xref: /linux/net/wireless/scan.c (revision db1ecca22edf27c5a3dd66af406c88b5b5ac7cc1)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * cfg80211 scan result handling
4  *
5  * Copyright 2008 Johannes Berg <johannes@sipsolutions.net>
6  * Copyright 2013-2014  Intel Mobile Communications GmbH
7  * Copyright 2016	Intel Deutschland GmbH
8  * Copyright (C) 2018-2023 Intel Corporation
9  */
10 #include <linux/kernel.h>
11 #include <linux/slab.h>
12 #include <linux/module.h>
13 #include <linux/netdevice.h>
14 #include <linux/wireless.h>
15 #include <linux/nl80211.h>
16 #include <linux/etherdevice.h>
17 #include <linux/crc32.h>
18 #include <linux/bitfield.h>
19 #include <net/arp.h>
20 #include <net/cfg80211.h>
21 #include <net/cfg80211-wext.h>
22 #include <net/iw_handler.h>
23 #include "core.h"
24 #include "nl80211.h"
25 #include "wext-compat.h"
26 #include "rdev-ops.h"
27 
28 /**
29  * DOC: BSS tree/list structure
30  *
31  * At the top level, the BSS list is kept in both a list in each
32  * registered device (@bss_list) as well as an RB-tree for faster
33  * lookup. In the RB-tree, entries can be looked up using their
34  * channel, MESHID, MESHCONF (for MBSSes) or channel, BSSID, SSID
35  * for other BSSes.
36  *
37  * Due to the possibility of hidden SSIDs, there's a second level
38  * structure, the "hidden_list" and "hidden_beacon_bss" pointer.
39  * The hidden_list connects all BSSes belonging to a single AP
40  * that has a hidden SSID, and connects beacon and probe response
41  * entries. For a probe response entry for a hidden SSID, the
42  * hidden_beacon_bss pointer points to the BSS struct holding the
43  * beacon's information.
44  *
45  * Reference counting is done for all these references except for
46  * the hidden_list, so that a beacon BSS struct that is otherwise
47  * not referenced has one reference for being on the bss_list and
48  * one for each probe response entry that points to it using the
49  * hidden_beacon_bss pointer. When a BSS struct that has such a
50  * pointer is get/put, the refcount update is also propagated to
51  * the referenced struct, this ensure that it cannot get removed
52  * while somebody is using the probe response version.
53  *
54  * Note that the hidden_beacon_bss pointer never changes, due to
55  * the reference counting. Therefore, no locking is needed for
56  * it.
57  *
58  * Also note that the hidden_beacon_bss pointer is only relevant
59  * if the driver uses something other than the IEs, e.g. private
60  * data stored in the BSS struct, since the beacon IEs are
61  * also linked into the probe response struct.
62  */
63 
64 /*
65  * Limit the number of BSS entries stored in mac80211. Each one is
66  * a bit over 4k at most, so this limits to roughly 4-5M of memory.
67  * If somebody wants to really attack this though, they'd likely
68  * use small beacons, and only one type of frame, limiting each of
69  * the entries to a much smaller size (in order to generate more
70  * entries in total, so overhead is bigger.)
71  */
72 static int bss_entries_limit = 1000;
73 module_param(bss_entries_limit, int, 0644);
74 MODULE_PARM_DESC(bss_entries_limit,
75                  "limit to number of scan BSS entries (per wiphy, default 1000)");
76 
77 #define IEEE80211_SCAN_RESULT_EXPIRE	(30 * HZ)
78 
79 /**
80  * struct cfg80211_colocated_ap - colocated AP information
81  *
82  * @list: linked list to all colocated aPS
83  * @bssid: BSSID of the reported AP
84  * @ssid: SSID of the reported AP
85  * @ssid_len: length of the ssid
86  * @center_freq: frequency the reported AP is on
87  * @unsolicited_probe: the reported AP is part of an ESS, where all the APs
88  *	that operate in the same channel as the reported AP and that might be
89  *	detected by a STA receiving this frame, are transmitting unsolicited
90  *	Probe Response frames every 20 TUs
91  * @oct_recommended: OCT is recommended to exchange MMPDUs with the reported AP
92  * @same_ssid: the reported AP has the same SSID as the reporting AP
93  * @multi_bss: the reported AP is part of a multiple BSSID set
94  * @transmitted_bssid: the reported AP is the transmitting BSSID
95  * @colocated_ess: all the APs that share the same ESS as the reported AP are
96  *	colocated and can be discovered via legacy bands.
97  * @short_ssid_valid: short_ssid is valid and can be used
98  * @short_ssid: the short SSID for this SSID
99  * @psd_20: The 20MHz PSD EIRP of the primary 20MHz channel for the reported AP
100  */
101 struct cfg80211_colocated_ap {
102 	struct list_head list;
103 	u8 bssid[ETH_ALEN];
104 	u8 ssid[IEEE80211_MAX_SSID_LEN];
105 	size_t ssid_len;
106 	u32 short_ssid;
107 	u32 center_freq;
108 	u8 unsolicited_probe:1,
109 	   oct_recommended:1,
110 	   same_ssid:1,
111 	   multi_bss:1,
112 	   transmitted_bssid:1,
113 	   colocated_ess:1,
114 	   short_ssid_valid:1;
115 	s8 psd_20;
116 };
117 
118 static void bss_free(struct cfg80211_internal_bss *bss)
119 {
120 	struct cfg80211_bss_ies *ies;
121 
122 	if (WARN_ON(atomic_read(&bss->hold)))
123 		return;
124 
125 	ies = (void *)rcu_access_pointer(bss->pub.beacon_ies);
126 	if (ies && !bss->pub.hidden_beacon_bss)
127 		kfree_rcu(ies, rcu_head);
128 	ies = (void *)rcu_access_pointer(bss->pub.proberesp_ies);
129 	if (ies)
130 		kfree_rcu(ies, rcu_head);
131 
132 	/*
133 	 * This happens when the module is removed, it doesn't
134 	 * really matter any more save for completeness
135 	 */
136 	if (!list_empty(&bss->hidden_list))
137 		list_del(&bss->hidden_list);
138 
139 	kfree(bss);
140 }
141 
142 static inline void bss_ref_get(struct cfg80211_registered_device *rdev,
143 			       struct cfg80211_internal_bss *bss)
144 {
145 	lockdep_assert_held(&rdev->bss_lock);
146 
147 	bss->refcount++;
148 
149 	if (bss->pub.hidden_beacon_bss)
150 		bss_from_pub(bss->pub.hidden_beacon_bss)->refcount++;
151 
152 	if (bss->pub.transmitted_bss)
153 		bss_from_pub(bss->pub.transmitted_bss)->refcount++;
154 }
155 
156 static inline void bss_ref_put(struct cfg80211_registered_device *rdev,
157 			       struct cfg80211_internal_bss *bss)
158 {
159 	lockdep_assert_held(&rdev->bss_lock);
160 
161 	if (bss->pub.hidden_beacon_bss) {
162 		struct cfg80211_internal_bss *hbss;
163 
164 		hbss = bss_from_pub(bss->pub.hidden_beacon_bss);
165 		hbss->refcount--;
166 		if (hbss->refcount == 0)
167 			bss_free(hbss);
168 	}
169 
170 	if (bss->pub.transmitted_bss) {
171 		struct cfg80211_internal_bss *tbss;
172 
173 		tbss = bss_from_pub(bss->pub.transmitted_bss);
174 		tbss->refcount--;
175 		if (tbss->refcount == 0)
176 			bss_free(tbss);
177 	}
178 
179 	bss->refcount--;
180 	if (bss->refcount == 0)
181 		bss_free(bss);
182 }
183 
184 static bool __cfg80211_unlink_bss(struct cfg80211_registered_device *rdev,
185 				  struct cfg80211_internal_bss *bss)
186 {
187 	lockdep_assert_held(&rdev->bss_lock);
188 
189 	if (!list_empty(&bss->hidden_list)) {
190 		/*
191 		 * don't remove the beacon entry if it has
192 		 * probe responses associated with it
193 		 */
194 		if (!bss->pub.hidden_beacon_bss)
195 			return false;
196 		/*
197 		 * if it's a probe response entry break its
198 		 * link to the other entries in the group
199 		 */
200 		list_del_init(&bss->hidden_list);
201 	}
202 
203 	list_del_init(&bss->list);
204 	list_del_init(&bss->pub.nontrans_list);
205 	rb_erase(&bss->rbn, &rdev->bss_tree);
206 	rdev->bss_entries--;
207 	WARN_ONCE((rdev->bss_entries == 0) ^ list_empty(&rdev->bss_list),
208 		  "rdev bss entries[%d]/list[empty:%d] corruption\n",
209 		  rdev->bss_entries, list_empty(&rdev->bss_list));
210 	bss_ref_put(rdev, bss);
211 	return true;
212 }
213 
214 bool cfg80211_is_element_inherited(const struct element *elem,
215 				   const struct element *non_inherit_elem)
216 {
217 	u8 id_len, ext_id_len, i, loop_len, id;
218 	const u8 *list;
219 
220 	if (elem->id == WLAN_EID_MULTIPLE_BSSID)
221 		return false;
222 
223 	if (elem->id == WLAN_EID_EXTENSION && elem->datalen > 1 &&
224 	    elem->data[0] == WLAN_EID_EXT_EHT_MULTI_LINK)
225 		return false;
226 
227 	if (!non_inherit_elem || non_inherit_elem->datalen < 2)
228 		return true;
229 
230 	/*
231 	 * non inheritance element format is:
232 	 * ext ID (56) | IDs list len | list | extension IDs list len | list
233 	 * Both lists are optional. Both lengths are mandatory.
234 	 * This means valid length is:
235 	 * elem_len = 1 (extension ID) + 2 (list len fields) + list lengths
236 	 */
237 	id_len = non_inherit_elem->data[1];
238 	if (non_inherit_elem->datalen < 3 + id_len)
239 		return true;
240 
241 	ext_id_len = non_inherit_elem->data[2 + id_len];
242 	if (non_inherit_elem->datalen < 3 + id_len + ext_id_len)
243 		return true;
244 
245 	if (elem->id == WLAN_EID_EXTENSION) {
246 		if (!ext_id_len)
247 			return true;
248 		loop_len = ext_id_len;
249 		list = &non_inherit_elem->data[3 + id_len];
250 		id = elem->data[0];
251 	} else {
252 		if (!id_len)
253 			return true;
254 		loop_len = id_len;
255 		list = &non_inherit_elem->data[2];
256 		id = elem->id;
257 	}
258 
259 	for (i = 0; i < loop_len; i++) {
260 		if (list[i] == id)
261 			return false;
262 	}
263 
264 	return true;
265 }
266 EXPORT_SYMBOL(cfg80211_is_element_inherited);
267 
268 static size_t cfg80211_copy_elem_with_frags(const struct element *elem,
269 					    const u8 *ie, size_t ie_len,
270 					    u8 **pos, u8 *buf, size_t buf_len)
271 {
272 	if (WARN_ON((u8 *)elem < ie || elem->data > ie + ie_len ||
273 		    elem->data + elem->datalen > ie + ie_len))
274 		return 0;
275 
276 	if (elem->datalen + 2 > buf + buf_len - *pos)
277 		return 0;
278 
279 	memcpy(*pos, elem, elem->datalen + 2);
280 	*pos += elem->datalen + 2;
281 
282 	/* Finish if it is not fragmented  */
283 	if (elem->datalen != 255)
284 		return *pos - buf;
285 
286 	ie_len = ie + ie_len - elem->data - elem->datalen;
287 	ie = (const u8 *)elem->data + elem->datalen;
288 
289 	for_each_element(elem, ie, ie_len) {
290 		if (elem->id != WLAN_EID_FRAGMENT)
291 			break;
292 
293 		if (elem->datalen + 2 > buf + buf_len - *pos)
294 			return 0;
295 
296 		memcpy(*pos, elem, elem->datalen + 2);
297 		*pos += elem->datalen + 2;
298 
299 		if (elem->datalen != 255)
300 			break;
301 	}
302 
303 	return *pos - buf;
304 }
305 
306 static size_t cfg80211_gen_new_ie(const u8 *ie, size_t ielen,
307 				  const u8 *subie, size_t subie_len,
308 				  u8 *new_ie, size_t new_ie_len)
309 {
310 	const struct element *non_inherit_elem, *parent, *sub;
311 	u8 *pos = new_ie;
312 	u8 id, ext_id;
313 	unsigned int match_len;
314 
315 	non_inherit_elem = cfg80211_find_ext_elem(WLAN_EID_EXT_NON_INHERITANCE,
316 						  subie, subie_len);
317 
318 	/* We copy the elements one by one from the parent to the generated
319 	 * elements.
