1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * cfg80211 scan result handling 4 * 5 * Copyright 2008 Johannes Berg <johannes@sipsolutions.net> 6 * Copyright 2013-2014 Intel Mobile Communications GmbH 7 * Copyright 2016 Intel Deutschland GmbH 8 * Copyright (C) 2018-2023 Intel Corporation 9 */ 10 #include <linux/kernel.h> 11 #include <linux/slab.h> 12 #include <linux/module.h> 13 #include <linux/netdevice.h> 14 #include <linux/wireless.h> 15 #include <linux/nl80211.h> 16 #include <linux/etherdevice.h> 17 #include <linux/crc32.h> 18 #include <linux/bitfield.h> 19 #include <net/arp.h> 20 #include <net/cfg80211.h> 21 #include <net/cfg80211-wext.h> 22 #include <net/iw_handler.h> 23 #include <kunit/visibility.h> 24 #include "core.h" 25 #include "nl80211.h" 26 #include "wext-compat.h" 27 #include "rdev-ops.h" 28 29 /** 30 * DOC: BSS tree/list structure 31 * 32 * At the top level, the BSS list is kept in both a list in each 33 * registered device (@bss_list) as well as an RB-tree for faster 34 * lookup. In the RB-tree, entries can be looked up using their 35 * channel, MESHID, MESHCONF (for MBSSes) or channel, BSSID, SSID 36 * for other BSSes. 37 * 38 * Due to the possibility of hidden SSIDs, there's a second level 39 * structure, the "hidden_list" and "hidden_beacon_bss" pointer. 40 * The hidden_list connects all BSSes belonging to a single AP 41 * that has a hidden SSID, and connects beacon and probe response 42 * entries. For a probe response entry for a hidden SSID, the 43 * hidden_beacon_bss pointer points to the BSS struct holding the 44 * beacon's information. 45 * 46 * Reference counting is done for all these references except for 47 * the hidden_list, so that a beacon BSS struct that is otherwise 48 * not referenced has one reference for being on the bss_list and 49 * one for each probe response entry that points to it using the 50 * hidden_beacon_bss pointer. When a BSS struct that has such a 51 * pointer is get/put, the refcount update is also propagated to 52 * the referenced struct, this ensure that it cannot get removed 53 * while somebody is using the probe response version. 54 * 55 * Note that the hidden_beacon_bss pointer never changes, due to 56 * the reference counting. Therefore, no locking is needed for 57 * it. 58 * 59 * Also note that the hidden_beacon_bss pointer is only relevant 60 * if the driver uses something other than the IEs, e.g. private 61 * data stored in the BSS struct, since the beacon IEs are 62 * also linked into the probe response struct. 63 */ 64 65 /* 66 * Limit the number of BSS entries stored in mac80211. Each one is 67 * a bit over 4k at most, so this limits to roughly 4-5M of memory. 68 * If somebody wants to really attack this though, they'd likely 69 * use small beacons, and only one type of frame, limiting each of 70 * the entries to a much smaller size (in order to generate more 71 * entries in total, so overhead is bigger.) 72 */ 73 static int bss_entries_limit = 1000; 74 module_param(bss_entries_limit, int, 0644); 75 MODULE_PARM_DESC(bss_entries_limit, 76 "limit to number of scan BSS entries (per wiphy, default 1000)"); 77 78 #define IEEE80211_SCAN_RESULT_EXPIRE (30 * HZ) 79 80 /** 81 * struct cfg80211_colocated_ap - colocated AP information 82 * 83 * @list: linked list to all colocated aPS 84 * @bssid: BSSID of the reported AP 85 * @ssid: SSID of the reported AP 86 * @ssid_len: length of the ssid 87 * @center_freq: frequency the reported AP is on 88 * @unsolicited_probe: the reported AP is part of an ESS, where all the APs 89 * that operate in the same channel as the reported AP and that might be 90 * detected by a STA receiving this frame, are transmitting unsolicited 91 * Probe Response frames every 20 TUs 92 * @oct_recommended: OCT is recommended to exchange MMPDUs with the reported AP 93 * @same_ssid: the reported AP has the same SSID as the reporting AP 94 * @multi_bss: the reported AP is part of a multiple BSSID set 95 * @transmitted_bssid: the reported AP is the transmitting BSSID 96 * @colocated_ess: all the APs that share the same ESS as the reported AP are 97 * colocated and can be discovered via legacy bands. 98 * @short_ssid_valid: short_ssid is valid and can be used 99 * @short_ssid: the short SSID for this SSID 100 * @psd_20: The 20MHz PSD EIRP of the primary 20MHz channel for the reported AP 101 */ 102 struct cfg80211_colocated_ap { 103 struct list_head list; 104 u8 bssid[ETH_ALEN]; 105 u8 ssid[IEEE80211_MAX_SSID_LEN]; 106 size_t ssid_len; 107 u32 short_ssid; 108 u32 center_freq; 109 u8 unsolicited_probe:1, 110 oct_recommended:1, 111 same_ssid:1, 112 multi_bss:1, 113 transmitted_bssid:1, 114 colocated_ess:1, 115 short_ssid_valid:1; 116 s8 psd_20; 117 }; 118 119 static void bss_free(struct cfg80211_internal_bss *bss) 120 { 121 struct cfg80211_bss_ies *ies; 122 123 if (WARN_ON(atomic_read(&bss->hold))) 124 return; 125 126 ies = (void *)rcu_access_pointer(bss->pub.beacon_ies); 127 if (ies && !bss->pub.hidden_beacon_bss) 128 kfree_rcu(ies, rcu_head); 129 ies = (void *)rcu_access_pointer(bss->pub.proberesp_ies); 130 if (ies) 131 kfree_rcu(ies, rcu_head); 132 133 /* 134 * This happens when the module is removed, it doesn't 135 * really matter any more save for completeness 136 */ 137 if (!list_empty(&bss->hidden_list)) 138 list_del(&bss->hidden_list); 139 140 kfree(bss); 141 } 142 143 static inline void bss_ref_get(struct cfg80211_registered_device *rdev, 144 struct cfg80211_internal_bss *bss) 145 { 146 lockdep_assert_held(&rdev->bss_lock); 147 148 bss->refcount++; 149 150 if (bss->pub.hidden_beacon_bss) 151 bss_from_pub(bss->pub.hidden_beacon_bss)->refcount++; 152 153 if (bss->pub.transmitted_bss) 154 bss_from_pub(bss->pub.transmitted_bss)->refcount++; 155 } 156 157 static inline void bss_ref_put(struct cfg80211_registered_device *rdev, 158 struct cfg80211_internal_bss *bss) 159 { 160 lockdep_assert_held(&rdev->bss_lock); 161 162 if (bss->pub.hidden_beacon_bss) { 163 struct cfg80211_internal_bss *hbss; 164 165 hbss = bss_from_pub(bss->pub.hidden_beacon_bss); 166 hbss->refcount--; 167 if (hbss->refcount == 0) 168 bss_free(hbss); 169 } 170 171 if (bss->pub.transmitted_bss) { 172 struct cfg80211_internal_bss *tbss; 173 174 tbss = bss_from_pub(bss->pub.transmitted_bss); 175 tbss->refcount--; 176 if (tbss->refcount == 0) 177 bss_free(tbss); 178 } 179 180 bss->refcount--; 181 if (bss->refcount == 0) 182 bss_free(bss); 183 } 184 185 static bool __cfg80211_unlink_bss(struct cfg80211_registered_device *rdev, 186 struct cfg80211_internal_bss *bss) 187 { 188 lockdep_assert_held(&rdev->bss_lock); 189 190 if (!list_empty(&bss->hidden_list)) { 191 /* 192 * don't remove the beacon entry if it has 193 * probe responses associated with it 194 */ 195 if (!bss->pub.hidden_beacon_bss) 196 return false; 197 /* 198 * if it's a probe response entry break its 199 * link to the other entries in the group 200 */ 201 list_del_init(&bss->hidden_list); 202 } 203 204 list_del_init(&bss->list); 205 list_del_init(&bss->pub.nontrans_list); 206 rb_erase(&bss->rbn, &rdev->bss_tree); 207 rdev->bss_entries--; 208 WARN_ONCE((rdev->bss_entries == 0) ^ list_empty(&rdev->bss_list), 209 "rdev bss entries[%d]/list[empty:%d] corruption\n", 210 rdev->bss_entries, list_empty(&rdev->bss_list)); 211 bss_ref_put(rdev, bss); 212 return true; 213 } 214 215 bool cfg80211_is_element_inherited(const struct element *elem, 216 const struct element *non_inherit_elem) 217 { 218 u8 id_len, ext_id_len, i, loop_len, id; 219 const u8 *list; 220 221 if (elem->id == WLAN_EID_MULTIPLE_BSSID) 222 return false; 223 224 if (elem->id == WLAN_EID_EXTENSION && elem->datalen > 1 && 225 elem->data[0] == WLAN_EID_EXT_EHT_MULTI_LINK) 226 return false; 227 228 if (!non_inherit_elem || non_inherit_elem->datalen < 2) 229 return true; 230 231 /* 232 * non inheritance element format is: 233 * ext ID (56) | IDs list len | list | extension IDs list len | list 234 * Both lists are optional. Both lengths are mandatory. 235 * This means valid length is: 236 * elem_len = 1 (extension ID) + 2 (list len fields) + list lengths 237 */ 238 id_len = non_inherit_elem->data[1]; 239 if (non_inherit_elem->datalen < 3 + id_len) 240 return true; 241 242 ext_id_len = non_inherit_elem->data[2 + id_len]; 243 if (non_inherit_elem->datalen < 3 + id_len + ext_id_len) 244 return true; 245 246 if (elem->id == WLAN_EID_EXTENSION) { 247 if (!ext_id_len) 248 return true; 249 loop_len = ext_id_len; 250 list = &non_inherit_elem->data[3 + id_len]; 251 id = elem->data[0]; 252 } else { 253 if (!id_len) 254 return true; 255 loop_len = id_len; 256 list = &non_inherit_elem->data[2]; 257 id = elem->id; 258 } 259 260 for (i = 0; i < loop_len; i++) { 261 if (list[i] == id) 262 return false; 263 } 264 265 return true; 266 } 267 EXPORT_SYMBOL(cfg80211_is_element_inherited); 268 269 static size_t cfg80211_copy_elem_with_frags(const struct element *elem, 270 const u8 *ie, size_t ie_len, 271 u8 **pos, u8 *buf, size_t buf_len) 272 { 273 if (WARN_ON((u8 *)elem < ie || elem->data > ie + ie_len || 274 elem->data + elem->datalen > ie + ie_len)) 275 return 0; 276 277 if (elem->datalen + 2 > buf + buf_len - *pos) 278 return 0; 279 280 memcpy(*pos, elem, elem->datalen + 2); 281 *pos += elem->datalen + 2; 282 283 /* Finish if it is not fragmented */ 284 if (elem->datalen != 255) 285 return *pos - buf; 286 287 ie_len = ie + ie_len - elem->data - elem->datalen; 288 ie = (const u8 *)elem->data + elem->datalen; 289 290 for_each_element(elem, ie, ie_len) { 291 if (elem->id != WLAN_EID_FRAGMENT) 292 break; 293 294 if (elem->datalen + 2 > buf + buf_len - *pos) 295 return 0; 296 297 memcpy(*pos, elem, elem->datalen + 2); 298 *pos += elem->datalen + 2; 299 300 if (elem->datalen != 255) 301 break; 302 } 303 304 return *pos - buf; 305 } 306 307 VISIBLE_IF_CFG80211_KUNIT size_t 308 cfg80211_gen_new_ie(const u8 *ie, size_t ielen, 309 const u8 *subie, size_t subie_len, 310 u8 *new_ie, size_t new_ie_len) 311 { 312 const struct element *non_inherit_elem, *parent, *sub; 313 u8 *pos = new_ie; 314 u8 id, ext_id; 315 unsigned int match_len; 316 317 non_inherit_elem = cfg80211_find_ext_elem(WLAN_EID_EXT_NON_INHERITANCE, 318 subie, subie_len); 319 320 /* We copy the elements one by one from the parent to the generated 321 * elements. 322 * If they are not inherited (included in subie or in the non 323 * inheritance element), then we copy all occurrences the first time 324 * we see this element type. 325 */ 326 for_each_element(parent, ie, ielen) { 327 if (parent->id == WLAN_EID_FRAGMENT) 328 continue; 329 330 if (parent->id == WLAN_EID_EXTENSION) { 331 if (parent->datalen < 1) 332 continue; 333 334 id = WLAN_EID_EXTENSION; 335 ext_id = parent->data[0]; 336 match_len = 1; 337 } else { 338 id = parent->id; 339 match_len = 0; 340 } 341 342 /* Find first occurrence in subie */ 343 sub = cfg80211_find_elem_match(id, subie, subie_len, 344 &ext_id, match_len, 0); 345 346 /* Copy from parent if not in subie and inherited */ 347 if (!sub && 348 cfg80211_is_element_inherited(parent, non_inherit_elem)) { 349 if (!cfg80211_copy_elem_with_frags(parent, 350 ie, ielen, 351 &pos, new_ie, 352 new_ie_len)) 353 return 0; 354 355 continue; 356 } 357 358 /* Already copied if an earlier element had the same type */ 359 if (cfg80211_find_elem_match(id, ie, (u8 *)parent - ie, 360 &ext_id, match_len, 0)) 361 continue; 362 363 /* Not inheriting, copy all similar elements from subie */ 364 while (sub) { 365 if (!cfg80211_copy_elem_with_frags(sub, 366 subie, subie_len, 367 &pos, new_ie, 368 new_ie_len)) 369 return 0; 370 371 sub = cfg80211_find_elem_match(id, 372 sub->data + sub->datalen, 373 subie_len + subie - 374 (sub->data + 375 sub->datalen), 376 &ext_id, match_len, 0); 377 } 378 } 379 380 /* The above misses elements that are included in subie but not in the 381 * parent, so do a pass over subie and append those. 382 * Skip the non-tx BSSID caps and non-inheritance element. 