xref: /linux/net/wireless/scan.c (revision ea23fbd2a8f7dadfa9cd9b9d73f3b8a69eec0671)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * cfg80211 scan result handling
4  *
5  * Copyright 2008 Johannes Berg <johannes@sipsolutions.net>
6  * Copyright 2013-2014  Intel Mobile Communications GmbH
7  * Copyright 2016	Intel Deutschland GmbH
8  * Copyright (C) 2018-2023 Intel Corporation
9  */
10 #include <linux/kernel.h>
11 #include <linux/slab.h>
12 #include <linux/module.h>
13 #include <linux/netdevice.h>
14 #include <linux/wireless.h>
15 #include <linux/nl80211.h>
16 #include <linux/etherdevice.h>
17 #include <linux/crc32.h>
18 #include <linux/bitfield.h>
19 #include <net/arp.h>
20 #include <net/cfg80211.h>
21 #include <net/cfg80211-wext.h>
22 #include <net/iw_handler.h>
23 #include "core.h"
24 #include "nl80211.h"
25 #include "wext-compat.h"
26 #include "rdev-ops.h"
27 
28 /**
29  * DOC: BSS tree/list structure
30  *
31  * At the top level, the BSS list is kept in both a list in each
32  * registered device (@bss_list) as well as an RB-tree for faster
33  * lookup. In the RB-tree, entries can be looked up using their
34  * channel, MESHID, MESHCONF (for MBSSes) or channel, BSSID, SSID
35  * for other BSSes.
36  *
37  * Due to the possibility of hidden SSIDs, there's a second level
38  * structure, the "hidden_list" and "hidden_beacon_bss" pointer.
39  * The hidden_list connects all BSSes belonging to a single AP
40  * that has a hidden SSID, and connects beacon and probe response
41  * entries. For a probe response entry for a hidden SSID, the
42  * hidden_beacon_bss pointer points to the BSS struct holding the
43  * beacon's information.
44  *
45  * Reference counting is done for all these references except for
46  * the hidden_list, so that a beacon BSS struct that is otherwise
47  * not referenced has one reference for being on the bss_list and
48  * one for each probe response entry that points to it using the
49  * hidden_beacon_bss pointer. When a BSS struct that has such a
50  * pointer is get/put, the refcount update is also propagated to
51  * the referenced struct, this ensure that it cannot get removed
52  * while somebody is using the probe response version.
53  *
54  * Note that the hidden_beacon_bss pointer never changes, due to
55  * the reference counting. Therefore, no locking is needed for
56  * it.
57  *
58  * Also note that the hidden_beacon_bss pointer is only relevant
59  * if the driver uses something other than the IEs, e.g. private
60  * data stored in the BSS struct, since the beacon IEs are
61  * also linked into the probe response struct.
62  */
63 
64 /*
65  * Limit the number of BSS entries stored in mac80211. Each one is
66  * a bit over 4k at most, so this limits to roughly 4-5M of memory.
67  * If somebody wants to really attack this though, they'd likely
68  * use small beacons, and only one type of frame, limiting each of
69  * the entries to a much smaller size (in order to generate more
70  * entries in total, so overhead is bigger.)
71  */
72 static int bss_entries_limit = 1000;
73 module_param(bss_entries_limit, int, 0644);
74 MODULE_PARM_DESC(bss_entries_limit,
75                  "limit to number of scan BSS entries (per wiphy, default 1000)");
76 
77 #define IEEE80211_SCAN_RESULT_EXPIRE	(30 * HZ)
78 
79 /**
80  * struct cfg80211_colocated_ap - colocated AP information
81  *
82  * @list: linked list to all colocated aPS
83  * @bssid: BSSID of the reported AP
84  * @ssid: SSID of the reported AP
85  * @ssid_len: length of the ssid
86  * @center_freq: frequency the reported AP is on
87  * @unsolicited_probe: the reported AP is part of an ESS, where all the APs
88  *	that operate in the same channel as the reported AP and that might be
89  *	detected by a STA receiving this frame, are transmitting unsolicited
90  *	Probe Response frames every 20 TUs
91  * @oct_recommended: OCT is recommended to exchange MMPDUs with the reported AP
92  * @same_ssid: the reported AP has the same SSID as the reporting AP
93  * @multi_bss: the reported AP is part of a multiple BSSID set
94  * @transmitted_bssid: the reported AP is the transmitting BSSID
95  * @colocated_ess: all the APs that share the same ESS as the reported AP are
96  *	colocated and can be discovered via legacy bands.
97  * @short_ssid_valid: short_ssid is valid and can be used
98  * @short_ssid: the short SSID for this SSID
99  * @psd_20: The 20MHz PSD EIRP of the primary 20MHz channel for the reported AP
100  */
101 struct cfg80211_colocated_ap {
102 	struct list_head list;
103 	u8 bssid[ETH_ALEN];
104 	u8 ssid[IEEE80211_MAX_SSID_LEN];
105 	size_t ssid_len;
106 	u32 short_ssid;
107 	u32 center_freq;
108 	u8 unsolicited_probe:1,
109 	   oct_recommended:1,
110 	   same_ssid:1,
111 	   multi_bss:1,
112 	   transmitted_bssid:1,
113 	   colocated_ess:1,
114 	   short_ssid_valid:1;
115 	s8 psd_20;
116 };
117 
118 static void bss_free(struct cfg80211_internal_bss *bss)
119 {
120 	struct cfg80211_bss_ies *ies;
121 
122 	if (WARN_ON(atomic_read(&bss->hold)))
123 		return;
124 
125 	ies = (void *)rcu_access_pointer(bss->pub.beacon_ies);
126 	if (ies && !bss->pub.hidden_beacon_bss)
127 		kfree_rcu(ies, rcu_head);
128 	ies = (void *)rcu_access_pointer(bss->pub.proberesp_ies);
129 	if (ies)
130 		kfree_rcu(ies, rcu_head);
131 
132 	/*
133 	 * This happens when the module is removed, it doesn't
134 	 * really matter any more save for completeness
135 	 */
136 	if (!list_empty(&bss->hidden_list))
137 		list_del(&bss->hidden_list);
138 
139 	kfree(bss);
140 }
141 
142 static inline void bss_ref_get(struct cfg80211_registered_device *rdev,
143 			       struct cfg80211_internal_bss *bss)
144 {
145 	lockdep_assert_held(&rdev->bss_lock);
146 
147 	bss->refcount++;
148 
149 	if (bss->pub.hidden_beacon_bss)
150 		bss_from_pub(bss->pub.hidden_beacon_bss)->refcount++;
151 
152 	if (bss->pub.transmitted_bss)
153 		bss_from_pub(bss->pub.transmitted_bss)->refcount++;
154 }
155 
156 static inline void bss_ref_put(struct cfg80211_registered_device *rdev,
157 			       struct cfg80211_internal_bss *bss)
158 {
159 	lockdep_assert_held(&rdev->bss_lock);
160 
161 	if (bss->pub.hidden_beacon_bss) {
162 		struct cfg80211_internal_bss *hbss;
163 
164 		hbss = bss_from_pub(bss->pub.hidden_beacon_bss);
165 		hbss->refcount--;
166 		if (hbss->refcount == 0)
167 			bss_free(hbss);
168 	}
169 
170 	if (bss->pub.transmitted_bss) {
171 		struct cfg80211_internal_bss *tbss;
172 
173 		tbss = bss_from_pub(bss->pub.transmitted_bss);
174 		tbss->refcount--;
175 		if (tbss->refcount == 0)
176 			bss_free(tbss);
177 	}
178 
179 	bss->refcount--;
180 	if (bss->refcount == 0)
181 		bss_free(bss);
182 }
183 
184 static bool __cfg80211_unlink_bss(struct cfg80211_registered_device *rdev,
185 				  struct cfg80211_internal_bss *bss)
186 {
187 	lockdep_assert_held(&rdev->bss_lock);
188 
189 	if (!list_empty(&bss->hidden_list)) {
190 		/*
191 		 * don't remove the beacon entry if it has
192 		 * probe responses associated with it
193 		 */
194 		if (!bss->pub.hidden_beacon_bss)
195 			return false;
196 		/*
197 		 * if it's a probe response entry break its
198 		 * link to the other entries in the group
199 		 */
200 		list_del_init(&bss->hidden_list);
201 	}
202 
203 	list_del_init(&bss->list);
204 	list_del_init(&bss->pub.nontrans_list);
205 	rb_erase(&bss->rbn, &rdev->bss_tree);
206 	rdev->bss_entries--;
207 	WARN_ONCE((rdev->bss_entries == 0) ^ list_empty(&rdev->bss_list),
208 		  "rdev bss entries[%d]/list[empty:%d] corruption\n",
209 		  rdev->bss_entries, list_empty(&rdev->bss_list));
210 	bss_ref_put(rdev, bss);
211 	return true;
212 }
213 
214 bool cfg80211_is_element_inherited(const struct element *elem,
215 				   const struct element *non_inherit_elem)
216 {
217 	u8 id_len, ext_id_len, i, loop_len, id;
218 	const u8 *list;
219 
220 	if (elem->id == WLAN_EID_MULTIPLE_BSSID)
221 		return false;
222 
223 	if (elem->id == WLAN_EID_EXTENSION && elem->datalen > 1 &&
224 	    elem->data[0] == WLAN_EID_EXT_EHT_MULTI_LINK)
225 		return false;
226 
227 	if (!non_inherit_elem || non_inherit_elem->datalen < 2)
228 		return true;
229 
230 	/*
231 	 * non inheritance element format is:
232 	 * ext ID (56) | IDs list len | list | extension IDs list len | list
233 	 * Both lists are optional. Both lengths are mandatory.
234 	 * This means valid length is:
235 	 * elem_len = 1 (extension ID) + 2 (list len fields) + list lengths
236 	 */
237 	id_len = non_inherit_elem->data[1];
238 	if (non_inherit_elem->datalen < 3 + id_len)
239 		return true;
240 
241 	ext_id_len = non_inherit_elem->data[2 + id_len];
242 	if (non_inherit_elem->datalen < 3 + id_len + ext_id_len)
243 		return true;
244 
245 	if (elem->id == WLAN_EID_EXTENSION) {
246 		if (!ext_id_len)
247 			return true;
248 		loop_len = ext_id_len;
249 		list = &non_inherit_elem->data[3 + id_len];
250 		id = elem->data[0];
251 	} else {
252 		if (!id_len)
253 			return true;
254 		loop_len = id_len;
255 		list = &non_inherit_elem->data[2];
256 		id = elem->id;
257 	}
258 
259 	for (i = 0; i < loop_len; i++) {
260 		if (list[i] == id)
261 			return false;
262 	}
263 
264 	return true;
265 }
266 EXPORT_SYMBOL(cfg80211_is_element_inherited);
267 
268 static size_t cfg80211_copy_elem_with_frags(const struct element *elem,
269 					    const u8 *ie, size_t ie_len,
270 					    u8 **pos, u8 *buf, size_t buf_len)
271 {
272 	if (WARN_ON((u8 *)elem < ie || elem->data > ie + ie_len ||
273 		    elem->data + elem->datalen > ie + ie_len))
274 		return 0;
275 
276 	if (elem->datalen + 2 > buf + buf_len - *pos)
277 		return 0;
278 
279 	memcpy(*pos, elem, elem->datalen + 2);
280 	*pos += elem->datalen + 2;
281 
282 	/* Finish if it is not fragmented  */
283 	if (elem->datalen != 255)
284 		return *pos - buf;
285 
286 	ie_len = ie + ie_len - elem->data - elem->datalen;
287 	ie = (const u8 *)elem->data + elem->datalen;
288 
289 	for_each_element(elem, ie, ie_len) {
290 		if (elem->id != WLAN_EID_FRAGMENT)
291 			break;
292 
293 		if (elem->datalen + 2 > buf + buf_len - *pos)
294 			return 0;
295 
296 		memcpy(*pos, elem, elem->datalen + 2);
297 		*pos += elem->datalen + 2;
298 
299 		if (elem->datalen != 255)
300 			break;
301 	}
302 
303 	return *pos - buf;
304 }
305 
306 static size_t cfg80211_gen_new_ie(const u8 *ie, size_t ielen,
307 				  const u8 *subie, size_t subie_len,
308 				  u8 *new_ie, size_t new_ie_len)
309 {
310 	const struct element *non_inherit_elem, *parent, *sub;
311 	u8 *pos = new_ie;
312 	u8 id, ext_id;
313 	unsigned int match_len;
314 
315 	non_inherit_elem = cfg80211_find_ext_elem(WLAN_EID_EXT_NON_INHERITANCE,
316 						  subie, subie_len);
317 
318 	/* We copy the elements one by one from the parent to the generated
319 	 * elements.
320 	 * If they are not inherited (included in subie or in the non
321 	 * inheritance element), then we copy all occurrences the first time
322 	 * we see this element type.
323 	 */
324 	for_each_element(parent, ie, ielen) {
325 		if (parent->id == WLAN_EID_FRAGMENT)
326 			continue;
327 
328 		if (parent->id == WLAN_EID_EXTENSION) {
329 			if (parent->datalen < 1)
330 				continue;
331 
332 			id = WLAN_EID_EXTENSION;
333 			ext_id = parent->data[0];
334 			match_len = 1;
335 		} else {
336 			id = parent->id;
337 			match_len = 0;
338 		}
339 
340 		/* Find first occurrence in subie */
341 		sub = cfg80211_find_elem_match(id, subie, subie_len,
342 					       &ext_id, match_len, 0);
343 
344 		/* Copy from parent if not in subie and inherited */
345 		if (!sub &&
346 		    cfg80211_is_element_inherited(parent, non_inherit_elem)) {
347 			if (!cfg80211_copy_elem_with_frags(parent,
348 							   ie, ielen,
349 							   &pos, new_ie,
350 							   new_ie_len))
351 				return 0;
352 
353 			continue;
354 		}
355 
356 		/* Already copied if an earlier element had the same type */
357 		if (cfg80211_find_elem_match(id, ie, (u8 *)parent - ie,
358 					     &ext_id, match_len, 0))
359 			continue;
360 
361 		/* Not inheriting, copy all similar elements from subie */
362 		while (sub) {
363 			if (!cfg80211_copy_elem_with_frags(sub,
364 							   subie, subie_len,
365 							   &pos, new_ie,
366 							   new_ie_len))
367 				return 0;
368 
369 			sub = cfg80211_find_elem_match(id,
370 						       sub->data + sub->datalen,
371 						       subie_len + subie -
372 						       (sub->data +
373 							sub->datalen),
374 						       &ext_id, match_len, 0);
375 		}
376 	}
377 
378 	/* The above misses elements that are included in subie but not in the
379 	 * parent, so do a pass over subie and append those.
380 	 * Skip the non-tx BSSID caps and non-inheritance element.
381 	 */
382 	for_each_element(sub, subie, subie_len) {
383 		if (sub->id == WLAN_EID_NON_TX_BSSID_CAP)
384 			continue;
385 
386 		if (sub->id == WLAN_EID_FRAGMENT)
387 			continue;
388 
389 		if (sub->id == WLAN_EID_EXTENSION) {
390 			if (sub->datalen < 1)
391 				continue;
392 
393 			id = WLAN_EID_EXTENSION;
394 			ext_id = sub->data[0];
395 			match_len = 1;
396 
397 			if (ext_id == WLAN_EID_EXT_NON_INHERITANCE)
398 				continue;
399 		} else {
400 			id = sub->id;
401 			match_len = 0;
402 		}
403 
404 		/* Processed if one was included in the parent */
405 		if (cfg80211_find_elem_match(id, ie, ielen,
406 					     &ext_id, match_len, 0))
407 			continue;
408 
409 		if (!cfg80211_copy_elem_with_frags(sub, subie, subie_len,
410 						   &pos, new_ie, new_ie_len))
411 			return 0;
412 	}
413 
414 	return pos - new_ie;
415 }
416 
417 static bool is_bss(struct cfg80211_bss *a, const u8 *bssid,
418 		   const u8 *ssid, size_t ssid_len)
419 {
420 	const struct cfg80211_bss_ies *ies;
421 	const struct element *ssid_elem;
422 
423 	if (bssid && !ether_addr_equal(a->bssid, bssid))
424 		return false;
425 
426 	if (!ssid)
427 		return true;
428 
429 	ies = rcu_access_pointer(a->ies);
430 	if (!ies)
431 		return false;
432 	ssid_elem = cfg80211_find_elem(WLAN_EID_SSID, ies->data, ies->len);
433 	if (!ssid_elem)
434 		return false;
435 	if (ssid_elem->datalen != ssid_len)
436 		return false;
437 	return memcmp(ssid_elem->data, ssid, ssid_len) == 0;
438 }
439 
440 static int
441 cfg80211_add_nontrans_list(struct cfg80211_bss *trans_bss,
442 			   struct cfg80211_bss *nontrans_bss)
443 {
444 	const struct element *ssid_elem;
445 	struct cfg80211_bss *bss = NULL;
446 
447 	rcu_read_lock();
448 	ssid_elem = ieee80211_bss_get_elem(nontrans_bss, WLAN_EID_SSID);
449 	if (!ssid_elem) {
450 		rcu_read_unlock();
451 		return -EINVAL;
452 	}
453 
454 	/* check if nontrans_bss is in the list */
455 	list_for_each_entry(bss, &trans_bss->nontrans_list, nontrans_list) {
456 		if (is_bss(bss, nontrans_bss->bssid, ssid_elem->data,
457 			   ssid_elem->datalen)) {
458 			rcu_read_unlock();
459 			return 0;
460 		}
461 	}
462 
463 	rcu_read_unlock();
464 
465 	/*
466 	 * This is a bit weird - it's not on the list, but already on another
467 	 * one! The only way that could happen is if there's some BSSID/SSID
468 	 * shared by multiple APs in their multi-BSSID profiles, potentially
469 	 * with hidden SSID mixed in ... ignore it.