320 	 * If they are not inherited (included in subie or in the non
321 	 * inheritance element), then we copy all occurrences the first time
322 	 * we see this element type.
323 	 */
324 	for_each_element(parent, ie, ielen) {
325 		if (parent->id == WLAN_EID_FRAGMENT)
326 			continue;
327 
328 		if (parent->id == WLAN_EID_EXTENSION) {
329 			if (parent->datalen < 1)
330 				continue;
331 
332 			id = WLAN_EID_EXTENSION;
333 			ext_id = parent->data[0];
334 			match_len = 1;
335 		} else {
336 			id = parent->id;
337 			match_len = 0;
338 		}
339 
340 		/* Find first occurrence in subie */
341 		sub = cfg80211_find_elem_match(id, subie, subie_len,
342 					       &ext_id, match_len, 0);
343 
344 		/* Copy from parent if not in subie and inherited */
345 		if (!sub &&
346 		    cfg80211_is_element_inherited(parent, non_inherit_elem)) {
347 			if (!cfg80211_copy_elem_with_frags(parent,
348 							   ie, ielen,
349 							   &pos, new_ie,
350 							   new_ie_len))
351 				return 0;
352 
353 			continue;
354 		}
355 
356 		/* Already copied if an earlier element had the same type */
357 		if (cfg80211_find_elem_match(id, ie, (u8 *)parent - ie,
358 					     &ext_id, match_len, 0))
359 			continue;
360 
361 		/* Not inheriting, copy all similar elements from subie */
362 		while (sub) {
363 			if (!cfg80211_copy_elem_with_frags(sub,
364 							   subie, subie_len,
365 							   &pos, new_ie,
366 							   new_ie_len))
367 				return 0;
368 
369 			sub = cfg80211_find_elem_match(id,
370 						       sub->data + sub->datalen,
371 						       subie_len + subie -
372 						       (sub->data +
373 							sub->datalen),
374 						       &ext_id, match_len, 0);
375 		}
376 	}
377 
378 	/* The above misses elements that are included in subie but not in the
379 	 * parent, so do a pass over subie and append those.
380 	 * Skip the non-tx BSSID caps and non-inheritance element.
381 	 */
382 	for_each_element(sub, subie, subie_len) {
383 		if (sub->id == WLAN_EID_NON_TX_BSSID_CAP)
384 			continue;
385 
386 		if (sub->id == WLAN_EID_FRAGMENT)
387 			continue;
388 
389 		if (sub->id == WLAN_EID_EXTENSION) {
390 			if (sub->datalen < 1)
391 				continue;
392 
393 			id = WLAN_EID_EXTENSION;
394 			ext_id = sub->data[0];
395 			match_len = 1;
396 
397 			if (ext_id == WLAN_EID_EXT_NON_INHERITANCE)
398 				continue;
399 		} else {
400 			id = sub->id;
401 			match_len = 0;
402 		}
403 
404 		/* Processed if one was included in the parent */
405 		if (cfg80211_find_elem_match(id, ie, ielen,
406 					     &ext_id, match_len, 0))
407 			continue;
408 
409 		if (!cfg80211_copy_elem_with_frags(sub, subie, subie_len,
410 						   &pos, new_ie, new_ie_len))
411 			return 0;
412 	}
413 
414 	return pos - new_ie;
415 }
416 
417 static bool is_bss(struct cfg80211_bss *a, const u8 *bssid,
418 		   const u8 *ssid, size_t ssid_len)
419 {
420 	const struct cfg80211_bss_ies *ies;
421 	const struct element *ssid_elem;
422 
423 	if (bssid && !ether_addr_equal(a->bssid, bssid))
424 		return false;
425 
426 	if (!ssid)
427 		return true;
428 
429 	ies = rcu_access_pointer(a->ies);
430 	if (!ies)
431 		return false;
432 	ssid_elem = cfg80211_find_elem(WLAN_EID_SSID, ies->data, ies->len);
433 	if (!ssid_elem)
434 		return false;
435 	if (ssid_elem->datalen != ssid_len)
436 		return false;
437 	return memcmp(ssid_elem->data, ssid, ssid_len) == 0;
438 }
439 
440 static int
441 cfg80211_add_nontrans_list(struct cfg80211_bss *trans_bss,
442 			   struct cfg80211_bss *nontrans_bss)
443 {
444 	const struct element *ssid_elem;
445 	struct cfg80211_bss *bss = NULL;
446 
447 	rcu_read_lock();
448 	ssid_elem = ieee80211_bss_get_elem(nontrans_bss, WLAN_EID_SSID);
449 	if (!ssid_elem) {
450 		rcu_read_unlock();
451 		return -EINVAL;
452 	}
453 
454 	/* check if nontrans_bss is in the list */
455 	list_for_each_entry(bss, &trans_bss->nontrans_list, nontrans_list) {
456 		if (is_bss(bss, nontrans_bss->bssid, ssid_elem->data,
457 			   ssid_elem->datalen)) {
458 			rcu_read_unlock();
459 			return 0;
460 		}
461 	}
462 
463 	rcu_read_unlock();
464 
465 	/*
466 	 * This is a bit weird - it's not on the list, but already on another
467 	 * one! The only way that could happen is if there's some BSSID/SSID
468 	 * shared by multiple APs in their multi-BSSID profiles, potentially
469 	 * with hidden SSID mixed in ... ignore it.
470 	 */
471 	if (!list_empty(&nontrans_bss->nontrans_list))
472 		return -EINVAL;
473 
474 	/* add to the list */
475 	list_add_tail(&nontrans_bss->nontrans_list, &trans_bss->nontrans_list);
476 	return 0;
477 }
478 
479 static void __cfg80211_bss_expire(struct cfg80211_registered_device *rdev,
480 				  unsigned long expire_time)
481 {
482 	struct cfg80211_internal_bss *bss, *tmp;
483 	bool expired = false;
484 
485 	lockdep_assert_held(&rdev->bss_lock);
486 
487 	list_for_each_entry_safe(bss, tmp, &rdev->bss_list, list) {
488 		if (atomic_read(&bss->hold))
489 			continue;
490 		if (!time_after(expire_time, bss->ts))
491 			continue;
492 
493 		if (__cfg80211_unlink_bss(rdev, bss))
494 			expired = true;
495 	}
496 
497 	if (expired)
498 		rdev->bss_generation++;
499 }
500 
501 static bool cfg80211_bss_expire_oldest(struct cfg80211_registered_device *rdev)
502 {
503 	struct cfg80211_internal_bss *bss, *oldest = NULL;
504 	bool ret;
505 
506 	lockdep_assert_held(&rdev->bss_lock);
507 
508 	list_for_each_entry(bss, &rdev->bss_list, list) {
509 		if (atomic_read(&bss->hold))
510 			continue;
511 
512 		if (!list_empty(&bss->hidden_list) &&
513 		    !bss->pub.hidden_beacon_bss)
514 			continue;
515 
516 		if (oldest && time_before(oldest->ts, bss->ts))
517 			continue;
518 		oldest = bss;
519 	}
520 
521 	if (WARN_ON(!oldest))
522 		return false;
523 
524 	/*
525 	 * The callers make sure to increase rdev->bss_generation if anything
526 	 * gets removed (and a new entry added), so there's no need to also do
527 	 * it here.
528 	 */
529 
530 	ret = __cfg80211_unlink_bss(rdev, oldest);
531 	WARN_ON(!ret);
532 	return ret;
533 }
534 
535 static u8 cfg80211_parse_bss_param(u8 data,
536 				   struct cfg80211_colocated_ap *coloc_ap)
537 {
538 	coloc_ap->oct_recommended =
539 		u8_get_bits(data, IEEE80211_RNR_TBTT_PARAMS_OCT_RECOMMENDED);
540 	coloc_ap->same_ssid =
541 		u8_get_bits(data, IEEE80211_RNR_TBTT_PARAMS_SAME_SSID);
542 	coloc_ap->multi_bss =
543 		u8_get_bits(data, IEEE80211_RNR_TBTT_PARAMS_MULTI_BSSID);
544 	coloc_ap->transmitted_bssid =
545 		u8_get_bits(data, IEEE80211_RNR_TBTT_PARAMS_TRANSMITTED_BSSID);
546 	coloc_ap->unsolicited_probe =
547 		u8_get_bits(data, IEEE80211_RNR_TBTT_PARAMS_PROBE_ACTIVE);
548 	coloc_ap->colocated_ess =
549 		u8_get_bits(data, IEEE80211_RNR_TBTT_PARAMS_COLOC_ESS);
550 
551 	return u8_get_bits(data, IEEE80211_RNR_TBTT_PARAMS_COLOC_AP);
552 }
553 
554 static int cfg80211_calc_short_ssid(const struct cfg80211_bss_ies *ies,
555 				    const struct element **elem, u32 *s_ssid)
556 {
557 
558 	*elem = cfg80211_find_elem(WLAN_EID_SSID, ies->data, ies->len);
559 	if (!*elem || (*elem)->datalen > IEEE80211_MAX_SSID_LEN)
560 		return -EINVAL;
561 
562 	*s_ssid = ~crc32_le(~0, (*elem)->data, (*elem)->datalen);
563 	return 0;
564 }
565 
566 static void cfg80211_free_coloc_ap_list(struct list_head *coloc_ap_list)
567 {
568 	struct cfg80211_colocated_ap *ap, *tmp_ap;
569 
570 	list_for_each_entry_safe(ap, tmp_ap, coloc_ap_list, list) {
571 		list_del(&ap->list);
572 		kfree(ap);
573 	}
574 }
575 
576 static int cfg80211_parse_ap_info(struct cfg80211_colocated_ap *entry,
577 				  const u8 *pos, u8 length,
578 				  const struct element *ssid_elem,
579 				  u32 s_ssid_tmp)
580 {
581 	u8 bss_params;
582 
583 	entry->psd_20 = IEEE80211_RNR_TBTT_PARAMS_PSD_RESERVED;
584 
585 	/* The length is already verified by the caller to contain bss_params */
586 	if (length > sizeof(struct ieee80211_tbtt_info_7_8_9)) {
587 		struct ieee80211_tbtt_info_ge_11 *tbtt_info = (void *)pos;
588 
589 		memcpy(entry->bssid, tbtt_info->bssid, ETH_ALEN);
590 		entry->short_ssid = le32_to_cpu(tbtt_info->short_ssid);
591 		entry->short_ssid_valid = true;
592 
593 		bss_params = tbtt_info->bss_params;
594 
595 		/* Ignore disabled links */
596 		if (length >= offsetofend(typeof(*tbtt_info), mld_params)) {
597 			if (le16_get_bits(tbtt_info->mld_params.params,
598 					  IEEE80211_RNR_MLD_PARAMS_DISABLED_LINK))
599 				return -EINVAL;
600 		}
601 
602 		if (length >= offsetofend(struct ieee80211_tbtt_info_ge_11,
603 					  psd_20))
604 			entry->psd_20 = tbtt_info->psd_20;
605 	} else {
606 		struct ieee80211_tbtt_info_7_8_9 *tbtt_info = (void *)pos;
607 
608 		memcpy(entry->bssid, tbtt_info->bssid, ETH_ALEN);
609 
610 		bss_params = tbtt_info->bss_params;
611 
612 		if (length == offsetofend(struct ieee80211_tbtt_info_7_8_9,
613 					  psd_20))
614 			entry->psd_20 = tbtt_info->psd_20;
615 	}
616 
617 	/* ignore entries with invalid BSSID */
618 	if (!is_valid_ether_addr(entry->bssid))
619 		return -EINVAL;
620 
621 	/* skip non colocated APs */
622 	if (!cfg80211_parse_bss_param(bss_params, entry))
623 		return -EINVAL;
624 
625 	/* no information about the short ssid. Consider the entry valid
626 	 * for now. It would later be dropped in case there are explicit
627 	 * SSIDs that need to be matched
628 	 */
629 	if (!entry->same_ssid && !entry->short_ssid_valid)
630 		return 0;
631 
632 	if (entry->same_ssid) {
633 		entry->short_ssid = s_ssid_tmp;
634 		entry->short_ssid_valid = true;
635 
636 		/*
637 		 * This is safe because we validate datalen in
638 		 * cfg80211_parse_colocated_ap(), before calling this
639 		 * function.
