1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * cfg80211 scan result handling 4 * 5 * Copyright 2008 Johannes Berg <johannes@sipsolutions.net> 6 * Copyright 2013-2014 Intel Mobile Communications GmbH 7 * Copyright 2016 Intel Deutschland GmbH 8 * Copyright (C) 2018-2023 Intel Corporation 9 */ 10 #include <linux/kernel.h> 11 #include <linux/slab.h> 12 #include <linux/module.h> 13 #include <linux/netdevice.h> 14 #include <linux/wireless.h> 15 #include <linux/nl80211.h> 16 #include <linux/etherdevice.h> 17 #include <linux/crc32.h> 18 #include <linux/bitfield.h> 19 #include <net/arp.h> 20 #include <net/cfg80211.h> 21 #include <net/cfg80211-wext.h> 22 #include <net/iw_handler.h> 23 #include "core.h" 24 #include "nl80211.h" 25 #include "wext-compat.h" 26 #include "rdev-ops.h" 27 28 /** 29 * DOC: BSS tree/list structure 30 * 31 * At the top level, the BSS list is kept in both a list in each 32 * registered device (@bss_list) as well as an RB-tree for faster 33 * lookup. In the RB-tree, entries can be looked up using their 34 * channel, MESHID, MESHCONF (for MBSSes) or channel, BSSID, SSID 35 * for other BSSes. 36 * 37 * Due to the possibility of hidden SSIDs, there's a second level 38 * structure, the "hidden_list" and "hidden_beacon_bss" pointer. 39 * The hidden_list connects all BSSes belonging to a single AP 40 * that has a hidden SSID, and connects beacon and probe response 41 * entries. For a probe response entry for a hidden SSID, the 42 * hidden_beacon_bss pointer points to the BSS struct holding the 43 * beacon's information. 44 * 45 * Reference counting is done for all these references except for 46 * the hidden_list, so that a beacon BSS struct that is otherwise 47 * not referenced has one reference for being on the bss_list and 48 * one for each probe response entry that points to it using the 49 * hidden_beacon_bss pointer. When a BSS struct that has such a 50 * pointer is get/put, the refcount update is also propagated to 51 * the referenced struct, this ensure that it cannot get removed 52 * while somebody is using the probe response version. 53 * 54 * Note that the hidden_beacon_bss pointer never changes, due to 55 * the reference counting. Therefore, no locking is needed for 56 * it. 57 * 58 * Also note that the hidden_beacon_bss pointer is only relevant 59 * if the driver uses something other than the IEs, e.g. private 60 * data stored in the BSS struct, since the beacon IEs are 61 * also linked into the probe response struct. 62 */ 63 64 /* 65 * Limit the number of BSS entries stored in mac80211. Each one is 66 * a bit over 4k at most, so this limits to roughly 4-5M of memory. 67 * If somebody wants to really attack this though, they'd likely 68 * use small beacons, and only one type of frame, limiting each of 69 * the entries to a much smaller size (in order to generate more 70 * entries in total, so overhead is bigger.) 71 */ 72 static int bss_entries_limit = 1000; 73 module_param(bss_entries_limit, int, 0644); 74 MODULE_PARM_DESC(bss_entries_limit, 75 "limit to number of scan BSS entries (per wiphy, default 1000)"); 76 77 #define IEEE80211_SCAN_RESULT_EXPIRE (30 * HZ) 78 79 /** 80 * struct cfg80211_colocated_ap - colocated AP information 81 * 82 * @list: linked list to all colocated aPS 83 * @bssid: BSSID of the reported AP 84 * @ssid: SSID of the reported AP 85 * @ssid_len: length of the ssid 86 * @center_freq: frequency the reported AP is on 87 * @unsolicited_probe: the reported AP is part of an ESS, where all the APs 88 * that operate in the same channel as the reported AP and that might be 89 * detected by a STA receiving this frame, are transmitting unsolicited 90 * Probe Response frames every 20 TUs 91 * @oct_recommended: OCT is recommended to exchange MMPDUs with the reported AP 92 * @same_ssid: the reported AP has the same SSID as the reporting AP 93 * @multi_bss: the reported AP is part of a multiple BSSID set 94 * @transmitted_bssid: the reported AP is the transmitting BSSID 95 * @colocated_ess: all the APs that share the same ESS as the reported AP are 96 * colocated and can be discovered via legacy bands. 97 * @short_ssid_valid: short_ssid is valid and can be used 98 * @short_ssid: the short SSID for this SSID 99 * @psd_20: The 20MHz PSD EIRP of the primary 20MHz channel for the reported AP 100 */ 101 struct cfg80211_colocated_ap { 102 struct list_head list; 103 u8 bssid[ETH_ALEN]; 104 u8 ssid[IEEE80211_MAX_SSID_LEN]; 105 size_t ssid_len; 106 u32 short_ssid; 107 u32 center_freq; 108 u8 unsolicited_probe:1, 109 oct_recommended:1, 110 same_ssid:1, 111 multi_bss:1, 112 transmitted_bssid:1, 113 colocated_ess:1, 114 short_ssid_valid:1; 115 s8 psd_20; 116 }; 117 118 static void bss_free(struct cfg80211_internal_bss *bss) 119 { 120 struct cfg80211_bss_ies *ies; 121 122 if (WARN_ON(atomic_read(&bss->hold))) 123 return; 124 125 ies = (void *)rcu_access_pointer(bss->pub.beacon_ies); 126 if (ies && !bss->pub.hidden_beacon_bss) 127 kfree_rcu(ies, rcu_head); 128 ies = (void *)rcu_access_pointer(bss->pub.proberesp_ies); 129 if (ies) 130 kfree_rcu(ies, rcu_head); 131 132 /* 133 * This happens when the module is removed, it doesn't 134 * really matter any more save for completeness 135 */ 136 if (!list_empty(&bss->hidden_list)) 137 list_del(&bss->hidden_list); 138 139 kfree(bss); 140 } 141 142 static inline void bss_ref_get(struct cfg80211_registered_device *rdev, 143 struct cfg80211_internal_bss *bss) 144 { 145 lockdep_assert_held(&rdev->bss_lock); 146 147 bss->refcount++; 148 149 if (bss->pub.hidden_beacon_bss) 150 bss_from_pub(bss->pub.hidden_beacon_bss)->refcount++; 151 152 if (bss->pub.transmitted_bss) 153 bss_from_pub(bss->pub.transmitted_bss)->refcount++; 154 } 155 156 static inline void bss_ref_put(struct cfg80211_registered_device *rdev, 157 struct cfg80211_internal_bss *bss) 158 { 159 lockdep_assert_held(&rdev->bss_lock); 160 161 if (bss->pub.hidden_beacon_bss) { 162 struct cfg80211_internal_bss *hbss; 163 164 hbss = bss_from_pub(bss->pub.hidden_beacon_bss); 165 hbss->refcount--; 166 if (hbss->refcount == 0) 167 bss_free(hbss); 168 } 169 170 if (bss->pub.transmitted_bss) { 171 struct cfg80211_internal_bss *tbss; 172 173 tbss = bss_from_pub(bss->pub.transmitted_bss); 174 tbss->refcount--; 175 if (tbss->refcount == 0) 176 bss_free(tbss); 177 } 178 179 bss->refcount--; 180 if (bss->refcount == 0) 181 bss_free(bss); 182 } 183 184 static bool __cfg80211_unlink_bss(struct cfg80211_registered_device *rdev, 185 struct cfg80211_internal_bss *bss) 186 { 187 lockdep_assert_held(&rdev->bss_lock); 188 189 if (!list_empty(&bss->hidden_list)) { 190 /* 191 * don't remove the beacon entry if it has 192 * probe responses associated with it 193 */ 194 if (!bss->pub.hidden_beacon_bss) 195 return false; 196 /* 197 * if it's a probe response entry break its 198 * link to the other entries in the group 199 */ 200 list_del_init(&bss->hidden_list); 201 } 202 203 list_del_init(&bss->list); 204 list_del_init(&bss->pub.nontrans_list); 205 rb_erase(&bss->rbn, &rdev->bss_tree); 206 rdev->bss_entries--; 207 WARN_ONCE((rdev->bss_entries == 0) ^ list_empty(&rdev->bss_list), 208 "rdev bss entries[%d]/list[empty:%d] corruption\n", 209 rdev->bss_entries, list_empty(&rdev->bss_list)); 210 bss_ref_put(rdev, bss); 211 return true; 212 } 213 214 bool cfg80211_is_element_inherited(const struct element *elem, 215 const struct element *non_inherit_elem) 216 { 217 u8 id_len, ext_id_len, i, loop_len, id; 218 const u8 *list; 219 220 if (elem->id == WLAN_EID_MULTIPLE_BSSID) 221 return false; 222 223 if (elem->id == WLAN_EID_EXTENSION && elem->datalen > 1 && 224 elem->data[0] == WLAN_EID_EXT_EHT_MULTI_LINK) 225 return false; 226 227 if (!non_inherit_elem || non_inherit_elem->datalen < 2) 228 return true; 229 230 /* 231 * non inheritance element format is: 232 * ext ID (56) | IDs list len | list | extension IDs list len | list 233 * Both lists are optional. Both lengths are mandatory. 234 * This means valid length is: 235 * elem_len = 1 (extension ID) + 2 (list len fields) + list lengths 236 */ 237 id_len = non_inherit_elem->data[1]; 238 if (non_inherit_elem->datalen < 3 + id_len) 239 return true; 240 241 ext_id_len = non_inherit_elem->data[2 + id_len]; 242 if (non_inherit_elem->datalen < 3 + id_len + ext_id_len) 243 return true; 244 245 if (elem->id == WLAN_EID_EXTENSION) { 246 if (!ext_id_len) 247 return true; 248 loop_len = ext_id_len; 249 list = &non_inherit_elem->data[3 + id_len]; 250 id = elem->data[0]; 251 } else { 252 if (!id_len) 253 return true; 254 loop_len = id_len; 255 list = &non_inherit_elem->data[2]; 256 id = elem->id; 257 } 258 259 for (i = 0; i < loop_len; i++) { 260 if (list[i] == id) 261 return false; 262 } 263 264 return true; 265 } 266 EXPORT_SYMBOL(cfg80211_is_element_inherited); 267 268 static size_t cfg80211_copy_elem_with_frags(const struct element *elem, 269 const u8 *ie, size_t ie_len, 270 u8 **pos, u8 *buf, size_t buf_len) 271 { 272 if (WARN_ON((u8 *)elem < ie || elem->data > ie + ie_len || 273 elem->data + elem->datalen > ie + ie_len)) 274 return 0; 275 276 if (elem->datalen + 2 > buf + buf_len - *pos) 277 return 0; 278 279 memcpy(*pos, elem, elem->datalen + 2); 280 *pos += elem->datalen + 2; 281 282 /* Finish if it is not fragmented */ 283 if (elem->datalen != 255) 284 return *pos - buf; 285 286 ie_len = ie + ie_len - elem->data - elem->datalen; 287 ie = (const u8 *)elem->data + elem->datalen; 288 289 for_each_element(elem, ie, ie_len) { 290 if (elem->id != WLAN_EID_FRAGMENT) 291 break; 292 293 if (elem->datalen + 2 > buf + buf_len - *pos) 294 return 0; 295 296 memcpy(*pos, elem, elem->datalen + 2); 297 *pos += elem->datalen + 2; 298 299 if (elem->datalen != 255) 300 break; 301 } 302 303 return *pos - buf; 304 } 305 306 static size_t cfg80211_gen_new_ie(const u8 *ie, size_t ielen, 307 const u8 *subie, size_t subie_len, 308 u8 *new_ie, size_t new_ie_len) 309 { 310 const struct element *non_inherit_elem, *parent, *sub; 311 u8 *pos = new_ie; 312 u8 id, ext_id; 313 unsigned int match_len; 314 315 non_inherit_elem = cfg80211_find_ext_elem(WLAN_EID_EXT_NON_INHERITANCE, 316 subie, subie_len); 317 318 /* We copy the elements one by one from the parent to the generated 319 * elements. 320 * If they are not inherited (included in subie or in the non 321 * inheritance element), then we copy all occurrences the first time 322 * we see this element type. 323 */ 324 for_each_element(parent, ie, ielen) { 325 if (parent->id == WLAN_EID_FRAGMENT) 326 continue; 327 328 if (parent->id == WLAN_EID_EXTENSION) { 329 if (parent->datalen < 1) 330 continue; 331 332 id = WLAN_EID_EXTENSION; 333 ext_id = parent->data[0]; 334 match_len = 1; 335 } else { 336 id = parent->id; 337 match_len = 0; 338 } 339 340 /* Find first occurrence in subie */ 341 sub = cfg80211_find_elem_match(id, subie, subie_len, 342 &ext_id, match_len, 0); 343 344 /* Copy from parent if not in subie and inherited */ 345 if (!sub && 346 cfg80211_is_element_inherited(parent, non_inherit_elem)) { 347 if (!cfg80211_copy_elem_with_frags(parent, 348 ie, ielen, 349 &pos, new_ie, 350 new_ie_len)) 351 return 0; 352 353 continue; 354 } 355 356 /* Already copied if an earlier element had the same type */ 357 if (cfg80211_find_elem_match(id, ie, (u8 *)parent - ie, 358 &ext_id, match_len, 0)) 359 continue; 360 361 /* Not inheriting, copy all similar elements from subie */ 362 while (sub) { 363 if (!cfg80211_copy_elem_with_frags(sub, 364 subie, subie_len, 365 &pos, new_ie, 366 new_ie_len)) 367 return 0; 368 369 sub = cfg80211_find_elem_match(id, 370 sub->data + sub->datalen, 371 subie_len + subie - 372 (sub->data + 373 sub->datalen), 374 &ext_id, match_len, 0); 375 } 376 } 377 378 /* The above misses elements that are included in subie but not in the 379 * parent, so do a pass over subie and append those. 380 * Skip the non-tx BSSID caps and non-inheritance element. 