */
2820 	if (!mle->sta_prof[0])
2821 		goto out;
2822 
2823 	new_ie = kmalloc(IEEE80211_MAX_DATA_LEN, gfp);
2824 	if (!new_ie)
2825 		goto out;
2826 
2827 	reporter_rnr = cfg80211_gen_reporter_rnr(source_bss,
2828 						 u16_get_bits(control,
2829 							      IEEE80211_MLC_BASIC_PRES_MLD_ID),
2830 						 mld_id == 0, reporter_link_id,
2831 						 bss_change_count,
2832 						 gfp);
2833 
2834 	for (i = 0; i < ARRAY_SIZE(mle->sta_prof) && mle->sta_prof[i]; i++) {
2835 		const struct ieee80211_neighbor_ap_info *ap_info;
2836 		enum nl80211_band band;
2837 		u32 freq;
2838 		const u8 *profile;
2839 		const u8 *tbtt_info;
2840 		ssize_t profile_len;
2841 		u8 link_id, use_for;
2842 
2843 		if (!ieee80211_mle_basic_sta_prof_size_ok((u8 *)mle->sta_prof[i],
2844 							  mle->sta_prof_len[i]))
2845 			continue;
2846 
2847 		control = le16_to_cpu(mle->sta_prof[i]->control);
2848 
2849 		if (!(control & IEEE80211_MLE_STA_CONTROL_COMPLETE_PROFILE))
2850 			continue;
2851 
2852 		link_id = u16_get_bits(control,
2853 				       IEEE80211_MLE_STA_CONTROL_LINK_ID);
2854 		if (seen_links & BIT(link_id))
2855 			break;
2856 		seen_links |= BIT(link_id);
2857 
2858 		if (!(control & IEEE80211_MLE_STA_CONTROL_BEACON_INT_PRESENT) ||
2859 		    !(control & IEEE80211_MLE_STA_CONTROL_TSF_OFFS_PRESENT) ||
2860 		    !(control & IEEE80211_MLE_STA_CONTROL_STA_MAC_ADDR_PRESENT))
2861 			continue;
2862 
2863 		memcpy(data.bssid, mle->sta_prof[i]->variable, ETH_ALEN);
2864 		data.beacon_interval =
2865 			get_unaligned_le16(mle->sta_prof[i]->variable + 6);
2866 		data.tsf = tx_data->tsf +
2867 			   get_unaligned_le64(mle->sta_prof[i]->variable + 8);
2868 
2869 		/* sta_info_len counts itself */
2870 		profile = mle->sta_prof[i]->variable +
2871 			  mle->sta_prof[i]->sta_info_len - 1;
2872 		profile_len = (u8 *)mle->sta_prof[i] + mle->sta_prof_len[i] -
2873 			      profile;
2874 
2875 		if (profile_len < 2)
2876 			continue;
2877 
2878 		data.capability = get_unaligned_le16(profile);
2879 		profile += 2;
2880 		profile_len -= 2;
2881 
2882 		/* Find in RNR to look up channel information */
2883 		use_for = cfg80211_tbtt_info_for_mld_ap(tx_data->ie,
2884 							tx_data->ielen,
2885 							mld_id, link_id,
2886 							&ap_info, &tbtt_info);
2887 		if (!use_for)
2888 			continue;
2889 
2890 		/* We could sanity check the BSSID is included */
2891 
2892 		if (!ieee80211_operating_class_to_band(ap_info->op_class,
2893 						       &band))
2894 			continue;
2895 
2896 		freq = ieee80211_channel_to_freq_khz(ap_info->channel, band);
2897 		data.channel = ieee80211_get_channel_khz(wiphy, freq);
2898 
2899 		if (use_for == NL80211_BSS_USE_FOR_MLD_LINK &&
2900 		    !(wiphy->flags & WIPHY_FLAG_SUPPORTS_NSTR_NONPRIMARY)) {
2901 			use_for = 0;
2902 			data.cannot_use_reasons =
2903 				NL80211_BSS_CANNOT_USE_NSTR_NONPRIMARY;
2904 		}
2905 		data.use_for = use_for;
2906 
2907 		/* Generate new elements */
2908 		memset(new_ie, 0, IEEE80211_MAX_DATA_LEN);
2909 		data.ie = new_ie;
2910 		data.ielen = cfg80211_gen_new_ie(tx_data->ie, tx_data->ielen,
2911 						 profile, profile_len,
2912 						 new_ie,
2913 						 IEEE80211_MAX_DATA_LEN);
2914 		if (!data.ielen)
2915 			continue;
2916 
2917 		/* The generated elements do not contain:
2918 		 *  - Basic ML element
2919 		 *  - A TBTT entry in the RNR for the transmitting AP
2920 		 *
2921 		 * This information is needed both internally and in userspace
2922 		 * as such, we should append it here.
2923 		 */
2924 		if (data.ielen + 3 + sizeof(*ml_elem) + ml_common_len >
2925 		    IEEE80211_MAX_DATA_LEN)
2926 			continue;
2927 
2928 		/* Copy the Basic Multi-Link element including the common
2929 		 * information, and then fix up the link ID.
2930 		 * Note that the ML element length has been verified and we
2931 		 * also checked that it contains the link ID.