640 		 */
641 		memcpy(&entry->ssid, &ssid_elem->data, ssid_elem->datalen);
642 		entry->ssid_len = ssid_elem->datalen;
643 	}
644 
645 	return 0;
646 }
647 
648 static int cfg80211_parse_colocated_ap(const struct cfg80211_bss_ies *ies,
649 				       struct list_head *list)
650 {
651 	struct ieee80211_neighbor_ap_info *ap_info;
652 	const struct element *elem, *ssid_elem;
653 	const u8 *pos, *end;
654 	u32 s_ssid_tmp;
655 	int n_coloc = 0, ret;
656 	LIST_HEAD(ap_list);
657 
658 	ret = cfg80211_calc_short_ssid(ies, &ssid_elem, &s_ssid_tmp);
659 	if (ret)
660 		return 0;
661 
662 	for_each_element_id(elem, WLAN_EID_REDUCED_NEIGHBOR_REPORT,
663 			    ies->data, ies->len) {
664 		pos = elem->data;
665 		end = elem->data + elem->datalen;
666 
667 		/* RNR IE may contain more than one NEIGHBOR_AP_INFO */
668 		while (pos + sizeof(*ap_info) <= end) {
669 			enum nl80211_band band;
670 			int freq;
671 			u8 length, i, count;
672 
673 			ap_info = (void *)pos;
674 			count = u8_get_bits(ap_info->tbtt_info_hdr,
675 					    IEEE80211_AP_INFO_TBTT_HDR_COUNT) + 1;
676 			length = ap_info->tbtt_info_len;
677 
678 			pos += sizeof(*ap_info);
679 
680 			if (!ieee80211_operating_class_to_band(ap_info->op_class,
681 							       &band))
682 				break;
683 
684 			freq = ieee80211_channel_to_frequency(ap_info->channel,
685 							      band);
686 
687 			if (end - pos < count * length)
688 				break;
689 
690 			if (u8_get_bits(ap_info->tbtt_info_hdr,
691 					IEEE80211_AP_INFO_TBTT_HDR_TYPE) !=
692 			    IEEE80211_TBTT_INFO_TYPE_TBTT) {
693 				pos += count * length;
694 				continue;
695 			}
696 
697 			/* TBTT info must include bss param + BSSID +
698 			 * (short SSID or same_ssid bit to be set).
699 			 * ignore other options, and move to the
700 			 * next AP info
701 			 */
702 			if (band != NL80211_BAND_6GHZ ||
703 			    !(length == offsetofend(struct ieee80211_tbtt_info_7_8_9,
704 						    bss_params) ||
705 			      length == sizeof(struct ieee80211_tbtt_info_7_8_9) ||
706 			      length >= offsetofend(struct ieee80211_tbtt_info_ge_11,
707 						    bss_params))) {
708 				pos += count * length;
709 				continue;
710 			}
711 
712 			for (i = 0; i < count; i++) {
713 				struct cfg80211_colocated_ap *entry;
714 
715 				entry = kzalloc(sizeof(*entry) + IEEE80211_MAX_SSID_LEN,
716 						GFP_ATOMIC);
717 
718 				if (!entry)
719 					goto error;
720 
721 				entry->center_freq = freq;
722 
723 				if (!cfg80211_parse_ap_info(entry, pos, length,
724 							    ssid_elem,
725 							    s_ssid_tmp)) {
726 					n_coloc++;
727 					list_add_tail(&entry->list, &ap_list);
728 				} else {
729 					kfree(entry);
730 				}
731 
732 				pos += length;
733 			}
734 		}
735 
736 error:
737 		if (pos != end) {
738 			cfg80211_free_coloc_ap_list(&ap_list);
739 			return 0;
740 		}
741 	}
742 
743 	list_splice_tail(&ap_list, list);
744 	return n_coloc;
745 }
746 
747 static  void cfg80211_scan_req_add_chan(struct cfg80211_scan_request *request,
748 					struct ieee80211_channel *chan,
749 					bool add_to_6ghz)
750 {
751 	int i;
752 	u32 n_channels = request->n_channels;
753 	struct cfg80211_scan_6ghz_params *params =
754 		&request->scan_6ghz_params[request->n_6ghz_params];
755 
756 	for (i = 0; i < n_channels; i++) {
757 		if (request->channels[i] == chan) {
758 			if (add_to_6ghz)
759 				params->channel_idx = i;
760 			return;
761 		}
762 	}
763 
764 	request->channels[n_channels] = chan;
765 	if (add_to_6ghz)
766 		request->scan_6ghz_params[request->n_6ghz_params].channel_idx =
767 			n_channels;
768 
769 	request->n_channels++;
770 }
771 
772 static bool cfg80211_find_ssid_match(struct cfg80211_colocated_ap *ap,
773 				     struct cfg80211_scan_request *request)
774 {
775 	int i;
776 	u32 s_ssid;
777 
778 	for (i = 0; i < request->n_ssids; i++) {
779 		/* wildcard ssid in the scan request */
780 		if (!request->ssids[i].ssid_len) {
781 			if (ap->multi_bss && !ap->transmitted_bssid)
782 				continue;
783 
784 			return true;
785 		}
786 
787 		if (ap->ssid_len &&
788 		    ap->ssid_len == request->ssids[i].ssid_len) {
789 			if (!memcmp(request->ssids[i].ssid, ap->ssid,
790 				    ap->ssid_len))
791 				return true;
792 		} else if (ap->short_ssid_valid) {
793 			s_ssid = ~crc32_le(~0, request->ssids[i].ssid,
794 					   request->ssids[i].ssid_len);
795 
796 			if (ap->short_ssid == s_ssid)
797 				return true;
798 		}
799 	}
800 
801 	return false;
802 }
803 
804 static int cfg80211_scan_6ghz(struct cfg80211_registered_device *rdev)
805 {
806 	u8 i;
807 	struct cfg80211_colocated_ap *ap;
808 	int n_channels, count = 0, err;
809 	struct cfg80211_scan_request *request, *rdev_req = rdev->scan_req;
810 	LIST_HEAD(coloc_ap_list);
811 	bool need_scan_psc = true;
812 	const struct ieee80211_sband_iftype_data *iftd;
813 
814 	rdev_req->scan_6ghz = true;
815 
816 	if (!rdev->wiphy.bands[NL80211_BAND_6GHZ])
817 		return -EOPNOTSUPP;
818 
819 	iftd = ieee80211_get_sband_iftype_data(rdev->wiphy.bands[NL80211_BAND_6GHZ],
820 					       rdev_req->wdev->iftype);
821 	if (!iftd || !iftd->he_cap.has_he)
822 		return -EOPNOTSUPP;
823 
824 	n_channels = rdev->wiphy.bands[NL80211_BAND_6GHZ]->n_channels;
825 
826 	if (rdev_req->flags & NL80211_SCAN_FLAG_COLOCATED_6GHZ) {
827 		struct cfg80211_internal_bss *intbss;
828 
829 		spin_lock_bh(&rdev->bss_lock);
830 		list_for_each_entry(intbss, &rdev->bss_list, list) {
831 			struct cfg80211_bss *res = &intbss->pub;
832 			const struct cfg80211_bss_ies *ies;
833 			const struct element *ssid_elem;
834 			struct cfg80211_colocated_ap *entry;
835 			u32 s_ssid_tmp;
836 			int ret;
837 
838 			ies = rcu_access_pointer(res->ies);
839 			count += cfg80211_parse_colocated_ap(ies,
840 							     &coloc_ap_list);
841 
842 			/* In case the scan request specified a specific BSSID
843 			 * and the BSS is found and operating on 6GHz band then
844 			 * add this AP to the collocated APs list.
845 			 * This is relevant for ML probe requests when the lower
846 			 * band APs have not been discovered.
