xref: /linux/net/wireless/scan.c (revision e6b9d8eddb1772d99a676a906d42865293934edd)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * cfg80211 scan result handling
4  *
5  * Copyright 2008 Johannes Berg <johannes@sipsolutions.net>
6  * Copyright 2013-2014  Intel Mobile Communications GmbH
7  * Copyright 2016	Intel Deutschland GmbH
8  * Copyright (C) 2018-2022 Intel Corporation
9  */
10 #include <linux/kernel.h>
11 #include <linux/slab.h>
12 #include <linux/module.h>
13 #include <linux/netdevice.h>
14 #include <linux/wireless.h>
15 #include <linux/nl80211.h>
16 #include <linux/etherdevice.h>
17 #include <linux/crc32.h>
18 #include <linux/bitfield.h>
19 #include <net/arp.h>
20 #include <net/cfg80211.h>
21 #include <net/cfg80211-wext.h>
22 #include <net/iw_handler.h>
23 #include "core.h"
24 #include "nl80211.h"
25 #include "wext-compat.h"
26 #include "rdev-ops.h"
27 
28 /**
29  * DOC: BSS tree/list structure
30  *
31  * At the top level, the BSS list is kept in both a list in each
32  * registered device (@bss_list) as well as an RB-tree for faster
33  * lookup. In the RB-tree, entries can be looked up using their
34  * channel, MESHID, MESHCONF (for MBSSes) or channel, BSSID, SSID
35  * for other BSSes.
36  *
37  * Due to the possibility of hidden SSIDs, there's a second level
38  * structure, the "hidden_list" and "hidden_beacon_bss" pointer.
39  * The hidden_list connects all BSSes belonging to a single AP
40  * that has a hidden SSID, and connects beacon and probe response
41  * entries. For a probe response entry for a hidden SSID, the
42  * hidden_beacon_bss pointer points to the BSS struct holding the
43  * beacon's information.
44  *
45  * Reference counting is done for all these references except for
46  * the hidden_list, so that a beacon BSS struct that is otherwise
47  * not referenced has one reference for being on the bss_list and
48  * one for each probe response entry that points to it using the
49  * hidden_beacon_bss pointer. When a BSS struct that has such a
50  * pointer is get/put, the refcount update is also propagated to
51  * the referenced struct, this ensure that it cannot get removed
52  * while somebody is using the probe response version.
53  *
54  * Note that the hidden_beacon_bss pointer never changes, due to
55  * the reference counting. Therefore, no locking is needed for
56  * it.
57  *
58  * Also note that the hidden_beacon_bss pointer is only relevant
59  * if the driver uses something other than the IEs, e.g. private
60  * data stored in the BSS struct, since the beacon IEs are
61  * also linked into the probe response struct.
62  */
63 
64 /*
65  * Limit the number of BSS entries stored in mac80211. Each one is
66  * a bit over 4k at most, so this limits to roughly 4-5M of memory.
67  * If somebody wants to really attack this though, they'd likely
68  * use small beacons, and only one type of frame, limiting each of
69  * the entries to a much smaller size (in order to generate more
70  * entries in total, so overhead is bigger.)
71  */
72 static int bss_entries_limit = 1000;
73 module_param(bss_entries_limit, int, 0644);
74 MODULE_PARM_DESC(bss_entries_limit,
75                  "limit to number of scan BSS entries (per wiphy, default 1000)");
76 
77 #define IEEE80211_SCAN_RESULT_EXPIRE	(30 * HZ)
78 
79 /**
80  * struct cfg80211_colocated_ap - colocated AP information
81  *
82  * @list: linked list to all colocated aPS
83  * @bssid: BSSID of the reported AP
84  * @ssid: SSID of the reported AP
85  * @ssid_len: length of the ssid
86  * @center_freq: frequency the reported AP is on
87  * @unsolicited_probe: the reported AP is part of an ESS, where all the APs
88  *	that operate in the same channel as the reported AP and that might be
89  *	detected by a STA receiving this frame, are transmitting unsolicited
90  *	Probe Response frames every 20 TUs
91  * @oct_recommended: OCT is recommended to exchange MMPDUs with the reported AP
92  * @same_ssid: the reported AP has the same SSID as the reporting AP
93  * @multi_bss: the reported AP is part of a multiple BSSID set
94  * @transmitted_bssid: the reported AP is the transmitting BSSID
95  * @colocated_ess: all the APs that share the same ESS as the reported AP are
96  *	colocated and can be discovered via legacy bands.
97  * @short_ssid_valid: short_ssid is valid and can be used
98  * @short_ssid: the short SSID for this SSID
99  */
100 struct cfg80211_colocated_ap {
101 	struct list_head list;
102 	u8 bssid[ETH_ALEN];
103 	u8 ssid[IEEE80211_MAX_SSID_LEN];
104 	size_t ssid_len;
105 	u32 short_ssid;
106 	u32 center_freq;
107 	u8 unsolicited_probe:1,
108 	   oct_recommended:1,
109 	   same_ssid:1,
110 	   multi_bss:1,
111 	   transmitted_bssid:1,
112 	   colocated_ess:1,
113 	   short_ssid_valid:1;
114 };
115 
116 static void bss_free(struct cfg80211_internal_bss *bss)
117 {
118 	struct cfg80211_bss_ies *ies;
119 
120 	if (WARN_ON(atomic_read(&bss->hold)))
121 		return;
122 
123 	ies = (void *)rcu_access_pointer(bss->pub.beacon_ies);
124 	if (ies && !bss->pub.hidden_beacon_bss)
125 		kfree_rcu(ies, rcu_head);
126 	ies = (void *)rcu_access_pointer(bss->pub.proberesp_ies);
127 	if (ies)
128 		kfree_rcu(ies, rcu_head);
129 
130 	/*
131 	 * This happens when the module is removed, it doesn't
132 	 * really matter any more save for completeness
133 	 */
134 	if (!list_empty(&bss->hidden_list))
135 		list_del(&bss->hidden_list);
136 
137 	kfree(bss);
138 }
139 
140 static inline void bss_ref_get(struct cfg80211_registered_device *rdev,
141 			       struct cfg80211_internal_bss *bss)
142 {
143 	lockdep_assert_held(&rdev->bss_lock);
144 
145 	bss->refcount++;
146 
147 	if (bss->pub.hidden_beacon_bss)
148 		bss_from_pub(bss->pub.hidden_beacon_bss)->refcount++;
149 
150 	if (bss->pub.transmitted_bss)
151 		bss_from_pub(bss->pub.transmitted_bss)->refcount++;
152 }
153 
154 static inline void bss_ref_put(struct cfg80211_registered_device *rdev,
155 			       struct cfg80211_internal_bss *bss)
156 {
157 	lockdep_assert_held(&rdev->bss_lock);
158 
159 	if (bss->pub.hidden_beacon_bss) {
160 		struct cfg80211_internal_bss *hbss;
161 
162 		hbss = bss_from_pub(bss->pub.hidden_beacon_bss);
163 		hbss->refcount--;
164 		if (hbss->refcount == 0)
165 			bss_free(hbss);
166 	}
167 
168 	if (bss->pub.transmitted_bss) {
169 		struct cfg80211_internal_bss *tbss;
170 
171 		tbss = bss_from_pub(bss->pub.transmitted_bss);
172 		tbss->refcount--;
173 		if (tbss->refcount == 0)
174 			bss_free(tbss);
175 	}
176 
177 	bss->refcount--;
178 	if (bss->refcount == 0)
179 		bss_free(bss);
180 }
181 
182 static bool __cfg80211_unlink_bss(struct cfg80211_registered_device *rdev,
183 				  struct cfg80211_internal_bss *bss)
184 {
185 	lockdep_assert_held(&rdev->bss_lock);
186 
187 	if (!list_empty(&bss->hidden_list)) {
188 		/*
189 		 * don't remove the beacon entry if it has
190 		 * probe responses associated with it
191 		 */
192 		if (!bss->pub.hidden_beacon_bss)
193 			return false;
194 		/*
195 		 * if it's a probe response entry break its
196 		 * link to the other entries in the group
197 		 */
198 		list_del_init(&bss->hidden_list);
199 	}
200 
201 	list_del_init(&bss->list);
202 	list_del_init(&bss->pub.nontrans_list);
203 	rb_erase(&bss->rbn, &rdev->bss_tree);
204 	rdev->bss_entries--;
205 	WARN_ONCE((rdev->bss_entries == 0) ^ list_empty(&rdev->bss_list),
206 		  "rdev bss entries[%d]/list[empty:%d] corruption\n",
207 		  rdev->bss_entries, list_empty(&rdev->bss_list));
208 	bss_ref_put(rdev, bss);
209 	return true;
210 }
211 
212 bool cfg80211_is_element_inherited(const struct element *elem,
213 				   const struct element *non_inherit_elem)
214 {
215 	u8 id_len, ext_id_len, i, loop_len, id;
216 	const u8 *list;
217 
218 	if (elem->id == WLAN_EID_MULTIPLE_BSSID)
219 		return false;
220 
221 	if (!non_inherit_elem || non_inherit_elem->datalen < 2)
222 		return true;
223 
224 	/*
225 	 * non inheritance element format is:
226 	 * ext ID (56) | IDs list len | list | extension IDs list len | list
227 	 * Both lists are optional. Both lengths are mandatory.
228 	 * This means valid length is:
229 	 * elem_len = 1 (extension ID) + 2 (list len fields) + list lengths
230 	 */
231 	id_len = non_inherit_elem->data[1];
232 	if (non_inherit_elem->datalen < 3 + id_len)
233 		return true;
234 
235 	ext_id_len = non_inherit_elem->data[2 + id_len];
236 	if (non_inherit_elem->datalen < 3 + id_len + ext_id_len)
237 		return true;
238 
239 	if (elem->id == WLAN_EID_EXTENSION) {
240 		if (!ext_id_len)
241 			return true;
242 		loop_len = ext_id_len;
243 		list = &non_inherit_elem->data[3 + id_len];
244 		id = elem->data[0];
245 	} else {
246 		if (!id_len)
247 			return true;
248 		loop_len = id_len;
249 		list = &non_inherit_elem->data[2];
250 		id = elem->id;
251 	}
252 
253 	for (i = 0; i < loop_len; i++) {
254 		if (list[i] == id)
255 			return false;
256 	}
257 
258 	return true;
259 }
260 EXPORT_SYMBOL(cfg80211_is_element_inherited);
261 
262 static size_t cfg80211_gen_new_ie(const u8 *ie, size_t ielen,
263 				  const u8 *subelement, size_t subie_len,
264 				  u8 *new_ie, gfp_t gfp)
265 {
266 	u8 *pos, *tmp;
267 	const u8 *tmp_old, *tmp_new;
268 	const struct element *non_inherit_elem;
269 	u8 *sub_copy;
270 
271 	/* copy subelement as we need to change its content to
272 	 * mark an ie after it is processed.
273 	 */
274 	sub_copy = kmemdup(subelement, subie_len, gfp);
275 	if (!sub_copy)
276 		return 0;
277 
278 	pos = &new_ie[0];
279 
280 	/* set new ssid */
281 	tmp_new = cfg80211_find_ie(WLAN_EID_SSID, sub_copy, subie_len);
282 	if (tmp_new) {
283 		memcpy(pos, tmp_new, tmp_new[1] + 2);
284 		pos += (tmp_new[1] + 2);
285 	}
286 
287 	/* get non inheritance list if exists */
288 	non_inherit_elem =
289 		cfg80211_find_ext_elem(WLAN_EID_EXT_NON_INHERITANCE,
290 				       sub_copy, subie_len);
291 
292 	/* go through IEs in ie (skip SSID) and subelement,
293 	 * merge them into new_ie
294 	 */
295 	tmp_old = cfg80211_find_ie(WLAN_EID_SSID, ie, ielen);
296 	tmp_old = (tmp_old) ? tmp_old + tmp_old[1] + 2 : ie;
297 
298 	while (tmp_old + 2 - ie <= ielen &&
299 	       tmp_old + tmp_old[1] + 2 - ie <= ielen) {
300 		if (tmp_old[0] == 0) {
301 			tmp_old++;
302 			continue;
303 		}
304 
305 		if (tmp_old[0] == WLAN_EID_EXTENSION)
306 			tmp = (u8 *)cfg80211_find_ext_ie(tmp_old[2], sub_copy,
307 							 subie_len);
308 		else
309 			tmp = (u8 *)cfg80211_find_ie(tmp_old[0], sub_copy,
310 						     subie_len);
311 
312 		if (!tmp) {
313 			const struct element *old_elem = (void *)tmp_old;
314 
315 			/* ie in old ie but not in subelement */
316 			if (cfg80211_is_element_inherited(old_elem,
317 							  non_inherit_elem)) {
318 				memcpy(pos, tmp_old, tmp_old[1] + 2);
319 				pos += tmp_old[1] + 2;
320 			}
321 		} else {
322 			/* ie in transmitting ie also in subelement,
323 			 * copy from subelement and flag the ie in subelement
324 			 * as copied (by setting eid field to WLAN_EID_SSID,
325 			 * which is skipped anyway).
326 			 * For vendor ie, compare OUI + type + subType to
327 			 * determine if they are the same ie.
328 			 */
329 			if (tmp_old[0] == WLAN_EID_VENDOR_SPECIFIC) {
330 				if (tmp_old[1] >= 5 && tmp[1] >= 5 &&
331 				    !memcmp(tmp_old + 2, tmp + 2, 5)) {
332 					/* same vendor ie, copy from
333 					 * subelement
334 					 */
335 					memcpy(pos, tmp, tmp[1] + 2);
336 					pos += tmp[1] + 2;
337 					tmp[0] = WLAN_EID_SSID;
338 				} else {
339 					memcpy(pos, tmp_old, tmp_old[1] + 2);
340 					pos += tmp_old[1] + 2;
341 				}
342 			} else {
343 				/* copy ie from subelement into new ie */
344 				memcpy(pos, tmp, tmp[1] + 2);
345 				pos += tmp[1] + 2;
346 				tmp[0] = WLAN_EID_SSID;
347 			}
348 		}
349 
350 		if (tmp_old + tmp_old[1] + 2 - ie == ielen)
351 			break;
352 
353 		tmp_old += tmp_old[1] + 2;
354 	}
355 
356 	/* go through subelement again to check if there is any ie not
357 	 * copied to new ie, skip ssid, capability, bssid-index ie
358 	 */
359 	tmp_new = sub_copy;
360 	while (tmp_new + 2 - sub_copy <= subie_len &&
361 	       tmp_new + tmp_new[1] + 2 - sub_copy <= subie_len) {
362 		if (!(tmp_new[0] == WLAN_EID_NON_TX_BSSID_CAP ||
363 		      tmp_new[0] == WLAN_EID_SSID)) {
364 			memcpy(pos, tmp_new, tmp_new[1] + 2);
365 			pos += tmp_new[1] + 2;
366 		}
367 		if (tmp_new + tmp_new[1] + 2 - sub_copy == subie_len)
368 			break;
369 		tmp_new += tmp_new[1] + 2;
370 	}
371 
372 	kfree(sub_copy);
373 	return pos - new_ie;
374 }
375 
376 static bool is_bss(struct cfg80211_bss *a, const u8 *bssid,
377 		   const u8 *ssid, size_t ssid_len)
378 {
379 	const struct cfg80211_bss_ies *ies;
380 	const struct element *ssid_elem;
381 
382 	if (bssid && !ether_addr_equal(a->bssid, bssid))
383 		return false;
384 
385 	if (!ssid)
386 		return true;
387 
388 	ies = rcu_access_pointer(a->ies);
389 	if (!ies)
390 		return false;
391 	ssid_elem = cfg80211_find_elem(WLAN_EID_SSID, ies->data, ies->len);
392 	if (!ssid_elem)
393 		return false;
394 	if (ssid_elem->datalen != ssid_len)
395 		return false;
396 	return memcmp(ssid_elem->data, ssid, ssid_len) == 0;
397 }
398 
399 static int
400 cfg80211_add_nontrans_list(struct cfg80211_bss *trans_bss,
401 			   struct cfg80211_bss *nontrans_bss)
402 {
403 	const struct element *ssid_elem;
404 	struct cfg80211_bss *bss = NULL;
405 
406 	rcu_read_lock();
407 	ssid_elem = ieee80211_bss_get_elem(nontrans_bss, WLAN_EID_SSID);
408 	if (!ssid_elem) {
409 		rcu_read_unlock();
410 		return -EINVAL;
411 	}
412 
413 	/* check if nontrans_bss is in the list */
414 	list_for_each_entry(bss, &trans_bss->nontrans_list, nontrans_list) {
415 		if (is_bss(bss, nontrans_bss->bssid, ssid_elem->data,
416 			   ssid_elem->datalen)) {
417 			rcu_read_unlock();
418 			return 0;
419 		}
420 	}
421 
422 	rcu_read_unlock();
423 
424 	/*
425 	 * This is a bit weird - it's not on the list, but already on another
426 	 * one! The only way that could happen is if there's some BSSID/SSID
427 	 * shared by multiple APs in their multi-BSSID profiles, potentially
428 	 * with hidden SSID mixed in ... ignore it.