383 */ 384 for_each_element(sub, subie, subie_len) { 385 if (sub->id == WLAN_EID_NON_TX_BSSID_CAP) 386 continue; 387 388 if (sub->id == WLAN_EID_FRAGMENT) 389 continue; 390 391 if (sub->id == WLAN_EID_EXTENSION) { 392 if (sub->datalen < 1) 393 continue; 394 395 id = WLAN_EID_EXTENSION; 396 ext_id = sub->data[0]; 397 match_len = 1; 398 399 if (ext_id == WLAN_EID_EXT_NON_INHERITANCE) 400 continue; 401 } else { 402 id = sub->id; 403 match_len = 0; 404 } 405 406 /* Processed if one was included in the parent */ 407 if (cfg80211_find_elem_match(id, ie, ielen, 408 &ext_id, match_len, 0)) 409 continue; 410 411 if (!cfg80211_copy_elem_with_frags(sub, subie, subie_len, 412 &pos, new_ie, new_ie_len)) 413 return 0; 414 } 415 416 return pos - new_ie; 417 } 418 EXPORT_SYMBOL_IF_CFG80211_KUNIT(cfg80211_gen_new_ie); 419 420 static bool is_bss(struct cfg80211_bss *a, const u8 *bssid, 421 const u8 *ssid, size_t ssid_len) 422 { 423 const struct cfg80211_bss_ies *ies; 424 const struct element *ssid_elem; 425 426 if (bssid && !ether_addr_equal(a->bssid, bssid)) 427 return false; 428 429 if (!ssid) 430 return true; 431 432 ies = rcu_access_pointer(a->ies); 433 if (!ies) 434 return false; 435 ssid_elem = cfg80211_find_elem(WLAN_EID_SSID, ies->data, ies->len); 436 if (!ssid_elem) 437 return false; 438 if (ssid_elem->datalen != ssid_len) 439 return false; 440 return memcmp(ssid_elem->data, ssid, ssid_len) == 0; 441 } 442 443 static int 444 cfg80211_add_nontrans_list(struct cfg80211_bss *trans_bss, 445 struct cfg80211_bss *nontrans_bss) 446 { 447 const struct element *ssid_elem; 448 struct cfg80211_bss *bss = NULL; 449 450 rcu_read_lock(); 451 ssid_elem = ieee80211_bss_get_elem(nontrans_bss, WLAN_EID_SSID); 452 if (!ssid_elem) { 453 rcu_read_unlock(); 454 return -EINVAL; 455 } 456 457 /* check if nontrans_bss is in the list */ 458 list_for_each_entry(bss, &trans_bss->nontrans_list, nontrans_list) { 459 if (is_bss(bss, nontrans_bss->bssid, ssid_elem->data, 460 ssid_elem->datalen)) { 461 rcu_read_unlock(); 462 return 0; 463 } 464 } 465 466 rcu_read_unlock(); 467 468 /* 469 * This is a bit weird - it's not on the list, but already on another 470 * one! The only way that could happen is if there's some BSSID/SSID 471 * shared by multiple APs in their multi-BSSID profiles, potentially 472 * with hidden SSID mixed in ... ignore it. 473 */ 474 if (!list_empty(&nontrans_bss->nontrans_list)) 475 return -EINVAL; 476 477 /* add to the list */ 478 list_add_tail(&nontrans_bss->nontrans_list, &trans_bss->nontrans_list); 479 return 0; 480 } 481 482 static void __cfg80211_bss_expire(struct cfg80211_registered_device *rdev, 483 unsigned long expire_time) 484 { 485 struct cfg80211_internal_bss *bss, *tmp; 486 bool expired = false; 487 488 lockdep_assert_held(&rdev->bss_lock); 489 490 list_for_each_entry_safe(bss, tmp, &rdev->bss_list, list) { 491 if (atomic_read(&bss->hold)) 492 continue; 493 if (!time_after(expire_time, bss->ts)) 494 continue; 495 496 if (__cfg80211_unlink_bss(rdev, bss)) 497 expired = true; 498 } 499 500 if (expired) 501 rdev->bss_generation++; 502 } 503 504 static bool cfg80211_bss_expire_oldest(struct cfg80211_registered_device *rdev) 505 { 506 struct cfg80211_internal_bss *bss, *oldest = NULL; 507 bool ret; 508 509 lockdep_assert_held(&rdev->bss_lock); 510 511 list_for_each_entry(bss, &rdev->bss_list, list) { 512 if (atomic_read(&bss->hold)) 513 continue; 514 515 if (!list_empty(&bss->hidden_list) && 516 !bss->pub.hidden_beacon_bss) 517 continue; 518 519 if (oldest && time_before(oldest->ts, bss->ts)) 520 continue; 521 oldest = bss; 522 } 523 524 if (WARN_ON(!oldest)) 525 return false; 526 527 /* 528 * The callers make sure to increase rdev->bss_generation if anything 529 * gets removed (and a new entry added), so there's no need to also do 530 * it here. 531 */ 532 533 ret = __cfg80211_unlink_bss(rdev, oldest); 534 WARN_ON(!ret); 535 return ret; 536 } 537 538 static u8 cfg80211_parse_bss_param(u8 data, 539 struct cfg80211_colocated_ap *coloc_ap) 540 { 541 coloc_ap->oct_recommended = 542 u8_get_bits(data, IEEE80211_RNR_TBTT_PARAMS_OCT_RECOMMENDED); 543 coloc_ap->same_ssid = 544 u8_get_bits(data, IEEE80211_RNR_TBTT_PARAMS_SAME_SSID); 545 coloc_ap->multi_bss = 546 u8_get_bits(data, IEEE80211_RNR_TBTT_PARAMS_MULTI_BSSID); 547 coloc_ap->transmitted_bssid = 548 u8_get_bits(data, IEEE80211_RNR_TBTT_PARAMS_TRANSMITTED_BSSID); 549 coloc_ap->unsolicited_probe = 550 u8_get_bits(data, IEEE80211_RNR_TBTT_PARAMS_PROBE_ACTIVE); 551 coloc_ap->colocated_ess = 552 u8_get_bits(data, IEEE80211_RNR_TBTT_PARAMS_COLOC_ESS); 553 554 return u8_get_bits(data, IEEE80211_RNR_TBTT_PARAMS_COLOC_AP); 555 } 556 557 static int cfg80211_calc_short_ssid(const struct cfg80211_bss_ies *ies, 558 const struct element **elem, u32 *s_ssid) 559 { 560 561 *elem = cfg80211_find_elem(WLAN_EID_SSID, ies->data, ies->len); 562 if (!*elem || (*elem)->datalen > IEEE80211_MAX_SSID_LEN) 563 return -EINVAL; 564 565 *s_ssid = ~crc32_le(~0, (*elem)->data, (*elem)->datalen); 566 return 0; 567 } 568 569 static void cfg80211_free_coloc_ap_list(struct list_head *coloc_ap_list) 570 { 571 struct cfg80211_colocated_ap *ap, *tmp_ap; 572 573 list_for_each_entry_safe(ap, tmp_ap, coloc_ap_list, list) { 574 list_del(&ap->list); 575 kfree(ap); 576 } 577 } 578 579 static int cfg80211_parse_ap_info(struct cfg80211_colocated_ap *entry, 580 const u8 *pos, u8 length, 581 const struct element *ssid_elem, 582 u32 s_ssid_tmp) 583 { 584 u8 bss_params; 585 586 entry->psd_20 = IEEE80211_RNR_TBTT_PARAMS_PSD_RESERVED; 587 588 /* The length is already verified by the caller to contain bss_params */ 589 if (length > sizeof(struct ieee80211_tbtt_info_7_8_9)) { 590 struct ieee80211_tbtt_info_ge_11 *tbtt_info = (void *)pos; 591 592 memcpy(entry->bssid, tbtt_info->bssid, ETH_ALEN); 593 entry->short_ssid = le32_to_cpu(tbtt_info->short_ssid); 594 entry->short_ssid_valid = true; 595 596 bss_params = tbtt_info->bss_params; 597 598 /* Ignore disabled links */ 599 if (length >= offsetofend(typeof(*tbtt_info), mld_params)) { 600 if (le16_get_bits(tbtt_info->mld_params.params, 601 IEEE80211_RNR_MLD_PARAMS_DISABLED_LINK)) 602 return -EINVAL; 603 } 604 605 if (length >= offsetofend(struct ieee80211_tbtt_info_ge_11, 606 psd_20)) 607 entry->psd_20 = tbtt_info->psd_20; 608 } else { 609 struct ieee80211_tbtt_info_7_8_9 *tbtt_info = (void *)pos; 610 611 memcpy(entry->bssid, tbtt_info->bssid, ETH_ALEN); 612 613 bss_params = tbtt_info->bss_params; 614 615 if (length == offsetofend(struct ieee80211_tbtt_info_7_8_9, 616 psd_20)) 617 entry->psd_20 = tbtt_info->psd_20; 618 } 619 620 /* ignore entries with invalid BSSID */ 621 if (!is_valid_ether_addr(entry->bssid)) 622 return -EINVAL; 623 624 /* skip non colocated APs */ 625 if (!cfg80211_parse_bss_param(bss_params, entry)) 626 return -EINVAL; 627 628 /* no information about the short ssid. Consider the entry valid 629 * for now. It would later be dropped in case there are explicit 630 * SSIDs that need to be matched 631 */ 632 if (!entry->same_ssid && !entry->short_ssid_valid) 633 return 0; 634 635 if (entry->same_ssid) { 636 entry->short_ssid = s_ssid_tmp; 637 entry->short_ssid_valid = true; 638 639 /* 640 * This is safe because we validate datalen in 641 * cfg80211_parse_colocated_ap(), before calling this 642 * function. 643 */ 644 memcpy(&entry->ssid, &ssid_elem->data, ssid_elem->datalen); 645 entry->ssid_len = ssid_elem->datalen; 646 } 647 648 return 0; 649 } 650 651 static int cfg80211_parse_colocated_ap(const struct cfg80211_bss_ies *ies, 652 struct list_head *list) 653 { 654 struct ieee80211_neighbor_ap_info *ap_info; 655 const struct element *elem, *ssid_elem; 656 const u8 *pos, *end; 657 u32 s_ssid_tmp; 658 int n_coloc = 0, ret; 659 LIST_HEAD(ap_list); 660 661 ret = cfg80211_calc_short_ssid(ies, &ssid_elem, &s_ssid_tmp); 662 if (ret) 663 return 0; 664 665 for_each_element_id(elem, WLAN_EID_REDUCED_NEIGHBOR_REPORT, 666 ies->data, ies->len) { 667 pos = elem->data; 668 end = elem->data + elem->datalen; 669 670 /* RNR IE may contain more than one NEIGHBOR_AP_INFO */ 671 while (pos + sizeof(*ap_info) <= end) { 672 enum nl80211_band band; 673 int freq; 674 u8 length, i, count; 675 676 ap_info = (void *)pos; 677 count = u8_get_bits(ap_info->tbtt_info_hdr, 678 IEEE80211_AP_INFO_TBTT_HDR_COUNT) + 1; 679 length = ap_info->tbtt_info_len; 680 681 pos += sizeof(*ap_info); 682 683 if (!ieee80211_operating_class_to_band(ap_info->op_class, 684 &band)) 685 break; 686 687 freq = ieee80211_channel_to_frequency(ap_info->channel, 688 band); 689 690 if (end - pos < count * length) 691 break; 692 693 if (u8_get_bits(ap_info->tbtt_info_hdr, 694 IEEE80211_AP_INFO_TBTT_HDR_TYPE) != 695 IEEE80211_TBTT_INFO_TYPE_TBTT) { 696 pos += count * length; 697 continue; 698 } 699 700 /* TBTT info must include bss param + BSSID + 701 * (short SSID or same_ssid bit to be set). 702 * ignore other options, and move to the 703 * next AP info 704 */ 705 if (band != NL80211_BAND_6GHZ || 706 !(length == offsetofend(struct ieee80211_tbtt_info_7_8_9, 707 bss_params) || 708 length == sizeof(struct ieee80211_tbtt_info_7_8_9) || 709 length >= offsetofend(struct ieee80211_tbtt_info_ge_11, 710 bss_params))) { 711 pos += count * length; 712 continue; 713 } 714 715 for (i = 0; i < count; i++) { 716 struct cfg80211_colocated_ap *entry; 717 718 entry = kzalloc(sizeof(*entry) + IEEE80211_MAX_SSID_LEN, 719 GFP_ATOMIC); 720 721 if (!entry) 722 goto error; 723 724 entry->center_freq = freq; 725 726 if (!cfg80211_parse_ap_info(entry, pos, length, 727 ssid_elem, 728 s_ssid_tmp)) { 729 n_coloc++; 730 list_add_tail(&entry->list, &ap_list); 731 } else { 732 kfree(entry); 733 } 734 735 pos += length; 736 } 737 } 738 739 error: 740 if (pos != end) { 741 cfg80211_free_coloc_ap_list(&ap_list); 742 return 0; 743 } 744 } 745 746 list_splice_tail(&ap_list, list); 747 return n_coloc; 748 } 749 750 static void cfg80211_scan_req_add_chan(struct cfg80211_scan_request *request, 751 struct ieee80211_channel *chan, 752 bool add_to_6ghz) 753 { 754 int i; 755 u32 n_channels = request->n_channels; 756 struct cfg80211_scan_6ghz_params *params = 757 &request->scan_6ghz_params[request->n_6ghz_params]; 758 759 for (i = 0; i < n_channels; i++) { 760 if (request->channels[i] == chan) { 761 if (add_to_6ghz) 762 params->channel_idx = i; 763 return; 764 } 765 } 766 767 request->channels[n_channels] = chan; 768 if (add_to_6ghz) 769 request->scan_6ghz_params[request->n_6ghz_params].channel_idx = 770 n_channels; 771 772 request->n_channels++; 773 } 774 775 static bool cfg80211_find_ssid_match(struct cfg80211_colocated_ap *ap, 776 struct cfg80211_scan_request *request) 777 { 778 int i; 779 u32 s_ssid; 780 781 for (i = 0; i < request->n_ssids; i++) { 782 /* wildcard ssid in the scan request */ 783 if (!request->ssids[i].ssid_len) { 784 if (ap->multi_bss && !ap->transmitted_bssid) 785 continue; 786 787 return true; 788 } 789 790 if (ap->ssid_len && 791 ap->ssid_len == request->ssids[i].ssid_len) { 792 if (!memcmp(request->ssids[i].ssid, ap->ssid, 793 ap->ssid_len)) 794 return true; 795 } else if (ap->short_ssid_valid) { 796 s_ssid = ~crc32_le(~0, request->ssids[i].ssid, 797 request->ssids[i].ssid_len); 798 799 if (ap->short_ssid == s_ssid) 800 return true; 801 } 802 } 803 804 return false; 805 } 806 807 static int cfg80211_scan_6ghz(struct cfg80211_registered_device *rdev) 808 { 809 u8 i; 810 struct cfg80211_colocated_ap *ap; 811 int n_channels, count = 0, err; 812 struct cfg80211_scan_request *request, *rdev_req = rdev->scan_req; 813 LIST_HEAD(coloc_ap_list); 814 bool need_scan_psc = true; 815 const struct ieee80211_sband_iftype_data *iftd; 816 817 rdev_req->scan_6ghz = true; 818 819 if (!rdev->wiphy.bands[NL80211_BAND_6GHZ]) 820 return -EOPNOTSUPP; 821 822 iftd = ieee80211_get_sband_iftype_data(rdev->wiphy.bands[NL80211_BAND_6GHZ], 823 rdev_req->wdev->iftype); 824 if (!iftd || !iftd->he_cap.has_he) 825 return -EOPNOTSUPP; 826 827 n_channels = rdev->wiphy.bands[NL80211_BAND_6GHZ]->n_channels; 828 829 if (rdev_req->flags & NL80211_SCAN_FLAG_COLOCATED_6GHZ) { 830 struct cfg80211_internal_bss *intbss; 831 832 spin_lock_bh(&rdev->bss_lock); 833 list_for_each_entry(intbss, &rdev->bss_list, list) { 834 struct cfg80211_bss *res = &intbss->pub; 835 const struct cfg80211_bss_ies *ies; 836 const struct element *ssid_elem; 837 struct cfg80211_colocated_ap *entry; 838 u32 s_ssid_tmp; 839 int ret; 840 841 ies = rcu_access_pointer(res->ies); 842 count += cfg80211_parse_colocated_ap(ies, 843 &coloc_ap_list); 844 845 /* In case the scan request specified a specific BSSID 846 * and the BSS is found and operating on 6GHz band then 847 * add this AP to the collocated APs list. 848 * This is relevant for ML probe requests when the lower 849 * band APs have not been discovered. 850 */ 851 if (is_broadcast_ether_addr(rdev_req->bssid) || 852 !ether_addr_equal(rdev_req->bssid, res->bssid) || 853 res->channel->band != NL80211_BAND_6GHZ) 854 continue; 855 856 ret = cfg80211_calc_short_ssid(ies, &ssid_elem, 857 &s_ssid_tmp); 858 if (ret) 859 continue; 860 861 entry = kzalloc(sizeof(*entry) + IEEE80211_MAX_SSID_LEN, 862 GFP_ATOMIC); 863 864 if (!entry) 865 continue; 866 867 memcpy(entry->bssid, res->bssid, ETH_ALEN); 868 entry->short_ssid = s_ssid_tmp; 869 memcpy(entry->ssid, ssid_elem->data, 870 ssid_elem->datalen); 871 entry->ssid_len = ssid_elem->datalen; 872 entry->short_ssid_valid = true; 873 entry->center_freq = res->channel->center_freq; 874 875 list_add_tail(&entry->list, &coloc_ap_list); 876 count++; 877 } 878 spin_unlock_bh(&rdev->bss_lock); 879 } 880 881 request = kzalloc(struct_size(request, channels, n_channels) + 882 sizeof(*request->scan_6ghz_params) * count + 883 sizeof(*request->ssids) * rdev_req->n_ssids, 884 GFP_KERNEL); 885 if (!request) { 886 cfg80211_free_coloc_ap_list(&coloc_ap_list); 887 return -ENOMEM; 888 } 889 890 *request = *rdev_req; 891 request->n_channels = 0; 892 request->scan_6ghz_params = 893 (void *)&request->channels[n_channels]; 894 895 /* 896 * PSC channels should not be scanned in case of direct scan with 1 SSID 897 * and at least one of the reported co-located APs with same SSID 898 * indicating that all APs in the same ESS are co-located 899 */ 900 if (count && request->n_ssids == 1 && request->ssids[0].ssid_len) { 901 list_for_each_entry(ap, &coloc_ap_list, list) { 902 if (ap->colocated_ess && 903 cfg80211_find_ssid_match(ap, request)) { 904 need_scan_psc = false; 905 break; 906 } 907 } 908 } 909 910 /* 911 * add to the scan request the channels that need to be scanned 912 * regardless of the collocated APs (PSC channels or all channels 913 * in case that NL80211_SCAN_FLAG_COLOCATED_6GHZ is not set) 914 */ 915 for (i = 0; i < rdev_req->n_channels; i++) { 916 if (rdev_req->channels[i]->band == NL80211_BAND_6GHZ && 917 ((need_scan_psc && 918 cfg80211_channel_is_psc(rdev_req->channels[i])) || 919 !(rdev_req->flags & NL80211_SCAN_FLAG_COLOCATED_6GHZ))) { 920 cfg80211_scan_req_add_chan(request, 921 rdev_req->channels[i], 922 false); 923 } 924 } 925 926 if (!