847 			 */
848 			if (is_broadcast_ether_addr(rdev_req->bssid) ||
849 			    !ether_addr_equal(rdev_req->bssid, res->bssid) ||
850 			    res->channel->band != NL80211_BAND_6GHZ)
851 				continue;
852 
853 			ret = cfg80211_calc_short_ssid(ies, &ssid_elem,
854 						       &s_ssid_tmp);
855 			if (ret)
856 				continue;
857 
858 			entry = kzalloc(sizeof(*entry) + IEEE80211_MAX_SSID_LEN,
859 					GFP_ATOMIC);
860 
861 			if (!entry)
862 				continue;
863 
864 			memcpy(entry->bssid, res->bssid, ETH_ALEN);
865 			entry->short_ssid = s_ssid_tmp;
866 			memcpy(entry->ssid, ssid_elem->data,
867 			       ssid_elem->datalen);
868 			entry->ssid_len = ssid_elem->datalen;
869 			entry->short_ssid_valid = true;
870 			entry->center_freq = res->channel->center_freq;
871 
872 			list_add_tail(&entry->list, &coloc_ap_list);
873 			count++;
874 		}
875 		spin_unlock_bh(&rdev->bss_lock);
876 	}
877 
878 	request = kzalloc(struct_size(request, channels, n_channels) +
879 			  sizeof(*request->scan_6ghz_params) * count +
880 			  sizeof(*request->ssids) * rdev_req->n_ssids,
881 			  GFP_KERNEL);
882 	if (!request) {
883 		cfg80211_free_coloc_ap_list(&coloc_ap_list);
884 		return -ENOMEM;
885 	}
886 
887 	*request = *rdev_req;
888 	request->n_channels = 0;
889 	request->scan_6ghz_params =
890 		(void *)&request->channels[n_channels];
891 
892 	/*
893 	 * PSC channels should not be scanned in case of direct scan with 1 SSID
894 	 * and at least one of the reported co-located APs with same SSID
895 	 * indicating that all APs in the same ESS are co-located
896 	 */
897 	if (count && request->n_ssids == 1 && request->ssids[0].ssid_len) {
898 		list_for_each_entry(ap, &coloc_ap_list, list) {
899 			if (ap->colocated_ess &&
900 			    cfg80211_find_ssid_match(ap, request)) {
901 				need_scan_psc = false;
902 				break;
903 			}
904 		}
905 	}
906 
907 	/*
908 	 * add to the scan request the channels that need to be scanned
909 	 * regardless of the collocated APs (PSC channels or all channels
910 	 * in case that NL80211_SCAN_FLAG_COLOCATED_6GHZ is not set)
911 	 */
912 	for (i = 0; i < rdev_req->n_channels; i++) {
913 		if (rdev_req->channels[i]->band == NL80211_BAND_6GHZ &&
914 		    ((need_scan_psc &&
915 		      cfg80211_channel_is_psc(rdev_req->channels[i])) ||
916 		     !(rdev_req->flags & NL80211_SCAN_FLAG_COLOCATED_6GHZ))) {
917 			cfg80211_scan_req_add_chan(request,
918 						   rdev_req->channels[i],
919 						   false);
920 		}
921 	}
922 
923 	if (!(rdev_req->flags & NL80211_SCAN_FLAG_COLOCATED_6GHZ))
924 		goto skip;
925 
926 	list_for_each_entry(ap, &coloc_ap_list, list) {
927 		bool found = false;
928 		struct cfg80211_scan_6ghz_params *scan_6ghz_params =
929 			&request->scan_6ghz_params[request->n_6ghz_params];
930 		struct ieee80211_channel *chan =
931 			ieee80211_get_channel(&rdev->wiphy, ap->center_freq);
932 
933 		if (!chan || chan->flags & IEEE80211_CHAN_DISABLED)
934 			continue;
935 
936 		for (i = 0; i < rdev_req->n_channels; i++) {
937 			if (rdev_req->channels[i] == chan)
938 				found = true;
939 		}
940 
941 		if (!found)
942 			continue;
943 
944 		if (request->n_ssids > 0 &&
945 		    !cfg80211_find_ssid_match(ap, request))
946 			continue;
947 
948 		if (!is_broadcast_ether_addr(request->bssid) &&
949 		    !ether_addr_equal(request->bssid, ap->bssid))
950 			continue;
951 
952 		if (!request->n_ssids && ap->multi_bss && !ap->transmitted_bssid)
953 			continue;
954 
955 		cfg80211_scan_req_add_chan(request, chan, true);
956 		memcpy(scan_6ghz_params->bssid, ap->bssid, ETH_ALEN);
957 		scan_6ghz_params->short_ssid = ap->short_ssid;
958 		scan_6ghz_params->short_ssid_valid = ap->short_ssid_valid;
959 		scan_6ghz_params->unsolicited_probe = ap->unsolicited_probe;
960 		scan_6ghz_params->psd_20 = ap->psd_20;
961 
962 		/*
963 		 * If a PSC channel is added to the scan and 'need_scan_psc' is
964 		 * set to false, then all the APs that the scan logic is
965 		 * interested with on the channel are collocated and thus there
966 		 * is no need to perform the initial PSC channel listen.
967 		 */
968 		if (cfg80211_channel_is_psc(chan) && !need_scan_psc)
969 			scan_6ghz_params->psc_no_listen = true;
970 
971 		request->n_6ghz_params++;
972 	}
973 
974 skip:
975 	cfg80211_free_coloc_ap_list(&coloc_ap_list);
976 
977 	if (request->n_channels) {
978 		struct cfg80211_scan_request *old = rdev->int_scan_req;
979 		rdev->int_scan_req = request;
980 
981 		/*
982 		 * Add the ssids from the parent scan request to the new scan
983 		 * request, so the driver would be able to use them in its
984 		 * probe requests to discover hidden APs on PSC channels.
985 		 */
986 		request->ssids = (void *)&request->channels[request->n_channels];
987 		request->n_ssids = rdev_req->n_ssids;
988 		memcpy(request->ssids, rdev_req->ssids, sizeof(*request->ssids) *
989 		       request->n_ssids);
990 
991 		/*
992 		 * If this scan follows a previous scan, save the scan start
993 		 * info from the first part of the scan
994 		 */
995 		if (old)
996 			rdev->int_scan_req->info = old->info;
997 
998 		err = rdev_scan(rdev, request);
999 		if (err) {
1000 			rdev->int_scan_req = old;
1001 			kfree(request);
1002 		} else {
1003 			kfree(old);
1004 		}
1005 
1006 		return err;
1007 	}
1008 
1009 	kfree(request);
1010 	return -EINVAL;
1011 }
1012 
1013 int cfg80211_scan(struct cfg80211_registered_device *rdev)
1014 {
1015 	struct cfg80211_scan_request *request;
1016 	struct cfg80211_scan_request *rdev_req = rdev->scan_req;
1017 	u32 n_channels = 0, idx, i;
1018 
1019 	if (!(rdev->wiphy.flags & WIPHY_FLAG_SPLIT_SCAN_6GHZ))
1020 		return rdev_scan(rdev, rdev_req);
1021 
1022 	for (i = 0; i < rdev_req->n_channels; i++) {
1023 		if (rdev_req->channels[i]->band != NL80211_BAND_6GHZ)
1024 			n_channels++;
1025 	}
1026 
1027 	if (!n_channels)
1028 		return cfg80211_scan_6ghz(rdev);
1029 
1030 	request = kzalloc(struct_size(request, channels, n_channels),
1031 			  GFP_KERNEL);
1032 	if (!request)
1033 		return -ENOMEM;
1034 
1035 	*request = *rdev_req;
1036 	request->n_channels = n_channels;
1037 
1038 	for (i = idx = 0; i < rdev_req->n_channels; i++) {
1039 		if (rdev_req->channels[i]->band != NL80211_BAND_6GHZ)
1040 			request->channels[idx++] = rdev_req->channels[i];
1041 	}
1042 
1043 	rdev_req->scan_6ghz = false;
1044 	rdev->int_scan_req = request;
1045 	return rdev_scan(rdev, request);
1046 }
1047 
1048 void ___cfg80211_scan_done(struct cfg80211_registered_device *rdev,
1049 			   bool send_message)
1050 {
1051 	struct cfg80211_scan_request *request, *rdev_req;
1052 	struct wireless_dev *wdev;
1053 	struct sk_buff *msg;
1054 #ifdef CONFIG_CFG80211_WEXT
1055 	union iwreq_data wrqu;
1056 #endif
1057 
1058 	lockdep_assert_held(&rdev->wiphy.mtx);
1059 
1060 	if (rdev->scan_msg) {
1061 		nl80211_send_scan_msg(rdev, rdev->scan_msg);
1062 		rdev->scan_msg = NULL;
1063 		return;
1064 	}
1065 
1066 	rdev_req = rdev->scan_req;
1067 	if (!rdev_req)
1068 		return;
1069 
1070 	wdev = rdev_req->wdev;
1071 	request = rdev->int_scan_req ? rdev->int_scan_req : rdev_req;
1072 
1073 	if (wdev_running(wdev) &&
1074 	    (rdev->wiphy.flags & WIPHY_FLAG_SPLIT_SCAN_6GHZ) &&
1075 	    !rdev_req->scan_6ghz && !request->info.aborted &&
1076 	    !cfg80211_scan_6ghz(rdev))
1077 		return;
1078 
1079 	/*
1080 	 * This must be before sending the other events!
1081 	 * Otherwise, wpa_supplicant gets completely confused with
1082 	 * wext events.
1083 	 */
1084 	if (wdev->netdev)
1085 		cfg80211_sme_scan_done(wdev->netdev);
1086 
1087 	if (!request->info.aborted &&
1088 	    request->flags & NL80211_SCAN_FLAG_FLUSH) {
1089 		/* flush entries from previous scans */
1090 		spin_lock_bh(&rdev->bss_lock);
1091 		__cfg80211_bss_expire(rdev, request->scan_start);
1092 		spin_unlock_bh(&rdev->bss_lock);
1093 	}
1094 
1095 	msg = nl80211_build_scan_msg(rdev, wdev, request->info.aborted);
1096 
1097 #ifdef CONFIG_CFG80211_WEXT
1098 	if (wdev->netdev && !request->info.aborted) {
1099 		memset(&wrqu, 0, sizeof(wrqu));
1100 
1101 		wireless_send_event(wdev->netdev, SIOCGIWSCAN, &wrqu, NULL);
1102 	}
1103 #endif
1104 
1105 	dev_put(wdev->netdev);
1106 
1107 	kfree(rdev->int_scan_req);
1108 	rdev->int_scan_req = NULL;
1109 
1110 	kfree(rdev->scan_req);
1111 	rdev->scan_req = NULL;
1112 
1113 	if (!send_message)
1114 		rdev->scan_msg = msg;
1115 	else
1116 		nl80211_send_scan_msg(rdev, msg);
1117 }
1118 
1119 void __cfg80211_scan_done(struct wiphy *wiphy, struct wiphy_work *wk)
1120 {
1121 	___cfg80211_scan_done(wiphy_to_rdev(wiphy), true);
1122 }
1123 
1124 void cfg80211_scan_done(struct cfg80211_scan_request *request,
1125 			struct cfg80211_scan_info *info)
1126 {
1127 	struct cfg80211_scan_info old_info = request->info;
1128 
1129 	trace_cfg80211_scan_done(request, info);
1130 	WARN_ON(request != wiphy_to_rdev(request->wiphy)->scan_req &&
1131 		request != wiphy_to_rdev(request->wiphy)->int_scan_req);
1132 
1133 	request->info = *info;
1134 
1135 	/*
1136 	 * In case the scan is split, the scan_start_tsf and tsf_bssid should
1137 	 * be of the first part. In such a case old_info.scan_start_tsf should
1138 	 * be non zero.