2932 		 */
2933 		new_ie[data.ielen++] = WLAN_EID_EXTENSION;
2934 		new_ie[data.ielen++] = 1 + sizeof(*ml_elem) + ml_common_len;
2935 		new_ie[data.ielen++] = WLAN_EID_EXT_EHT_MULTI_LINK;
2936 		memcpy(new_ie + data.ielen, ml_elem,
2937 		       sizeof(*ml_elem) + ml_common_len);
2938 
2939 		new_ie[data.ielen + sizeof(*ml_elem) + 1 + ETH_ALEN] = link_id;
2940 
2941 		data.ielen += sizeof(*ml_elem) + ml_common_len;
2942 
2943 		if (reporter_rnr && (use_for & NL80211_BSS_USE_FOR_NORMAL)) {
2944 			if (data.ielen + sizeof(struct element) +
2945 			    reporter_rnr->datalen > IEEE80211_MAX_DATA_LEN)
2946 				continue;
2947 
2948 			memcpy(new_ie + data.ielen, reporter_rnr,
2949 			       sizeof(struct element) + reporter_rnr->datalen);
2950 			data.ielen += sizeof(struct element) +
2951 				      reporter_rnr->datalen;
2952 		}
2953 
2954 		bss = cfg80211_inform_single_bss_data(wiphy, &data, gfp);
2955 		if (!bss)
2956 			break;
2957 		cfg80211_put_bss(wiphy, bss);
2958 	}
2959 
2960 out:
2961 	kfree(reporter_rnr);
2962 	kfree(new_ie);
2963 	kfree(mle);
2964 }
2965 
2966 static void cfg80211_parse_ml_sta_data(struct wiphy *wiphy,
2967 				       struct cfg80211_inform_single_bss_data *tx_data,
2968 				       struct cfg80211_bss *source_bss,
2969 				       gfp_t gfp)
2970 {
2971 	const struct element *elem;
2972 
2973 	if (!source_bss)
2974 		return;
2975 
2976 	if (tx_data->ftype != CFG80211_BSS_FTYPE_PRESP)
2977 		return;
2978 
2979 	for_each_element_extid(elem, WLAN_EID_EXT_EHT_MULTI_LINK,
2980 			       tx_data->ie, tx_data->ielen)
2981 		cfg80211_parse_ml_elem_sta_data(wiphy, tx_data, source_bss,
2982 						elem, gfp);
2983 }
2984 
2985 struct cfg80211_bss *
2986 cfg80211_inform_bss_data(struct wiphy *wiphy,
2987 			 struct cfg80211_inform_bss *data,
2988 			 enum cfg80211_bss_frame_type ftype,
2989 			 const u8 *bssid, u64 tsf, u16 capability,
2990 			 u16 beacon_interval, const u8 *ie, size_t ielen,
2991 			 gfp_t gfp)
2992 {
2993 	struct cfg80211_inform_single_bss_data inform_data = {
2994 		.drv_data = data,
2995 		.ftype = ftype,
2996 		.tsf = tsf,
2997 		.capability = capability,
2998 		.beacon_interval = beacon_interval,
2999 		.ie = ie,
3000 		.ielen = ielen,
3001 		.use_for = data->restrict_use ?
3002 				data->use_for :
3003 				NL80211_BSS_USE_FOR_ALL,
3004 		.cannot_use_reasons = data->cannot_use_reasons,
3005 	};
3006 	struct cfg80211_bss *res;
3007 
3008 	memcpy(inform_data.bssid, bssid, ETH_ALEN);
3009 
3010 	res = cfg80211_inform_single_bss_data(wiphy, &inform_data, gfp);
3011 	if (!res)
3012 		return NULL;
3013 
3014 	cfg80211_parse_mbssid_data(wiphy, &inform_data, res, gfp);
3015 
3016 	cfg80211_parse_ml_sta_data(wiphy, &inform_data, res, gfp);
3017 
3018 	return res;
3019 }
3020 EXPORT_SYMBOL(cfg80211_inform_bss_data);
3021 
3022 static bool cfg80211_uhb_power_type_valid(const u8 *ie,
3023 					  size_t ielen,
3024 					  const u32 flags)
3025 {
3026 	const struct element *tmp;
3027 	struct ieee80211_he_operation *he_oper;
3028 
3029 	tmp = cfg80211_find_ext_elem(WLAN_EID_EXT_HE_OPERATION, ie, ielen);
3030 	if (tmp && tmp->datalen >= sizeof(*he_oper) + 1) {
3031 		const struct ieee80211_he_6ghz_oper *he_6ghz_oper;
3032 
3033 		he_oper = (void *)&tmp->data[1];
3034 		he_6ghz_oper = ieee80211_he_6ghz_oper(he_oper);
3035 
3036 		if (!he_6ghz_oper)
3037 			return false;
3038 
3039 		switch (u8_get_bits(he_6ghz_oper->control,
3040 				    IEEE80211_HE_6GHZ_OPER_CTRL_REG_INFO)) {
3041 		case IEEE80211_6GHZ_CTRL_REG_LPI_AP:
3042 			return true;
3043 		case IEEE80211_6GHZ_CTRL_REG_SP_AP:
3044 			return !(flags & IEEE80211_CHAN_NO_6GHZ_AFC_CLIENT);
3045 		case IEEE80211_6GHZ_CTRL_REG_VLP_AP:
3046 			return !(flags & IEEE80211_CHAN_NO_6GHZ_VLP_CLIENT);
3047 		}
3048 	}
3049 	return false;
3050 }
3051 
3052 /* cfg80211_inform_bss_width_frame helper */
3053 static struct cfg80211_bss *
3054 cfg80211_inform_single_bss_frame_data(struct wiphy *wiphy,
3055 				      struct cfg80211_inform_bss *data,
3056 				      struct ieee80211_mgmt *mgmt, size_t len,
3057 				      gfp_t gfp)
3058 {
3059 	struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
3060 	struct cfg80211_internal_bss tmp = {}, *res;
3061 	struct cfg80211_bss_ies *ies;
3062 	struct ieee80211_channel *channel;
3063 	bool signal_valid;
3064 	struct ieee80211_ext *ext = NULL;
3065 	u8 *bssid, *variable;
3066 	u16 capability, beacon_int;
3067 	size_t ielen, min_hdr_len = offsetof(struct ieee80211_mgmt,
3068 					     u.probe_resp.variable);
3069 	int bss_type;
3070 
3071 	BUILD_BUG_ON(offsetof(struct ieee80211_mgmt, u.probe_resp.variable) !=
3072 			offsetof(struct ieee80211_mgmt, u.beacon.variable));
3073 