(rdev_req->flags & NL80211_SCAN_FLAG_COLOCATED_6GHZ)) 927 goto skip; 928 929 list_for_each_entry(ap, &coloc_ap_list, list) { 930 bool found = false; 931 struct cfg80211_scan_6ghz_params *scan_6ghz_params = 932 &request->scan_6ghz_params[request->n_6ghz_params]; 933 struct ieee80211_channel *chan = 934 ieee80211_get_channel(&rdev->wiphy, ap->center_freq); 935 936 if (!chan || chan->flags & IEEE80211_CHAN_DISABLED) 937 continue; 938 939 for (i = 0; i < rdev_req->n_channels; i++) { 940 if (rdev_req->channels[i] == chan) 941 found = true; 942 } 943 944 if (!found) 945 continue; 946 947 if (request->n_ssids > 0 && 948 !cfg80211_find_ssid_match(ap, request)) 949 continue; 950 951 if (!is_broadcast_ether_addr(request->bssid) && 952 !ether_addr_equal(request->bssid, ap->bssid)) 953 continue; 954 955 if (!request->n_ssids && ap->multi_bss && !ap->transmitted_bssid) 956 continue; 957 958 cfg80211_scan_req_add_chan(request, chan, true); 959 memcpy(scan_6ghz_params->bssid, ap->bssid, ETH_ALEN); 960 scan_6ghz_params->short_ssid = ap->short_ssid; 961 scan_6ghz_params->short_ssid_valid = ap->short_ssid_valid; 962 scan_6ghz_params->unsolicited_probe = ap->unsolicited_probe; 963 scan_6ghz_params->psd_20 = ap->psd_20; 964 965 /* 966 * If a PSC channel is added to the scan and 'need_scan_psc' is 967 * set to false, then all the APs that the scan logic is 968 * interested with on the channel are collocated and thus there 969 * is no need to perform the initial PSC channel listen. 970 */ 971 if (cfg80211_channel_is_psc(chan) && !need_scan_psc) 972 scan_6ghz_params->psc_no_listen = true; 973 974 request->n_6ghz_params++; 975 } 976 977 skip: 978 cfg80211_free_coloc_ap_list(&coloc_ap_list); 979 980 if (request->n_channels) { 981 struct cfg80211_scan_request *old = rdev->int_scan_req; 982 rdev->int_scan_req = request; 983 984 /* 985 * Add the ssids from the parent scan request to the new scan 986 * request, so the driver would be able to use them in its 987 * probe requests to discover hidden APs on PSC channels. 988 */ 989 request->ssids = (void *)&request->channels[request->n_channels]; 990 request->n_ssids = rdev_req->n_ssids; 991 memcpy(request->ssids, rdev_req->ssids, sizeof(*request->ssids) * 992 request->n_ssids); 993 994 /* 995 * If this scan follows a previous scan, save the scan start 996 * info from the first part of the scan 997 */ 998 if (old) 999 rdev->int_scan_req->info = old->info; 1000 1001 err = rdev_scan(rdev, request); 1002 if (err) { 1003 rdev->int_scan_req = old; 1004 kfree(request); 1005 } else { 1006 kfree(old); 1007 } 1008 1009 return err; 1010 } 1011 1012 kfree(request); 1013 return -EINVAL; 1014 } 1015 1016 int cfg80211_scan(struct cfg80211_registered_device *rdev) 1017 { 1018 struct cfg80211_scan_request *request; 1019 struct cfg80211_scan_request *rdev_req = rdev->scan_req; 1020 u32 n_channels = 0, idx, i; 1021 1022 if (!(rdev->wiphy.flags & WIPHY_FLAG_SPLIT_SCAN_6GHZ)) 1023 return rdev_scan(rdev, rdev_req); 1024 1025 for (i = 0; i < rdev_req->n_channels; i++) { 1026 if (rdev_req->channels[i]->band != NL80211_BAND_6GHZ) 1027 n_channels++; 1028 } 1029 1030 if (!n_channels) 1031 return cfg80211_scan_6ghz(rdev); 1032 1033 request = kzalloc(struct_size(request, channels, n_channels), 1034 GFP_KERNEL); 1035 if (!request) 1036 return -ENOMEM; 1037 1038 *request = *rdev_req; 1039 request->n_channels = n_channels; 1040 1041 for (i = idx = 0; i < rdev_req->n_channels; i++) { 1042 if (rdev_req->channels[i]->band != NL80211_BAND_6GHZ) 1043 request->channels[idx++] = rdev_req->channels[i]; 1044 } 1045 1046 rdev_req->scan_6ghz = false; 1047 rdev->int_scan_req = request; 1048 return rdev_scan(rdev, request); 1049 } 1050 1051 void ___cfg80211_scan_done(struct cfg80211_registered_device *rdev, 1052 bool send_message) 1053 { 1054 struct cfg80211_scan_request *request, *rdev_req; 1055 struct wireless_dev *wdev; 1056 struct sk_buff *msg; 1057 #ifdef CONFIG_CFG80211_WEXT 1058 union iwreq_data wrqu; 1059 #endif 1060 1061 lockdep_assert_held(&rdev->wiphy.mtx); 1062 1063 if (rdev->scan_msg) { 1064 nl80211_send_scan_msg(rdev, rdev->scan_msg); 1065 rdev->scan_msg = NULL; 1066 return; 1067 } 1068 1069 rdev_req = rdev->scan_req; 1070 if (!rdev_req) 1071 return; 1072 1073 wdev = rdev_req->wdev; 1074 request = rdev->int_scan_req ? rdev->int_scan_req : rdev_req; 1075 1076 if (wdev_running(wdev) && 1077 (rdev->wiphy.flags & WIPHY_FLAG_SPLIT_SCAN_6GHZ) && 1078 !rdev_req->scan_6ghz && !request->info.aborted && 1079 !cfg80211_scan_6ghz(rdev)) 1080 return; 1081 1082 /* 1083 * This must be before sending the other events! 1084 * Otherwise, wpa_supplicant gets completely confused with 1085 * wext events. 1086 */ 1087 if (wdev->netdev) 1088 cfg80211_sme_scan_done(wdev->netdev); 1089 1090 if (!request->info.aborted && 1091 request->flags & NL80211_SCAN_FLAG_FLUSH) { 1092 /* flush entries from previous scans */ 1093 spin_lock_bh(&rdev->bss_lock); 1094 __cfg80211_bss_expire(rdev, request->scan_start); 1095 spin_unlock_bh(&rdev->bss_lock); 1096 } 1097 1098 msg = nl80211_build_scan_msg(rdev, wdev, request->info.aborted); 1099 1100 #ifdef CONFIG_CFG80211_WEXT 1101 if (wdev->netdev && !request->info.aborted) { 1102 memset(&wrqu, 0, sizeof(wrqu)); 1103 1104 wireless_send_event(wdev->netdev, SIOCGIWSCAN, &wrqu, NULL); 1105 } 1106 #endif 1107 1108 dev_put(wdev->netdev); 1109 1110 kfree(rdev->int_scan_req); 1111 rdev->int_scan_req = NULL; 1112 1113 kfree(rdev->scan_req); 1114 rdev->scan_req = NULL; 1115 1116 if (!send_message) 1117 rdev->scan_msg = msg; 1118 else 1119 nl80211_send_scan_msg(rdev, msg); 1120 } 1121 1122 void __cfg80211_scan_done(struct wiphy *wiphy, struct wiphy_work *wk) 1123 { 1124 ___cfg80211_scan_done(wiphy_to_rdev(wiphy), true); 1125 } 1126 1127 void cfg80211_scan_done(struct cfg80211_scan_request *request, 1128 struct cfg80211_scan_info *info) 1129 { 1130 struct cfg80211_scan_info old_info = request->info; 1131 1132 trace_cfg80211_scan_done(request, info); 1133 WARN_ON(request != wiphy_to_rdev(request->wiphy)->scan_req && 1134 request != wiphy_to_rdev(request->wiphy)->int_scan_req); 1135 1136 request->info = *info; 1137 1138 /* 1139 * In case the scan is split, the scan_start_tsf and tsf_bssid should 1140 * be of the first part. In such a case old_info.scan_start_tsf should 1141 * be non zero. 1142 */ 1143 if (request->scan_6ghz && old_info.scan_start_tsf) { 1144 request->info.scan_start_tsf = old_info.scan_start_tsf; 1145 memcpy(request->info.tsf_bssid, old_info.tsf_bssid, 1146 sizeof(request->info.tsf_bssid)); 1147 } 1148 1149 request->notified = true; 1150 wiphy_work_queue(request->wiphy, 1151 &wiphy_to_rdev(request->wiphy)->scan_done_wk); 1152 } 1153 EXPORT_SYMBOL(cfg80211_scan_done); 1154 1155 void cfg80211_add_sched_scan_req(struct cfg80211_registered_device *rdev, 1156 struct cfg80211_sched_scan_request *req) 1157 { 1158 lockdep_assert_held(&rdev->wiphy.mtx); 1159 1160 list_add_rcu(&req->list, &rdev->sched_scan_req_list); 1161 } 1162 1163 static void cfg80211_del_sched_scan_req(struct cfg80211_registered_device *rdev, 1164 struct cfg80211_sched_scan_request *req) 1165 { 1166 lockdep_assert_held(&rdev->wiphy.mtx); 1167 1168 list_del_rcu(&req->list); 1169 kfree_rcu(req, rcu_head); 1170 } 1171 1172 static struct cfg80211_sched_scan_request * 1173 cfg80211_find_sched_scan_req(struct cfg80211_registered_device *rdev, u64 reqid) 1174 { 1175 struct cfg80211_sched_scan_request *pos; 1176 1177 list_for_each_entry_rcu(pos, &rdev->sched_scan_req_list, list, 1178 lockdep_is_held(&rdev->wiphy.mtx)) { 1179 if (pos->reqid == reqid) 1180 return pos; 1181 } 1182 return NULL; 1183 } 1184 1185 /* 1186 * Determines if a scheduled scan request can be handled. When a legacy 1187 * scheduled scan is running no other scheduled scan is allowed regardless 1188 * whether the request is for legacy or multi-support scan. When a multi-support 1189 * scheduled scan is running a request for legacy scan is not allowed. In this 1190 * case a request for multi-support scan can be handled if resources are 1191 * available, ie. struct wiphy::max_sched_scan_reqs limit is not yet reached. 1192 */ 1193 int cfg80211_sched_scan_req_possible(struct cfg80211_registered_device *rdev, 1194 bool want_multi) 1195 { 1196 struct cfg80211_sched_scan_request *pos; 1197 int i = 0; 1198 1199 list_for_each_entry(pos, &rdev->sched_scan_req_list, list) { 1200 /* request id zero means legacy in progress */ 1201 if (!i && !pos->reqid) 1202 return -EINPROGRESS; 1203 i++; 1204 } 1205 1206 if (i) { 1207 /* no legacy allowed when multi request(s) are active */ 1208 if (!want_multi) 1209 return -EINPROGRESS; 1210 1211 /* resource limit reached */ 1212 if (i == rdev->wiphy.max_sched_scan_reqs) 1213 return -ENOSPC; 1214 } 1215 return 0; 1216 } 1217 1218 void cfg80211_sched_scan_results_wk(struct work_struct *work) 1219 { 1220 struct cfg80211_registered_device *rdev; 1221 struct cfg80211_sched_scan_request *req, *tmp; 1222 1223 rdev = container_of(work, struct cfg80211_registered_device, 1224 sched_scan_res_wk); 1225 1226 wiphy_lock(&rdev->wiphy); 1227 list_for_each_entry_safe(req, tmp, &rdev->sched_scan_req_list, list) { 1228 if (req->report_results) { 1229 req->report_results = false; 1230 if (req->flags & NL80211_SCAN_FLAG_FLUSH) { 1231 /* flush entries from previous scans */ 1232 spin_lock_bh(&rdev->bss_lock); 1233 __cfg80211_bss_expire(rdev, req->scan_start); 1234 spin_unlock_bh(&rdev->bss_lock); 1235 req->scan_start = jiffies; 1236 } 1237 nl80211_send_sched_scan(req, 1238 NL80211_CMD_SCHED_SCAN_RESULTS); 1239 } 1240 } 1241 wiphy_unlock(&rdev->wiphy); 1242 } 1243 1244 void cfg80211_sched_scan_results(struct wiphy *wiphy, u64 reqid) 1245 { 1246 struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy); 1247 struct cfg80211_sched_scan_request *request; 1248 1249 trace_cfg80211_sched_scan_results(wiphy, reqid); 1250 /* ignore if we're not scanning */ 1251 1252 rcu_read_lock(); 1253 request = cfg80211_find_sched_scan_req(rdev, reqid); 1254 if (request) { 1255 request->report_results = true; 1256 queue_work(cfg80211_wq, &rdev->sched_scan_res_wk); 1257 } 1258 rcu_read_unlock(); 1259 } 1260 EXPORT_SYMBOL(cfg80211_sched_scan_results); 1261 1262 void cfg80211_sched_scan_stopped_locked(struct wiphy *wiphy, u64 reqid) 1263 { 1264 struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy); 1265 1266 lockdep_assert_held(&wiphy->mtx); 1267 1268 trace_cfg80211_sched_scan_stopped(wiphy, reqid); 1269 1270 __cfg80211_stop_sched_scan(rdev, reqid, true); 1271 } 1272 EXPORT_SYMBOL(cfg80211_sched_scan_stopped_locked); 1273 1274 void cfg80211_sched_scan_stopped(struct wiphy *wiphy, u64 reqid) 1275 { 1276 wiphy_lock(wiphy); 1277 cfg80211_sched_scan_stopped_locked(wiphy, reqid); 1278 wiphy_unlock(wiphy); 1279 } 1280 EXPORT_SYMBOL(cfg80211_sched_scan_stopped); 1281 1282 int cfg80211_stop_sched_scan_req(struct cfg80211_registered_device *rdev, 1283 struct cfg80211_sched_scan_request *req, 1284 bool driver_initiated) 1285 { 1286 lockdep_assert_held(&rdev->wiphy.mtx); 1287 1288 if (!driver_initiated) { 1289 int err = rdev_sched_scan_stop(rdev, req->dev, req->reqid); 1290 if (err) 1291 return err; 1292 } 1293 1294 nl80211_send_sched_scan(req, NL80211_CMD_SCHED_SCAN_STOPPED); 1295 1296 cfg80211_del_sched_scan_req(rdev, req); 1297 1298 return 0; 1299 } 1300 1301 int __cfg80211_stop_sched_scan(struct cfg80211_registered_device *rdev, 1302 u64 reqid, bool driver_initiated) 1303 { 1304 struct cfg80211_sched_scan_request *sched_scan_req; 1305 1306 lockdep_assert_held(&rdev->wiphy.mtx); 1307 1308 sched_scan_req = cfg80211_find_sched_scan_req(rdev, reqid); 1309 if (!sched_scan_req) 1310 return -ENOENT; 1311 1312 return cfg80211_stop_sched_scan_req(rdev, sched_scan_req, 1313 driver_initiated); 1314 } 1315 1316 void cfg80211_bss_age(struct cfg80211_registered_device *rdev, 1317 unsigned long age_secs) 1318 { 1319 struct cfg80211_internal_bss *bss; 1320 unsigned long age_jiffies = msecs_to_jiffies(age_secs * MSEC_PER_SEC); 1321 1322 spin_lock_bh(&rdev->bss_lock); 1323 list_for_each_entry(bss, &rdev->bss_list, list) 1324 bss->ts -= age_jiffies; 1325 spin_unlock_bh(&rdev->bss_lock); 1326 } 1327 1328 void cfg80211_bss_expire(struct cfg80211_registered_device *rdev) 1329 { 1330 __cfg80211_bss_expire(rdev, jiffies - IEEE80211_SCAN_RESULT_EXPIRE); 1331 } 1332 1333 void cfg80211_bss_flush(struct wiphy *wiphy) 1334 { 1335 struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy); 1336 1337 spin_lock_bh(&rdev->bss_lock); 1338 __cfg80211_bss_expire(rdev, jiffies); 1339 spin_unlock_bh(&rdev->bss_lock); 1340 } 1341 EXPORT_SYMBOL(cfg80211_bss_flush); 1342 1343 const struct element * 1344 cfg80211_find_elem_match(u8 eid, const u8 *ies, unsigned int len, 1345 const u8 *match, unsigned int match_len, 1346 unsigned int match_offset) 1347 { 1348 const struct element *elem; 1349 1350 for_each_element_id(elem, eid, ies, len) { 1351 if (elem->datalen >= match_offset + match_len && 1352 !memcmp(elem->data + match_offset, match, match_len)) 1353 return elem; 1354 } 1355 1356 return NULL; 1357 } 1358 EXPORT_SYMBOL(cfg80211_find_elem_match); 1359 1360 const struct element *cfg80211_find_vendor_elem(unsigned int oui, int oui_type, 1361 const u8 *ies, 1362 unsigned int len) 1363 { 1364 const struct element *elem; 1365 u8 match[] = { oui >> 16, oui >> 8, oui, oui_type }; 1366 int match_len = (oui_type < 0) ? 