429 	 */
430 	if (!list_empty(&nontrans_bss->nontrans_list))
431 		return -EINVAL;
432 
433 	/* add to the list */
434 	list_add_tail(&nontrans_bss->nontrans_list, &trans_bss->nontrans_list);
435 	return 0;
436 }
437 
438 static void __cfg80211_bss_expire(struct cfg80211_registered_device *rdev,
439 				  unsigned long expire_time)
440 {
441 	struct cfg80211_internal_bss *bss, *tmp;
442 	bool expired = false;
443 
444 	lockdep_assert_held(&rdev->bss_lock);
445 
446 	list_for_each_entry_safe(bss, tmp, &rdev->bss_list, list) {
447 		if (atomic_read(&bss->hold))
448 			continue;
449 		if (!time_after(expire_time, bss->ts))
450 			continue;
451 
452 		if (__cfg80211_unlink_bss(rdev, bss))
453 			expired = true;
454 	}
455 
456 	if (expired)
457 		rdev->bss_generation++;
458 }
459 
460 static bool cfg80211_bss_expire_oldest(struct cfg80211_registered_device *rdev)
461 {
462 	struct cfg80211_internal_bss *bss, *oldest = NULL;
463 	bool ret;
464 
465 	lockdep_assert_held(&rdev->bss_lock);
466 
467 	list_for_each_entry(bss, &rdev->bss_list, list) {
468 		if (atomic_read(&bss->hold))
469 			continue;
470 
471 		if (!list_empty(&bss->hidden_list) &&
472 		    !bss->pub.hidden_beacon_bss)
473 			continue;
474 
475 		if (oldest && time_before(oldest->ts, bss->ts))
476 			continue;
477 		oldest = bss;
478 	}
479 
480 	if (WARN_ON(!oldest))
481 		return false;
482 
483 	/*
484 	 * The callers make sure to increase rdev->bss_generation if anything
485 	 * gets removed (and a new entry added), so there's no need to also do
486 	 * it here.
487 	 */
488 
489 	ret = __cfg80211_unlink_bss(rdev, oldest);
490 	WARN_ON(!ret);
491 	return ret;
492 }
493 
494 static u8 cfg80211_parse_bss_param(u8 data,
495 				   struct cfg80211_colocated_ap *coloc_ap)
496 {
497 	coloc_ap->oct_recommended =
498 		u8_get_bits(data, IEEE80211_RNR_TBTT_PARAMS_OCT_RECOMMENDED);
499 	coloc_ap->same_ssid =
500 		u8_get_bits(data, IEEE80211_RNR_TBTT_PARAMS_SAME_SSID);
501 	coloc_ap->multi_bss =
502 		u8_get_bits(data, IEEE80211_RNR_TBTT_PARAMS_MULTI_BSSID);
503 	coloc_ap->transmitted_bssid =
504 		u8_get_bits(data, IEEE80211_RNR_TBTT_PARAMS_TRANSMITTED_BSSID);
505 	coloc_ap->unsolicited_probe =
506 		u8_get_bits(data, IEEE80211_RNR_TBTT_PARAMS_PROBE_ACTIVE);
507 	coloc_ap->colocated_ess =
508 		u8_get_bits(data, IEEE80211_RNR_TBTT_PARAMS_COLOC_ESS);
509 
510 	return u8_get_bits(data, IEEE80211_RNR_TBTT_PARAMS_COLOC_AP);
511 }
512 
513 static int cfg80211_calc_short_ssid(const struct cfg80211_bss_ies *ies,
514 				    const struct element **elem, u32 *s_ssid)
515 {
516 
517 	*elem = cfg80211_find_elem(WLAN_EID_SSID, ies->data, ies->len);
518 	if (!*elem || (*elem)->datalen > IEEE80211_MAX_SSID_LEN)
519 		return -EINVAL;
520 
521 	*s_ssid = ~crc32_le(~0, (*elem)->data, (*elem)->datalen);
522 	return 0;
523 }
524 
525 static void cfg80211_free_coloc_ap_list(struct list_head *coloc_ap_list)
526 {
527 	struct cfg80211_colocated_ap *ap, *tmp_ap;
528 
529 	list_for_each_entry_safe(ap, tmp_ap, coloc_ap_list, list) {
530 		list_del(&ap->list);
531 		kfree(ap);
532 	}
533 }
534 
535 static int cfg80211_parse_ap_info(struct cfg80211_colocated_ap *entry,
536 				  const u8 *pos, u8 length,
537 				  const struct element *ssid_elem,
538 				  int s_ssid_tmp)
539 {
540 	/* skip the TBTT offset */
541 	pos++;
542 
543 	memcpy(entry->bssid, pos, ETH_ALEN);
544 	pos += ETH_ALEN;
545 
546 	if (length >= IEEE80211_TBTT_INFO_OFFSET_BSSID_SSSID_BSS_PARAM) {
547 		memcpy(&entry->short_ssid, pos,
548 		       sizeof(entry->short_ssid));
549 		entry->short_ssid_valid = true;
550 		pos += 4;
551 	}
552 
553 	/* skip non colocated APs */
554 	if (!cfg80211_parse_bss_param(*pos, entry))
555 		return -EINVAL;
556 	pos++;
557 
558 	if (length == IEEE80211_TBTT_INFO_OFFSET_BSSID_BSS_PARAM) {
559 		/*
560 		 * no information about the short ssid. Consider the entry valid
561 		 * for now. It would later be dropped in case there are explicit
562 		 * SSIDs that need to be matched
563 		 */
564 		if (!entry->same_ssid)
565 			return 0;
566 	}
567 
568 	if (entry->same_ssid) {
569 		entry->short_ssid = s_ssid_tmp;
570 		entry->short_ssid_valid = true;
571 
572 		/*
573 		 * This is safe because we validate datalen in
574 		 * cfg80211_parse_colocated_ap(), before calling this
575 		 * function.
576 		 */
577 		memcpy(&entry->ssid, &ssid_elem->data,
578 		       ssid_elem->datalen);
579 		entry->ssid_len = ssid_elem->datalen;
580 	}
581 	return 0;
582 }
583 
584 static int cfg80211_parse_colocated_ap(const struct cfg80211_bss_ies *ies,
585 				       struct list_head *list)
586 {
587 	struct ieee80211_neighbor_ap_info *ap_info;
588 	const struct element *elem, *ssid_elem;
589 	const u8 *pos, *end;
590 	u32 s_ssid_tmp;
591 	int n_coloc = 0, ret;
592 	LIST_HEAD(ap_list);
593 
594 	elem = cfg80211_find_elem(WLAN_EID_REDUCED_NEIGHBOR_REPORT, ies->data,
595 				  ies->len);
596 	if (!elem)
597 		return 0;
598 
599 	pos = elem->data;
600 	end = pos + elem->datalen;
601 
602 	ret = cfg80211_calc_short_ssid(ies, &ssid_elem, &s_ssid_tmp);
603 	if (ret)
604 		return ret;
605 
606 	/* RNR IE may contain more than one NEIGHBOR_AP_INFO */
607 	while (pos + sizeof(*ap_info) <= end) {
608 		enum nl80211_band band;
609 		int freq;
610 		u8 length, i, count;
611 
612 		ap_info = (void *)pos;
613 		count = u8_get_bits(ap_info->tbtt_info_hdr,
614 				    IEEE80211_AP_INFO_TBTT_HDR_COUNT) + 1;
615 		length = ap_info->tbtt_info_len;
616 
617 		pos += sizeof(*ap_info);
618 
619 		if (!ieee80211_operating_class_to_band(ap_info->op_class,
620 						       &band))
621 			break;
622 
623 		freq = ieee80211_channel_to_frequency(ap_info->channel, band);
624 
625 		if (end - pos < count * length)
626 			break;
627 
628 		/*
629 		 * TBTT info must include bss param + BSSID +
630 		 * (short SSID or same_ssid bit to be set).
631 		 * ignore other options, and move to the
632 		 * next AP info
633 		 */
634 		if (band != NL80211_BAND_6GHZ ||
635 		    (length != IEEE80211_TBTT_INFO_OFFSET_BSSID_BSS_PARAM &&
636 		     length < IEEE80211_TBTT_INFO_OFFSET_BSSID_SSSID_BSS_PARAM)) {
637 			pos += count * length;
638 			continue;
639 		}
640 
641 		for (i = 0; i < count; i++) {
642 			struct cfg80211_colocated_ap *entry;
643 
644 			entry = kzalloc(sizeof(*entry) + IEEE80211_MAX_SSID_LEN,
645 					GFP_ATOMIC);
646 
647 			if (!entry)
648 				break;
649 
650 			entry->center_freq = freq;
651 
652 			if (!cfg80211_parse_ap_info(entry, pos, length,
653 						    ssid_elem, s_ssid_tmp)) {
654 				n_coloc++;
655 				list_add_tail(&entry->list, &ap_list);
656 			} else {
657 				kfree(entry);
658 			}
659 
660 			pos += length;
661 		}
662 	}
663 
664 	if (pos != end) {
665 		cfg80211_free_coloc_ap_list(&ap_list);
666 		return 0;
667 	}
668 
669 	list_splice_tail(&ap_list, list);
670 	return n_coloc;
671 }
672 
673 static  void cfg80211_scan_req_add_chan(struct cfg80211_scan_request *request,
674 					struct ieee80211_channel *chan,
675 					bool add_to_6ghz)
676 {
677 	int i;
678 	u32 n_channels = request->n_channels;
679 	struct cfg80211_scan_6ghz_params *params =
680 		&request->scan_6ghz_params[request->n_6ghz_params];
681 
682 	for (i = 0; i < n_channels; i++) {
683 		if (request->channels[i] == chan) {
684 			if (add_to_6ghz)
685 				params->channel_idx = i;
686 			return;
687 		}
688 	}
689 
690 	request->channels[n_channels] = chan;
691 	if (add_to_6ghz)
692 		request->scan_6ghz_params[request->n_6ghz_params].channel_idx =
693 			n_channels;
694 
695 	request->n_channels++;
696 }
697 
698 static bool cfg80211_find_ssid_match(struct cfg80211_colocated_ap *ap,
699 				     struct cfg80211_scan_request *request)
700 {
701 	int i;
702 	u32 s_ssid;
703 
704 	for (i = 0; i < request->n_ssids; i++) {
705 		/* wildcard ssid in the scan request */
706 		if (!request->ssids[i].ssid_len) {
707 			if (ap->multi_bss && !ap->transmitted_bssid)
708 				continue;
709 
710 			return true;
711 		}
712 
713 		if (ap->ssid_len &&
714 		    ap->ssid_len == request->ssids[i].ssid_len) {
715 			if (!memcmp(request->ssids[i].ssid, ap->ssid,
716 				    ap->ssid_len))
717 				return true;
718 		} else if (ap->short_ssid_valid) {
719 			s_ssid = ~crc32_le(~0, request->ssids[i].ssid,
720 					   request->ssids[i].ssid_len);
721 
722 			if (ap->short_ssid == s_ssid)
723 				return true;
724 		}
725 	}
726 
727 	return false;
728 }
729 
730 static int cfg80211_scan_6ghz(struct cfg80211_registered_device *rdev)
731 {
732 	u8 i;
733 	struct cfg80211_colocated_ap *ap;
734 	int n_channels, count = 0, err;
735 	struct cfg80211_scan_request *request, *rdev_req = rdev->scan_req;
736 	LIST_HEAD(coloc_ap_list);
737 	bool need_scan_psc = true;
738 	const struct ieee80211_sband_iftype_data *iftd;
739 
740 	rdev_req->scan_6ghz = true;
741 
742 	if (!rdev->wiphy.bands[NL80211_BAND_6GHZ])
743 		return -EOPNOTSUPP;
744 
745 	iftd = ieee80211_get_sband_iftype_data(rdev->wiphy.bands[NL80211_BAND_6GHZ],
746 					       rdev_req->wdev->iftype);
747 	if (!iftd || !iftd->he_cap.has_he)
748 		return -EOPNOTSUPP;
749 
750 	n_channels = rdev->wiphy.bands[NL80211_BAND_6GHZ]->n_channels;
751 
752 	if (rdev_req->flags & NL80211_SCAN_FLAG_COLOCATED_6GHZ) {
753 		struct cfg80211_internal_bss *intbss;
754 
755 		spin_lock_bh(&rdev->bss_lock);
756 		list_for_each_entry(intbss, &rdev->bss_list, list) {
757 			struct cfg80211_bss *res = &intbss->pub;
758 			const struct cfg80211_bss_ies *ies;
759 
760 			ies = rcu_access_pointer(res->ies);
761 			count += cfg80211_parse_colocated_ap(ies,
762 							     &coloc_ap_list);
763 		}
764 		spin_unlock_bh(&rdev->bss_lock);
765 	}
766 
767 	request = kzalloc(struct_size(request, channels, n_channels) +
768 			  sizeof(*request->scan_6ghz_params) * count +
769 			  sizeof(*request->ssids) * rdev_req->n_ssids,
770 			  GFP_KERNEL);
771 	if (!request) {
772 		cfg80211_free_coloc_ap_list(&coloc_ap_list);
773 		return -ENOMEM;
774 	}
775 
776 	*request = *rdev_req;
777 	request->n_channels = 0;
778 	request->scan_6ghz_params =
779 		(void *)&request->channels[n_channels];
780 
781 	/*
782 	 * PSC channels should not be scanned in case of direct scan with 1 SSID
783 	 * and at least one of the reported co-located APs with same SSID
784 	 * indicating that all APs in the same ESS are co-located
785 	 */
786 	if (count && request->n_ssids == 1 && request->ssids[0].ssid_len) {
787 		list_for_each_entry(ap, &coloc_ap_list, list) {
788 			if (ap->colocated_ess &&
789 			    cfg80211_find_ssid_match(ap, request)) {
790 				need_scan_psc = false;
791 				break;
792 			}
793 		}
794 	}
795 
796 	/*
797 	 * add to the scan request the channels that need to be scanned
798 	 * regardless of the collocated APs (PSC channels or all channels
799 	 * in case that NL80211_SCAN_FLAG_COLOCATED_6GHZ is not set)
800 	 */
801 	for (i = 0; i < rdev_req->n_channels; i++) {
802 		if (rdev_req->channels[i]->band == NL80211_BAND_6GHZ &&
803 		    ((need_scan_psc &&
804 		      cfg80211_channel_is_psc(rdev_req->channels[i])) ||
805 		     !(rdev_req->flags & NL80211_SCAN_FLAG_COLOCATED_6GHZ))) {
806 			cfg80211_scan_req_add_chan(request,
807 						   rdev_req->channels[i],
808 						   false);
809 		}
810 	}
811 
812 	if (!(rdev_req->flags & NL80211_SCAN_FLAG_COLOCATED_6GHZ))
813 		goto skip;
814 
815 	list_for_each_entry(ap, &coloc_ap_list, list) {
816 		bool found = false;
817 		struct cfg80211_scan_6ghz_params *scan_6ghz_params =
818 			&request->scan_6ghz_params[request->n_6ghz_params];
819 		struct ieee80211_channel *chan =
820 			ieee80211_get_channel(&rdev->wiphy, ap->center_freq);
821 
822 		if (!chan || chan->flags & IEEE80211_CHAN_DISABLED)
823 			continue;
824 
825 		for (i = 0; i < rdev_req->n_channels; i++) {
826 			if (rdev_req->channels[i] == chan)
827 				found = true;
828 		}
829 
830 		if (!found)
831 			continue;
832 
833 		if (request->n_ssids > 0 &&
834 		    !cfg80211_find_ssid_match(ap, request))
835 			continue;
836 
837 		if (!request->n_ssids && ap->multi_bss && !ap->transmitted_bssid)
838 			continue;
839 
840 		cfg80211_scan_req_add_chan(request, chan, true);
841 		memcpy(scan_6ghz_params->bssid, ap->bssid, ETH_ALEN);
842 		scan_6ghz_params->short_ssid = ap->short_ssid;
843 		scan_6ghz_params->short_ssid_valid = ap->short_ssid_valid;
844 		scan_6ghz_params->unsolicited_probe = ap->unsolicited_probe;
845 
846 		/*
847 		 * If a PSC channel is added to the scan and 'need_scan_psc' is
848 		 * set to false, then all the APs that the scan logic is
849 		 * interested with on the channel are collocated and thus there
850 		 * is no need to perform the initial PSC channel listen.