381 */ 382 for_each_element(sub, subie, subie_len) { 383 if (sub->id == WLAN_EID_NON_TX_BSSID_CAP) 384 continue; 385 386 if (sub->id == WLAN_EID_FRAGMENT) 387 continue; 388 389 if (sub->id == WLAN_EID_EXTENSION) { 390 if (sub->datalen < 1) 391 continue; 392 393 id = WLAN_EID_EXTENSION; 394 ext_id = sub->data[0]; 395 match_len = 1; 396 397 if (ext_id == WLAN_EID_EXT_NON_INHERITANCE) 398 continue; 399 } else { 400 id = sub->id; 401 match_len = 0; 402 } 403 404 /* Processed if one was included in the parent */ 405 if (cfg80211_find_elem_match(id, ie, ielen, 406 &ext_id, match_len, 0)) 407 continue; 408 409 if (!cfg80211_copy_elem_with_frags(sub, subie, subie_len, 410 &pos, new_ie, new_ie_len)) 411 return 0; 412 } 413 414 return pos - new_ie; 415 } 416 417 static bool is_bss(struct cfg80211_bss *a, const u8 *bssid, 418 const u8 *ssid, size_t ssid_len) 419 { 420 const struct cfg80211_bss_ies *ies; 421 const struct element *ssid_elem; 422 423 if (bssid && !ether_addr_equal(a->bssid, bssid)) 424 return false; 425 426 if (!ssid) 427 return true; 428 429 ies = rcu_access_pointer(a->ies); 430 if (!ies) 431 return false; 432 ssid_elem = cfg80211_find_elem(WLAN_EID_SSID, ies->data, ies->len); 433 if (!ssid_elem) 434 return false; 435 if (ssid_elem->datalen != ssid_len) 436 return false; 437 return memcmp(ssid_elem->data, ssid, ssid_len) == 0; 438 } 439 440 static int 441 cfg80211_add_nontrans_list(struct cfg80211_bss *trans_bss, 442 struct cfg80211_bss *nontrans_bss) 443 { 444 const struct element *ssid_elem; 445 struct cfg80211_bss *bss = NULL; 446 447 rcu_read_lock(); 448 ssid_elem = ieee80211_bss_get_elem(nontrans_bss, WLAN_EID_SSID); 449 if (!ssid_elem) { 450 rcu_read_unlock(); 451 return -EINVAL; 452 } 453 454 /* check if nontrans_bss is in the list */ 455 list_for_each_entry(bss, &trans_bss->nontrans_list, nontrans_list) { 456 if (is_bss(bss, nontrans_bss->bssid, ssid_elem->data, 457 ssid_elem->datalen)) { 458 rcu_read_unlock(); 459 return 0; 460 } 461 } 462 463 rcu_read_unlock(); 464 465 /* 466 * This is a bit weird - it's not on the list, but already on another 467 * one! The only way that could happen is if there's some BSSID/SSID 468 * shared by multiple APs in their multi-BSSID profiles, potentially 469 * with hidden SSID mixed in ... ignore it. 470 */ 471 if (!list_empty(&nontrans_bss->nontrans_list)) 472 return -EINVAL; 473 474 /* add to the list */ 475 list_add_tail(&nontrans_bss->nontrans_list, &trans_bss->nontrans_list); 476 return 0; 477 } 478 479 static void __cfg80211_bss_expire(struct cfg80211_registered_device *rdev, 480 unsigned long expire_time) 481 { 482 struct cfg80211_internal_bss *bss, *tmp; 483 bool expired = false; 484 485 lockdep_assert_held(&rdev->bss_lock); 486 487 list_for_each_entry_safe(bss, tmp, &rdev->bss_list, list) { 488 if (atomic_read(&bss->hold)) 489 continue; 490 if (!time_after(expire_time, bss->ts)) 491 continue; 492 493 if (__cfg80211_unlink_bss(rdev, bss)) 494 expired = true; 495 } 496 497 if (expired) 498 rdev->bss_generation++; 499 } 500 501 static bool cfg80211_bss_expire_oldest(struct cfg80211_registered_device *rdev) 502 { 503 struct cfg80211_internal_bss *bss, *oldest = NULL; 504 bool ret; 505 506 lockdep_assert_held(&rdev->bss_lock); 507 508 list_for_each_entry(bss, &rdev->bss_list, list) { 509 if (atomic_read(&bss->hold)) 510 continue; 511 512 if (!list_empty(&bss->hidden_list) && 513 !bss->pub.hidden_beacon_bss) 514 continue; 515 516 if (oldest && time_before(oldest->ts, bss->ts)) 517 continue; 518 oldest = bss; 519 } 520 521 if (WARN_ON(!oldest)) 522 return false; 523 524 /* 525 * The callers make sure to increase rdev->bss_generation if anything 526 * gets removed (and a new entry added), so there's no need to also do 527 * it here. 528 */ 529 530 ret = __cfg80211_unlink_bss(rdev, oldest); 531 WARN_ON(!ret); 532 return ret; 533 } 534 535 static u8 cfg80211_parse_bss_param(u8 data, 536 struct cfg80211_colocated_ap *coloc_ap) 537 { 538 coloc_ap->oct_recommended = 539 u8_get_bits(data, IEEE80211_RNR_TBTT_PARAMS_OCT_RECOMMENDED); 540 coloc_ap->same_ssid = 541 u8_get_bits(data, IEEE80211_RNR_TBTT_PARAMS_SAME_SSID); 542 coloc_ap->multi_bss = 543 u8_get_bits(data, IEEE80211_RNR_TBTT_PARAMS_MULTI_BSSID); 544 coloc_ap->transmitted_bssid = 545 u8_get_bits(data, IEEE80211_RNR_TBTT_PARAMS_TRANSMITTED_BSSID); 546 coloc_ap->unsolicited_probe = 547 u8_get_bits(data, IEEE80211_RNR_TBTT_PARAMS_PROBE_ACTIVE); 548 coloc_ap->colocated_ess = 549 u8_get_bits(data, IEEE80211_RNR_TBTT_PARAMS_COLOC_ESS); 550 551 return u8_get_bits(data, IEEE80211_RNR_TBTT_PARAMS_COLOC_AP); 552 } 553 554 static int cfg80211_calc_short_ssid(const struct cfg80211_bss_ies *ies, 555 const struct element **elem, u32 *s_ssid) 556 { 557 558 *elem = cfg80211_find_elem(WLAN_EID_SSID, ies->data, ies->len); 559 if (!*elem || (*elem)->datalen > IEEE80211_MAX_SSID_LEN) 560 return -EINVAL; 561 562 *s_ssid = ~crc32_le(~0, (*elem)->data, (*elem)->datalen); 563 return 0; 564 } 565 566 static void cfg80211_free_coloc_ap_list(struct list_head *coloc_ap_list) 567 { 568 struct cfg80211_colocated_ap *ap, *tmp_ap; 569 570 list_for_each_entry_safe(ap, tmp_ap, coloc_ap_list, list) { 571 list_del(&ap->list); 572 kfree(ap); 573 } 574 } 575 576 static int cfg80211_parse_ap_info(struct cfg80211_colocated_ap *entry, 577 const u8 *pos, u8 length, 578 const struct element *ssid_elem, 579 u32 s_ssid_tmp) 580 { 581 u8 bss_params; 582 583 entry->psd_20 = IEEE80211_RNR_TBTT_PARAMS_PSD_RESERVED; 584 585 /* The length is already verified by the caller to contain bss_params */ 586 if (length > sizeof(struct ieee80211_tbtt_info_7_8_9)) { 587 struct ieee80211_tbtt_info_ge_11 *tbtt_info = (void *)pos; 588 589 memcpy(entry->bssid, tbtt_info->bssid, ETH_ALEN); 590 entry->short_ssid = le32_to_cpu(tbtt_info->short_ssid); 591 entry->short_ssid_valid = true; 592 593 bss_params = tbtt_info->bss_params; 594 595 /* Ignore disabled links */ 596 if (length >= offsetofend(typeof(*tbtt_info), mld_params)) { 597 if (le16_get_bits(tbtt_info->mld_params.params, 598 IEEE80211_RNR_MLD_PARAMS_DISABLED_LINK)) 599 return -EINVAL; 600 } 601 602 if (length >= offsetofend(struct ieee80211_tbtt_info_ge_11, 603 psd_20)) 604 entry->psd_20 = tbtt_info->psd_20; 605 } else { 606 struct ieee80211_tbtt_info_7_8_9 *tbtt_info = (void *)pos; 607 608 memcpy(entry->bssid, tbtt_info->bssid, ETH_ALEN); 609 610 bss_params = tbtt_info->bss_params; 611 612 if (length == offsetofend(struct ieee80211_tbtt_info_7_8_9, 613 psd_20)) 614 entry->psd_20 = tbtt_info->psd_20; 615 } 616 617 /* ignore entries with invalid BSSID */ 618 if (!is_valid_ether_addr(entry->bssid)) 619 return -EINVAL; 620 621 /* skip non colocated APs */ 622 if (!cfg80211_parse_bss_param(bss_params, entry)) 623 return -EINVAL; 624 625 /* no information about the short ssid. Consider the entry valid 626 * for now. It would later be dropped in case there are explicit 627 * SSIDs that need to be matched 628 */ 629 if (!entry->same_ssid && !entry->short_ssid_valid) 630 return 0; 631 632 if (entry->same_ssid) { 633 entry->short_ssid = s_ssid_tmp; 634 entry->short_ssid_valid = true; 635 636 /* 637 * This is safe because we validate datalen in 638 * cfg80211_parse_colocated_ap(), before calling this 639 * function. 640 */ 641 memcpy(&entry->ssid, &ssid_elem->data, ssid_elem->datalen); 642 entry->ssid_len = ssid_elem->datalen; 643 } 644 645 return 0; 646 } 647 648 static int cfg80211_parse_colocated_ap(const struct cfg80211_bss_ies *ies, 649 struct list_head *list) 650 { 651 struct ieee80211_neighbor_ap_info *ap_info; 652 const struct element *elem, *ssid_elem; 653 const u8 *pos, *end; 654 u32 s_ssid_tmp; 655 int n_coloc = 0, ret; 656 LIST_HEAD(ap_list); 657 658 ret = cfg80211_calc_short_ssid(ies, &ssid_elem, &s_ssid_tmp); 659 if (ret) 660 return 0; 661 662 for_each_element_id(elem, WLAN_EID_REDUCED_NEIGHBOR_REPORT, 663 ies->data, ies->len) { 664 pos = elem->data; 665 end = elem->data + elem->datalen; 666 667 /* RNR IE may contain more than one NEIGHBOR_AP_INFO */ 668 while (pos + sizeof(*ap_info) <= end) { 669 enum nl80211_band band; 670 int freq; 671 u8 length, i, count; 672 673 ap_info = (void *)pos; 674 count = u8_get_bits(ap_info->tbtt_info_hdr, 675 IEEE80211_AP_INFO_TBTT_HDR_COUNT) + 1; 676 length = ap_info->tbtt_info_len; 677 678 pos += sizeof(*ap_info); 679 680 if (!ieee80211_operating_class_to_band(ap_info->op_class, 681 &band)) 682 break; 683 684 freq = ieee80211_channel_to_frequency(ap_info->channel, 685 band); 686 687 if (end - pos < count * length) 688 break; 689 690 if (u8_get_bits(ap_info->tbtt_info_hdr, 691 IEEE80211_AP_INFO_TBTT_HDR_TYPE) != 692 IEEE80211_TBTT_INFO_TYPE_TBTT) { 693 pos += count * length; 694 continue; 695 } 696 697 /* TBTT info must include bss param + BSSID + 698 * (short SSID or same_ssid bit to be set). 699 * ignore other options, and move to the 700 * next AP info 701 */ 702 if (band != NL80211_BAND_6GHZ || 703 !(length == offsetofend(struct ieee80211_tbtt_info_7_8_9, 704 bss_params) || 705 length == sizeof(struct ieee80211_tbtt_info_7_8_9) || 706 length >= offsetofend(struct ieee80211_tbtt_info_ge_11, 707 bss_params))) { 708 pos += count * length; 709 continue; 710 } 711 712 for (i = 0; i < count; i++) { 713 struct cfg80211_colocated_ap *entry; 714 715 entry = kzalloc(sizeof(*entry) + IEEE80211_MAX_SSID_LEN, 716 GFP_ATOMIC); 717 718 if (!entry) 719 goto error; 720 721 entry->center_freq = freq; 722 723 if (!cfg80211_parse_ap_info(entry, pos, length, 724 ssid_elem, 725 s_ssid_tmp)) { 726 n_coloc++; 727 list_add_tail(&entry->list, &ap_list); 728 } else { 729 kfree(entry); 730 } 731 732 pos += length; 733 } 734 } 735 736 error: 737 if (pos != end) { 738 cfg80211_free_coloc_ap_list(&ap_list); 739 return 0; 740 } 741 } 742 743 list_splice_tail(&ap_list, list); 744 return n_coloc; 745 } 746 747 static void cfg80211_scan_req_add_chan(struct cfg80211_scan_request *request, 748 struct ieee80211_channel *chan, 749 bool add_to_6ghz) 750 { 751 int i; 752 u32 n_channels = request->n_channels; 753 struct cfg80211_scan_6ghz_params *params = 754 &request->scan_6ghz_params[request->n_6ghz_params]; 755 756 for (i = 0; i < n_channels; i++) { 757 if (request->channels[i] == chan) { 758 if (add_to_6ghz) 759 params->channel_idx = i; 760 return; 761 } 762 } 763 764 request->channels[n_channels] = chan; 765 if (add_to_6ghz) 766 request->scan_6ghz_params[request->n_6ghz_params].channel_idx = 767 n_channels; 768 769 request->n_channels++; 770 } 771 772 static bool cfg80211_find_ssid_match(struct cfg80211_colocated_ap *ap, 773 struct cfg80211_scan_request *request) 774 { 775 int i; 776 u32 s_ssid; 777 778 for (i = 0; i < request->n_ssids; i++) { 779 /* wildcard ssid in the scan request */ 780 if (!request->ssids[i].ssid_len) { 781 if (ap->multi_bss && !ap->transmitted_bssid) 782 continue; 783 784 return true; 785 } 786 787 if (ap->ssid_len && 788 ap->ssid_len == request->ssids[i].ssid_len) { 789 if (!memcmp(request->ssids[i].ssid, ap->ssid, 790 ap->ssid_len)) 791 return true; 792 } else if (ap->short_ssid_valid) { 793 s_ssid = ~crc32_le(~0, request->ssids[i].ssid, 794 request->ssids[i].ssid_len); 795 796 if (ap->short_ssid == s_ssid) 797 return true; 798 } 799 } 800 801 return false; 802 } 803 804 static int cfg80211_scan_6ghz(struct cfg80211_registered_device *rdev) 805 { 806 u8 i; 807 struct cfg80211_colocated_ap *ap; 808 int n_channels, count = 0, err; 809 struct cfg80211_scan_request *request, *rdev_req = rdev->scan_req; 810 LIST_HEAD(coloc_ap_list); 811 bool need_scan_psc = true; 812 const struct ieee80211_sband_iftype_data *iftd; 813 814 rdev_req->scan_6ghz = true; 815 816 if (!rdev->wiphy.bands[NL80211_BAND_6GHZ]) 817 return -EOPNOTSUPP; 818 819 iftd = ieee80211_get_sband_iftype_data(rdev->wiphy.bands[NL80211_BAND_6GHZ], 820 rdev_req->wdev->iftype); 821 if (!iftd || !iftd->he_cap.has_he) 822 return -EOPNOTSUPP; 823 824 n_channels = rdev->wiphy.bands[NL80211_BAND_6GHZ]->n_channels; 825 826 if (rdev_req->flags & NL80211_SCAN_FLAG_COLOCATED_6GHZ) { 827 struct cfg80211_internal_bss *intbss; 828 829 spin_lock_bh(&rdev->bss_lock); 830 list_for_each_entry(intbss, &rdev->bss_list, list) { 831 struct cfg80211_bss *res = &intbss->pub; 832 const struct cfg80211_bss_ies *ies; 833 const struct element *ssid_elem; 834 struct cfg80211_colocated_ap *entry; 835 u32 s_ssid_tmp; 836 int ret; 837 838 ies = rcu_access_pointer(res->ies); 839 count += cfg80211_parse_colocated_ap(ies, 840 &coloc_ap_list); 841 842 /* In case the scan request specified a specific BSSID 843 * and the BSS is found and operating on 6GHz band then 844 * add this AP to the collocated APs list. 845 * This is relevant for ML probe requests when the lower 846 * band APs have not been discovered. 847 */ 848 if (is_broadcast_ether_addr(rdev_req->bssid) || 849 !ether_addr_equal(rdev_req->bssid, res->bssid) || 850 res->channel->band != NL80211_BAND_6GHZ) 851 continue; 852 853 ret = cfg80211_calc_short_ssid(ies, &ssid_elem, 854 &s_ssid_tmp); 855 if (ret) 856 continue; 857 858 entry = kzalloc(sizeof(*entry) + IEEE80211_MAX_SSID_LEN, 859 GFP_ATOMIC); 860 861 if (!entry) 862 continue; 863 864 memcpy(entry->bssid, res->bssid, ETH_ALEN); 865 entry->short_ssid = s_ssid_tmp; 866 memcpy(entry->ssid, ssid_elem->data, 867 ssid_elem->datalen); 868 entry->ssid_len = ssid_elem->datalen; 869 entry->short_ssid_valid = true; 870 entry->center_freq = res->channel->center_freq; 871 872 list_add_tail(&entry->list, &coloc_ap_list); 873 count++; 874 } 875 spin_unlock_bh(&rdev->bss_lock); 876 } 877 878 request = kzalloc(struct_size(request, channels, n_channels) + 879 sizeof(*request->scan_6ghz_params) * count + 880 sizeof(*request->ssids) * rdev_req->n_ssids, 881 GFP_KERNEL); 882 if (!request) { 883 cfg80211_free_coloc_ap_list(&coloc_ap_list); 884 return -ENOMEM; 885 } 886 887 *request = *rdev_req; 888 request->n_channels = 0; 889 request->scan_6ghz_params = 890 (void *)&request->channels[n_channels]; 891 892 /* 893 * PSC channels should not be scanned in case of direct scan with 1 SSID 894 * and at least one of the reported co-located APs with same SSID 895 * indicating that all APs in the same ESS are co-located 896 */ 897 if (count && request->n_ssids == 1 && request->ssids[0].ssid_len) { 898 list_for_each_entry(ap, &coloc_ap_list, list) { 899 if (ap->colocated_ess && 900 cfg80211_find_ssid_match(ap, request)) { 901 need_scan_psc = false; 902 break; 903 } 904 } 905 } 906 907 /* 908 * add to the scan request the channels that need to be scanned 909 * regardless of the collocated APs (PSC channels or all channels 910 * in case that NL80211_SCAN_FLAG_COLOCATED_6GHZ is not set) 911 */ 912 for (i = 0; i < rdev_req->n_channels; i++) { 913 if (rdev_req->channels[i]->band == NL80211_BAND_6GHZ && 914 ((need_scan_psc && 915 cfg80211_channel_is_psc(rdev_req->channels[i])) || 916 !