3 : sizeof(match); 1367 1368 if (WARN_ON(oui_type > 0xff)) 1369 return NULL; 1370 1371 elem = cfg80211_find_elem_match(WLAN_EID_VENDOR_SPECIFIC, ies, len, 1372 match, match_len, 0); 1373 1374 if (!elem || elem->datalen < 4) 1375 return NULL; 1376 1377 return elem; 1378 } 1379 EXPORT_SYMBOL(cfg80211_find_vendor_elem); 1380 1381 /** 1382 * enum bss_compare_mode - BSS compare mode 1383 * @BSS_CMP_REGULAR: regular compare mode (for insertion and normal find) 1384 * @BSS_CMP_HIDE_ZLEN: find hidden SSID with zero-length mode 1385 * @BSS_CMP_HIDE_NUL: find hidden SSID with NUL-ed out mode 1386 */ 1387 enum bss_compare_mode { 1388 BSS_CMP_REGULAR, 1389 BSS_CMP_HIDE_ZLEN, 1390 BSS_CMP_HIDE_NUL, 1391 }; 1392 1393 static int cmp_bss(struct cfg80211_bss *a, 1394 struct cfg80211_bss *b, 1395 enum bss_compare_mode mode) 1396 { 1397 const struct cfg80211_bss_ies *a_ies, *b_ies; 1398 const u8 *ie1 = NULL; 1399 const u8 *ie2 = NULL; 1400 int i, r; 1401 1402 if (a->channel != b->channel) 1403 return (b->channel->center_freq * 1000 + b->channel->freq_offset) - 1404 (a->channel->center_freq * 1000 + a->channel->freq_offset); 1405 1406 a_ies = rcu_access_pointer(a->ies); 1407 if (!a_ies) 1408 return -1; 1409 b_ies = rcu_access_pointer(b->ies); 1410 if (!b_ies) 1411 return 1; 1412 1413 if (WLAN_CAPABILITY_IS_STA_BSS(a->capability)) 1414 ie1 = cfg80211_find_ie(WLAN_EID_MESH_ID, 1415 a_ies->data, a_ies->len); 1416 if (WLAN_CAPABILITY_IS_STA_BSS(b->capability)) 1417 ie2 = cfg80211_find_ie(WLAN_EID_MESH_ID, 1418 b_ies->data, b_ies->len); 1419 if (ie1 && ie2) { 1420 int mesh_id_cmp; 1421 1422 if (ie1[1] == ie2[1]) 1423 mesh_id_cmp = memcmp(ie1 + 2, ie2 + 2, ie1[1]); 1424 else 1425 mesh_id_cmp = ie2[1] - ie1[1]; 1426 1427 ie1 = cfg80211_find_ie(WLAN_EID_MESH_CONFIG, 1428 a_ies->data, a_ies->len); 1429 ie2 = cfg80211_find_ie(WLAN_EID_MESH_CONFIG, 1430 b_ies->data, b_ies->len); 1431 if (ie1 && ie2) { 1432 if (mesh_id_cmp) 1433 return mesh_id_cmp; 1434 if (ie1[1] != ie2[1]) 1435 return ie2[1] - ie1[1]; 1436 return memcmp(ie1 + 2, ie2 + 2, ie1[1]); 1437 } 1438 } 1439 1440 r = memcmp(a->bssid, b->bssid, sizeof(a->bssid)); 1441 if (r) 1442 return r; 1443 1444 ie1 = cfg80211_find_ie(WLAN_EID_SSID, a_ies->data, a_ies->len); 1445 ie2 = cfg80211_find_ie(WLAN_EID_SSID, b_ies->data, b_ies->len); 1446 1447 if (!ie1 && !ie2) 1448 return 0; 1449 1450 /* 1451 * Note that with "hide_ssid", the function returns a match if 1452 * the already-present BSS ("b") is a hidden SSID beacon for 1453 * the new BSS ("a"). 1454 */ 1455 1456 /* sort missing IE before (left of) present IE */ 1457 if (!ie1) 1458 return -1; 1459 if (!ie2) 1460 return 1; 1461 1462 switch (mode) { 1463 case BSS_CMP_HIDE_ZLEN: 1464 /* 1465 * In ZLEN mode we assume the BSS entry we're 1466 * looking for has a zero-length SSID. So if 1467 * the one we're looking at right now has that, 1468 * return 0. Otherwise, return the difference 1469 * in length, but since we're looking for the 1470 * 0-length it's really equivalent to returning 1471 * the length of the one we're looking at. 1472 * 1473 * No content comparison is needed as we assume 1474 * the content length is zero. 1475 */ 1476 return ie2[1]; 1477 case BSS_CMP_REGULAR: 1478 default: 1479 /* sort by length first, then by contents */ 1480 if (ie1[1] != ie2[1]) 1481 return ie2[1] - ie1[1]; 1482 return memcmp(ie1 + 2, ie2 + 2, ie1[1]); 1483 case BSS_CMP_HIDE_NUL: 1484 if (ie1[1] != ie2[1]) 1485 return ie2[1] - ie1[1]; 1486 /* this is equivalent to memcmp(zeroes, ie2 + 2, len) */ 1487 for (i = 0; i < ie2[1]; i++) 1488 if (ie2[i + 2]) 1489 return -1; 1490 return 0; 1491 } 1492 } 1493 1494 static bool cfg80211_bss_type_match(u16 capability, 1495 enum nl80211_band band, 1496 enum ieee80211_bss_type bss_type) 1497 { 1498 bool ret = true; 1499 u16 mask, val; 1500 1501 if (bss_type == IEEE80211_BSS_TYPE_ANY) 1502 return ret; 1503 1504 if (band == NL80211_BAND_60GHZ) { 1505 mask = WLAN_CAPABILITY_DMG_TYPE_MASK; 1506 switch (bss_type) { 1507 case IEEE80211_BSS_TYPE_ESS: 1508 val = WLAN_CAPABILITY_DMG_TYPE_AP; 1509 break; 1510 case IEEE80211_BSS_TYPE_PBSS: 1511 val = WLAN_CAPABILITY_DMG_TYPE_PBSS; 1512 break; 1513 case IEEE80211_BSS_TYPE_IBSS: 1514 val = WLAN_CAPABILITY_DMG_TYPE_IBSS; 1515 break; 1516 default: 1517 return false; 1518 } 1519 } else { 1520 mask = WLAN_CAPABILITY_ESS | WLAN_CAPABILITY_IBSS; 1521 switch (bss_type) { 1522 case IEEE80211_BSS_TYPE_ESS: 1523 val = WLAN_CAPABILITY_ESS; 1524 break; 1525 case IEEE80211_BSS_TYPE_IBSS: 1526 val = WLAN_CAPABILITY_IBSS; 1527 break; 1528 case IEEE80211_BSS_TYPE_MBSS: 1529 val = 0; 1530 break; 1531 default: 1532 return false; 1533 } 1534 } 1535 1536 ret = ((capability & mask) == val); 1537 return ret; 1538 } 1539 1540 /* Returned bss is reference counted and must be cleaned up appropriately. */ 1541 struct cfg80211_bss *__cfg80211_get_bss(struct wiphy *wiphy, 1542 struct ieee80211_channel *channel, 1543 const u8 *bssid, 1544 const u8 *ssid, size_t ssid_len, 1545 enum ieee80211_bss_type bss_type, 1546 enum ieee80211_privacy privacy, 1547 u32 use_for) 1548 { 1549 struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy); 1550 struct cfg80211_internal_bss *bss, *res = NULL; 1551 unsigned long now = jiffies; 1552 int bss_privacy; 1553 1554 trace_cfg80211_get_bss(wiphy, channel, bssid, ssid, ssid_len, bss_type, 1555 privacy); 1556 1557 spin_lock_bh(&rdev->bss_lock); 1558 1559 list_for_each_entry(bss, &rdev->bss_list, list) { 1560 if (!cfg80211_bss_type_match(bss->pub.capability, 1561 bss->pub.channel->band, bss_type)) 1562 continue; 1563 1564 bss_privacy = (bss->pub.capability & WLAN_CAPABILITY_PRIVACY); 1565 if ((privacy == IEEE80211_PRIVACY_ON && !bss_privacy) || 1566 (privacy == IEEE80211_PRIVACY_OFF && bss_privacy)) 1567 continue; 1568 if (channel && bss->pub.channel != channel) 1569 continue; 1570 if (!is_valid_ether_addr(bss->pub.bssid)) 1571 continue; 1572 if ((bss->pub.use_for & use_for) != use_for) 1573 continue; 1574 /* Don't get expired BSS structs */ 1575 if (time_after(now, bss->ts + IEEE80211_SCAN_RESULT_EXPIRE) && 1576 !atomic_read(&bss->hold)) 1577 continue; 1578 if (is_bss(&bss->pub, bssid, ssid, ssid_len)) { 1579 res = bss; 1580 bss_ref_get(rdev, res); 1581 break; 1582 } 1583 } 1584 1585 spin_unlock_bh(&rdev->bss_lock); 1586 if (!res) 1587 return NULL; 1588 trace_cfg80211_return_bss(&res->pub); 1589 return &res->pub; 1590 } 1591 EXPORT_SYMBOL(__cfg80211_get_bss); 1592 1593 static void rb_insert_bss(struct cfg80211_registered_device *rdev, 1594 struct cfg80211_internal_bss *bss) 1595 { 1596 struct rb_node **p = &rdev->bss_tree.rb_node; 1597 struct rb_node *parent = NULL; 1598 struct cfg80211_internal_bss *tbss; 1599 int cmp; 1600 1601 while (*p) { 1602 parent = *p; 1603 tbss = rb_entry(parent, struct cfg80211_internal_bss, rbn); 1604 1605 cmp = cmp_bss(&bss->pub, &tbss->pub, BSS_CMP_REGULAR); 1606 1607 if (WARN_ON(!cmp)) { 1608 /* will sort of leak this BSS */ 1609 return; 1610 } 1611 1612 if (cmp < 0) 1613 p = &(*p)->rb_left; 1614 else 1615 p = &(*p)->rb_right; 1616 } 1617 1618 rb_link_node(&bss->rbn, parent, p); 1619 rb_insert_color(&bss->rbn, &rdev->bss_tree); 1620 } 1621 1622 static struct cfg80211_internal_bss * 1623 rb_find_bss(struct cfg80211_registered_device *rdev, 1624 struct cfg80211_internal_bss *res, 1625 enum bss_compare_mode mode) 1626 { 1627 struct rb_node *n = rdev->bss_tree.rb_node; 1628 struct cfg80211_internal_bss *bss; 1629 int r; 1630 1631 while (n) { 1632 bss = rb_entry(n, struct cfg80211_internal_bss, rbn); 1633 r = cmp_bss(&res->pub, &bss->pub, mode); 1634 1635 if (r == 0) 1636 return bss; 1637 else if (r < 0) 1638 n = n->rb_left; 1639 else 1640 n = n->rb_right; 1641 } 1642 1643 return NULL; 1644 } 1645 1646 static bool cfg80211_combine_bsses(struct cfg80211_registered_device *rdev, 1647 struct cfg80211_internal_bss *new) 1648 { 1649 const struct cfg80211_bss_ies *ies; 1650 struct cfg80211_internal_bss *bss; 1651 const u8 *ie; 1652 int i, ssidlen; 1653 u8 fold = 0; 1654 u32 n_entries = 0; 1655 1656 ies = rcu_access_pointer(new->pub.beacon_ies); 1657 if (WARN_ON(!ies)) 1658 return false; 1659 1660 ie = cfg80211_find_ie(WLAN_EID_SSID, ies->data, ies->len); 1661 if (!ie) { 1662 /* nothing to do */ 1663 return true; 1664 } 1665 1666 ssidlen = ie[1]; 1667 for (i = 0; i < ssidlen; i++) 1668 fold |= ie[2 + i]; 1669 1670 if (fold) { 1671 /* not a hidden SSID */ 1672 return true; 1673 } 1674 1675 /* This is the bad part ... */ 1676 1677 list_for_each_entry(bss, &rdev->bss_list, list) { 1678 /* 1679 * we're iterating all the entries anyway, so take the 1680 * opportunity to validate the list length accounting 1681 */ 1682 n_entries++; 1683 1684 if (!ether_addr_equal(bss->pub.bssid, new->pub.bssid)) 1685 continue; 1686 if (bss->pub.channel != new->pub.channel) 1687 continue; 1688 if (rcu_access_pointer(bss->pub.beacon_ies)) 1689 continue; 1690 ies = rcu_access_pointer(bss->pub.ies); 1691 if (!ies) 1692 continue; 1693 ie = cfg80211_find_ie(WLAN_EID_SSID, ies->data, ies->len); 1694 if (!ie) 1695 continue; 1696 if (ssidlen && ie[1] != ssidlen) 1697 continue; 1698 if (WARN_ON_ONCE(bss->pub.hidden_beacon_bss)) 1699 continue; 1700 if (WARN_ON_ONCE(!list_empty(&bss->hidden_list))) 1701 list_del(&bss->hidden_list); 1702 /* combine them */ 1703 list_add(&bss->hidden_list, &new->hidden_list); 1704 bss->pub.hidden_beacon_bss = &new->pub; 1705 new->refcount += bss->refcount; 1706 rcu_assign_pointer(bss->pub.beacon_ies, 1707 new->pub.beacon_ies); 1708 } 1709 1710 WARN_ONCE(n_entries != rdev->bss_entries, 1711 "rdev bss entries[%d]/list[len:%d] corruption\n", 1712 rdev->bss_entries, n_entries); 1713 1714 return true; 1715 } 1716 1717 static void cfg80211_update_hidden_bsses(struct cfg80211_internal_bss *known, 1718 const struct cfg80211_bss_ies *new_ies, 1719 const struct cfg80211_bss_ies *old_ies) 1720 { 1721 struct cfg80211_internal_bss *bss; 1722 1723 /* Assign beacon IEs to all sub entries */ 1724 list_for_each_entry(bss, &known->hidden_list, hidden_list) { 1725 const struct cfg80211_bss_ies *ies; 1726 1727 ies = rcu_access_pointer(bss->pub.beacon_ies); 1728 WARN_ON(ies != old_ies); 1729 1730 rcu_assign_pointer(bss->pub.beacon_ies, new_ies); 1731 } 1732 } 1733 1734 static bool 1735 cfg80211_update_known_bss(struct cfg80211_registered_device *rdev, 1736 struct cfg80211_internal_bss *known, 1737 struct cfg80211_internal_bss *new, 1738 bool signal_valid) 1739 { 1740 lockdep_assert_held(&rdev->bss_lock); 1741 1742 /* Update IEs */ 1743 if (rcu_access_pointer(new->pub.proberesp_ies)) { 1744 const struct cfg80211_bss_ies *old; 1745 1746 old = rcu_access_pointer(known->pub.proberesp_ies); 1747 1748 rcu_assign_pointer(known->pub.proberesp_ies, 1749 new->pub.proberesp_ies); 1750 /* Override possible earlier Beacon frame IEs */ 1751 rcu_assign_pointer(known->pub.ies, 1752 new->pub.proberesp_ies); 1753 if (old) 1754 kfree_rcu((struct cfg80211_bss_ies *)old, rcu_head); 1755 } 1756 1757 if (rcu_access_pointer(new->pub.beacon_ies)) { 1758 const struct cfg80211_bss_ies *old; 1759 1760 if (known->pub.hidden_beacon_bss && 1761 !list_empty(&known->hidden_list)) { 1762 const struct cfg80211_bss_ies *f; 1763 1764 /* The known BSS struct is one of the probe 1765 * response members of a group, but we're 1766 * receiving a beacon (beacon_ies in the new 1767 * bss is used). This can only mean that the 1768 * AP changed its beacon from not having an 1769 * SSID to showing it, which is confusing so 1770 * drop this information. 1771 */ 1772 1773 f = rcu_access_pointer(new->pub.beacon_ies); 1774 kfree_rcu((struct cfg80211_bss_ies *)f, rcu_head); 1775 return false; 1776 } 1777 1778 old = rcu_access_pointer(known->pub.beacon_ies); 1779 1780 rcu_assign_pointer(known->pub.beacon_ies, new->pub.beacon_ies); 1781 1782 /* Override IEs if they were from a beacon before */ 1783 if (old == rcu_access_pointer(known->pub.ies)) 1784 rcu_assign_pointer(known->pub.ies, new->pub.beacon_ies); 1785 1786 cfg80211_update_hidden_bsses(known, 1787 rcu_access_pointer(new->pub.beacon_ies), 1788 old); 1789 1790 if (old) 1791 kfree_rcu((struct cfg80211_bss_ies *)old, rcu_head); 1792 } 1793 1794 known->pub.beacon_interval = new->pub.beacon_interval; 1795 1796 /* don't update the signal if beacon was heard on 1797 * adjacent channel. 1798 */ 1799 if (signal_valid) 1800 known->pub.signal = new->pub.signal; 1801 known->pub.capability = new->pub.capability; 1802 known->ts = new->ts; 1803 known->ts_boottime = new->ts_boottime; 1804 known->parent_tsf = new->parent_tsf; 1805 known->pub.chains = new->pub.chains; 1806 memcpy(known->pub.chain_signal, new->pub.chain_signal, 1807 IEEE80211_MAX_CHAINS); 1808 ether_addr_copy(known->parent_bssid, new->parent_bssid); 1809 known->pub.max_bssid_indicator = new->pub.max_bssid_indicator; 1810 known->pub.bssid_index = new->pub.bssid_index; 1811 known->pub.use_for &= new->pub.use_for; 1812 known->pub.cannot_use_reasons = new->pub.cannot_use_reasons; 1813 1814 return true; 1815 } 1816 1817 /* Returned bss is reference counted and must be cleaned up appropriately. */ 1818 static struct cfg80211_internal_bss * 1819 __cfg80211_bss_update(struct cfg80211_registered_device *rdev, 1820 struct cfg80211_internal_bss *tmp, 1821 bool signal_valid, unsigned long ts) 1822 { 1823 struct cfg80211_internal_bss *found = NULL; 1824 struct cfg80211_bss_ies *ies; 1825 1826 if (WARN_ON(!tmp->pub.channel)) 1827 goto free_ies; 1828 1829 tmp->ts = ts; 1830 1831 if (WARN_ON(!rcu_access_pointer(tmp->pub.ies))) 1832 goto free_ies; 1833 1834 found = rb_find_bss(rdev, tmp, BSS_CMP_REGULAR); 1835 1836 if (found) { 1837 if (!cfg80211_update_known_bss(rdev, found, tmp, signal_valid)) 1838 return NULL; 1839 } else { 1840 struct cfg80211_internal_bss *new; 1841 struct cfg80211_internal_bss *hidden; 1842 1843 /* 1844 * create a copy -- the "res" variable that is passed in 1845 * is allocated on the stack since it's not needed in the 1846 * more common case of an update 1847 */ 1848 new = kzalloc(sizeof(*new) + rdev->wiphy.bss_priv_size, 1849 GFP_ATOMIC); 1850 if (!new) 1851 goto free_ies; 1852 memcpy(new, tmp, sizeof(*new)); 1853 new->refcount = 1; 1854 INIT_LIST_HEAD(&new->hidden_list); 1855 INIT_LIST_HEAD(&new->pub.nontrans_list); 1856 /* we'll set this later if it was non-NULL */ 1857 new->pub.transmitted_bss = NULL; 1858 1859 if (rcu_access_pointer(tmp->pub.proberesp_ies)) { 1860 hidden = rb_find_bss(rdev, tmp, BSS_CMP_HIDE_ZLEN); 1861 if (!hidden) 1862 hidden = rb_find_bss(rdev, tmp, 1863 BSS_CMP_HIDE_NUL); 1864 if (hidden) { 1865 new->pub.hidden_beacon_bss = &hidden->pub; 1866 list_add(&new->hidden_list, 1867 &hidden->hidden_list); 1868 hidden->refcount++; 1869 1870 ies = (void *)rcu_access_pointer(new->pub.beacon_ies); 1871 rcu_assign_pointer(new->pub.beacon_ies, 1872 hidden->pub.beacon_ies); 1873 if (ies) 1874 kfree_rcu(ies, rcu_head); 1875 } 1876 } else { 1877 /* 1878 * Ok so we found a beacon, and don't have an entry. If 1879 * it's a beacon with hidden SSID, we might be in for an 1880 * expensive search for any probe responses that should 1881 * be grouped with this beacon for updates ... 