470 	 */
471 	if (!list_empty(&nontrans_bss->nontrans_list))
472 		return -EINVAL;
473 
474 	/* add to the list */
475 	list_add_tail(&nontrans_bss->nontrans_list, &trans_bss->nontrans_list);
476 	return 0;
477 }
478 
479 static void __cfg80211_bss_expire(struct cfg80211_registered_device *rdev,
480 				  unsigned long expire_time)
481 {
482 	struct cfg80211_internal_bss *bss, *tmp;
483 	bool expired = false;
484 
485 	lockdep_assert_held(&rdev->bss_lock);
486 
487 	list_for_each_entry_safe(bss, tmp, &rdev->bss_list, list) {
488 		if (atomic_read(&bss->hold))
489 			continue;
490 		if (!time_after(expire_time, bss->ts))
491 			continue;
492 
493 		if (__cfg80211_unlink_bss(rdev, bss))
494 			expired = true;
495 	}
496 
497 	if (expired)
498 		rdev->bss_generation++;
499 }
500 
501 static bool cfg80211_bss_expire_oldest(struct cfg80211_registered_device *rdev)
502 {
503 	struct cfg80211_internal_bss *bss, *oldest = NULL;
504 	bool ret;
505 
506 	lockdep_assert_held(&rdev->bss_lock);
507 
508 	list_for_each_entry(bss, &rdev->bss_list, list) {
509 		if (atomic_read(&bss->hold))
510 			continue;
511 
512 		if (!list_empty(&bss->hidden_list) &&
513 		    !bss->pub.hidden_beacon_bss)
514 			continue;
515 
516 		if (oldest && time_before(oldest->ts, bss->ts))
517 			continue;
518 		oldest = bss;
519 	}
520 
521 	if (WARN_ON(!oldest))
522 		return false;
523 
524 	/*
525 	 * The callers make sure to increase rdev->bss_generation if anything
526 	 * gets removed (and a new entry added), so there's no need to also do
527 	 * it here.
528 	 */
529 
530 	ret = __cfg80211_unlink_bss(rdev, oldest);
531 	WARN_ON(!ret);
532 	return ret;
533 }
534 
535 static u8 cfg80211_parse_bss_param(u8 data,
536 				   struct cfg80211_colocated_ap *coloc_ap)
537 {
538 	coloc_ap->oct_recommended =
539 		u8_get_bits(data, IEEE80211_RNR_TBTT_PARAMS_OCT_RECOMMENDED);
540 	coloc_ap->same_ssid =
541 		u8_get_bits(data, IEEE80211_RNR_TBTT_PARAMS_SAME_SSID);
542 	coloc_ap->multi_bss =
543 		u8_get_bits(data, IEEE80211_RNR_TBTT_PARAMS_MULTI_BSSID);
544 	coloc_ap->transmitted_bssid =
545 		u8_get_bits(data, IEEE80211_RNR_TBTT_PARAMS_TRANSMITTED_BSSID);
546 	coloc_ap->unsolicited_probe =
547 		u8_get_bits(data, IEEE80211_RNR_TBTT_PARAMS_PROBE_ACTIVE);
548 	coloc_ap->colocated_ess =
549 		u8_get_bits(data, IEEE80211_RNR_TBTT_PARAMS_COLOC_ESS);
550 
551 	return u8_get_bits(data, IEEE80211_RNR_TBTT_PARAMS_COLOC_AP);
552 }
553 
554 static int cfg80211_calc_short_ssid(const struct cfg80211_bss_ies *ies,
555 				    const struct element **elem, u32 *s_ssid)
556 {
557 
558 	*elem = cfg80211_find_elem(WLAN_EID_SSID, ies->data, ies->len);
559 	if (!*elem || (*elem)->datalen > IEEE80211_MAX_SSID_LEN)
560 		return -EINVAL;
561 
562 	*s_ssid = ~crc32_le(~0, (*elem)->data, (*elem)->datalen);
563 	return 0;
564 }
565 
566 static void cfg80211_free_coloc_ap_list(struct list_head *coloc_ap_list)
567 {
568 	struct cfg80211_colocated_ap *ap, *tmp_ap;
569 
570 	list_for_each_entry_safe(ap, tmp_ap, coloc_ap_list, list) {
571 		list_del(&ap->list);
572 		kfree(ap);
573 	}
574 }
575 
576 static int cfg80211_parse_ap_info(struct cfg80211_colocated_ap *entry,
577 				  const u8 *pos, u8 length,
578 				  const struct element *ssid_elem,
579 				  u32 s_ssid_tmp)
580 {
581 	u8 bss_params;
582 
583 	entry->psd_20 = IEEE80211_RNR_TBTT_PARAMS_PSD_RESERVED;
584 
585 	/* The length is already verified by the caller to contain bss_params */
586 	if (length > sizeof(struct ieee80211_tbtt_info_7_8_9)) {
587 		struct ieee80211_tbtt_info_ge_11 *tbtt_info = (void *)pos;
588 
589 		memcpy(entry->bssid, tbtt_info->bssid, ETH_ALEN);
590 		entry->short_ssid = le32_to_cpu(tbtt_info->short_ssid);
591 		entry->short_ssid_valid = true;
592 
593 		bss_params = tbtt_info->bss_params;
594 
595 		/* Ignore disabled links */
596 		if (length >= offsetofend(typeof(*tbtt_info), mld_params)) {
597 			if (le16_get_bits(tbtt_info->mld_params.params,
598 					  IEEE80211_RNR_MLD_PARAMS_DISABLED_LINK))
599 				return -EINVAL;
600 		}
601 
602 		if (length >= offsetofend(struct ieee80211_tbtt_info_ge_11,
603 					  psd_20))
604 			entry->psd_20 = tbtt_info->psd_20;
605 	} else {
606 		struct ieee80211_tbtt_info_7_8_9 *tbtt_info = (void *)pos;
607 
608 		memcpy(entry->bssid, tbtt_info->bssid, ETH_ALEN);
609 
610 		bss_params = tbtt_info->bss_params;
611 
612 		if (length == offsetofend(struct ieee80211_tbtt_info_7_8_9,
613 					  psd_20))
614 			entry->psd_20 = tbtt_info->psd_20;
615 	}
616 
617 	/* ignore entries with invalid BSSID */
618 	if (!is_valid_ether_addr(entry->bssid))
619 		return -EINVAL;
620 
621 	/* skip non colocated APs */
622 	if (!cfg80211_parse_bss_param(bss_params, entry))
623 		return -EINVAL;
624 
625 	/* no information about the short ssid. Consider the entry valid
626 	 * for now. It would later be dropped in case there are explicit
627 	 * SSIDs that need to be matched
628 	 */
629 	if (!entry->same_ssid && !entry->short_ssid_valid)
630 		return 0;
631 
632 	if (entry->same_ssid) {
633 		entry->short_ssid = s_ssid_tmp;
634 		entry->short_ssid_valid = true;
635 
636 		/*
637 		 * This is safe because we validate datalen in
638 		 * cfg80211_parse_colocated_ap(), before calling this
639 		 * function.
640 		 */
641 		memcpy(&entry->ssid, &ssid_elem->data, ssid_elem->datalen);
642 		entry->ssid_len = ssid_elem->datalen;
643 	}
644 
645 	return 0;
646 }
647 
648 static int cfg80211_parse_colocated_ap(const struct cfg80211_bss_ies *ies,
649 				       struct list_head *list)
650 {
651 	struct ieee80211_neighbor_ap_info *ap_info;
652 	const struct element *elem, *ssid_elem;
653 	const u8 *pos, *end;
654 	u32 s_ssid_tmp;
655 	int n_coloc = 0, ret;
656 	LIST_HEAD(ap_list);
657 
658 	ret = cfg80211_calc_short_ssid(ies, &ssid_elem, &s_ssid_tmp);
659 	if (ret)
660 		return 0;
661 
662 	for_each_element_id(elem, WLAN_EID_REDUCED_NEIGHBOR_REPORT,
663 			    ies->data, ies->len) {
664 		pos = elem->data;
665 		end = elem->data + elem->datalen;
666 
667 		/* RNR IE may contain more than one NEIGHBOR_AP_INFO */
668 		while (pos + sizeof(*ap_info) <= end) {
669 			enum nl80211_band band;
670 			int freq;
671 			u8 length, i, count;
672 
673 			ap_info = (void *)pos;
674 			count = u8_get_bits(ap_info->tbtt_info_hdr,
675 					    IEEE80211_AP_INFO_TBTT_HDR_COUNT) + 1;
676 			length = ap_info->tbtt_info_len;
677 
678 			pos += sizeof(*ap_info);
679 
680 			if (!ieee80211_operating_class_to_band(ap_info->op_class,
681 							       &band))
682 				break;
683 
684 			freq = ieee80211_channel_to_frequency(ap_info->channel,
685 							      band);
686 
687 			if (end - pos < count * length)
688 				break;
689 
690 			if (u8_get_bits(ap_info->tbtt_info_hdr,
691 					IEEE80211_AP_INFO_TBTT_HDR_TYPE) !=
692 			    IEEE80211_TBTT_INFO_TYPE_TBTT) {
693 				pos += count * length;
694 				continue;
695 			}
696 
697 			/* TBTT info must include bss param + BSSID +
698 			 * (short SSID or same_ssid bit to be set).
699 			 * ignore other options, and move to the
700 			 * next AP info
701 			 */
702 			if (band != NL80211_BAND_6GHZ ||
703 			    !(length == offsetofend(struct ieee80211_tbtt_info_7_8_9,
704 						    bss_params) ||
705 			      length == sizeof(struct ieee80211_tbtt_info_7_8_9) ||
706 			      length >= offsetofend(struct ieee80211_tbtt_info_ge_11,
707 						    bss_params))) {
708 				pos += count * length;
709 				continue;
710 			}
711 
712 			for (i = 0; i < count; i++) {
713 				struct cfg80211_colocated_ap *entry;
714 
715 				entry = kzalloc(sizeof(*entry) + IEEE80211_MAX_SSID_LEN,
716 						GFP_ATOMIC);
717 
718 				if (!entry)
719 					goto error;
720 
721 				entry->center_freq = freq;
722 
723 				if (!cfg80211_parse_ap_info(entry, pos, length,
724 							    ssid_elem,
725 							    s_ssid_tmp)) {
726 					n_coloc++;
727 					list_add_tail(&entry->list, &ap_list);
728 				} else {
729 					kfree(entry);
730 				}
731 
732 				pos += length;
733 			}
734 		}
735 
736 error:
737 		if (pos != end) {
738 			cfg80211_free_coloc_ap_list(&ap_list);
739 			return 0;
740 		}
741 	}
742 
743 	list_splice_tail(&ap_list, list);
744 	return n_coloc;
745 }
746 
747 static  void cfg80211_scan_req_add_chan(struct cfg80211_scan_request *request,
748 					struct ieee80211_channel *chan,
749 					bool add_to_6ghz)
750 {
751 	int i;
752 	u32 n_channels = request->n_channels;
753 	struct cfg80211_scan_6ghz_params *params =
754 		&request->scan_6ghz_params[request->n_6ghz_params];
755 
756 	for (i = 0; i < n_channels; i++) {
757 		if (request->channels[i] == chan) {
758 			if (add_to_6ghz)
759 				params->channel_idx = i;
760 			return;
761 		}
762 	}
763 
764 	request->channels[n_channels] = chan;
765 	if (add_to_6ghz)
766 		request->scan_6ghz_params[request->n_6ghz_params].channel_idx =
767 			n_channels;
768 
769 	request->n_channels++;
770 }
771 
772 static bool cfg80211_find_ssid_match(struct cfg80211_colocated_ap *ap,
773 				     struct cfg80211_scan_request *request)
774 {
775 	int i;
776 	u32 s_ssid;
777 
778 	for (i = 0; i < request->n_ssids; i++) {
779 		/* wildcard ssid in the scan request */
780 		if (!request->ssids[i].ssid_len) {
781 			if (ap->multi_bss && !ap->transmitted_bssid)
782 				continue;
783 
784 			return true;
785 		}
786 
787 		if (ap->ssid_len &&
788 		    ap->ssid_len == request->ssids[i].ssid_len) {
789 			if (!memcmp(request->ssids[i].ssid, ap->ssid,
790 				    ap->ssid_len))
791 				return true;
792 		} else if (ap->short_ssid_valid) {
793 			s_ssid = ~crc32_le(~0, request->ssids[i].ssid,
794 					   request->ssids[i].ssid_len);
795 
796 			if (ap->short_ssid == s_ssid)
797 				return true;
798 		}
799 	}
800 
801 	return false;
802 }
803 
804 static int cfg80211_scan_6ghz(struct cfg80211_registered_device *rdev)
805 {
806 	u8 i;
807 	struct cfg80211_colocated_ap *ap;
808 	int n_channels, count = 0, err;
809 	struct cfg80211_scan_request *request, *rdev_req = rdev->scan_req;
810 	LIST_HEAD(coloc_ap_list);
811 	bool need_scan_psc = true;
812 	const struct ieee80211_sband_iftype_data *iftd;
813 
814 	rdev_req->scan_6ghz = true;
815 
816 	if (!rdev->wiphy.bands[NL80211_BAND_6GHZ])
817 		return -EOPNOTSUPP;
818 
819 	iftd = ieee80211_get_sband_iftype_data(rdev->wiphy.bands[NL80211_BAND_6GHZ],
820 					       rdev_req->wdev->iftype);
821 	if (!iftd || !iftd->he_cap.has_he)
822 		return -EOPNOTSUPP;
823 
824 	n_channels = rdev->wiphy.bands[NL80211_BAND_6GHZ]->n_channels;
825 
826 	if (rdev_req->flags & NL80211_SCAN_FLAG_COLOCATED_6GHZ) {
827 		struct cfg80211_internal_bss *intbss;
828 
829 		spin_lock_bh(&rdev->bss_lock);
830 		list_for_each_entry(intbss, &rdev->bss_list, list) {
831 			struct cfg80211_bss *res = &intbss->pub;
832 			const struct cfg80211_bss_ies *ies;
833 
834 			ies = rcu_access_pointer(res->ies);
835 			count += cfg80211_parse_colocated_ap(ies,
836 							     &coloc_ap_list);
837 		}
838 		spin_unlock_bh(&rdev->bss_lock);
839 	}
840 
841 	request = kzalloc(struct_size(request, channels, n_channels) +
842 			  sizeof(*request->scan_6ghz_params) * count +
843 			  sizeof(*request->ssids) * rdev_req->n_ssids,
844 			  GFP_KERNEL);
845 	if (!request) {
846 		cfg80211_free_coloc_ap_list(&coloc_ap_list);
847 		return -ENOMEM;
848 	}
849 
850 	*request = *rdev_req;
851 	request->n_channels = 0;
852 	request->scan_6ghz_params =
853 		(void *)&request->channels[n_channels];
854 
855 	/*
856 	 * PSC channels should not be scanned in case of direct scan with 1 SSID
857 	 * and at least one of the reported co-located APs with same SSID
858 	 * indicating that all APs in the same ESS are co-located
859 	 */
860 	if (count && request->n_ssids == 1 && request->ssids[0].ssid_len) {
861 		list_for_each_entry(ap, &coloc_ap_list, list) {
862 			if (ap->colocated_ess &&
863 			    cfg80211_find_ssid_match(ap, request)) {
864 				need_scan_psc = false;
865 				break;
866 			}
867 		}
868 	}
869 
870 	/*
871 	 * add to the scan request the channels that need to be scanned
872 	 * regardless of the collocated APs (PSC channels or all channels
873 	 * in case that NL80211_SCAN_FLAG_COLOCATED_6GHZ is not set)
874 	 */
875 	for (i = 0; i < rdev_req->n_channels; i++) {
876 		if (rdev_req->channels[i]->band == NL80211_BAND_6GHZ &&
877 		    ((need_scan_psc &&
878 		      cfg80211_channel_is_psc(rdev_req->channels[i])) ||
879 		     !(rdev_req->flags & NL80211_SCAN_FLAG_COLOCATED_6GHZ))) {
880 			cfg80211_scan_req_add_chan(request,
881 						   rdev_req->channels[i],
882 						   false);
883 		}
884 	}
885 
886 	if (!(rdev_req->flags & NL80211_SCAN_FLAG_COLOCATED_6GHZ))
887 		goto skip;
888 
889 	list_for_each_entry(ap, &coloc_ap_list, list) {
890 		bool found = false;
891 		struct cfg80211_scan_6ghz_params *scan_6ghz_params =
892 			&request->scan_6ghz_params[request->n_6ghz_params];
893 		struct ieee80211_channel *chan =
894 			ieee80211_get_channel(&rdev->wiphy, ap->center_freq);
895 
896 		if (!chan || chan->flags & IEEE80211_CHAN_DISABLED)
897 			continue;
898 
899 		for (i = 0; i < rdev_req->n_channels; i++) {
900 			if (rdev_req->channels[i] == chan)
901 				found = true;
902 		}
903 
904 		if (!found)
905 			continue;
906 
907 		if (request->n_ssids > 0 &&
908 		    !cfg80211_find_ssid_match(ap, request))
909 			continue;
910 
911 		if (!is_broadcast_ether_addr(request->bssid) &&
912 		    !ether_addr_equal(request->bssid, ap->bssid))
913 			continue;
914 
915 		if (!request->n_ssids && ap->multi_bss && !ap->transmitted_bssid)
916 			continue;
917 
918 		cfg80211_scan_req_add_chan(request, chan, true);
919 		memcpy(scan_6ghz_params->bssid, ap->bssid, ETH_ALEN);
920 		scan_6ghz_params->short_ssid = ap->short_ssid;
921 		scan_6ghz_params->short_ssid_valid = ap->short_ssid_valid;
922 		scan_6ghz_params->unsolicited_probe = ap->unsolicited_probe;
923 		scan_6ghz_params->psd_20 = ap->psd_20;
924 
925 		/*
926 		 * If a PSC channel is added to the scan and 'need_scan_psc' is
927 		 * set to false, then all the APs that the scan logic is
928 		 * interested with on the channel are collocated and thus there
929 		 * is no need to perform the initial PSC channel listen.
930 		 */
931 		if (cfg80211_channel_is_psc(chan) && !need_scan_psc)
932 			scan_6ghz_params->psc_no_listen = true;
933 
934 		request->n_6ghz_params++;
935 	}
936 
937 skip:
938 	cfg80211_free_coloc_ap_list(&coloc_ap_list);
939 
940 	if (request->n_channels) {
941 		struct cfg80211_scan_request *old = rdev->int_scan_req;
942 		rdev->int_scan_req = request;
943 
944 		/*
945 		 * Add the ssids from the parent scan request to the new scan
946 		 * request, so the driver would be able to use them in its
947 		 * probe requests to discover hidden APs on PSC channels.