(rdev_req->flags & NL80211_SCAN_FLAG_COLOCATED_6GHZ))) { 917 cfg80211_scan_req_add_chan(request, 918 rdev_req->channels[i], 919 false); 920 } 921 } 922 923 if (!(rdev_req->flags & NL80211_SCAN_FLAG_COLOCATED_6GHZ)) 924 goto skip; 925 926 list_for_each_entry(ap, &coloc_ap_list, list) { 927 bool found = false; 928 struct cfg80211_scan_6ghz_params *scan_6ghz_params = 929 &request->scan_6ghz_params[request->n_6ghz_params]; 930 struct ieee80211_channel *chan = 931 ieee80211_get_channel(&rdev->wiphy, ap->center_freq); 932 933 if (!chan || chan->flags & IEEE80211_CHAN_DISABLED) 934 continue; 935 936 for (i = 0; i < rdev_req->n_channels; i++) { 937 if (rdev_req->channels[i] == chan) 938 found = true; 939 } 940 941 if (!found) 942 continue; 943 944 if (request->n_ssids > 0 && 945 !cfg80211_find_ssid_match(ap, request)) 946 continue; 947 948 if (!is_broadcast_ether_addr(request->bssid) && 949 !ether_addr_equal(request->bssid, ap->bssid)) 950 continue; 951 952 if (!request->n_ssids && ap->multi_bss && !ap->transmitted_bssid) 953 continue; 954 955 cfg80211_scan_req_add_chan(request, chan, true); 956 memcpy(scan_6ghz_params->bssid, ap->bssid, ETH_ALEN); 957 scan_6ghz_params->short_ssid = ap->short_ssid; 958 scan_6ghz_params->short_ssid_valid = ap->short_ssid_valid; 959 scan_6ghz_params->unsolicited_probe = ap->unsolicited_probe; 960 scan_6ghz_params->psd_20 = ap->psd_20; 961 962 /* 963 * If a PSC channel is added to the scan and 'need_scan_psc' is 964 * set to false, then all the APs that the scan logic is 965 * interested with on the channel are collocated and thus there 966 * is no need to perform the initial PSC channel listen. 967 */ 968 if (cfg80211_channel_is_psc(chan) && !need_scan_psc) 969 scan_6ghz_params->psc_no_listen = true; 970 971 request->n_6ghz_params++; 972 } 973 974 skip: 975 cfg80211_free_coloc_ap_list(&coloc_ap_list); 976 977 if (request->n_channels) { 978 struct cfg80211_scan_request *old = rdev->int_scan_req; 979 rdev->int_scan_req = request; 980 981 /* 982 * Add the ssids from the parent scan request to the new scan 983 * request, so the driver would be able to use them in its 984 * probe requests to discover hidden APs on PSC channels. 985 */ 986 request->ssids = (void *)&request->channels[request->n_channels]; 987 request->n_ssids = rdev_req->n_ssids; 988 memcpy(request->ssids, rdev_req->ssids, sizeof(*request->ssids) * 989 request->n_ssids); 990 991 /* 992 * If this scan follows a previous scan, save the scan start 993 * info from the first part of the scan 994 */ 995 if (old) 996 rdev->int_scan_req->info = old->info; 997 998 err = rdev_scan(rdev, request); 999 if (err) { 1000 rdev->int_scan_req = old; 1001 kfree(request); 1002 } else { 1003 kfree(old); 1004 } 1005 1006 return err; 1007 } 1008 1009 kfree(request); 1010 return -EINVAL; 1011 } 1012 1013 int cfg80211_scan(struct cfg80211_registered_device *rdev) 1014 { 1015 struct cfg80211_scan_request *request; 1016 struct cfg80211_scan_request *rdev_req = rdev->scan_req; 1017 u32 n_channels = 0, idx, i; 1018 1019 if (!(rdev->wiphy.flags & WIPHY_FLAG_SPLIT_SCAN_6GHZ)) 1020 return rdev_scan(rdev, rdev_req); 1021 1022 for (i = 0; i < rdev_req->n_channels; i++) { 1023 if (rdev_req->channels[i]->band != NL80211_BAND_6GHZ) 1024 n_channels++; 1025 } 1026 1027 if (!n_channels) 1028 return cfg80211_scan_6ghz(rdev); 1029 1030 request = kzalloc(struct_size(request, channels, n_channels), 1031 GFP_KERNEL); 1032 if (!request) 1033 return -ENOMEM; 1034 1035 *request = *rdev_req; 1036 request->n_channels = n_channels; 1037 1038 for (i = idx = 0; i < rdev_req->n_channels; i++) { 1039 if (rdev_req->channels[i]->band != NL80211_BAND_6GHZ) 1040 request->channels[idx++] = rdev_req->channels[i]; 1041 } 1042 1043 rdev_req->scan_6ghz = false; 1044 rdev->int_scan_req = request; 1045 return rdev_scan(rdev, request); 1046 } 1047 1048 void ___cfg80211_scan_done(struct cfg80211_registered_device *rdev, 1049 bool send_message) 1050 { 1051 struct cfg80211_scan_request *request, *rdev_req; 1052 struct wireless_dev *wdev; 1053 struct sk_buff *msg; 1054 #ifdef CONFIG_CFG80211_WEXT 1055 union iwreq_data wrqu; 1056 #endif 1057 1058 lockdep_assert_held(&rdev->wiphy.mtx); 1059 1060 if (rdev->scan_msg) { 1061 nl80211_send_scan_msg(rdev, rdev->scan_msg); 1062 rdev->scan_msg = NULL; 1063 return; 1064 } 1065 1066 rdev_req = rdev->scan_req; 1067 if (!rdev_req) 1068 return; 1069 1070 wdev = rdev_req->wdev; 1071 request = rdev->int_scan_req ? rdev->int_scan_req : rdev_req; 1072 1073 if (wdev_running(wdev) && 1074 (rdev->wiphy.flags & WIPHY_FLAG_SPLIT_SCAN_6GHZ) && 1075 !rdev_req->scan_6ghz && !request->info.aborted && 1076 !cfg80211_scan_6ghz(rdev)) 1077 return; 1078 1079 /* 1080 * This must be before sending the other events! 1081 * Otherwise, wpa_supplicant gets completely confused with 1082 * wext events. 1083 */ 1084 if (wdev->netdev) 1085 cfg80211_sme_scan_done(wdev->netdev); 1086 1087 if (!request->info.aborted && 1088 request->flags & NL80211_SCAN_FLAG_FLUSH) { 1089 /* flush entries from previous scans */ 1090 spin_lock_bh(&rdev->bss_lock); 1091 __cfg80211_bss_expire(rdev, request->scan_start); 1092 spin_unlock_bh(&rdev->bss_lock); 1093 } 1094 1095 msg = nl80211_build_scan_msg(rdev, wdev, request->info.aborted); 1096 1097 #ifdef CONFIG_CFG80211_WEXT 1098 if (wdev->netdev && !request->info.aborted) { 1099 memset(&wrqu, 0, sizeof(wrqu)); 1100 1101 wireless_send_event(wdev->netdev, SIOCGIWSCAN, &wrqu, NULL); 1102 } 1103 #endif 1104 1105 dev_put(wdev->netdev); 1106 1107 kfree(rdev->int_scan_req); 1108 rdev->int_scan_req = NULL; 1109 1110 kfree(rdev->scan_req); 1111 rdev->scan_req = NULL; 1112 1113 if (!send_message) 1114 rdev->scan_msg = msg; 1115 else 1116 nl80211_send_scan_msg(rdev, msg); 1117 } 1118 1119 void __cfg80211_scan_done(struct wiphy *wiphy, struct wiphy_work *wk) 1120 { 1121 ___cfg80211_scan_done(wiphy_to_rdev(wiphy), true); 1122 } 1123 1124 void cfg80211_scan_done(struct cfg80211_scan_request *request, 1125 struct cfg80211_scan_info *info) 1126 { 1127 struct cfg80211_scan_info old_info = request->info; 1128 1129 trace_cfg80211_scan_done(request, info); 1130 WARN_ON(request != wiphy_to_rdev(request->wiphy)->scan_req && 1131 request != wiphy_to_rdev(request->wiphy)->int_scan_req); 1132 1133 request->info = *info; 1134 1135 /* 1136 * In case the scan is split, the scan_start_tsf and tsf_bssid should 1137 * be of the first part. In such a case old_info.scan_start_tsf should 1138 * be non zero. 1139 */ 1140 if (request->scan_6ghz && old_info.scan_start_tsf) { 1141 request->info.scan_start_tsf = old_info.scan_start_tsf; 1142 memcpy(request->info.tsf_bssid, old_info.tsf_bssid, 1143 sizeof(request->info.tsf_bssid)); 1144 } 1145 1146 request->notified = true; 1147 wiphy_work_queue(request->wiphy, 1148 &wiphy_to_rdev(request->wiphy)->scan_done_wk); 1149 } 1150 EXPORT_SYMBOL(cfg80211_scan_done); 1151 1152 void cfg80211_add_sched_scan_req(struct cfg80211_registered_device *rdev, 1153 struct cfg80211_sched_scan_request *req) 1154 { 1155 lockdep_assert_held(&rdev->wiphy.mtx); 1156 1157 list_add_rcu(&req->list, &rdev->sched_scan_req_list); 1158 } 1159 1160 static void cfg80211_del_sched_scan_req(struct cfg80211_registered_device *rdev, 1161 struct cfg80211_sched_scan_request *req) 1162 { 1163 lockdep_assert_held(&rdev->wiphy.mtx); 1164 1165 list_del_rcu(&req->list); 1166 kfree_rcu(req, rcu_head); 1167 } 1168 1169 static struct cfg80211_sched_scan_request * 1170 cfg80211_find_sched_scan_req(struct cfg80211_registered_device *rdev, u64 reqid) 1171 { 1172 struct cfg80211_sched_scan_request *pos; 1173 1174 list_for_each_entry_rcu(pos, &rdev->sched_scan_req_list, list, 1175 lockdep_is_held(&rdev->wiphy.mtx)) { 1176 if (pos->reqid == reqid) 1177 return pos; 1178 } 1179 return NULL; 1180 } 1181 1182 /* 1183 * Determines if a scheduled scan request can be handled. When a legacy 1184 * scheduled scan is running no other scheduled scan is allowed regardless 1185 * whether the request is for legacy or multi-support scan. When a multi-support 1186 * scheduled scan is running a request for legacy scan is not allowed. In this 1187 * case a request for multi-support scan can be handled if resources are 1188 * available, ie. struct wiphy::max_sched_scan_reqs limit is not yet reached. 1189 */ 1190 int cfg80211_sched_scan_req_possible(struct cfg80211_registered_device *rdev, 1191 bool want_multi) 1192 { 1193 struct cfg80211_sched_scan_request *pos; 1194 int i = 0; 1195 1196 list_for_each_entry(pos, &rdev->sched_scan_req_list, list) { 1197 /* request id zero means legacy in progress */ 1198 if (!i && !pos->reqid) 1199 return -EINPROGRESS; 1200 i++; 1201 } 1202 1203 if (i) { 1204 /* no legacy allowed when multi request(s) are active */ 1205 if (!want_multi) 1206 return -EINPROGRESS; 1207 1208 /* resource limit reached */ 1209 if (i == rdev->wiphy.max_sched_scan_reqs) 1210 return -ENOSPC; 1211 } 1212 return 0; 1213 } 1214 1215 void cfg80211_sched_scan_results_wk(struct work_struct *work) 1216 { 1217 struct cfg80211_registered_device *rdev; 1218 struct cfg80211_sched_scan_request *req, *tmp; 1219 1220 rdev = container_of(work, struct cfg80211_registered_device, 1221 sched_scan_res_wk); 1222 1223 wiphy_lock(&rdev->wiphy); 1224 list_for_each_entry_safe(req, tmp, &rdev->sched_scan_req_list, list) { 1225 if (req->report_results) { 1226 req->report_results = false; 1227 if (req->flags & NL80211_SCAN_FLAG_FLUSH) { 1228 /* flush entries from previous scans */ 1229 spin_lock_bh(&rdev->bss_lock); 1230 __cfg80211_bss_expire(rdev, req->scan_start); 1231 spin_unlock_bh(&rdev->bss_lock); 1232 req->scan_start = jiffies; 1233 } 1234 nl80211_send_sched_scan(req, 1235 NL80211_CMD_SCHED_SCAN_RESULTS); 1236 } 1237 } 1238 wiphy_unlock(&rdev->wiphy); 1239 } 1240 1241 void cfg80211_sched_scan_results(struct wiphy *wiphy, u64 reqid) 1242 { 1243 struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy); 1244 struct cfg80211_sched_scan_request *request; 1245 1246 trace_cfg80211_sched_scan_results(wiphy, reqid); 1247 /* ignore if we're not scanning */ 1248 1249 rcu_read_lock(); 1250 request = cfg80211_find_sched_scan_req(rdev, reqid); 1251 if (request) { 1252 request->report_results = true; 1253 queue_work(cfg80211_wq, &rdev->sched_scan_res_wk); 1254 } 1255 rcu_read_unlock(); 1256 } 1257 EXPORT_SYMBOL(cfg80211_sched_scan_results); 1258 1259 void cfg80211_sched_scan_stopped_locked(struct wiphy *wiphy, u64 reqid) 1260 { 1261 struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy); 1262 1263 lockdep_assert_held(&wiphy->mtx); 1264 1265 trace_cfg80211_sched_scan_stopped(wiphy, reqid); 1266 1267 __cfg80211_stop_sched_scan(rdev, reqid, true); 1268 } 1269 EXPORT_SYMBOL(cfg80211_sched_scan_stopped_locked); 1270 1271 void cfg80211_sched_scan_stopped(struct wiphy *wiphy, u64 reqid) 1272 { 1273 wiphy_lock(wiphy); 1274 cfg80211_sched_scan_stopped_locked(wiphy, reqid); 1275 wiphy_unlock(wiphy); 1276 } 1277 EXPORT_SYMBOL(cfg80211_sched_scan_stopped); 1278 1279 int cfg80211_stop_sched_scan_req(struct cfg80211_registered_device *rdev, 1280 struct cfg80211_sched_scan_request *req, 1281 bool driver_initiated) 1282 { 1283 lockdep_assert_held(&rdev->wiphy.mtx); 1284 1285 if (!driver_initiated) { 1286 int err = rdev_sched_scan_stop(rdev, req->dev, req->reqid); 1287 if (err) 1288 return err; 1289 } 1290 1291 nl80211_send_sched_scan(req, NL80211_CMD_SCHED_SCAN_STOPPED); 1292 1293 cfg80211_del_sched_scan_req(rdev, req); 1294 1295 return 0; 1296 } 1297 1298 int __cfg80211_stop_sched_scan(struct cfg80211_registered_device *rdev, 1299 u64 reqid, bool driver_initiated) 1300 { 1301 struct cfg80211_sched_scan_request *sched_scan_req; 1302 1303 lockdep_assert_held(&rdev->wiphy.mtx); 1304 1305 sched_scan_req = cfg80211_find_sched_scan_req(rdev, reqid); 1306 if (!sched_scan_req) 1307 return -ENOENT; 1308 1309 return cfg80211_stop_sched_scan_req(rdev, sched_scan_req, 1310 driver_initiated); 1311 } 1312 1313 void cfg80211_bss_age(struct cfg80211_registered_device *rdev, 1314 unsigned long age_secs) 1315 { 1316 struct cfg80211_internal_bss *bss; 1317 unsigned long age_jiffies = msecs_to_jiffies(age_secs * MSEC_PER_SEC); 1318 1319 spin_lock_bh(&rdev->bss_lock); 1320 list_for_each_entry(bss, &rdev->bss_list, list) 1321 bss->ts -= age_jiffies; 1322 spin_unlock_bh(&rdev->bss_lock); 1323 } 1324 1325 void cfg80211_bss_expire(struct cfg80211_registered_device *rdev) 1326 { 1327 __cfg80211_bss_expire(rdev, jiffies - IEEE80211_SCAN_RESULT_EXPIRE); 1328 } 1329 1330 void cfg80211_bss_flush(struct wiphy *wiphy) 1331 { 1332 struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy); 1333 1334 spin_lock_bh(&rdev->bss_lock); 1335 __cfg80211_bss_expire(rdev, jiffies); 1336 spin_unlock_bh(&rdev->bss_lock); 1337 } 1338 EXPORT_SYMBOL(cfg80211_bss_flush); 1339 1340 const struct element * 1341 cfg80211_find_elem_match(u8 eid, const u8 *ies, unsigned int len, 1342 const u8 *match, unsigned int match_len, 1343 unsigned int match_offset) 1344 { 1345 const struct element *elem; 1346 1347 for_each_element_id(elem, eid, ies, len) { 1348 if (elem->datalen >= match_offset + match_len && 1349 !memcmp(elem->data + match_offset, match, match_len)) 1350 return elem; 1351 } 1352 1353 return NULL; 1354 } 1355 EXPORT_SYMBOL(cfg80211_find_elem_match); 1356 1357 const struct element *cfg80211_find_vendor_elem(unsigned int oui, int oui_type, 1358 const u8 *ies, 1359 unsigned int len) 1360 { 1361 const struct element *elem; 1362 u8 match[] = { oui >> 16, oui >> 8, oui, oui_type }; 1363 int match_len = (oui_type < 0) ? 