1882 */ 1883 if (!cfg80211_combine_bsses(rdev, new)) { 1884 bss_ref_put(rdev, new); 1885 return NULL; 1886 } 1887 } 1888 1889 if (rdev->bss_entries >= bss_entries_limit && 1890 !cfg80211_bss_expire_oldest(rdev)) { 1891 bss_ref_put(rdev, new); 1892 return NULL; 1893 } 1894 1895 /* This must be before the call to bss_ref_get */ 1896 if (tmp->pub.transmitted_bss) { 1897 new->pub.transmitted_bss = tmp->pub.transmitted_bss; 1898 bss_ref_get(rdev, bss_from_pub(tmp->pub.transmitted_bss)); 1899 } 1900 1901 list_add_tail(&new->list, &rdev->bss_list); 1902 rdev->bss_entries++; 1903 rb_insert_bss(rdev, new); 1904 found = new; 1905 } 1906 1907 rdev->bss_generation++; 1908 bss_ref_get(rdev, found); 1909 1910 return found; 1911 1912 free_ies: 1913 ies = (void *)rcu_dereference(tmp->pub.beacon_ies); 1914 if (ies) 1915 kfree_rcu(ies, rcu_head); 1916 ies = (void *)rcu_dereference(tmp->pub.proberesp_ies); 1917 if (ies) 1918 kfree_rcu(ies, rcu_head); 1919 1920 return NULL; 1921 } 1922 1923 struct cfg80211_internal_bss * 1924 cfg80211_bss_update(struct cfg80211_registered_device *rdev, 1925 struct cfg80211_internal_bss *tmp, 1926 bool signal_valid, unsigned long ts) 1927 { 1928 struct cfg80211_internal_bss *res; 1929 1930 spin_lock_bh(&rdev->bss_lock); 1931 res = __cfg80211_bss_update(rdev, tmp, signal_valid, ts); 1932 spin_unlock_bh(&rdev->bss_lock); 1933 1934 return res; 1935 } 1936 1937 int cfg80211_get_ies_channel_number(const u8 *ie, size_t ielen, 1938 enum nl80211_band band) 1939 { 1940 const struct element *tmp; 1941 1942 if (band == NL80211_BAND_6GHZ) { 1943 struct ieee80211_he_operation *he_oper; 1944 1945 tmp = cfg80211_find_ext_elem(WLAN_EID_EXT_HE_OPERATION, ie, 1946 ielen); 1947 if (tmp && tmp->datalen >= sizeof(*he_oper) && 1948 tmp->datalen >= ieee80211_he_oper_size(&tmp->data[1])) { 1949 const struct ieee80211_he_6ghz_oper *he_6ghz_oper; 1950 1951 he_oper = (void *)&tmp->data[1]; 1952 1953 he_6ghz_oper = ieee80211_he_6ghz_oper(he_oper); 1954 if (!he_6ghz_oper) 1955 return -1; 1956 1957 return he_6ghz_oper->primary; 1958 } 1959 } else if (band == NL80211_BAND_S1GHZ) { 1960 tmp = cfg80211_find_elem(WLAN_EID_S1G_OPERATION, ie, ielen); 1961 if (tmp && tmp->datalen >= sizeof(struct ieee80211_s1g_oper_ie)) { 1962 struct ieee80211_s1g_oper_ie *s1gop = (void *)tmp->data; 1963 1964 return s1gop->oper_ch; 1965 } 1966 } else { 1967 tmp = cfg80211_find_elem(WLAN_EID_DS_PARAMS, ie, ielen); 1968 if (tmp && tmp->datalen == 1) 1969 return tmp->data[0]; 1970 1971 tmp = cfg80211_find_elem(WLAN_EID_HT_OPERATION, ie, ielen); 1972 if (tmp && 1973 tmp->datalen >= sizeof(struct ieee80211_ht_operation)) { 1974 struct ieee80211_ht_operation *htop = (void *)tmp->data; 1975 1976 return htop->primary_chan; 1977 } 1978 } 1979 1980 return -1; 1981 } 1982 EXPORT_SYMBOL(cfg80211_get_ies_channel_number); 1983 1984 /* 1985 * Update RX channel information based on the available frame payload 1986 * information. This is mainly for the 2.4 GHz band where frames can be received 1987 * from neighboring channels and the Beacon frames use the DSSS Parameter Set 1988 * element to indicate the current (transmitting) channel, but this might also 1989 * be needed on other bands if RX frequency does not match with the actual 1990 * operating channel of a BSS, or if the AP reports a different primary channel. 1991 */ 1992 static struct ieee80211_channel * 1993 cfg80211_get_bss_channel(struct wiphy *wiphy, const u8 *ie, size_t ielen, 1994 struct ieee80211_channel *channel) 1995 { 1996 u32 freq; 1997 int channel_number; 1998 struct ieee80211_channel *alt_channel; 1999 2000 channel_number = cfg80211_get_ies_channel_number(ie, ielen, 2001 channel->band); 2002 2003 if (channel_number < 0) { 2004 /* No channel information in frame payload */ 2005 return channel; 2006 } 2007 2008 freq = ieee80211_channel_to_freq_khz(channel_number, channel->band); 2009 2010 /* 2011 * Frame info (beacon/prob res) is the same as received channel, 2012 * no need for further processing. 2013 */ 2014 if (freq == ieee80211_channel_to_khz(channel)) 2015 return channel; 2016 2017 alt_channel = ieee80211_get_channel_khz(wiphy, freq); 2018 if (!alt_channel) { 2019 if (channel->band == NL80211_BAND_2GHZ || 2020 channel->band == NL80211_BAND_6GHZ) { 2021 /* 2022 * Better not allow unexpected channels when that could 2023 * be going beyond the 1-11 range (e.g., discovering 2024 * BSS on channel 12 when radio is configured for 2025 * channel 11) or beyond the 6 GHz channel range. 2026 */ 2027 return NULL; 2028 } 2029 2030 /* No match for the payload channel number - ignore it */ 2031 return channel; 2032 } 2033 2034 /* 2035 * Use the channel determined through the payload channel number 2036 * instead of the RX channel reported by the driver. 2037 */ 2038 if (alt_channel->flags & IEEE80211_CHAN_DISABLED) 2039 return NULL; 2040 return alt_channel; 2041 } 2042 2043 struct cfg80211_inform_single_bss_data { 2044 struct cfg80211_inform_bss *drv_data; 2045 enum cfg80211_bss_frame_type ftype; 2046 struct ieee80211_channel *channel; 2047 u8 bssid[ETH_ALEN]; 2048 u64 tsf; 2049 u16 capability; 2050 u16 beacon_interval; 2051 const u8 *ie; 2052 size_t ielen; 2053 2054 enum { 2055 BSS_SOURCE_DIRECT = 0, 2056 BSS_SOURCE_MBSSID, 2057 BSS_SOURCE_STA_PROFILE, 2058 } bss_source; 2059 /* Set if reporting bss_source != BSS_SOURCE_DIRECT */ 2060 struct cfg80211_bss *source_bss; 2061 u8 max_bssid_indicator; 2062 u8 bssid_index; 2063 2064 u8 use_for; 2065 u64 cannot_use_reasons; 2066 }; 2067 2068 /* Returned bss is reference counted and must be cleaned up appropriately. */ 2069 static struct cfg80211_bss * 2070 cfg80211_inform_single_bss_data(struct wiphy *wiphy, 2071 struct cfg80211_inform_single_bss_data *data, 2072 gfp_t gfp) 2073 { 2074 struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy); 2075 struct cfg80211_inform_bss *drv_data = data->drv_data; 2076 struct cfg80211_bss_ies *ies; 2077 struct ieee80211_channel *channel; 2078 struct cfg80211_internal_bss tmp = {}, *res; 2079 int bss_type; 2080 bool signal_valid; 2081 unsigned long ts; 2082 2083 if (WARN_ON(!wiphy)) 2084 return NULL; 2085 2086 if (WARN_ON(wiphy->signal_type == CFG80211_SIGNAL_TYPE_UNSPEC && 2087 (drv_data->signal < 0 || drv_data->signal > 100))) 2088 return NULL; 2089 2090 if (WARN_ON(data->bss_source != BSS_SOURCE_DIRECT && !data->source_bss)) 2091 return NULL; 2092 2093 channel = data->channel; 2094 if (!channel) 2095 channel = cfg80211_get_bss_channel(wiphy, data->ie, data->ielen, 2096 drv_data->chan); 2097 if (!channel) 2098 return NULL; 2099 2100 memcpy(tmp.pub.bssid, data->bssid, ETH_ALEN); 2101 tmp.pub.channel = channel; 2102 if (data->bss_source != BSS_SOURCE_STA_PROFILE) 2103 tmp.pub.signal = drv_data->signal; 2104 else 2105 tmp.pub.signal = 0; 2106 tmp.pub.beacon_interval = data->beacon_interval; 2107 tmp.pub.capability = data->capability; 2108 tmp.ts_boottime = drv_data->boottime_ns; 2109 tmp.parent_tsf = drv_data->parent_tsf; 2110 ether_addr_copy(tmp.parent_bssid, drv_data->parent_bssid); 2111 tmp.pub.use_for = data->use_for; 2112 tmp.pub.cannot_use_reasons = data->cannot_use_reasons; 2113 2114 if (data->bss_source != BSS_SOURCE_DIRECT) { 2115 tmp.pub.transmitted_bss = data->source_bss; 2116 ts = bss_from_pub(data->source_bss)->ts; 2117 tmp.pub.bssid_index = data->bssid_index; 2118 tmp.pub.max_bssid_indicator = data->max_bssid_indicator; 2119 } else { 2120 ts = jiffies; 2121 2122 if (channel->band == NL80211_BAND_60GHZ) { 2123 bss_type = data->capability & 2124 WLAN_CAPABILITY_DMG_TYPE_MASK; 2125 if (bss_type == WLAN_CAPABILITY_DMG_TYPE_AP || 2126 bss_type == WLAN_CAPABILITY_DMG_TYPE_PBSS) 2127 regulatory_hint_found_beacon(wiphy, channel, 2128 gfp); 2129 } else { 2130 if (data->capability & WLAN_CAPABILITY_ESS) 2131 regulatory_hint_found_beacon(wiphy, channel, 2132 gfp); 2133 } 2134 } 2135 2136 /* 2137 * If we do not know here whether the IEs are from a Beacon or Probe 2138 * Response frame, we need to pick one of the options and only use it 2139 * with the driver that does not provide the full Beacon/Probe Response 2140 * frame. Use Beacon frame pointer to avoid indicating that this should 2141 * override the IEs pointer should we have received an earlier 2142 * indication of Probe Response data. 2143 */ 2144 ies = kzalloc(sizeof(*ies) + data->ielen, gfp); 2145 if (!ies) 2146 return NULL; 2147 ies->len = data->ielen; 2148 ies->tsf = data->tsf; 2149 ies->from_beacon = false; 2150 memcpy(ies->data, data->ie, data->ielen); 2151 2152 switch (data->ftype) { 2153 case CFG80211_BSS_FTYPE_BEACON: 2154 ies->from_beacon = true; 2155 fallthrough; 2156 case CFG80211_BSS_FTYPE_UNKNOWN: 2157 rcu_assign_pointer(tmp.pub.beacon_ies, ies); 2158 break; 2159 case CFG80211_BSS_FTYPE_PRESP: 2160 rcu_assign_pointer(tmp.pub.proberesp_ies, ies); 2161 break; 2162 } 2163 rcu_assign_pointer(tmp.pub.ies, ies); 2164 2165 signal_valid = drv_data->chan == channel; 2166 spin_lock_bh(&rdev->bss_lock); 2167 res = __cfg80211_bss_update(rdev, &tmp, signal_valid, ts); 2168 if (!res) 2169 goto drop; 2170 2171 rdev_inform_bss(rdev, &res->pub, ies, drv_data->drv_data); 2172 2173 if (data->bss_source == BSS_SOURCE_MBSSID) { 2174 /* this is a nontransmitting bss, we need to add it to 2175 * transmitting bss' list if it is not there 2176 */ 2177 if (cfg80211_add_nontrans_list(data->source_bss, &res->pub)) { 2178 if (__cfg80211_unlink_bss(rdev, res)) { 2179 rdev->bss_generation++; 2180 res = NULL; 2181 } 2182 } 2183 2184 if (!res) 2185 goto drop; 2186 } 2187 spin_unlock_bh(&rdev->bss_lock); 2188 2189 trace_cfg80211_return_bss(&res->pub); 2190 /* __cfg80211_bss_update gives us a referenced result */ 2191 return &res->pub; 2192 2193 drop: 2194 spin_unlock_bh(&rdev->bss_lock); 2195 return NULL; 2196 } 2197 2198 static const struct element 2199 *cfg80211_get_profile_continuation(const u8 *ie, size_t ielen, 2200 const struct element *mbssid_elem, 2201 const struct element *sub_elem) 2202 { 2203 const u8 *mbssid_end = mbssid_elem->data + mbssid_elem->datalen; 2204 const struct element *next_mbssid; 2205 const struct element *next_sub; 2206 2207 next_mbssid = cfg80211_find_elem(WLAN_EID_MULTIPLE_BSSID, 2208 mbssid_end, 2209 ielen - (mbssid_end - ie)); 2210 2211 /* 2212 * If it is not the last subelement in current MBSSID IE or there isn't 2213 * a next MBSSID IE - profile is complete. 2214 */ 2215 if ((sub_elem->data + sub_elem->datalen < mbssid_end - 1) || 2216 !next_mbssid) 2217 return NULL; 2218 2219 /* For any length error, just return NULL */ 2220 2221 if (next_mbssid->datalen < 4) 2222 return NULL; 2223 2224 next_sub = (void *)&next_mbssid->data[1]; 2225 2226 if (next_mbssid->data + next_mbssid->datalen < 2227 next_sub->data + next_sub->datalen) 2228 return NULL; 2229 2230 if (next_sub->id != 0 || next_sub->datalen < 2) 2231 return NULL; 2232 2233 /* 2234 * Check if the first element in the next sub element is a start 2235 * of a new profile 2236 */ 2237 return next_sub->data[0] == WLAN_EID_NON_TX_BSSID_CAP ? 2238 NULL : next_mbssid; 2239 } 2240 2241 size_t cfg80211_merge_profile(const u8 *ie, size_t ielen, 2242 const struct element *mbssid_elem, 2243 const struct element *sub_elem, 2244 u8 *merged_ie, size_t max_copy_len) 2245 { 2246 size_t copied_len = sub_elem->datalen; 2247 const struct element *next_mbssid; 2248 2249 if (sub_elem->datalen > max_copy_len) 2250 return 0; 2251 2252 memcpy(merged_ie, sub_elem->data, sub_elem->datalen); 2253 2254 while ((next_mbssid = cfg80211_get_profile_continuation(ie, ielen, 2255 mbssid_elem, 2256 sub_elem))) { 2257 const struct element *next_sub = (void *)&next_mbssid->data[1]; 2258 2259 if (copied_len + next_sub->datalen > max_copy_len) 2260 break; 2261 memcpy(merged_ie + copied_len, next_sub->data, 2262 next_sub->datalen); 2263 copied_len += next_sub->datalen; 2264 } 2265 2266 return copied_len; 2267 } 2268 EXPORT_SYMBOL(cfg80211_merge_profile); 2269 2270 static void 2271 cfg80211_parse_mbssid_data(struct wiphy *wiphy, 2272 struct cfg80211_inform_single_bss_data *tx_data, 2273 struct cfg80211_bss *source_bss, 2274 gfp_t gfp) 2275 { 2276 struct cfg80211_inform_single_bss_data data = { 2277 .drv_data = tx_data->drv_data, 2278 .ftype = tx_data->ftype, 2279 .tsf = tx_data->tsf, 2280 .beacon_interval = tx_data->beacon_interval, 2281 .source_bss = source_bss, 2282 .bss_source = BSS_SOURCE_MBSSID, 2283 .use_for = tx_data->use_for, 2284 .cannot_use_reasons = tx_data->cannot_use_reasons, 2285 }; 2286 const u8 *mbssid_index_ie; 2287 const struct element *elem, *sub; 2288 u8 *new_ie, *profile; 2289 u64 seen_indices = 0; 2290 struct cfg80211_bss *bss; 2291 2292 if (!source_bss) 2293 return; 2294 if (!cfg80211_find_elem(WLAN_EID_MULTIPLE_BSSID, 2295 tx_data->ie, tx_data->ielen)) 2296 return; 2297 if (!wiphy->support_mbssid) 2298 return; 2299 if (wiphy->support_only_he_mbssid && 2300 !cfg80211_find_ext_elem(WLAN_EID_EXT_HE_CAPABILITY, 2301 tx_data->ie, tx_data->ielen)) 2302 return; 2303 2304 new_ie = kmalloc(IEEE80211_MAX_DATA_LEN, gfp); 2305 if (!new_ie) 2306 return; 2307 2308 profile = kmalloc(tx_data->ielen, gfp); 2309 if (!profile) 2310 goto out; 2311 2312 for_each_element_id(elem, WLAN_EID_MULTIPLE_BSSID, 2313 tx_data->ie, tx_data->ielen) { 2314 if (elem->datalen < 4) 2315 continue; 2316 if (elem->data[0] < 1 || (int)elem->data[0] > 8) 2317 continue; 2318 for_each_element(sub, elem->data + 1, elem->datalen - 1) { 2319 u8 profile_len; 2320 2321 if (sub->id != 0 || sub->datalen < 4) { 2322 /* not a valid BSS profile */ 2323 continue; 2324 } 2325 2326 if (sub->data[0] != WLAN_EID_NON_TX_BSSID_CAP || 2327 sub->data[1] != 2) { 2328 /* The first element within the Nontransmitted 2329 * BSSID Profile is not the Nontransmitted 2330 * BSSID Capability element. 