851 		 */
852 		if (cfg80211_channel_is_psc(chan) && !need_scan_psc)
853 			scan_6ghz_params->psc_no_listen = true;
854 
855 		request->n_6ghz_params++;
856 	}
857 
858 skip:
859 	cfg80211_free_coloc_ap_list(&coloc_ap_list);
860 
861 	if (request->n_channels) {
862 		struct cfg80211_scan_request *old = rdev->int_scan_req;
863 		rdev->int_scan_req = request;
864 
865 		/*
866 		 * Add the ssids from the parent scan request to the new scan
867 		 * request, so the driver would be able to use them in its
868 		 * probe requests to discover hidden APs on PSC channels.
869 		 */
870 		request->ssids = (void *)&request->channels[request->n_channels];
871 		request->n_ssids = rdev_req->n_ssids;
872 		memcpy(request->ssids, rdev_req->ssids, sizeof(*request->ssids) *
873 		       request->n_ssids);
874 
875 		/*
876 		 * If this scan follows a previous scan, save the scan start
877 		 * info from the first part of the scan
878 		 */
879 		if (old)
880 			rdev->int_scan_req->info = old->info;
881 
882 		err = rdev_scan(rdev, request);
883 		if (err) {
884 			rdev->int_scan_req = old;
885 			kfree(request);
886 		} else {
887 			kfree(old);
888 		}
889 
890 		return err;
891 	}
892 
893 	kfree(request);
894 	return -EINVAL;
895 }
896 
897 int cfg80211_scan(struct cfg80211_registered_device *rdev)
898 {
899 	struct cfg80211_scan_request *request;
900 	struct cfg80211_scan_request *rdev_req = rdev->scan_req;
901 	u32 n_channels = 0, idx, i;
902 
903 	if (!(rdev->wiphy.flags & WIPHY_FLAG_SPLIT_SCAN_6GHZ))
904 		return rdev_scan(rdev, rdev_req);
905 
906 	for (i = 0; i < rdev_req->n_channels; i++) {
907 		if (rdev_req->channels[i]->band != NL80211_BAND_6GHZ)
908 			n_channels++;
909 	}
910 
911 	if (!n_channels)
912 		return cfg80211_scan_6ghz(rdev);
913 
914 	request = kzalloc(struct_size(request, channels, n_channels),
915 			  GFP_KERNEL);
916 	if (!request)
917 		return -ENOMEM;
918 
919 	*request = *rdev_req;
920 	request->n_channels = n_channels;
921 
922 	for (i = idx = 0; i < rdev_req->n_channels; i++) {
923 		if (rdev_req->channels[i]->band != NL80211_BAND_6GHZ)
924 			request->channels[idx++] = rdev_req->channels[i];
925 	}
926 
927 	rdev_req->scan_6ghz = false;
928 	rdev->int_scan_req = request;
929 	return rdev_scan(rdev, request);
930 }
931 
932 void ___cfg80211_scan_done(struct cfg80211_registered_device *rdev,
933 			   bool send_message)
934 {
935 	struct cfg80211_scan_request *request, *rdev_req;
936 	struct wireless_dev *wdev;
937 	struct sk_buff *msg;
938 #ifdef CONFIG_CFG80211_WEXT
939 	union iwreq_data wrqu;
940 #endif
941 
942 	lockdep_assert_held(&rdev->wiphy.mtx);
943 
944 	if (rdev->scan_msg) {
945 		nl80211_send_scan_msg(rdev, rdev->scan_msg);
946 		rdev->scan_msg = NULL;
947 		return;
948 	}
949 
950 	rdev_req = rdev->scan_req;
951 	if (!rdev_req)
952 		return;
953 
954 	wdev = rdev_req->wdev;
955 	request = rdev->int_scan_req ? rdev->int_scan_req : rdev_req;
956 
957 	if (wdev_running(wdev) &&
958 	    (rdev->wiphy.flags & WIPHY_FLAG_SPLIT_SCAN_6GHZ) &&
959 	    !rdev_req->scan_6ghz && !request->info.aborted &&
960 	    !cfg80211_scan_6ghz(rdev))
961 		return;
962 
963 	/*
964 	 * This must be before sending the other events!
965 	 * Otherwise, wpa_supplicant gets completely confused with
966 	 * wext events.
967 	 */
968 	if (wdev->netdev)
969 		cfg80211_sme_scan_done(wdev->netdev);
970 
971 	if (!request->info.aborted &&
972 	    request->flags & NL80211_SCAN_FLAG_FLUSH) {
973 		/* flush entries from previous scans */
974 		spin_lock_bh(&rdev->bss_lock);
975 		__cfg80211_bss_expire(rdev, request->scan_start);
976 		spin_unlock_bh(&rdev->bss_lock);
977 	}
978 
979 	msg = nl80211_build_scan_msg(rdev, wdev, request->info.aborted);
980 
981 #ifdef CONFIG_CFG80211_WEXT
982 	if (wdev->netdev && !request->info.aborted) {
983 		memset(&wrqu, 0, sizeof(wrqu));
984 
985 		wireless_send_event(wdev->netdev, SIOCGIWSCAN, &wrqu, NULL);
986 	}
987 #endif
988 
989 	dev_put(wdev->netdev);
990 
991 	kfree(rdev->int_scan_req);
992 	rdev->int_scan_req = NULL;
993 
994 	kfree(rdev->scan_req);
995 	rdev->scan_req = NULL;
996 
997 	if (!send_message)
998 		rdev->scan_msg = msg;
999 	else
1000 		nl80211_send_scan_msg(rdev, msg);
1001 }
1002 
1003 void __cfg80211_scan_done(struct work_struct *wk)
1004 {
1005 	struct cfg80211_registered_device *rdev;
1006 
1007 	rdev = container_of(wk, struct cfg80211_registered_device,
1008 			    scan_done_wk);
1009 
1010 	wiphy_lock(&rdev->wiphy);
1011 	___cfg80211_scan_done(rdev, true);
1012 	wiphy_unlock(&rdev->wiphy);
1013 }
1014 
1015 void cfg80211_scan_done(struct cfg80211_scan_request *request,
1016 			struct cfg80211_scan_info *info)
1017 {
1018 	struct cfg80211_scan_info old_info = request->info;
1019 
1020 	trace_cfg80211_scan_done(request, info);
1021 	WARN_ON(request != wiphy_to_rdev(request->wiphy)->scan_req &&
1022 		request != wiphy_to_rdev(request->wiphy)->int_scan_req);
1023 
1024 	request->info = *info;
1025 
1026 	/*
1027 	 * In case the scan is split, the scan_start_tsf and tsf_bssid should
1028 	 * be of the first part. In such a case old_info.scan_start_tsf should
1029 	 * be non zero.
1030 	 */
1031 	if (request->scan_6ghz && old_info.scan_start_tsf) {
1032 		request->info.scan_start_tsf = old_info.scan_start_tsf;
1033 		memcpy(request->info.tsf_bssid, old_info.tsf_bssid,
1034 		       sizeof(request->info.tsf_bssid));
1035 	}
1036 
1037 	request->notified = true;
1038 	queue_work(cfg80211_wq, &wiphy_to_rdev(request->wiphy)->scan_done_wk);
1039 }
1040 EXPORT_SYMBOL(cfg80211_scan_done);
1041 
1042 void cfg80211_add_sched_scan_req(struct cfg80211_registered_device *rdev,
1043 				 struct cfg80211_sched_scan_request *req)
1044 {
1045 	lockdep_assert_held(&rdev->wiphy.mtx);
1046 
1047 	list_add_rcu(&req->list, &rdev->sched_scan_req_list);
1048 }
1049 
1050 static void cfg80211_del_sched_scan_req(struct cfg80211_registered_device *rdev,
1051 					struct cfg80211_sched_scan_request *req)
1052 {
1053 	lockdep_assert_held(&rdev->wiphy.mtx);
1054 
1055 	list_del_rcu(&req->list);
1056 	kfree_rcu(req, rcu_head);
1057 }
1058 
1059 static struct cfg80211_sched_scan_request *
1060 cfg80211_find_sched_scan_req(struct cfg80211_registered_device *rdev, u64 reqid)
1061 {
1062 	struct cfg80211_sched_scan_request *pos;
1063 
1064 	list_for_each_entry_rcu(pos, &rdev->sched_scan_req_list, list,
1065 				lockdep_is_held(&rdev->wiphy.mtx)) {
1066 		if (pos->reqid == reqid)
1067 			return pos;
1068 	}
1069 	return NULL;
1070 }
1071 
1072 /*
1073  * Determines if a scheduled scan request can be handled. When a legacy
1074  * scheduled scan is running no other scheduled scan is allowed regardless
1075  * whether the request is for legacy or multi-support scan. When a multi-support
1076  * scheduled scan is running a request for legacy scan is not allowed. In this
1077  * case a request for multi-support scan can be handled if resources are
1078  * available, ie. struct wiphy::max_sched_scan_reqs limit is not yet reached.
1079  */
1080 int cfg80211_sched_scan_req_possible(struct cfg80211_registered_device *rdev,
1081 				     bool want_multi)
1082 {
1083 	struct cfg80211_sched_scan_request *pos;
1084 	int i = 0;
1085 
1086 	list_for_each_entry(pos, &rdev->sched_scan_req_list, list) {
1087 		/* request id zero means legacy in progress */
1088 		if (!i && !pos->reqid)
1089 			return -EINPROGRESS;
1090 		i++;
1091 	}
1092 
1093 	if (i) {
1094 		/* no legacy allowed when multi request(s) are active */
1095 		if (!want_multi)
1096 			return -EINPROGRESS;
1097 
1098 		/* resource limit reached */
1099 		if (i == rdev->wiphy.max_sched_scan_reqs)
1100 			return -ENOSPC;
1101 	}
1102 	return 0;
1103 }
1104 
1105 void cfg80211_sched_scan_results_wk(struct work_struct *work)
1106 {
1107 	struct cfg80211_registered_device *rdev;
1108 	struct cfg80211_sched_scan_request *req, *tmp;
1109 
1110 	rdev = container_of(work, struct cfg80211_registered_device,
1111 			   sched_scan_res_wk);
1112 
1113 	wiphy_lock(&rdev->wiphy);
1114 	list_for_each_entry_safe(req, tmp, &rdev->sched_scan_req_list, list) {
1115 		if (req->report_results) {
1116 			req->report_results = false;
1117 			if (req->flags & NL80211_SCAN_FLAG_FLUSH) {
1118 				/* flush entries from previous scans */
1119 				spin_lock_bh(&rdev->bss_lock);
1120 				__cfg80211_bss_expire(rdev, req->scan_start);
1121 				spin_unlock_bh(&rdev->bss_lock);
1122 				req->scan_start = jiffies;
1123 			}
1124 			nl80211_send_sched_scan(req,
1125 						NL80211_CMD_SCHED_SCAN_RESULTS);
1126 		}
1127 	}
1128 	wiphy_unlock(&rdev->wiphy);
1129 }
1130 
1131 void cfg80211_sched_scan_results(struct wiphy *wiphy, u64 reqid)
1132 {
1133 	struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
1134 	struct cfg80211_sched_scan_request *request;
1135 
1136 	trace_cfg80211_sched_scan_results(wiphy, reqid);
1137 	/* ignore if we're not scanning */
1138 
1139 	rcu_read_lock();
1140 	request = cfg80211_find_sched_scan_req(rdev, reqid);
1141 	if (request) {
1142 		request->report_results = true;
1143 		queue_work(cfg80211_wq, &rdev->sched_scan_res_wk);
1144 	}
1145 	rcu_read_unlock();
1146 }
1147 EXPORT_SYMBOL(cfg80211_sched_scan_results);
1148 
1149 void cfg80211_sched_scan_stopped_locked(struct wiphy *wiphy, u64 reqid)
1150 {
1151 	struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
1152 
1153 	lockdep_assert_held(&wiphy->mtx);
1154 
1155 	trace_cfg80211_sched_scan_stopped(wiphy, reqid);
1156 
1157 	__cfg80211_stop_sched_scan(rdev, reqid, true);
1158 }
1159 EXPORT_SYMBOL(cfg80211_sched_scan_stopped_locked);
1160 
1161 void cfg80211_sched_scan_stopped(struct wiphy *wiphy, u64 reqid)
1162 {
1163 	wiphy_lock(wiphy);
1164 	cfg80211_sched_scan_stopped_locked(wiphy, reqid);
1165 	wiphy_unlock(wiphy);
1166 }
1167 EXPORT_SYMBOL(cfg80211_sched_scan_stopped);
1168 
1169 int cfg80211_stop_sched_scan_req(struct cfg80211_registered_device *rdev,
1170 				 struct cfg80211_sched_scan_request *req,
1171 				 bool driver_initiated)
1172 {
1173 	lockdep_assert_held(&rdev->wiphy.mtx);
1174 
1175 	if (!driver_initiated) {
1176 		int err = rdev_sched_scan_stop(rdev, req->dev, req->reqid);
1177 		if (err)
1178 			return err;
1179 	}
1180 
1181 	nl80211_send_sched_scan(req, NL80211_CMD_SCHED_SCAN_STOPPED);
1182 
1183 	cfg80211_del_sched_scan_req(rdev, req);
1184 
1185 	return 0;
1186 }
1187 
1188 int __cfg80211_stop_sched_scan(struct cfg80211_registered_device *rdev,
1189 			       u64 reqid, bool driver_initiated)
1190 {
1191 	struct cfg80211_sched_scan_request *sched_scan_req;
1192 
1193 	lockdep_assert_held(&rdev->wiphy.mtx);
1194 
1195 	sched_scan_req = cfg80211_find_sched_scan_req(rdev, reqid);
1196 	if (!sched_scan_req)
1197 		return -ENOENT;
1198 
1199 	return cfg80211_stop_sched_scan_req(rdev, sched_scan_req,
1200 					    driver_initiated);
1201 }
1202 
1203 void cfg80211_bss_age(struct cfg80211_registered_device *rdev,
1204                       unsigned long age_secs)
1205 {
1206 	struct cfg80211_internal_bss *bss;
1207 	unsigned long age_jiffies = msecs_to_jiffies(age_secs * MSEC_PER_SEC);
1208 
1209 	spin_lock_bh(&rdev->bss_lock);
1210 	list_for_each_entry(bss, &rdev->bss_list, list)
1211 		bss->ts -= age_jiffies;
1212 	spin_unlock_bh(&rdev->bss_lock);
1213 }
1214 
1215 void cfg80211_bss_expire(struct cfg80211_registered_device *rdev)
1216 {
1217 	__cfg80211_bss_expire(rdev, jiffies - IEEE80211_SCAN_RESULT_EXPIRE);
1218 }
1219 
1220 void cfg80211_bss_flush(struct wiphy *wiphy)
1221 {
1222 	struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
1223 
1224 	spin_lock_bh(&rdev->bss_lock);
1225 	__cfg80211_bss_expire(rdev, jiffies);
1226 	spin_unlock_bh(&rdev->bss_lock);
1227 }
1228 EXPORT_SYMBOL(cfg80211_bss_flush);
1229 
1230 const struct element *
1231 cfg80211_find_elem_match(u8 eid, const u8 *ies, unsigned int len,
1232 			 const u8 *match, unsigned int match_len,
1233 			 unsigned int match_offset)
1234 {
1235 	const struct element *elem;
1236 
1237 	for_each_element_id(elem, eid, ies, len) {
1238 		if (elem->datalen >= match_offset + match_len &&
1239 		    !memcmp(elem->data + match_offset, match, match_len))
1240 			return elem;
1241 	}
1242 
1243 	return NULL;
1244 }
1245 EXPORT_SYMBOL(cfg80211_find_elem_match);
1246 
1247 const struct element *cfg80211_find_vendor_elem(unsigned int oui, int oui_type,
1248 						const u8 *ies,
1249 						unsigned int len)
1250 {
1251 	const struct element *elem;
1252 	u8 match[] = { oui >> 16, oui >> 8, oui, oui_type };
1253 	int match_len = (oui_type < 0) ? 3 : sizeof(match);
1254 
1255 	if (WARN_ON(oui_type > 0xff))
1256 		return NULL;
1257 
1258 	elem = cfg80211_find_elem_match(WLAN_EID_VENDOR_SPECIFIC, ies, len,
1259 					match, match_len, 0);
1260 
1261 	if (!elem || elem->datalen < 4)
1262 		return NULL;
1263 
1264 	return elem;
1265 }
1266 EXPORT_SYMBOL(cfg80211_find_vendor_elem);
1267 
1268 /**
1269  * enum bss_compare_mode - BSS compare mode
1270  * @BSS_CMP_REGULAR: regular compare mode (for insertion and normal find)
1271  * @BSS_CMP_HIDE_ZLEN: find hidden SSID with zero-length mode
1272  * @BSS_CMP_HIDE_NUL: find hidden SSID with NUL-ed out mode
1273  */
1274 enum bss_compare_mode {
1275 	BSS_CMP_REGULAR,
1276 	BSS_CMP_HIDE_ZLEN,
1277 	BSS_CMP_HIDE_NUL,
1278 };
1279 
1280 static int cmp_bss(struct cfg80211_bss *a,
1281 		   struct cfg80211_bss *b,
1282 		   enum bss_compare_mode mode)
1283 {
1284 	const struct cfg80211_bss_ies *a_ies, *b_ies;
1285 	const u8 *ie1 = NULL;
1286 	const u8 *ie2 = NULL;
1287 	int i, r;
1288 
1289 	if (a->channel != b->channel)
1290 		return (b->channel->center_freq * 1000 + b->channel->freq_offset) -
1291 		       (a->channel->center_freq * 1000 + a->channel->freq_offset);
1292 
1293 	a_ies = rcu_access_pointer(a->ies);
1294 	if (!a_ies)
1295 		return -1;
1296 	b_ies = rcu_access_pointer(b->ies);
1297 	if (!b_ies)
1298 		return 1;
1299 
1300 	if (WLAN_CAPABILITY_IS_STA_BSS(a->capability))
1301 		ie1 = cfg80211_find_ie(WLAN_EID_MESH_ID,
1302 				       a_ies->data, a_ies->len);
1303 	if (WLAN_CAPABILITY_IS_STA_BSS(b->capability))
1304 		ie2 = cfg80211_find_ie(WLAN_EID_MESH_ID,
1305 				       b_ies->data, b_ies->len);
1306 	if (ie1 && ie2) {
1307 		int mesh_id_cmp;
1308 
1309 		if (ie1[1] == ie2[1])
1310 			mesh_id_cmp = memcmp(ie1 + 2, ie2 + 2, ie1[1]);
1311 		else
1312 			mesh_id_cmp = ie2[1] - ie1[1];
1313 
1314 		ie1 = cfg80211_find_ie(WLAN_EID_MESH_CONFIG,
1315 				       a_ies->data, a_ies->len);
1316 		ie2 = cfg80211_find_ie(WLAN_EID_MESH_CONFIG,
1317 				       b_ies->data, b_ies->len);
1318 		if (ie1 && ie2) {
1319 			if (mesh_id_cmp)
1320 				return mesh_id_cmp;
1321 			if (ie1[1] != ie2[1])
1322 				return ie2[1] - ie1[1];
1323 			return memcmp(ie1 + 2, ie2 + 2, ie1[1]);
1324 		}
1325 	}
1326 
1327 	r = memcmp(a->bssid, b->bssid, sizeof(a->bssid));
1328 	if (r)
1329 		return r;
1330 
1331 	ie1 = cfg80211_find_ie(WLAN_EID_SSID, a_ies->data, a_ies->len);
1332 	ie2 = cfg80211_find_ie(WLAN_EID_SSID, b_ies->data, b_ies->len);
1333 
1334 	if (!ie1 && !ie2)
1335 		return 0;
1336 
1337 	/*
1338 	 * Note that with "hide_ssid", the function returns a match if
1339 	 * the already-present BSS ("b") is a hidden SSID beacon for
1340 	 * the new BSS ("a").