3 : sizeof(match); 1364 1365 if (WARN_ON(oui_type > 0xff)) 1366 return NULL; 1367 1368 elem = cfg80211_find_elem_match(WLAN_EID_VENDOR_SPECIFIC, ies, len, 1369 match, match_len, 0); 1370 1371 if (!elem || elem->datalen < 4) 1372 return NULL; 1373 1374 return elem; 1375 } 1376 EXPORT_SYMBOL(cfg80211_find_vendor_elem); 1377 1378 /** 1379 * enum bss_compare_mode - BSS compare mode 1380 * @BSS_CMP_REGULAR: regular compare mode (for insertion and normal find) 1381 * @BSS_CMP_HIDE_ZLEN: find hidden SSID with zero-length mode 1382 * @BSS_CMP_HIDE_NUL: find hidden SSID with NUL-ed out mode 1383 */ 1384 enum bss_compare_mode { 1385 BSS_CMP_REGULAR, 1386 BSS_CMP_HIDE_ZLEN, 1387 BSS_CMP_HIDE_NUL, 1388 }; 1389 1390 static int cmp_bss(struct cfg80211_bss *a, 1391 struct cfg80211_bss *b, 1392 enum bss_compare_mode mode) 1393 { 1394 const struct cfg80211_bss_ies *a_ies, *b_ies; 1395 const u8 *ie1 = NULL; 1396 const u8 *ie2 = NULL; 1397 int i, r; 1398 1399 if (a->channel != b->channel) 1400 return (b->channel->center_freq * 1000 + b->channel->freq_offset) - 1401 (a->channel->center_freq * 1000 + a->channel->freq_offset); 1402 1403 a_ies = rcu_access_pointer(a->ies); 1404 if (!a_ies) 1405 return -1; 1406 b_ies = rcu_access_pointer(b->ies); 1407 if (!b_ies) 1408 return 1; 1409 1410 if (WLAN_CAPABILITY_IS_STA_BSS(a->capability)) 1411 ie1 = cfg80211_find_ie(WLAN_EID_MESH_ID, 1412 a_ies->data, a_ies->len); 1413 if (WLAN_CAPABILITY_IS_STA_BSS(b->capability)) 1414 ie2 = cfg80211_find_ie(WLAN_EID_MESH_ID, 1415 b_ies->data, b_ies->len); 1416 if (ie1 && ie2) { 1417 int mesh_id_cmp; 1418 1419 if (ie1[1] == ie2[1]) 1420 mesh_id_cmp = memcmp(ie1 + 2, ie2 + 2, ie1[1]); 1421 else 1422 mesh_id_cmp = ie2[1] - ie1[1]; 1423 1424 ie1 = cfg80211_find_ie(WLAN_EID_MESH_CONFIG, 1425 a_ies->data, a_ies->len); 1426 ie2 = cfg80211_find_ie(WLAN_EID_MESH_CONFIG, 1427 b_ies->data, b_ies->len); 1428 if (ie1 && ie2) { 1429 if (mesh_id_cmp) 1430 return mesh_id_cmp; 1431 if (ie1[1] != ie2[1]) 1432 return ie2[1] - ie1[1]; 1433 return memcmp(ie1 + 2, ie2 + 2, ie1[1]); 1434 } 1435 } 1436 1437 r = memcmp(a->bssid, b->bssid, sizeof(a->bssid)); 1438 if (r) 1439 return r; 1440 1441 ie1 = cfg80211_find_ie(WLAN_EID_SSID, a_ies->data, a_ies->len); 1442 ie2 = cfg80211_find_ie(WLAN_EID_SSID, b_ies->data, b_ies->len); 1443 1444 if (!ie1 && !ie2) 1445 return 0; 1446 1447 /* 1448 * Note that with "hide_ssid", the function returns a match if 1449 * the already-present BSS ("b") is a hidden SSID beacon for 1450 * the new BSS ("a"). 1451 */ 1452 1453 /* sort missing IE before (left of) present IE */ 1454 if (!ie1) 1455 return -1; 1456 if (!ie2) 1457 return 1; 1458 1459 switch (mode) { 1460 case BSS_CMP_HIDE_ZLEN: 1461 /* 1462 * In ZLEN mode we assume the BSS entry we're 1463 * looking for has a zero-length SSID. So if 1464 * the one we're looking at right now has that, 1465 * return 0. Otherwise, return the difference 1466 * in length, but since we're looking for the 1467 * 0-length it's really equivalent to returning 1468 * the length of the one we're looking at. 1469 * 1470 * No content comparison is needed as we assume 1471 * the content length is zero. 1472 */ 1473 return ie2[1]; 1474 case BSS_CMP_REGULAR: 1475 default: 1476 /* sort by length first, then by contents */ 1477 if (ie1[1] != ie2[1]) 1478 return ie2[1] - ie1[1]; 1479 return memcmp(ie1 + 2, ie2 + 2, ie1[1]); 1480 case BSS_CMP_HIDE_NUL: 1481 if (ie1[1] != ie2[1]) 1482 return ie2[1] - ie1[1]; 1483 /* this is equivalent to memcmp(zeroes, ie2 + 2, len) */ 1484 for (i = 0; i < ie2[1]; i++) 1485 if (ie2[i + 2]) 1486 return -1; 1487 return 0; 1488 } 1489 } 1490 1491 static bool cfg80211_bss_type_match(u16 capability, 1492 enum nl80211_band band, 1493 enum ieee80211_bss_type bss_type) 1494 { 1495 bool ret = true; 1496 u16 mask, val; 1497 1498 if (bss_type == IEEE80211_BSS_TYPE_ANY) 1499 return ret; 1500 1501 if (band == NL80211_BAND_60GHZ) { 1502 mask = WLAN_CAPABILITY_DMG_TYPE_MASK; 1503 switch (bss_type) { 1504 case IEEE80211_BSS_TYPE_ESS: 1505 val = WLAN_CAPABILITY_DMG_TYPE_AP; 1506 break; 1507 case IEEE80211_BSS_TYPE_PBSS: 1508 val = WLAN_CAPABILITY_DMG_TYPE_PBSS; 1509 break; 1510 case IEEE80211_BSS_TYPE_IBSS: 1511 val = WLAN_CAPABILITY_DMG_TYPE_IBSS; 1512 break; 1513 default: 1514 return false; 1515 } 1516 } else { 1517 mask = WLAN_CAPABILITY_ESS | WLAN_CAPABILITY_IBSS; 1518 switch (bss_type) { 1519 case IEEE80211_BSS_TYPE_ESS: 1520 val = WLAN_CAPABILITY_ESS; 1521 break; 1522 case IEEE80211_BSS_TYPE_IBSS: 1523 val = WLAN_CAPABILITY_IBSS; 1524 break; 1525 case IEEE80211_BSS_TYPE_MBSS: 1526 val = 0; 1527 break; 1528 default: 1529 return false; 1530 } 1531 } 1532 1533 ret = ((capability & mask) == val); 1534 return ret; 1535 } 1536 1537 /* Returned bss is reference counted and must be cleaned up appropriately. */ 1538 struct cfg80211_bss *cfg80211_get_bss(struct wiphy *wiphy, 1539 struct ieee80211_channel *channel, 1540 const u8 *bssid, 1541 const u8 *ssid, size_t ssid_len, 1542 enum ieee80211_bss_type bss_type, 1543 enum ieee80211_privacy privacy) 1544 { 1545 struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy); 1546 struct cfg80211_internal_bss *bss, *res = NULL; 1547 unsigned long now = jiffies; 1548 int bss_privacy; 1549 1550 trace_cfg80211_get_bss(wiphy, channel, bssid, ssid, ssid_len, bss_type, 1551 privacy); 1552 1553 spin_lock_bh(&rdev->bss_lock); 1554 1555 list_for_each_entry(bss, &rdev->bss_list, list) { 1556 if (!cfg80211_bss_type_match(bss->pub.capability, 1557 bss->pub.channel->band, bss_type)) 1558 continue; 1559 1560 bss_privacy = (bss->pub.capability & WLAN_CAPABILITY_PRIVACY); 1561 if ((privacy == IEEE80211_PRIVACY_ON && !bss_privacy) || 1562 (privacy == IEEE80211_PRIVACY_OFF && bss_privacy)) 1563 continue; 1564 if (channel && bss->pub.channel != channel) 1565 continue; 1566 if (!is_valid_ether_addr(bss->pub.bssid)) 1567 continue; 1568 /* Don't get expired BSS structs */ 1569 if (time_after(now, bss->ts + IEEE80211_SCAN_RESULT_EXPIRE) && 1570 !atomic_read(&bss->hold)) 1571 continue; 1572 if (is_bss(&bss->pub, bssid, ssid, ssid_len)) { 1573 res = bss; 1574 bss_ref_get(rdev, res); 1575 break; 1576 } 1577 } 1578 1579 spin_unlock_bh(&rdev->bss_lock); 1580 if (!res) 1581 return NULL; 1582 trace_cfg80211_return_bss(&res->pub); 1583 return &res->pub; 1584 } 1585 EXPORT_SYMBOL(cfg80211_get_bss); 1586 1587 static void rb_insert_bss(struct cfg80211_registered_device *rdev, 1588 struct cfg80211_internal_bss *bss) 1589 { 1590 struct rb_node **p = &rdev->bss_tree.rb_node; 1591 struct rb_node *parent = NULL; 1592 struct cfg80211_internal_bss *tbss; 1593 int cmp; 1594 1595 while (*p) { 1596 parent = *p; 1597 tbss = rb_entry(parent, struct cfg80211_internal_bss, rbn); 1598 1599 cmp = cmp_bss(&bss->pub, &tbss->pub, BSS_CMP_REGULAR); 1600 1601 if (WARN_ON(!cmp)) { 1602 /* will sort of leak this BSS */ 1603 return; 1604 } 1605 1606 if (cmp < 0) 1607 p = &(*p)->rb_left; 1608 else 1609 p = &(*p)->rb_right; 1610 } 1611 1612 rb_link_node(&bss->rbn, parent, p); 1613 rb_insert_color(&bss->rbn, &rdev->bss_tree); 1614 } 1615 1616 static struct cfg80211_internal_bss * 1617 rb_find_bss(struct cfg80211_registered_device *rdev, 1618 struct cfg80211_internal_bss *res, 1619 enum bss_compare_mode mode) 1620 { 1621 struct rb_node *n = rdev->bss_tree.rb_node; 1622 struct cfg80211_internal_bss *bss; 1623 int r; 1624 1625 while (n) { 1626 bss = rb_entry(n, struct cfg80211_internal_bss, rbn); 1627 r = cmp_bss(&res->pub, &bss->pub, mode); 1628 1629 if (r == 0) 1630 return bss; 1631 else if (r < 0) 1632 n = n->rb_left; 1633 else 1634 n = n->rb_right; 1635 } 1636 1637 return NULL; 1638 } 1639 1640 static bool cfg80211_combine_bsses(struct cfg80211_registered_device *rdev, 1641 struct cfg80211_internal_bss *new) 1642 { 1643 const struct cfg80211_bss_ies *ies; 1644 struct cfg80211_internal_bss *bss; 1645 const u8 *ie; 1646 int i, ssidlen; 1647 u8 fold = 0; 1648 u32 n_entries = 0; 1649 1650 ies = rcu_access_pointer(new->pub.beacon_ies); 1651 if (WARN_ON(!ies)) 1652 return false; 1653 1654 ie = cfg80211_find_ie(WLAN_EID_SSID, ies->data, ies->len); 1655 if (!ie) { 1656 /* nothing to do */ 1657 return true; 1658 } 1659 1660 ssidlen = ie[1]; 1661 for (i = 0; i < ssidlen; i++) 1662 fold |= ie[2 + i]; 1663 1664 if (fold) { 1665 /* not a hidden SSID */ 1666 return true; 1667 } 1668 1669 /* This is the bad part ... */ 1670 1671 list_for_each_entry(bss, &rdev->bss_list, list) { 1672 /* 1673 * we're iterating all the entries anyway, so take the 1674 * opportunity to validate the list length accounting 1675 */ 1676 n_entries++; 1677 1678 if (!ether_addr_equal(bss->pub.bssid, new->pub.bssid)) 1679 continue; 1680 if (bss->pub.channel != new->pub.channel) 1681 continue; 1682 if (rcu_access_pointer(bss->pub.beacon_ies)) 1683 continue; 1684 ies = rcu_access_pointer(bss->pub.ies); 1685 if (!ies) 1686 continue; 1687 ie = cfg80211_find_ie(WLAN_EID_SSID, ies->data, ies->len); 1688 if (!ie) 1689 continue; 1690 if (ssidlen && ie[1] != ssidlen) 1691 continue; 1692 if (WARN_ON_ONCE(bss->pub.hidden_beacon_bss)) 1693 continue; 1694 if (WARN_ON_ONCE(!list_empty(&bss->hidden_list))) 1695 list_del(&bss->hidden_list); 1696 /* combine them */ 1697 list_add(&bss->hidden_list, &new->hidden_list); 1698 bss->pub.hidden_beacon_bss = &new->pub; 1699 new->refcount += bss->refcount; 1700 rcu_assign_pointer(bss->pub.beacon_ies, 1701 new->pub.beacon_ies); 1702 } 1703 1704 WARN_ONCE(n_entries != rdev->bss_entries, 1705 "rdev bss entries[%d]/list[len:%d] corruption\n", 1706 rdev->bss_entries, n_entries); 1707 1708 return true; 1709 } 1710 1711 static void cfg80211_update_hidden_bsses(struct cfg80211_internal_bss *known, 1712 const struct cfg80211_bss_ies *new_ies, 1713 const struct cfg80211_bss_ies *old_ies) 1714 { 1715 struct cfg80211_internal_bss *bss; 1716 1717 /* Assign beacon IEs to all sub entries */ 1718 list_for_each_entry(bss, &known->hidden_list, hidden_list) { 1719 const struct cfg80211_bss_ies *ies; 1720 1721 ies = rcu_access_pointer(bss->pub.beacon_ies); 1722 WARN_ON(ies != old_ies); 1723 1724 rcu_assign_pointer(bss->pub.beacon_ies, new_ies); 1725 } 1726 } 1727 1728 static bool 1729 cfg80211_update_known_bss(struct cfg80211_registered_device *rdev, 1730 struct cfg80211_internal_bss *known, 1731 struct cfg80211_internal_bss *new, 1732 bool signal_valid) 1733 { 1734 lockdep_assert_held(&rdev->bss_lock); 1735 1736 /* Update IEs */ 1737 if (rcu_access_pointer(new->pub.proberesp_ies)) { 1738 const struct cfg80211_bss_ies *old; 1739 1740 old = rcu_access_pointer(known->pub.proberesp_ies); 1741 1742 rcu_assign_pointer(known->pub.proberesp_ies, 1743 new->pub.proberesp_ies); 1744 /* Override possible earlier Beacon frame IEs */ 1745 rcu_assign_pointer(known->pub.ies, 1746 new->pub.proberesp_ies); 1747 if (old) 1748 kfree_rcu((struct cfg80211_bss_ies *)old, rcu_head); 1749 } else if (rcu_access_pointer(new->pub.beacon_ies)) { 1750 const struct cfg80211_bss_ies *old; 1751 1752 if (known->pub.hidden_beacon_bss && 1753 !list_empty(&known->hidden_list)) { 1754 const struct cfg80211_bss_ies *f; 1755 1756 /* The known BSS struct is one of the probe 1757 * response members of a group, but we're 1758 * receiving a beacon (beacon_ies in the new 1759 * bss is used). This can only mean that the 1760 * AP changed its beacon from not having an 1761 * SSID to showing it, which is confusing so 1762 * drop this information. 1763 */ 1764 1765 f = rcu_access_pointer(new->pub.beacon_ies); 1766 kfree_rcu((struct cfg80211_bss_ies *)f, rcu_head); 1767 return false; 1768 } 1769 1770 old = rcu_access_pointer(known->pub.beacon_ies); 1771 1772 rcu_assign_pointer(known->pub.beacon_ies, new->pub.beacon_ies); 1773 1774 /* Override IEs if they were from a beacon before */ 1775 if (old == rcu_access_pointer(known->pub.ies)) 1776 rcu_assign_pointer(known->pub.ies, new->pub.beacon_ies); 1777 1778 cfg80211_update_hidden_bsses(known, 1779 rcu_access_pointer(new->pub.beacon_ies), 1780 old); 1781 1782 if (old) 1783 kfree_rcu((struct cfg80211_bss_ies *)old, rcu_head); 1784 } 1785 1786 known->pub.beacon_interval = new->pub.beacon_interval; 1787 1788 /* don't update the signal if beacon was heard on 1789 * adjacent channel. 