2331 */ 2332 continue; 2333 } 2334 2335 memset(profile, 0, tx_data->ielen); 2336 profile_len = cfg80211_merge_profile(tx_data->ie, 2337 tx_data->ielen, 2338 elem, 2339 sub, 2340 profile, 2341 tx_data->ielen); 2342 2343 /* found a Nontransmitted BSSID Profile */ 2344 mbssid_index_ie = cfg80211_find_ie 2345 (WLAN_EID_MULTI_BSSID_IDX, 2346 profile, profile_len); 2347 if (!mbssid_index_ie || mbssid_index_ie[1] < 1 || 2348 mbssid_index_ie[2] == 0 || 2349 mbssid_index_ie[2] > 46) { 2350 /* No valid Multiple BSSID-Index element */ 2351 continue; 2352 } 2353 2354 if (seen_indices & BIT_ULL(mbssid_index_ie[2])) 2355 /* We don't support legacy split of a profile */ 2356 net_dbg_ratelimited("Partial info for BSSID index %d\n", 2357 mbssid_index_ie[2]); 2358 2359 seen_indices |= BIT_ULL(mbssid_index_ie[2]); 2360 2361 data.bssid_index = mbssid_index_ie[2]; 2362 data.max_bssid_indicator = elem->data[0]; 2363 2364 cfg80211_gen_new_bssid(tx_data->bssid, 2365 data.max_bssid_indicator, 2366 data.bssid_index, 2367 data.bssid); 2368 2369 memset(new_ie, 0, IEEE80211_MAX_DATA_LEN); 2370 data.ie = new_ie; 2371 data.ielen = cfg80211_gen_new_ie(tx_data->ie, 2372 tx_data->ielen, 2373 profile, 2374 profile_len, 2375 new_ie, 2376 IEEE80211_MAX_DATA_LEN); 2377 if (!data.ielen) 2378 continue; 2379 2380 data.capability = get_unaligned_le16(profile + 2); 2381 bss = cfg80211_inform_single_bss_data(wiphy, &data, gfp); 2382 if (!bss) 2383 break; 2384 cfg80211_put_bss(wiphy, bss); 2385 } 2386 } 2387 2388 out: 2389 kfree(new_ie); 2390 kfree(profile); 2391 } 2392 2393 ssize_t cfg80211_defragment_element(const struct element *elem, const u8 *ies, 2394 size_t ieslen, u8 *data, size_t data_len, 2395 u8 frag_id) 2396 { 2397 const struct element *next; 2398 ssize_t copied; 2399 u8 elem_datalen; 2400 2401 if (!elem) 2402 return -EINVAL; 2403 2404 /* elem might be invalid after the memmove */ 2405 next = (void *)(elem->data + elem->datalen); 2406 elem_datalen = elem->datalen; 2407 2408 if (elem->id == WLAN_EID_EXTENSION) { 2409 copied = elem->datalen - 1; 2410 if (copied > data_len) 2411 return -ENOSPC; 2412 2413 memmove(data, elem->data + 1, copied); 2414 } else { 2415 copied = elem->datalen; 2416 if (copied > data_len) 2417 return -ENOSPC; 2418 2419 memmove(data, elem->data, copied); 2420 } 2421 2422 /* Fragmented elements must have 255 bytes */ 2423 if (elem_datalen < 255) 2424 return copied; 2425 2426 for (elem = next; 2427 elem->data < ies + ieslen && 2428 elem->data + elem->datalen <= ies + ieslen; 2429 elem = next) { 2430 /* elem might be invalid after the memmove */ 2431 next = (void *)(elem->data + elem->datalen); 2432 2433 if (elem->id != frag_id) 2434 break; 2435 2436 elem_datalen = elem->datalen; 2437 2438 if (copied + elem_datalen > data_len) 2439 return -ENOSPC; 2440 2441 memmove(data + copied, elem->data, elem_datalen); 2442 copied += elem_datalen; 2443 2444 /* Only the last fragment may be short */ 2445 if (elem_datalen != 255) 2446 break; 2447 } 2448 2449 return copied; 2450 } 2451 EXPORT_SYMBOL(cfg80211_defragment_element); 2452 2453 struct cfg80211_mle { 2454 struct ieee80211_multi_link_elem *mle; 2455 struct ieee80211_mle_per_sta_profile 2456 *sta_prof[IEEE80211_MLD_MAX_NUM_LINKS]; 2457 ssize_t sta_prof_len[IEEE80211_MLD_MAX_NUM_LINKS]; 2458 2459 u8 data[]; 2460 }; 2461 2462 static struct cfg80211_mle * 2463 cfg80211_defrag_mle(const struct element *mle, const u8 *ie, size_t ielen, 2464 gfp_t gfp) 2465 { 2466 const struct element *elem; 2467 struct cfg80211_mle *res; 2468 size_t buf_len; 2469 ssize_t mle_len; 2470 u8 common_size, idx; 2471 2472 if (!mle || !ieee80211_mle_size_ok(mle->data + 1, mle->datalen - 1)) 2473 return NULL; 2474 2475 /* Required length for first defragmentation */ 2476 buf_len = mle->datalen - 1; 2477 for_each_element(elem, mle->data + mle->datalen, 2478 ielen - sizeof(*mle) + mle->datalen) { 2479 if (elem->id != WLAN_EID_FRAGMENT) 2480 break; 2481 2482 buf_len += elem->datalen; 2483 } 2484 2485 res = kzalloc(struct_size(res, data, buf_len), gfp); 2486 if (!res) 2487 return NULL; 2488 2489 mle_len = cfg80211_defragment_element(mle, ie, ielen, 2490 res->data, buf_len, 2491 WLAN_EID_FRAGMENT); 2492 if (mle_len < 0) 2493 goto error; 2494 2495 res->mle = (void *)res->data; 2496 2497 /* Find the sub-element area in the buffer */ 2498 common_size = ieee80211_mle_common_size((u8 *)res->mle); 2499 ie = res->data + common_size; 2500 ielen = mle_len - common_size; 2501 2502 idx = 0; 2503 for_each_element_id(elem, IEEE80211_MLE_SUBELEM_PER_STA_PROFILE, 2504 ie, ielen) { 2505 res->sta_prof[idx] = (void *)elem->data; 2506 res->sta_prof_len[idx] = elem->datalen; 2507 2508 idx++; 2509 if (idx >= IEEE80211_MLD_MAX_NUM_LINKS) 2510 break; 2511 } 2512 if (!for_each_element_completed(elem, ie, ielen)) 2513 goto error; 2514 2515 /* Defragment sta_info in-place */ 2516 for (idx = 0; idx < IEEE80211_MLD_MAX_NUM_LINKS && res->sta_prof[idx]; 2517 idx++) { 2518 if (res->sta_prof_len[idx] < 255) 2519 continue; 2520 2521 elem = (void *)res->sta_prof[idx] - 2; 2522 2523 if (idx + 1 < ARRAY_SIZE(res->sta_prof) && 2524 res->sta_prof[idx + 1]) 2525 buf_len = (u8 *)res->sta_prof[idx + 1] - 2526 (u8 *)res->sta_prof[idx]; 2527 else 2528 buf_len = ielen + ie - (u8 *)elem; 2529 2530 res->sta_prof_len[idx] = 2531 cfg80211_defragment_element(elem, 2532 (u8 *)elem, buf_len, 2533 (u8 *)res->sta_prof[idx], 2534 buf_len, 2535 IEEE80211_MLE_SUBELEM_FRAGMENT); 2536 if (res->sta_prof_len[idx] < 0) 2537 goto error; 2538 } 2539 2540 return res; 2541 2542 error: 2543 kfree(res); 2544 return NULL; 2545 } 2546 2547 static u8 2548 cfg80211_tbtt_info_for_mld_ap(const u8 *ie, size_t ielen, u8 mld_id, u8 link_id, 2549 const struct ieee80211_neighbor_ap_info **ap_info, 2550 const u8 **tbtt_info) 2551 { 2552 const struct ieee80211_neighbor_ap_info *info; 2553 const struct element *rnr; 2554 const u8 *pos, *end; 2555 2556 for_each_element_id(rnr, WLAN_EID_REDUCED_NEIGHBOR_REPORT, ie, ielen) { 2557 pos = rnr->data; 2558 end = rnr->data + rnr->datalen; 2559 2560 /* RNR IE may contain more than one NEIGHBOR_AP_INFO */ 2561 while (sizeof(*info) <= end - pos) { 2562 const struct ieee80211_rnr_mld_params *mld_params; 2563 u16 params; 2564 u8 length, i, count, mld_params_offset; 2565 u8 type, lid; 2566 u32 use_for; 2567 2568 info = (void *)pos; 2569 count = u8_get_bits(info->tbtt_info_hdr, 2570 IEEE80211_AP_INFO_TBTT_HDR_COUNT) + 1; 2571 length = info->tbtt_info_len; 2572 2573 pos += sizeof(*info); 2574 2575 if (count * length > end - pos) 2576 return 0; 2577 2578 type = u8_get_bits(info->tbtt_info_hdr, 2579 IEEE80211_AP_INFO_TBTT_HDR_TYPE); 2580 2581 if (type == IEEE80211_TBTT_INFO_TYPE_TBTT && 2582 length >= 2583 offsetofend(struct ieee80211_tbtt_info_ge_11, 2584 mld_params)) { 2585 mld_params_offset = 2586 offsetof(struct ieee80211_tbtt_info_ge_11, mld_params); 2587 use_for = NL80211_BSS_USE_FOR_ALL; 2588 } else if (type == IEEE80211_TBTT_INFO_TYPE_MLD && 2589 length >= sizeof(struct ieee80211_rnr_mld_params)) { 2590 mld_params_offset = 0; 2591 use_for = NL80211_BSS_USE_FOR_MLD_LINK; 2592 } else { 2593 pos += count * length; 2594 continue; 2595 } 2596 2597 for (i = 0; i < count; i++) { 2598 mld_params = (void *)pos + mld_params_offset; 2599 params = le16_to_cpu(mld_params->params); 2600 2601 lid = u16_get_bits(params, 2602 IEEE80211_RNR_MLD_PARAMS_LINK_ID); 2603 2604 if (mld_id == mld_params->mld_id && 2605 link_id == lid) { 2606 *ap_info = info; 2607 *tbtt_info = pos; 2608 2609 return use_for; 2610 } 2611 2612 pos += length; 2613 } 2614 } 2615 } 2616 2617 return 0; 2618 } 2619 2620 static void 2621 cfg80211_parse_ml_elem_sta_data(struct wiphy *wiphy, 2622 struct cfg80211_inform_single_bss_data *tx_data, 2623 struct cfg80211_bss *source_bss, 2624 const struct element *elem, 2625 gfp_t gfp) 2626 { 2627 struct cfg80211_inform_single_bss_data data = { 2628 .drv_data = tx_data->drv_data, 2629 .ftype = tx_data->ftype, 2630 .source_bss = source_bss, 2631 .bss_source = BSS_SOURCE_STA_PROFILE, 2632 }; 2633 struct ieee80211_multi_link_elem *ml_elem; 2634 struct cfg80211_mle *mle; 2635 u16 control; 2636 u8 ml_common_len; 2637 u8 *new_ie; 2638 struct cfg80211_bss *bss; 2639 int mld_id; 2640 u16 seen_links = 0; 2641 const u8 *pos; 2642 u8 i; 2643 2644 if (!ieee80211_mle_size_ok(elem->data + 1, elem->datalen - 1)) 2645 return; 2646 2647 ml_elem = (void *)elem->data + 1; 2648 control = le16_to_cpu(ml_elem->control); 2649 if (u16_get_bits(control, IEEE80211_ML_CONTROL_TYPE) != 2650 IEEE80211_ML_CONTROL_TYPE_BASIC) 2651 return; 2652 2653 /* Must be present when transmitted by an AP (in a probe response) */ 2654 if (!(control & IEEE80211_MLC_BASIC_PRES_BSS_PARAM_CH_CNT) || 2655 !(control & IEEE80211_MLC_BASIC_PRES_LINK_ID) || 2656 !(control & IEEE80211_MLC_BASIC_PRES_MLD_CAPA_OP)) 2657 return; 2658 2659 ml_common_len = ml_elem->variable[0]; 2660 2661 /* length + MLD MAC address + link ID info + BSS Params Change Count */ 2662 pos = ml_elem->variable + 1 + 6 + 1 + 1; 2663 2664 if (u16_get_bits(control, IEEE80211_MLC_BASIC_PRES_MED_SYNC_DELAY)) 2665 pos += 2; 2666 if (u16_get_bits(control, IEEE80211_MLC_BASIC_PRES_EML_CAPA)) 2667 pos += 2; 2668 2669 /* MLD capabilities and operations */ 2670 pos += 2; 2671 2672 /* 2673 * The MLD ID of the reporting AP is always zero. It is set if the AP 2674 * is part of an MBSSID set and will be non-zero for ML Elements 2675 * relating to a nontransmitted BSS (matching the Multi-BSSID Index, 2676 * Draft P802.11be_D3.2, 35.3.4.2) 2677 */ 2678 if (u16_get_bits(control, IEEE80211_MLC_BASIC_PRES_MLD_ID)) { 2679 mld_id = *pos; 2680 pos += 1; 2681 } else { 2682 mld_id = 0; 2683 } 2684 2685 /* Extended MLD capabilities and operations */ 2686 pos += 2; 2687 2688 /* Fully defrag the ML element for sta information/profile iteration */ 2689 mle = cfg80211_defrag_mle(elem, tx_data->ie, tx_data->ielen, gfp); 2690 if (!mle) 2691 return; 2692 2693 new_ie = kmalloc(IEEE80211_MAX_DATA_LEN, gfp); 2694 if (!new_ie) 2695 goto out; 2696 2697 for (i = 0; i < ARRAY_SIZE(mle->sta_prof) && mle->sta_prof[i]; i++) { 2698 const struct ieee80211_neighbor_ap_info *ap_info; 2699 enum nl80211_band band; 2700 u32 freq; 2701 const u8 *profile; 2702 const u8 *tbtt_info; 2703 ssize_t profile_len; 2704 u8 link_id, use_for; 2705 2706 if (!ieee80211_mle_basic_sta_prof_size_ok((u8 *)mle->sta_prof[i], 2707 mle->sta_prof_len[i])) 2708 continue; 2709 2710 control = le16_to_cpu(mle->sta_prof[i]->control); 2711 2712 if (!(control & IEEE80211_MLE_STA_CONTROL_COMPLETE_PROFILE)) 2713 continue; 2714 2715 link_id = u16_get_bits(control, 2716 IEEE80211_MLE_STA_CONTROL_LINK_ID); 2717 if (seen_links & BIT(link_id)) 2718 break; 2719 seen_links |= BIT(link_id); 2720 2721 if (!(control & IEEE80211_MLE_STA_CONTROL_BEACON_INT_PRESENT) || 2722 !(control & IEEE80211_MLE_STA_CONTROL_TSF_OFFS_PRESENT) || 2723 !(control & IEEE80211_MLE_STA_CONTROL_STA_MAC_ADDR_PRESENT)) 2724 continue; 2725 2726 memcpy(data.bssid, mle->sta_prof[i]->variable, ETH_ALEN); 2727 data.beacon_interval = 2728 get_unaligned_le16(mle->sta_prof[i]->variable + 6); 2729 data.tsf = tx_data->tsf + 2730 get_unaligned_le64(mle->sta_prof[i]->variable + 8); 2731 2732 /* sta_info_len counts itself */ 2733 profile = mle->sta_prof[i]->variable + 2734 mle->sta_prof[i]->sta_info_len - 1; 2735 profile_len = (u8 *)mle->sta_prof[i] + mle->sta_prof_len[i] - 2736 profile; 2737 2738 if (profile_len < 2) 2739 continue; 2740 2741 data.capability = get_unaligned_le16(profile); 2742 profile += 2; 2743 profile_len -= 2; 2744 2745 /* Find in RNR to look up channel information */ 2746 use_for = cfg80211_tbtt_info_for_mld_ap(tx_data->ie, 2747 tx_data->ielen, 2748 mld_id, link_id, 2749 &ap_info, &tbtt_info); 2750 if (!use_for) 2751 continue; 2752 2753 /* We could sanity check the BSSID is included */ 2754 2755 if (!ieee80211_operating_class_to_band(ap_info->op_class, 2756 &band)) 2757 continue; 2758 2759 freq = ieee80211_channel_to_freq_khz(ap_info->channel, band); 2760 data.channel = ieee80211_get_channel_khz(wiphy, freq); 2761 2762 if (use_for == NL80211_BSS_USE_FOR_MLD_LINK && 2763 !(wiphy->flags & WIPHY_FLAG_SUPPORTS_NSTR_NONPRIMARY)) { 2764 use_for = 0; 2765 data.cannot_use_reasons = 2766 NL80211_BSS_CANNOT_USE_NSTR_NONPRIMARY; 2767 } 2768 data.use_for = use_for; 2769 2770 /* Generate new elements */ 2771 memset(new_ie, 0, IEEE80211_MAX_DATA_LEN); 2772 data.ie = new_ie; 2773 data.ielen = cfg80211_gen_new_ie(tx_data->ie, tx_data->ielen, 2774 profile, profile_len, 2775 new_ie, 2776 IEEE80211_MAX_DATA_LEN); 2777 if (!data.ielen) 2778 continue; 2779 2780 /* The generated elements do not contain: 2781 * - Basic ML element 2782 * - A TBTT entry in the RNR for the transmitting AP 2783 * 2784 * This information is needed both internally and in userspace 2785 * as such, we should append it here. 2786 */ 2787 if (data.ielen + 3 + sizeof(*ml_elem) + ml_common_len > 2788 IEEE80211_MAX_DATA_LEN) 2789 continue; 2790 2791 /* Copy the Basic Multi-Link element including the common 2792 * information, and then fix up the link ID. 2793 * Note that the ML element length has been verified and we 2794 * also checked that it contains the link ID. 2795 */ 2796 new_ie[data.ielen++] = WLAN_EID_EXTENSION; 2797 new_ie[data.ielen++] = 1 + sizeof(*ml_elem) + ml_common_len; 2798 new_ie[data.ielen++] = WLAN_EID_EXT_EHT_MULTI_LINK; 2799 memcpy(new_ie + data.ielen, ml_elem, 2800 sizeof(*ml_elem) + ml_common_len); 2801 2802 new_ie[data.ielen + sizeof(*ml_elem) + 1 + ETH_ALEN] = link_id; 2803 2804 data.ielen += sizeof(*ml_elem) + ml_common_len; 2805 2806 /* TODO: Add an RNR containing only the reporting AP */ 2807 2808 bss = cfg80211_inform_single_bss_data(wiphy, &data, gfp); 2809 if (!bss) 2810 break; 2811 cfg80211_put_bss(wiphy, bss); 2812 } 2813 2814 out: 2815 kfree(new_ie); 2816 kfree(mle); 2817 } 2818 2819 static void cfg80211_parse_ml_sta_data(struct wiphy *wiphy, 2820 struct cfg80211_inform_single_bss_data *tx_data, 2821 struct cfg80211_bss *source_bss, 2822 gfp_t gfp) 2823 { 2824 const struct element *elem; 2825 2826 if (!source_bss) 2827 return; 2828 2829 if (tx_data->ftype != CFG80211_BSS_FTYPE_PRESP) 2830 return; 2831 2832 for_each_element_extid(elem, WLAN_EID_EXT_EHT_MULTI_LINK, 2833 tx_data->ie, tx_data->ielen) 2834 cfg80211_parse_ml_elem_sta_data(wiphy, tx_data, source_bss, 2835 elem, gfp); 2836 } 2837 2838 struct cfg80211_bss * 2839 cfg80211_inform_bss_data(struct wiphy *wiphy, 2840 struct cfg80211_inform_bss *data, 2841 enum cfg80211_bss_frame_type ftype, 2842 const u8 *bssid, u64 tsf, u16 capability, 2843 u16 beacon_interval, const u8 *ie, size_t ielen, 2844 gfp_t gfp) 2845 { 2846 struct cfg80211_inform_single_bss_data inform_data = { 2847 .drv_data = data, 2848 .ftype = ftype, 2849 .tsf = tsf, 2850 .capability = capability, 2851 .beacon_interval = beacon_interval, 2852 .ie = ie, 2853 .ielen = ielen, 2854 .use_for = data->restrict_use ? 