1341 	 */
1342 
1343 	/* sort missing IE before (left of) present IE */
1344 	if (!ie1)
1345 		return -1;
1346 	if (!ie2)
1347 		return 1;
1348 
1349 	switch (mode) {
1350 	case BSS_CMP_HIDE_ZLEN:
1351 		/*
1352 		 * In ZLEN mode we assume the BSS entry we're
1353 		 * looking for has a zero-length SSID. So if
1354 		 * the one we're looking at right now has that,
1355 		 * return 0. Otherwise, return the difference
1356 		 * in length, but since we're looking for the
1357 		 * 0-length it's really equivalent to returning
1358 		 * the length of the one we're looking at.
1359 		 *
1360 		 * No content comparison is needed as we assume
1361 		 * the content length is zero.
1362 		 */
1363 		return ie2[1];
1364 	case BSS_CMP_REGULAR:
1365 	default:
1366 		/* sort by length first, then by contents */
1367 		if (ie1[1] != ie2[1])
1368 			return ie2[1] - ie1[1];
1369 		return memcmp(ie1 + 2, ie2 + 2, ie1[1]);
1370 	case BSS_CMP_HIDE_NUL:
1371 		if (ie1[1] != ie2[1])
1372 			return ie2[1] - ie1[1];
1373 		/* this is equivalent to memcmp(zeroes, ie2 + 2, len) */
1374 		for (i = 0; i < ie2[1]; i++)
1375 			if (ie2[i + 2])
1376 				return -1;
1377 		return 0;
1378 	}
1379 }
1380 
1381 static bool cfg80211_bss_type_match(u16 capability,
1382 				    enum nl80211_band band,
1383 				    enum ieee80211_bss_type bss_type)
1384 {
1385 	bool ret = true;
1386 	u16 mask, val;
1387 
1388 	if (bss_type == IEEE80211_BSS_TYPE_ANY)
1389 		return ret;
1390 
1391 	if (band == NL80211_BAND_60GHZ) {
1392 		mask = WLAN_CAPABILITY_DMG_TYPE_MASK;
1393 		switch (bss_type) {
1394 		case IEEE80211_BSS_TYPE_ESS:
1395 			val = WLAN_CAPABILITY_DMG_TYPE_AP;
1396 			break;
1397 		case IEEE80211_BSS_TYPE_PBSS:
1398 			val = WLAN_CAPABILITY_DMG_TYPE_PBSS;
1399 			break;
1400 		case IEEE80211_BSS_TYPE_IBSS:
1401 			val = WLAN_CAPABILITY_DMG_TYPE_IBSS;
1402 			break;
1403 		default:
1404 			return false;
1405 		}
1406 	} else {
1407 		mask = WLAN_CAPABILITY_ESS | WLAN_CAPABILITY_IBSS;
1408 		switch (bss_type) {
1409 		case IEEE80211_BSS_TYPE_ESS:
1410 			val = WLAN_CAPABILITY_ESS;
1411 			break;
1412 		case IEEE80211_BSS_TYPE_IBSS:
1413 			val = WLAN_CAPABILITY_IBSS;
1414 			break;
1415 		case IEEE80211_BSS_TYPE_MBSS:
1416 			val = 0;
1417 			break;
1418 		default:
1419 			return false;
1420 		}
1421 	}
1422 
1423 	ret = ((capability & mask) == val);
1424 	return ret;
1425 }
1426 
1427 /* Returned bss is reference counted and must be cleaned up appropriately. */
1428 struct cfg80211_bss *cfg80211_get_bss(struct wiphy *wiphy,
1429 				      struct ieee80211_channel *channel,
1430 				      const u8 *bssid,
1431 				      const u8 *ssid, size_t ssid_len,
1432 				      enum ieee80211_bss_type bss_type,
1433 				      enum ieee80211_privacy privacy)
1434 {
1435 	struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
1436 	struct cfg80211_internal_bss *bss, *res = NULL;
1437 	unsigned long now = jiffies;
1438 	int bss_privacy;
1439 
1440 	trace_cfg80211_get_bss(wiphy, channel, bssid, ssid, ssid_len, bss_type,
1441 			       privacy);
1442 
1443 	spin_lock_bh(&rdev->bss_lock);
1444 
1445 	list_for_each_entry(bss, &rdev->bss_list, list) {
1446 		if (!cfg80211_bss_type_match(bss->pub.capability,
1447 					     bss->pub.channel->band, bss_type))
1448 			continue;
1449 
1450 		bss_privacy = (bss->pub.capability & WLAN_CAPABILITY_PRIVACY);
1451 		if ((privacy == IEEE80211_PRIVACY_ON && !bss_privacy) ||
1452 		    (privacy == IEEE80211_PRIVACY_OFF && bss_privacy))
1453 			continue;
1454 		if (channel && bss->pub.channel != channel)
1455 			continue;
1456 		if (!is_valid_ether_addr(bss->pub.bssid))
1457 			continue;
1458 		/* Don't get expired BSS structs */
1459 		if (time_after(now, bss->ts + IEEE80211_SCAN_RESULT_EXPIRE) &&
1460 		    !atomic_read(&bss->hold))
1461 			continue;
1462 		if (is_bss(&bss->pub, bssid, ssid, ssid_len)) {
1463 			res = bss;
1464 			bss_ref_get(rdev, res);
1465 			break;
1466 		}
1467 	}
1468 
1469 	spin_unlock_bh(&rdev->bss_lock);
1470 	if (!res)
1471 		return NULL;
1472 	trace_cfg80211_return_bss(&res->pub);
1473 	return &res->pub;
1474 }
1475 EXPORT_SYMBOL(cfg80211_get_bss);
1476 
1477 static void rb_insert_bss(struct cfg80211_registered_device *rdev,
1478 			  struct cfg80211_internal_bss *bss)
1479 {
1480 	struct rb_node **p = &rdev->bss_tree.rb_node;
1481 	struct rb_node *parent = NULL;
1482 	struct cfg80211_internal_bss *tbss;
1483 	int cmp;
1484 
1485 	while (*p) {
1486 		parent = *p;
1487 		tbss = rb_entry(parent, struct cfg80211_internal_bss, rbn);
1488 
1489 		cmp = cmp_bss(&bss->pub, &tbss->pub, BSS_CMP_REGULAR);
1490 
1491 		if (WARN_ON(!cmp)) {
1492 			/* will sort of leak this BSS */
1493 			return;
1494 		}
1495 
1496 		if (cmp < 0)
1497 			p = &(*p)->rb_left;
1498 		else
1499 			p = &(*p)->rb_right;
1500 	}
1501 
1502 	rb_link_node(&bss->rbn, parent, p);
1503 	rb_insert_color(&bss->rbn, &rdev->bss_tree);
1504 }
1505 
1506 static struct cfg80211_internal_bss *
1507 rb_find_bss(struct cfg80211_registered_device *rdev,
1508 	    struct cfg80211_internal_bss *res,
1509 	    enum bss_compare_mode mode)
1510 {
1511 	struct rb_node *n = rdev->bss_tree.rb_node;
1512 	struct cfg80211_internal_bss *bss;
1513 	int r;
1514 
1515 	while (n) {
1516 		bss = rb_entry(n, struct cfg80211_internal_bss, rbn);
1517 		r = cmp_bss(&res->pub, &bss->pub, mode);
1518 
1519 		if (r == 0)
1520 			return bss;
1521 		else if (r < 0)
1522 			n = n->rb_left;
1523 		else
1524 			n = n->rb_right;
1525 	}
1526 
1527 	return NULL;
1528 }
1529 
1530 static bool cfg80211_combine_bsses(struct cfg80211_registered_device *rdev,
1531 				   struct cfg80211_internal_bss *new)
1532 {
1533 	const struct cfg80211_bss_ies *ies;
1534 	struct cfg80211_internal_bss *bss;
1535 	const u8 *ie;
1536 	int i, ssidlen;
1537 	u8 fold = 0;
1538 	u32 n_entries = 0;
1539 
1540 	ies = rcu_access_pointer(new->pub.beacon_ies);
1541 	if (WARN_ON(!ies))
1542 		return false;
1543 
1544 	ie = cfg80211_find_ie(WLAN_EID_SSID, ies->data, ies->len);
1545 	if (!ie) {
1546 		/* nothing to do */
1547 		return true;
1548 	}
1549 
1550 	ssidlen = ie[1];
1551 	for (i = 0; i < ssidlen; i++)
1552 		fold |= ie[2 + i];
1553 
1554 	if (fold) {
1555 		/* not a hidden SSID */
1556 		return true;
1557 	}
1558 
1559 	/* This is the bad part ... */
1560 
1561 	list_for_each_entry(bss, &rdev->bss_list, list) {
1562 		/*
1563 		 * we're iterating all the entries anyway, so take the
1564 		 * opportunity to validate the list length accounting
1565 		 */
1566 		n_entries++;
1567 
1568 		if (!ether_addr_equal(bss->pub.bssid, new->pub.bssid))
1569 			continue;
1570 		if (bss->pub.channel != new->pub.channel)
1571 			continue;
1572 		if (bss->pub.scan_width != new->pub.scan_width)
1573 			continue;
1574 		if (rcu_access_pointer(bss->pub.beacon_ies))
1575 			continue;
1576 		ies = rcu_access_pointer(bss->pub.ies);
1577 		if (!ies)
1578 			continue;
1579 		ie = cfg80211_find_ie(WLAN_EID_SSID, ies->data, ies->len);
1580 		if (!ie)
1581 			continue;
1582 		if (ssidlen && ie[1] != ssidlen)
1583 			continue;
1584 		if (WARN_ON_ONCE(bss->pub.hidden_beacon_bss))
1585 			continue;
1586 		if (WARN_ON_ONCE(!list_empty(&bss->hidden_list)))
1587 			list_del(&bss->hidden_list);
1588 		/* combine them */
1589 		list_add(&bss->hidden_list, &new->hidden_list);
1590 		bss->pub.hidden_beacon_bss = &new->pub;
1591 		new->refcount += bss->refcount;
1592 		rcu_assign_pointer(bss->pub.beacon_ies,
1593 				   new->pub.beacon_ies);
1594 	}
1595 
1596 	WARN_ONCE(n_entries != rdev->bss_entries,
1597 		  "rdev bss entries[%d]/list[len:%d] corruption\n",
1598 		  rdev->bss_entries, n_entries);
1599 
1600 	return true;
1601 }
1602 
1603 struct cfg80211_non_tx_bss {
1604 	struct cfg80211_bss *tx_bss;
1605 	u8 max_bssid_indicator;
1606 	u8 bssid_index;
1607 };
1608 
1609 static void cfg80211_update_hidden_bsses(struct cfg80211_internal_bss *known,
1610 					 const struct cfg80211_bss_ies *new_ies,
1611 					 const struct cfg80211_bss_ies *old_ies)
1612 {
1613 	struct cfg80211_internal_bss *bss;
1614 
1615 	/* Assign beacon IEs to all sub entries */
1616 	list_for_each_entry(bss, &known->hidden_list, hidden_list) {
1617 		const struct cfg80211_bss_ies *ies;
1618 
1619 		ies = rcu_access_pointer(bss->pub.beacon_ies);
1620 		WARN_ON(ies != old_ies);
1621 
1622 		rcu_assign_pointer(bss->pub.beacon_ies, new_ies);
1623 	}
1624 }
1625 
1626 static bool
1627 cfg80211_update_known_bss(struct cfg80211_registered_device *rdev,
1628 			  struct cfg80211_internal_bss *known,
1629 			  struct cfg80211_internal_bss *new,
1630 			  bool signal_valid)
1631 {
1632 	lockdep_assert_held(&rdev->bss_lock);
1633 
1634 	/* Update IEs */
1635 	if (rcu_access_pointer(new->pub.proberesp_ies)) {
1636 		const struct cfg80211_bss_ies *old;
1637 
1638 		old = rcu_access_pointer(known->pub.proberesp_ies);
1639 
1640 		rcu_assign_pointer(known->pub.proberesp_ies,
1641 				   new->pub.proberesp_ies);
1642 		/* Override possible earlier Beacon frame IEs */
1643 		rcu_assign_pointer(known->pub.ies,
1644 				   new->pub.proberesp_ies);
1645 		if (old)
1646 			kfree_rcu((struct cfg80211_bss_ies *)old, rcu_head);
1647 	} else if (rcu_access_pointer(new->pub.beacon_ies)) {
1648 		const struct cfg80211_bss_ies *old;
1649 
1650 		if (known->pub.hidden_beacon_bss &&
1651 		    !list_empty(&known->hidden_list)) {
1652 			const struct cfg80211_bss_ies *f;
1653 
1654 			/* The known BSS struct is one of the probe
1655 			 * response members of a group, but we're
1656 			 * receiving a beacon (beacon_ies in the new
1657 			 * bss is used). This can only mean that the
1658 			 * AP changed its beacon from not having an
1659 			 * SSID to showing it, which is confusing so
1660 			 * drop this information.
1661 			 */
1662 
1663 			f = rcu_access_pointer(new->pub.beacon_ies);
1664 			kfree_rcu((struct cfg80211_bss_ies *)f, rcu_head);
1665 			return false;
1666 		}
1667 
1668 		old = rcu_access_pointer(known->pub.beacon_ies);
1669 
1670 		rcu_assign_pointer(known->pub.beacon_ies, new->pub.beacon_ies);
1671 
1672 		/* Override IEs if they were from a beacon before */
1673 		if (old == rcu_access_pointer(known->pub.ies))
1674 			rcu_assign_pointer(known->pub.ies, new->pub.beacon_ies);
1675 
1676 		cfg80211_update_hidden_bsses(known,
1677 					     rcu_access_pointer(new->pub.beacon_ies),
1678 					     old);
1679 
1680 		if (old)
1681 			kfree_rcu((struct cfg80211_bss_ies *)old, rcu_head);
1682 	}
1683 
1684 	known->pub.beacon_interval = new->pub.beacon_interval;
1685 
1686 	/* don't update the signal if beacon was heard on
1687 	 * adjacent channel.