948 		 */
949 		request->ssids = (void *)&request->channels[request->n_channels];
950 		request->n_ssids = rdev_req->n_ssids;
951 		memcpy(request->ssids, rdev_req->ssids, sizeof(*request->ssids) *
952 		       request->n_ssids);
953 
954 		/*
955 		 * If this scan follows a previous scan, save the scan start
956 		 * info from the first part of the scan
957 		 */
958 		if (old)
959 			rdev->int_scan_req->info = old->info;
960 
961 		err = rdev_scan(rdev, request);
962 		if (err) {
963 			rdev->int_scan_req = old;
964 			kfree(request);
965 		} else {
966 			kfree(old);
967 		}
968 
969 		return err;
970 	}
971 
972 	kfree(request);
973 	return -EINVAL;
974 }
975 
976 int cfg80211_scan(struct cfg80211_registered_device *rdev)
977 {
978 	struct cfg80211_scan_request *request;
979 	struct cfg80211_scan_request *rdev_req = rdev->scan_req;
980 	u32 n_channels = 0, idx, i;
981 
982 	if (!(rdev->wiphy.flags & WIPHY_FLAG_SPLIT_SCAN_6GHZ))
983 		return rdev_scan(rdev, rdev_req);
984 
985 	for (i = 0; i < rdev_req->n_channels; i++) {
986 		if (rdev_req->channels[i]->band != NL80211_BAND_6GHZ)
987 			n_channels++;
988 	}
989 
990 	if (!n_channels)
991 		return cfg80211_scan_6ghz(rdev);
992 
993 	request = kzalloc(struct_size(request, channels, n_channels),
994 			  GFP_KERNEL);
995 	if (!request)
996 		return -ENOMEM;
997 
998 	*request = *rdev_req;
999 	request->n_channels = n_channels;
1000 
1001 	for (i = idx = 0; i < rdev_req->n_channels; i++) {
1002 		if (rdev_req->channels[i]->band != NL80211_BAND_6GHZ)
1003 			request->channels[idx++] = rdev_req->channels[i];
1004 	}
1005 
1006 	rdev_req->scan_6ghz = false;
1007 	rdev->int_scan_req = request;
1008 	return rdev_scan(rdev, request);
1009 }
1010 
1011 void ___cfg80211_scan_done(struct cfg80211_registered_device *rdev,
1012 			   bool send_message)
1013 {
1014 	struct cfg80211_scan_request *request, *rdev_req;
1015 	struct wireless_dev *wdev;
1016 	struct sk_buff *msg;
1017 #ifdef CONFIG_CFG80211_WEXT
1018 	union iwreq_data wrqu;
1019 #endif
1020 
1021 	lockdep_assert_held(&rdev->wiphy.mtx);
1022 
1023 	if (rdev->scan_msg) {
1024 		nl80211_send_scan_msg(rdev, rdev->scan_msg);
1025 		rdev->scan_msg = NULL;
1026 		return;
1027 	}
1028 
1029 	rdev_req = rdev->scan_req;
1030 	if (!rdev_req)
1031 		return;
1032 
1033 	wdev = rdev_req->wdev;
1034 	request = rdev->int_scan_req ? rdev->int_scan_req : rdev_req;
1035 
1036 	if (wdev_running(wdev) &&
1037 	    (rdev->wiphy.flags & WIPHY_FLAG_SPLIT_SCAN_6GHZ) &&
1038 	    !rdev_req->scan_6ghz && !request->info.aborted &&
1039 	    !cfg80211_scan_6ghz(rdev))
1040 		return;
1041 
1042 	/*
1043 	 * This must be before sending the other events!
1044 	 * Otherwise, wpa_supplicant gets completely confused with
1045 	 * wext events.
1046 	 */
1047 	if (wdev->netdev)
1048 		cfg80211_sme_scan_done(wdev->netdev);
1049 
1050 	if (!request->info.aborted &&
1051 	    request->flags & NL80211_SCAN_FLAG_FLUSH) {
1052 		/* flush entries from previous scans */
1053 		spin_lock_bh(&rdev->bss_lock);
1054 		__cfg80211_bss_expire(rdev, request->scan_start);
1055 		spin_unlock_bh(&rdev->bss_lock);
1056 	}
1057 
1058 	msg = nl80211_build_scan_msg(rdev, wdev, request->info.aborted);
1059 
1060 #ifdef CONFIG_CFG80211_WEXT
1061 	if (wdev->netdev && !request->info.aborted) {
1062 		memset(&wrqu, 0, sizeof(wrqu));
1063 
1064 		wireless_send_event(wdev->netdev, SIOCGIWSCAN, &wrqu, NULL);
1065 	}
1066 #endif
1067 
1068 	dev_put(wdev->netdev);
1069 
1070 	kfree(rdev->int_scan_req);
1071 	rdev->int_scan_req = NULL;
1072 
1073 	kfree(rdev->scan_req);
1074 	rdev->scan_req = NULL;
1075 
1076 	if (!send_message)
1077 		rdev->scan_msg = msg;
1078 	else
1079 		nl80211_send_scan_msg(rdev, msg);
1080 }
1081 
1082 void __cfg80211_scan_done(struct wiphy *wiphy, struct wiphy_work *wk)
1083 {
1084 	___cfg80211_scan_done(wiphy_to_rdev(wiphy), true);
1085 }
1086 
1087 void cfg80211_scan_done(struct cfg80211_scan_request *request,
1088 			struct cfg80211_scan_info *info)
1089 {
1090 	struct cfg80211_scan_info old_info = request->info;
1091 
1092 	trace_cfg80211_scan_done(request, info);
1093 	WARN_ON(request != wiphy_to_rdev(request->wiphy)->scan_req &&
1094 		request != wiphy_to_rdev(request->wiphy)->int_scan_req);
1095 
1096 	request->info = *info;
1097 
1098 	/*
1099 	 * In case the scan is split, the scan_start_tsf and tsf_bssid should
1100 	 * be of the first part. In such a case old_info.scan_start_tsf should
1101 	 * be non zero.
1102 	 */
1103 	if (request->scan_6ghz && old_info.scan_start_tsf) {
1104 		request->info.scan_start_tsf = old_info.scan_start_tsf;
1105 		memcpy(request->info.tsf_bssid, old_info.tsf_bssid,
1106 		       sizeof(request->info.tsf_bssid));
1107 	}
1108 
1109 	request->notified = true;
1110 	wiphy_work_queue(request->wiphy,
1111 			 &wiphy_to_rdev(request->wiphy)->scan_done_wk);
1112 }
1113 EXPORT_SYMBOL(cfg80211_scan_done);
1114 
1115 void cfg80211_add_sched_scan_req(struct cfg80211_registered_device *rdev,
1116 				 struct cfg80211_sched_scan_request *req)
1117 {
1118 	lockdep_assert_held(&rdev->wiphy.mtx);
1119 
1120 	list_add_rcu(&req->list, &rdev->sched_scan_req_list);
1121 }
1122 
1123 static void cfg80211_del_sched_scan_req(struct cfg80211_registered_device *rdev,
1124 					struct cfg80211_sched_scan_request *req)
1125 {
1126 	lockdep_assert_held(&rdev->wiphy.mtx);
1127 
1128 	list_del_rcu(&req->list);
1129 	kfree_rcu(req, rcu_head);
1130 }
1131 
1132 static struct cfg80211_sched_scan_request *
1133 cfg80211_find_sched_scan_req(struct cfg80211_registered_device *rdev, u64 reqid)
1134 {
1135 	struct cfg80211_sched_scan_request *pos;
1136 
1137 	list_for_each_entry_rcu(pos, &rdev->sched_scan_req_list, list,
1138 				lockdep_is_held(&rdev->wiphy.mtx)) {
1139 		if (pos->reqid == reqid)
1140 			return pos;
1141 	}
1142 	return NULL;
1143 }
1144 
1145 /*
1146  * Determines if a scheduled scan request can be handled. When a legacy
1147  * scheduled scan is running no other scheduled scan is allowed regardless
1148  * whether the request is for legacy or multi-support scan. When a multi-support
1149  * scheduled scan is running a request for legacy scan is not allowed. In this
1150  * case a request for multi-support scan can be handled if resources are
1151  * available, ie. struct wiphy::max_sched_scan_reqs limit is not yet reached.
1152  */
1153 int cfg80211_sched_scan_req_possible(struct cfg80211_registered_device *rdev,
1154 				     bool want_multi)
1155 {
1156 	struct cfg80211_sched_scan_request *pos;
1157 	int i = 0;
1158 
1159 	list_for_each_entry(pos, &rdev->sched_scan_req_list, list) {
1160 		/* request id zero means legacy in progress */
1161 		if (!i && !pos->reqid)
1162 			return -EINPROGRESS;
1163 		i++;
1164 	}
1165 
1166 	if (i) {
1167 		/* no legacy allowed when multi request(s) are active */
1168 		if (!want_multi)
1169 			return -EINPROGRESS;
1170 
1171 		/* resource limit reached */
1172 		if (i == rdev->wiphy.max_sched_scan_reqs)
1173 			return -ENOSPC;
1174 	}
1175 	return 0;
1176 }
1177 
1178 void cfg80211_sched_scan_results_wk(struct work_struct *work)
1179 {
1180 	struct cfg80211_registered_device *rdev;
1181 	struct cfg80211_sched_scan_request *req, *tmp;
1182 
1183 	rdev = container_of(work, struct cfg80211_registered_device,
1184 			   sched_scan_res_wk);
1185 
1186 	wiphy_lock(&rdev->wiphy);
1187 	list_for_each_entry_safe(req, tmp, &rdev->sched_scan_req_list, list) {
1188 		if (req->report_results) {
1189 			req->report_results = false;
1190 			if (req->flags & NL80211_SCAN_FLAG_FLUSH) {
1191 				/* flush entries from previous scans */
1192 				spin_lock_bh(&rdev->bss_lock);
1193 				__cfg80211_bss_expire(rdev, req->scan_start);
1194 				spin_unlock_bh(&rdev->bss_lock);
1195 				req->scan_start = jiffies;
1196 			}
1197 			nl80211_send_sched_scan(req,
1198 						NL80211_CMD_SCHED_SCAN_RESULTS);
1199 		}
1200 	}
1201 	wiphy_unlock(&rdev->wiphy);
1202 }
1203 
1204 void cfg80211_sched_scan_results(struct wiphy *wiphy, u64 reqid)
1205 {
1206 	struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
1207 	struct cfg80211_sched_scan_request *request;
1208 
1209 	trace_cfg80211_sched_scan_results(wiphy, reqid);
1210 	/* ignore if we're not scanning */
1211 
1212 	rcu_read_lock();
1213 	request = cfg80211_find_sched_scan_req(rdev, reqid);
1214 	if (request) {
1215 		request->report_results = true;
1216 		queue_work(cfg80211_wq, &rdev->sched_scan_res_wk);
1217 	}
1218 	rcu_read_unlock();
1219 }
1220 EXPORT_SYMBOL(cfg80211_sched_scan_results);
1221 
1222 void cfg80211_sched_scan_stopped_locked(struct wiphy *wiphy, u64 reqid)
1223 {
1224 	struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
1225 
1226 	lockdep_assert_held(&wiphy->mtx);
1227 
1228 	trace_cfg80211_sched_scan_stopped(wiphy, reqid);
1229 
1230 	__cfg80211_stop_sched_scan(rdev, reqid, true);
1231 }
1232 EXPORT_SYMBOL(cfg80211_sched_scan_stopped_locked);
1233 
1234 void cfg80211_sched_scan_stopped(struct wiphy *wiphy, u64 reqid)
1235 {
1236 	wiphy_lock(wiphy);
1237 	cfg80211_sched_scan_stopped_locked(wiphy, reqid);
1238 	wiphy_unlock(wiphy);
1239 }
1240 EXPORT_SYMBOL(cfg80211_sched_scan_stopped);
1241 
1242 int cfg80211_stop_sched_scan_req(struct cfg80211_registered_device *rdev,
1243 				 struct cfg80211_sched_scan_request *req,
1244 				 bool driver_initiated)
1245 {
1246 	lockdep_assert_held(&rdev->wiphy.mtx);
1247 
1248 	if (!driver_initiated) {
1249 		int err = rdev_sched_scan_stop(rdev, req->dev, req->reqid);
1250 		if (err)
1251 			return err;
1252 	}
1253 
1254 	nl80211_send_sched_scan(req, NL80211_CMD_SCHED_SCAN_STOPPED);
1255 
1256 	cfg80211_del_sched_scan_req(rdev, req);
1257 
1258 	return 0;
1259 }
1260 
1261 int __cfg80211_stop_sched_scan(struct cfg80211_registered_device *rdev,
1262 			       u64 reqid, bool driver_initiated)
1263 {
1264 	struct cfg80211_sched_scan_request *sched_scan_req;
1265 
1266 	lockdep_assert_held(&rdev->wiphy.mtx);
1267 
1268 	sched_scan_req = cfg80211_find_sched_scan_req(rdev, reqid);
1269 	if (!sched_scan_req)
1270 		return -ENOENT;
1271 
1272 	return cfg80211_stop_sched_scan_req(rdev, sched_scan_req,
1273 					    driver_initiated);
1274 }
1275 
1276 void cfg80211_bss_age(struct cfg80211_registered_device *rdev,
1277                       unsigned long age_secs)
1278 {
1279 	struct cfg80211_internal_bss *bss;
1280 	unsigned long age_jiffies = msecs_to_jiffies(age_secs * MSEC_PER_SEC);
1281 
1282 	spin_lock_bh(&rdev->bss_lock);
1283 	list_for_each_entry(bss, &rdev->bss_list, list)
1284 		bss->ts -= age_jiffies;
1285 	spin_unlock_bh(&rdev->bss_lock);
1286 }
1287 
1288 void cfg80211_bss_expire(struct cfg80211_registered_device *rdev)
1289 {
1290 	__cfg80211_bss_expire(rdev, jiffies - IEEE80211_SCAN_RESULT_EXPIRE);
1291 }
1292 
1293 void cfg80211_bss_flush(struct wiphy *wiphy)
1294 {
1295 	struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
1296 
1297 	spin_lock_bh(&rdev->bss_lock);
1298 	__cfg80211_bss_expire(rdev, jiffies);
1299 	spin_unlock_bh(&rdev->bss_lock);
1300 }
1301 EXPORT_SYMBOL(cfg80211_bss_flush);
1302 
1303 const struct element *
1304 cfg80211_find_elem_match(u8 eid, const u8 *ies, unsigned int len,
1305 			 const u8 *match, unsigned int match_len,
1306 			 unsigned int match_offset)
1307 {
1308 	const struct element *elem;
1309 
1310 	for_each_element_id(elem, eid, ies, len) {
1311 		if (elem->datalen >= match_offset + match_len &&
1312 		    !memcmp(elem->data + match_offset, match, match_len))
1313 			return elem;
1314 	}
1315 
1316 	return NULL;
1317 }
1318 EXPORT_SYMBOL(cfg80211_find_elem_match);
1319 
1320 const struct element *cfg80211_find_vendor_elem(unsigned int oui, int oui_type,
1321 						const u8 *ies,
1322 						unsigned int len)
1323 {
1324 	const struct element *elem;
1325 	u8 match[] = { oui >> 16, oui >> 8, oui, oui_type };
1326 	int match_len = (oui_type < 0) ? 3 : sizeof(match);
1327 
1328 	if (WARN_ON(oui_type > 0xff))
1329 		return NULL;
1330 
1331 	elem = cfg80211_find_elem_match(WLAN_EID_VENDOR_SPECIFIC, ies, len,
1332 					match, match_len, 0);
1333 
1334 	if (!elem || elem->datalen < 4)
1335 		return NULL;
1336 
1337 	return elem;
1338 }
1339 EXPORT_SYMBOL(cfg80211_find_vendor_elem);
1340 
1341 /**
1342  * enum bss_compare_mode - BSS compare mode
1343  * @BSS_CMP_REGULAR: regular compare mode (for insertion and normal find)
1344  * @BSS_CMP_HIDE_ZLEN: find hidden SSID with zero-length mode
1345  * @BSS_CMP_HIDE_NUL: find hidden SSID with NUL-ed out mode
1346  */
1347 enum bss_compare_mode {
1348 	BSS_CMP_REGULAR,
1349 	BSS_CMP_HIDE_ZLEN,
1350 	BSS_CMP_HIDE_NUL,
1351 };
1352 
1353 static int cmp_bss(struct cfg80211_bss *a,
1354 		   struct cfg80211_bss *b,
1355 		   enum bss_compare_mode mode)
1356 {
1357 	const struct cfg80211_bss_ies *a_ies, *b_ies;
1358 	const u8 *ie1 = NULL;
1359 	const u8 *ie2 = NULL;
1360 	int i, r;
1361 
1362 	if (a->channel != b->channel)
1363 		return (b->channel->center_freq * 1000 + b->channel->freq_offset) -
1364 		       (a->channel->center_freq * 1000 + a->channel->freq_offset);
1365 
1366 	a_ies = rcu_access_pointer(a->ies);
1367 	if (!a_ies)
1368 		return -1;
1369 	b_ies = rcu_access_pointer(b->ies);
1370 	if (!b_ies)
1371 		return 1;
1372 
1373 	if (WLAN_CAPABILITY_IS_STA_BSS(a->capability))
1374 		ie1 = cfg80211_find_ie(WLAN_EID_MESH_ID,
1375 				       a_ies->data, a_ies->len);
1376 	if (WLAN_CAPABILITY_IS_STA_BSS(b->capability))
1377 		ie2 = cfg80211_find_ie(WLAN_EID_MESH_ID,
1378 				       b_ies->data, b_ies->len);
1379 	if (ie1 && ie2) {
1380 		int mesh_id_cmp;
1381 
1382 		if (ie1[1] == ie2[1])
1383 			mesh_id_cmp = memcmp(ie1 + 2, ie2 + 2, ie1[1]);
1384 		else
1385 			mesh_id_cmp = ie2[1] - ie1[1];
1386 
1387 		ie1 = cfg80211_find_ie(WLAN_EID_MESH_CONFIG,
1388 				       a_ies->data, a_ies->len);
1389 		ie2 = cfg80211_find_ie(WLAN_EID_MESH_CONFIG,
1390 				       b_ies->data, b_ies->len);
1391 		if (ie1 && ie2) {
1392 			if (mesh_id_cmp)
1393 				return mesh_id_cmp;
1394 			if (ie1[1] != ie2[1])
1395 				return ie2[1] - ie1[1];
1396 			return memcmp(ie1 + 2, ie2 + 2, ie1[1]);
1397 		}
1398 	}
1399 
1400 	r = memcmp(a->bssid, b->bssid, sizeof(a->bssid));
1401 	if (r)
1402 		return r;
1403 
1404 	ie1 = cfg80211_find_ie(WLAN_EID_SSID, a_ies->data, a_ies->len);
1405 	ie2 = cfg80211_find_ie(WLAN_EID_SSID, b_ies->data, b_ies->len);
1406 
1407 	if (!ie1 && !ie2)
1408 		return 0;
1409 
1410 	/*
1411 	 * Note that with "hide_ssid", the function returns a match if
1412 	 * the already-present BSS ("b") is a hidden SSID beacon for
1413 	 * the new BSS ("a").