1139 	 */
1140 	if (request->scan_6ghz && old_info.scan_start_tsf) {
1141 		request->info.scan_start_tsf = old_info.scan_start_tsf;
1142 		memcpy(request->info.tsf_bssid, old_info.tsf_bssid,
1143 		       sizeof(request->info.tsf_bssid));
1144 	}
1145 
1146 	request->notified = true;
1147 	wiphy_work_queue(request->wiphy,
1148 			 &wiphy_to_rdev(request->wiphy)->scan_done_wk);
1149 }
1150 EXPORT_SYMBOL(cfg80211_scan_done);
1151 
1152 void cfg80211_add_sched_scan_req(struct cfg80211_registered_device *rdev,
1153 				 struct cfg80211_sched_scan_request *req)
1154 {
1155 	lockdep_assert_held(&rdev->wiphy.mtx);
1156 
1157 	list_add_rcu(&req->list, &rdev->sched_scan_req_list);
1158 }
1159 
1160 static void cfg80211_del_sched_scan_req(struct cfg80211_registered_device *rdev,
1161 					struct cfg80211_sched_scan_request *req)
1162 {
1163 	lockdep_assert_held(&rdev->wiphy.mtx);
1164 
1165 	list_del_rcu(&req->list);
1166 	kfree_rcu(req, rcu_head);
1167 }
1168 
1169 static struct cfg80211_sched_scan_request *
1170 cfg80211_find_sched_scan_req(struct cfg80211_registered_device *rdev, u64 reqid)
1171 {
1172 	struct cfg80211_sched_scan_request *pos;
1173 
1174 	list_for_each_entry_rcu(pos, &rdev->sched_scan_req_list, list,
1175 				lockdep_is_held(&rdev->wiphy.mtx)) {
1176 		if (pos->reqid == reqid)
1177 			return pos;
1178 	}
1179 	return NULL;
1180 }
1181 
1182 /*
1183  * Determines if a scheduled scan request can be handled. When a legacy
1184  * scheduled scan is running no other scheduled scan is allowed regardless
1185  * whether the request is for legacy or multi-support scan. When a multi-support
1186  * scheduled scan is running a request for legacy scan is not allowed. In this
1187  * case a request for multi-support scan can be handled if resources are
1188  * available, ie. struct wiphy::max_sched_scan_reqs limit is not yet reached.
1189  */
1190 int cfg80211_sched_scan_req_possible(struct cfg80211_registered_device *rdev,
1191 				     bool want_multi)
1192 {
1193 	struct cfg80211_sched_scan_request *pos;
1194 	int i = 0;
1195 
1196 	list_for_each_entry(pos, &rdev->sched_scan_req_list, list) {
1197 		/* request id zero means legacy in progress */
1198 		if (!i && !pos->reqid)
1199 			return -EINPROGRESS;
1200 		i++;
1201 	}
1202 
1203 	if (i) {
1204 		/* no legacy allowed when multi request(s) are active */
1205 		if (!want_multi)
1206 			return -EINPROGRESS;
1207 
1208 		/* resource limit reached */
1209 		if (i == rdev->wiphy.max_sched_scan_reqs)
1210 			return -ENOSPC;
1211 	}
1212 	return 0;
1213 }
1214 
1215 void cfg80211_sched_scan_results_wk(struct work_struct *work)
1216 {
1217 	struct cfg80211_registered_device *rdev;
1218 	struct cfg80211_sched_scan_request *req, *tmp;
1219 
1220 	rdev = container_of(work, struct cfg80211_registered_device,
1221 			   sched_scan_res_wk);
1222 
1223 	wiphy_lock(&rdev->wiphy);
1224 	list_for_each_entry_safe(req, tmp, &rdev->sched_scan_req_list, list) {
1225 		if (req->report_results) {
1226 			req->report_results = false;
1227 			if (req->flags & NL80211_SCAN_FLAG_FLUSH) {
1228 				/* flush entries from previous scans */
1229 				spin_lock_bh(&rdev->bss_lock);
1230 				__cfg80211_bss_expire(rdev, req->scan_start);
1231 				spin_unlock_bh(&rdev->bss_lock);
1232 				req->scan_start = jiffies;
1233 			}
1234 			nl80211_send_sched_scan(req,
1235 						NL80211_CMD_SCHED_SCAN_RESULTS);
1236 		}
1237 	}
1238 	wiphy_unlock(&rdev->wiphy);
1239 }
1240 
1241 void cfg80211_sched_scan_results(struct wiphy *wiphy, u64 reqid)
1242 {
1243 	struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
1244 	struct cfg80211_sched_scan_request *request;
1245 
1246 	trace_cfg80211_sched_scan_results(wiphy, reqid);
1247 	/* ignore if we're not scanning */
1248 
1249 	rcu_read_lock();
1250 	request = cfg80211_find_sched_scan_req(rdev, reqid);
1251 	if (request) {
1252 		request->report_results = true;
1253 		queue_work(cfg80211_wq, &rdev->sched_scan_res_wk);
1254 	}
1255 	rcu_read_unlock();
1256 }
1257 EXPORT_SYMBOL(cfg80211_sched_scan_results);
1258 
1259 void cfg80211_sched_scan_stopped_locked(struct wiphy *wiphy, u64 reqid)
1260 {
1261 	struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
1262 
1263 	lockdep_assert_held(&wiphy->mtx);
1264 
1265 	trace_cfg80211_sched_scan_stopped(wiphy, reqid);
1266 
1267 	__cfg80211_stop_sched_scan(rdev, reqid, true);
1268 }
1269 EXPORT_SYMBOL(cfg80211_sched_scan_stopped_locked);
1270 
1271 void cfg80211_sched_scan_stopped(struct wiphy *wiphy, u64 reqid)
1272 {
1273 	wiphy_lock(wiphy);
1274 	cfg80211_sched_scan_stopped_locked(wiphy, reqid);
1275 	wiphy_unlock(wiphy);
1276 }
1277 EXPORT_SYMBOL(cfg80211_sched_scan_stopped);
1278 
1279 int cfg80211_stop_sched_scan_req(struct cfg80211_registered_device *rdev,
1280 				 struct cfg80211_sched_scan_request *req,
1281 				 bool driver_initiated)
1282 {
1283 	lockdep_assert_held(&rdev->wiphy.mtx);
1284 
1285 	if (!driver_initiated) {
1286 		int err = rdev_sched_scan_stop(rdev, req->dev, req->reqid);
1287 		if (err)
1288 			return err;
1289 	}
1290 
1291 	nl80211_send_sched_scan(req, NL80211_CMD_SCHED_SCAN_STOPPED);
1292 
1293 	cfg80211_del_sched_scan_req(rdev, req);
1294 
1295 	return 0;
1296 }
1297 
1298 int __cfg80211_stop_sched_scan(struct cfg80211_registered_device *rdev,
1299 			       u64 reqid, bool driver_initiated)
1300 {
1301 	struct cfg80211_sched_scan_request *sched_scan_req;
1302 
1303 	lockdep_assert_held(&rdev->wiphy.mtx);
1304 
1305 	sched_scan_req = cfg80211_find_sched_scan_req(rdev, reqid);
1306 	if (!sched_scan_req)
1307 		return -ENOENT;
1308 
1309 	return cfg80211_stop_sched_scan_req(rdev, sched_scan_req,
1310 					    driver_initiated);
1311 }
1312 
1313 void cfg80211_bss_age(struct cfg80211_registered_device *rdev,
1314                       unsigned long age_secs)
1315 {
1316 	struct cfg80211_internal_bss *bss;
1317 	unsigned long age_jiffies = msecs_to_jiffies(age_secs * MSEC_PER_SEC);
1318 
1319 	spin_lock_bh(&rdev->bss_lock);
1320 	list_for_each_entry(bss, &rdev->bss_list, list)
1321 		bss->ts -= age_jiffies;
1322 	spin_unlock_bh(&rdev->bss_lock);
1323 }
1324 
1325 void cfg80211_bss_expire(struct cfg80211_registered_device *rdev)
1326 {
1327 	__cfg80211_bss_expire(rdev, jiffies - IEEE80211_SCAN_RESULT_EXPIRE);
1328 }
1329 
1330 void cfg80211_bss_flush(struct wiphy *wiphy)
1331 {
1332 	struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
1333 
1334 	spin_lock_bh(&rdev->bss_lock);
1335 	__cfg80211_bss_expire(rdev, jiffies);
1336 	spin_unlock_bh(&rdev->bss_lock);
1337 }
1338 EXPORT_SYMBOL(cfg80211_bss_flush);
1339 
1340 const struct element *
1341 cfg80211_find_elem_match(u8 eid, const u8 *ies, unsigned int len,
1342 			 const u8 *match, unsigned int match_len,
1343 			 unsigned int match_offset)
1344 {
1345 	const struct element *elem;
1346 
1347 	for_each_element_id(elem, eid, ies, len) {
1348 		if (elem->datalen >= match_offset + match_len &&
1349 		    !memcmp(elem->data + match_offset, match, match_len))
1350 			return elem;
1351 	}
1352 
1353 	return NULL;
1354 }
1355 EXPORT_SYMBOL(cfg80211_find_elem_match);
1356 
1357 const struct element *cfg80211_find_vendor_elem(unsigned int oui, int oui_type,
1358 						const u8 *ies,
1359 						unsigned int len)
1360 {
1361 	const struct element *elem;
1362 	u8 match[] = { oui >> 16, oui >> 8, oui, oui_type };
1363 	int match_len = (oui_type < 0) ? 3 : sizeof(match);
1364 
1365 	if (WARN_ON(oui_type > 0xff))
1366 		return NULL;
1367 
1368 	elem = cfg80211_find_elem_match(WLAN_EID_VENDOR_SPECIFIC, ies, len,
1369 					match, match_len, 0);
1370 
1371 	if (!elem || elem->datalen < 4)
1372 		return NULL;
1373 
1374 	return elem;
1375 }
1376 EXPORT_SYMBOL(cfg80211_find_vendor_elem);
1377 
1378 /**
1379  * enum bss_compare_mode - BSS compare mode
1380  * @BSS_CMP_REGULAR: regular compare mode (for insertion and normal find)
1381  * @BSS_CMP_HIDE_ZLEN: find hidden SSID with zero-length mode
1382  * @BSS_CMP_HIDE_NUL: find hidden SSID with NUL-ed out mode
1383  */
1384 enum bss_compare_mode {
1385 	BSS_CMP_REGULAR,
1386 	BSS_CMP_HIDE_ZLEN,
1387 	BSS_CMP_HIDE_NUL,
1388 };
1389 
1390 static int cmp_bss(struct cfg80211_bss *a,
1391 		   struct cfg80211_bss *b,
1392 		   enum bss_compare_mode mode)
1393 {
1394 	const struct cfg80211_bss_ies *a_ies, *b_ies;
1395 	const u8 *ie1 = NULL;
1396 	const u8 *ie2 = NULL;
1397 	int i, r;
1398 
1399 	if (a->channel != b->channel)
1400 		return (b->channel->center_freq * 1000 + b->channel->freq_offset) -
1401 		       (a->channel->center_freq * 1000 + a->channel->freq_offset);
1402 
1403 	a_ies = rcu_access_pointer(a->ies);
1404 	if (!a_ies)
1405 		return -1;
1406 	b_ies = rcu_access_pointer(b->ies);
1407 	if (!b_ies)
1408 		return 1;
1409 
1410 	if (WLAN_CAPABILITY_IS_STA_BSS(a->capability))
1411 		ie1 = cfg80211_find_ie(WLAN_EID_MESH_ID,
1412 				       a_ies->data, a_ies->len);
1413 	if (WLAN_CAPABILITY_IS_STA_BSS(b->capability))
1414 		ie2 = cfg80211_find_ie(WLAN_EID_MESH_ID,
1415 				       b_ies->data, b_ies->len);
1416 	if (ie1 && ie2) {
1417 		int mesh_id_cmp;
1418 
1419 		if (ie1[1] == ie2[1])
1420 			mesh_id_cmp = memcmp(ie1 + 2, ie2 + 2, ie1[1]);
1421 		else
1422 			mesh_id_cmp = ie2[1] - ie1[1];
1423 
1424 		ie1 = cfg80211_find_ie(WLAN_EID_MESH_CONFIG,
1425 				       a_ies->data, a_ies->len);
1426 		ie2 = cfg80211_find_ie(WLAN_EID_MESH_CONFIG,
1427 				       b_ies->data, b_ies->len);
1428 		if (ie1 && ie2) {
1429 			if (mesh_id_cmp)
1430 				return mesh_id_cmp;
1431 			if (ie1[1] != ie2[1])
1432 				return ie2[1] - ie1[1];
1433 			return memcmp(ie1 + 2, ie2 + 2, ie1[1]);
1434 		}
1435 	}
1436 
1437 	r = memcmp(a->bssid, b->bssid, sizeof(a->bssid));
1438 	if (r)
1439 		return r;
1440 
1441 	ie1 = cfg80211_find_ie(WLAN_EID_SSID, a_ies->data, a_ies->len);
1442 	ie2 = cfg80211_find_ie(WLAN_EID_SSID, b_ies->data, b_ies->len);
1443 
1444 	if (!ie1 && !ie2)
1445 		return 0;
1446 
1447 	/*
1448 	 * Note that with "hide_ssid", the function returns a match if
1449 	 * the already-present BSS ("b") is a hidden SSID beacon for
1450 	 * the new BSS ("a").