1688 	 */
1689 	if (signal_valid)
1690 		known->pub.signal = new->pub.signal;
1691 	known->pub.capability = new->pub.capability;
1692 	known->ts = new->ts;
1693 	known->ts_boottime = new->ts_boottime;
1694 	known->parent_tsf = new->parent_tsf;
1695 	known->pub.chains = new->pub.chains;
1696 	memcpy(known->pub.chain_signal, new->pub.chain_signal,
1697 	       IEEE80211_MAX_CHAINS);
1698 	ether_addr_copy(known->parent_bssid, new->parent_bssid);
1699 	known->pub.max_bssid_indicator = new->pub.max_bssid_indicator;
1700 	known->pub.bssid_index = new->pub.bssid_index;
1701 
1702 	return true;
1703 }
1704 
1705 /* Returned bss is reference counted and must be cleaned up appropriately. */
1706 struct cfg80211_internal_bss *
1707 cfg80211_bss_update(struct cfg80211_registered_device *rdev,
1708 		    struct cfg80211_internal_bss *tmp,
1709 		    bool signal_valid, unsigned long ts)
1710 {
1711 	struct cfg80211_internal_bss *found = NULL;
1712 
1713 	if (WARN_ON(!tmp->pub.channel))
1714 		return NULL;
1715 
1716 	tmp->ts = ts;
1717 
1718 	spin_lock_bh(&rdev->bss_lock);
1719 
1720 	if (WARN_ON(!rcu_access_pointer(tmp->pub.ies))) {
1721 		spin_unlock_bh(&rdev->bss_lock);
1722 		return NULL;
1723 	}
1724 
1725 	found = rb_find_bss(rdev, tmp, BSS_CMP_REGULAR);
1726 
1727 	if (found) {
1728 		if (!cfg80211_update_known_bss(rdev, found, tmp, signal_valid))
1729 			goto drop;
1730 	} else {
1731 		struct cfg80211_internal_bss *new;
1732 		struct cfg80211_internal_bss *hidden;
1733 		struct cfg80211_bss_ies *ies;
1734 
1735 		/*
1736 		 * create a copy -- the "res" variable that is passed in
1737 		 * is allocated on the stack since it's not needed in the
1738 		 * more common case of an update
1739 		 */
1740 		new = kzalloc(sizeof(*new) + rdev->wiphy.bss_priv_size,
1741 			      GFP_ATOMIC);
1742 		if (!new) {
1743 			ies = (void *)rcu_dereference(tmp->pub.beacon_ies);
1744 			if (ies)
1745 				kfree_rcu(ies, rcu_head);
1746 			ies = (void *)rcu_dereference(tmp->pub.proberesp_ies);
1747 			if (ies)
1748 				kfree_rcu(ies, rcu_head);
1749 			goto drop;
1750 		}
1751 		memcpy(new, tmp, sizeof(*new));
1752 		new->refcount = 1;
1753 		INIT_LIST_HEAD(&new->hidden_list);
1754 		INIT_LIST_HEAD(&new->pub.nontrans_list);
1755 		/* we'll set this later if it was non-NULL */
1756 		new->pub.transmitted_bss = NULL;
1757 
1758 		if (rcu_access_pointer(tmp->pub.proberesp_ies)) {
1759 			hidden = rb_find_bss(rdev, tmp, BSS_CMP_HIDE_ZLEN);
1760 			if (!hidden)
1761 				hidden = rb_find_bss(rdev, tmp,
1762 						     BSS_CMP_HIDE_NUL);
1763 			if (hidden) {
1764 				new->pub.hidden_beacon_bss = &hidden->pub;
1765 				list_add(&new->hidden_list,
1766 					 &hidden->hidden_list);
1767 				hidden->refcount++;
1768 				rcu_assign_pointer(new->pub.beacon_ies,
1769 						   hidden->pub.beacon_ies);
1770 			}
1771 		} else {
1772 			/*
1773 			 * Ok so we found a beacon, and don't have an entry. If
1774 			 * it's a beacon with hidden SSID, we might be in for an
1775 			 * expensive search for any probe responses that should
1776 			 * be grouped with this beacon for updates ...
1777 			 */
1778 			if (!cfg80211_combine_bsses(rdev, new)) {
1779 				bss_ref_put(rdev, new);
1780 				goto drop;
1781 			}
1782 		}
1783 
1784 		if (rdev->bss_entries >= bss_entries_limit &&
1785 		    !cfg80211_bss_expire_oldest(rdev)) {
1786 			bss_ref_put(rdev, new);
1787 			goto drop;
1788 		}
1789 
1790 		/* This must be before the call to bss_ref_get */
1791 		if (tmp->pub.transmitted_bss) {
1792 			new->pub.transmitted_bss = tmp->pub.transmitted_bss;
1793 			bss_ref_get(rdev, bss_from_pub(tmp->pub.transmitted_bss));
1794 		}
1795 
1796 		list_add_tail(&new->list, &rdev->bss_list);
1797 		rdev->bss_entries++;
1798 		rb_insert_bss(rdev, new);
1799 		found = new;
1800 	}
1801 
1802 	rdev->bss_generation++;
1803 	bss_ref_get(rdev, found);
1804 	spin_unlock_bh(&rdev->bss_lock);
1805 
1806 	return found;
1807  drop:
1808 	spin_unlock_bh(&rdev->bss_lock);
1809 	return NULL;
1810 }
1811 
1812 int cfg80211_get_ies_channel_number(const u8 *ie, size_t ielen,
1813 				    enum nl80211_band band)
1814 {
1815 	const struct element *tmp;
1816 
1817 	if (band == NL80211_BAND_6GHZ) {
1818 		struct ieee80211_he_operation *he_oper;
1819 
1820 		tmp = cfg80211_find_ext_elem(WLAN_EID_EXT_HE_OPERATION, ie,
1821 					     ielen);
1822 		if (tmp && tmp->datalen >= sizeof(*he_oper) &&
1823 		    tmp->datalen >= ieee80211_he_oper_size(&tmp->data[1])) {
1824 			const struct ieee80211_he_6ghz_oper *he_6ghz_oper;
1825 
1826 			he_oper = (void *)&tmp->data[1];
1827 
1828 			he_6ghz_oper = ieee80211_he_6ghz_oper(he_oper);
1829 			if (!he_6ghz_oper)
1830 				return -1;
1831 
1832 			return he_6ghz_oper->primary;
1833 		}
1834 	} else if (band == NL80211_BAND_S1GHZ) {
1835 		tmp = cfg80211_find_elem(WLAN_EID_S1G_OPERATION, ie, ielen);
1836 		if (tmp && tmp->datalen >= sizeof(struct ieee80211_s1g_oper_ie)) {
1837 			struct ieee80211_s1g_oper_ie *s1gop = (void *)tmp->data;
1838 
1839 			return s1gop->oper_ch;
1840 		}
1841 	} else {
1842 		tmp = cfg80211_find_elem(WLAN_EID_DS_PARAMS, ie, ielen);
1843 		if (tmp && tmp->datalen == 1)
1844 			return tmp->data[0];
1845 
1846 		tmp = cfg80211_find_elem(WLAN_EID_HT_OPERATION, ie, ielen);
1847 		if (tmp &&
1848 		    tmp->datalen >= sizeof(struct ieee80211_ht_operation)) {
1849 			struct ieee80211_ht_operation *htop = (void *)tmp->data;
1850 
1851 			return htop->primary_chan;
1852 		}
1853 	}
1854 
1855 	return -1;
1856 }
1857 EXPORT_SYMBOL(cfg80211_get_ies_channel_number);
1858 
1859 /*
1860  * Update RX channel information based on the available frame payload
1861  * information. This is mainly for the 2.4 GHz band where frames can be received
1862  * from neighboring channels and the Beacon frames use the DSSS Parameter Set
1863  * element to indicate the current (transmitting) channel, but this might also
1864  * be needed on other bands if RX frequency does not match with the actual
1865  * operating channel of a BSS, or if the AP reports a different primary channel.
1866  */
1867 static struct ieee80211_channel *
1868 cfg80211_get_bss_channel(struct wiphy *wiphy, const u8 *ie, size_t ielen,
1869 			 struct ieee80211_channel *channel,
1870 			 enum nl80211_bss_scan_width scan_width)
1871 {
1872 	u32 freq;
1873 	int channel_number;
1874 	struct ieee80211_channel *alt_channel;
1875 
1876 	channel_number = cfg80211_get_ies_channel_number(ie, ielen,
1877 							 channel->band);
1878 
1879 	if (channel_number < 0) {
1880 		/* No channel information in frame payload */
1881 		return channel;
1882 	}
1883 
1884 	freq = ieee80211_channel_to_freq_khz(channel_number, channel->band);
1885 
1886 	/*
1887 	 * Frame info (beacon/prob res) is the same as received channel,
1888 	 * no need for further processing.
1889 	 */
1890 	if (freq == ieee80211_channel_to_khz(channel))
1891 		return channel;
1892 
1893 	alt_channel = ieee80211_get_channel_khz(wiphy, freq);
1894 	if (!alt_channel) {
1895 		if (channel->band == NL80211_BAND_2GHZ ||
1896 		    channel->band == NL80211_BAND_6GHZ) {
1897 			/*
1898 			 * Better not allow unexpected channels when that could
1899 			 * be going beyond the 1-11 range (e.g., discovering
1900 			 * BSS on channel 12 when radio is configured for
1901 			 * channel 11) or beyond the 6 GHz channel range.
1902 			 */
1903 			return NULL;
1904 		}
1905 
1906 		/* No match for the payload channel number - ignore it */
1907 		return channel;
1908 	}
1909 
1910 	if (scan_width == NL80211_BSS_CHAN_WIDTH_10 ||
1911 	    scan_width == NL80211_BSS_CHAN_WIDTH_5) {
1912 		/*
1913 		 * Ignore channel number in 5 and 10 MHz channels where there
1914 		 * may not be an n:1 or 1:n mapping between frequencies and
1915 		 * channel numbers.
1916 		 */
1917 		return channel;
1918 	}
1919 
1920 	/*
1921 	 * Use the channel determined through the payload channel number
1922 	 * instead of the RX channel reported by the driver.
1923 	 */
1924 	if (alt_channel->flags & IEEE80211_CHAN_DISABLED)
1925 		return NULL;
1926 	return alt_channel;
1927 }
1928 
1929 /* Returned bss is reference counted and must be cleaned up appropriately. */
1930 static struct cfg80211_bss *
1931 cfg80211_inform_single_bss_data(struct wiphy *wiphy,
1932 				struct cfg80211_inform_bss *data,
1933 				enum cfg80211_bss_frame_type ftype,
1934 				const u8 *bssid, u64 tsf, u16 capability,
1935 				u16 beacon_interval, const u8 *ie, size_t ielen,
1936 				struct cfg80211_non_tx_bss *non_tx_data,
1937 				gfp_t gfp)
1938 {
1939 	struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
1940 	struct cfg80211_bss_ies *ies;
1941 	struct ieee80211_channel *channel;
1942 	struct cfg80211_internal_bss tmp = {}, *res;
1943 	int bss_type;
1944 	bool signal_valid;
1945 	unsigned long ts;
1946 
1947 	if (WARN_ON(!wiphy))
1948 		return NULL;
1949 
1950 	if (WARN_ON(wiphy->signal_type == CFG80211_SIGNAL_TYPE_UNSPEC &&
1951 		    (data->signal < 0 || data->signal > 100)))
1952 		return NULL;
1953 
1954 	channel = cfg80211_get_bss_channel(wiphy, ie, ielen, data->chan,
1955 					   data->scan_width);
1956 	if (!channel)
1957 		return NULL;
1958 
1959 	memcpy(tmp.pub.bssid, bssid, ETH_ALEN);
1960 	tmp.pub.channel = channel;
1961 	tmp.pub.scan_width = data->scan_width;
1962 	tmp.pub.signal = data->signal;
1963 	tmp.pub.beacon_interval = beacon_interval;
1964 	tmp.pub.capability = capability;
1965 	tmp.ts_boottime = data->boottime_ns;
1966 	tmp.parent_tsf = data->parent_tsf;
1967 	ether_addr_copy(tmp.parent_bssid, data->parent_bssid);
1968 
1969 	if (non_tx_data) {
1970 		tmp.pub.transmitted_bss = non_tx_data->tx_bss;
1971 		ts = bss_from_pub(non_tx_data->tx_bss)->ts;
1972 		tmp.pub.bssid_index = non_tx_data->bssid_index;
1973 		tmp.pub.max_bssid_indicator = non_tx_data->max_bssid_indicator;
1974 	} else {
1975 		ts = jiffies;
1976 	}
1977 
1978 	/*
1979 	 * If we do not know here whether the IEs are from a Beacon or Probe
1980 	 * Response frame, we need to pick one of the options and only use it
1981 	 * with the driver that does not provide the full Beacon/Probe Response
1982 	 * frame. Use Beacon frame pointer to avoid indicating that this should
1983 	 * override the IEs pointer should we have received an earlier
1984 	 * indication of Probe Response data.
1985 	 */
1986 	ies = kzalloc(sizeof(*ies) + ielen, gfp);
1987 	if (!ies)
1988 		return NULL;
1989 	ies->len = ielen;
1990 	ies->tsf = tsf;
1991 	ies->from_beacon = false;
1992 	memcpy(ies->data, ie, ielen);
1993 
1994 	switch (ftype) {
1995 	case CFG80211_BSS_FTYPE_BEACON:
1996 		ies->from_beacon = true;
1997 		fallthrough;
1998 	case CFG80211_BSS_FTYPE_UNKNOWN:
1999 		rcu_assign_pointer(tmp.pub.beacon_ies, ies);
2000 		break;
2001 	case CFG80211_BSS_FTYPE_PRESP:
2002 		rcu_assign_pointer(tmp.pub.proberesp_ies, ies);
2003 		break;
2004 	}
2005 	rcu_assign_pointer(tmp.pub.ies, ies);
2006 
2007 	signal_valid = data->chan == channel;
2008 	res = cfg80211_bss_update(wiphy_to_rdev(wiphy), &tmp, signal_valid, ts);
2009 	if (!res)
2010 		return NULL;
2011 
2012 	if (channel->band == NL80211_BAND_60GHZ) {
2013 		bss_type = res->pub.capability & WLAN_CAPABILITY_DMG_TYPE_MASK;
2014 		if (bss_type == WLAN_CAPABILITY_DMG_TYPE_AP ||
2015 		    bss_type == WLAN_CAPABILITY_DMG_TYPE_PBSS)
2016 			regulatory_hint_found_beacon(wiphy, channel, gfp);
2017 	} else {
2018 		if (res->pub.capability & WLAN_CAPABILITY_ESS)
2019 			regulatory_hint_found_beacon(wiphy, channel, gfp);
2020 	}
2021 
2022 	if (non_tx_data) {
2023 		/* this is a nontransmitting bss, we need to add it to
2024 		 * transmitting bss' list if it is not there
2025 		 */
2026 		spin_lock_bh(&rdev->bss_lock);
2027 		if (cfg80211_add_nontrans_list(non_tx_data->tx_bss,
2028 					       &res->pub)) {
2029 			if (__cfg80211_unlink_bss(rdev, res)) {
2030 				rdev->bss_generation++;
2031 				res = NULL;
2032 			}
2033 		}
2034 		spin_unlock_bh(&rdev->bss_lock);
2035 
2036 		if (!res)
2037 			return NULL;
2038 	}
2039 
2040 	trace_cfg80211_return_bss(&res->pub);
2041 	/* cfg80211_bss_update gives us a referenced result */
2042 	return &res->pub;
2043 }
2044 
2045 static const struct element
2046 *cfg80211_get_profile_continuation(const u8 *ie, size_t ielen,
2047 				   const struct element *mbssid_elem,
2048 				   const struct element *sub_elem)
2049 {
2050 	const u8 *mbssid_end = mbssid_elem->data + mbssid_elem->datalen;
2051 	const struct element *next_mbssid;
2052 	const struct element *next_sub;
2053 
2054 	next_mbssid = cfg80211_find_elem(WLAN_EID_MULTIPLE_BSSID,
2055 					 mbssid_end,
2056 					 ielen - (mbssid_end - ie));
2057 
2058 	/*
2059 	 * If it is not the last subelement in current MBSSID IE or there isn't
2060 	 * a next MBSSID IE - profile is complete.