1414 	 */
1415 
1416 	/* sort missing IE before (left of) present IE */
1417 	if (!ie1)
1418 		return -1;
1419 	if (!ie2)
1420 		return 1;
1421 
1422 	switch (mode) {
1423 	case BSS_CMP_HIDE_ZLEN:
1424 		/*
1425 		 * In ZLEN mode we assume the BSS entry we're
1426 		 * looking for has a zero-length SSID. So if
1427 		 * the one we're looking at right now has that,
1428 		 * return 0. Otherwise, return the difference
1429 		 * in length, but since we're looking for the
1430 		 * 0-length it's really equivalent to returning
1431 		 * the length of the one we're looking at.
1432 		 *
1433 		 * No content comparison is needed as we assume
1434 		 * the content length is zero.
1435 		 */
1436 		return ie2[1];
1437 	case BSS_CMP_REGULAR:
1438 	default:
1439 		/* sort by length first, then by contents */
1440 		if (ie1[1] != ie2[1])
1441 			return ie2[1] - ie1[1];
1442 		return memcmp(ie1 + 2, ie2 + 2, ie1[1]);
1443 	case BSS_CMP_HIDE_NUL:
1444 		if (ie1[1] != ie2[1])
1445 			return ie2[1] - ie1[1];
1446 		/* this is equivalent to memcmp(zeroes, ie2 + 2, len) */
1447 		for (i = 0; i < ie2[1]; i++)
1448 			if (ie2[i + 2])
1449 				return -1;
1450 		return 0;
1451 	}
1452 }
1453 
1454 static bool cfg80211_bss_type_match(u16 capability,
1455 				    enum nl80211_band band,
1456 				    enum ieee80211_bss_type bss_type)
1457 {
1458 	bool ret = true;
1459 	u16 mask, val;
1460 
1461 	if (bss_type == IEEE80211_BSS_TYPE_ANY)
1462 		return ret;
1463 
1464 	if (band == NL80211_BAND_60GHZ) {
1465 		mask = WLAN_CAPABILITY_DMG_TYPE_MASK;
1466 		switch (bss_type) {
1467 		case IEEE80211_BSS_TYPE_ESS:
1468 			val = WLAN_CAPABILITY_DMG_TYPE_AP;
1469 			break;
1470 		case IEEE80211_BSS_TYPE_PBSS:
1471 			val = WLAN_CAPABILITY_DMG_TYPE_PBSS;
1472 			break;
1473 		case IEEE80211_BSS_TYPE_IBSS:
1474 			val = WLAN_CAPABILITY_DMG_TYPE_IBSS;
1475 			break;
1476 		default:
1477 			return false;
1478 		}
1479 	} else {
1480 		mask = WLAN_CAPABILITY_ESS | WLAN_CAPABILITY_IBSS;
1481 		switch (bss_type) {
1482 		case IEEE80211_BSS_TYPE_ESS:
1483 			val = WLAN_CAPABILITY_ESS;
1484 			break;
1485 		case IEEE80211_BSS_TYPE_IBSS:
1486 			val = WLAN_CAPABILITY_IBSS;
1487 			break;
1488 		case IEEE80211_BSS_TYPE_MBSS:
1489 			val = 0;
1490 			break;
1491 		default:
1492 			return false;
1493 		}
1494 	}
1495 
1496 	ret = ((capability & mask) == val);
1497 	return ret;
1498 }
1499 
1500 /* Returned bss is reference counted and must be cleaned up appropriately. */
1501 struct cfg80211_bss *cfg80211_get_bss(struct wiphy *wiphy,
1502 				      struct ieee80211_channel *channel,
1503 				      const u8 *bssid,
1504 				      const u8 *ssid, size_t ssid_len,
1505 				      enum ieee80211_bss_type bss_type,
1506 				      enum ieee80211_privacy privacy)
1507 {
1508 	struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
1509 	struct cfg80211_internal_bss *bss, *res = NULL;
1510 	unsigned long now = jiffies;
1511 	int bss_privacy;
1512 
1513 	trace_cfg80211_get_bss(wiphy, channel, bssid, ssid, ssid_len, bss_type,
1514 			       privacy);
1515 
1516 	spin_lock_bh(&rdev->bss_lock);
1517 
1518 	list_for_each_entry(bss, &rdev->bss_list, list) {
1519 		if (!cfg80211_bss_type_match(bss->pub.capability,
1520 					     bss->pub.channel->band, bss_type))
1521 			continue;
1522 
1523 		bss_privacy = (bss->pub.capability & WLAN_CAPABILITY_PRIVACY);
1524 		if ((privacy == IEEE80211_PRIVACY_ON && !bss_privacy) ||
1525 		    (privacy == IEEE80211_PRIVACY_OFF && bss_privacy))
1526 			continue;
1527 		if (channel && bss->pub.channel != channel)
1528 			continue;
1529 		if (!is_valid_ether_addr(bss->pub.bssid))
1530 			continue;
1531 		/* Don't get expired BSS structs */
1532 		if (time_after(now, bss->ts + IEEE80211_SCAN_RESULT_EXPIRE) &&
1533 		    !atomic_read(&bss->hold))
1534 			continue;
1535 		if (is_bss(&bss->pub, bssid, ssid, ssid_len)) {
1536 			res = bss;
1537 			bss_ref_get(rdev, res);
1538 			break;
1539 		}
1540 	}
1541 
1542 	spin_unlock_bh(&rdev->bss_lock);
1543 	if (!res)
1544 		return NULL;
1545 	trace_cfg80211_return_bss(&res->pub);
1546 	return &res->pub;
1547 }
1548 EXPORT_SYMBOL(cfg80211_get_bss);
1549 
1550 static void rb_insert_bss(struct cfg80211_registered_device *rdev,
1551 			  struct cfg80211_internal_bss *bss)
1552 {
1553 	struct rb_node **p = &rdev->bss_tree.rb_node;
1554 	struct rb_node *parent = NULL;
1555 	struct cfg80211_internal_bss *tbss;
1556 	int cmp;
1557 
1558 	while (*p) {
1559 		parent = *p;
1560 		tbss = rb_entry(parent, struct cfg80211_internal_bss, rbn);
1561 
1562 		cmp = cmp_bss(&bss->pub, &tbss->pub, BSS_CMP_REGULAR);
1563 
1564 		if (WARN_ON(!cmp)) {
1565 			/* will sort of leak this BSS */
1566 			return;
1567 		}
1568 
1569 		if (cmp < 0)
1570 			p = &(*p)->rb_left;
1571 		else
1572 			p = &(*p)->rb_right;
1573 	}
1574 
1575 	rb_link_node(&bss->rbn, parent, p);
1576 	rb_insert_color(&bss->rbn, &rdev->bss_tree);
1577 }
1578 
1579 static struct cfg80211_internal_bss *
1580 rb_find_bss(struct cfg80211_registered_device *rdev,
1581 	    struct cfg80211_internal_bss *res,
1582 	    enum bss_compare_mode mode)
1583 {
1584 	struct rb_node *n = rdev->bss_tree.rb_node;
1585 	struct cfg80211_internal_bss *bss;
1586 	int r;
1587 
1588 	while (n) {
1589 		bss = rb_entry(n, struct cfg80211_internal_bss, rbn);
1590 		r = cmp_bss(&res->pub, &bss->pub, mode);
1591 
1592 		if (r == 0)
1593 			return bss;
1594 		else if (r < 0)
1595 			n = n->rb_left;
1596 		else
1597 			n = n->rb_right;
1598 	}
1599 
1600 	return NULL;
1601 }
1602 
1603 static bool cfg80211_combine_bsses(struct cfg80211_registered_device *rdev,
1604 				   struct cfg80211_internal_bss *new)
1605 {
1606 	const struct cfg80211_bss_ies *ies;
1607 	struct cfg80211_internal_bss *bss;
1608 	const u8 *ie;
1609 	int i, ssidlen;
1610 	u8 fold = 0;
1611 	u32 n_entries = 0;
1612 
1613 	ies = rcu_access_pointer(new->pub.beacon_ies);
1614 	if (WARN_ON(!ies))
1615 		return false;
1616 
1617 	ie = cfg80211_find_ie(WLAN_EID_SSID, ies->data, ies->len);
1618 	if (!ie) {
1619 		/* nothing to do */
1620 		return true;
1621 	}
1622 
1623 	ssidlen = ie[1];
1624 	for (i = 0; i < ssidlen; i++)
1625 		fold |= ie[2 + i];
1626 
1627 	if (fold) {
1628 		/* not a hidden SSID */
1629 		return true;
1630 	}
1631 
1632 	/* This is the bad part ... */
1633 
1634 	list_for_each_entry(bss, &rdev->bss_list, list) {
1635 		/*
1636 		 * we're iterating all the entries anyway, so take the
1637 		 * opportunity to validate the list length accounting
1638 		 */
1639 		n_entries++;
1640 
1641 		if (!ether_addr_equal(bss->pub.bssid, new->pub.bssid))
1642 			continue;
1643 		if (bss->pub.channel != new->pub.channel)
1644 			continue;
1645 		if (rcu_access_pointer(bss->pub.beacon_ies))
1646 			continue;
1647 		ies = rcu_access_pointer(bss->pub.ies);
1648 		if (!ies)
1649 			continue;
1650 		ie = cfg80211_find_ie(WLAN_EID_SSID, ies->data, ies->len);
1651 		if (!ie)
1652 			continue;
1653 		if (ssidlen && ie[1] != ssidlen)
1654 			continue;
1655 		if (WARN_ON_ONCE(bss->pub.hidden_beacon_bss))
1656 			continue;
1657 		if (WARN_ON_ONCE(!list_empty(&bss->hidden_list)))
1658 			list_del(&bss->hidden_list);
1659 		/* combine them */
1660 		list_add(&bss->hidden_list, &new->hidden_list);
1661 		bss->pub.hidden_beacon_bss = &new->pub;
1662 		new->refcount += bss->refcount;
1663 		rcu_assign_pointer(bss->pub.beacon_ies,
1664 				   new->pub.beacon_ies);
1665 	}
1666 
1667 	WARN_ONCE(n_entries != rdev->bss_entries,
1668 		  "rdev bss entries[%d]/list[len:%d] corruption\n",
1669 		  rdev->bss_entries, n_entries);
1670 
1671 	return true;
1672 }
1673 
1674 static void cfg80211_update_hidden_bsses(struct cfg80211_internal_bss *known,
1675 					 const struct cfg80211_bss_ies *new_ies,
1676 					 const struct cfg80211_bss_ies *old_ies)
1677 {
1678 	struct cfg80211_internal_bss *bss;
1679 
1680 	/* Assign beacon IEs to all sub entries */
1681 	list_for_each_entry(bss, &known->hidden_list, hidden_list) {
1682 		const struct cfg80211_bss_ies *ies;
1683 
1684 		ies = rcu_access_pointer(bss->pub.beacon_ies);
1685 		WARN_ON(ies != old_ies);
1686 
1687 		rcu_assign_pointer(bss->pub.beacon_ies, new_ies);
1688 	}
1689 }
1690 
1691 static bool
1692 cfg80211_update_known_bss(struct cfg80211_registered_device *rdev,
1693 			  struct cfg80211_internal_bss *known,
1694 			  struct cfg80211_internal_bss *new,
1695 			  bool signal_valid)
1696 {
1697 	lockdep_assert_held(&rdev->bss_lock);
1698 
1699 	/* Update IEs */
1700 	if (rcu_access_pointer(new->pub.proberesp_ies)) {
1701 		const struct cfg80211_bss_ies *old;
1702 
1703 		old = rcu_access_pointer(known->pub.proberesp_ies);
1704 
1705 		rcu_assign_pointer(known->pub.proberesp_ies,
1706 				   new->pub.proberesp_ies);
1707 		/* Override possible earlier Beacon frame IEs */
1708 		rcu_assign_pointer(known->pub.ies,
1709 				   new->pub.proberesp_ies);
1710 		if (old)
1711 			kfree_rcu((struct cfg80211_bss_ies *)old, rcu_head);
1712 	} else if (rcu_access_pointer(new->pub.beacon_ies)) {
1713 		const struct cfg80211_bss_ies *old;
1714 
1715 		if (known->pub.hidden_beacon_bss &&
1716 		    !list_empty(&known->hidden_list)) {
1717 			const struct cfg80211_bss_ies *f;
1718 
1719 			/* The known BSS struct is one of the probe
1720 			 * response members of a group, but we're
1721 			 * receiving a beacon (beacon_ies in the new
1722 			 * bss is used). This can only mean that the
1723 			 * AP changed its beacon from not having an
1724 			 * SSID to showing it, which is confusing so
1725 			 * drop this information.
1726 			 */
1727 
1728 			f = rcu_access_pointer(new->pub.beacon_ies);
1729 			kfree_rcu((struct cfg80211_bss_ies *)f, rcu_head);
1730 			return false;
1731 		}
1732 
1733 		old = rcu_access_pointer(known->pub.beacon_ies);
1734 
1735 		rcu_assign_pointer(known->pub.beacon_ies, new->pub.beacon_ies);
1736 
1737 		/* Override IEs if they were from a beacon before */
1738 		if (old == rcu_access_pointer(known->pub.ies))
1739 			rcu_assign_pointer(known->pub.ies, new->pub.beacon_ies);
1740 
1741 		cfg80211_update_hidden_bsses(known,
1742 					     rcu_access_pointer(new->pub.beacon_ies),
1743 					     old);
1744 
1745 		if (old)
1746 			kfree_rcu((struct cfg80211_bss_ies *)old, rcu_head);
1747 	}
1748 
1749 	known->pub.beacon_interval = new->pub.beacon_interval;
1750 
1751 	/* don't update the signal if beacon was heard on
1752 	 * adjacent channel.
1753 	 */
1754 	if (signal_valid)
1755 		known->pub.signal = new->pub.signal;
1756 	known->pub.capability = new->pub.capability;
1757 	known->ts = new->ts;
1758 	known->ts_boottime = new->ts_boottime;
1759 	known->parent_tsf = new->parent_tsf;
1760 	known->pub.chains = new->pub.chains;
1761 	memcpy(known->pub.chain_signal, new->pub.chain_signal,
1762 	       IEEE80211_MAX_CHAINS);
1763 	ether_addr_copy(known->parent_bssid, new->parent_bssid);
1764 	known->pub.max_bssid_indicator = new->pub.max_bssid_indicator;
1765 	known->pub.bssid_index = new->pub.bssid_index;
1766 
1767 	return true;
1768 }
1769 
1770 /* Returned bss is reference counted and must be cleaned up appropriately. */
1771 static struct cfg80211_internal_bss *
1772 __cfg80211_bss_update(struct cfg80211_registered_device *rdev,
1773 		      struct cfg80211_internal_bss *tmp,
1774 		      bool signal_valid, unsigned long ts)
1775 {
1776 	struct cfg80211_internal_bss *found = NULL;
1777 
1778 	if (WARN_ON(!tmp->pub.channel))
1779 		return NULL;
1780 
1781 	tmp->ts = ts;
1782 
1783 	if (WARN_ON(!rcu_access_pointer(tmp->pub.ies))) {
1784 		return NULL;
1785 	}
1786 
1787 	found = rb_find_bss(rdev, tmp, BSS_CMP_REGULAR);
1788 
1789 	if (found) {
1790 		if (!cfg80211_update_known_bss(rdev, found, tmp, signal_valid))
1791 			return NULL;
1792 	} else {
1793 		struct cfg80211_internal_bss *new;
1794 		struct cfg80211_internal_bss *hidden;
1795 		struct cfg80211_bss_ies *ies;
1796 
1797 		/*
1798 		 * create a copy -- the "res" variable that is passed in
1799 		 * is allocated on the stack since it's not needed in the
1800 		 * more common case of an update
1801 		 */
1802 		new = kzalloc(sizeof(*new) + rdev->wiphy.bss_priv_size,
1803 			      GFP_ATOMIC);
1804 		if (!new) {
1805 			ies = (void *)rcu_dereference(tmp->pub.beacon_ies);
1806 			if (ies)
1807 				kfree_rcu(ies, rcu_head);
1808 			ies = (void *)rcu_dereference(tmp->pub.proberesp_ies);
1809 			if (ies)
1810 				kfree_rcu(ies, rcu_head);
1811 			return NULL;
1812 		}
1813 		memcpy(new, tmp, sizeof(*new));
1814 		new->refcount = 1;
1815 		INIT_LIST_HEAD(&new->hidden_list);
1816 		INIT_LIST_HEAD(&new->pub.nontrans_list);
1817 		/* we'll set this later if it was non-NULL */
1818 		new->pub.transmitted_bss = NULL;
1819 
1820 		if (rcu_access_pointer(tmp->pub.proberesp_ies)) {
1821 			hidden = rb_find_bss(rdev, tmp, BSS_CMP_HIDE_ZLEN);
1822 			if (!hidden)
1823 				hidden = rb_find_bss(rdev, tmp,
1824 						     BSS_CMP_HIDE_NUL);
1825 			if (hidden) {
1826 				new->pub.hidden_beacon_bss = &hidden->pub;
1827 				list_add(&new->hidden_list,
1828 					 &hidden->hidden_list);
1829 				hidden->refcount++;
1830 				rcu_assign_pointer(new->pub.beacon_ies,
1831 						   hidden->pub.beacon_ies);
1832 			}
1833 		} else {
1834 			/*
1835 			 * Ok so we found a beacon, and don't have an entry. If
1836 			 * it's a beacon with hidden SSID, we might be in for an
1837 			 * expensive search for any probe responses that should
1838 			 * be grouped with this beacon for updates ...