1451 	 */
1452 
1453 	/* sort missing IE before (left of) present IE */
1454 	if (!ie1)
1455 		return -1;
1456 	if (!ie2)
1457 		return 1;
1458 
1459 	switch (mode) {
1460 	case BSS_CMP_HIDE_ZLEN:
1461 		/*
1462 		 * In ZLEN mode we assume the BSS entry we're
1463 		 * looking for has a zero-length SSID. So if
1464 		 * the one we're looking at right now has that,
1465 		 * return 0. Otherwise, return the difference
1466 		 * in length, but since we're looking for the
1467 		 * 0-length it's really equivalent to returning
1468 		 * the length of the one we're looking at.
1469 		 *
1470 		 * No content comparison is needed as we assume
1471 		 * the content length is zero.
1472 		 */
1473 		return ie2[1];
1474 	case BSS_CMP_REGULAR:
1475 	default:
1476 		/* sort by length first, then by contents */
1477 		if (ie1[1] != ie2[1])
1478 			return ie2[1] - ie1[1];
1479 		return memcmp(ie1 + 2, ie2 + 2, ie1[1]);
1480 	case BSS_CMP_HIDE_NUL:
1481 		if (ie1[1] != ie2[1])
1482 			return ie2[1] - ie1[1];
1483 		/* this is equivalent to memcmp(zeroes, ie2 + 2, len) */
1484 		for (i = 0; i < ie2[1]; i++)
1485 			if (ie2[i + 2])
1486 				return -1;
1487 		return 0;
1488 	}
1489 }
1490 
1491 static bool cfg80211_bss_type_match(u16 capability,
1492 				    enum nl80211_band band,
1493 				    enum ieee80211_bss_type bss_type)
1494 {
1495 	bool ret = true;
1496 	u16 mask, val;
1497 
1498 	if (bss_type == IEEE80211_BSS_TYPE_ANY)
1499 		return ret;
1500 
1501 	if (band == NL80211_BAND_60GHZ) {
1502 		mask = WLAN_CAPABILITY_DMG_TYPE_MASK;
1503 		switch (bss_type) {
1504 		case IEEE80211_BSS_TYPE_ESS:
1505 			val = WLAN_CAPABILITY_DMG_TYPE_AP;
1506 			break;
1507 		case IEEE80211_BSS_TYPE_PBSS:
1508 			val = WLAN_CAPABILITY_DMG_TYPE_PBSS;
1509 			break;
1510 		case IEEE80211_BSS_TYPE_IBSS:
1511 			val = WLAN_CAPABILITY_DMG_TYPE_IBSS;
1512 			break;
1513 		default:
1514 			return false;
1515 		}
1516 	} else {
1517 		mask = WLAN_CAPABILITY_ESS | WLAN_CAPABILITY_IBSS;
1518 		switch (bss_type) {
1519 		case IEEE80211_BSS_TYPE_ESS:
1520 			val = WLAN_CAPABILITY_ESS;
1521 			break;
1522 		case IEEE80211_BSS_TYPE_IBSS:
1523 			val = WLAN_CAPABILITY_IBSS;
1524 			break;
1525 		case IEEE80211_BSS_TYPE_MBSS:
1526 			val = 0;
1527 			break;
1528 		default:
1529 			return false;
1530 		}
1531 	}
1532 
1533 	ret = ((capability & mask) == val);
1534 	return ret;
1535 }
1536 
1537 /* Returned bss is reference counted and must be cleaned up appropriately. */
1538 struct cfg80211_bss *cfg80211_get_bss(struct wiphy *wiphy,
1539 				      struct ieee80211_channel *channel,
1540 				      const u8 *bssid,
1541 				      const u8 *ssid, size_t ssid_len,
1542 				      enum ieee80211_bss_type bss_type,
1543 				      enum ieee80211_privacy privacy)
1544 {
1545 	struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
1546 	struct cfg80211_internal_bss *bss, *res = NULL;
1547 	unsigned long now = jiffies;
1548 	int bss_privacy;
1549 
1550 	trace_cfg80211_get_bss(wiphy, channel, bssid, ssid, ssid_len, bss_type,
1551 			       privacy);
1552 
1553 	spin_lock_bh(&rdev->bss_lock);
1554 
1555 	list_for_each_entry(bss, &rdev->bss_list, list) {
1556 		if (!cfg80211_bss_type_match(bss->pub.capability,
1557 					     bss->pub.channel->band, bss_type))
1558 			continue;
1559 
1560 		bss_privacy = (bss->pub.capability & WLAN_CAPABILITY_PRIVACY);
1561 		if ((privacy == IEEE80211_PRIVACY_ON && !bss_privacy) ||
1562 		    (privacy == IEEE80211_PRIVACY_OFF && bss_privacy))
1563 			continue;
1564 		if (channel && bss->pub.channel != channel)
1565 			continue;
1566 		if (!is_valid_ether_addr(bss->pub.bssid))
1567 			continue;
1568 		/* Don't get expired BSS structs */
1569 		if (time_after(now, bss->ts + IEEE80211_SCAN_RESULT_EXPIRE) &&
1570 		    !atomic_read(&bss->hold))
1571 			continue;
1572 		if (is_bss(&bss->pub, bssid, ssid, ssid_len)) {
1573 			res = bss;
1574 			bss_ref_get(rdev, res);
1575 			break;
1576 		}
1577 	}
1578 
1579 	spin_unlock_bh(&rdev->bss_lock);
1580 	if (!res)
1581 		return NULL;
1582 	trace_cfg80211_return_bss(&res->pub);
1583 	return &res->pub;
1584 }
1585 EXPORT_SYMBOL(cfg80211_get_bss);
1586 
1587 static void rb_insert_bss(struct cfg80211_registered_device *rdev,
1588 			  struct cfg80211_internal_bss *bss)
1589 {
1590 	struct rb_node **p = &rdev->bss_tree.rb_node;
1591 	struct rb_node *parent = NULL;
1592 	struct cfg80211_internal_bss *tbss;
1593 	int cmp;
1594 
1595 	while (*p) {
1596 		parent = *p;
1597 		tbss = rb_entry(parent, struct cfg80211_internal_bss, rbn);
1598 
1599 		cmp = cmp_bss(&bss->pub, &tbss->pub, BSS_CMP_REGULAR);
1600 
1601 		if (WARN_ON(!cmp)) {
1602 			/* will sort of leak this BSS */
1603 			return;
1604 		}
1605 
1606 		if (cmp < 0)
1607 			p = &(*p)->rb_left;
1608 		else
1609 			p = &(*p)->rb_right;
1610 	}
1611 
1612 	rb_link_node(&bss->rbn, parent, p);
1613 	rb_insert_color(&bss->rbn, &rdev->bss_tree);
1614 }
1615 
1616 static struct cfg80211_internal_bss *
1617 rb_find_bss(struct cfg80211_registered_device *rdev,
1618 	    struct cfg80211_internal_bss *res,
1619 	    enum bss_compare_mode mode)
1620 {
1621 	struct rb_node *n = rdev->bss_tree.rb_node;
1622 	struct cfg80211_internal_bss *bss;
1623 	int r;
1624 
1625 	while (n) {
1626 		bss = rb_entry(n, struct cfg80211_internal_bss, rbn);
1627 		r = cmp_bss(&res->pub, &bss->pub, mode);
1628 
1629 		if (r == 0)
1630 			return bss;
1631 		else if (r < 0)
1632 			n = n->rb_left;
1633 		else
1634 			n = n->rb_right;
1635 	}
1636 
1637 	return NULL;
1638 }
1639 
1640 static bool cfg80211_combine_bsses(struct cfg80211_registered_device *rdev,
1641 				   struct cfg80211_internal_bss *new)
1642 {
1643 	const struct cfg80211_bss_ies *ies;
1644 	struct cfg80211_internal_bss *bss;
1645 	const u8 *ie;
1646 	int i, ssidlen;
1647 	u8 fold = 0;
1648 	u32 n_entries = 0;
1649 
1650 	ies = rcu_access_pointer(new->pub.beacon_ies);
1651 	if (WARN_ON(!ies))
1652 		return false;
1653 
1654 	ie = cfg80211_find_ie(WLAN_EID_SSID, ies->data, ies->len);
1655 	if (!ie) {
1656 		/* nothing to do */
1657 		return true;
1658 	}
1659 
1660 	ssidlen = ie[1];
1661 	for (i = 0; i < ssidlen; i++)
1662 		fold |= ie[2 + i];
1663 
1664 	if (fold) {
1665 		/* not a hidden SSID */
1666 		return true;
1667 	}
1668 
1669 	/* This is the bad part ... */
1670 
1671 	list_for_each_entry(bss, &rdev->bss_list, list) {
1672 		/*
1673 		 * we're iterating all the entries anyway, so take the
1674 		 * opportunity to validate the list length accounting
1675 		 */
1676 		n_entries++;
1677 
1678 		if (!ether_addr_equal(bss->pub.bssid, new->pub.bssid))
1679 			continue;
1680 		if (bss->pub.channel != new->pub.channel)
1681 			continue;
1682 		if (rcu_access_pointer(bss->pub.beacon_ies))
1683 			continue;
1684 		ies = rcu_access_pointer(bss->pub.ies);
1685 		if (!ies)
1686 			continue;
1687 		ie = cfg80211_find_ie(WLAN_EID_SSID, ies->data, ies->len);
1688 		if (!ie)
1689 			continue;
1690 		if (ssidlen && ie[1] != ssidlen)
1691 			continue;
1692 		if (WARN_ON_ONCE(bss->pub.hidden_beacon_bss))
1693 			continue;
1694 		if (WARN_ON_ONCE(!list_empty(&bss->hidden_list)))
1695 			list_del(&bss->hidden_list);
1696 		/* combine them */
1697 		list_add(&bss->hidden_list, &new->hidden_list);
1698 		bss->pub.hidden_beacon_bss = &new->pub;
1699 		new->refcount += bss->refcount;
1700 		rcu_assign_pointer(bss->pub.beacon_ies,
1701 				   new->pub.beacon_ies);
1702 	}
1703 
1704 	WARN_ONCE(n_entries != rdev->bss_entries,
1705 		  "rdev bss entries[%d]/list[len:%d] corruption\n",
1706 		  rdev->bss_entries, n_entries);
1707 
1708 	return true;
1709 }
1710 
1711 static void cfg80211_update_hidden_bsses(struct cfg80211_internal_bss *known,
1712 					 const struct cfg80211_bss_ies *new_ies,
1713 					 const struct cfg80211_bss_ies *old_ies)
1714 {
1715 	struct cfg80211_internal_bss *bss;
1716 
1717 	/* Assign beacon IEs to all sub entries */
1718 	list_for_each_entry(bss, &known->hidden_list, hidden_list) {
1719 		const struct cfg80211_bss_ies *ies;
1720 
1721 		ies = rcu_access_pointer(bss->pub.beacon_ies);
1722 		WARN_ON(ies != old_ies);
1723 
1724 		rcu_assign_pointer(bss->pub.beacon_ies, new_ies);
1725 	}
1726 }
1727 
1728 static bool
1729 cfg80211_update_known_bss(struct cfg80211_registered_device *rdev,
1730 			  struct cfg80211_internal_bss *known,
1731 			  struct cfg80211_internal_bss *new,
1732 			  bool signal_valid)
1733 {
1734 	lockdep_assert_held(&rdev->bss_lock);
1735 
1736 	/* Update IEs */
1737 	if (rcu_access_pointer(new->pub.proberesp_ies)) {
1738 		const struct cfg80211_bss_ies *old;
1739 
1740 		old = rcu_access_pointer(known->pub.proberesp_ies);
1741 
1742 		rcu_assign_pointer(known->pub.proberesp_ies,
1743 				   new->pub.proberesp_ies);
1744 		/* Override possible earlier Beacon frame IEs */
1745 		rcu_assign_pointer(known->pub.ies,
1746 				   new->pub.proberesp_ies);
1747 		if (old)
1748 			kfree_rcu((struct cfg80211_bss_ies *)old, rcu_head);
1749 	} else if (rcu_access_pointer(new->pub.beacon_ies)) {
1750 		const struct cfg80211_bss_ies *old;
1751 
1752 		if (known->pub.hidden_beacon_bss &&
1753 		    !list_empty(&known->hidden_list)) {
1754 			const struct cfg80211_bss_ies *f;
1755 
1756 			/* The known BSS struct is one of the probe
1757 			 * response members of a group, but we're
1758 			 * receiving a beacon (beacon_ies in the new
1759 			 * bss is used). This can only mean that the
1760 			 * AP changed its beacon from not having an
1761 			 * SSID to showing it, which is confusing so
1762 			 * drop this information.