3074 	trace_cfg80211_inform_bss_frame(wiphy, data, mgmt, len);
3075 
3076 	if (WARN_ON(!mgmt))
3077 		return NULL;
3078 
3079 	if (WARN_ON(!wiphy))
3080 		return NULL;
3081 
3082 	if (WARN_ON(wiphy->signal_type == CFG80211_SIGNAL_TYPE_UNSPEC &&
3083 		    (data->signal < 0 || data->signal > 100)))
3084 		return NULL;
3085 
3086 	if (ieee80211_is_s1g_beacon(mgmt->frame_control)) {
3087 		ext = (void *) mgmt;
3088 		min_hdr_len = offsetof(struct ieee80211_ext, u.s1g_beacon);
3089 		if (ieee80211_is_s1g_short_beacon(mgmt->frame_control))
3090 			min_hdr_len = offsetof(struct ieee80211_ext,
3091 					       u.s1g_short_beacon.variable);
3092 	}
3093 
3094 	if (WARN_ON(len < min_hdr_len))
3095 		return NULL;
3096 
3097 	ielen = len - min_hdr_len;
3098 	variable = mgmt->u.probe_resp.variable;
3099 	if (ext) {
3100 		if (ieee80211_is_s1g_short_beacon(mgmt->frame_control))
3101 			variable = ext->u.s1g_short_beacon.variable;
3102 		else
3103 			variable = ext->u.s1g_beacon.variable;
3104 	}
3105 
3106 	channel = cfg80211_get_bss_channel(wiphy, variable, ielen, data->chan);
3107 	if (!channel)
3108 		return NULL;
3109 
3110 	if (channel->band == NL80211_BAND_6GHZ &&
3111 	    !cfg80211_uhb_power_type_valid(variable, ielen, channel->flags)) {
3112 		data->restrict_use = 1;
3113 		data->use_for = 0;
3114 		data->cannot_use_reasons =
3115 			NL80211_BSS_CANNOT_USE_6GHZ_PWR_MISMATCH;
3116 	}
3117 
3118 	if (ext) {
3119 		const struct ieee80211_s1g_bcn_compat_ie *compat;
3120 		const struct element *elem;
3121 
3122 		elem = cfg80211_find_elem(WLAN_EID_S1G_BCN_COMPAT,
3123 					  variable, ielen);
3124 		if (!elem)
3125 			return NULL;
3126 		if (elem->datalen < sizeof(*compat))
3127 			return NULL;
3128 		compat = (void *)elem->data;
3129 		bssid = ext->u.s1g_beacon.sa;
3130 		capability = le16_to_cpu(compat->compat_info);
3131 		beacon_int = le16_to_cpu(compat->beacon_int);
3132 	} else {
3133 		bssid = mgmt->bssid;
3134 		beacon_int = le16_to_cpu(mgmt->u.probe_resp.beacon_int);
3135 		capability = le16_to_cpu(mgmt->u.probe_resp.capab_info);
3136 	}
3137 
3138 	if (channel->band == NL80211_BAND_60GHZ) {
3139 		bss_type = capability & WLAN_CAPABILITY_DMG_TYPE_MASK;
3140 		if (bss_type == WLAN_CAPABILITY_DMG_TYPE_AP ||
3141 		    bss_type == WLAN_CAPABILITY_DMG_TYPE_PBSS)
3142 			regulatory_hint_found_beacon(wiphy, channel, gfp);
3143 	} else {
3144 		if (capability & WLAN_CAPABILITY_ESS)
3145 			regulatory_hint_found_beacon(wiphy, channel, gfp);
3146 	}
3147 
3148 	ies = kzalloc(sizeof(*ies) + ielen, gfp);
3149 	if (!ies)
3150 		return NULL;
3151 	ies->len = ielen;
3152 	ies->tsf = le64_to_cpu(mgmt->u.probe_resp.timestamp);
3153 	ies->from_beacon = ieee80211_is_beacon(mgmt->frame_control) ||
3154 			   ieee80211_is_s1g_beacon(mgmt->frame_control);
3155 	memcpy(ies->data, variable, ielen);
3156 
3157 	if (ieee80211_is_probe_resp(mgmt->frame_control))
3158 		rcu_assign_pointer(tmp.pub.proberesp_ies, ies);
3159 	else
3160 		rcu_assign_pointer(tmp.pub.beacon_ies, ies);
3161 	rcu_assign_pointer(tmp.pub.ies, ies);
3162 
3163 	memcpy(tmp.pub.bssid, bssid, ETH_ALEN);
3164 	tmp.pub.beacon_interval = beacon_int;
3165 	tmp.pub.capability = capability;
3166 	tmp.pub.channel = channel;
3167 	tmp.pub.signal = data->signal;
3168 	tmp.ts_boottime = data->boottime_ns;
3169 	tmp.parent_tsf = data->parent_tsf;
3170 	tmp.pub.chains = data->chains;
3171 	memcpy(tmp.pub.chain_signal, data->chain_signal, IEEE80211_MAX_CHAINS);
3172 	ether_addr_copy(tmp.parent_bssid, data->parent_bssid);
3173 	tmp.pub.use_for = data->restrict_use ?
3174 				data->use_for :
3175 				NL80211_BSS_USE_FOR_ALL;
3176 	tmp.pub.cannot_use_reasons = data->cannot_use_reasons;
3177 
3178 	signal_valid = data->chan == channel;
3179 	spin_lock_bh(&rdev->bss_lock);
3180 	res = __cfg80211_bss_update(rdev, &tmp, signal_valid, jiffies);
3181 	if (!res)
3182 		goto drop;
3183 
3184 	rdev_inform_bss(rdev, &res->pub, ies, data->drv_data);
3185 
3186 	spin_unlock_bh(&rdev->bss_lock);
3187 
3188 	trace_cfg80211_return_bss(&res->pub);
3189 	/* __cfg80211_bss_update gives us a referenced result */
3190 	return &res->pub;
3191 
3192 drop:
3193 	spin_unlock_bh(&rdev->bss_lock);
3194 	return NULL;
3195 }
3196 
3197 struct cfg80211_bss *
3198 cfg80211_inform_bss_frame_data(struct wiphy *wiphy,
3199 			       struct cfg80211_inform_bss *data,
3200 			       struct ieee80211_mgmt *mgmt, size_t len,
3201 			       gfp_t gfp)
3202 {
3203 	struct cfg80211_inform_single_bss_data inform_data = {
3204 		.drv_data = data,
3205 		.ie = mgmt->u.probe_resp.variable,
3206 		.ielen = len - offsetof(struct ieee80211_mgmt,
3207 					u.probe_resp.variable),
3208 		.use_for = data->restrict_use ?