1839 			 */
1840 			if (!cfg80211_combine_bsses(rdev, new)) {
1841 				bss_ref_put(rdev, new);
1842 				return NULL;
1843 			}
1844 		}
1845 
1846 		if (rdev->bss_entries >= bss_entries_limit &&
1847 		    !cfg80211_bss_expire_oldest(rdev)) {
1848 			bss_ref_put(rdev, new);
1849 			return NULL;
1850 		}
1851 
1852 		/* This must be before the call to bss_ref_get */
1853 		if (tmp->pub.transmitted_bss) {
1854 			new->pub.transmitted_bss = tmp->pub.transmitted_bss;
1855 			bss_ref_get(rdev, bss_from_pub(tmp->pub.transmitted_bss));
1856 		}
1857 
1858 		list_add_tail(&new->list, &rdev->bss_list);
1859 		rdev->bss_entries++;
1860 		rb_insert_bss(rdev, new);
1861 		found = new;
1862 	}
1863 
1864 	rdev->bss_generation++;
1865 	bss_ref_get(rdev, found);
1866 
1867 	return found;
1868 }
1869 
1870 struct cfg80211_internal_bss *
1871 cfg80211_bss_update(struct cfg80211_registered_device *rdev,
1872 		    struct cfg80211_internal_bss *tmp,
1873 		    bool signal_valid, unsigned long ts)
1874 {
1875 	struct cfg80211_internal_bss *res;
1876 
1877 	spin_lock_bh(&rdev->bss_lock);
1878 	res = __cfg80211_bss_update(rdev, tmp, signal_valid, ts);
1879 	spin_unlock_bh(&rdev->bss_lock);
1880 
1881 	return res;
1882 }
1883 
1884 int cfg80211_get_ies_channel_number(const u8 *ie, size_t ielen,
1885 				    enum nl80211_band band)
1886 {
1887 	const struct element *tmp;
1888 
1889 	if (band == NL80211_BAND_6GHZ) {
1890 		struct ieee80211_he_operation *he_oper;
1891 
1892 		tmp = cfg80211_find_ext_elem(WLAN_EID_EXT_HE_OPERATION, ie,
1893 					     ielen);
1894 		if (tmp && tmp->datalen >= sizeof(*he_oper) &&
1895 		    tmp->datalen >= ieee80211_he_oper_size(&tmp->data[1])) {
1896 			const struct ieee80211_he_6ghz_oper *he_6ghz_oper;
1897 
1898 			he_oper = (void *)&tmp->data[1];
1899 
1900 			he_6ghz_oper = ieee80211_he_6ghz_oper(he_oper);
1901 			if (!he_6ghz_oper)
1902 				return -1;
1903 
1904 			return he_6ghz_oper->primary;
1905 		}
1906 	} else if (band == NL80211_BAND_S1GHZ) {
1907 		tmp = cfg80211_find_elem(WLAN_EID_S1G_OPERATION, ie, ielen);
1908 		if (tmp && tmp->datalen >= sizeof(struct ieee80211_s1g_oper_ie)) {
1909 			struct ieee80211_s1g_oper_ie *s1gop = (void *)tmp->data;
1910 
1911 			return s1gop->oper_ch;
1912 		}
1913 	} else {
1914 		tmp = cfg80211_find_elem(WLAN_EID_DS_PARAMS, ie, ielen);
1915 		if (tmp && tmp->datalen == 1)
1916 			return tmp->data[0];
1917 
1918 		tmp = cfg80211_find_elem(WLAN_EID_HT_OPERATION, ie, ielen);
1919 		if (tmp &&
1920 		    tmp->datalen >= sizeof(struct ieee80211_ht_operation)) {
1921 			struct ieee80211_ht_operation *htop = (void *)tmp->data;
1922 
1923 			return htop->primary_chan;
1924 		}
1925 	}
1926 
1927 	return -1;
1928 }
1929 EXPORT_SYMBOL(cfg80211_get_ies_channel_number);
1930 
1931 /*
1932  * Update RX channel information based on the available frame payload
1933  * information. This is mainly for the 2.4 GHz band where frames can be received
1934  * from neighboring channels and the Beacon frames use the DSSS Parameter Set
1935  * element to indicate the current (transmitting) channel, but this might also
1936  * be needed on other bands if RX frequency does not match with the actual
1937  * operating channel of a BSS, or if the AP reports a different primary channel.
1938  */
1939 static struct ieee80211_channel *
1940 cfg80211_get_bss_channel(struct wiphy *wiphy, const u8 *ie, size_t ielen,
1941 			 struct ieee80211_channel *channel)
1942 {
1943 	u32 freq;
1944 	int channel_number;
1945 	struct ieee80211_channel *alt_channel;
1946 
1947 	channel_number = cfg80211_get_ies_channel_number(ie, ielen,
1948 							 channel->band);
1949 
1950 	if (channel_number < 0) {
1951 		/* No channel information in frame payload */
1952 		return channel;
1953 	}
1954 
1955 	freq = ieee80211_channel_to_freq_khz(channel_number, channel->band);
1956 
1957 	/*
1958 	 * Frame info (beacon/prob res) is the same as received channel,
1959 	 * no need for further processing.
1960 	 */
1961 	if (freq == ieee80211_channel_to_khz(channel))
1962 		return channel;
1963 
1964 	alt_channel = ieee80211_get_channel_khz(wiphy, freq);
1965 	if (!alt_channel) {
1966 		if (channel->band == NL80211_BAND_2GHZ ||
1967 		    channel->band == NL80211_BAND_6GHZ) {
1968 			/*
1969 			 * Better not allow unexpected channels when that could
1970 			 * be going beyond the 1-11 range (e.g., discovering
1971 			 * BSS on channel 12 when radio is configured for
1972 			 * channel 11) or beyond the 6 GHz channel range.
1973 			 */
1974 			return NULL;
1975 		}
1976 
1977 		/* No match for the payload channel number - ignore it */
1978 		return channel;
1979 	}
1980 
1981 	/*
1982 	 * Use the channel determined through the payload channel number
1983 	 * instead of the RX channel reported by the driver.
1984 	 */
1985 	if (alt_channel->flags & IEEE80211_CHAN_DISABLED)
1986 		return NULL;
1987 	return alt_channel;
1988 }
1989 
1990 struct cfg80211_inform_single_bss_data {
1991 	struct cfg80211_inform_bss *drv_data;
1992 	enum cfg80211_bss_frame_type ftype;
1993 	struct ieee80211_channel *channel;
1994 	u8 bssid[ETH_ALEN];
1995 	u64 tsf;
1996 	u16 capability;
1997 	u16 beacon_interval;
1998 	const u8 *ie;
1999 	size_t ielen;
2000 
2001 	enum {
2002 		BSS_SOURCE_DIRECT = 0,
2003 		BSS_SOURCE_MBSSID,
2004 		BSS_SOURCE_STA_PROFILE,
2005 	} bss_source;
2006 	/* Set if reporting bss_source != BSS_SOURCE_DIRECT */
2007 	struct cfg80211_bss *source_bss;
2008 	u8 max_bssid_indicator;
2009 	u8 bssid_index;
2010 };
2011 
2012 /* Returned bss is reference counted and must be cleaned up appropriately. */
2013 static struct cfg80211_bss *
2014 cfg80211_inform_single_bss_data(struct wiphy *wiphy,
2015 				struct cfg80211_inform_single_bss_data *data,
2016 				gfp_t gfp)
2017 {
2018 	struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
2019 	struct cfg80211_inform_bss *drv_data = data->drv_data;
2020 	struct cfg80211_bss_ies *ies;
2021 	struct ieee80211_channel *channel;
2022 	struct cfg80211_internal_bss tmp = {}, *res;
2023 	int bss_type;
2024 	bool signal_valid;
2025 	unsigned long ts;
2026 
2027 	if (WARN_ON(!wiphy))
2028 		return NULL;
2029 
2030 	if (WARN_ON(wiphy->signal_type == CFG80211_SIGNAL_TYPE_UNSPEC &&
2031 		    (drv_data->signal < 0 || drv_data->signal > 100)))
2032 		return NULL;
2033 
2034 	if (WARN_ON(data->bss_source != BSS_SOURCE_DIRECT && !data->source_bss))
2035 		return NULL;
2036 
2037 	channel = data->channel;
2038 	if (!channel)
2039 		channel = cfg80211_get_bss_channel(wiphy, data->ie, data->ielen,
2040 						   drv_data->chan);
2041 	if (!channel)
2042 		return NULL;
2043 
2044 	memcpy(tmp.pub.bssid, data->bssid, ETH_ALEN);
2045 	tmp.pub.channel = channel;
2046 	if (data->bss_source != BSS_SOURCE_STA_PROFILE)
2047 		tmp.pub.signal = drv_data->signal;
2048 	else
2049 		tmp.pub.signal = 0;
2050 	tmp.pub.beacon_interval = data->beacon_interval;
2051 	tmp.pub.capability = data->capability;
2052 	tmp.ts_boottime = drv_data->boottime_ns;
2053 	tmp.parent_tsf = drv_data->parent_tsf;
2054 	ether_addr_copy(tmp.parent_bssid, drv_data->parent_bssid);
2055 
2056 	if (data->bss_source != BSS_SOURCE_DIRECT) {
2057 		tmp.pub.transmitted_bss = data->source_bss;
2058 		ts = bss_from_pub(data->source_bss)->ts;
2059 		tmp.pub.bssid_index = data->bssid_index;
2060 		tmp.pub.max_bssid_indicator = data->max_bssid_indicator;
2061 	} else {
2062 		ts = jiffies;
2063 
2064 		if (channel->band == NL80211_BAND_60GHZ) {
2065 			bss_type = data->capability &
2066 				   WLAN_CAPABILITY_DMG_TYPE_MASK;
2067 			if (bss_type == WLAN_CAPABILITY_DMG_TYPE_AP ||
2068 			    bss_type == WLAN_CAPABILITY_DMG_TYPE_PBSS)
2069 				regulatory_hint_found_beacon(wiphy, channel,
2070 							     gfp);
2071 		} else {
2072 			if (data->capability & WLAN_CAPABILITY_ESS)
2073 				regulatory_hint_found_beacon(wiphy, channel,
2074 							     gfp);
2075 		}
2076 	}
2077 
2078 	/*
2079 	 * If we do not know here whether the IEs are from a Beacon or Probe
2080 	 * Response frame, we need to pick one of the options and only use it
2081 	 * with the driver that does not provide the full Beacon/Probe Response
2082 	 * frame. Use Beacon frame pointer to avoid indicating that this should
2083 	 * override the IEs pointer should we have received an earlier
2084 	 * indication of Probe Response data.
2085 	 */
2086 	ies = kzalloc(sizeof(*ies) + data->ielen, gfp);
2087 	if (!ies)
2088 		return NULL;
2089 	ies->len = data->ielen;
2090 	ies->tsf = data->tsf;
2091 	ies->from_beacon = false;
2092 	memcpy(ies->data, data->ie, data->ielen);
2093 
2094 	switch (data->ftype) {
2095 	case CFG80211_BSS_FTYPE_BEACON:
2096 		ies->from_beacon = true;
2097 		fallthrough;
2098 	case CFG80211_BSS_FTYPE_UNKNOWN:
2099 		rcu_assign_pointer(tmp.pub.beacon_ies, ies);
2100 		break;
2101 	case CFG80211_BSS_FTYPE_PRESP:
2102 		rcu_assign_pointer(tmp.pub.proberesp_ies, ies);
2103 		break;
2104 	}
2105 	rcu_assign_pointer(tmp.pub.ies, ies);
2106 
2107 	signal_valid = drv_data->chan == channel;
2108 	spin_lock_bh(&rdev->bss_lock);
2109 	res = __cfg80211_bss_update(rdev, &tmp, signal_valid, ts);
2110 	if (!res)
2111 		goto drop;
2112 
2113 	rdev_inform_bss(rdev, &res->pub, ies, drv_data->drv_data);
2114 
2115 	if (data->bss_source == BSS_SOURCE_MBSSID) {
2116 		/* this is a nontransmitting bss, we need to add it to
2117 		 * transmitting bss' list if it is not there
2118 		 */
2119 		if (cfg80211_add_nontrans_list(data->source_bss, &res->pub)) {
2120 			if (__cfg80211_unlink_bss(rdev, res)) {
2121 				rdev->bss_generation++;
2122 				res = NULL;
2123 			}
2124 		}
2125 
2126 		if (!res)
2127 			goto drop;
2128 	}
2129 	spin_unlock_bh(&rdev->bss_lock);
2130 
2131 	trace_cfg80211_return_bss(&res->pub);
2132 	/* __cfg80211_bss_update gives us a referenced result */
2133 	return &res->pub;
2134 
2135 drop:
2136 	spin_unlock_bh(&rdev->bss_lock);
2137 	return NULL;
2138 }
2139 
2140 static const struct element
2141 *cfg80211_get_profile_continuation(const u8 *ie, size_t ielen,
2142 				   const struct element *mbssid_elem,
2143 				   const struct element *sub_elem)
2144 {
2145 	const u8 *mbssid_end = mbssid_elem->data + mbssid_elem->datalen;
2146 	const struct element *next_mbssid;
2147 	const struct element *next_sub;
2148 
2149 	next_mbssid = cfg80211_find_elem(WLAN_EID_MULTIPLE_BSSID,
2150 					 mbssid_end,
2151 					 ielen - (mbssid_end - ie));
2152 
2153 	/*
2154 	 * If it is not the last subelement in current MBSSID IE or there isn't
2155 	 * a next MBSSID IE - profile is complete.
2156 	*/
2157 	if ((sub_elem->data + sub_elem->datalen < mbssid_end - 1) ||
2158 	    !next_mbssid)
2159 		return NULL;
2160 
2161 	/* For any length error, just return NULL */
2162 
2163 	if (next_mbssid->datalen < 4)
2164 		return NULL;
2165 
2166 	next_sub = (void *)&next_mbssid->data[1];
2167 
2168 	if (next_mbssid->data + next_mbssid->datalen <
2169 	    next_sub->data + next_sub->datalen)
2170 		return NULL;
2171 
2172 	if (next_sub->id != 0 || next_sub->datalen < 2)
2173 		return NULL;
2174 
2175 	/*
2176 	 * Check if the first element in the next sub element is a start
2177 	 * of a new profile
2178 	 */
2179 	return next_sub->data[0] == WLAN_EID_NON_TX_BSSID_CAP ?
2180 	       NULL : next_mbssid;
2181 }
2182 
2183 size_t cfg80211_merge_profile(const u8 *ie, size_t ielen,
2184 			      const struct element *mbssid_elem,
2185 			      const struct element *sub_elem,
2186 			      u8 *merged_ie, size_t max_copy_len)
2187 {
2188 	size_t copied_len = sub_elem->datalen;
2189 	const struct element *next_mbssid;
2190 
2191 	if (sub_elem->datalen > max_copy_len)
2192 		return 0;
2193 
2194 	memcpy(merged_ie, sub_elem->data, sub_elem->datalen);
2195 
2196 	while ((next_mbssid = cfg80211_get_profile_continuation(ie, ielen,
2197 								mbssid_elem,
2198 								sub_elem))) {
2199 		const struct element *next_sub = (void *)&next_mbssid->data[1];
2200 
2201 		if (copied_len + next_sub->datalen > max_copy_len)
2202 			break;
2203 		memcpy(merged_ie + copied_len, next_sub->data,
2204 		       next_sub->datalen);
2205 		copied_len += next_sub->datalen;
2206 	}
2207 
2208 	return copied_len;
2209 }
2210 EXPORT_SYMBOL(cfg80211_merge_profile);
2211 
2212 static void
2213 cfg80211_parse_mbssid_data(struct wiphy *wiphy,
2214 			   struct cfg80211_inform_single_bss_data *tx_data,
2215 			   struct cfg80211_bss *source_bss,
2216 			   gfp_t gfp)
2217 {
2218 	struct cfg80211_inform_single_bss_data data = {
2219 		.drv_data = tx_data->drv_data,
2220 		.ftype = tx_data->ftype,
2221 		.tsf = tx_data->tsf,
2222 		.beacon_interval = tx_data->beacon_interval,
2223 		.source_bss = source_bss,
2224 		.bss_source = BSS_SOURCE_MBSSID,
2225 	};
2226 	const u8 *mbssid_index_ie;
2227 	const struct element *elem, *sub;
2228 	u8 *new_ie, *profile;
2229 	u64 seen_indices = 0;
2230 	struct cfg80211_bss *bss;
2231 
2232 	if (!source_bss)
2233 		return;
2234 	if (!cfg80211_find_elem(WLAN_EID_MULTIPLE_BSSID,
2235 				tx_data->ie, tx_data->ielen))
2236 		return;
2237 	if (!wiphy->support_mbssid)
2238 		return;
2239 	if (wiphy->support_only_he_mbssid &&
2240 	    !cfg80211_find_ext_elem(WLAN_EID_EXT_HE_CAPABILITY,
2241 				    tx_data->ie, tx_data->ielen))
2242 		return;
2243 
2244 	new_ie = kmalloc(IEEE80211_MAX_DATA_LEN, gfp);
2245 	if (!new_ie)
2246 		return;
2247 
2248 	profile = kmalloc(tx_data->ielen, gfp);
2249 	if (!profile)
2250 		goto out;
2251 
2252 	for_each_element_id(elem, WLAN_EID_MULTIPLE_BSSID,
2253 			    tx_data->ie, tx_data->ielen) {
2254 		if (elem->datalen < 4)
2255 			continue;
2256 		if (elem->data[0] < 1 || (int)elem->data[0] > 8)
2257 			continue;
2258 		for_each_element(sub, elem->data + 1, elem->datalen - 1) {
2259 			u8 profile_len;
2260 
2261 			if (sub->id != 0 || sub->datalen < 4) {
2262 				/* not a valid BSS profile */
2263 				continue;
2264 			}
2265 
2266 			if (sub->data[0] != WLAN_EID_NON_TX_BSSID_CAP ||
2267 			    sub->data[1] != 2) {
2268 				/* The first element within the Nontransmitted
2269 				 * BSSID Profile is not the Nontransmitted
2270 				 * BSSID Capability element.