1763 			 */
1764 
1765 			f = rcu_access_pointer(new->pub.beacon_ies);
1766 			kfree_rcu((struct cfg80211_bss_ies *)f, rcu_head);
1767 			return false;
1768 		}
1769 
1770 		old = rcu_access_pointer(known->pub.beacon_ies);
1771 
1772 		rcu_assign_pointer(known->pub.beacon_ies, new->pub.beacon_ies);
1773 
1774 		/* Override IEs if they were from a beacon before */
1775 		if (old == rcu_access_pointer(known->pub.ies))
1776 			rcu_assign_pointer(known->pub.ies, new->pub.beacon_ies);
1777 
1778 		cfg80211_update_hidden_bsses(known,
1779 					     rcu_access_pointer(new->pub.beacon_ies),
1780 					     old);
1781 
1782 		if (old)
1783 			kfree_rcu((struct cfg80211_bss_ies *)old, rcu_head);
1784 	}
1785 
1786 	known->pub.beacon_interval = new->pub.beacon_interval;
1787 
1788 	/* don't update the signal if beacon was heard on
1789 	 * adjacent channel.
1790 	 */
1791 	if (signal_valid)
1792 		known->pub.signal = new->pub.signal;
1793 	known->pub.capability = new->pub.capability;
1794 	known->ts = new->ts;
1795 	known->ts_boottime = new->ts_boottime;
1796 	known->parent_tsf = new->parent_tsf;
1797 	known->pub.chains = new->pub.chains;
1798 	memcpy(known->pub.chain_signal, new->pub.chain_signal,
1799 	       IEEE80211_MAX_CHAINS);
1800 	ether_addr_copy(known->parent_bssid, new->parent_bssid);
1801 	known->pub.max_bssid_indicator = new->pub.max_bssid_indicator;
1802 	known->pub.bssid_index = new->pub.bssid_index;
1803 
1804 	return true;
1805 }
1806 
1807 /* Returned bss is reference counted and must be cleaned up appropriately. */
1808 static struct cfg80211_internal_bss *
1809 __cfg80211_bss_update(struct cfg80211_registered_device *rdev,
1810 		      struct cfg80211_internal_bss *tmp,
1811 		      bool signal_valid, unsigned long ts)
1812 {
1813 	struct cfg80211_internal_bss *found = NULL;
1814 
1815 	if (WARN_ON(!tmp->pub.channel))
1816 		return NULL;
1817 
1818 	tmp->ts = ts;
1819 
1820 	if (WARN_ON(!rcu_access_pointer(tmp->pub.ies))) {
1821 		return NULL;
1822 	}
1823 
1824 	found = rb_find_bss(rdev, tmp, BSS_CMP_REGULAR);
1825 
1826 	if (found) {
1827 		if (!cfg80211_update_known_bss(rdev, found, tmp, signal_valid))
1828 			return NULL;
1829 	} else {
1830 		struct cfg80211_internal_bss *new;
1831 		struct cfg80211_internal_bss *hidden;
1832 		struct cfg80211_bss_ies *ies;
1833 
1834 		/*
1835 		 * create a copy -- the "res" variable that is passed in
1836 		 * is allocated on the stack since it's not needed in the
1837 		 * more common case of an update
1838 		 */
1839 		new = kzalloc(sizeof(*new) + rdev->wiphy.bss_priv_size,
1840 			      GFP_ATOMIC);
1841 		if (!new) {
1842 			ies = (void *)rcu_dereference(tmp->pub.beacon_ies);
1843 			if (ies)
1844 				kfree_rcu(ies, rcu_head);
1845 			ies = (void *)rcu_dereference(tmp->pub.proberesp_ies);
1846 			if (ies)
1847 				kfree_rcu(ies, rcu_head);
1848 			return NULL;
1849 		}
1850 		memcpy(new, tmp, sizeof(*new));
1851 		new->refcount = 1;
1852 		INIT_LIST_HEAD(&new->hidden_list);
1853 		INIT_LIST_HEAD(&new->pub.nontrans_list);
1854 		/* we'll set this later if it was non-NULL */
1855 		new->pub.transmitted_bss = NULL;
1856 
1857 		if (rcu_access_pointer(tmp->pub.proberesp_ies)) {
1858 			hidden = rb_find_bss(rdev, tmp, BSS_CMP_HIDE_ZLEN);
1859 			if (!hidden)
1860 				hidden = rb_find_bss(rdev, tmp,
1861 						     BSS_CMP_HIDE_NUL);
1862 			if (hidden) {
1863 				new->pub.hidden_beacon_bss = &hidden->pub;
1864 				list_add(&new->hidden_list,
1865 					 &hidden->hidden_list);
1866 				hidden->refcount++;
1867 				rcu_assign_pointer(new->pub.beacon_ies,
1868 						   hidden->pub.beacon_ies);
1869 			}
1870 		} else {
1871 			/*
1872 			 * Ok so we found a beacon, and don't have an entry. If
1873 			 * it's a beacon with hidden SSID, we might be in for an
1874 			 * expensive search for any probe responses that should
1875 			 * be grouped with this beacon for updates ...
1876 			 */
1877 			if (!cfg80211_combine_bsses(rdev, new)) {
1878 				bss_ref_put(rdev, new);
1879 				return NULL;
1880 			}
1881 		}
1882 
1883 		if (rdev->bss_entries >= bss_entries_limit &&
1884 		    !cfg80211_bss_expire_oldest(rdev)) {
1885 			bss_ref_put(rdev, new);
1886 			return NULL;
1887 		}
1888 
1889 		/* This must be before the call to bss_ref_get */
1890 		if (tmp->pub.transmitted_bss) {
1891 			new->pub.transmitted_bss = tmp->pub.transmitted_bss;
1892 			bss_ref_get(rdev, bss_from_pub(tmp->pub.transmitted_bss));
1893 		}
1894 
1895 		list_add_tail(&new->list, &rdev->bss_list);
1896 		rdev->bss_entries++;
1897 		rb_insert_bss(rdev, new);
1898 		found = new;
1899 	}
1900 
1901 	rdev->bss_generation++;
1902 	bss_ref_get(rdev, found);
1903 
1904 	return found;
1905 }
1906 
1907 struct cfg80211_internal_bss *
1908 cfg80211_bss_update(struct cfg80211_registered_device *rdev,
1909 		    struct cfg80211_internal_bss *tmp,
1910 		    bool signal_valid, unsigned long ts)
1911 {
1912 	struct cfg80211_internal_bss *res;
1913 
1914 	spin_lock_bh(&rdev->bss_lock);
1915 	res = __cfg80211_bss_update(rdev, tmp, signal_valid, ts);
1916 	spin_unlock_bh(&rdev->bss_lock);
1917 
1918 	return res;
1919 }
1920 
1921 int cfg80211_get_ies_channel_number(const u8 *ie, size_t ielen,
1922 				    enum nl80211_band band)
1923 {
1924 	const struct element *tmp;
1925 
1926 	if (band == NL80211_BAND_6GHZ) {
1927 		struct ieee80211_he_operation *he_oper;
1928 
1929 		tmp = cfg80211_find_ext_elem(WLAN_EID_EXT_HE_OPERATION, ie,
1930 					     ielen);
1931 		if (tmp && tmp->datalen >= sizeof(*he_oper) &&
1932 		    tmp->datalen >= ieee80211_he_oper_size(&tmp->data[1])) {
1933 			const struct ieee80211_he_6ghz_oper *he_6ghz_oper;
1934 
1935 			he_oper = (void *)&tmp->data[1];
1936 
1937 			he_6ghz_oper = ieee80211_he_6ghz_oper(he_oper);
1938 			if (!he_6ghz_oper)
1939 				return -1;
1940 
1941 			return he_6ghz_oper->primary;
1942 		}
1943 	} else if (band == NL80211_BAND_S1GHZ) {
1944 		tmp = cfg80211_find_elem(WLAN_EID_S1G_OPERATION, ie, ielen);
1945 		if (tmp && tmp->datalen >= sizeof(struct ieee80211_s1g_oper_ie)) {
1946 			struct ieee80211_s1g_oper_ie *s1gop = (void *)tmp->data;
1947 
1948 			return s1gop->oper_ch;
1949 		}
1950 	} else {
1951 		tmp = cfg80211_find_elem(WLAN_EID_DS_PARAMS, ie, ielen);
1952 		if (tmp && tmp->datalen == 1)
1953 			return tmp->data[0];
1954 
1955 		tmp = cfg80211_find_elem(WLAN_EID_HT_OPERATION, ie, ielen);
1956 		if (tmp &&
1957 		    tmp->datalen >= sizeof(struct ieee80211_ht_operation)) {
1958 			struct ieee80211_ht_operation *htop = (void *)tmp->data;
1959 
1960 			return htop->primary_chan;
1961 		}
1962 	}
1963 
1964 	return -1;
1965 }
1966 EXPORT_SYMBOL(cfg80211_get_ies_channel_number);
1967 
1968 /*
1969  * Update RX channel information based on the available frame payload
1970  * information. This is mainly for the 2.4 GHz band where frames can be received
1971  * from neighboring channels and the Beacon frames use the DSSS Parameter Set
1972  * element to indicate the current (transmitting) channel, but this might also
1973  * be needed on other bands if RX frequency does not match with the actual
1974  * operating channel of a BSS, or if the AP reports a different primary channel.