2061 	*/
2062 	if ((sub_elem->data + sub_elem->datalen < mbssid_end - 1) ||
2063 	    !next_mbssid)
2064 		return NULL;
2065 
2066 	/* For any length error, just return NULL */
2067 
2068 	if (next_mbssid->datalen < 4)
2069 		return NULL;
2070 
2071 	next_sub = (void *)&next_mbssid->data[1];
2072 
2073 	if (next_mbssid->data + next_mbssid->datalen <
2074 	    next_sub->data + next_sub->datalen)
2075 		return NULL;
2076 
2077 	if (next_sub->id != 0 || next_sub->datalen < 2)
2078 		return NULL;
2079 
2080 	/*
2081 	 * Check if the first element in the next sub element is a start
2082 	 * of a new profile
2083 	 */
2084 	return next_sub->data[0] == WLAN_EID_NON_TX_BSSID_CAP ?
2085 	       NULL : next_mbssid;
2086 }
2087 
2088 size_t cfg80211_merge_profile(const u8 *ie, size_t ielen,
2089 			      const struct element *mbssid_elem,
2090 			      const struct element *sub_elem,
2091 			      u8 *merged_ie, size_t max_copy_len)
2092 {
2093 	size_t copied_len = sub_elem->datalen;
2094 	const struct element *next_mbssid;
2095 
2096 	if (sub_elem->datalen > max_copy_len)
2097 		return 0;
2098 
2099 	memcpy(merged_ie, sub_elem->data, sub_elem->datalen);
2100 
2101 	while ((next_mbssid = cfg80211_get_profile_continuation(ie, ielen,
2102 								mbssid_elem,
2103 								sub_elem))) {
2104 		const struct element *next_sub = (void *)&next_mbssid->data[1];
2105 
2106 		if (copied_len + next_sub->datalen > max_copy_len)
2107 			break;
2108 		memcpy(merged_ie + copied_len, next_sub->data,
2109 		       next_sub->datalen);
2110 		copied_len += next_sub->datalen;
2111 	}
2112 
2113 	return copied_len;
2114 }
2115 EXPORT_SYMBOL(cfg80211_merge_profile);
2116 
2117 static void cfg80211_parse_mbssid_data(struct wiphy *wiphy,
2118 				       struct cfg80211_inform_bss *data,
2119 				       enum cfg80211_bss_frame_type ftype,
2120 				       const u8 *bssid, u64 tsf,
2121 				       u16 beacon_interval, const u8 *ie,
2122 				       size_t ielen,
2123 				       struct cfg80211_non_tx_bss *non_tx_data,
2124 				       gfp_t gfp)
2125 {
2126 	const u8 *mbssid_index_ie;
2127 	const struct element *elem, *sub;
2128 	size_t new_ie_len;
2129 	u8 new_bssid[ETH_ALEN];
2130 	u8 *new_ie, *profile;
2131 	u64 seen_indices = 0;
2132 	u16 capability;
2133 	struct cfg80211_bss *bss;
2134 
2135 	if (!non_tx_data)
2136 		return;
2137 	if (!cfg80211_find_elem(WLAN_EID_MULTIPLE_BSSID, ie, ielen))
2138 		return;
2139 	if (!wiphy->support_mbssid)
2140 		return;
2141 	if (wiphy->support_only_he_mbssid &&
2142 	    !cfg80211_find_ext_elem(WLAN_EID_EXT_HE_CAPABILITY, ie, ielen))
2143 		return;
2144 
2145 	new_ie = kmalloc(IEEE80211_MAX_DATA_LEN, gfp);
2146 	if (!new_ie)
2147 		return;
2148 
2149 	profile = kmalloc(ielen, gfp);
2150 	if (!profile)
2151 		goto out;
2152 
2153 	for_each_element_id(elem, WLAN_EID_MULTIPLE_BSSID, ie, ielen) {
2154 		if (elem->datalen < 4)
2155 			continue;
2156 		if (elem->data[0] < 1 || (int)elem->data[0] > 8)
2157 			continue;
2158 		for_each_element(sub, elem->data + 1, elem->datalen - 1) {
2159 			u8 profile_len;
2160 
2161 			if (sub->id != 0 || sub->datalen < 4) {
2162 				/* not a valid BSS profile */
2163 				continue;
2164 			}
2165 
2166 			if (sub->data[0] != WLAN_EID_NON_TX_BSSID_CAP ||
2167 			    sub->data[1] != 2) {
2168 				/* The first element within the Nontransmitted
2169 				 * BSSID Profile is not the Nontransmitted
2170 				 * BSSID Capability element.
2171 				 */
2172 				continue;
2173 			}
2174 
2175 			memset(profile, 0, ielen);
2176 			profile_len = cfg80211_merge_profile(ie, ielen,
2177 							     elem,
2178 							     sub,
2179 							     profile,
2180 							     ielen);
2181 
2182 			/* found a Nontransmitted BSSID Profile */
2183 			mbssid_index_ie = cfg80211_find_ie
2184 				(WLAN_EID_MULTI_BSSID_IDX,
2185 				 profile, profile_len);
2186 			if (!mbssid_index_ie || mbssid_index_ie[1] < 1 ||
2187 			    mbssid_index_ie[2] == 0 ||
2188 			    mbssid_index_ie[2] > 46) {
2189 				/* No valid Multiple BSSID-Index element */
2190 				continue;
2191 			}
2192 
2193 			if (seen_indices & BIT_ULL(mbssid_index_ie[2]))
2194 				/* We don't support legacy split of a profile */
2195 				net_dbg_ratelimited("Partial info for BSSID index %d\n",
2196 						    mbssid_index_ie[2]);
2197 
2198 			seen_indices |= BIT_ULL(mbssid_index_ie[2]);
2199 
2200 			non_tx_data->bssid_index = mbssid_index_ie[2];
2201 			non_tx_data->max_bssid_indicator = elem->data[0];
2202 
2203 			cfg80211_gen_new_bssid(bssid,
2204 					       non_tx_data->max_bssid_indicator,
2205 					       non_tx_data->bssid_index,
2206 					       new_bssid);
2207 			memset(new_ie, 0, IEEE80211_MAX_DATA_LEN);
2208 			new_ie_len = cfg80211_gen_new_ie(ie, ielen,
2209 							 profile,
2210 							 profile_len, new_ie,
2211 							 gfp);
2212 			if (!new_ie_len)
2213 				continue;
2214 
2215 			capability = get_unaligned_le16(profile + 2);
2216 			bss = cfg80211_inform_single_bss_data(wiphy, data,
2217 							      ftype,
2218 							      new_bssid, tsf,
2219 							      capability,
2220 							      beacon_interval,
2221 							      new_ie,
2222 							      new_ie_len,
2223 							      non_tx_data,
2224 							      gfp);
2225 			if (!bss)
2226 				break;
2227 			cfg80211_put_bss(wiphy, bss);
2228 		}
2229 	}
2230 
2231 out:
2232 	kfree(new_ie);
2233 	kfree(profile);
2234 }
2235 
2236 struct cfg80211_bss *
2237 cfg80211_inform_bss_data(struct wiphy *wiphy,
2238 			 struct cfg80211_inform_bss *data,
2239 			 enum cfg80211_bss_frame_type ftype,
2240 			 const u8 *bssid, u64 tsf, u16 capability,
2241 			 u16 beacon_interval, const u8 *ie, size_t ielen,
2242 			 gfp_t gfp)
2243 {
2244 	struct cfg80211_bss *res;
2245 	struct cfg80211_non_tx_bss non_tx_data;
2246 
2247 	res = cfg80211_inform_single_bss_data(wiphy, data, ftype, bssid, tsf,
2248 					      capability, beacon_interval, ie,
2249 					      ielen, NULL, gfp);
2250 	if (!res)
2251 		return NULL;
2252 	non_tx_data.tx_bss = res;
2253 	cfg80211_parse_mbssid_data(wiphy, data, ftype, bssid, tsf,
2254 				   beacon_interval, ie, ielen, &non_tx_data,
2255 				   gfp);
2256 	return res;
2257 }
2258 EXPORT_SYMBOL(cfg80211_inform_bss_data);
2259 
2260 static void
2261 cfg80211_parse_mbssid_frame_data(struct wiphy *wiphy,
2262 				 struct cfg80211_inform_bss *data,
2263 				 struct ieee80211_mgmt *mgmt, size_t len,
2264 				 struct cfg80211_non_tx_bss *non_tx_data,
2265 				 gfp_t gfp)
2266 {
2267 	enum cfg80211_bss_frame_type ftype;
2268 	const u8 *ie = mgmt->u.probe_resp.variable;
2269 	size_t ielen = len - offsetof(struct ieee80211_mgmt,
2270 				      u.probe_resp.variable);
2271 
2272 	ftype = ieee80211_is_beacon(mgmt->frame_control) ?
2273 		CFG80211_BSS_FTYPE_BEACON : CFG80211_BSS_FTYPE_PRESP;
2274 
2275 	cfg80211_parse_mbssid_data(wiphy, data, ftype, mgmt->bssid,
2276 				   le64_to_cpu(mgmt->u.probe_resp.timestamp),
2277 				   le16_to_cpu(mgmt->u.probe_resp.beacon_int),
2278 				   ie, ielen, non_tx_data, gfp);
2279 }
2280 
2281 static void
2282 cfg80211_update_notlisted_nontrans(struct wiphy *wiphy,
2283 				   struct cfg80211_bss *nontrans_bss,
2284 				   struct ieee80211_mgmt *mgmt, size_t len)
2285 {
2286 	u8 *ie, *new_ie, *pos;
2287 	const struct element *nontrans_ssid;
2288 	const u8 *trans_ssid, *mbssid;
2289 	size_t ielen = len - offsetof(struct ieee80211_mgmt,
2290 				      u.probe_resp.variable);
2291 	size_t new_ie_len;
2292 	struct cfg80211_bss_ies *new_ies;
2293 	const struct cfg80211_bss_ies *old;
2294 	size_t cpy_len;
2295 
2296 	lockdep_assert_held(&wiphy_to_rdev(wiphy)->bss_lock);
2297 
2298 	ie = mgmt->u.probe_resp.variable;
2299 
2300 	new_ie_len = ielen;
2301 	trans_ssid = cfg80211_find_ie(WLAN_EID_SSID, ie, ielen);
2302 	if (!trans_ssid)
2303 		return;
2304 	new_ie_len -= trans_ssid[1];
2305 	mbssid = cfg80211_find_ie(WLAN_EID_MULTIPLE_BSSID, ie, ielen);
2306 	/*
2307 	 * It's not valid to have the MBSSID element before SSID
2308 	 * ignore if that happens - the code below assumes it is
2309 	 * after (while copying things inbetween).
2310 	 */
2311 	if (!mbssid || mbssid < trans_ssid)
2312 		return;
2313 	new_ie_len -= mbssid[1];
2314 
2315 	nontrans_ssid = ieee80211_bss_get_elem(nontrans_bss, WLAN_EID_SSID);
2316 	if (!nontrans_ssid)
2317 		return;
2318 
2319 	new_ie_len += nontrans_ssid->datalen;
2320 
2321 	/* generate new ie for nontrans BSS
2322 	 * 1. replace SSID with nontrans BSS' SSID
2323 	 * 2. skip MBSSID IE
2324 	 */
2325 	new_ie = kzalloc(new_ie_len, GFP_ATOMIC);
2326 	if (!new_ie)
2327 		return;
2328 
2329 	new_ies = kzalloc(sizeof(*new_ies) + new_ie_len, GFP_ATOMIC);
2330 	if (!new_ies)
2331 		goto out_free;
2332 
2333 	pos = new_ie;
2334 
2335 	/* copy the nontransmitted SSID */
2336 	cpy_len = nontrans_ssid->datalen + 2;
2337 	memcpy(pos, nontrans_ssid, cpy_len);
2338 	pos += cpy_len;
2339 	/* copy the IEs between SSID and MBSSID */
2340 	cpy_len = trans_ssid[1] + 2;
2341 	memcpy(pos, (trans_ssid + cpy_len), (mbssid - (trans_ssid + cpy_len)));
2342 	pos += (mbssid - (trans_ssid + cpy_len));
2343 	/* copy the IEs after MBSSID */
2344 	cpy_len = mbssid[1] + 2;
2345 	memcpy(pos, mbssid + cpy_len, ((ie + ielen) - (mbssid + cpy_len)));
2346 
2347 	/* update ie */
2348 	new_ies->len = new_ie_len;
2349 	new_ies->tsf = le64_to_cpu(mgmt->u.probe_resp.timestamp);
2350 	new_ies->from_beacon = ieee80211_is_beacon(mgmt->frame_control);
2351 	memcpy(new_ies->data, new_ie, new_ie_len);
2352 	if (ieee80211_is_probe_resp(mgmt->frame_control)) {
2353 		old = rcu_access_pointer(nontrans_bss->proberesp_ies);
2354 		rcu_assign_pointer(nontrans_bss->proberesp_ies, new_ies);
2355 		rcu_assign_pointer(nontrans_bss->ies, new_ies);
2356 		if (old)
2357 			kfree_rcu((struct cfg80211_bss_ies *)old, rcu_head);
2358 	} else {
2359 		old = rcu_access_pointer(nontrans_bss->beacon_ies);
2360 		rcu_assign_pointer(nontrans_bss->beacon_ies, new_ies);
2361 		cfg80211_update_hidden_bsses(bss_from_pub(nontrans_bss),
2362 					     new_ies, old);
2363 		rcu_assign_pointer(nontrans_bss->ies, new_ies);
2364 		if (old)
2365 			kfree_rcu((struct cfg80211_bss_ies *)old, rcu_head);
2366 	}
2367 
2368 out_free:
2369 	kfree(new_ie);
2370 }
2371 
2372 /* cfg80211_inform_bss_width_frame helper */
2373 static struct cfg80211_bss *
2374 cfg80211_inform_single_bss_frame_data(struct wiphy *wiphy,
2375 				      struct cfg80211_inform_bss *data,
2376 				      struct ieee80211_mgmt *mgmt, size_t len,
2377 				      gfp_t gfp)
2378 {
2379 	struct cfg80211_internal_bss tmp = {}, *res;
2380 	struct cfg80211_bss_ies *ies;
2381 	struct ieee80211_channel *channel;
2382 	bool signal_valid;
2383 	struct ieee80211_ext *ext = NULL;
2384 	u8 *bssid, *variable;
2385 	u16 capability, beacon_int;
2386 	size_t ielen, min_hdr_len = offsetof(struct ieee80211_mgmt,
2387 					     u.probe_resp.variable);
2388 	int bss_type;
2389 
2390 	BUILD_BUG_ON(offsetof(struct ieee80211_mgmt, u.probe_resp.variable) !=
2391 			offsetof(struct ieee80211_mgmt, u.beacon.variable));
2392 
2393 	trace_cfg80211_inform_bss_frame(wiphy, data, mgmt, len);
2394 
2395 	if (WARN_ON(!mgmt))
2396 		return NULL;
2397 
2398 	if (WARN_ON(!wiphy))
2399 		return NULL;
2400 
2401 	if (WARN_ON(wiphy->signal_type == CFG80211_SIGNAL_TYPE_UNSPEC &&
2402 		    (data->signal < 0 || data->signal > 100)))
2403 		return NULL;
2404 
2405 	if (ieee80211_is_s1g_beacon(mgmt->frame_control)) {
2406 		ext = (void *) mgmt;
2407 		min_hdr_len = offsetof(struct ieee80211_ext, u.s1g_beacon);
2408 		if (ieee80211_is_s1g_short_beacon(mgmt->frame_control))
2409 			min_hdr_len = offsetof(struct ieee80211_ext,
2410 					       u.s1g_short_beacon.variable);
2411 	}
2412 
2413 	if (WARN_ON(len < min_hdr_len))
2414 		return NULL;
2415 
2416 	ielen = len - min_hdr_len;
2417 	variable = mgmt->u.probe_resp.variable;
2418 	if (ext) {
2419 		if (ieee80211_is_s1g_short_beacon(mgmt->frame_control))
2420 			variable = ext->u.s1g_short_beacon.variable;
2421 		else
2422 			variable = ext->u.s1g_beacon.variable;
2423 	}
2424 
2425 	channel = cfg80211_get_bss_channel(wiphy, variable,
2426 					   ielen, data->chan, data->scan_width);
2427 	if (!channel)
2428 		return NULL;
2429 
2430 	if (ext) {
2431 		const struct ieee80211_s1g_bcn_compat_ie *compat;
2432 		const struct element *elem;
2433 
2434 		elem = cfg80211_find_elem(WLAN_EID_S1G_BCN_COMPAT,
2435 					  variable, ielen);
2436 		if (!elem)
2437 			return NULL;
2438 		if (elem->datalen < sizeof(*compat))
2439 			return NULL;
2440 		compat = (void *)elem->data;
2441 		bssid = ext->u.s1g_beacon.sa;
2442 		capability = le16_to_cpu(compat->compat_info);
2443 		beacon_int = le16_to_cpu(compat->beacon_int);
2444 	} else {
2445 		bssid = mgmt->bssid;
2446 		beacon_int = le16_to_cpu(mgmt->u.probe_resp.beacon_int);
2447 		capability = le16_to_cpu(mgmt->u.probe_resp.capab_info);
2448 	}
2449 
2450 	ies = kzalloc(sizeof(*ies) + ielen, gfp);
2451 	if (!ies)
2452 		return NULL;
2453 	ies->len = ielen;
2454 	ies->tsf = le64_to_cpu(mgmt->u.probe_resp.timestamp);
2455 	ies->from_beacon = ieee80211_is_beacon(mgmt->frame_control) ||
2456 			   ieee80211_is_s1g_beacon(mgmt->frame_control);
2457 	memcpy(ies->data, variable, ielen);
2458 