2271 				 */
2272 				continue;
2273 			}
2274 
2275 			memset(profile, 0, tx_data->ielen);
2276 			profile_len = cfg80211_merge_profile(tx_data->ie,
2277 							     tx_data->ielen,
2278 							     elem,
2279 							     sub,
2280 							     profile,
2281 							     tx_data->ielen);
2282 
2283 			/* found a Nontransmitted BSSID Profile */
2284 			mbssid_index_ie = cfg80211_find_ie
2285 				(WLAN_EID_MULTI_BSSID_IDX,
2286 				 profile, profile_len);
2287 			if (!mbssid_index_ie || mbssid_index_ie[1] < 1 ||
2288 			    mbssid_index_ie[2] == 0 ||
2289 			    mbssid_index_ie[2] > 46) {
2290 				/* No valid Multiple BSSID-Index element */
2291 				continue;
2292 			}
2293 
2294 			if (seen_indices & BIT_ULL(mbssid_index_ie[2]))
2295 				/* We don't support legacy split of a profile */
2296 				net_dbg_ratelimited("Partial info for BSSID index %d\n",
2297 						    mbssid_index_ie[2]);
2298 
2299 			seen_indices |= BIT_ULL(mbssid_index_ie[2]);
2300 
2301 			data.bssid_index = mbssid_index_ie[2];
2302 			data.max_bssid_indicator = elem->data[0];
2303 
2304 			cfg80211_gen_new_bssid(tx_data->bssid,
2305 					       data.max_bssid_indicator,
2306 					       data.bssid_index,
2307 					       data.bssid);
2308 
2309 			memset(new_ie, 0, IEEE80211_MAX_DATA_LEN);
2310 			data.ie = new_ie;
2311 			data.ielen = cfg80211_gen_new_ie(tx_data->ie,
2312 							 tx_data->ielen,
2313 							 profile,
2314 							 profile_len,
2315 							 new_ie,
2316 							 IEEE80211_MAX_DATA_LEN);
2317 			if (!data.ielen)
2318 				continue;
2319 
2320 			data.capability = get_unaligned_le16(profile + 2);
2321 			bss = cfg80211_inform_single_bss_data(wiphy, &data, gfp);
2322 			if (!bss)
2323 				break;
2324 			cfg80211_put_bss(wiphy, bss);
2325 		}
2326 	}
2327 
2328 out:
2329 	kfree(new_ie);
2330 	kfree(profile);
2331 }
2332 
2333 ssize_t cfg80211_defragment_element(const struct element *elem, const u8 *ies,
2334 				    size_t ieslen, u8 *data, size_t data_len,
2335 				    u8 frag_id)
2336 {
2337 	const struct element *next;
2338 	ssize_t copied;
2339 	u8 elem_datalen;
2340 
2341 	if (!elem)
2342 		return -EINVAL;
2343 
2344 	/* elem might be invalid after the memmove */
2345 	next = (void *)(elem->data + elem->datalen);
2346 	elem_datalen = elem->datalen;
2347 
2348 	if (elem->id == WLAN_EID_EXTENSION) {
2349 		copied = elem->datalen - 1;
2350 		if (copied > data_len)
2351 			return -ENOSPC;
2352 
2353 		memmove(data, elem->data + 1, copied);
2354 	} else {
2355 		copied = elem->datalen;
2356 		if (copied > data_len)
2357 			return -ENOSPC;
2358 
2359 		memmove(data, elem->data, copied);
2360 	}
2361 
2362 	/* Fragmented elements must have 255 bytes */
2363 	if (elem_datalen < 255)
2364 		return copied;
2365 
2366 	for (elem = next;
2367 	     elem->data < ies + ieslen &&
2368 		elem->data + elem->datalen <= ies + ieslen;
2369 	     elem = next) {
2370 		/* elem might be invalid after the memmove */
2371 		next = (void *)(elem->data + elem->datalen);
2372 
2373 		if (elem->id != frag_id)
2374 			break;
2375 
2376 		elem_datalen = elem->datalen;
2377 
2378 		if (copied + elem_datalen > data_len)
2379 			return -ENOSPC;
2380 
2381 		memmove(data + copied, elem->data, elem_datalen);
2382 		copied += elem_datalen;
2383 
2384 		/* Only the last fragment may be short */
2385 		if (elem_datalen != 255)
2386 			break;
2387 	}
2388 
2389 	return copied;
2390 }
2391 EXPORT_SYMBOL(cfg80211_defragment_element);
2392 
2393 struct cfg80211_mle {
2394 	struct ieee80211_multi_link_elem *mle;
2395 	struct ieee80211_mle_per_sta_profile
2396 		*sta_prof[IEEE80211_MLD_MAX_NUM_LINKS];
2397 	ssize_t sta_prof_len[IEEE80211_MLD_MAX_NUM_LINKS];
2398 
2399 	u8 data[];
2400 };
2401 
2402 static struct cfg80211_mle *
2403 cfg80211_defrag_mle(const struct element *mle, const u8 *ie, size_t ielen,
2404 		    gfp_t gfp)
2405 {
2406 	const struct element *elem;
2407 	struct cfg80211_mle *res;
2408 	size_t buf_len;
2409 	ssize_t mle_len;
2410 	u8 common_size, idx;
2411 
2412 	if (!mle || !ieee80211_mle_size_ok(mle->data + 1, mle->datalen - 1))
2413 		return NULL;
2414 
2415 	/* Required length for first defragmentation */
2416 	buf_len = mle->datalen - 1;
2417 	for_each_element(elem, mle->data + mle->datalen,
2418 			 ielen - sizeof(*mle) + mle->datalen) {
2419 		if (elem->id != WLAN_EID_FRAGMENT)
2420 			break;
2421 
2422 		buf_len += elem->datalen;
2423 	}
2424 
2425 	res = kzalloc(struct_size(res, data, buf_len), gfp);
2426 	if (!res)
2427 		return NULL;
2428 
2429 	mle_len = cfg80211_defragment_element(mle, ie, ielen,
2430 					      res->data, buf_len,
2431 					      WLAN_EID_FRAGMENT);
2432 	if (mle_len < 0)
2433 		goto error;
2434 
2435 	res->mle = (void *)res->data;
2436 
2437 	/* Find the sub-element area in the buffer */
2438 	common_size = ieee80211_mle_common_size((u8 *)res->mle);
2439 	ie = res->data + common_size;
2440 	ielen = mle_len - common_size;
2441 
2442 	idx = 0;
2443 	for_each_element_id(elem, IEEE80211_MLE_SUBELEM_PER_STA_PROFILE,
2444 			    ie, ielen) {
2445 		res->sta_prof[idx] = (void *)elem->data;
2446 		res->sta_prof_len[idx] = elem->datalen;
2447 
2448 		idx++;
2449 		if (idx >= IEEE80211_MLD_MAX_NUM_LINKS)
2450 			break;
2451 	}
2452 	if (!for_each_element_completed(elem, ie, ielen))
2453 		goto error;
2454 
2455 	/* Defragment sta_info in-place */
2456 	for (idx = 0; idx < IEEE80211_MLD_MAX_NUM_LINKS && res->sta_prof[idx];
2457 	     idx++) {
2458 		if (res->sta_prof_len[idx] < 255)
2459 			continue;
2460 
2461 		elem = (void *)res->sta_prof[idx] - 2;
2462 
2463 		if (idx + 1 < ARRAY_SIZE(res->sta_prof) &&
2464 		    res->sta_prof[idx + 1])
2465 			buf_len = (u8 *)res->sta_prof[idx + 1] -
2466 				  (u8 *)res->sta_prof[idx];
2467 		else
2468 			buf_len = ielen + ie - (u8 *)elem;
2469 
2470 		res->sta_prof_len[idx] =
2471 			cfg80211_defragment_element(elem,
2472 						    (u8 *)elem, buf_len,
2473 						    (u8 *)res->sta_prof[idx],
2474 						    buf_len,
2475 						    IEEE80211_MLE_SUBELEM_FRAGMENT);
2476 		if (res->sta_prof_len[idx] < 0)
2477 			goto error;
2478 	}
2479 
2480 	return res;
2481 
2482 error:
2483 	kfree(res);
2484 	return NULL;
2485 }
2486 
2487 static bool
2488 cfg80211_tbtt_info_for_mld_ap(const u8 *ie, size_t ielen, u8 mld_id, u8 link_id,
2489 			      const struct ieee80211_neighbor_ap_info **ap_info,
2490 			      const u8 **tbtt_info)
2491 {
2492 	const struct ieee80211_neighbor_ap_info *info;
2493 	const struct element *rnr;
2494 	const u8 *pos, *end;
2495 
2496 	for_each_element_id(rnr, WLAN_EID_REDUCED_NEIGHBOR_REPORT, ie, ielen) {
2497 		pos = rnr->data;
2498 		end = rnr->data + rnr->datalen;
2499 
2500 		/* RNR IE may contain more than one NEIGHBOR_AP_INFO */
2501 		while (sizeof(*info) <= end - pos) {
2502 			const struct ieee80211_rnr_mld_params *mld_params;
2503 			u16 params;
2504 			u8 length, i, count, mld_params_offset;
2505 			u8 type, lid;
2506 
2507 			info = (void *)pos;
2508 			count = u8_get_bits(info->tbtt_info_hdr,
2509 					    IEEE80211_AP_INFO_TBTT_HDR_COUNT) + 1;
2510 			length = info->tbtt_info_len;
2511 
2512 			pos += sizeof(*info);
2513 
2514 			if (count * length > end - pos)
2515 				return false;
2516 
2517 			type = u8_get_bits(info->tbtt_info_hdr,
2518 					   IEEE80211_AP_INFO_TBTT_HDR_TYPE);
2519 
2520 			/* Only accept full TBTT information. NSTR mobile APs
2521 			 * use the shortened version, but we ignore them here.
2522 			 */
2523 			if (type == IEEE80211_TBTT_INFO_TYPE_TBTT &&
2524 			    length >=
2525 			    offsetofend(struct ieee80211_tbtt_info_ge_11,
2526 					mld_params)) {
2527 				mld_params_offset =
2528 					offsetof(struct ieee80211_tbtt_info_ge_11, mld_params);
2529 			} else {
2530 				pos += count * length;
2531 				continue;
2532 			}
2533 
2534 			for (i = 0; i < count; i++) {
2535 				mld_params = (void *)pos + mld_params_offset;
2536 				params = le16_to_cpu(mld_params->params);
2537 
2538 				lid = u16_get_bits(params,
2539 						   IEEE80211_RNR_MLD_PARAMS_LINK_ID);
2540 
2541 				if (mld_id == mld_params->mld_id &&
2542 				    link_id == lid) {
2543 					*ap_info = info;
2544 					*tbtt_info = pos;
2545 
2546 					return true;
2547 				}
2548 
2549 				pos += length;
2550 			}
2551 		}
2552 	}
2553 
2554 	return false;
2555 }
2556 
2557 static void cfg80211_parse_ml_sta_data(struct wiphy *wiphy,
2558 				       struct cfg80211_inform_single_bss_data *tx_data,
2559 				       struct cfg80211_bss *source_bss,
2560 				       gfp_t gfp)
2561 {
2562 	struct cfg80211_inform_single_bss_data data = {
2563 		.drv_data = tx_data->drv_data,
2564 		.ftype = tx_data->ftype,
2565 		.source_bss = source_bss,
2566 		.bss_source = BSS_SOURCE_STA_PROFILE,
2567 	};
2568 	struct ieee80211_multi_link_elem *ml_elem;
2569 	const struct element *elem;
2570 	struct cfg80211_mle *mle;
2571 	u16 control;
2572 	u8 *new_ie;
2573 	struct cfg80211_bss *bss;
2574 	int mld_id;
2575 	u16 seen_links = 0;
2576 	const u8 *pos;
2577 	u8 i;
2578 
2579 	if (!source_bss)
2580 		return;
2581 
2582 	if (tx_data->ftype != CFG80211_BSS_FTYPE_PRESP)
2583 		return;
2584 
2585 	elem = cfg80211_find_ext_elem(WLAN_EID_EXT_EHT_MULTI_LINK,
2586 				      tx_data->ie, tx_data->ielen);
2587 	if (!elem || !ieee80211_mle_size_ok(elem->data + 1, elem->datalen - 1))
2588 		return;
2589 
2590 	ml_elem = (void *)elem->data + 1;
2591 	control = le16_to_cpu(ml_elem->control);
2592 	if (u16_get_bits(control, IEEE80211_ML_CONTROL_TYPE) !=
2593 	    IEEE80211_ML_CONTROL_TYPE_BASIC)
2594 		return;
2595 
2596 	/* Must be present when transmitted by an AP (in a probe response) */
2597 	if (!(control & IEEE80211_MLC_BASIC_PRES_BSS_PARAM_CH_CNT) ||
2598 	    !(control & IEEE80211_MLC_BASIC_PRES_LINK_ID) ||
2599 	    !(control & IEEE80211_MLC_BASIC_PRES_MLD_CAPA_OP))
2600 		return;
2601 
2602 	/* length + MLD MAC address + link ID info + BSS Params Change Count */
2603 	pos = ml_elem->variable + 1 + 6 + 1 + 1;
2604 
2605 	if (u16_get_bits(control, IEEE80211_MLC_BASIC_PRES_MED_SYNC_DELAY))
2606 		pos += 2;
2607 	if (u16_get_bits(control, IEEE80211_MLC_BASIC_PRES_EML_CAPA))
2608 		pos += 2;
2609 
2610 	/* MLD capabilities and operations */
2611 	pos += 2;
2612 
2613 	/* Not included when the (nontransmitted) AP is responding itself,
2614 	 * but defined to zero then (Draft P802.11be_D3.0, 9.4.2.170.2)
2615 	 */
2616 	if (u16_get_bits(control, IEEE80211_MLC_BASIC_PRES_MLD_ID)) {
2617 		mld_id = *pos;
2618 		pos += 1;
2619 	} else {
2620 		mld_id = 0;
2621 	}
2622 
2623 	/* Extended MLD capabilities and operations */
2624 	pos += 2;
2625 
2626 	/* Fully defrag the ML element for sta information/profile iteration */
2627 	mle = cfg80211_defrag_mle(elem, tx_data->ie, tx_data->ielen, gfp);
2628 	if (!mle)
2629 		return;
2630 
2631 	new_ie = kmalloc(IEEE80211_MAX_DATA_LEN, gfp);
2632 	if (!new_ie)
2633 		goto out;
2634 
2635 	for (i = 0; i < ARRAY_SIZE(mle->sta_prof) && mle->sta_prof[i]; i++) {
2636 		const struct ieee80211_neighbor_ap_info *ap_info;
2637 		enum nl80211_band band;
2638 		u32 freq;
2639 		const u8 *profile;
2640 		const u8 *tbtt_info;
2641 		ssize_t profile_len;
2642 		u8 link_id;
2643 
2644 		if (!ieee80211_mle_basic_sta_prof_size_ok((u8 *)mle->sta_prof[i],
2645 							  mle->sta_prof_len[i]))
2646 			continue;
2647 
2648 		control = le16_to_cpu(mle->sta_prof[i]->control);
2649 
2650 		if (!(control & IEEE80211_MLE_STA_CONTROL_COMPLETE_PROFILE))
2651 			continue;
2652 
2653 		link_id = u16_get_bits(control,
2654 				       IEEE80211_MLE_STA_CONTROL_LINK_ID);
2655 		if (seen_links & BIT(link_id))
2656 			break;
2657 		seen_links |= BIT(link_id);
2658 
2659 		if (!(control & IEEE80211_MLE_STA_CONTROL_BEACON_INT_PRESENT) ||
2660 		    !(control & IEEE80211_MLE_STA_CONTROL_TSF_OFFS_PRESENT) ||
2661 		    !(control & IEEE80211_MLE_STA_CONTROL_STA_MAC_ADDR_PRESENT))
2662 			continue;
2663 
2664 		memcpy(data.bssid, mle->sta_prof[i]->variable, ETH_ALEN);
2665 		data.beacon_interval =
2666 			get_unaligned_le16(mle->sta_prof[i]->variable + 6);
2667 		data.tsf = tx_data->tsf +
2668 			   get_unaligned_le64(mle->sta_prof[i]->variable + 8);
2669 
2670 		/* sta_info_len counts itself */
2671 		profile = mle->sta_prof[i]->variable +
2672 			  mle->sta_prof[i]->sta_info_len - 1;
2673 		profile_len = (u8 *)mle->sta_prof[i] + mle->sta_prof_len[i] -
2674 			      profile;
2675 
2676 		if (profile_len < 2)
2677 			continue;
2678 
2679 		data.capability = get_unaligned_le16(profile);
2680 		profile += 2;
2681 		profile_len -= 2;
2682 
2683 		/* Find in RNR to look up channel information */
2684 		if (!cfg80211_tbtt_info_for_mld_ap(tx_data->ie, tx_data->ielen,
2685 						   mld_id, link_id,
2686 						   &ap_info, &tbtt_info))
2687 			continue;
2688 
2689 		/* We could sanity check the BSSID is included */
2690 
2691 		if (!ieee80211_operating_class_to_band(ap_info->op_class,
2692 						       &band))
2693 			continue;
2694 
2695 		freq = ieee80211_channel_to_freq_khz(ap_info->channel, band);
2696 		data.channel = ieee80211_get_channel_khz(wiphy, freq);
2697 
2698 		/* Generate new elements */
2699 		memset(new_ie, 0, IEEE80211_MAX_DATA_LEN);
2700 		data.ie = new_ie;
2701 		data.ielen = cfg80211_gen_new_ie(tx_data->ie, tx_data->ielen,
2702 						 profile, profile_len,
2703 						 new_ie,
2704 						 IEEE80211_MAX_DATA_LEN);
2705 		if (!data.ielen)
2706 			continue;
2707 
2708 		bss = cfg80211_inform_single_bss_data(wiphy, &data, gfp);
2709 		if (!bss)
2710 			break;
2711 		cfg80211_put_bss(wiphy, bss);
2712 	}
2713 
2714 out:
2715 	kfree(new_ie);
2716 	kfree(mle);
2717 }
2718 
2719 struct cfg80211_bss *
2720 cfg80211_inform_bss_data(struct wiphy *wiphy,
2721 			 struct cfg80211_inform_bss *data,
2722 			 enum cfg80211_bss_frame_type ftype,
2723 			 const u8 *bssid, u64 tsf, u16 capability,
2724 			 u16 beacon_interval, const u8 *ie, size_t ielen,
2725 			 gfp_t gfp)
2726 {
2727 	struct cfg80211_inform_single_bss_data inform_data = {
2728 		.drv_data = data,