3209 				data->use_for :
3210 				NL80211_BSS_USE_FOR_ALL,
3211 		.cannot_use_reasons = data->cannot_use_reasons,
3212 	};
3213 	struct cfg80211_bss *res;
3214 
3215 	res = cfg80211_inform_single_bss_frame_data(wiphy, data, mgmt,
3216 						    len, gfp);
3217 	if (!res)
3218 		return NULL;
3219 
3220 	/* don't do any further MBSSID/ML handling for S1G */
3221 	if (ieee80211_is_s1g_beacon(mgmt->frame_control))
3222 		return res;
3223 
3224 	inform_data.ftype = ieee80211_is_beacon(mgmt->frame_control) ?
3225 		CFG80211_BSS_FTYPE_BEACON : CFG80211_BSS_FTYPE_PRESP;
3226 	memcpy(inform_data.bssid, mgmt->bssid, ETH_ALEN);
3227 	inform_data.tsf = le64_to_cpu(mgmt->u.probe_resp.timestamp);
3228 	inform_data.beacon_interval =
3229 		le16_to_cpu(mgmt->u.probe_resp.beacon_int);
3230 
3231 	/* process each non-transmitting bss */
3232 	cfg80211_parse_mbssid_data(wiphy, &inform_data, res, gfp);
3233 
3234 	cfg80211_parse_ml_sta_data(wiphy, &inform_data, res, gfp);
3235 
3236 	return res;
3237 }
3238 EXPORT_SYMBOL(cfg80211_inform_bss_frame_data);
3239 
3240 void cfg80211_ref_bss(struct wiphy *wiphy, struct cfg80211_bss *pub)
3241 {
3242 	struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
3243 
3244 	if (!pub)
3245 		return;
3246 
3247 	spin_lock_bh(&rdev->bss_lock);
3248 	bss_ref_get(rdev, bss_from_pub(pub));
3249 	spin_unlock_bh(&rdev->bss_lock);
3250 }
3251 EXPORT_SYMBOL(cfg80211_ref_bss);
3252 
3253 void cfg80211_put_bss(struct wiphy *wiphy, struct cfg80211_bss *pub)
3254 {
3255 	struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
3256 
3257 	if (!pub)
3258 		return;
3259 
3260 	spin_lock_bh(&rdev->bss_lock);
3261 	bss_ref_put(rdev, bss_from_pub(pub));
3262 	spin_unlock_bh(&rdev->bss_lock);
3263 }
3264 EXPORT_SYMBOL(cfg80211_put_bss);
3265 
3266 void cfg80211_unlink_bss(struct wiphy *wiphy, struct cfg80211_bss *pub)
3267 {
3268 	struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
3269 	struct cfg80211_internal_bss *bss, *tmp1;
3270 	struct cfg80211_bss *nontrans_bss, *tmp;
3271 
3272 	if (WARN_ON(!pub))
3273 		return;
3274 
3275 	bss = bss_from_pub(pub);
3276 
3277 	spin_lock_bh(&rdev->bss_lock);
3278 	if (list_empty(&bss->list))
3279 		goto out;
3280 
3281 	list_for_each_entry_safe(nontrans_bss, tmp,
3282 				 &pub->nontrans_list,
3283 				 nontrans_list) {
3284 		tmp1 = bss_from_pub(nontrans_bss);
3285 		if (__cfg80211_unlink_bss(rdev, tmp1))
3286 			rdev->bss_generation++;
3287 	}
3288 
3289 	if (__cfg80211_unlink_bss(rdev, bss))
3290 		rdev->bss_generation++;
3291 out:
3292 	spin_unlock_bh(&rdev->bss_lock);
3293 }
3294 EXPORT_SYMBOL(cfg80211_unlink_bss);
3295 
3296 void cfg80211_bss_iter(struct wiphy *wiphy,
3297 		       struct cfg80211_chan_def *chandef,
3298 		       void (*iter)(struct wiphy *wiphy,
3299 				    struct cfg80211_bss *bss,
3300 				    void *data),
3301 		       void *iter_data)
3302 {
3303 	struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
3304 	struct cfg80211_internal_bss *bss;
3305 
3306 	spin_lock_bh(&rdev->bss_lock);
3307 
3308 	list_for_each_entry(bss, &rdev->bss_list, list) {
3309 		if (!chandef || cfg80211_is_sub_chan(chandef, bss->pub.channel,
3310 						     false))
3311 			iter(wiphy, &bss->pub, iter_data);
3312 	}
3313 
3314 	spin_unlock_bh(&rdev->bss_lock);
3315 }
3316 EXPORT_SYMBOL(cfg80211_bss_iter);
3317 
3318 void cfg80211_update_assoc_bss_entry(struct wireless_dev *wdev,
3319 				     unsigned int link_id,
3320 				     struct ieee80211_channel *chan)
3321 {
3322 	struct wiphy *wiphy = wdev->wiphy;
3323 	struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
3324 	struct cfg80211_internal_bss *cbss = wdev->links[link_id].client.current_bss;
3325 	struct cfg80211_internal_bss *new = NULL;
3326 	struct cfg80211_internal_bss *bss;
3327 	struct cfg80211_bss *nontrans_bss;
3328 	struct cfg80211_bss *tmp;
3329 
3330 	spin_lock_bh(&rdev->bss_lock);
3331 
3332 	/*
3333 	 * Some APs use CSA also for bandwidth changes, i.e., without actually
3334 	 * changing the control channel, so no need to update in such a case.