1790 */ 1791 if (signal_valid) 1792 known->pub.signal = new->pub.signal; 1793 known->pub.capability = new->pub.capability; 1794 known->ts = new->ts; 1795 known->ts_boottime = new->ts_boottime; 1796 known->parent_tsf = new->parent_tsf; 1797 known->pub.chains = new->pub.chains; 1798 memcpy(known->pub.chain_signal, new->pub.chain_signal, 1799 IEEE80211_MAX_CHAINS); 1800 ether_addr_copy(known->parent_bssid, new->parent_bssid); 1801 known->pub.max_bssid_indicator = new->pub.max_bssid_indicator; 1802 known->pub.bssid_index = new->pub.bssid_index; 1803 1804 return true; 1805 } 1806 1807 /* Returned bss is reference counted and must be cleaned up appropriately. */ 1808 static struct cfg80211_internal_bss * 1809 __cfg80211_bss_update(struct cfg80211_registered_device *rdev, 1810 struct cfg80211_internal_bss *tmp, 1811 bool signal_valid, unsigned long ts) 1812 { 1813 struct cfg80211_internal_bss *found = NULL; 1814 1815 if (WARN_ON(!tmp->pub.channel)) 1816 return NULL; 1817 1818 tmp->ts = ts; 1819 1820 if (WARN_ON(!rcu_access_pointer(tmp->pub.ies))) { 1821 return NULL; 1822 } 1823 1824 found = rb_find_bss(rdev, tmp, BSS_CMP_REGULAR); 1825 1826 if (found) { 1827 if (!cfg80211_update_known_bss(rdev, found, tmp, signal_valid)) 1828 return NULL; 1829 } else { 1830 struct cfg80211_internal_bss *new; 1831 struct cfg80211_internal_bss *hidden; 1832 struct cfg80211_bss_ies *ies; 1833 1834 /* 1835 * create a copy -- the "res" variable that is passed in 1836 * is allocated on the stack since it's not needed in the 1837 * more common case of an update 1838 */ 1839 new = kzalloc(sizeof(*new) + rdev->wiphy.bss_priv_size, 1840 GFP_ATOMIC); 1841 if (!new) { 1842 ies = (void *)rcu_dereference(tmp->pub.beacon_ies); 1843 if (ies) 1844 kfree_rcu(ies, rcu_head); 1845 ies = (void *)rcu_dereference(tmp->pub.proberesp_ies); 1846 if (ies) 1847 kfree_rcu(ies, rcu_head); 1848 return NULL; 1849 } 1850 memcpy(new, tmp, sizeof(*new)); 1851 new->refcount = 1; 1852 INIT_LIST_HEAD(&new->hidden_list); 1853 INIT_LIST_HEAD(&new->pub.nontrans_list); 1854 /* we'll set this later if it was non-NULL */ 1855 new->pub.transmitted_bss = NULL; 1856 1857 if (rcu_access_pointer(tmp->pub.proberesp_ies)) { 1858 hidden = rb_find_bss(rdev, tmp, BSS_CMP_HIDE_ZLEN); 1859 if (!hidden) 1860 hidden = rb_find_bss(rdev, tmp, 1861 BSS_CMP_HIDE_NUL); 1862 if (hidden) { 1863 new->pub.hidden_beacon_bss = &hidden->pub; 1864 list_add(&new->hidden_list, 1865 &hidden->hidden_list); 1866 hidden->refcount++; 1867 rcu_assign_pointer(new->pub.beacon_ies, 1868 hidden->pub.beacon_ies); 1869 } 1870 } else { 1871 /* 1872 * Ok so we found a beacon, and don't have an entry. If 1873 * it's a beacon with hidden SSID, we might be in for an 1874 * expensive search for any probe responses that should 1875 * be grouped with this beacon for updates ... 1876 */ 1877 if (!cfg80211_combine_bsses(rdev, new)) { 1878 bss_ref_put(rdev, new); 1879 return NULL; 1880 } 1881 } 1882 1883 if (rdev->bss_entries >= bss_entries_limit && 1884 !cfg80211_bss_expire_oldest(rdev)) { 1885 bss_ref_put(rdev, new); 1886 return NULL; 1887 } 1888 1889 /* This must be before the call to bss_ref_get */ 1890 if (tmp->pub.transmitted_bss) { 1891 new->pub.transmitted_bss = tmp->pub.transmitted_bss; 1892 bss_ref_get(rdev, bss_from_pub(tmp->pub.transmitted_bss)); 1893 } 1894 1895 list_add_tail(&new->list, &rdev->bss_list); 1896 rdev->bss_entries++; 1897 rb_insert_bss(rdev, new); 1898 found = new; 1899 } 1900 1901 rdev->bss_generation++; 1902 bss_ref_get(rdev, found); 1903 1904 return found; 1905 } 1906 1907 struct cfg80211_internal_bss * 1908 cfg80211_bss_update(struct cfg80211_registered_device *rdev, 1909 struct cfg80211_internal_bss *tmp, 1910 bool signal_valid, unsigned long ts) 1911 { 1912 struct cfg80211_internal_bss *res; 1913 1914 spin_lock_bh(&rdev->bss_lock); 1915 res = __cfg80211_bss_update(rdev, tmp, signal_valid, ts); 1916 spin_unlock_bh(&rdev->bss_lock); 1917 1918 return res; 1919 } 1920 1921 int cfg80211_get_ies_channel_number(const u8 *ie, size_t ielen, 1922 enum nl80211_band band) 1923 { 1924 const struct element *tmp; 1925 1926 if (band == NL80211_BAND_6GHZ) { 1927 struct ieee80211_he_operation *he_oper; 1928 1929 tmp = cfg80211_find_ext_elem(WLAN_EID_EXT_HE_OPERATION, ie, 1930 ielen); 1931 if (tmp && tmp->datalen >= sizeof(*he_oper) && 1932 tmp->datalen >= ieee80211_he_oper_size(&tmp->data[1])) { 1933 const struct ieee80211_he_6ghz_oper *he_6ghz_oper; 1934 1935 he_oper = (void *)&tmp->data[1]; 1936 1937 he_6ghz_oper = ieee80211_he_6ghz_oper(he_oper); 1938 if (!he_6ghz_oper) 1939 return -1; 1940 1941 return he_6ghz_oper->primary; 1942 } 1943 } else if (band == NL80211_BAND_S1GHZ) { 1944 tmp = cfg80211_find_elem(WLAN_EID_S1G_OPERATION, ie, ielen); 1945 if (tmp && tmp->datalen >= sizeof(struct ieee80211_s1g_oper_ie)) { 1946 struct ieee80211_s1g_oper_ie *s1gop = (void *)tmp->data; 1947 1948 return s1gop->oper_ch; 1949 } 1950 } else { 1951 tmp = cfg80211_find_elem(WLAN_EID_DS_PARAMS, ie, ielen); 1952 if (tmp && tmp->datalen == 1) 1953 return tmp->data[0]; 1954 1955 tmp = cfg80211_find_elem(WLAN_EID_HT_OPERATION, ie, ielen); 1956 if (tmp && 1957 tmp->datalen >= sizeof(struct ieee80211_ht_operation)) { 1958 struct ieee80211_ht_operation *htop = (void *)tmp->data; 1959 1960 return htop->primary_chan; 1961 } 1962 } 1963 1964 return -1; 1965 } 1966 EXPORT_SYMBOL(cfg80211_get_ies_channel_number); 1967 1968 /* 1969 * Update RX channel information based on the available frame payload 1970 * information. This is mainly for the 2.4 GHz band where frames can be received 1971 * from neighboring channels and the Beacon frames use the DSSS Parameter Set 1972 * element to indicate the current (transmitting) channel, but this might also 1973 * be needed on other bands if RX frequency does not match with the actual 1974 * operating channel of a BSS, or if the AP reports a different primary channel. 1975 */ 1976 static struct ieee80211_channel * 1977 cfg80211_get_bss_channel(struct wiphy *wiphy, const u8 *ie, size_t ielen, 1978 struct ieee80211_channel *channel) 1979 { 1980 u32 freq; 1981 int channel_number; 1982 struct ieee80211_channel *alt_channel; 1983 1984 channel_number = cfg80211_get_ies_channel_number(ie, ielen, 1985 channel->band); 1986 1987 if (channel_number < 0) { 1988 /* No channel information in frame payload */ 1989 return channel; 1990 } 1991 1992 freq = ieee80211_channel_to_freq_khz(channel_number, channel->band); 1993 1994 /* 1995 * Frame info (beacon/prob res) is the same as received channel, 1996 * no need for further processing. 1997 */ 1998 if (freq == ieee80211_channel_to_khz(channel)) 1999 return channel; 2000 2001 alt_channel = ieee80211_get_channel_khz(wiphy, freq); 2002 if (!alt_channel) { 2003 if (channel->band == NL80211_BAND_2GHZ || 2004 channel->band == NL80211_BAND_6GHZ) { 2005 /* 2006 * Better not allow unexpected channels when that could 2007 * be going beyond the 1-11 range (e.g., discovering 2008 * BSS on channel 12 when radio is configured for 2009 * channel 11) or beyond the 6 GHz channel range. 2010 */ 2011 return NULL; 2012 } 2013 2014 /* No match for the payload channel number - ignore it */ 2015 return channel; 2016 } 2017 2018 /* 2019 * Use the channel determined through the payload channel number 2020 * instead of the RX channel reported by the driver. 2021 */ 2022 if (alt_channel->flags & IEEE80211_CHAN_DISABLED) 2023 return NULL; 2024 return alt_channel; 2025 } 2026 2027 struct cfg80211_inform_single_bss_data { 2028 struct cfg80211_inform_bss *drv_data; 2029 enum cfg80211_bss_frame_type ftype; 2030 struct ieee80211_channel *channel; 2031 u8 bssid[ETH_ALEN]; 2032 u64 tsf; 2033 u16 capability; 2034 u16 beacon_interval; 2035 const u8 *ie; 2036 size_t ielen; 2037 2038 enum { 2039 BSS_SOURCE_DIRECT = 0, 2040 BSS_SOURCE_MBSSID, 2041 BSS_SOURCE_STA_PROFILE, 2042 } bss_source; 2043 /* Set if reporting bss_source != BSS_SOURCE_DIRECT */ 2044 struct cfg80211_bss *source_bss; 2045 u8 max_bssid_indicator; 2046 u8 bssid_index; 2047 }; 2048 2049 /* Returned bss is reference counted and must be cleaned up appropriately. */ 2050 static struct cfg80211_bss * 2051 cfg80211_inform_single_bss_data(struct wiphy *wiphy, 2052 struct cfg80211_inform_single_bss_data *data, 2053 gfp_t gfp) 2054 { 2055 struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy); 2056 struct cfg80211_inform_bss *drv_data = data->drv_data; 2057 struct cfg80211_bss_ies *ies; 2058 struct ieee80211_channel *channel; 2059 struct cfg80211_internal_bss tmp = {}, *res; 2060 int bss_type; 2061 bool signal_valid; 2062 unsigned long ts; 2063 2064 if (WARN_ON(!wiphy)) 2065 return NULL; 2066 2067 if (WARN_ON(wiphy->signal_type == CFG80211_SIGNAL_TYPE_UNSPEC && 2068 (drv_data->signal < 0 || drv_data->signal > 100))) 2069 return NULL; 2070 2071 if (WARN_ON(data->bss_source != BSS_SOURCE_DIRECT && !data->source_bss)) 2072 return NULL; 2073 2074 channel = data->channel; 2075 if (!channel) 2076 channel = cfg80211_get_bss_channel(wiphy, data->ie, data->ielen, 2077 drv_data->chan); 2078 if (!channel) 2079 return NULL; 2080 2081 memcpy(tmp.pub.bssid, data->bssid, ETH_ALEN); 2082 tmp.pub.channel = channel; 2083 if (data->bss_source != BSS_SOURCE_STA_PROFILE) 2084 tmp.pub.signal = drv_data->signal; 2085 else 2086 tmp.pub.signal = 0; 2087 tmp.pub.beacon_interval = data->beacon_interval; 2088 tmp.pub.capability = data->capability; 2089 tmp.ts_boottime = drv_data->boottime_ns; 2090 tmp.parent_tsf = drv_data->parent_tsf; 2091 ether_addr_copy(tmp.parent_bssid, drv_data->parent_bssid); 2092 2093 if (data->bss_source != BSS_SOURCE_DIRECT) { 2094 tmp.pub.transmitted_bss = data->source_bss; 2095 ts = bss_from_pub(data->source_bss)->ts; 2096 tmp.pub.bssid_index = data->bssid_index; 2097 tmp.pub.max_bssid_indicator = data->max_bssid_indicator; 2098 } else { 2099 ts = jiffies; 2100 2101 if (channel->band == NL80211_BAND_60GHZ) { 2102 bss_type = data->capability & 2103 WLAN_CAPABILITY_DMG_TYPE_MASK; 2104 if (bss_type == WLAN_CAPABILITY_DMG_TYPE_AP || 2105 bss_type == WLAN_CAPABILITY_DMG_TYPE_PBSS) 2106 regulatory_hint_found_beacon(wiphy, channel, 2107 gfp); 2108 } else { 2109 if (data->capability & WLAN_CAPABILITY_ESS) 2110 regulatory_hint_found_beacon(wiphy, channel, 2111 gfp); 2112 } 2113 } 2114 2115 /* 2116 * If we do not know here whether the IEs are from a Beacon or Probe 2117 * Response frame, we need to pick one of the options and only use it 2118 * with the driver that does not provide the full Beacon/Probe Response 2119 * frame. Use Beacon frame pointer to avoid indicating that this should 2120 * override the IEs pointer should we have received an earlier 2121 * indication of Probe Response data. 2122 */ 2123 ies = kzalloc(sizeof(*ies) + data->ielen, gfp); 2124 if (!ies) 2125 return NULL; 2126 ies->len = data->ielen; 2127 ies->tsf = data->tsf; 2128 ies->from_beacon = false; 2129 memcpy(ies->data, data->ie, data->ielen); 2130 2131 switch (data->ftype) { 2132 case CFG80211_BSS_FTYPE_BEACON: 2133 ies->from_beacon = true; 2134 fallthrough; 2135 case CFG80211_BSS_FTYPE_UNKNOWN: 2136 rcu_assign_pointer(tmp.pub.beacon_ies, ies); 2137 break; 2138 case CFG80211_BSS_FTYPE_PRESP: 2139 rcu_assign_pointer(tmp.pub.proberesp_ies, ies); 2140 break; 2141 } 2142 rcu_assign_pointer(tmp.pub.ies, ies); 2143 2144 signal_valid = drv_data->chan == channel; 2145 spin_lock_bh(&rdev->bss_lock); 2146 res = __cfg80211_bss_update(rdev, &tmp, signal_valid, ts); 2147 if (!res) 2148 goto drop; 2149 2150 rdev_inform_bss(rdev, &res->pub, ies, drv_data->drv_data); 2151 2152 if (data->bss_source == BSS_SOURCE_MBSSID) { 2153 /* this is a nontransmitting bss, we need to add it to 2154 * transmitting bss' list if it is not there 2155 */ 2156 if (cfg80211_add_nontrans_list(data->source_bss, &res->pub)) { 2157 if (__cfg80211_unlink_bss(rdev, res)) { 2158 rdev->bss_generation++; 2159 res = NULL; 2160 } 2161 } 2162 2163 if (!res) 2164 goto drop; 2165 } 2166 spin_unlock_bh(&rdev->bss_lock); 2167 2168 trace_cfg80211_return_bss(&res->pub); 2169 /* __cfg80211_bss_update gives us a referenced result */ 2170 return &res->pub; 2171 2172 drop: 2173 spin_unlock_bh(&rdev->bss_lock); 2174 return NULL; 2175 } 2176 2177 static const struct element 2178 *cfg80211_get_profile_continuation(const u8 *ie, size_t ielen, 2179 const struct element *mbssid_elem, 2180 const struct element *sub_elem) 2181 { 2182 const u8 *mbssid_end = mbssid_elem->data + mbssid_elem->datalen; 2183 const struct element *next_mbssid; 2184 const struct element *next_sub; 2185 2186 next_mbssid = cfg80211_find_elem(WLAN_EID_MULTIPLE_BSSID, 2187 mbssid_end, 2188 ielen - (mbssid_end - ie)); 2189 2190 /* 2191 * If it is not the last subelement in current MBSSID IE or there isn't 2192 * a next MBSSID IE - profile is complete. 2193 */ 2194 if ((sub_elem->data + sub_elem->datalen < mbssid_end - 1) || 2195 !next_mbssid) 2196 return NULL; 2197 2198 /* For any length error, just return NULL */ 2199 2200 if (next_mbssid->datalen < 4) 2201 return NULL; 2202 2203 next_sub = (void *)&next_mbssid->data[1]; 2204 2205 if (next_mbssid->data + next_mbssid->datalen < 2206 next_sub->data + next_sub->datalen) 2207 return NULL; 2208 2209 if (next_sub->id != 0 || next_sub->datalen < 2) 2210 return NULL; 2211 2212 /* 2213 * Check if the first element in the next sub element is a start 2214 * of a new profile 2215 */ 2216 return next_sub->data[0] == WLAN_EID_NON_TX_BSSID_CAP ? 