2729 		.ftype = ftype,
2730 		.tsf = tsf,
2731 		.capability = capability,
2732 		.beacon_interval = beacon_interval,
2733 		.ie = ie,
2734 		.ielen = ielen,
2735 	};
2736 	struct cfg80211_bss *res;
2737 
2738 	memcpy(inform_data.bssid, bssid, ETH_ALEN);
2739 
2740 	res = cfg80211_inform_single_bss_data(wiphy, &inform_data, gfp);
2741 	if (!res)
2742 		return NULL;
2743 
2744 	cfg80211_parse_mbssid_data(wiphy, &inform_data, res, gfp);
2745 
2746 	cfg80211_parse_ml_sta_data(wiphy, &inform_data, res, gfp);
2747 
2748 	return res;
2749 }
2750 EXPORT_SYMBOL(cfg80211_inform_bss_data);
2751 
2752 /* cfg80211_inform_bss_width_frame helper */
2753 static struct cfg80211_bss *
2754 cfg80211_inform_single_bss_frame_data(struct wiphy *wiphy,
2755 				      struct cfg80211_inform_bss *data,
2756 				      struct ieee80211_mgmt *mgmt, size_t len,
2757 				      gfp_t gfp)
2758 {
2759 	struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
2760 	struct cfg80211_internal_bss tmp = {}, *res;
2761 	struct cfg80211_bss_ies *ies;
2762 	struct ieee80211_channel *channel;
2763 	bool signal_valid;
2764 	struct ieee80211_ext *ext = NULL;
2765 	u8 *bssid, *variable;
2766 	u16 capability, beacon_int;
2767 	size_t ielen, min_hdr_len = offsetof(struct ieee80211_mgmt,
2768 					     u.probe_resp.variable);
2769 	int bss_type;
2770 
2771 	BUILD_BUG_ON(offsetof(struct ieee80211_mgmt, u.probe_resp.variable) !=
2772 			offsetof(struct ieee80211_mgmt, u.beacon.variable));
2773 
2774 	trace_cfg80211_inform_bss_frame(wiphy, data, mgmt, len);
2775 
2776 	if (WARN_ON(!mgmt))
2777 		return NULL;
2778 
2779 	if (WARN_ON(!wiphy))
2780 		return NULL;
2781 
2782 	if (WARN_ON(wiphy->signal_type == CFG80211_SIGNAL_TYPE_UNSPEC &&
2783 		    (data->signal < 0 || data->signal > 100)))
2784 		return NULL;
2785 
2786 	if (ieee80211_is_s1g_beacon(mgmt->frame_control)) {
2787 		ext = (void *) mgmt;
2788 		min_hdr_len = offsetof(struct ieee80211_ext, u.s1g_beacon);
2789 		if (ieee80211_is_s1g_short_beacon(mgmt->frame_control))
2790 			min_hdr_len = offsetof(struct ieee80211_ext,
2791 					       u.s1g_short_beacon.variable);
2792 	}
2793 
2794 	if (WARN_ON(len < min_hdr_len))
2795 		return NULL;
2796 
2797 	ielen = len - min_hdr_len;
2798 	variable = mgmt->u.probe_resp.variable;
2799 	if (ext) {
2800 		if (ieee80211_is_s1g_short_beacon(mgmt->frame_control))
2801 			variable = ext->u.s1g_short_beacon.variable;
2802 		else
2803 			variable = ext->u.s1g_beacon.variable;
2804 	}
2805 
2806 	channel = cfg80211_get_bss_channel(wiphy, variable, ielen, data->chan);
2807 	if (!channel)
2808 		return NULL;
2809 
2810 	if (ext) {
2811 		const struct ieee80211_s1g_bcn_compat_ie *compat;
2812 		const struct element *elem;
2813 
2814 		elem = cfg80211_find_elem(WLAN_EID_S1G_BCN_COMPAT,
2815 					  variable, ielen);
2816 		if (!elem)
2817 			return NULL;
2818 		if (elem->datalen < sizeof(*compat))
2819 			return NULL;
2820 		compat = (void *)elem->data;
2821 		bssid = ext->u.s1g_beacon.sa;
2822 		capability = le16_to_cpu(compat->compat_info);
2823 		beacon_int = le16_to_cpu(compat->beacon_int);
2824 	} else {
2825 		bssid = mgmt->bssid;
2826 		beacon_int = le16_to_cpu(mgmt->u.probe_resp.beacon_int);
2827 		capability = le16_to_cpu(mgmt->u.probe_resp.capab_info);
2828 	}
2829 
2830 	if (channel->band == NL80211_BAND_60GHZ) {
2831 		bss_type = capability & WLAN_CAPABILITY_DMG_TYPE_MASK;
2832 		if (bss_type == WLAN_CAPABILITY_DMG_TYPE_AP ||
2833 		    bss_type == WLAN_CAPABILITY_DMG_TYPE_PBSS)
2834 			regulatory_hint_found_beacon(wiphy, channel, gfp);
2835 	} else {
2836 		if (capability & WLAN_CAPABILITY_ESS)
2837 			regulatory_hint_found_beacon(wiphy, channel, gfp);
2838 	}
2839 
2840 	ies = kzalloc(sizeof(*ies) + ielen, gfp);
2841 	if (!ies)
2842 		return NULL;
2843 	ies->len = ielen;
2844 	ies->tsf = le64_to_cpu(mgmt->u.probe_resp.timestamp);
2845 	ies->from_beacon = ieee80211_is_beacon(mgmt->frame_control) ||
2846 			   ieee80211_is_s1g_beacon(mgmt->frame_control);
2847 	memcpy(ies->data, variable, ielen);
2848 
2849 	if (ieee80211_is_probe_resp(mgmt->frame_control))
2850 		rcu_assign_pointer(tmp.pub.proberesp_ies, ies);
2851 	else
2852 		rcu_assign_pointer(tmp.pub.beacon_ies, ies);
2853 	rcu_assign_pointer(tmp.pub.ies, ies);
2854 
2855 	memcpy(tmp.pub.bssid, bssid, ETH_ALEN);
2856 	tmp.pub.beacon_interval = beacon_int;
2857 	tmp.pub.capability = capability;
2858 	tmp.pub.channel = channel;
2859 	tmp.pub.signal = data->signal;
2860 	tmp.ts_boottime = data->boottime_ns;
2861 	tmp.parent_tsf = data->parent_tsf;
2862 	tmp.pub.chains = data->chains;
2863 	memcpy(tmp.pub.chain_signal, data->chain_signal, IEEE80211_MAX_CHAINS);
2864 	ether_addr_copy(tmp.parent_bssid, data->parent_bssid);
2865 
2866 	signal_valid = data->chan == channel;
2867 	spin_lock_bh(&rdev->bss_lock);
2868 	res = __cfg80211_bss_update(rdev, &tmp, signal_valid, jiffies);
2869 	if (!res)
2870 		goto drop;
2871 
2872 	rdev_inform_bss(rdev, &res->pub, ies, data->drv_data);
2873 
2874 	spin_unlock_bh(&rdev->bss_lock);
2875 
2876 	trace_cfg80211_return_bss(&res->pub);
2877 	/* __cfg80211_bss_update gives us a referenced result */
2878 	return &res->pub;
2879 
2880 drop:
2881 	spin_unlock_bh(&rdev->bss_lock);
2882 	return NULL;
2883 }
2884 
2885 struct cfg80211_bss *
2886 cfg80211_inform_bss_frame_data(struct wiphy *wiphy,
2887 			       struct cfg80211_inform_bss *data,
2888 			       struct ieee80211_mgmt *mgmt, size_t len,
2889 			       gfp_t gfp)
2890 {
2891 	struct cfg80211_inform_single_bss_data inform_data = {
2892 		.drv_data = data,
2893 		.ie = mgmt->u.probe_resp.variable,
2894 		.ielen = len - offsetof(struct ieee80211_mgmt,
2895 					u.probe_resp.variable),
2896 	};
2897 	struct cfg80211_bss *res;
2898 
2899 	res = cfg80211_inform_single_bss_frame_data(wiphy, data, mgmt,
2900 						    len, gfp);
2901 	if (!res)
2902 		return NULL;
2903 
2904 	/* don't do any further MBSSID/ML handling for S1G */
2905 	if (ieee80211_is_s1g_beacon(mgmt->frame_control))
2906 		return res;
2907 
2908 	inform_data.ftype = ieee80211_is_beacon(mgmt->frame_control) ?
2909 		CFG80211_BSS_FTYPE_BEACON : CFG80211_BSS_FTYPE_PRESP;
2910 	memcpy(inform_data.bssid, mgmt->bssid, ETH_ALEN);
2911 	inform_data.tsf = le64_to_cpu(mgmt->u.probe_resp.timestamp);
2912 	inform_data.beacon_interval =
2913 		le16_to_cpu(mgmt->u.probe_resp.beacon_int);
2914 
2915 	/* process each non-transmitting bss */
2916 	cfg80211_parse_mbssid_data(wiphy, &inform_data, res, gfp);
2917 
2918 	cfg80211_parse_ml_sta_data(wiphy, &inform_data, res, gfp);
2919 
2920 	return res;
2921 }
2922 EXPORT_SYMBOL(cfg80211_inform_bss_frame_data);
2923 
2924 void cfg80211_ref_bss(struct wiphy *wiphy, struct cfg80211_bss *pub)
2925 {
2926 	struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
2927 
2928 	if (!pub)
2929 		return;
2930 
2931 	spin_lock_bh(&rdev->bss_lock);
2932 	bss_ref_get(rdev, bss_from_pub(pub));
2933 	spin_unlock_bh(&rdev->bss_lock);
2934 }
2935 EXPORT_SYMBOL(cfg80211_ref_bss);
2936 
2937 void cfg80211_put_bss(struct wiphy *wiphy, struct cfg80211_bss *pub)
2938 {
2939 	struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
2940 
2941 	if (!pub)
2942 		return;
2943 
2944 	spin_lock_bh(&rdev->bss_lock);
2945 	bss_ref_put(rdev, bss_from_pub(pub));
2946 	spin_unlock_bh(&rdev->bss_lock);
2947 }
2948 EXPORT_SYMBOL(cfg80211_put_bss);
2949 
2950 void cfg80211_unlink_bss(struct wiphy *wiphy, struct cfg80211_bss *pub)
2951 {
2952 	struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
2953 	struct cfg80211_internal_bss *bss, *tmp1;
2954 	struct cfg80211_bss *nontrans_bss, *tmp;
2955 
2956 	if (WARN_ON(!pub))
2957 		return;
2958 
2959 	bss = bss_from_pub(pub);
2960 
2961 	spin_lock_bh(&rdev->bss_lock);
2962 	if (list_empty(&bss->list))
2963 		goto out;
2964 
2965 	list_for_each_entry_safe(nontrans_bss, tmp,
2966 				 &pub->nontrans_list,
2967 				 nontrans_list) {
2968 		tmp1 = bss_from_pub(nontrans_bss);
2969 		if (__cfg80211_unlink_bss(rdev, tmp1))
2970 			rdev->bss_generation++;
2971 	}
2972 
2973 	if (__cfg80211_unlink_bss(rdev, bss))
2974 		rdev->bss_generation++;
2975 out:
2976 	spin_unlock_bh(&rdev->bss_lock);
2977 }
2978 EXPORT_SYMBOL(cfg80211_unlink_bss);
2979 
2980 void cfg80211_bss_iter(struct wiphy *wiphy,
2981 		       struct cfg80211_chan_def *chandef,
2982 		       void (*iter)(struct wiphy *wiphy,
2983 				    struct cfg80211_bss *bss,
2984 				    void *data),
2985 		       void *iter_data)
2986 {
2987 	struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
2988 	struct cfg80211_internal_bss *bss;
2989 
2990 	spin_lock_bh(&rdev->bss_lock);
2991 
2992 	list_for_each_entry(bss, &rdev->bss_list, list) {
2993 		if (!chandef || cfg80211_is_sub_chan(chandef, bss->pub.channel,
2994 						     false))
2995 			iter(wiphy, &bss->pub, iter_data);
2996 	}
2997 
2998 	spin_unlock_bh(&rdev->bss_lock);
2999 }
3000 EXPORT_SYMBOL(cfg80211_bss_iter);
3001 
3002 void cfg80211_update_assoc_bss_entry(struct wireless_dev *wdev,
3003 				     unsigned int link_id,
3004 				     struct ieee80211_channel *chan)
3005 {
3006 	struct wiphy *wiphy = wdev->wiphy;
3007 	struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
3008 	struct cfg80211_internal_bss *cbss = wdev->links[link_id].client.current_bss;
3009 	struct cfg80211_internal_bss *new = NULL;
3010 	struct cfg80211_internal_bss *bss;
3011 	struct cfg80211_bss *nontrans_bss;
3012 	struct cfg80211_bss *tmp;
3013 
3014 	spin_lock_bh(&rdev->bss_lock);
3015 
3016 	/*
3017 	 * Some APs use CSA also for bandwidth changes, i.e., without actually
3018 	 * changing the control channel, so no need to update in such a case.
3019 	 */
3020 	if (cbss->pub.channel == chan)
3021 		goto done;
3022 
3023 	/* use transmitting bss */
3024 	if (cbss->pub.transmitted_bss)
3025 		cbss = bss_from_pub(cbss->pub.transmitted_bss);
3026 
3027 	cbss->pub.channel = chan;
3028 
3029 	list_for_each_entry(bss, &rdev->bss_list, list) {
3030 		if (!cfg80211_bss_type_match(bss->pub.capability,
3031 					     bss->pub.channel->band,
3032 					     wdev->conn_bss_type))
3033 			continue;
3034 
3035 		if (bss == cbss)
3036 			continue;
3037 
3038 		if (!cmp_bss(&bss->pub, &cbss->pub, BSS_CMP_REGULAR)) {
3039 			new = bss;
3040 			break;
3041 		}
3042 	}
3043 
3044 	if (new) {
3045 		/* to save time, update IEs for transmitting bss only */
3046 		if (cfg80211_update_known_bss(rdev, cbss, new, false)) {
3047 			new->pub.proberesp_ies = NULL;
3048 			new->pub.beacon_ies = NULL;
3049 		}
3050 
3051 		list_for_each_entry_safe(nontrans_bss, tmp,
3052 					 &new->pub.nontrans_list,
3053 					 nontrans_list) {
3054 			bss = bss_from_pub(nontrans_bss);
3055 			if (__cfg80211_unlink_bss(rdev, bss))
3056 				rdev->bss_generation++;
3057 		}
3058 
3059 		WARN_ON(atomic_read(&new->hold));
3060 		if (!WARN_ON(!__cfg80211_unlink_bss(rdev, new)))
3061 			rdev->bss_generation++;
3062 	}
3063 
3064 	rb_erase(&cbss->rbn, &rdev->bss_tree);
3065 	rb_insert_bss(rdev, cbss);
3066 	rdev->bss_generation++;
3067 
3068 	list_for_each_entry_safe(nontrans_bss, tmp,
3069 				 &cbss->pub.nontrans_list,
3070 				 nontrans_list) {
3071 		bss = bss_from_pub(nontrans_bss);
3072 		bss->pub.channel = chan;
3073 		rb_erase(&bss->rbn, &rdev->bss_tree);
3074 		rb_insert_bss(rdev, bss);
3075 		rdev->bss_generation++;
3076 	}
3077 
3078 done:
3079 	spin_unlock_bh(&rdev->bss_lock);
3080 }
3081 
3082 #ifdef CONFIG_CFG80211_WEXT
3083 static struct cfg80211_registered_device *
3084 cfg80211_get_dev_from_ifindex(struct net *net, int ifindex)
3085 {
3086 	struct cfg80211_registered_device *rdev;
3087 	struct net_device *dev;
3088 
3089 	ASSERT_RTNL();
3090 
3091 	dev = dev_get_by_index(net, ifindex);
3092 	if (!dev)
3093 		return ERR_PTR(-ENODEV);
3094 	if (dev->ieee80211_ptr)
3095 		rdev = wiphy_to_rdev(dev->ieee80211_ptr->wiphy);
3096 	else
3097 		rdev = ERR_PTR(-ENODEV);
3098 	dev_put(dev);
3099 	return rdev;
3100 }
3101 
3102 int cfg80211_wext_siwscan(struct net_device *dev,
3103 			  struct iw_request_info *info,
3104 			  union iwreq_data *wrqu, char *extra)
3105 {
3106 	struct cfg80211_registered_device *rdev;
3107 	struct wiphy *wiphy;
3108 	struct iw_scan_req *wreq = NULL;
3109 	struct cfg80211_scan_request *creq;
3110 	int i, err, n_channels = 0;
3111 	enum nl80211_band band;
3112 
3113 	if (!netif_running(dev))
3114 		return -ENETDOWN;
3115 
3116 	if (wrqu->data.length == sizeof(struct iw_scan_req))
3117 		wreq = (struct iw_scan_req *)extra;
3118 
3119 	rdev = cfg80211_get_dev_from_ifindex(dev_net(dev), dev->ifindex);
3120 
3121 	if (IS_ERR(rdev))
3122 		return PTR_ERR(rdev);
3123 
3124 	if (rdev->scan_req || rdev->scan_msg)
3125 		return -EBUSY;
3126 
3127 	wiphy = &rdev->wiphy;
3128 
3129 	/* Determine number of channels, needed to allocate creq */
3130 	if (wreq && wreq->num_channels)
3131 		n_channels = wreq->num_channels;
3132 	else
3133 		n_channels = ieee80211_get_num_supported_channels(wiphy);
3134 
3135 	creq = kzalloc(sizeof(*creq) + sizeof(struct cfg80211_ssid) +
3136 		       n_channels * sizeof(void *),
3137 		       GFP_ATOMIC);
3138 	if (!creq)
3139 		return -ENOMEM;
3140 
3141 	creq->wiphy = wiphy;
3142 	creq->wdev = dev->ieee80211_ptr;
3143 	/* SSIDs come after channels */
3144 	creq->ssids = (void *)&creq->channels[n_channels];
3145 	creq->n_channels = n_channels;
3146 	creq->n_ssids = 1;
3147 	creq->scan_start = jiffies;
3148 
3149 	/* translate "Scan on frequencies" request */
3150 	i = 0;
3151 	for (band = 0; band < NUM_NL80211_BANDS; band++) {
3152 		int j;
3153 
3154 		if (!wiphy->bands[band])
3155 			continue;
3156 
3157 		for (j = 0; j < wiphy->bands[band]->n_channels; j++) {
3158 			/* ignore disabled channels */
3159 			if (wiphy->bands[band]->channels[j].flags &
3160 						IEEE80211_CHAN_DISABLED)
3161 				continue;
3162 
3163 			/* If we have a wireless request structure and the
3164 			 * wireless request specifies frequencies, then search
3165 			 * for the matching hardware channel.