3335 	 */
3336 	if (cbss->pub.channel == chan)
3337 		goto done;
3338 
3339 	/* use transmitting bss */
3340 	if (cbss->pub.transmitted_bss)
3341 		cbss = bss_from_pub(cbss->pub.transmitted_bss);
3342 
3343 	cbss->pub.channel = chan;
3344 
3345 	list_for_each_entry(bss, &rdev->bss_list, list) {
3346 		if (!cfg80211_bss_type_match(bss->pub.capability,
3347 					     bss->pub.channel->band,
3348 					     wdev->conn_bss_type))
3349 			continue;
3350 
3351 		if (bss == cbss)
3352 			continue;
3353 
3354 		if (!cmp_bss(&bss->pub, &cbss->pub, BSS_CMP_REGULAR)) {
3355 			new = bss;
3356 			break;
3357 		}
3358 	}
3359 
3360 	if (new) {
3361 		/* to save time, update IEs for transmitting bss only */
3362 		cfg80211_update_known_bss(rdev, cbss, new, false);
3363 		new->pub.proberesp_ies = NULL;
3364 		new->pub.beacon_ies = NULL;
3365 
3366 		list_for_each_entry_safe(nontrans_bss, tmp,
3367 					 &new->pub.nontrans_list,
3368 					 nontrans_list) {
3369 			bss = bss_from_pub(nontrans_bss);
3370 			if (__cfg80211_unlink_bss(rdev, bss))
3371 				rdev->bss_generation++;
3372 		}
3373 
3374 		WARN_ON(atomic_read(&new->hold));
3375 		if (!WARN_ON(!__cfg80211_unlink_bss(rdev, new)))
3376 			rdev->bss_generation++;
3377 	}
3378 
3379 	rb_erase(&cbss->rbn, &rdev->bss_tree);
3380 	rb_insert_bss(rdev, cbss);
3381 	rdev->bss_generation++;
3382 
3383 	list_for_each_entry_safe(nontrans_bss, tmp,
3384 				 &cbss->pub.nontrans_list,
3385 				 nontrans_list) {
3386 		bss = bss_from_pub(nontrans_bss);
3387 		bss->pub.channel = chan;
3388 		rb_erase(&bss->rbn, &rdev->bss_tree);
3389 		rb_insert_bss(rdev, bss);
3390 		rdev->bss_generation++;
3391 	}
3392 
3393 done:
3394 	spin_unlock_bh(&rdev->bss_lock);
3395 }
3396 
3397 #ifdef CONFIG_CFG80211_WEXT
3398 static struct cfg80211_registered_device *
3399 cfg80211_get_dev_from_ifindex(struct net *net, int ifindex)
3400 {
3401 	struct cfg80211_registered_device *rdev;
3402 	struct net_device *dev;
3403 
3404 	ASSERT_RTNL();
3405 
3406 	dev = dev_get_by_index(net, ifindex);
3407 	if (!dev)
3408 		return ERR_PTR(-ENODEV);
3409 	if (dev->ieee80211_ptr)
3410 		rdev = wiphy_to_rdev(dev->ieee80211_ptr->wiphy);
3411 	else
3412 		rdev = ERR_PTR(-ENODEV);
3413 	dev_put(dev);
3414 	return rdev;
3415 }
3416 
3417 int cfg80211_wext_siwscan(struct net_device *dev,
3418 			  struct iw_request_info *info,
3419 			  union iwreq_data *wrqu, char *extra)
3420 {
3421 	struct cfg80211_registered_device *rdev;
3422 	struct wiphy *wiphy;
3423 	struct iw_scan_req *wreq = NULL;
3424 	struct cfg80211_scan_request *creq;
3425 	int i, err, n_channels = 0;
3426 	enum nl80211_band band;
3427 
3428 	if (!netif_running(dev))
3429 		return -ENETDOWN;
3430 
3431 	if (wrqu->data.length == sizeof(struct iw_scan_req))
3432 		wreq = (struct iw_scan_req *)extra;
3433 
3434 	rdev = cfg80211_get_dev_from_ifindex(dev_net(dev), dev->ifindex);
3435 
3436 	if (IS_ERR(rdev))
3437 		return PTR_ERR(rdev);
3438 
3439 	if (rdev->scan_req || rdev->scan_msg)
3440 		return -EBUSY;
3441 
3442 	wiphy = &rdev->wiphy;
3443 
3444 	/* Determine number of channels, needed to allocate creq */
3445 	if (wreq && wreq->num_channels)
3446 		n_channels = wreq->num_channels;
3447 	else
3448 		n_channels = ieee80211_get_num_supported_channels(wiphy);
3449 
3450 	creq = kzalloc(sizeof(*creq) + sizeof(struct cfg80211_ssid) +
3451 		       n_channels * sizeof(void *),
3452 		       GFP_ATOMIC);
3453 	if (!creq)
3454 		return -ENOMEM;
3455 
3456 	creq->wiphy = wiphy;
3457 	creq->wdev = dev->ieee80211_ptr;
3458 	/* SSIDs come after channels */
3459 	creq->ssids = (void *)&creq->channels[n_channels];
3460 	creq->n_channels = n_channels;
3461 	creq->n_ssids = 1;
3462 	creq->scan_start = jiffies;
3463 
3464 	/* translate "Scan on frequencies" request */
3465 	i = 0;
3466 	for (band = 0; band < NUM_NL80211_BANDS; band++) {
3467 		int j;
3468 
3469 		if (!wiphy->bands[band])
3470 			continue;
3471 
3472 		for (j = 0; j < wiphy->bands[band]->n_channels; j++) {
3473 			/* ignore disabled channels */
3474 			if (wiphy->bands[band]->channels[j].flags &
3475 						IEEE80211_CHAN_DISABLED)
3476 				continue;
3477 
3478 			/* If we have a wireless request structure and the
3479 			 * wireless request specifies frequencies, then search
3480 			 * for the matching hardware channel.