2217 NULL : next_mbssid; 2218 } 2219 2220 size_t cfg80211_merge_profile(const u8 *ie, size_t ielen, 2221 const struct element *mbssid_elem, 2222 const struct element *sub_elem, 2223 u8 *merged_ie, size_t max_copy_len) 2224 { 2225 size_t copied_len = sub_elem->datalen; 2226 const struct element *next_mbssid; 2227 2228 if (sub_elem->datalen > max_copy_len) 2229 return 0; 2230 2231 memcpy(merged_ie, sub_elem->data, sub_elem->datalen); 2232 2233 while ((next_mbssid = cfg80211_get_profile_continuation(ie, ielen, 2234 mbssid_elem, 2235 sub_elem))) { 2236 const struct element *next_sub = (void *)&next_mbssid->data[1]; 2237 2238 if (copied_len + next_sub->datalen > max_copy_len) 2239 break; 2240 memcpy(merged_ie + copied_len, next_sub->data, 2241 next_sub->datalen); 2242 copied_len += next_sub->datalen; 2243 } 2244 2245 return copied_len; 2246 } 2247 EXPORT_SYMBOL(cfg80211_merge_profile); 2248 2249 static void 2250 cfg80211_parse_mbssid_data(struct wiphy *wiphy, 2251 struct cfg80211_inform_single_bss_data *tx_data, 2252 struct cfg80211_bss *source_bss, 2253 gfp_t gfp) 2254 { 2255 struct cfg80211_inform_single_bss_data data = { 2256 .drv_data = tx_data->drv_data, 2257 .ftype = tx_data->ftype, 2258 .tsf = tx_data->tsf, 2259 .beacon_interval = tx_data->beacon_interval, 2260 .source_bss = source_bss, 2261 .bss_source = BSS_SOURCE_MBSSID, 2262 }; 2263 const u8 *mbssid_index_ie; 2264 const struct element *elem, *sub; 2265 u8 *new_ie, *profile; 2266 u64 seen_indices = 0; 2267 struct cfg80211_bss *bss; 2268 2269 if (!source_bss) 2270 return; 2271 if (!cfg80211_find_elem(WLAN_EID_MULTIPLE_BSSID, 2272 tx_data->ie, tx_data->ielen)) 2273 return; 2274 if (!wiphy->support_mbssid) 2275 return; 2276 if (wiphy->support_only_he_mbssid && 2277 !cfg80211_find_ext_elem(WLAN_EID_EXT_HE_CAPABILITY, 2278 tx_data->ie, tx_data->ielen)) 2279 return; 2280 2281 new_ie = kmalloc(IEEE80211_MAX_DATA_LEN, gfp); 2282 if (!new_ie) 2283 return; 2284 2285 profile = kmalloc(tx_data->ielen, gfp); 2286 if (!profile) 2287 goto out; 2288 2289 for_each_element_id(elem, WLAN_EID_MULTIPLE_BSSID, 2290 tx_data->ie, tx_data->ielen) { 2291 if (elem->datalen < 4) 2292 continue; 2293 if (elem->data[0] < 1 || (int)elem->data[0] > 8) 2294 continue; 2295 for_each_element(sub, elem->data + 1, elem->datalen - 1) { 2296 u8 profile_len; 2297 2298 if (sub->id != 0 || sub->datalen < 4) { 2299 /* not a valid BSS profile */ 2300 continue; 2301 } 2302 2303 if (sub->data[0] != WLAN_EID_NON_TX_BSSID_CAP || 2304 sub->data[1] != 2) { 2305 /* The first element within the Nontransmitted 2306 * BSSID Profile is not the Nontransmitted 2307 * BSSID Capability element. 2308 */ 2309 continue; 2310 } 2311 2312 memset(profile, 0, tx_data->ielen); 2313 profile_len = cfg80211_merge_profile(tx_data->ie, 2314 tx_data->ielen, 2315 elem, 2316 sub, 2317 profile, 2318 tx_data->ielen); 2319 2320 /* found a Nontransmitted BSSID Profile */ 2321 mbssid_index_ie = cfg80211_find_ie 2322 (WLAN_EID_MULTI_BSSID_IDX, 2323 profile, profile_len); 2324 if (!mbssid_index_ie || mbssid_index_ie[1] < 1 || 2325 mbssid_index_ie[2] == 0 || 2326 mbssid_index_ie[2] > 46) { 2327 /* No valid Multiple BSSID-Index element */ 2328 continue; 2329 } 2330 2331 if (seen_indices & BIT_ULL(mbssid_index_ie[2])) 2332 /* We don't support legacy split of a profile */ 2333 net_dbg_ratelimited("Partial info for BSSID index %d\n", 2334 mbssid_index_ie[2]); 2335 2336 seen_indices |= BIT_ULL(mbssid_index_ie[2]); 2337 2338 data.bssid_index = mbssid_index_ie[2]; 2339 data.max_bssid_indicator = elem->data[0]; 2340 2341 cfg80211_gen_new_bssid(tx_data->bssid, 2342 data.max_bssid_indicator, 2343 data.bssid_index, 2344 data.bssid); 2345 2346 memset(new_ie, 0, IEEE80211_MAX_DATA_LEN); 2347 data.ie = new_ie; 2348 data.ielen = cfg80211_gen_new_ie(tx_data->ie, 2349 tx_data->ielen, 2350 profile, 2351 profile_len, 2352 new_ie, 2353 IEEE80211_MAX_DATA_LEN); 2354 if (!data.ielen) 2355 continue; 2356 2357 data.capability = get_unaligned_le16(profile + 2); 2358 bss = cfg80211_inform_single_bss_data(wiphy, &data, gfp); 2359 if (!bss) 2360 break; 2361 cfg80211_put_bss(wiphy, bss); 2362 } 2363 } 2364 2365 out: 2366 kfree(new_ie); 2367 kfree(profile); 2368 } 2369 2370 ssize_t cfg80211_defragment_element(const struct element *elem, const u8 *ies, 2371 size_t ieslen, u8 *data, size_t data_len, 2372 u8 frag_id) 2373 { 2374 const struct element *next; 2375 ssize_t copied; 2376 u8 elem_datalen; 2377 2378 if (!elem) 2379 return -EINVAL; 2380 2381 /* elem might be invalid after the memmove */ 2382 next = (void *)(elem->data + elem->datalen); 2383 elem_datalen = elem->datalen; 2384 2385 if (elem->id == WLAN_EID_EXTENSION) { 2386 copied = elem->datalen - 1; 2387 if (copied > data_len) 2388 return -ENOSPC; 2389 2390 memmove(data, elem->data + 1, copied); 2391 } else { 2392 copied = elem->datalen; 2393 if (copied > data_len) 2394 return -ENOSPC; 2395 2396 memmove(data, elem->data, copied); 2397 } 2398 2399 /* Fragmented elements must have 255 bytes */ 2400 if (elem_datalen < 255) 2401 return copied; 2402 2403 for (elem = next; 2404 elem->data < ies + ieslen && 2405 elem->data + elem->datalen <= ies + ieslen; 2406 elem = next) { 2407 /* elem might be invalid after the memmove */ 2408 next = (void *)(elem->data + elem->datalen); 2409 2410 if (elem->id != frag_id) 2411 break; 2412 2413 elem_datalen = elem->datalen; 2414 2415 if (copied + elem_datalen > data_len) 2416 return -ENOSPC; 2417 2418 memmove(data + copied, elem->data, elem_datalen); 2419 copied += elem_datalen; 2420 2421 /* Only the last fragment may be short */ 2422 if (elem_datalen != 255) 2423 break; 2424 } 2425 2426 return copied; 2427 } 2428 EXPORT_SYMBOL(cfg80211_defragment_element); 2429 2430 struct cfg80211_mle { 2431 struct ieee80211_multi_link_elem *mle; 2432 struct ieee80211_mle_per_sta_profile 2433 *sta_prof[IEEE80211_MLD_MAX_NUM_LINKS]; 2434 ssize_t sta_prof_len[IEEE80211_MLD_MAX_NUM_LINKS]; 2435 2436 u8 data[]; 2437 }; 2438 2439 static struct cfg80211_mle * 2440 cfg80211_defrag_mle(const struct element *mle, const u8 *ie, size_t ielen, 2441 gfp_t gfp) 2442 { 2443 const struct element *elem; 2444 struct cfg80211_mle *res; 2445 size_t buf_len; 2446 ssize_t mle_len; 2447 u8 common_size, idx; 2448 2449 if (!mle || !ieee80211_mle_size_ok(mle->data + 1, mle->datalen - 1)) 2450 return NULL; 2451 2452 /* Required length for first defragmentation */ 2453 buf_len = mle->datalen - 1; 2454 for_each_element(elem, mle->data + mle->datalen, 2455 ielen - sizeof(*mle) + mle->datalen) { 2456 if (elem->id != WLAN_EID_FRAGMENT) 2457 break; 2458 2459 buf_len += elem->datalen; 2460 } 2461 2462 res = kzalloc(struct_size(res, data, buf_len), gfp); 2463 if (!res) 2464 return NULL; 2465 2466 mle_len = cfg80211_defragment_element(mle, ie, ielen, 2467 res->data, buf_len, 2468 WLAN_EID_FRAGMENT); 2469 if (mle_len < 0) 2470 goto error; 2471 2472 res->mle = (void *)res->data; 2473 2474 /* Find the sub-element area in the buffer */ 2475 common_size = ieee80211_mle_common_size((u8 *)res->mle); 2476 ie = res->data + common_size; 2477 ielen = mle_len - common_size; 2478 2479 idx = 0; 2480 for_each_element_id(elem, IEEE80211_MLE_SUBELEM_PER_STA_PROFILE, 2481 ie, ielen) { 2482 res->sta_prof[idx] = (void *)elem->data; 2483 res->sta_prof_len[idx] = elem->datalen; 2484 2485 idx++; 2486 if (idx >= IEEE80211_MLD_MAX_NUM_LINKS) 2487 break; 2488 } 2489 if (!for_each_element_completed(elem, ie, ielen)) 2490 goto error; 2491 2492 /* Defragment sta_info in-place */ 2493 for (idx = 0; idx < IEEE80211_MLD_MAX_NUM_LINKS && res->sta_prof[idx]; 2494 idx++) { 2495 if (res->sta_prof_len[idx] < 255) 2496 continue; 2497 2498 elem = (void *)res->sta_prof[idx] - 2; 2499 2500 if (idx + 1 < ARRAY_SIZE(res->sta_prof) && 2501 res->sta_prof[idx + 1]) 2502 buf_len = (u8 *)res->sta_prof[idx + 1] - 2503 (u8 *)res->sta_prof[idx]; 2504 else 2505 buf_len = ielen + ie - (u8 *)elem; 2506 2507 res->sta_prof_len[idx] = 2508 cfg80211_defragment_element(elem, 2509 (u8 *)elem, buf_len, 2510 (u8 *)res->sta_prof[idx], 2511 buf_len, 2512 IEEE80211_MLE_SUBELEM_FRAGMENT); 2513 if (res->sta_prof_len[idx] < 0) 2514 goto error; 2515 } 2516 2517 return res; 2518 2519 error: 2520 kfree(res); 2521 return NULL; 2522 } 2523 2524 static bool 2525 cfg80211_tbtt_info_for_mld_ap(const u8 *ie, size_t ielen, u8 mld_id, u8 link_id, 2526 const struct ieee80211_neighbor_ap_info **ap_info, 2527 const u8 **tbtt_info) 2528 { 2529 const struct ieee80211_neighbor_ap_info *info; 2530 const struct element *rnr; 2531 const u8 *pos, *end; 2532 2533 for_each_element_id(rnr, WLAN_EID_REDUCED_NEIGHBOR_REPORT, ie, ielen) { 2534 pos = rnr->data; 2535 end = rnr->data + rnr->datalen; 2536 2537 /* RNR IE may contain more than one NEIGHBOR_AP_INFO */ 2538 while (sizeof(*info) <= end - pos) { 2539 const struct ieee80211_rnr_mld_params *mld_params; 2540 u16 params; 2541 u8 length, i, count, mld_params_offset; 2542 u8 type, lid; 2543 2544 info = (void *)pos; 2545 count = u8_get_bits(info->tbtt_info_hdr, 2546 IEEE80211_AP_INFO_TBTT_HDR_COUNT) + 1; 2547 length = info->tbtt_info_len; 2548 2549 pos += sizeof(*info); 2550 2551 if (count * length > end - pos) 2552 return false; 2553 2554 type = u8_get_bits(info->tbtt_info_hdr, 2555 IEEE80211_AP_INFO_TBTT_HDR_TYPE); 2556 2557 /* Only accept full TBTT information. NSTR mobile APs 2558 * use the shortened version, but we ignore them here. 2559 */ 2560 if (type == IEEE80211_TBTT_INFO_TYPE_TBTT && 2561 length >= 2562 offsetofend(struct ieee80211_tbtt_info_ge_11, 2563 mld_params)) { 2564 mld_params_offset = 2565 offsetof(struct ieee80211_tbtt_info_ge_11, mld_params); 2566 } else { 2567 pos += count * length; 2568 continue; 2569 } 2570 2571 for (i = 0; i < count; i++) { 2572 mld_params = (void *)pos + mld_params_offset; 2573 params = le16_to_cpu(mld_params->params); 2574 2575 lid = u16_get_bits(params, 2576 IEEE80211_RNR_MLD_PARAMS_LINK_ID); 2577 2578 if (mld_id == mld_params->mld_id && 2579 link_id == lid) { 2580 *ap_info = info; 2581 *tbtt_info = pos; 2582 2583 return true; 2584 } 2585 2586 pos += length; 2587 } 2588 } 2589 } 2590 2591 return false; 2592 } 2593 2594 static void cfg80211_parse_ml_sta_data(struct wiphy *wiphy, 2595 struct cfg80211_inform_single_bss_data *tx_data, 2596 struct cfg80211_bss *source_bss, 2597 gfp_t gfp) 2598 { 2599 struct cfg80211_inform_single_bss_data data = { 2600 .drv_data = tx_data->drv_data, 2601 .ftype = tx_data->ftype, 2602 .source_bss = source_bss, 2603 .bss_source = BSS_SOURCE_STA_PROFILE, 2604 }; 2605 struct ieee80211_multi_link_elem *ml_elem; 2606 const struct element *elem; 2607 struct cfg80211_mle *mle; 2608 u16 control; 2609 u8 *new_ie; 2610 struct cfg80211_bss *bss; 2611 int mld_id; 2612 u16 seen_links = 0; 2613 const u8 *pos; 2614 u8 i; 2615 2616 if (!source_bss) 2617 return; 2618 2619 if (tx_data->ftype != CFG80211_BSS_FTYPE_PRESP) 2620 return; 2621 2622 elem = cfg80211_find_ext_elem(WLAN_EID_EXT_EHT_MULTI_LINK, 2623 tx_data->ie, tx_data->ielen); 2624 if (!elem || !ieee80211_mle_size_ok(elem->data + 1, elem->datalen - 1)) 2625 return; 2626 2627 ml_elem = (void *)elem->data + 1; 2628 control = le16_to_cpu(ml_elem->control); 2629 if (u16_get_bits(control, IEEE80211_ML_CONTROL_TYPE) != 2630 IEEE80211_ML_CONTROL_TYPE_BASIC) 2631 return; 2632 2633 /* Must be present when transmitted by an AP (in a probe response) */ 2634 if (!(control & IEEE80211_MLC_BASIC_PRES_BSS_PARAM_CH_CNT) || 2635 !(control & IEEE80211_MLC_BASIC_PRES_LINK_ID) || 2636 !(control & IEEE80211_MLC_BASIC_PRES_MLD_CAPA_OP)) 2637 return; 2638 2639 /* length + MLD MAC address + link ID info + BSS Params Change Count */ 2640 pos = ml_elem->variable + 1 + 6 + 1 + 1; 2641 2642 if (u16_get_bits(control, IEEE80211_MLC_BASIC_PRES_MED_SYNC_DELAY)) 2643 pos += 2; 2644 if (u16_get_bits(control, IEEE80211_MLC_BASIC_PRES_EML_CAPA)) 2645 pos += 2; 2646 2647 /* MLD capabilities and operations */ 2648 pos += 2; 2649 2650 /* Not included when the (nontransmitted) AP is responding itself, 2651 * but defined to zero then (Draft P802.11be_D3.0, 9.4.2.170.2) 2652 */ 2653 if (u16_get_bits(control, IEEE80211_MLC_BASIC_PRES_MLD_ID)) { 2654 mld_id = *pos; 2655 pos += 1; 2656 } else { 2657 mld_id = 0; 2658 } 2659 2660 /* Extended MLD capabilities and operations */ 2661 pos += 2; 2662 2663 /* Fully defrag the ML element for sta information/profile iteration */ 2664 mle = cfg80211_defrag_mle(elem, tx_data->ie, tx_data->ielen, gfp); 2665 if (!mle) 2666 return; 2667 2668 new_ie = kmalloc(IEEE80211_MAX_DATA_LEN, gfp); 2669 if (!new_ie) 2670 goto out; 2671 2672 for (i = 0; i < ARRAY_SIZE(mle->sta_prof) && mle->sta_prof[i]; i++) { 2673 const struct ieee80211_neighbor_ap_info *ap_info; 2674 enum nl80211_band band; 2675 u32 freq; 2676 const u8 *profile; 2677 const u8 *tbtt_info; 2678 ssize_t profile_len; 2679 u8 link_id; 2680 2681 if (!ieee80211_mle_basic_sta_prof_size_ok((u8 *)mle->sta_prof[i], 2682 mle->sta_prof_len[i])) 2683 continue; 2684 2685 control = le16_to_cpu(mle->sta_prof[i]->control); 2686 2687 if (!(control & IEEE80211_MLE_STA_CONTROL_COMPLETE_PROFILE)) 2688 continue; 2689 2690 link_id = u16_get_bits(control, 2691 IEEE80211_MLE_STA_CONTROL_LINK_ID); 2692 if (seen_links & BIT(link_id)) 2693 break; 2694 seen_links |= BIT(link_id); 2695 2696 if (!(control & IEEE80211_MLE_STA_CONTROL_BEACON_INT_PRESENT) || 2697 !(control & IEEE80211_MLE_STA_CONTROL_TSF_OFFS_PRESENT) || 2698 !