2855 data->use_for : 2856 NL80211_BSS_USE_FOR_ALL, 2857 .cannot_use_reasons = data->cannot_use_reasons, 2858 }; 2859 struct cfg80211_bss *res; 2860 2861 memcpy(inform_data.bssid, bssid, ETH_ALEN); 2862 2863 res = cfg80211_inform_single_bss_data(wiphy, &inform_data, gfp); 2864 if (!res) 2865 return NULL; 2866 2867 cfg80211_parse_mbssid_data(wiphy, &inform_data, res, gfp); 2868 2869 cfg80211_parse_ml_sta_data(wiphy, &inform_data, res, gfp); 2870 2871 return res; 2872 } 2873 EXPORT_SYMBOL(cfg80211_inform_bss_data); 2874 2875 static bool cfg80211_uhb_power_type_valid(const u8 *ie, 2876 size_t ielen, 2877 const u32 flags) 2878 { 2879 const struct element *tmp; 2880 struct ieee80211_he_operation *he_oper; 2881 2882 tmp = cfg80211_find_ext_elem(WLAN_EID_EXT_HE_OPERATION, ie, ielen); 2883 if (tmp && tmp->datalen >= sizeof(*he_oper) + 1) { 2884 const struct ieee80211_he_6ghz_oper *he_6ghz_oper; 2885 2886 he_oper = (void *)&tmp->data[1]; 2887 he_6ghz_oper = ieee80211_he_6ghz_oper(he_oper); 2888 2889 if (!he_6ghz_oper) 2890 return false; 2891 2892 switch (u8_get_bits(he_6ghz_oper->control, 2893 IEEE80211_HE_6GHZ_OPER_CTRL_REG_INFO)) { 2894 case IEEE80211_6GHZ_CTRL_REG_LPI_AP: 2895 return true; 2896 case IEEE80211_6GHZ_CTRL_REG_SP_AP: 2897 return !(flags & IEEE80211_CHAN_NO_UHB_AFC_CLIENT); 2898 case IEEE80211_6GHZ_CTRL_REG_VLP_AP: 2899 return !(flags & IEEE80211_CHAN_NO_UHB_VLP_CLIENT); 2900 } 2901 } 2902 return false; 2903 } 2904 2905 /* cfg80211_inform_bss_width_frame helper */ 2906 static struct cfg80211_bss * 2907 cfg80211_inform_single_bss_frame_data(struct wiphy *wiphy, 2908 struct cfg80211_inform_bss *data, 2909 struct ieee80211_mgmt *mgmt, size_t len, 2910 gfp_t gfp) 2911 { 2912 struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy); 2913 struct cfg80211_internal_bss tmp = {}, *res; 2914 struct cfg80211_bss_ies *ies; 2915 struct ieee80211_channel *channel; 2916 bool signal_valid; 2917 struct ieee80211_ext *ext = NULL; 2918 u8 *bssid, *variable; 2919 u16 capability, beacon_int; 2920 size_t ielen, min_hdr_len = offsetof(struct ieee80211_mgmt, 2921 u.probe_resp.variable); 2922 int bss_type; 2923 2924 BUILD_BUG_ON(offsetof(struct ieee80211_mgmt, u.probe_resp.variable) != 2925 offsetof(struct ieee80211_mgmt, u.beacon.variable)); 2926 2927 trace_cfg80211_inform_bss_frame(wiphy, data, mgmt, len); 2928 2929 if (WARN_ON(!mgmt)) 2930 return NULL; 2931 2932 if (WARN_ON(!wiphy)) 2933 return NULL; 2934 2935 if (WARN_ON(wiphy->signal_type == CFG80211_SIGNAL_TYPE_UNSPEC && 2936 (data->signal < 0 || data->signal > 100))) 2937 return NULL; 2938 2939 if (ieee80211_is_s1g_beacon(mgmt->frame_control)) { 2940 ext = (void *) mgmt; 2941 min_hdr_len = offsetof(struct ieee80211_ext, u.s1g_beacon); 2942 if (ieee80211_is_s1g_short_beacon(mgmt->frame_control)) 2943 min_hdr_len = offsetof(struct ieee80211_ext, 2944 u.s1g_short_beacon.variable); 2945 } 2946 2947 if (WARN_ON(len < min_hdr_len)) 2948 return NULL; 2949 2950 ielen = len - min_hdr_len; 2951 variable = mgmt->u.probe_resp.variable; 2952 if (ext) { 2953 if (ieee80211_is_s1g_short_beacon(mgmt->frame_control)) 2954 variable = ext->u.s1g_short_beacon.variable; 2955 else 2956 variable = ext->u.s1g_beacon.variable; 2957 } 2958 2959 channel = cfg80211_get_bss_channel(wiphy, variable, ielen, data->chan); 2960 if (!channel) 2961 return NULL; 2962 2963 if (channel->band == NL80211_BAND_6GHZ && 2964 !cfg80211_uhb_power_type_valid(variable, ielen, channel->flags)) { 2965 data->restrict_use = 1; 2966 data->use_for = 0; 2967 data->cannot_use_reasons = 2968 NL80211_BSS_CANNOT_USE_UHB_PWR_MISMATCH; 2969 } 2970 2971 if (ext) { 2972 const struct ieee80211_s1g_bcn_compat_ie *compat; 2973 const struct element *elem; 2974 2975 elem = cfg80211_find_elem(WLAN_EID_S1G_BCN_COMPAT, 2976 variable, ielen); 2977 if (!elem) 2978 return NULL; 2979 if (elem->datalen < sizeof(*compat)) 2980 return NULL; 2981 compat = (void *)elem->data; 2982 bssid = ext->u.s1g_beacon.sa; 2983 capability = le16_to_cpu(compat->compat_info); 2984 beacon_int = le16_to_cpu(compat->beacon_int); 2985 } else { 2986 bssid = mgmt->bssid; 2987 beacon_int = le16_to_cpu(mgmt->u.probe_resp.beacon_int); 2988 capability = le16_to_cpu(mgmt->u.probe_resp.capab_info); 2989 } 2990 2991 if (channel->band == NL80211_BAND_60GHZ) { 2992 bss_type = capability & WLAN_CAPABILITY_DMG_TYPE_MASK; 2993 if (bss_type == WLAN_CAPABILITY_DMG_TYPE_AP || 2994 bss_type == WLAN_CAPABILITY_DMG_TYPE_PBSS) 2995 regulatory_hint_found_beacon(wiphy, channel, gfp); 2996 } else { 2997 if (capability & WLAN_CAPABILITY_ESS) 2998 regulatory_hint_found_beacon(wiphy, channel, gfp); 2999 } 3000 3001 ies = kzalloc(sizeof(*ies) + ielen, gfp); 3002 if (!ies) 3003 return NULL; 3004 ies->len = ielen; 3005 ies->tsf = le64_to_cpu(mgmt->u.probe_resp.timestamp); 3006 ies->from_beacon = ieee80211_is_beacon(mgmt->frame_control) || 3007 ieee80211_is_s1g_beacon(mgmt->frame_control); 3008 memcpy(ies->data, variable, ielen); 3009 3010 if (ieee80211_is_probe_resp(mgmt->frame_control)) 3011 rcu_assign_pointer(tmp.pub.proberesp_ies, ies); 3012 else 3013 rcu_assign_pointer(tmp.pub.beacon_ies, ies); 3014 rcu_assign_pointer(tmp.pub.ies, ies); 3015 3016 memcpy(tmp.pub.bssid, bssid, ETH_ALEN); 3017 tmp.pub.beacon_interval = beacon_int; 3018 tmp.pub.capability = capability; 3019 tmp.pub.channel = channel; 3020 tmp.pub.signal = data->signal; 3021 tmp.ts_boottime = data->boottime_ns; 3022 tmp.parent_tsf = data->parent_tsf; 3023 tmp.pub.chains = data->chains; 3024 memcpy(tmp.pub.chain_signal, data->chain_signal, IEEE80211_MAX_CHAINS); 3025 ether_addr_copy(tmp.parent_bssid, data->parent_bssid); 3026 tmp.pub.use_for = data->restrict_use ? 3027 data->use_for : 3028 NL80211_BSS_USE_FOR_ALL; 3029 tmp.pub.cannot_use_reasons = data->cannot_use_reasons; 3030 3031 signal_valid = data->chan == channel; 3032 spin_lock_bh(&rdev->bss_lock); 3033 res = __cfg80211_bss_update(rdev, &tmp, signal_valid, jiffies); 3034 if (!res) 3035 goto drop; 3036 3037 rdev_inform_bss(rdev, &res->pub, ies, data->drv_data); 3038 3039 spin_unlock_bh(&rdev->bss_lock); 3040 3041 trace_cfg80211_return_bss(&res->pub); 3042 /* __cfg80211_bss_update gives us a referenced result */ 3043 return &res->pub; 3044 3045 drop: 3046 spin_unlock_bh(&rdev->bss_lock); 3047 return NULL; 3048 } 3049 3050 struct cfg80211_bss * 3051 cfg80211_inform_bss_frame_data(struct wiphy *wiphy, 3052 struct cfg80211_inform_bss *data, 3053 struct ieee80211_mgmt *mgmt, size_t len, 3054 gfp_t gfp) 3055 { 3056 struct cfg80211_inform_single_bss_data inform_data = { 3057 .drv_data = data, 3058 .ie = mgmt->u.probe_resp.variable, 3059 .ielen = len - offsetof(struct ieee80211_mgmt, 3060 u.probe_resp.variable), 3061 .use_for = data->restrict_use ? 3062 data->use_for : 3063 NL80211_BSS_USE_FOR_ALL, 3064 .cannot_use_reasons = data->cannot_use_reasons, 3065 }; 3066 struct cfg80211_bss *res; 3067 3068 res = cfg80211_inform_single_bss_frame_data(wiphy, data, mgmt, 3069 len, gfp); 3070 if (!res) 3071 return NULL; 3072 3073 /* don't do any further MBSSID/ML handling for S1G */ 3074 if (ieee80211_is_s1g_beacon(mgmt->frame_control)) 3075 return res; 3076 3077 inform_data.ftype = ieee80211_is_beacon(mgmt->frame_control) ? 3078 CFG80211_BSS_FTYPE_BEACON : CFG80211_BSS_FTYPE_PRESP; 3079 memcpy(inform_data.bssid, mgmt->bssid, ETH_ALEN); 3080 inform_data.tsf = le64_to_cpu(mgmt->u.probe_resp.timestamp); 3081 inform_data.beacon_interval = 3082 le16_to_cpu(mgmt->u.probe_resp.beacon_int); 3083 3084 /* process each non-transmitting bss */ 3085 cfg80211_parse_mbssid_data(wiphy, &inform_data, res, gfp); 3086 3087 cfg80211_parse_ml_sta_data(wiphy, &inform_data, res, gfp); 3088 3089 return res; 3090 } 3091 EXPORT_SYMBOL(cfg80211_inform_bss_frame_data); 3092 3093 void cfg80211_ref_bss(struct wiphy *wiphy, struct cfg80211_bss *pub) 3094 { 3095 struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy); 3096 3097 if (!pub) 3098 return; 3099 3100 spin_lock_bh(&rdev->bss_lock); 3101 bss_ref_get(rdev, bss_from_pub(pub)); 3102 spin_unlock_bh(&rdev->bss_lock); 3103 } 3104 EXPORT_SYMBOL(cfg80211_ref_bss); 3105 3106 void cfg80211_put_bss(struct wiphy *wiphy, struct cfg80211_bss *pub) 3107 { 3108 struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy); 3109 3110 if (!pub) 3111 return; 3112 3113 spin_lock_bh(&rdev->bss_lock); 3114 bss_ref_put(rdev, bss_from_pub(pub)); 3115 spin_unlock_bh(&rdev->bss_lock); 3116 } 3117 EXPORT_SYMBOL(cfg80211_put_bss); 3118 3119 void cfg80211_unlink_bss(struct wiphy *wiphy, struct cfg80211_bss *pub) 3120 { 3121 struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy); 3122 struct cfg80211_internal_bss *bss, *tmp1; 3123 struct cfg80211_bss *nontrans_bss, *tmp; 3124 3125 if (WARN_ON(!pub)) 3126 return; 3127 3128 bss = bss_from_pub(pub); 3129 3130 spin_lock_bh(&rdev->bss_lock); 3131 if (list_empty(&bss->list)) 3132 goto out; 3133 3134 list_for_each_entry_safe(nontrans_bss, tmp, 3135 &pub->nontrans_list, 3136 nontrans_list) { 3137 tmp1 = bss_from_pub(nontrans_bss); 3138 if (__cfg80211_unlink_bss(rdev, tmp1)) 3139 rdev->bss_generation++; 3140 } 3141 3142 if (__cfg80211_unlink_bss(rdev, bss)) 3143 rdev->bss_generation++; 3144 out: 3145 spin_unlock_bh(&rdev->bss_lock); 3146 } 3147 EXPORT_SYMBOL(cfg80211_unlink_bss); 3148 3149 void cfg80211_bss_iter(struct wiphy *wiphy, 3150 struct cfg80211_chan_def *chandef, 3151 void (*iter)(struct wiphy *wiphy, 3152 struct cfg80211_bss *bss, 3153 void *data), 3154 void *iter_data) 3155 { 3156 struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy); 3157 struct cfg80211_internal_bss *bss; 3158 3159 spin_lock_bh(&rdev->bss_lock); 3160 3161 list_for_each_entry(bss, &rdev->bss_list, list) { 3162 if (!chandef || cfg80211_is_sub_chan(chandef, bss->pub.channel, 3163 false)) 3164 iter(wiphy, &bss->pub, iter_data); 3165 } 3166 3167 spin_unlock_bh(&rdev->bss_lock); 3168 } 3169 EXPORT_SYMBOL(cfg80211_bss_iter); 3170 3171 void cfg80211_update_assoc_bss_entry(struct wireless_dev *wdev, 3172 unsigned int link_id, 3173 struct ieee80211_channel *chan) 3174 { 3175 struct wiphy *wiphy = wdev->wiphy; 3176 struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy); 3177 struct cfg80211_internal_bss *cbss = wdev->links[link_id].client.current_bss; 3178 struct cfg80211_internal_bss *new = NULL; 3179 struct cfg80211_internal_bss *bss; 3180 struct cfg80211_bss *nontrans_bss; 3181 struct cfg80211_bss *tmp; 3182 3183 spin_lock_bh(&rdev->bss_lock); 3184 3185 /* 3186 * Some APs use CSA also for bandwidth changes, i.e., without actually 3187 * changing the control channel, so no need to update in such a case. 3188 */ 3189 if (cbss->pub.channel == chan) 3190 goto done; 3191 3192 /* use transmitting bss */ 3193 if (cbss->pub.transmitted_bss) 3194 cbss = bss_from_pub(cbss->pub.transmitted_bss); 3195 3196 cbss->pub.channel = chan; 3197 3198 list_for_each_entry(bss, &rdev->bss_list, list) { 3199 if (!cfg80211_bss_type_match(bss->pub.capability, 3200 bss->pub.channel->band, 3201 wdev->conn_bss_type)) 3202 continue; 3203 3204 if (bss == cbss) 3205 continue; 3206 3207 if (!cmp_bss(&bss->pub, &cbss->pub, BSS_CMP_REGULAR)) { 3208 new = bss; 3209 break; 3210 } 3211 } 3212 3213 if (new) { 3214 /* to save time, update IEs for transmitting bss only */ 3215 cfg80211_update_known_bss(rdev, cbss, new, false); 3216 new->pub.proberesp_ies = NULL; 3217 new->pub.beacon_ies = NULL; 3218 3219 list_for_each_entry_safe(nontrans_bss, tmp, 3220 &new->pub.nontrans_list, 3221 nontrans_list) { 3222 bss = bss_from_pub(nontrans_bss); 3223 if (__cfg80211_unlink_bss(rdev, bss)) 3224 rdev->bss_generation++; 3225 } 3226 3227 WARN_ON(atomic_read(&new->hold)); 3228 if (!WARN_ON(!