3481 			 */
3482 			if (wreq && wreq->num_channels) {
3483 				int k;
3484 				int wiphy_freq = wiphy->bands[band]->channels[j].center_freq;
3485 				for (k = 0; k < wreq->num_channels; k++) {
3486 					struct iw_freq *freq =
3487 						&wreq->channel_list[k];
3488 					int wext_freq =
3489 						cfg80211_wext_freq(freq);
3490 
3491 					if (wext_freq == wiphy_freq)
3492 						goto wext_freq_found;
3493 				}
3494 				goto wext_freq_not_found;
3495 			}
3496 
3497 		wext_freq_found:
3498 			creq->channels[i] = &wiphy->bands[band]->channels[j];
3499 			i++;
3500 		wext_freq_not_found: ;
3501 		}
3502 	}
3503 	/* No channels found? */
3504 	if (!i) {
3505 		err = -EINVAL;
3506 		goto out;
3507 	}
3508 
3509 	/* Set real number of channels specified in creq->channels[] */
3510 	creq->n_channels = i;
3511 
3512 	/* translate "Scan for SSID" request */
3513 	if (wreq) {
3514 		if (wrqu->data.flags & IW_SCAN_THIS_ESSID) {
3515 			if (wreq->essid_len > IEEE80211_MAX_SSID_LEN) {
3516 				err = -EINVAL;
3517 				goto out;
3518 			}
3519 			memcpy(creq->ssids[0].ssid, wreq->essid, wreq->essid_len);
3520 			creq->ssids[0].ssid_len = wreq->essid_len;
3521 		}
3522 		if (wreq->scan_type == IW_SCAN_TYPE_PASSIVE)
3523 			creq->n_ssids = 0;
3524 	}
3525 
3526 	for (i = 0; i < NUM_NL80211_BANDS; i++)
3527 		if (wiphy->bands[i])
3528 			creq->rates[i] = (1 << wiphy->bands[i]->n_bitrates) - 1;
3529 
3530 	eth_broadcast_addr(creq->bssid);
3531 
3532 	wiphy_lock(&rdev->wiphy);
3533 
3534 	rdev->scan_req = creq;
3535 	err = rdev_scan(rdev, creq);
3536 	if (err) {
3537 		rdev->scan_req = NULL;
3538 		/* creq will be freed below */
3539 	} else {
3540 		nl80211_send_scan_start(rdev, dev->ieee80211_ptr);
3541 		/* creq now owned by driver */
3542 		creq = NULL;
3543 		dev_hold(dev);
3544 	}
3545 	wiphy_unlock(&rdev->wiphy);
3546  out:
3547 	kfree(creq);
3548 	return err;
3549 }
3550 EXPORT_WEXT_HANDLER(cfg80211_wext_siwscan);
3551 
3552 static char *ieee80211_scan_add_ies(struct iw_request_info *info,
3553 				    const struct cfg80211_bss_ies *ies,
3554 				    char *current_ev, char *end_buf)
3555 {
3556 	const u8 *pos, *end, *next;
3557 	struct iw_event iwe;
3558 
3559 	if (!ies)
3560 		return current_ev;
3561 
3562 	/*
3563 	 * If needed, fragment the IEs buffer (at IE boundaries) into short
3564 	 * enough fragments to fit into IW_GENERIC_IE_MAX octet messages.
3565 	 */
3566 	pos = ies->data;
3567 	end = pos + ies->len;
3568 
3569 	while (end - pos > IW_GENERIC_IE_MAX) {
3570 		next = pos + 2 + pos[1];
3571 		while (next + 2 + next[1] - pos < IW_GENERIC_IE_MAX)
3572 			next = next + 2 + next[1];
3573 
3574 		memset(&iwe, 0, sizeof(iwe));
3575 		iwe.cmd = IWEVGENIE;
3576 		iwe.u.data.length = next - pos;
3577 		current_ev = iwe_stream_add_point_check(info, current_ev,
3578 							end_buf, &iwe,
3579 							(void *)pos);
3580 		if (IS_ERR(current_ev))
3581 			return current_ev;
3582 		pos = next;
3583 	}
3584 
3585 	if (end > pos) {
3586 		memset(&iwe, 0, sizeof(iwe));
3587 		iwe.cmd = IWEVGENIE;
3588 		iwe.u.data.length = end - pos;
3589 		current_ev = iwe_stream_add_point_check(info, current_ev,
3590 							end_buf, &iwe,
3591 							(void *)pos);
3592 		if (IS_ERR(current_ev))
3593 			return current_ev;
3594 	}
3595 
3596 	return current_ev;
3597 }
3598 
3599 static char *
3600 ieee80211_bss(struct wiphy *wiphy, struct iw_request_info *info,
3601 	      struct cfg80211_internal_bss *bss, char *current_ev,
3602 	      char *end_buf)
3603 {
3604 	const struct cfg80211_bss_ies *ies;
3605 	struct iw_event iwe;
3606 	const u8 *ie;
3607 	u8 buf[50];
3608 	u8 *cfg, *p, *tmp;
3609 	int rem, i, sig;
3610 	bool ismesh = false;
3611 
3612 	memset(&iwe, 0, sizeof(iwe));
3613 	iwe.cmd = SIOCGIWAP;
3614 	iwe.u.ap_addr.sa_family = ARPHRD_ETHER;
3615 	memcpy(iwe.u.ap_addr.sa_data, bss->pub.bssid, ETH_ALEN);
3616 	current_ev = iwe_stream_add_event_check(info, current_ev, end_buf, &iwe,
3617 						IW_EV_ADDR_LEN);
3618 	if (IS_ERR(current_ev))
3619 		return current_ev;
3620 
3621 	memset(&iwe, 0, sizeof(iwe));
3622 	iwe.cmd = SIOCGIWFREQ;
3623 	iwe.u.freq.m = ieee80211_frequency_to_channel(bss->pub.channel->center_freq);
3624 	iwe.u.freq.e = 0;
3625 	current_ev = iwe_stream_add_event_check(info, current_ev, end_buf, &iwe,
3626 						IW_EV_FREQ_LEN);
3627 	if (IS_ERR(current_ev))
3628 		return current_ev;
3629 
3630 	memset(&iwe, 0, sizeof(iwe));
3631 	iwe.cmd = SIOCGIWFREQ;