(control & IEEE80211_MLE_STA_CONTROL_STA_MAC_ADDR_PRESENT)) 2699 continue; 2700 2701 memcpy(data.bssid, mle->sta_prof[i]->variable, ETH_ALEN); 2702 data.beacon_interval = 2703 get_unaligned_le16(mle->sta_prof[i]->variable + 6); 2704 data.tsf = tx_data->tsf + 2705 get_unaligned_le64(mle->sta_prof[i]->variable + 8); 2706 2707 /* sta_info_len counts itself */ 2708 profile = mle->sta_prof[i]->variable + 2709 mle->sta_prof[i]->sta_info_len - 1; 2710 profile_len = (u8 *)mle->sta_prof[i] + mle->sta_prof_len[i] - 2711 profile; 2712 2713 if (profile_len < 2) 2714 continue; 2715 2716 data.capability = get_unaligned_le16(profile); 2717 profile += 2; 2718 profile_len -= 2; 2719 2720 /* Find in RNR to look up channel information */ 2721 if (!cfg80211_tbtt_info_for_mld_ap(tx_data->ie, tx_data->ielen, 2722 mld_id, link_id, 2723 &ap_info, &tbtt_info)) 2724 continue; 2725 2726 /* We could sanity check the BSSID is included */ 2727 2728 if (!ieee80211_operating_class_to_band(ap_info->op_class, 2729 &band)) 2730 continue; 2731 2732 freq = ieee80211_channel_to_freq_khz(ap_info->channel, band); 2733 data.channel = ieee80211_get_channel_khz(wiphy, freq); 2734 2735 /* Generate new elements */ 2736 memset(new_ie, 0, IEEE80211_MAX_DATA_LEN); 2737 data.ie = new_ie; 2738 data.ielen = cfg80211_gen_new_ie(tx_data->ie, tx_data->ielen, 2739 profile, profile_len, 2740 new_ie, 2741 IEEE80211_MAX_DATA_LEN); 2742 if (!data.ielen) 2743 continue; 2744 2745 bss = cfg80211_inform_single_bss_data(wiphy, &data, gfp); 2746 if (!bss) 2747 break; 2748 cfg80211_put_bss(wiphy, bss); 2749 } 2750 2751 out: 2752 kfree(new_ie); 2753 kfree(mle); 2754 } 2755 2756 struct cfg80211_bss * 2757 cfg80211_inform_bss_data(struct wiphy *wiphy, 2758 struct cfg80211_inform_bss *data, 2759 enum cfg80211_bss_frame_type ftype, 2760 const u8 *bssid, u64 tsf, u16 capability, 2761 u16 beacon_interval, const u8 *ie, size_t ielen, 2762 gfp_t gfp) 2763 { 2764 struct cfg80211_inform_single_bss_data inform_data = { 2765 .drv_data = data, 2766 .ftype = ftype, 2767 .tsf = tsf, 2768 .capability = capability, 2769 .beacon_interval = beacon_interval, 2770 .ie = ie, 2771 .ielen = ielen, 2772 }; 2773 struct cfg80211_bss *res; 2774 2775 memcpy(inform_data.bssid, bssid, ETH_ALEN); 2776 2777 res = cfg80211_inform_single_bss_data(wiphy, &inform_data, gfp); 2778 if (!res) 2779 return NULL; 2780 2781 cfg80211_parse_mbssid_data(wiphy, &inform_data, res, gfp); 2782 2783 cfg80211_parse_ml_sta_data(wiphy, &inform_data, res, gfp); 2784 2785 return res; 2786 } 2787 EXPORT_SYMBOL(cfg80211_inform_bss_data); 2788 2789 /* cfg80211_inform_bss_width_frame helper */ 2790 static struct cfg80211_bss * 2791 cfg80211_inform_single_bss_frame_data(struct wiphy *wiphy, 2792 struct cfg80211_inform_bss *data, 2793 struct ieee80211_mgmt *mgmt, size_t len, 2794 gfp_t gfp) 2795 { 2796 struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy); 2797 struct cfg80211_internal_bss tmp = {}, *res; 2798 struct cfg80211_bss_ies *ies; 2799 struct ieee80211_channel *channel; 2800 bool signal_valid; 2801 struct ieee80211_ext *ext = NULL; 2802 u8 *bssid, *variable; 2803 u16 capability, beacon_int; 2804 size_t ielen, min_hdr_len = offsetof(struct ieee80211_mgmt, 2805 u.probe_resp.variable); 2806 int bss_type; 2807 2808 BUILD_BUG_ON(offsetof(struct ieee80211_mgmt, u.probe_resp.variable) != 2809 offsetof(struct ieee80211_mgmt, u.beacon.variable)); 2810 2811 trace_cfg80211_inform_bss_frame(wiphy, data, mgmt, len); 2812 2813 if (WARN_ON(!mgmt)) 2814 return NULL; 2815 2816 if (WARN_ON(!wiphy)) 2817 return NULL; 2818 2819 if (WARN_ON(wiphy->signal_type == CFG80211_SIGNAL_TYPE_UNSPEC && 2820 (data->signal < 0 || data->signal > 100))) 2821 return NULL; 2822 2823 if (ieee80211_is_s1g_beacon(mgmt->frame_control)) { 2824 ext = (void *) mgmt; 2825 min_hdr_len = offsetof(struct ieee80211_ext, u.s1g_beacon); 2826 if (ieee80211_is_s1g_short_beacon(mgmt->frame_control)) 2827 min_hdr_len = offsetof(struct ieee80211_ext, 2828 u.s1g_short_beacon.variable); 2829 } 2830 2831 if (WARN_ON(len < min_hdr_len)) 2832 return NULL; 2833 2834 ielen = len - min_hdr_len; 2835 variable = mgmt->u.probe_resp.variable; 2836 if (ext) { 2837 if (ieee80211_is_s1g_short_beacon(mgmt->frame_control)) 2838 variable = ext->u.s1g_short_beacon.variable; 2839 else 2840 variable = ext->u.s1g_beacon.variable; 2841 } 2842 2843 channel = cfg80211_get_bss_channel(wiphy, variable, ielen, data->chan); 2844 if (!channel) 2845 return NULL; 2846 2847 if (ext) { 2848 const struct ieee80211_s1g_bcn_compat_ie *compat; 2849 const struct element *elem; 2850 2851 elem = cfg80211_find_elem(WLAN_EID_S1G_BCN_COMPAT, 2852 variable, ielen); 2853 if (!elem) 2854 return NULL; 2855 if (elem->datalen < sizeof(*compat)) 2856 return NULL; 2857 compat = (void *)elem->data; 2858 bssid = ext->u.s1g_beacon.sa; 2859 capability = le16_to_cpu(compat->compat_info); 2860 beacon_int = le16_to_cpu(compat->beacon_int); 2861 } else { 2862 bssid = mgmt->bssid; 2863 beacon_int = le16_to_cpu(mgmt->u.probe_resp.beacon_int); 2864 capability = le16_to_cpu(mgmt->u.probe_resp.capab_info); 2865 } 2866 2867 if (channel->band == NL80211_BAND_60GHZ) { 2868 bss_type = capability & WLAN_CAPABILITY_DMG_TYPE_MASK; 2869 if (bss_type == WLAN_CAPABILITY_DMG_TYPE_AP || 2870 bss_type == WLAN_CAPABILITY_DMG_TYPE_PBSS) 2871 regulatory_hint_found_beacon(wiphy, channel, gfp); 2872 } else { 2873 if (capability & WLAN_CAPABILITY_ESS) 2874 regulatory_hint_found_beacon(wiphy, channel, gfp); 2875 } 2876 2877 ies = kzalloc(sizeof(*ies) + ielen, gfp); 2878 if (!ies) 2879 return NULL; 2880 ies->len = ielen; 2881 ies->tsf = le64_to_cpu(mgmt->u.probe_resp.timestamp); 2882 ies->from_beacon = ieee80211_is_beacon(mgmt->frame_control) || 2883 ieee80211_is_s1g_beacon(mgmt->frame_control); 2884 memcpy(ies->data, variable, ielen); 2885 2886 if (ieee80211_is_probe_resp(mgmt->frame_control)) 2887 rcu_assign_pointer(tmp.pub.proberesp_ies, ies); 2888 else 2889 rcu_assign_pointer(tmp.pub.beacon_ies, ies); 2890 rcu_assign_pointer(tmp.pub.ies, ies); 2891 2892 memcpy(tmp.pub.bssid, bssid, ETH_ALEN); 2893 tmp.pub.beacon_interval = beacon_int; 2894 tmp.pub.capability = capability; 2895 tmp.pub.channel = channel; 2896 tmp.pub.signal = data->signal; 2897 tmp.ts_boottime = data->boottime_ns; 2898 tmp.parent_tsf = data->parent_tsf; 2899 tmp.pub.chains = data->chains; 2900 memcpy(tmp.pub.chain_signal, data->chain_signal, IEEE80211_MAX_CHAINS); 2901 ether_addr_copy(tmp.parent_bssid, data->parent_bssid); 2902 2903 signal_valid = data->chan == channel; 2904 spin_lock_bh(&rdev->bss_lock); 2905 res = __cfg80211_bss_update(rdev, &tmp, signal_valid, jiffies); 2906 if (!res) 2907 goto drop; 2908 2909 rdev_inform_bss(rdev, &res->pub, ies, data->drv_data); 2910 2911 spin_unlock_bh(&rdev->bss_lock); 2912 2913 trace_cfg80211_return_bss(&res->pub); 2914 /* __cfg80211_bss_update gives us a referenced result */ 2915 return &res->pub; 2916 2917 drop: 2918 spin_unlock_bh(&rdev->bss_lock); 2919 return NULL; 2920 } 2921 2922 struct cfg80211_bss * 2923 cfg80211_inform_bss_frame_data(struct wiphy *wiphy, 2924 struct cfg80211_inform_bss *data, 2925 struct ieee80211_mgmt *mgmt, size_t len, 2926 gfp_t gfp) 2927 { 2928 struct cfg80211_inform_single_bss_data inform_data = { 2929 .drv_data = data, 2930 .ie = mgmt->u.probe_resp.variable, 2931 .ielen = len - offsetof(struct ieee80211_mgmt, 2932 u.probe_resp.variable), 2933 }; 2934 struct cfg80211_bss *res; 2935 2936 res = cfg80211_inform_single_bss_frame_data(wiphy, data, mgmt, 2937 len, gfp); 2938 if (!res) 2939 return NULL; 2940 2941 /* don't do any further MBSSID/ML handling for S1G */ 2942 if (ieee80211_is_s1g_beacon(mgmt->frame_control)) 2943 return res; 2944 2945 inform_data.ftype = ieee80211_is_beacon(mgmt->frame_control) ? 2946 CFG80211_BSS_FTYPE_BEACON : CFG80211_BSS_FTYPE_PRESP; 2947 memcpy(inform_data.bssid, mgmt->bssid, ETH_ALEN); 2948 inform_data.tsf = le64_to_cpu(mgmt->u.probe_resp.timestamp); 2949 inform_data.beacon_interval = 2950 le16_to_cpu(mgmt->u.probe_resp.beacon_int); 2951 2952 /* process each non-transmitting bss */ 2953 cfg80211_parse_mbssid_data(wiphy, &inform_data, res, gfp); 2954 2955 cfg80211_parse_ml_sta_data(wiphy, &inform_data, res, gfp); 2956 2957 return res; 2958 } 2959 EXPORT_SYMBOL(cfg80211_inform_bss_frame_data); 2960 2961 void cfg80211_ref_bss(struct wiphy *wiphy, struct cfg80211_bss *pub) 2962 { 2963 struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy); 2964 2965 if (!pub) 2966 return; 2967 2968 spin_lock_bh(&rdev->bss_lock); 2969 bss_ref_get(rdev, bss_from_pub(pub)); 2970 spin_unlock_bh(&rdev->bss_lock); 2971 } 2972 EXPORT_SYMBOL(cfg80211_ref_bss); 2973 2974 void cfg80211_put_bss(struct wiphy *wiphy, struct cfg80211_bss *pub) 2975 { 2976 struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy); 2977 2978 if (!pub) 2979 return; 2980 2981 spin_lock_bh(&rdev->bss_lock); 2982 bss_ref_put(rdev, bss_from_pub(pub)); 2983 spin_unlock_bh(&rdev->bss_lock); 2984 } 2985 EXPORT_SYMBOL(cfg80211_put_bss); 2986 2987 void cfg80211_unlink_bss(struct wiphy *wiphy, struct cfg80211_bss *pub) 2988 { 2989 struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy); 2990 struct cfg80211_internal_bss *bss, *tmp1; 2991 struct cfg80211_bss *nontrans_bss, *tmp; 2992 2993 if (WARN_ON(!pub)) 2994 return; 2995 2996 bss = bss_from_pub(pub); 2997 2998 spin_lock_bh(&rdev->bss_lock); 2999 if (list_empty(&bss->list)) 3000 goto out; 3001 3002 list_for_each_entry_safe(nontrans_bss, tmp, 3003 &pub->nontrans_list, 3004 nontrans_list) { 3005 tmp1 = bss_from_pub(nontrans_bss); 3006 if (__cfg80211_unlink_bss(rdev, tmp1)) 3007 rdev->bss_generation++; 3008 } 3009 3010 if (__cfg80211_unlink_bss(rdev, bss)) 3011 rdev->bss_generation++; 3012 out: 3013 spin_unlock_bh(&rdev->bss_lock); 3014 } 3015 EXPORT_SYMBOL(cfg80211_unlink_bss); 3016 3017 void cfg80211_bss_iter(struct wiphy *wiphy, 3018 struct cfg80211_chan_def *chandef, 3019 void (*iter)(struct wiphy *wiphy, 3020 struct cfg80211_bss *bss, 3021 void *data), 3022 void *iter_data) 3023 { 3024 struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy); 3025 struct cfg80211_internal_bss *bss; 3026 3027 spin_lock_bh(&rdev->bss_lock); 3028 3029 list_for_each_entry(bss, &rdev->bss_list, list) { 3030 if (!chandef || cfg80211_is_sub_chan(chandef, bss->pub.channel, 3031 false)) 3032 iter(wiphy, &bss->pub, iter_data); 3033 } 3034 3035 spin_unlock_bh(&rdev->bss_lock); 3036 } 3037 EXPORT_SYMBOL(cfg80211_bss_iter); 3038 3039 void cfg80211_update_assoc_bss_entry(struct wireless_dev *wdev, 3040 unsigned int link_id, 3041 struct ieee80211_channel *chan) 3042 { 3043 struct wiphy *wiphy = wdev->wiphy; 3044 struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy); 3045 struct cfg80211_internal_bss *cbss = wdev->links[link_id].client.current_bss; 3046 struct cfg80211_internal_bss *new = NULL; 3047 struct cfg80211_internal_bss *bss; 3048 struct cfg80211_bss *nontrans_bss; 3049 struct cfg80211_bss *tmp; 3050 3051 spin_lock_bh(&rdev->bss_lock); 3052 3053 /* 3054 * Some APs use CSA also for bandwidth changes, i.e., without actually 3055 * changing the control channel, so no need to update in such a case. 3056 */ 3057 if (cbss->pub.channel == chan) 3058 goto done; 3059 3060 /* use transmitting bss */ 3061 if (cbss->pub.transmitted_bss) 3062 cbss = bss_from_pub(cbss->pub.transmitted_bss); 3063 3064 cbss->pub.channel = chan; 3065 3066 list_for_each_entry(bss, &rdev->bss_list, list) { 3067 if (!cfg80211_bss_type_match(bss->pub.capability, 3068 bss->pub.channel->band, 3069 wdev->conn_bss_type)) 3070 continue; 3071 3072 if (bss == cbss) 3073 continue; 3074 3075 if (!cmp_bss(&bss->pub, &cbss->pub, BSS_CMP_REGULAR)) { 3076 new = bss; 3077 break; 3078 } 3079 } 3080 3081 if (new) { 3082 /* to save time, update IEs for transmitting bss only */ 3083 if (cfg80211_update_known_bss(rdev, cbss, new, false)) { 3084 new->pub.proberesp_ies = NULL; 3085 new->pub.beacon_ies = NULL; 3086 } 3087 3088 list_for_each_entry_safe(nontrans_bss, tmp, 3089 &new->pub.nontrans_list, 3090 nontrans_list) { 3091 bss = bss_from_pub(nontrans_bss); 3092 if (__cfg80211_unlink_bss(rdev, bss)) 3093 rdev->bss_generation++; 3094 } 3095 3096 WARN_ON(atomic_read(&new->hold)); 3097 if (!WARN_ON(!__cfg80211_unlink_bss(rdev, new))) 3098 rdev->bss_generation++; 3099 } 3100 3101 rb_erase(&cbss->rbn, &rdev->bss_tree); 3102 rb_insert_bss(rdev, cbss); 3103 rdev->bss_generation++; 3104 3105 list_for_each_entry_safe(nontrans_bss, tmp, 3106 &cbss->pub.nontrans_list, 3107 nontrans_list) { 3108 bss = bss_from_pub(nontrans_bss); 3109 bss->pub.channel = chan; 3110 rb_erase(&bss->rbn, &rdev->bss_tree); 3111 rb_insert_bss(rdev, bss); 3112 rdev->bss_generation++; 3113 } 3114 3115 done: 3116 spin_unlock_bh(&rdev->bss_lock); 3117 } 3118 3119 #ifdef CONFIG_CFG80211_WEXT 3120 static struct cfg80211_registered_device * 3121 cfg80211_get_dev_from_ifindex(struct net *net, int ifindex) 3122 { 3123 struct cfg80211_registered_device *rdev; 3124 struct net_device *dev; 3125 3126 ASSERT_RTNL(); 3127 3128 dev = dev_get_by_index(net, ifindex); 3129 if (!dev) 3130 return ERR_PTR(-ENODEV); 3131 if (dev->ieee80211_ptr) 3132 rdev = wiphy_to_rdev(dev->ieee80211_ptr->wiphy); 3133 else 3134 rdev = ERR_PTR(-ENODEV); 3135 dev_put(dev); 3136 return rdev; 3137 } 3138 3139 int cfg80211_wext_siwscan(struct net_device *dev, 3140 struct iw_request_info *info, 3141 union iwreq_data *wrqu, char *extra) 3142 { 3143 struct cfg80211_registered_device *rdev; 3144 struct wiphy *wiphy; 3145 struct iw_scan_req *wreq = NULL; 3146 struct cfg80211_scan_request *creq; 3147 int i, err, n_channels = 0; 3148 enum nl80211_band band; 3149 3150 if (!netif_running(dev)) 3151 return -ENETDOWN; 3152 3153 if (wrqu->data.length == sizeof(struct iw_scan_req)) 3154 wreq = (struct iw_scan_req *)extra; 3155 3156 rdev = cfg80211_get_dev_from_ifindex(dev_net(dev), dev->ifindex); 3157 3158 if (IS_ERR(rdev)) 3159 return PTR_ERR(rdev); 3160 3161 if (rdev->scan_req || rdev->scan_msg) 3162 return -EBUSY; 3163 3164 wiphy = &rdev->wiphy; 3165 3166 /* Determine number of channels, needed to allocate creq */ 3167 if (wreq && wreq->num_channels) 3168 n_channels = wreq->num_channels; 3169 else 3170 n_channels = ieee80211_get_num_supported_channels(wiphy); 3171 3172 creq = kzalloc(sizeof(*creq) + sizeof(struct cfg80211_ssid) + 3173 n_channels * sizeof(void *), 3174 GFP_ATOMIC); 3175 if (!creq) 3176 return -ENOMEM; 3177 3178 creq->wiphy = wiphy; 3179 creq->wdev = dev->ieee80211_ptr; 3180 /* SSIDs come after channels */ 3181 creq->ssids = (void *)&creq->channels[n_channels]; 3182 creq->n_channels = n_channels; 3183 creq->n_ssids = 1; 3184 creq->scan_start = jiffies; 3185 3186 /* translate "Scan on frequencies" request */ 3187 i = 0; 3188 for (band = 0; band < NUM_NL80211_BANDS; band++) { 3189 int j; 3190 3191 if (!wiphy->bands[band]) 3192 continue; 3193 3194 for (j = 0; j < wiphy->bands[band]->n_channels; j++) { 3195 /* ignore disabled channels */ 3196 if (wiphy->bands[band]->channels[j].flags & 3197 IEEE80211_CHAN_DISABLED) 3198 continue; 3199 3200 /* If we have a wireless request structure and the 3201 * wireless request specifies frequencies, then search 3202 * for the matching hardware channel. 