__cfg80211_unlink_bss(rdev, new))) 3229 rdev->bss_generation++; 3230 } 3231 3232 rb_erase(&cbss->rbn, &rdev->bss_tree); 3233 rb_insert_bss(rdev, cbss); 3234 rdev->bss_generation++; 3235 3236 list_for_each_entry_safe(nontrans_bss, tmp, 3237 &cbss->pub.nontrans_list, 3238 nontrans_list) { 3239 bss = bss_from_pub(nontrans_bss); 3240 bss->pub.channel = chan; 3241 rb_erase(&bss->rbn, &rdev->bss_tree); 3242 rb_insert_bss(rdev, bss); 3243 rdev->bss_generation++; 3244 } 3245 3246 done: 3247 spin_unlock_bh(&rdev->bss_lock); 3248 } 3249 3250 #ifdef CONFIG_CFG80211_WEXT 3251 static struct cfg80211_registered_device * 3252 cfg80211_get_dev_from_ifindex(struct net *net, int ifindex) 3253 { 3254 struct cfg80211_registered_device *rdev; 3255 struct net_device *dev; 3256 3257 ASSERT_RTNL(); 3258 3259 dev = dev_get_by_index(net, ifindex); 3260 if (!dev) 3261 return ERR_PTR(-ENODEV); 3262 if (dev->ieee80211_ptr) 3263 rdev = wiphy_to_rdev(dev->ieee80211_ptr->wiphy); 3264 else 3265 rdev = ERR_PTR(-ENODEV); 3266 dev_put(dev); 3267 return rdev; 3268 } 3269 3270 int cfg80211_wext_siwscan(struct net_device *dev, 3271 struct iw_request_info *info, 3272 union iwreq_data *wrqu, char *extra) 3273 { 3274 struct cfg80211_registered_device *rdev; 3275 struct wiphy *wiphy; 3276 struct iw_scan_req *wreq = NULL; 3277 struct cfg80211_scan_request *creq; 3278 int i, err, n_channels = 0; 3279 enum nl80211_band band; 3280 3281 if (!netif_running(dev)) 3282 return -ENETDOWN; 3283 3284 if (wrqu->data.length == sizeof(struct iw_scan_req)) 3285 wreq = (struct iw_scan_req *)extra; 3286 3287 rdev = cfg80211_get_dev_from_ifindex(dev_net(dev), dev->ifindex); 3288 3289 if (IS_ERR(rdev)) 3290 return PTR_ERR(rdev); 3291 3292 if (rdev->scan_req || rdev->scan_msg) 3293 return -EBUSY; 3294 3295 wiphy = &rdev->wiphy; 3296 3297 /* Determine number of channels, needed to allocate creq */ 3298 if (wreq && wreq->num_channels) 3299 n_channels = wreq->num_channels; 3300 else 3301 n_channels = ieee80211_get_num_supported_channels(wiphy); 3302 3303 creq = kzalloc(sizeof(*creq) + sizeof(struct cfg80211_ssid) + 3304 n_channels * sizeof(void *), 3305 GFP_ATOMIC); 3306 if (!creq) 3307 return -ENOMEM; 3308 3309 creq->wiphy = wiphy; 3310 creq->wdev = dev->ieee80211_ptr; 3311 /* SSIDs come after channels */ 3312 creq->ssids = (void *)&creq->channels[n_channels]; 3313 creq->n_channels = n_channels; 3314 creq->n_ssids = 1; 3315 creq->scan_start = jiffies; 3316 3317 /* translate "Scan on frequencies" request */ 3318 i = 0; 3319 for (band = 0; band < NUM_NL80211_BANDS; band++) { 3320 int j; 3321 3322 if (!wiphy->bands[band]) 3323 continue; 3324 3325 for (j = 0; j < wiphy->bands[band]->n_channels; j++) { 3326 /* ignore disabled channels */ 3327 if (wiphy->bands[band]->channels[j].flags & 3328 IEEE80211_CHAN_DISABLED) 3329 continue; 3330 3331 /* If we have a wireless request structure and the 3332 * wireless request specifies frequencies, then search 3333 * for the matching hardware channel. 3334 */ 3335 if (wreq && wreq->num_channels) { 3336 int k; 3337 int wiphy_freq = wiphy->bands[band]->channels[j].center_freq; 3338 for (k = 0; k < wreq->num_channels; k++) { 3339 struct iw_freq *freq = 3340 &wreq->channel_list[k]; 3341 int wext_freq = 3342 cfg80211_wext_freq(freq); 3343 3344 if (wext_freq == wiphy_freq) 3345 goto wext_freq_found; 3346 } 3347 goto wext_freq_not_found; 3348 } 3349 3350 wext_freq_found: 3351 creq->channels[i] = &wiphy->bands[band]->channels[j]; 3352 i++; 3353 wext_freq_not_found: ; 3354 } 3355 } 3356 /* No channels found? */ 3357 if (!i) { 3358 err = -EINVAL; 3359 goto out; 3360 } 3361 3362 /* Set real number of channels specified in creq->channels[] */ 3363 creq->n_channels = i; 3364 3365 /* translate "Scan for SSID" request */ 3366 if (wreq) { 3367 if (wrqu->data.flags & IW_SCAN_THIS_ESSID) { 3368 if (wreq->essid_len > IEEE80211_MAX_SSID_LEN) { 3369 err = -EINVAL; 3370 goto out; 3371 } 3372 memcpy(creq->ssids[0].ssid, wreq->essid, wreq->essid_len); 3373 creq->ssids[0].ssid_len = wreq->essid_len; 3374 } 3375 if (wreq->scan_type == IW_SCAN_TYPE_PASSIVE) 3376 creq->n_ssids = 0; 3377 } 3378 3379 for (i = 0; i < NUM_NL80211_BANDS; i++) 3380 if (wiphy->bands[i]) 3381 creq->rates[i] = (1 << wiphy->bands[i]->n_bitrates) - 1; 3382 3383 eth_broadcast_addr(creq->bssid); 3384 3385 wiphy_lock(&rdev->wiphy); 3386 3387 rdev->scan_req = creq; 3388 err = rdev_scan(rdev, creq); 3389 if (err) { 3390 rdev->scan_req = NULL; 3391 /* creq will be freed below */ 3392 } else { 3393 nl80211_send_scan_start(rdev, dev->ieee80211_ptr); 3394 /* creq now owned by driver */ 3395 creq = NULL; 3396 dev_hold(dev); 3397 } 3398 wiphy_unlock(&rdev->wiphy); 3399 out: 3400 kfree(creq); 3401 return err; 3402 } 3403 EXPORT_WEXT_HANDLER(cfg80211_wext_siwscan); 3404 3405 static char *ieee80211_scan_add_ies(struct iw_request_info *info, 3406 const struct cfg80211_bss_ies *ies, 3407 char *current_ev, char *end_buf) 3408 { 3409 const u8 *pos, *end, *next; 3410 struct iw_event iwe; 3411 3412 if (!ies) 3413 return current_ev; 3414 3415 /* 3416 * If needed, fragment the IEs buffer (at IE boundaries) into short 3417 * enough fragments to fit into IW_GENERIC_IE_MAX octet messages. 3418 */ 3419 pos = ies->data; 3420 end = pos + ies->len; 3421 3422 while (end - pos > IW_GENERIC_IE_MAX) { 3423 next = pos + 2 + pos[1]; 3424 while (next + 2 + next[1] - pos < IW_GENERIC_IE_MAX) 3425 next = next + 2 + next[1]; 3426 3427 memset(&iwe, 0, sizeof(iwe)); 3428 iwe.cmd = IWEVGENIE; 3429 iwe.u.data.length = next - pos; 3430 current_ev = iwe_stream_add_point_check(info, current_ev, 3431 end_buf, &iwe, 3432 (void *)pos); 3433 if (IS_ERR(current_ev)) 3434 return current_ev; 3435 pos = next; 3436 } 3437 3438 if (end > pos) { 3439 memset(&iwe, 0, sizeof(iwe)); 3440 iwe.cmd = IWEVGENIE; 3441 iwe.u.data.length = end - pos; 3442 current_ev = iwe_stream_add_point_check(info, current_ev, 3443 end_buf, &iwe, 3444 (void *)pos); 3445 if (IS_ERR(current_ev)) 3446 return current_ev; 3447 } 3448 3449 return current_ev; 3450 } 3451 3452 static char * 3453 ieee80211_bss(struct wiphy *wiphy, struct iw_request_info *info, 3454 struct cfg80211_internal_bss *bss, char *current_ev, 3455 char *end_buf) 3456 { 3457 const struct cfg80211_bss_ies *ies; 3458 struct iw_event iwe; 3459 const u8 *ie; 3460 u8 buf[50]; 3461 u8 *cfg, *p, *tmp; 3462 int rem, i, sig; 3463 bool ismesh = false; 3464 3465 memset(&iwe, 0, sizeof(iwe)); 3466 iwe.cmd = SIOCGIWAP; 3467 iwe.u.ap_addr.sa_family = ARPHRD_ETHER; 3468 memcpy(iwe.u.ap_addr.sa_data, bss->pub.bssid, ETH_ALEN); 3469 current_ev = iwe_stream_add_event_check(info, current_ev, end_buf, &iwe, 3470 IW_EV_ADDR_LEN); 3471 if (IS_ERR(current_ev)) 3472 return current_ev; 3473 3474 memset(&iwe, 0, sizeof(iwe)); 3475 iwe.cmd = SIOCGIWFREQ; 3476 iwe.u.freq.m = ieee80211_frequency_to_channel(bss->pub.channel->center_freq); 3477 iwe.u.freq.e = 0; 3478 current_ev = iwe_stream_add_event_check(info, current_ev, end_buf, &iwe, 3479 IW_EV_FREQ_LEN); 3480 if (IS_ERR(current_ev)) 3481 return current_ev; 3482 3483 memset(&iwe, 0, sizeof(iwe)); 3484 iwe.cmd = SIOCGIWFREQ; 3485 iwe.u.freq.m = bss->pub.channel->center_freq; 3486 iwe.u.freq.e = 6; 3487 current_ev = iwe_stream_add_event_check(info, current_ev, end_buf, &iwe, 3488 IW_EV_FREQ_LEN); 3489 if (IS_ERR(current_ev)) 3490 return current_ev; 3491 3492 if (wiphy->signal_type != CFG80211_SIGNAL_TYPE_NONE) { 3493 memset(&iwe, 0, sizeof(iwe)); 3494 iwe.cmd = IWEVQUAL; 3495 iwe.u.qual.updated = IW_QUAL_LEVEL_UPDATED | 3496 IW_QUAL_NOISE_INVALID | 3497 IW_QUAL_QUAL_UPDATED; 3498 switch (wiphy->signal_type) { 3499 case CFG80211_SIGNAL_TYPE_MBM: 3500 sig = bss->pub.signal / 100; 3501 iwe.u.qual.level = sig; 3502 iwe.u.qual.updated |= IW_QUAL_DBM; 3503 if (sig < -110) /* rather bad */ 3504 sig = -110; 3505 else if (sig > -40) /* perfect */ 3506 sig = -40; 3507 /* will give a range of 0 .. 70 */ 3508 iwe.u.qual.qual = sig + 110; 3509 break; 3510 case CFG80211_SIGNAL_TYPE_UNSPEC: 3511 iwe.u.qual.level = bss->pub.signal; 3512 /* will give range 0 .. 100 */ 3513 iwe.u.qual.qual = bss->pub.signal; 3514 break; 3515 default: 3516 /* not reached */ 3517 break; 3518 } 3519 current_ev = iwe_stream_add_event_check(info, current_ev, 3520 end_buf, &iwe, 3521 IW_EV_QUAL_LEN); 3522 if (IS_ERR(current_ev)) 3523 return current_ev; 3524 } 3525 3526 memset(&iwe, 0, sizeof(iwe)); 3527 iwe.cmd = SIOCGIWENCODE; 3528 if (bss->pub.capability & WLAN_CAPABILITY_PRIVACY) 3529 iwe.u.data.flags = IW_ENCODE_ENABLED | IW_ENCODE_NOKEY; 3530 else 3531 iwe.u.data.flags = IW_ENCODE_DISABLED; 3532 iwe.u.data.length = 0; 3533 current_ev = iwe_stream_add_point_check(info, current_ev, end_buf, 3534 &iwe, ""); 3535 if (IS_ERR(current_ev)) 3536 return current_ev; 3537 3538 rcu_read_lock(); 3539 ies = rcu_dereference(bss->pub.ies); 3540 rem = ies->len; 3541 ie = ies->data; 3542 3543 while (rem >= 2) { 3544 /* invalid data */ 3545 if (ie[1] > rem - 2) 3546 break; 3547 3548 switch (ie[0]) { 3549 case WLAN_EID_SSID: 3550 memset(&iwe, 0, sizeof(iwe)); 3551 iwe.cmd = SIOCGIWESSID; 3552 iwe.u.data.length = ie[1]; 3553 iwe.u.data.flags = 1; 3554 current_ev = iwe_stream_add_point_check(info, 3555 current_ev, 3556 end_buf, &iwe, 3557 (u8 *)ie + 2); 3558 if (IS_ERR(current_ev)) 3559 goto unlock; 3560 break; 3561 case WLAN_EID_MESH_ID: 3562 memset(&iwe, 0, sizeof(iwe)); 3563 iwe.cmd = SIOCGIWESSID; 3564 iwe.u.data.length = ie[1]; 3565 iwe.u.data.flags = 1; 3566 current_ev = iwe_stream_add_point_check(info, 3567 current_ev, 3568 end_buf, &iwe, 3569 (u8 *)ie + 2); 3570 if (IS_ERR(current_ev)) 3571 goto unlock; 3572 break; 3573 case WLAN_EID_MESH_CONFIG: 3574 ismesh = true; 3575 if (ie[1] != sizeof(struct ieee80211_meshconf_ie)) 3576 break; 3577 cfg = (u8 *)ie + 2; 3578 memset(&iwe, 0, sizeof(iwe)); 3579 iwe.cmd = IWEVCUSTOM; 3580 iwe.u.data.length = sprintf(buf, 3581 "Mesh Network Path Selection Protocol ID: 0x%02X", 3582 cfg[0]); 3583 current_ev = iwe_stream_add_point_check(info, 3584 current_ev, 3585 end_buf, 3586 &iwe, buf); 3587 if (IS_ERR(current_ev)) 3588 goto unlock; 3589 iwe.u.data.length = sprintf(buf, 3590 "Path Selection Metric ID: 0x%02X", 3591 cfg[1]); 3592 current_ev = iwe_stream_add_point_check(info, 3593 current_ev, 3594 end_buf, 3595 &iwe, buf); 3596 if (IS_ERR(current_ev)) 3597 goto unlock; 3598 iwe.u.data.length = sprintf(buf, 3599 "Congestion Control Mode ID: 0x%02X", 3600 cfg[2]); 3601 current_ev = iwe_stream_add_point_check(info, 3602 current_ev, 3603 end_buf, 3604 &iwe, buf); 3605 if (IS_ERR(current_ev)) 3606 goto unlock; 3607 iwe.u.data.length = sprintf(buf, 3608 "Synchronization ID: 0x%02X", 3609 cfg[3]); 3610 current_ev = iwe_stream_add_point_check(info, 3611 current_ev, 3612 end_buf, 3613 &iwe, buf); 3614 if (IS_ERR(current_ev)) 3615 goto unlock; 3616 iwe.u.data.length = sprintf(buf, 3617 "Authentication ID: 0x%02X", 3618 cfg[4]); 3619 current_ev = iwe_stream_add_point_check(info, 3620 current_ev, 3621 end_buf, 3622 &iwe, buf); 3623 if (IS_ERR(current_ev)) 3624 goto unlock; 3625 iwe.u.data.length = sprintf(buf, 3626 "Formation Info: 0x%02X", 3627 cfg[5]); 3628 current_ev = iwe_stream_add_point_check(info, 3629 current_ev, 3630 end_buf, 3631 &iwe, buf); 3632 if (IS_ERR(current_ev)) 3633 goto unlock; 3634 iwe.u.data.length = sprintf(buf, 3635 "Capabilities: 0x%02X", 3636 cfg[6]); 3637 current_ev = iwe_stream_add_point_check(info, 3638 current_ev, 3639 end_buf, 3640 &iwe, buf); 3641 if (IS_ERR(current_ev)) 3642 goto unlock; 3643 break; 3644 case WLAN_EID_SUPP_RATES: 3645 case WLAN_EID_EXT_SUPP_RATES: 3646 /* display all supported rates in readable format */ 3647 p = current_ev + iwe_stream_lcp_len(info); 3648 3649 memset(&iwe, 0, sizeof(iwe)); 3650 iwe.cmd = SIOCGIWRATE; 3651 /* Those two flags are ignored... */ 3652 iwe.u.bitrate.fixed = iwe.u.bitrate.disabled = 0; 3653 3654 for (i = 0; i < ie[1]; i++) { 3655 iwe.u.bitrate.value = 3656 ((ie[i + 2] & 0x7f) * 500000); 3657 tmp = p; 3658 p = iwe_stream_add_value(info, current_ev, p, 3659 end_buf, &iwe, 3660 IW_EV_PARAM_LEN); 3661 if (p == tmp) { 3662 current_ev = ERR_PTR(-E2BIG); 3663 goto unlock; 3664 } 3665 } 3666 current_ev = p; 3667 break; 3668 } 3669 rem -= ie[1] + 2; 3670 ie += ie[1] + 2; 3671 } 3672 3673 if (bss->pub.capability & (WLAN_CAPABILITY_ESS | WLAN_CAPABILITY_IBSS) || 3674 ismesh) { 3675 memset(&iwe, 0, sizeof(iwe)); 3676 iwe.cmd = SIOCGIWMODE; 3677 if (ismesh) 3678 iwe.u.mode = IW_MODE_MESH; 3679 else if (bss->pub.capability & WLAN_CAPABILITY_ESS) 3680 iwe.u.mode = IW_MODE_MASTER; 3681 else 3682 iwe.u.mode = IW_MODE_ADHOC; 3683 current_ev = iwe_stream_add_event_check(info, current_ev, 3684 end_buf, &iwe, 3685 IW_EV_UINT_LEN); 3686 if (IS_ERR(current_ev)) 3687 goto unlock; 3688 } 3689 3690 memset(&iwe, 0, sizeof(iwe)); 3691 iwe.cmd = IWEVCUSTOM; 3692 iwe.u.data.length = sprintf(buf, "tsf=%016llx", 3693 (unsigned long long)(ies->tsf)); 3694 current_ev = iwe_stream_add_point_check(info, current_ev, end_buf, 3695 &iwe, buf); 3696 if (IS_ERR(current_ev)) 3697 goto unlock; 3698 memset(&iwe, 0, sizeof(iwe)); 3699 iwe.cmd = IWEVCUSTOM; 3700 iwe.u.data.length = sprintf(buf, " Last beacon: %ums ago", 3701 elapsed_jiffies_msecs(bss->ts)); 3702 current_ev = iwe_stream_add_point_check(info, current_ev, 3703 end_buf, &iwe, buf); 3704 if (IS_ERR(current_ev)) 3705 goto unlock; 3706 3707 current_ev = ieee80211_scan_add_ies(info, ies, current_ev, end_buf); 3708 3709 unlock: 3710 rcu_read_unlock(); 3711 return current_ev; 3712 } 3713 3714 3715 static int ieee80211_scan_results(struct cfg80211_registered_device *rdev, 3716 struct iw_request_info *info, 3717 char *buf, size_t len) 3718 { 3719 char *current_ev = buf; 3720 char *end_buf = buf + len; 3721 struct cfg80211_internal_bss *bss; 3722 int err = 0; 3723 3724 spin_lock_bh(&rdev->bss_lock); 3725 cfg80211_bss_expire(rdev); 3726 3727 list_for_each_entry(bss, &rdev->bss_list, list) { 3728 if (buf + len - current_ev <= IW_EV_ADDR_LEN) { 3729 err = -E2BIG; 3730 break; 3731 } 3732 current_ev = ieee80211_bss(&rdev->wiphy, info, bss, 3733 current_ev, end_buf); 3734 if (IS_ERR(current_ev)) { 3735 err = PTR_ERR(current_ev); 3736 break; 3737 } 3738 } 3739 spin_unlock_bh(&rdev->bss_lock); 3740 3741 if (err) 3742 return err; 3743 return current_ev - buf; 3744 } 3745 3746 3747 int cfg80211_wext_giwscan(struct net_device *dev, 3748 struct iw_request_info *info, 3749 union iwreq_data *wrqu, char *extra) 3750 { 3751 struct iw_point *data = &wrqu->data; 3752 struct cfg80211_registered_device *rdev; 3753 int res; 3754 3755 if (!netif_running(dev)) 3756 return -ENETDOWN; 3757 3758 rdev = cfg80211_get_dev_from_ifindex(dev_net(dev), dev->ifindex); 3759 3760 if (IS_ERR(rdev)) 3761 return PTR_ERR(rdev); 3762 3763 if (rdev->scan_req || rdev->scan_msg) 3764 return -EAGAIN; 3765 3766 res = ieee80211_scan_results(rdev, info, extra, data->length); 3767 data->length = 0; 3768 if (res >= 0) { 3769 data->length = res; 3770 res = 0; 3771 } 3772 3773 return res; 3774 } 3775 EXPORT_WEXT_HANDLER(cfg80211_wext_giwscan); 3776 #endif 3777