3632 	iwe.u.freq.m = bss->pub.channel->center_freq;
3633 	iwe.u.freq.e = 6;
3634 	current_ev = iwe_stream_add_event_check(info, current_ev, end_buf, &iwe,
3635 						IW_EV_FREQ_LEN);
3636 	if (IS_ERR(current_ev))
3637 		return current_ev;
3638 
3639 	if (wiphy->signal_type != CFG80211_SIGNAL_TYPE_NONE) {
3640 		memset(&iwe, 0, sizeof(iwe));
3641 		iwe.cmd = IWEVQUAL;
3642 		iwe.u.qual.updated = IW_QUAL_LEVEL_UPDATED |
3643 				     IW_QUAL_NOISE_INVALID |
3644 				     IW_QUAL_QUAL_UPDATED;
3645 		switch (wiphy->signal_type) {
3646 		case CFG80211_SIGNAL_TYPE_MBM:
3647 			sig = bss->pub.signal / 100;
3648 			iwe.u.qual.level = sig;
3649 			iwe.u.qual.updated |= IW_QUAL_DBM;
3650 			if (sig < -110)		/* rather bad */
3651 				sig = -110;
3652 			else if (sig > -40)	/* perfect */
3653 				sig = -40;
3654 			/* will give a range of 0 .. 70 */
3655 			iwe.u.qual.qual = sig + 110;
3656 			break;
3657 		case CFG80211_SIGNAL_TYPE_UNSPEC:
3658 			iwe.u.qual.level = bss->pub.signal;
3659 			/* will give range 0 .. 100 */
3660 			iwe.u.qual.qual = bss->pub.signal;
3661 			break;
3662 		default:
3663 			/* not reached */
3664 			break;
3665 		}
3666 		current_ev = iwe_stream_add_event_check(info, current_ev,
3667 							end_buf, &iwe,
3668 							IW_EV_QUAL_LEN);
3669 		if (IS_ERR(current_ev))
3670 			return current_ev;
3671 	}
3672 
3673 	memset(&iwe, 0, sizeof(iwe));
3674 	iwe.cmd = SIOCGIWENCODE;
3675 	if (bss->pub.capability & WLAN_CAPABILITY_PRIVACY)
3676 		iwe.u.data.flags = IW_ENCODE_ENABLED | IW_ENCODE_NOKEY;
3677 	else
3678 		iwe.u.data.flags = IW_ENCODE_DISABLED;
3679 	iwe.u.data.length = 0;
3680 	current_ev = iwe_stream_add_point_check(info, current_ev, end_buf,
3681 						&iwe, "");
3682 	if (IS_ERR(current_ev))
3683 		return current_ev;
3684 
3685 	rcu_read_lock();
3686 	ies = rcu_dereference(bss->pub.ies);
3687 	rem = ies->len;
3688 	ie = ies->data;
3689 
3690 	while (rem >= 2) {
3691 		/* invalid data */
3692 		if (ie[1] > rem - 2)
3693 			break;
3694 
3695 		switch (ie[0]) {
3696 		case WLAN_EID_SSID:
3697 			memset(&iwe, 0, sizeof(iwe));
3698 			iwe.cmd = SIOCGIWESSID;
3699 			iwe.u.data.length = ie[1];
3700 			iwe.u.data.flags = 1;
3701 			current_ev = iwe_stream_add_point_check(info,
3702 								current_ev,
3703 								end_buf, &iwe,
3704 								(u8 *)ie + 2);
3705 			if (IS_ERR(current_ev))
3706 				goto unlock;
3707 			break;
3708 		case WLAN_EID_MESH_ID:
3709 			memset(&iwe, 0, sizeof(iwe));
3710 			iwe.cmd = SIOCGIWESSID;
3711 			iwe.u.data.length = ie[1];
3712 			iwe.u.data.flags = 1;
3713 			current_ev = iwe_stream_add_point_check(info,
3714 								current_ev,
3715 								end_buf, &iwe,
3716 								(u8 *)ie + 2);
3717 			if (IS_ERR(current_ev))
3718 				goto unlock;
3719 			break;
3720 		case WLAN_EID_MESH_CONFIG:
3721 			ismesh = true;
3722 			if (ie[1] != sizeof(struct ieee80211_meshconf_ie))
3723 				break;
3724 			cfg = (u8 *)ie + 2;
3725 			memset(&iwe, 0, sizeof(iwe));
3726 			iwe.cmd = IWEVCUSTOM;
3727 			iwe.u.data.length = sprintf(buf,
3728 						    "Mesh Network Path Selection Protocol ID: 0x%02X",
3729 						    cfg[0]);
3730 			current_ev = iwe_stream_add_point_check(info,
3731 								current_ev,
3732 								end_buf,
3733 								&iwe, buf);
3734 			if (IS_ERR(current_ev))
3735 				goto unlock;
3736 			iwe.u.data.length = sprintf(buf,
3737 						    "Path Selection Metric ID: 0x%02X",
3738 						    cfg[1]);
3739 			current_ev = iwe_stream_add_point_check(info,
3740 								current_ev,
3741 								end_buf,
3742 								&iwe, buf);
3743 			if (IS_ERR(current_ev))
3744 				goto unlock;
3745 			iwe.u.data.length = sprintf(buf,
3746 						    "Congestion Control Mode ID: 0x%02X",
3747 						    cfg[2]);
3748 			current_ev = iwe_stream_add_point_check(info,
3749 								current_ev,
3750 								end_buf,
3751 								&iwe, buf);
3752 			if (IS_ERR(current_ev))
3753 				goto unlock;
3754 			iwe.u.data.length = sprintf(buf,
3755 						    "Synchronization ID: 0x%02X",
3756 						    cfg[3]);
3757 			current_ev = iwe_stream_add_point_check(info,
3758 								current_ev,
3759 								end_buf,
3760 								&iwe, buf);
3761 			if (IS_ERR(current_ev))
3762 				goto unlock;
3763 			iwe.u.data.length = sprintf(buf,
3764 						    "Authentication ID: 0x%02X",
3765 						    cfg[4]);
3766 			current_ev = iwe_stream_add_point_check(info,
3767 								current_ev,
3768 								end_buf,
3769 								&iwe, buf);
3770 			if (IS_ERR(current_ev))