2459 	if (ieee80211_is_probe_resp(mgmt->frame_control))
2460 		rcu_assign_pointer(tmp.pub.proberesp_ies, ies);
2461 	else
2462 		rcu_assign_pointer(tmp.pub.beacon_ies, ies);
2463 	rcu_assign_pointer(tmp.pub.ies, ies);
2464 
2465 	memcpy(tmp.pub.bssid, bssid, ETH_ALEN);
2466 	tmp.pub.beacon_interval = beacon_int;
2467 	tmp.pub.capability = capability;
2468 	tmp.pub.channel = channel;
2469 	tmp.pub.scan_width = data->scan_width;
2470 	tmp.pub.signal = data->signal;
2471 	tmp.ts_boottime = data->boottime_ns;
2472 	tmp.parent_tsf = data->parent_tsf;
2473 	tmp.pub.chains = data->chains;
2474 	memcpy(tmp.pub.chain_signal, data->chain_signal, IEEE80211_MAX_CHAINS);
2475 	ether_addr_copy(tmp.parent_bssid, data->parent_bssid);
2476 
2477 	signal_valid = data->chan == channel;
2478 	res = cfg80211_bss_update(wiphy_to_rdev(wiphy), &tmp, signal_valid,
2479 				  jiffies);
2480 	if (!res)
2481 		return NULL;
2482 
2483 	if (channel->band == NL80211_BAND_60GHZ) {
2484 		bss_type = res->pub.capability & WLAN_CAPABILITY_DMG_TYPE_MASK;
2485 		if (bss_type == WLAN_CAPABILITY_DMG_TYPE_AP ||
2486 		    bss_type == WLAN_CAPABILITY_DMG_TYPE_PBSS)
2487 			regulatory_hint_found_beacon(wiphy, channel, gfp);
2488 	} else {
2489 		if (res->pub.capability & WLAN_CAPABILITY_ESS)
2490 			regulatory_hint_found_beacon(wiphy, channel, gfp);
2491 	}
2492 
2493 	trace_cfg80211_return_bss(&res->pub);
2494 	/* cfg80211_bss_update gives us a referenced result */
2495 	return &res->pub;
2496 }
2497 
2498 struct cfg80211_bss *
2499 cfg80211_inform_bss_frame_data(struct wiphy *wiphy,
2500 			       struct cfg80211_inform_bss *data,
2501 			       struct ieee80211_mgmt *mgmt, size_t len,
2502 			       gfp_t gfp)
2503 {
2504 	struct cfg80211_bss *res, *tmp_bss;
2505 	const u8 *ie = mgmt->u.probe_resp.variable;
2506 	const struct cfg80211_bss_ies *ies1, *ies2;
2507 	size_t ielen = len - offsetof(struct ieee80211_mgmt,
2508 				      u.probe_resp.variable);
2509 	struct cfg80211_non_tx_bss non_tx_data = {};
2510 
2511 	res = cfg80211_inform_single_bss_frame_data(wiphy, data, mgmt,
2512 						    len, gfp);
2513 
2514 	/* don't do any further MBSSID handling for S1G */
2515 	if (ieee80211_is_s1g_beacon(mgmt->frame_control))
2516 		return res;
2517 
2518 	if (!res || !wiphy->support_mbssid ||
2519 	    !cfg80211_find_elem(WLAN_EID_MULTIPLE_BSSID, ie, ielen))
2520 		return res;
2521 	if (wiphy->support_only_he_mbssid &&
2522 	    !cfg80211_find_ext_elem(WLAN_EID_EXT_HE_CAPABILITY, ie, ielen))
2523 		return res;
2524 
2525 	non_tx_data.tx_bss = res;
2526 	/* process each non-transmitting bss */
2527 	cfg80211_parse_mbssid_frame_data(wiphy, data, mgmt, len,
2528 					 &non_tx_data, gfp);
2529 
2530 	spin_lock_bh(&wiphy_to_rdev(wiphy)->bss_lock);
2531 
2532 	/* check if the res has other nontransmitting bss which is not
2533 	 * in MBSSID IE
2534 	 */
2535 	ies1 = rcu_access_pointer(res->ies);
2536 
2537 	/* go through nontrans_list, if the timestamp of the BSS is
2538 	 * earlier than the timestamp of the transmitting BSS then
2539 	 * update it
2540 	 */
2541 	list_for_each_entry(tmp_bss, &res->nontrans_list,
2542 			    nontrans_list) {
2543 		ies2 = rcu_access_pointer(tmp_bss->ies);
2544 		if (ies2->tsf < ies1->tsf)
2545 			cfg80211_update_notlisted_nontrans(wiphy, tmp_bss,
2546 							   mgmt, len);
2547 	}
2548 	spin_unlock_bh(&wiphy_to_rdev(wiphy)->bss_lock);
2549 
2550 	return res;
2551 }
2552 EXPORT_SYMBOL(cfg80211_inform_bss_frame_data);
2553 
2554 void cfg80211_ref_bss(struct wiphy *wiphy, struct cfg80211_bss *pub)
2555 {
2556 	struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
2557 
2558 	if (!pub)
2559 		return;
2560 
2561 	spin_lock_bh(&rdev->bss_lock);
2562 	bss_ref_get(rdev, bss_from_pub(pub));
2563 	spin_unlock_bh(&rdev->bss_lock);
2564 }
2565 EXPORT_SYMBOL(cfg80211_ref_bss);
2566 
2567 void cfg80211_put_bss(struct wiphy *wiphy, struct cfg80211_bss *pub)
2568 {
2569 	struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
2570 
2571 	if (!pub)
2572 		return;
2573 
2574 	spin_lock_bh(&rdev->bss_lock);
2575 	bss_ref_put(rdev, bss_from_pub(pub));
2576 	spin_unlock_bh(&rdev->bss_lock);
2577 }
2578 EXPORT_SYMBOL(cfg80211_put_bss);
2579 
2580 void cfg80211_unlink_bss(struct wiphy *wiphy, struct cfg80211_bss *pub)
2581 {
2582 	struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
2583 	struct cfg80211_internal_bss *bss, *tmp1;
2584 	struct cfg80211_bss *nontrans_bss, *tmp;
2585 
2586 	if (WARN_ON(!pub))
2587 		return;
2588 
2589 	bss = bss_from_pub(pub);
2590 
2591 	spin_lock_bh(&rdev->bss_lock);
2592 	if (list_empty(&bss->list))
2593 		goto out;
2594 
2595 	list_for_each_entry_safe(nontrans_bss, tmp,
2596 				 &pub->nontrans_list,
2597 				 nontrans_list) {
2598 		tmp1 = bss_from_pub(nontrans_bss);
2599 		if (__cfg80211_unlink_bss(rdev, tmp1))
2600 			rdev->bss_generation++;
2601 	}
2602 
2603 	if (__cfg80211_unlink_bss(rdev, bss))
2604 		rdev->bss_generation++;
2605 out:
2606 	spin_unlock_bh(&rdev->bss_lock);
2607 }
2608 EXPORT_SYMBOL(cfg80211_unlink_bss);
2609 
2610 void cfg80211_bss_iter(struct wiphy *wiphy,
2611 		       struct cfg80211_chan_def *chandef,
2612 		       void (*iter)(struct wiphy *wiphy,
2613 				    struct cfg80211_bss *bss,
2614 				    void *data),
2615 		       void *iter_data)
2616 {
2617 	struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
2618 	struct cfg80211_internal_bss *bss;
2619 
2620 	spin_lock_bh(&rdev->bss_lock);
2621 
2622 	list_for_each_entry(bss, &rdev->bss_list, list) {
2623 		if (!chandef || cfg80211_is_sub_chan(chandef, bss->pub.channel,
2624 						     false))
2625 			iter(wiphy, &bss->pub, iter_data);
2626 	}
2627 
2628 	spin_unlock_bh(&rdev->bss_lock);
2629 }
2630 EXPORT_SYMBOL(cfg80211_bss_iter);
2631 
2632 void cfg80211_update_assoc_bss_entry(struct wireless_dev *wdev,
2633 				     unsigned int link_id,
2634 				     struct ieee80211_channel *chan)
2635 {
2636 	struct wiphy *wiphy = wdev->wiphy;
2637 	struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
2638 	struct cfg80211_internal_bss *cbss = wdev->links[link_id].client.current_bss;
2639 	struct cfg80211_internal_bss *new = NULL;
2640 	struct cfg80211_internal_bss *bss;
2641 	struct cfg80211_bss *nontrans_bss;
2642 	struct cfg80211_bss *tmp;
2643 
2644 	spin_lock_bh(&rdev->bss_lock);
2645 
2646 	/*
2647 	 * Some APs use CSA also for bandwidth changes, i.e., without actually
2648 	 * changing the control channel, so no need to update in such a case.
2649 	 */
2650 	if (cbss->pub.channel == chan)
2651 		goto done;
2652 
2653 	/* use transmitting bss */
2654 	if (cbss->pub.transmitted_bss)
2655 		cbss = bss_from_pub(cbss->pub.transmitted_bss);
2656 
2657 	cbss->pub.channel = chan;
2658 
2659 	list_for_each_entry(bss, &rdev->bss_list, list) {
2660 		if (!cfg80211_bss_type_match(bss->pub.capability,
2661 					     bss->pub.channel->band,
2662 					     wdev->conn_bss_type))
2663 			continue;
2664 
2665 		if (bss == cbss)
2666 			continue;
2667 
2668 		if (!cmp_bss(&bss->pub, &cbss->pub, BSS_CMP_REGULAR)) {
2669 			new = bss;
2670 			break;
2671 		}
2672 	}
2673 
2674 	if (new) {
2675 		/* to save time, update IEs for transmitting bss only */
2676 		if (cfg80211_update_known_bss(rdev, cbss, new, false)) {
2677 			new->pub.proberesp_ies = NULL;
2678 			new->pub.beacon_ies = NULL;
2679 		}
2680 
2681 		list_for_each_entry_safe(nontrans_bss, tmp,
2682 					 &new->pub.nontrans_list,
2683 					 nontrans_list) {
2684 			bss = bss_from_pub(nontrans_bss);
2685 			if (__cfg80211_unlink_bss(rdev, bss))
2686 				rdev->bss_generation++;
2687 		}
2688 
2689 		WARN_ON(atomic_read(&new->hold));
2690 		if (!WARN_ON(!__cfg80211_unlink_bss(rdev, new)))
2691 			rdev->bss_generation++;
2692 	}
2693 
2694 	rb_erase(&cbss->rbn, &rdev->bss_tree);
2695 	rb_insert_bss(rdev, cbss);
2696 	rdev->bss_generation++;
2697 
2698 	list_for_each_entry_safe(nontrans_bss, tmp,
2699 				 &cbss->pub.nontrans_list,
2700 				 nontrans_list) {
2701 		bss = bss_from_pub(nontrans_bss);
2702 		bss->pub.channel = chan;
2703 		rb_erase(&bss->rbn, &rdev->bss_tree);
2704 		rb_insert_bss(rdev, bss);
2705 		rdev->bss_generation++;
2706 	}
2707 
2708 done:
2709 	spin_unlock_bh(&rdev->bss_lock);
2710 }
2711 
2712 #ifdef CONFIG_CFG80211_WEXT
2713 static struct cfg80211_registered_device *
2714 cfg80211_get_dev_from_ifindex(struct net *net, int ifindex)
2715 {
2716 	struct cfg80211_registered_device *rdev;
2717 	struct net_device *dev;
2718 
2719 	ASSERT_RTNL();
2720 
2721 	dev = dev_get_by_index(net, ifindex);
2722 	if (!dev)
2723 		return ERR_PTR(-ENODEV);
2724 	if (dev->ieee80211_ptr)
2725 		rdev = wiphy_to_rdev(dev->ieee80211_ptr->wiphy);
2726 	else
2727 		rdev = ERR_PTR(-ENODEV);
2728 	dev_put(dev);
2729 	return rdev;
2730 }
2731 
2732 int cfg80211_wext_siwscan(struct net_device *dev,
2733 			  struct iw_request_info *info,
2734 			  union iwreq_data *wrqu, char *extra)
2735 {
2736 	struct cfg80211_registered_device *rdev;
2737 	struct wiphy *wiphy;
2738 	struct iw_scan_req *wreq = NULL;
2739 	struct cfg80211_scan_request *creq;
2740 	int i, err, n_channels = 0;
2741 	enum nl80211_band band;
2742 
2743 	if (!netif_running(dev))
2744 		return -ENETDOWN;
2745 
2746 	if (wrqu->data.length == sizeof(struct iw_scan_req))
2747 		wreq = (struct iw_scan_req *)extra;
2748 
2749 	rdev = cfg80211_get_dev_from_ifindex(dev_net(dev), dev->ifindex);
2750 
2751 	if (IS_ERR(rdev))
2752 		return PTR_ERR(rdev);
2753 
2754 	if (rdev->scan_req || rdev->scan_msg)
2755 		return -EBUSY;
2756 
2757 	wiphy = &rdev->wiphy;
2758 
2759 	/* Determine number of channels, needed to allocate creq */
2760 	if (wreq && wreq->num_channels)
2761 		n_channels = wreq->num_channels;
2762 	else
2763 		n_channels = ieee80211_get_num_supported_channels(wiphy);
2764 
2765 	creq = kzalloc(sizeof(*creq) + sizeof(struct cfg80211_ssid) +
2766 		       n_channels * sizeof(void *),
2767 		       GFP_ATOMIC);
2768 	if (!creq)
2769 		return -ENOMEM;
2770 
2771 	creq->wiphy = wiphy;
2772 	creq->wdev = dev->ieee80211_ptr;
2773 	/* SSIDs come after channels */
2774 	creq->ssids = (void *)&creq->channels[n_channels];
2775 	creq->n_channels = n_channels;
2776 	creq->n_ssids = 1;
2777 	creq->scan_start = jiffies;
2778 
2779 	/* translate "Scan on frequencies" request */
2780 	i = 0;
2781 	for (band = 0; band < NUM_NL80211_BANDS; band++) {
2782 		int j;
2783 
2784 		if (!wiphy->bands[band])
2785 			continue;
2786 
2787 		for (j = 0; j < wiphy->bands[band]->n_channels; j++) {
2788 			/* ignore disabled channels */
2789 			if (wiphy->bands[band]->channels[j].flags &
2790 						IEEE80211_CHAN_DISABLED)
2791 				continue;
2792 
2793 			/* If we have a wireless request structure and the
2794 			 * wireless request specifies frequencies, then search
2795 			 * for the matching hardware channel.
2796 			 */
2797 			if (wreq && wreq->num_channels) {
2798 				int k;
2799 				int wiphy_freq = wiphy->bands[band]->channels[j].center_freq;
2800 				for (k = 0; k < wreq->num_channels; k++) {
2801 					struct iw_freq *freq =
2802 						&wreq->channel_list[k];
2803 					int wext_freq =
2804 						cfg80211_wext_freq(freq);
2805 
2806 					if (wext_freq == wiphy_freq)
2807 						goto wext_freq_found;
2808 				}
2809 				goto wext_freq_not_found;
2810 			}
2811 
2812 		wext_freq_found:
2813 			creq->channels[i] = &wiphy->bands[band]->channels[j];
2814 			i++;
2815 		wext_freq_not_found: ;
2816 		}
2817 	}
2818 	/* No channels found? */
2819 	if (!i) {
2820 		err = -EINVAL;
2821 		goto out;
2822 	}
2823 
2824 	/* Set real number of channels specified in creq->channels[] */
2825 	creq->n_channels = i;
2826 
2827 	/* translate "Scan for SSID" request */
2828 	if (wreq) {
2829 		if (wrqu->data.flags & IW_SCAN_THIS_ESSID) {
2830 			if (wreq->essid_len > IEEE80211_MAX_SSID_LEN) {
2831 				err = -EINVAL;
2832 				goto out;
2833 			}
2834 			memcpy(creq->ssids[0].ssid, wreq->essid, wreq->essid_len);
2835 			creq->ssids[0].ssid_len = wreq->essid_len;
2836 		}
2837 		if (wreq->scan_type == IW_SCAN_TYPE_PASSIVE)
2838 			creq->n_ssids = 0;
2839 	}
2840 
2841 	for (i = 0; i < NUM_NL80211_BANDS; i++)
2842 		if (wiphy->bands[i])
2843 			creq->rates[i] = (1 << wiphy->bands[i]->n_bitrates) - 1;
2844 
2845 	eth_broadcast_addr(creq->bssid);
2846 
2847 	wiphy_lock(&rdev->wiphy);
2848 
2849 	rdev->scan_req = creq;
2850 	err = rdev_scan(rdev, creq);
2851 	if (err) {
2852 		rdev->scan_req = NULL;
2853 		/* creq will be freed below */
2854 	} else {
2855 		nl80211_send_scan_start(rdev, dev->ieee80211_ptr);
2856 		/* creq now owned by driver */
2857 		creq = NULL;
2858 		dev_hold(dev);
2859 	}
2860 	wiphy_unlock(&rdev->wiphy);
2861  out:
2862 	kfree(creq);
2863 	return err;
2864 }
2865 EXPORT_WEXT_HANDLER(cfg80211_wext_siwscan);
2866 
2867 static char *ieee80211_scan_add_ies(struct iw_request_info *info,
2868 				    const struct cfg80211_bss_ies *ies,
2869 				    char *current_ev, char *end_buf)
2870 {
2871 	const u8 *pos, *end, *next;
2872 	struct iw_event iwe;
2873 
2874 	if (!ies)
2875 		return current_ev;
2876 
2877 	/*
2878 	 * If needed, fragment the IEs buffer (at IE boundaries) into short
2879 	 * enough fragments to fit into IW_GENERIC_IE_MAX octet messages.