3203 */ 3204 if (wreq && wreq->num_channels) { 3205 int k; 3206 int wiphy_freq = wiphy->bands[band]->channels[j].center_freq; 3207 for (k = 0; k < wreq->num_channels; k++) { 3208 struct iw_freq *freq = 3209 &wreq->channel_list[k]; 3210 int wext_freq = 3211 cfg80211_wext_freq(freq); 3212 3213 if (wext_freq == wiphy_freq) 3214 goto wext_freq_found; 3215 } 3216 goto wext_freq_not_found; 3217 } 3218 3219 wext_freq_found: 3220 creq->channels[i] = &wiphy->bands[band]->channels[j]; 3221 i++; 3222 wext_freq_not_found: ; 3223 } 3224 } 3225 /* No channels found? */ 3226 if (!i) { 3227 err = -EINVAL; 3228 goto out; 3229 } 3230 3231 /* Set real number of channels specified in creq->channels[] */ 3232 creq->n_channels = i; 3233 3234 /* translate "Scan for SSID" request */ 3235 if (wreq) { 3236 if (wrqu->data.flags & IW_SCAN_THIS_ESSID) { 3237 if (wreq->essid_len > IEEE80211_MAX_SSID_LEN) { 3238 err = -EINVAL; 3239 goto out; 3240 } 3241 memcpy(creq->ssids[0].ssid, wreq->essid, wreq->essid_len); 3242 creq->ssids[0].ssid_len = wreq->essid_len; 3243 } 3244 if (wreq->scan_type == IW_SCAN_TYPE_PASSIVE) 3245 creq->n_ssids = 0; 3246 } 3247 3248 for (i = 0; i < NUM_NL80211_BANDS; i++) 3249 if (wiphy->bands[i]) 3250 creq->rates[i] = (1 << wiphy->bands[i]->n_bitrates) - 1; 3251 3252 eth_broadcast_addr(creq->bssid); 3253 3254 wiphy_lock(&rdev->wiphy); 3255 3256 rdev->scan_req = creq; 3257 err = rdev_scan(rdev, creq); 3258 if (err) { 3259 rdev->scan_req = NULL; 3260 /* creq will be freed below */ 3261 } else { 3262 nl80211_send_scan_start(rdev, dev->ieee80211_ptr); 3263 /* creq now owned by driver */ 3264 creq = NULL; 3265 dev_hold(dev); 3266 } 3267 wiphy_unlock(&rdev->wiphy); 3268 out: 3269 kfree(creq); 3270 return err; 3271 } 3272 EXPORT_WEXT_HANDLER(cfg80211_wext_siwscan); 3273 3274 static char *ieee80211_scan_add_ies(struct iw_request_info *info, 3275 const struct cfg80211_bss_ies *ies, 3276 char *current_ev, char *end_buf) 3277 { 3278 const u8 *pos, *end, *next; 3279 struct iw_event iwe; 3280 3281 if (!ies) 3282 return current_ev; 3283 3284 /* 3285 * If needed, fragment the IEs buffer (at IE boundaries) into short 3286 * enough fragments to fit into IW_GENERIC_IE_MAX octet messages. 3287 */ 3288 pos = ies->data; 3289 end = pos + ies->len; 3290 3291 while (end - pos > IW_GENERIC_IE_MAX) { 3292 next = pos + 2 + pos[1]; 3293 while (next + 2 + next[1] - pos < IW_GENERIC_IE_MAX) 3294 next = next + 2 + next[1]; 3295 3296 memset(&iwe, 0, sizeof(iwe)); 3297 iwe.cmd = IWEVGENIE; 3298 iwe.u.data.length = next - pos; 3299 current_ev = iwe_stream_add_point_check(info, current_ev, 3300 end_buf, &iwe, 3301 (void *)pos); 3302 if (IS_ERR(current_ev)) 3303 return current_ev; 3304 pos = next; 3305 } 3306 3307 if (end > pos) { 3308 memset(&iwe, 0, sizeof(iwe)); 3309 iwe.cmd = IWEVGENIE; 3310 iwe.u.data.length = end - pos; 3311 current_ev = iwe_stream_add_point_check(info, current_ev, 3312 end_buf, &iwe, 3313 (void *)pos); 3314 if (IS_ERR(current_ev)) 3315 return current_ev; 3316 } 3317 3318 return current_ev; 3319 } 3320 3321 static char * 3322 ieee80211_bss(struct wiphy *wiphy, struct iw_request_info *info, 3323 struct cfg80211_internal_bss *bss, char *current_ev, 3324 char *end_buf) 3325 { 3326 const struct cfg80211_bss_ies *ies; 3327 struct iw_event iwe; 3328 const u8 *ie; 3329 u8 buf[50]; 3330 u8 *cfg, *p, *tmp; 3331 int rem, i, sig; 3332 bool ismesh = false; 3333 3334 memset(&iwe, 0, sizeof(iwe)); 3335 iwe.cmd = SIOCGIWAP; 3336 iwe.u.ap_addr.sa_family = ARPHRD_ETHER; 3337 memcpy(iwe.u.ap_addr.sa_data, bss->pub.bssid, ETH_ALEN); 3338 current_ev = iwe_stream_add_event_check(info, current_ev, end_buf, &iwe, 3339 IW_EV_ADDR_LEN); 3340 if (IS_ERR(current_ev)) 3341 return current_ev; 3342 3343 memset(&iwe, 0, sizeof(iwe)); 3344 iwe.cmd = SIOCGIWFREQ; 3345 iwe.u.freq.m = ieee80211_frequency_to_channel(bss->pub.channel->center_freq); 3346 iwe.u.freq.e = 0; 3347 current_ev = iwe_stream_add_event_check(info, current_ev, end_buf, &iwe, 3348 IW_EV_FREQ_LEN); 3349 if (IS_ERR(current_ev)) 3350 return current_ev; 3351 3352 memset(&iwe, 0, sizeof(iwe)); 3353 iwe.cmd = SIOCGIWFREQ; 3354 iwe.u.freq.m = bss->pub.channel->center_freq; 3355 iwe.u.freq.e = 6; 3356 current_ev = iwe_stream_add_event_check(info, current_ev, end_buf, &iwe, 3357 IW_EV_FREQ_LEN); 3358 if (IS_ERR(current_ev)) 3359 return current_ev; 3360 3361 if (wiphy->signal_type != CFG80211_SIGNAL_TYPE_NONE) { 3362 memset(&iwe, 0, sizeof(iwe)); 3363 iwe.cmd = IWEVQUAL; 3364 iwe.u.qual.updated = IW_QUAL_LEVEL_UPDATED | 3365 IW_QUAL_NOISE_INVALID | 3366 IW_QUAL_QUAL_UPDATED; 3367 switch (wiphy->signal_type) { 3368 case CFG80211_SIGNAL_TYPE_MBM: 3369 sig = bss->pub.signal / 100; 3370 iwe.u.qual.level = sig; 3371 iwe.u.qual.updated |= IW_QUAL_DBM; 3372 if (sig < -110) /* rather bad */ 3373 sig = -110; 3374 else if (sig > -40) /* perfect */ 3375 sig = -40; 3376 /* will give a range of 0 .. 70 */ 3377 iwe.u.qual.qual = sig + 110; 3378 break; 3379 case CFG80211_SIGNAL_TYPE_UNSPEC: 3380 iwe.u.qual.level = bss->pub.signal; 3381 /* will give range 0 .. 100 */ 3382 iwe.u.qual.qual = bss->pub.signal; 3383 break; 3384 default: 3385 /* not reached */ 3386 break; 3387 } 3388 current_ev = iwe_stream_add_event_check(info, current_ev, 3389 end_buf, &iwe, 3390 IW_EV_QUAL_LEN); 3391 if (IS_ERR(current_ev)) 3392 return current_ev; 3393 } 3394 3395 memset(&iwe, 0, sizeof(iwe)); 3396 iwe.cmd = SIOCGIWENCODE; 3397 if (bss->pub.capability & WLAN_CAPABILITY_PRIVACY) 3398 iwe.u.data.flags = IW_ENCODE_ENABLED | IW_ENCODE_NOKEY; 3399 else 3400 iwe.u.data.flags = IW_ENCODE_DISABLED; 3401 iwe.u.data.length = 0; 3402 current_ev = iwe_stream_add_point_check(info, current_ev, end_buf, 3403 &iwe, ""); 3404 if (IS_ERR(current_ev)) 3405 return current_ev; 3406 3407 rcu_read_lock(); 3408 ies = rcu_dereference(bss->pub.ies); 3409 rem = ies->len; 3410 ie = ies->data; 3411 3412 while (rem >= 2) { 3413 /* invalid data */ 3414 if (ie[1] > rem - 2) 3415 break; 3416 3417 switch (ie[0]) { 3418 case WLAN_EID_SSID: 3419 memset(&iwe, 0, sizeof(iwe)); 3420 iwe.cmd = SIOCGIWESSID; 3421 iwe.u.data.length = ie[1]; 3422 iwe.u.data.flags = 1; 3423 current_ev = iwe_stream_add_point_check(info, 3424 current_ev, 3425 end_buf, &iwe, 3426 (u8 *)ie + 2); 3427 if (IS_ERR(current_ev)) 3428 goto unlock; 3429 break; 3430 case WLAN_EID_MESH_ID: 3431 memset(&iwe, 0, sizeof(iwe)); 3432 iwe.cmd = SIOCGIWESSID; 3433 iwe.u.data.length = ie[1]; 3434 iwe.u.data.flags = 1; 3435 current_ev = iwe_stream_add_point_check(info, 3436 current_ev, 3437 end_buf, &iwe, 3438 (u8 *)ie + 2); 3439 if (IS_ERR(current_ev)) 3440 goto unlock; 3441 break; 3442 case WLAN_EID_MESH_CONFIG: 3443 ismesh = true; 3444 if (ie[1] != sizeof(struct ieee80211_meshconf_ie)) 3445 break; 3446 cfg = (u8 *)ie + 2; 3447 memset(&iwe, 0, sizeof(iwe)); 3448 iwe.cmd = IWEVCUSTOM; 3449 iwe.u.data.length = sprintf(buf, 3450 "Mesh Network Path Selection Protocol ID: 0x%02X", 3451 cfg[0]); 3452 current_ev = iwe_stream_add_point_check(info, 3453 current_ev, 3454 end_buf, 3455 &iwe, buf); 3456 if (IS_ERR(current_ev)) 3457 goto unlock; 3458 iwe.u.data.length = sprintf(buf, 3459 "Path Selection Metric ID: 0x%02X", 3460 cfg[1]); 3461 current_ev = iwe_stream_add_point_check(info, 3462 current_ev, 3463 end_buf, 3464 &iwe, buf); 3465 if (IS_ERR(current_ev)) 3466 goto unlock; 3467 iwe.u.data.length = sprintf(buf, 3468 "Congestion Control Mode ID: 0x%02X", 3469 cfg[2]); 3470 current_ev = iwe_stream_add_point_check(info, 3471 current_ev, 3472 end_buf, 3473 &iwe, buf); 3474 if (IS_ERR(current_ev)) 3475 goto unlock; 3476 iwe.u.data.length = sprintf(buf, 3477 "Synchronization ID: 0x%02X", 3478 cfg[3]); 3479 current_ev = iwe_stream_add_point_check(info, 3480 current_ev, 3481 end_buf, 3482 &iwe, buf); 3483 if (IS_ERR(current_ev)) 3484 goto unlock; 3485 iwe.u.data.length = sprintf(buf, 3486 "Authentication ID: 0x%02X", 3487 cfg[4]); 3488 current_ev = iwe_stream_add_point_check(info, 3489 current_ev, 3490 end_buf, 3491 &iwe, buf); 3492 if (IS_ERR(current_ev)) 3493 goto unlock; 3494 iwe.u.data.length = sprintf(buf, 3495 "Formation Info: 0x%02X", 3496 cfg[5]); 3497 current_ev = iwe_stream_add_point_check(info, 3498 current_ev, 3499 end_buf, 3500 &iwe, buf); 3501 if (IS_ERR(current_ev)) 3502 goto unlock; 3503 iwe.u.data.length = sprintf(buf, 3504 "Capabilities: 0x%02X", 3505 cfg[6]); 3506 current_ev = iwe_stream_add_point_check(info, 3507 current_ev, 3508 end_buf, 3509 &iwe, buf); 3510 if (IS_ERR(current_ev)) 3511 goto unlock; 3512 break; 3513 case WLAN_EID_SUPP_RATES: 3514 case WLAN_EID_EXT_SUPP_RATES: 3515 /* display all supported rates in readable format */ 3516 p = current_ev + iwe_stream_lcp_len(info); 3517 3518 memset(&iwe, 0, sizeof(iwe)); 3519 iwe.cmd = SIOCGIWRATE; 3520 /* Those two flags are ignored... */ 3521 iwe.u.bitrate.fixed = iwe.u.bitrate.disabled = 0; 3522 3523 for (i = 0; i < ie[1]; i++) { 3524 iwe.u.bitrate.value = 3525 ((ie[i + 2] & 0x7f) * 500000); 3526 tmp = p; 3527 p = iwe_stream_add_value(info, current_ev, p, 3528 end_buf, &iwe, 3529 IW_EV_PARAM_LEN); 3530 if (p == tmp) { 3531 current_ev = ERR_PTR(-E2BIG); 3532 goto unlock; 3533 } 3534 } 3535 current_ev = p; 3536 break; 3537 } 3538 rem -= ie[1] + 2; 3539 ie += ie[1] + 2; 3540 } 3541 3542 if (bss->pub.capability & (WLAN_CAPABILITY_ESS | WLAN_CAPABILITY_IBSS) || 3543 ismesh) { 3544 memset(&iwe, 0, sizeof(iwe)); 3545 iwe.cmd = SIOCGIWMODE; 3546 if (ismesh) 3547 iwe.u.mode = IW_MODE_MESH; 3548 else if (bss->pub.capability & WLAN_CAPABILITY_ESS) 3549 iwe.u.mode = IW_MODE_MASTER; 3550 else 3551 iwe.u.mode = IW_MODE_ADHOC; 3552 current_ev = iwe_stream_add_event_check(info, current_ev, 3553 end_buf, &iwe, 3554 IW_EV_UINT_LEN); 3555 if (IS_ERR(current_ev)) 3556 goto unlock; 3557 } 3558 3559 memset(&iwe, 0, sizeof(iwe)); 3560 iwe.cmd = IWEVCUSTOM; 3561 iwe.u.data.length = sprintf(buf, "tsf=%016llx", 3562 (unsigned long long)(ies->tsf)); 3563 current_ev = iwe_stream_add_point_check(info, current_ev, end_buf, 3564 &iwe, buf); 3565 if (IS_ERR(current_ev)) 3566 goto unlock; 3567 memset(&iwe, 0, sizeof(iwe)); 3568 iwe.cmd = IWEVCUSTOM; 3569 iwe.u.data.length = sprintf(buf, " Last beacon: %ums ago", 3570 elapsed_jiffies_msecs(bss->ts)); 3571 current_ev = iwe_stream_add_point_check(info, current_ev, 3572 end_buf, &iwe, buf); 3573 if (IS_ERR(current_ev)) 3574 goto unlock; 3575 3576 current_ev = ieee80211_scan_add_ies(info, ies, current_ev, end_buf); 3577 3578 unlock: 3579 rcu_read_unlock(); 3580 return current_ev; 3581 } 3582 3583 3584 static int ieee80211_scan_results(struct cfg80211_registered_device *rdev, 3585 struct iw_request_info *info, 3586 char *buf, size_t len) 3587 { 3588 char *current_ev = buf; 3589 char *end_buf = buf + len; 3590 struct cfg80211_internal_bss *bss; 3591 int err = 0; 3592 3593 spin_lock_bh(&rdev->bss_lock); 3594 cfg80211_bss_expire(rdev); 3595 3596 list_for_each_entry(bss, &rdev->bss_list, list) { 3597 if (buf + len - current_ev <= IW_EV_ADDR_LEN) { 3598 err = -E2BIG; 3599 break; 3600 } 3601 current_ev = ieee80211_bss(&rdev->wiphy, info, bss, 3602 current_ev, end_buf); 3603 if (IS_ERR(current_ev)) { 3604 err = PTR_ERR(current_ev); 3605 break; 3606 } 3607 } 3608 spin_unlock_bh(&rdev->bss_lock); 3609 3610 if (err) 3611 return err; 3612 return current_ev - buf; 3613 } 3614 3615 3616 int cfg80211_wext_giwscan(struct net_device *dev, 3617 struct iw_request_info *info, 3618 union iwreq_data *wrqu, char *extra) 3619 { 3620 struct iw_point *data = &wrqu->data; 3621 struct cfg80211_registered_device *rdev; 3622 int res; 3623 3624 if (!netif_running(dev)) 3625 return -ENETDOWN; 3626 3627 rdev = cfg80211_get_dev_from_ifindex(dev_net(dev), dev->ifindex); 3628 3629 if (IS_ERR(rdev)) 3630 return PTR_ERR(rdev); 3631 3632 if (rdev->scan_req || rdev->scan_msg) 3633 return -EAGAIN; 3634 3635 res = ieee80211_scan_results(rdev, info, extra, data->length); 3636 data->length = 0; 3637 if (res >= 0) { 3638 data->length = res; 3639 res = 0; 3640 } 3641 3642 return res; 3643 } 3644 EXPORT_WEXT_HANDLER(cfg80211_wext_giwscan); 3645 #endif 3646