3771 				goto unlock;
3772 			iwe.u.data.length = sprintf(buf,
3773 						    "Formation Info: 0x%02X",
3774 						    cfg[5]);
3775 			current_ev = iwe_stream_add_point_check(info,
3776 								current_ev,
3777 								end_buf,
3778 								&iwe, buf);
3779 			if (IS_ERR(current_ev))
3780 				goto unlock;
3781 			iwe.u.data.length = sprintf(buf,
3782 						    "Capabilities: 0x%02X",
3783 						    cfg[6]);
3784 			current_ev = iwe_stream_add_point_check(info,
3785 								current_ev,
3786 								end_buf,
3787 								&iwe, buf);
3788 			if (IS_ERR(current_ev))
3789 				goto unlock;
3790 			break;
3791 		case WLAN_EID_SUPP_RATES:
3792 		case WLAN_EID_EXT_SUPP_RATES:
3793 			/* display all supported rates in readable format */
3794 			p = current_ev + iwe_stream_lcp_len(info);
3795 
3796 			memset(&iwe, 0, sizeof(iwe));
3797 			iwe.cmd = SIOCGIWRATE;
3798 			/* Those two flags are ignored... */
3799 			iwe.u.bitrate.fixed = iwe.u.bitrate.disabled = 0;
3800 
3801 			for (i = 0; i < ie[1]; i++) {
3802 				iwe.u.bitrate.value =
3803 					((ie[i + 2] & 0x7f) * 500000);
3804 				tmp = p;
3805 				p = iwe_stream_add_value(info, current_ev, p,
3806 							 end_buf, &iwe,
3807 							 IW_EV_PARAM_LEN);
3808 				if (p == tmp) {
3809 					current_ev = ERR_PTR(-E2BIG);
3810 					goto unlock;
3811 				}
3812 			}
3813 			current_ev = p;
3814 			break;
3815 		}
3816 		rem -= ie[1] + 2;
3817 		ie += ie[1] + 2;
3818 	}
3819 
3820 	if (bss->pub.capability & (WLAN_CAPABILITY_ESS | WLAN_CAPABILITY_IBSS) ||
3821 	    ismesh) {
3822 		memset(&iwe, 0, sizeof(iwe));
3823 		iwe.cmd = SIOCGIWMODE;
3824 		if (ismesh)
3825 			iwe.u.mode = IW_MODE_MESH;
3826 		else if (bss->pub.capability & WLAN_CAPABILITY_ESS)
3827 			iwe.u.mode = IW_MODE_MASTER;
3828 		else
3829 			iwe.u.mode = IW_MODE_ADHOC;
3830 		current_ev = iwe_stream_add_event_check(info, current_ev,
3831 							end_buf, &iwe,
3832 							IW_EV_UINT_LEN);
3833 		if (IS_ERR(current_ev))
3834 			goto unlock;
3835 	}
3836 
3837 	memset(&iwe, 0, sizeof(iwe));
3838 	iwe.cmd = IWEVCUSTOM;
3839 	iwe.u.data.length = sprintf(buf, "tsf=%016llx",
3840 				    (unsigned long long)(ies->tsf));
3841 	current_ev = iwe_stream_add_point_check(info, current_ev, end_buf,
3842 						&iwe, buf);
3843 	if (IS_ERR(current_ev))
3844 		goto unlock;
3845 	memset(&iwe, 0, sizeof(iwe));
3846 	iwe.cmd = IWEVCUSTOM;
3847 	iwe.u.data.length = sprintf(buf, " Last beacon: %ums ago",
3848 				    elapsed_jiffies_msecs(bss->ts));
3849 	current_ev = iwe_stream_add_point_check(info, current_ev,
3850 						end_buf, &iwe, buf);
3851 	if (IS_ERR(current_ev))
3852 		goto unlock;
3853 
3854 	current_ev = ieee80211_scan_add_ies(info, ies, current_ev, end_buf);
3855 
3856  unlock:
3857 	rcu_read_unlock();
3858 	return current_ev;
3859 }
3860 
3861 
3862 static int ieee80211_scan_results(struct cfg80211_registered_device *rdev,
3863 				  struct iw_request_info *info,
3864 				  char *buf, size_t len)
3865 {
3866 	char *current_ev = buf;
3867 	char *end_buf = buf + len;
3868 	struct cfg80211_internal_bss *bss;
3869 	int err = 0;
3870 
3871 	spin_lock_bh(&rdev->bss_lock);
3872 	cfg80211_bss_expire(rdev);
3873 
3874 	list_for_each_entry(bss, &rdev->bss_list, list) {
3875 		if (buf + len - current_ev <= IW_EV_ADDR_LEN) {
3876 			err = -E2BIG;
3877 			break;
3878 		}
3879 		current_ev = ieee80211_bss(&rdev->wiphy, info, bss,
3880 					   current_ev, end_buf);
3881 		if (IS_ERR(current_ev)) {
3882 			err = PTR_ERR(current_ev);
3883 			break;
3884 		}
3885 	}
3886 	spin_unlock_bh(&rdev->bss_lock);
3887 
3888 	if (err)
3889 		return err;
3890 	return current_ev - buf;
3891 }
3892 
3893 
3894 int cfg80211_wext_giwscan(struct net_device *dev,
3895 			  struct iw_request_info *info,
3896 			  union iwreq_data *wrqu, char *extra)
3897 {
3898 	struct iw_point *data = &wrqu->data;
3899 	struct cfg80211_registered_device *rdev;
3900 	int res;
3901 
3902 	if (!netif_running(dev))
3903 		return -ENETDOWN;
3904 
3905 	rdev = cfg80211_get_dev_from_ifindex(dev_net(dev), dev->ifindex);
3906 
3907 	if (IS_ERR(rdev))
3908 		return PTR_ERR(rdev);
3909 
3910 	if (rdev->scan_req || rdev->scan_msg)
3911 		return -EAGAIN;
3912 
3913 	res = ieee80211_scan_results(rdev, info, extra, data->length);
3914 	data->length = 0;
3915 	if (res >= 0) {
3916 		data->length = res;
3917 		res = 0;
3918 	}
3919 
3920 	return res;
3921 }
3922 EXPORT_WEXT_HANDLER(cfg80211_wext_giwscan);
3923 #endif
3924