2880 	 */
2881 	pos = ies->data;
2882 	end = pos + ies->len;
2883 
2884 	while (end - pos > IW_GENERIC_IE_MAX) {
2885 		next = pos + 2 + pos[1];
2886 		while (next + 2 + next[1] - pos < IW_GENERIC_IE_MAX)
2887 			next = next + 2 + next[1];
2888 
2889 		memset(&iwe, 0, sizeof(iwe));
2890 		iwe.cmd = IWEVGENIE;
2891 		iwe.u.data.length = next - pos;
2892 		current_ev = iwe_stream_add_point_check(info, current_ev,
2893 							end_buf, &iwe,
2894 							(void *)pos);
2895 		if (IS_ERR(current_ev))
2896 			return current_ev;
2897 		pos = next;
2898 	}
2899 
2900 	if (end > pos) {
2901 		memset(&iwe, 0, sizeof(iwe));
2902 		iwe.cmd = IWEVGENIE;
2903 		iwe.u.data.length = end - pos;
2904 		current_ev = iwe_stream_add_point_check(info, current_ev,
2905 							end_buf, &iwe,
2906 							(void *)pos);
2907 		if (IS_ERR(current_ev))
2908 			return current_ev;
2909 	}
2910 
2911 	return current_ev;
2912 }
2913 
2914 static char *
2915 ieee80211_bss(struct wiphy *wiphy, struct iw_request_info *info,
2916 	      struct cfg80211_internal_bss *bss, char *current_ev,
2917 	      char *end_buf)
2918 {
2919 	const struct cfg80211_bss_ies *ies;
2920 	struct iw_event iwe;
2921 	const u8 *ie;
2922 	u8 buf[50];
2923 	u8 *cfg, *p, *tmp;
2924 	int rem, i, sig;
2925 	bool ismesh = false;
2926 
2927 	memset(&iwe, 0, sizeof(iwe));
2928 	iwe.cmd = SIOCGIWAP;
2929 	iwe.u.ap_addr.sa_family = ARPHRD_ETHER;
2930 	memcpy(iwe.u.ap_addr.sa_data, bss->pub.bssid, ETH_ALEN);
2931 	current_ev = iwe_stream_add_event_check(info, current_ev, end_buf, &iwe,
2932 						IW_EV_ADDR_LEN);
2933 	if (IS_ERR(current_ev))
2934 		return current_ev;
2935 
2936 	memset(&iwe, 0, sizeof(iwe));
2937 	iwe.cmd = SIOCGIWFREQ;
2938 	iwe.u.freq.m = ieee80211_frequency_to_channel(bss->pub.channel->center_freq);
2939 	iwe.u.freq.e = 0;
2940 	current_ev = iwe_stream_add_event_check(info, current_ev, end_buf, &iwe,
2941 						IW_EV_FREQ_LEN);
2942 	if (IS_ERR(current_ev))
2943 		return current_ev;
2944 
2945 	memset(&iwe, 0, sizeof(iwe));
2946 	iwe.cmd = SIOCGIWFREQ;
2947 	iwe.u.freq.m = bss->pub.channel->center_freq;
2948 	iwe.u.freq.e = 6;
2949 	current_ev = iwe_stream_add_event_check(info, current_ev, end_buf, &iwe,
2950 						IW_EV_FREQ_LEN);
2951 	if (IS_ERR(current_ev))
2952 		return current_ev;
2953 
2954 	if (wiphy->signal_type != CFG80211_SIGNAL_TYPE_NONE) {
2955 		memset(&iwe, 0, sizeof(iwe));
2956 		iwe.cmd = IWEVQUAL;
2957 		iwe.u.qual.updated = IW_QUAL_LEVEL_UPDATED |
2958 				     IW_QUAL_NOISE_INVALID |
2959 				     IW_QUAL_QUAL_UPDATED;
2960 		switch (wiphy->signal_type) {
2961 		case CFG80211_SIGNAL_TYPE_MBM:
2962 			sig = bss->pub.signal / 100;
2963 			iwe.u.qual.level = sig;
2964 			iwe.u.qual.updated |= IW_QUAL_DBM;
2965 			if (sig < -110)		/* rather bad */
2966 				sig = -110;
2967 			else if (sig > -40)	/* perfect */
2968 				sig = -40;
2969 			/* will give a range of 0 .. 70 */
2970 			iwe.u.qual.qual = sig + 110;
2971 			break;
2972 		case CFG80211_SIGNAL_TYPE_UNSPEC:
2973 			iwe.u.qual.level = bss->pub.signal;
2974 			/* will give range 0 .. 100 */
2975 			iwe.u.qual.qual = bss->pub.signal;
2976 			break;
2977 		default:
2978 			/* not reached */
2979 			break;
2980 		}
2981 		current_ev = iwe_stream_add_event_check(info, current_ev,
2982 							end_buf, &iwe,
2983 							IW_EV_QUAL_LEN);
2984 		if (IS_ERR(current_ev))
2985 			return current_ev;
2986 	}
2987 
2988 	memset(&iwe, 0, sizeof(iwe));
2989 	iwe.cmd = SIOCGIWENCODE;
2990 	if (bss->pub.capability & WLAN_CAPABILITY_PRIVACY)
2991 		iwe.u.data.flags = IW_ENCODE_ENABLED | IW_ENCODE_NOKEY;
2992 	else
2993 		iwe.u.data.flags = IW_ENCODE_DISABLED;
2994 	iwe.u.data.length = 0;
2995 	current_ev = iwe_stream_add_point_check(info, current_ev, end_buf,
2996 						&iwe, "");
2997 	if (IS_ERR(current_ev))
2998 		return current_ev;
2999 
3000 	rcu_read_lock();
3001 	ies = rcu_dereference(bss->pub.ies);
3002 	rem = ies->len;
3003 	ie = ies->data;
3004 
3005 	while (rem >= 2) {
3006 		/* invalid data */
3007 		if (ie[1] > rem - 2)
3008 			break;
3009 
3010 		switch (ie[0]) {
3011 		case WLAN_EID_SSID:
3012 			memset(&iwe, 0, sizeof(iwe));
3013 			iwe.cmd = SIOCGIWESSID;
3014 			iwe.u.data.length = ie[1];
3015 			iwe.u.data.flags = 1;
3016 			current_ev = iwe_stream_add_point_check(info,
3017 								current_ev,
3018 								end_buf, &iwe,
3019 								(u8 *)ie + 2);
3020 			if (IS_ERR(current_ev))
3021 				goto unlock;
3022 			break;
3023 		case WLAN_EID_MESH_ID:
3024 			memset(&iwe, 0, sizeof(iwe));
3025 			iwe.cmd = SIOCGIWESSID;
3026 			iwe.u.data.length = ie[1];
3027 			iwe.u.data.flags = 1;
3028 			current_ev = iwe_stream_add_point_check(info,
3029 								current_ev,
3030 								end_buf, &iwe,
3031 								(u8 *)ie + 2);
3032 			if (IS_ERR(current_ev))
3033 				goto unlock;
3034 			break;
3035 		case WLAN_EID_MESH_CONFIG:
3036 			ismesh = true;
3037 			if (ie[1] != sizeof(struct ieee80211_meshconf_ie))
3038 				break;
3039 			cfg = (u8 *)ie + 2;
3040 			memset(&iwe, 0, sizeof(iwe));
3041 			iwe.cmd = IWEVCUSTOM;
3042 			sprintf(buf, "Mesh Network Path Selection Protocol ID: "
3043 				"0x%02X", cfg[0]);
3044 			iwe.u.data.length = strlen(buf);
3045 			current_ev = iwe_stream_add_point_check(info,
3046 								current_ev,
3047 								end_buf,
3048 								&iwe, buf);
3049 			if (IS_ERR(current_ev))
3050 				goto unlock;
3051 			sprintf(buf, "Path Selection Metric ID: 0x%02X",
3052 				cfg[1]);
3053 			iwe.u.data.length = strlen(buf);
3054 			current_ev = iwe_stream_add_point_check(info,
3055 								current_ev,
3056 								end_buf,
3057 								&iwe, buf);
3058 			if (IS_ERR(current_ev))
3059 				goto unlock;
3060 			sprintf(buf, "Congestion Control Mode ID: 0x%02X",
3061 				cfg[2]);
3062 			iwe.u.data.length = strlen(buf);
3063 			current_ev = iwe_stream_add_point_check(info,
3064 								current_ev,
3065 								end_buf,
3066 								&iwe, buf);
3067 			if (IS_ERR(current_ev))
3068 				goto unlock;
3069 			sprintf(buf, "Synchronization ID: 0x%02X", cfg[3]);
3070 			iwe.u.data.length = strlen(buf);
3071 			current_ev = iwe_stream_add_point_check(info,
3072 								current_ev,
3073 								end_buf,
3074 								&iwe, buf);
3075 			if (IS_ERR(current_ev))
3076 				goto unlock;
3077 			sprintf(buf, "Authentication ID: 0x%02X", cfg[4]);
3078 			iwe.u.data.length = strlen(buf);
3079 			current_ev = iwe_stream_add_point_check(info,
3080 								current_ev,
3081 								end_buf,
3082 								&iwe, buf);
3083 			if (IS_ERR(current_ev))
3084 				goto unlock;
3085 			sprintf(buf, "Formation Info: 0x%02X", cfg[5]);
3086 			iwe.u.data.length = strlen(buf);
3087 			current_ev = iwe_stream_add_point_check(info,
3088 								current_ev,
3089 								end_buf,
3090 								&iwe, buf);
3091 			if (IS_ERR(current_ev))
3092 				goto unlock;
3093 			sprintf(buf, "Capabilities: 0x%02X", cfg[6]);
3094 			iwe.u.data.length = strlen(buf);
3095 			current_ev = iwe_stream_add_point_check(info,
3096 								current_ev,
3097 								end_buf,
3098 								&iwe, buf);
3099 			if (IS_ERR(current_ev))
3100 				goto unlock;
3101 			break;
3102 		case WLAN_EID_SUPP_RATES:
3103 		case WLAN_EID_EXT_SUPP_RATES:
3104 			/* display all supported rates in readable format */
3105 			p = current_ev + iwe_stream_lcp_len(info);
3106 
3107 			memset(&iwe, 0, sizeof(iwe));
3108 			iwe.cmd = SIOCGIWRATE;
3109 			/* Those two flags are ignored... */
3110 			iwe.u.bitrate.fixed = iwe.u.bitrate.disabled = 0;
3111 
3112 			for (i = 0; i < ie[1]; i++) {
3113 				iwe.u.bitrate.value =
3114 					((ie[i + 2] & 0x7f) * 500000);
3115 				tmp = p;
3116 				p = iwe_stream_add_value(info, current_ev, p,
3117 							 end_buf, &iwe,
3118 							 IW_EV_PARAM_LEN);
3119 				if (p == tmp) {
3120 					current_ev = ERR_PTR(-E2BIG);
3121 					goto unlock;
3122 				}
3123 			}
3124 			current_ev = p;
3125 			break;
3126 		}
3127 		rem -= ie[1] + 2;
3128 		ie += ie[1] + 2;
3129 	}
3130 
3131 	if (bss->pub.capability & (WLAN_CAPABILITY_ESS | WLAN_CAPABILITY_IBSS) ||
3132 	    ismesh) {
3133 		memset(&iwe, 0, sizeof(iwe));
3134 		iwe.cmd = SIOCGIWMODE;
3135 		if (ismesh)
3136 			iwe.u.mode = IW_MODE_MESH;
3137 		else if (bss->pub.capability & WLAN_CAPABILITY_ESS)
3138 			iwe.u.mode = IW_MODE_MASTER;
3139 		else
3140 			iwe.u.mode = IW_MODE_ADHOC;
3141 		current_ev = iwe_stream_add_event_check(info, current_ev,
3142 							end_buf, &iwe,
3143 							IW_EV_UINT_LEN);
3144 		if (IS_ERR(current_ev))
3145 			goto unlock;
3146 	}
3147 
3148 	memset(&iwe, 0, sizeof(iwe));
3149 	iwe.cmd = IWEVCUSTOM;
3150 	sprintf(buf, "tsf=%016llx", (unsigned long long)(ies->tsf));
3151 	iwe.u.data.length = strlen(buf);
3152 	current_ev = iwe_stream_add_point_check(info, current_ev, end_buf,
3153 						&iwe, buf);
3154 	if (IS_ERR(current_ev))
3155 		goto unlock;
3156 	memset(&iwe, 0, sizeof(iwe));
3157 	iwe.cmd = IWEVCUSTOM;
3158 	sprintf(buf, " Last beacon: %ums ago",
3159 		elapsed_jiffies_msecs(bss->ts));
3160 	iwe.u.data.length = strlen(buf);
3161 	current_ev = iwe_stream_add_point_check(info, current_ev,
3162 						end_buf, &iwe, buf);
3163 	if (IS_ERR(current_ev))
3164 		goto unlock;
3165 
3166 	current_ev = ieee80211_scan_add_ies(info, ies, current_ev, end_buf);
3167 
3168  unlock:
3169 	rcu_read_unlock();
3170 	return current_ev;
3171 }
3172 
3173 
3174 static int ieee80211_scan_results(struct cfg80211_registered_device *rdev,
3175 				  struct iw_request_info *info,
3176 				  char *buf, size_t len)
3177 {
3178 	char *current_ev = buf;
3179 	char *end_buf = buf + len;
3180 	struct cfg80211_internal_bss *bss;
3181 	int err = 0;
3182 
3183 	spin_lock_bh(&rdev->bss_lock);
3184 	cfg80211_bss_expire(rdev);
3185 
3186 	list_for_each_entry(bss, &rdev->bss_list, list) {
3187 		if (buf + len - current_ev <= IW_EV_ADDR_LEN) {
3188 			err = -E2BIG;
3189 			break;
3190 		}
3191 		current_ev = ieee80211_bss(&rdev->wiphy, info, bss,
3192 					   current_ev, end_buf);
3193 		if (IS_ERR(current_ev)) {
3194 			err = PTR_ERR(current_ev);
3195 			break;
3196 		}
3197 	}
3198 	spin_unlock_bh(&rdev->bss_lock);
3199 
3200 	if (err)
3201 		return err;
3202 	return current_ev - buf;
3203 }
3204 
3205 
3206 int cfg80211_wext_giwscan(struct net_device *dev,
3207 			  struct iw_request_info *info,
3208 			  union iwreq_data *wrqu, char *extra)
3209 {
3210 	struct iw_point *data = &wrqu->data;
3211 	struct cfg80211_registered_device *rdev;
3212 	int res;
3213 
3214 	if (!netif_running(dev))
3215 		return -ENETDOWN;
3216 
3217 	rdev = cfg80211_get_dev_from_ifindex(dev_net(dev), dev->ifindex);
3218 
3219 	if (IS_ERR(rdev))
3220 		return PTR_ERR(rdev);
3221 
3222 	if (rdev->scan_req || rdev->scan_msg)
3223 		return -EAGAIN;
3224 
3225 	res = ieee80211_scan_results(rdev, info, extra, data->length);
3226 	data->length = 0;
3227 	if (res >= 0) {
3228 		data->length = res;
3229 		res = 0;
3230 	}
3231 
3232 	return res;
3233 }
3234 EXPORT_WEXT_HANDLER(cfg80211_wext_giwscan);
3235 #endif
3236