3166 			 */
3167 			if (wreq && wreq->num_channels) {
3168 				int k;
3169 				int wiphy_freq = wiphy->bands[band]->channels[j].center_freq;
3170 				for (k = 0; k < wreq->num_channels; k++) {
3171 					struct iw_freq *freq =
3172 						&wreq->channel_list[k];
3173 					int wext_freq =
3174 						cfg80211_wext_freq(freq);
3175 
3176 					if (wext_freq == wiphy_freq)
3177 						goto wext_freq_found;
3178 				}
3179 				goto wext_freq_not_found;
3180 			}
3181 
3182 		wext_freq_found:
3183 			creq->channels[i] = &wiphy->bands[band]->channels[j];
3184 			i++;
3185 		wext_freq_not_found: ;
3186 		}
3187 	}
3188 	/* No channels found? */
3189 	if (!i) {
3190 		err = -EINVAL;
3191 		goto out;
3192 	}
3193 
3194 	/* Set real number of channels specified in creq->channels[] */
3195 	creq->n_channels = i;
3196 
3197 	/* translate "Scan for SSID" request */
3198 	if (wreq) {
3199 		if (wrqu->data.flags & IW_SCAN_THIS_ESSID) {
3200 			if (wreq->essid_len > IEEE80211_MAX_SSID_LEN) {
3201 				err = -EINVAL;
3202 				goto out;
3203 			}
3204 			memcpy(creq->ssids[0].ssid, wreq->essid, wreq->essid_len);
3205 			creq->ssids[0].ssid_len = wreq->essid_len;
3206 		}
3207 		if (wreq->scan_type == IW_SCAN_TYPE_PASSIVE)
3208 			creq->n_ssids = 0;
3209 	}
3210 
3211 	for (i = 0; i < NUM_NL80211_BANDS; i++)
3212 		if (wiphy->bands[i])
3213 			creq->rates[i] = (1 << wiphy->bands[i]->n_bitrates) - 1;
3214 
3215 	eth_broadcast_addr(creq->bssid);
3216 
3217 	wiphy_lock(&rdev->wiphy);
3218 
3219 	rdev->scan_req = creq;
3220 	err = rdev_scan(rdev, creq);
3221 	if (err) {
3222 		rdev->scan_req = NULL;
3223 		/* creq will be freed below */
3224 	} else {
3225 		nl80211_send_scan_start(rdev, dev->ieee80211_ptr);
3226 		/* creq now owned by driver */
3227 		creq = NULL;
3228 		dev_hold(dev);
3229 	}
3230 	wiphy_unlock(&rdev->wiphy);
3231  out:
3232 	kfree(creq);
3233 	return err;
3234 }
3235 EXPORT_WEXT_HANDLER(cfg80211_wext_siwscan);
3236 
3237 static char *ieee80211_scan_add_ies(struct iw_request_info *info,
3238 				    const struct cfg80211_bss_ies *ies,
3239 				    char *current_ev, char *end_buf)
3240 {
3241 	const u8 *pos, *end, *next;
3242 	struct iw_event iwe;
3243 
3244 	if (!ies)
3245 		return current_ev;
3246 
3247 	/*
3248 	 * If needed, fragment the IEs buffer (at IE boundaries) into short
3249 	 * enough fragments to fit into IW_GENERIC_IE_MAX octet messages.
3250 	 */
3251 	pos = ies->data;
3252 	end = pos + ies->len;
3253 
3254 	while (end - pos > IW_GENERIC_IE_MAX) {
3255 		next = pos + 2 + pos[1];
3256 		while (next + 2 + next[1] - pos < IW_GENERIC_IE_MAX)
3257 			next = next + 2 + next[1];
3258 
3259 		memset(&iwe, 0, sizeof(iwe));
3260 		iwe.cmd = IWEVGENIE;
3261 		iwe.u.data.length = next - pos;
3262 		current_ev = iwe_stream_add_point_check(info, current_ev,
3263 							end_buf, &iwe,
3264 							(void *)pos);
3265 		if (IS_ERR(current_ev))
3266 			return current_ev;
3267 		pos = next;
3268 	}
3269 
3270 	if (end > pos) {
3271 		memset(&iwe, 0, sizeof(iwe));
3272 		iwe.cmd = IWEVGENIE;
3273 		iwe.u.data.length = end - pos;
3274 		current_ev = iwe_stream_add_point_check(info, current_ev,
3275 							end_buf, &iwe,
3276 							(void *)pos);
3277 		if (IS_ERR(current_ev))
3278 			return current_ev;
3279 	}
3280 
3281 	return current_ev;
3282 }
3283 
3284 static char *
3285 ieee80211_bss(struct wiphy *wiphy, struct iw_request_info *info,
3286 	      struct cfg80211_internal_bss *bss, char *current_ev,
3287 	      char *end_buf)
3288 {
3289 	const struct cfg80211_bss_ies *ies;
3290 	struct iw_event iwe;
3291 	const u8 *ie;
3292 	u8 buf[50];
3293 	u8 *cfg, *p, *tmp;
3294 	int rem, i, sig;
3295 	bool ismesh = false;
3296 
3297 	memset(&iwe, 0, sizeof(iwe));
3298 	iwe.cmd = SIOCGIWAP;
3299 	iwe.u.ap_addr.sa_family = ARPHRD_ETHER;
3300 	memcpy(iwe.u.ap_addr.sa_data, bss->pub.bssid, ETH_ALEN);
3301 	current_ev = iwe_stream_add_event_check(info, current_ev, end_buf, &iwe,
3302 						IW_EV_ADDR_LEN);
3303 	if (IS_ERR(current_ev))
3304 		return current_ev;
3305 
3306 	memset(&iwe, 0, sizeof(iwe));
3307 	iwe.cmd = SIOCGIWFREQ;
3308 	iwe.u.freq.m = ieee80211_frequency_to_channel(bss->pub.channel->center_freq);
3309 	iwe.u.freq.e = 0;
3310 	current_ev = iwe_stream_add_event_check(info, current_ev, end_buf, &iwe,
3311 						IW_EV_FREQ_LEN);
3312 	if (IS_ERR(current_ev))
3313 		return current_ev;
3314 
3315 	memset(&iwe, 0, sizeof(iwe));
3316 	iwe.cmd = SIOCGIWFREQ;
3317 	iwe.u.freq.m = bss->pub.channel->center_freq;
3318 	iwe.u.freq.e = 6;
3319 	current_ev = iwe_stream_add_event_check(info, current_ev, end_buf, &iwe,
3320 						IW_EV_FREQ_LEN);
3321 	if (IS_ERR(current_ev))
3322 		return current_ev;
3323 
3324 	if (wiphy->signal_type != CFG80211_SIGNAL_TYPE_NONE) {
3325 		memset(&iwe, 0, sizeof(iwe));
3326 		iwe.cmd = IWEVQUAL;
3327 		iwe.u.qual.updated = IW_QUAL_LEVEL_UPDATED |
3328 				     IW_QUAL_NOISE_INVALID |
3329 				     IW_QUAL_QUAL_UPDATED;
3330 		switch (wiphy->signal_type) {
3331 		case CFG80211_SIGNAL_TYPE_MBM:
3332 			sig = bss->pub.signal / 100;
3333 			iwe.u.qual.level = sig;
3334 			iwe.u.qual.updated |= IW_QUAL_DBM;
3335 			if (sig < -110)		/* rather bad */
3336 				sig = -110;
3337 			else if (sig > -40)	/* perfect */
3338 				sig = -40;
3339 			/* will give a range of 0 .. 70 */
3340 			iwe.u.qual.qual = sig + 110;
3341 			break;
3342 		case CFG80211_SIGNAL_TYPE_UNSPEC:
3343 			iwe.u.qual.level = bss->pub.signal;
3344 			/* will give range 0 .. 100 */
3345 			iwe.u.qual.qual = bss->pub.signal;
3346 			break;
3347 		default:
3348 			/* not reached */
3349 			break;
3350 		}
3351 		current_ev = iwe_stream_add_event_check(info, current_ev,
3352 							end_buf, &iwe,
3353 							IW_EV_QUAL_LEN);
3354 		if (IS_ERR(current_ev))
3355 			return current_ev;
3356 	}
3357 
3358 	memset(&iwe, 0, sizeof(iwe));
3359 	iwe.cmd = SIOCGIWENCODE;
3360 	if (bss->pub.capability & WLAN_CAPABILITY_PRIVACY)
3361 		iwe.u.data.flags = IW_ENCODE_ENABLED | IW_ENCODE_NOKEY;
3362 	else
3363 		iwe.u.data.flags = IW_ENCODE_DISABLED;
3364 	iwe.u.data.length = 0;
3365 	current_ev = iwe_stream_add_point_check(info, current_ev, end_buf,
3366 						&iwe, "");
3367 	if (IS_ERR(current_ev))
3368 		return current_ev;
3369 
3370 	rcu_read_lock();
3371 	ies = rcu_dereference(bss->pub.ies);
3372 	rem = ies->len;
3373 	ie = ies->data;
3374 
3375 	while (rem >= 2) {
3376 		/* invalid data */
3377 		if (ie[1] > rem - 2)
3378 			break;
3379 
3380 		switch (ie[0]) {
3381 		case WLAN_EID_SSID:
3382 			memset(&iwe, 0, sizeof(iwe));
3383 			iwe.cmd = SIOCGIWESSID;
3384 			iwe.u.data.length = ie[1];
3385 			iwe.u.data.flags = 1;
3386 			current_ev = iwe_stream_add_point_check(info,
3387 								current_ev,
3388 								end_buf, &iwe,
3389 								(u8 *)ie + 2);
3390 			if (IS_ERR(current_ev))
3391 				goto unlock;
3392 			break;
3393 		case WLAN_EID_MESH_ID:
3394 			memset(&iwe, 0, sizeof(iwe));
3395 			iwe.cmd = SIOCGIWESSID;
3396 			iwe.u.data.length = ie[1];
3397 			iwe.u.data.flags = 1;
3398 			current_ev = iwe_stream_add_point_check(info,
3399 								current_ev,
3400 								end_buf, &iwe,
3401 								(u8 *)ie + 2);
3402 			if (IS_ERR(current_ev))
3403 				goto unlock;
3404 			break;
3405 		case WLAN_EID_MESH_CONFIG:
3406 			ismesh = true;
3407 			if (ie[1] != sizeof(struct ieee80211_meshconf_ie))
3408 				break;
3409 			cfg = (u8 *)ie + 2;
3410 			memset(&iwe, 0, sizeof(iwe));
3411 			iwe.cmd = IWEVCUSTOM;
3412 			iwe.u.data.length = sprintf(buf,
3413 						    "Mesh Network Path Selection Protocol ID: 0x%02X",
3414 						    cfg[0]);
3415 			current_ev = iwe_stream_add_point_check(info,
3416 								current_ev,
3417 								end_buf,
3418 								&iwe, buf);
3419 			if (IS_ERR(current_ev))
3420 				goto unlock;
3421 			iwe.u.data.length = sprintf(buf,
3422 						    "Path Selection Metric ID: 0x%02X",
3423 						    cfg[1]);
3424 			current_ev = iwe_stream_add_point_check(info,
3425 								current_ev,
3426 								end_buf,
3427 								&iwe, buf);
3428 			if (IS_ERR(current_ev))
3429 				goto unlock;
3430 			iwe.u.data.length = sprintf(buf,
3431 						    "Congestion Control Mode ID: 0x%02X",
3432 						    cfg[2]);
3433 			current_ev = iwe_stream_add_point_check(info,
3434 								current_ev,
3435 								end_buf,
3436 								&iwe, buf);
3437 			if (IS_ERR(current_ev))
3438 				goto unlock;
3439 			iwe.u.data.length = sprintf(buf,
3440 						    "Synchronization ID: 0x%02X",
3441 						    cfg[3]);
3442 			current_ev = iwe_stream_add_point_check(info,
3443 								current_ev,
3444 								end_buf,
3445 								&iwe, buf);
3446 			if (IS_ERR(current_ev))
3447 				goto unlock;
3448 			iwe.u.data.length = sprintf(buf,
3449 						    "Authentication ID: 0x%02X",
3450 						    cfg[4]);
3451 			current_ev = iwe_stream_add_point_check(info,
3452 								current_ev,
3453 								end_buf,
3454 								&iwe, buf);
3455 			if (IS_ERR(current_ev))
3456 				goto unlock;
3457 			iwe.u.data.length = sprintf(buf,
3458 						    "Formation Info: 0x%02X",
3459 						    cfg[5]);
3460 			current_ev = iwe_stream_add_point_check(info,
3461 								current_ev,
3462 								end_buf,
3463 								&iwe, buf);
3464 			if (IS_ERR(current_ev))
3465 				goto unlock;
3466 			iwe.u.data.length = sprintf(buf,
3467 						    "Capabilities: 0x%02X",
3468 						    cfg[6]);
3469 			current_ev = iwe_stream_add_point_check(info,
3470 								current_ev,
3471 								end_buf,
3472 								&iwe, buf);
3473 			if (IS_ERR(current_ev))
3474 				goto unlock;
3475 			break;
3476 		case WLAN_EID_SUPP_RATES:
3477 		case WLAN_EID_EXT_SUPP_RATES:
3478 			/* display all supported rates in readable format */
3479 			p = current_ev + iwe_stream_lcp_len(info);
3480 
3481 			memset(&iwe, 0, sizeof(iwe));
3482 			iwe.cmd = SIOCGIWRATE;
3483 			/* Those two flags are ignored... */
3484 			iwe.u.bitrate.fixed = iwe.u.bitrate.disabled = 0;
3485 
3486 			for (i = 0; i < ie[1]; i++) {
3487 				iwe.u.bitrate.value =
3488 					((ie[i + 2] & 0x7f) * 500000);
3489 				tmp = p;
3490 				p = iwe_stream_add_value(info, current_ev, p,
3491 							 end_buf, &iwe,
3492 							 IW_EV_PARAM_LEN);
3493 				if (p == tmp) {
3494 					current_ev = ERR_PTR(-E2BIG);
3495 					goto unlock;
3496 				}
3497 			}
3498 			current_ev = p;
3499 			break;
3500 		}
3501 		rem -= ie[1] + 2;
3502 		ie += ie[1] + 2;
3503 	}
3504 
3505 	if (bss->pub.capability & (WLAN_CAPABILITY_ESS | WLAN_CAPABILITY_IBSS) ||
3506 	    ismesh) {
3507 		memset(&iwe, 0, sizeof(iwe));
3508 		iwe.cmd = SIOCGIWMODE;
3509 		if (ismesh)
3510 			iwe.u.mode = IW_MODE_MESH;
3511 		else if (bss->pub.capability & WLAN_CAPABILITY_ESS)
3512 			iwe.u.mode = IW_MODE_MASTER;
3513 		else
3514 			iwe.u.mode = IW_MODE_ADHOC;
3515 		current_ev = iwe_stream_add_event_check(info, current_ev,
3516 							end_buf, &iwe,
3517 							IW_EV_UINT_LEN);
3518 		if (IS_ERR(current_ev))
3519 			goto unlock;
3520 	}
3521 
3522 	memset(&iwe, 0, sizeof(iwe));
3523 	iwe.cmd = IWEVCUSTOM;
3524 	iwe.u.data.length = sprintf(buf, "tsf=%016llx",
3525 				    (unsigned long long)(ies->tsf));
3526 	current_ev = iwe_stream_add_point_check(info, current_ev, end_buf,
3527 						&iwe, buf);
3528 	if (IS_ERR(current_ev))
3529 		goto unlock;
3530 	memset(&iwe, 0, sizeof(iwe));
3531 	iwe.cmd = IWEVCUSTOM;
3532 	iwe.u.data.length = sprintf(buf, " Last beacon: %ums ago",
3533 				    elapsed_jiffies_msecs(bss->ts));
3534 	current_ev = iwe_stream_add_point_check(info, current_ev,
3535 						end_buf, &iwe, buf);
3536 	if (IS_ERR(current_ev))
3537 		goto unlock;
3538 
3539 	current_ev = ieee80211_scan_add_ies(info, ies, current_ev, end_buf);
3540 
3541  unlock:
3542 	rcu_read_unlock();
3543 	return current_ev;
3544 }
3545 
3546 
3547 static int ieee80211_scan_results(struct cfg80211_registered_device *rdev,
3548 				  struct iw_request_info *info,
3549 				  char *buf, size_t len)
3550 {
3551 	char *current_ev = buf;
3552 	char *end_buf = buf + len;
3553 	struct cfg80211_internal_bss *bss;
3554 	int err = 0;
3555 
3556 	spin_lock_bh(&rdev->bss_lock);
3557 	cfg80211_bss_expire(rdev);
3558 
3559 	list_for_each_entry(bss, &rdev->bss_list, list) {
3560 		if (buf + len - current_ev <= IW_EV_ADDR_LEN) {
3561 			err = -E2BIG;
3562 			break;
3563 		}
3564 		current_ev = ieee80211_bss(&rdev->wiphy, info, bss,
3565 					   current_ev, end_buf);
3566 		if (IS_ERR(current_ev)) {
3567 			err = PTR_ERR(current_ev);
3568 			break;
3569 		}
3570 	}
3571 	spin_unlock_bh(&rdev->bss_lock);
3572 
3573 	if (err)
3574 		return err;
3575 	return current_ev - buf;
3576 }
3577 
3578 
3579 int cfg80211_wext_giwscan(struct net_device *dev,
3580 			  struct iw_request_info *info,
3581 			  union iwreq_data *wrqu, char *extra)
3582 {
3583 	struct iw_point *data = &wrqu->data;
3584 	struct cfg80211_registered_device *rdev;
3585 	int res;
3586 
3587 	if (!netif_running(dev))
3588 		return -ENETDOWN;
3589 
3590 	rdev = cfg80211_get_dev_from_ifindex(dev_net(dev), dev->ifindex);
3591 
3592 	if (IS_ERR(rdev))
3593 		return PTR_ERR(rdev);
3594 
3595 	if (rdev->scan_req || rdev->scan_msg)
3596 		return -EAGAIN;
3597 
3598 	res = ieee80211_scan_results(rdev, info, extra, data->length);
3599 	data->length = 0;
3600 	if (res >= 0) {
3601 		data->length = res;
3602 		res = 0;
3603 	}
3604 
3605 	return res;
3606 }
3607 EXPORT_WEXT_HANDLER(cfg80211_wext_giwscan);
3608 #endif
3609