1975  */
1976 static struct ieee80211_channel *
1977 cfg80211_get_bss_channel(struct wiphy *wiphy, const u8 *ie, size_t ielen,
1978 			 struct ieee80211_channel *channel)
1979 {
1980 	u32 freq;
1981 	int channel_number;
1982 	struct ieee80211_channel *alt_channel;
1983 
1984 	channel_number = cfg80211_get_ies_channel_number(ie, ielen,
1985 							 channel->band);
1986 
1987 	if (channel_number < 0) {
1988 		/* No channel information in frame payload */
1989 		return channel;
1990 	}
1991 
1992 	freq = ieee80211_channel_to_freq_khz(channel_number, channel->band);
1993 
1994 	/*
1995 	 * Frame info (beacon/prob res) is the same as received channel,
1996 	 * no need for further processing.
1997 	 */
1998 	if (freq == ieee80211_channel_to_khz(channel))
1999 		return channel;
2000 
2001 	alt_channel = ieee80211_get_channel_khz(wiphy, freq);
2002 	if (!alt_channel) {
2003 		if (channel->band == NL80211_BAND_2GHZ ||
2004 		    channel->band == NL80211_BAND_6GHZ) {
2005 			/*
2006 			 * Better not allow unexpected channels when that could
2007 			 * be going beyond the 1-11 range (e.g., discovering
2008 			 * BSS on channel 12 when radio is configured for
2009 			 * channel 11) or beyond the 6 GHz channel range.
2010 			 */
2011 			return NULL;
2012 		}
2013 
2014 		/* No match for the payload channel number - ignore it */
2015 		return channel;
2016 	}
2017 
2018 	/*
2019 	 * Use the channel determined through the payload channel number
2020 	 * instead of the RX channel reported by the driver.
2021 	 */
2022 	if (alt_channel->flags & IEEE80211_CHAN_DISABLED)
2023 		return NULL;
2024 	return alt_channel;
2025 }
2026 
2027 struct cfg80211_inform_single_bss_data {
2028 	struct cfg80211_inform_bss *drv_data;
2029 	enum cfg80211_bss_frame_type ftype;
2030 	struct ieee80211_channel *channel;
2031 	u8 bssid[ETH_ALEN];
2032 	u64 tsf;
2033 	u16 capability;
2034 	u16 beacon_interval;
2035 	const u8 *ie;
2036 	size_t ielen;
2037 
2038 	enum {
2039 		BSS_SOURCE_DIRECT = 0,
2040 		BSS_SOURCE_MBSSID,
2041 		BSS_SOURCE_STA_PROFILE,
2042 	} bss_source;
2043 	/* Set if reporting bss_source != BSS_SOURCE_DIRECT */
2044 	struct cfg80211_bss *source_bss;
2045 	u8 max_bssid_indicator;
2046 	u8 bssid_index;
2047 };
2048 
2049 /* Returned bss is reference counted and must be cleaned up appropriately. */
2050 static struct cfg80211_bss *
2051 cfg80211_inform_single_bss_data(struct wiphy *wiphy,
2052 				struct cfg80211_inform_single_bss_data *data,
2053 				gfp_t gfp)
2054 {
2055 	struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
2056 	struct cfg80211_inform_bss *drv_data = data->drv_data;
2057 	struct cfg80211_bss_ies *ies;
2058 	struct ieee80211_channel *channel;
2059 	struct cfg80211_internal_bss tmp = {}, *res;
2060 	int bss_type;
2061 	bool signal_valid;
2062 	unsigned long ts;
2063 
2064 	if (WARN_ON(!wiphy))
2065 		return NULL;
2066 
2067 	if (WARN_ON(wiphy->signal_type == CFG80211_SIGNAL_TYPE_UNSPEC &&
2068 		    (drv_data->signal < 0 || drv_data->signal > 100)))
2069 		return NULL;
2070 
2071 	if (WARN_ON(data->bss_source != BSS_SOURCE_DIRECT && !data->source_bss))
2072 		return NULL;
2073 
2074 	channel = data->channel;
2075 	if (!channel)
2076 		channel = cfg80211_get_bss_channel(wiphy, data->ie, data->ielen,
2077 						   drv_data->chan);
2078 	if (!channel)
2079 		return NULL;
2080 
2081 	memcpy(tmp.pub.bssid, data->bssid, ETH_ALEN);
2082 	tmp.pub.channel = channel;
2083 	if (data->bss_source != BSS_SOURCE_STA_PROFILE)
2084 		tmp.pub.signal = drv_data->signal;
2085 	else
2086 		tmp.pub.signal = 0;
2087 	tmp.pub.beacon_interval = data->beacon_interval;
2088 	tmp.pub.capability = data->capability;
2089 	tmp.ts_boottime = drv_data->boottime_ns;
2090 	tmp.parent_tsf = drv_data->parent_tsf;
2091 	ether_addr_copy(tmp.parent_bssid, drv_data->parent_bssid);
2092 
2093 	if (data->bss_source != BSS_SOURCE_DIRECT) {
2094 		tmp.pub.transmitted_bss = data->source_bss;
2095 		ts = bss_from_pub(data->source_bss)->ts;
2096 		tmp.pub.bssid_index = data->bssid_index;
2097 		tmp.pub.max_bssid_indicator = data->max_bssid_indicator;
2098 	} else {
2099 		ts = jiffies;
2100 
2101 		if (channel->band == NL80211_BAND_60GHZ) {
2102 			bss_type = data->capability &
2103 				   WLAN_CAPABILITY_DMG_TYPE_MASK;
2104 			if (bss_type == WLAN_CAPABILITY_DMG_TYPE_AP ||
2105 			    bss_type == WLAN_CAPABILITY_DMG_TYPE_PBSS)
2106 				regulatory_hint_found_beacon(wiphy, channel,
2107 							     gfp);
2108 		} else {
2109 			if (data->capability & WLAN_CAPABILITY_ESS)
2110 				regulatory_hint_found_beacon(wiphy, channel,
2111 							     gfp);
2112 		}
2113 	}
2114 
2115 	/*
2116 	 * If we do not know here whether the IEs are from a Beacon or Probe
2117 	 * Response frame, we need to pick one of the options and only use it
2118 	 * with the driver that does not provide the full Beacon/Probe Response
2119 	 * frame. Use Beacon frame pointer to avoid indicating that this should
2120 	 * override the IEs pointer should we have received an earlier
2121 	 * indication of Probe Response data.
2122 	 */
2123 	ies = kzalloc(sizeof(*ies) + data->ielen, gfp);
2124 	if (!ies)
2125 		return NULL;
2126 	ies->len = data->ielen;
2127 	ies->tsf = data->tsf;
2128 	ies->from_beacon = false;
2129 	memcpy(ies->data, data->ie, data->ielen);
2130 
2131 	switch (data->ftype) {
2132 	case CFG80211_BSS_FTYPE_BEACON:
2133 		ies->from_beacon = true;
2134 		fallthrough;
2135 	case CFG80211_BSS_FTYPE_UNKNOWN:
2136 		rcu_assign_pointer(tmp.pub.beacon_ies, ies);
2137 		break;
2138 	case CFG80211_BSS_FTYPE_PRESP:
2139 		rcu_assign_pointer(tmp.pub.proberesp_ies, ies);
2140 		break;
2141 	}
2142 	rcu_assign_pointer(tmp.pub.ies, ies);
2143 
2144 	signal_valid = drv_data->chan == channel;
2145 	spin_lock_bh(&rdev->bss_lock);
2146 	res = __cfg80211_bss_update(rdev, &tmp, signal_valid, ts);
2147 	if (!res)
2148 		goto drop;
2149 
2150 	rdev_inform_bss(rdev, &res->pub, ies, drv_data->drv_data);
2151 
2152 	if (data->bss_source == BSS_SOURCE_MBSSID) {
2153 		/* this is a nontransmitting bss, we need to add it to
2154 		 * transmitting bss' list if it is not there
2155 		 */
2156 		if (cfg80211_add_nontrans_list(data->source_bss, &res->pub)) {
2157 			if (__cfg80211_unlink_bss(rdev, res)) {
2158 				rdev->bss_generation++;
2159 				res = NULL;
2160 			}
2161 		}
2162 
2163 		if (!res)
2164 			goto drop;
2165 	}
2166 	spin_unlock_bh(&rdev->bss_lock);
2167 
2168 	trace_cfg80211_return_bss(&res->pub);
2169 	/* __cfg80211_bss_update gives us a referenced result */
2170 	return &res->pub;
2171 
2172 drop:
2173 	spin_unlock_bh(&rdev->bss_lock);
2174 	return NULL;
2175 }
2176 
2177 static const struct element
2178 *cfg80211_get_profile_continuation(const u8 *ie, size_t ielen,
2179 				   const struct element *mbssid_elem,
2180 				   const struct element *sub_elem)
2181 {
2182 	const u8 *mbssid_end = mbssid_elem->data + mbssid_elem->datalen;
2183 	const struct element *next_mbssid;
2184 	const struct element *next_sub;
2185 
2186 	next_mbssid = cfg80211_find_elem(WLAN_EID_MULTIPLE_BSSID,
2187 					 mbssid_end,
2188 					 ielen - (mbssid_end - ie));
2189 
2190 	/*
2191 	 * If it is not the last subelement in current MBSSID IE or there isn't
2192 	 * a next MBSSID IE - profile is complete.
2193 	*/
2194 	if ((sub_elem->data + sub_elem->datalen < mbssid_end - 1) ||
2195 	    !next_mbssid)
2196 		return NULL;
2197 
2198 	/* For any length error, just return NULL */
2199 
2200 	if (next_mbssid->datalen < 4)
2201 		return NULL;
2202 
2203 	next_sub = (void *)&next_mbssid->data[1];
2204 
2205 	if (next_mbssid->data + next_mbssid->datalen <
2206 	    next_sub->data + next_sub->datalen)
2207 		return NULL;
2208 
2209 	if (next_sub->id != 0 || next_sub->datalen < 2)
2210 		return NULL;
2211 
2212 	/*
2213 	 * Check if the first element in the next sub element is a start
2214 	 * of a new profile
2215 	 */
2216 	return next_sub->data[0] == WLAN_EID_NON_TX_BSSID_CAP ?
2217 	       NULL : next_mbssid;
2218 }
2219 
2220 size_t cfg80211_merge_profile(const u8 *ie, size_t ielen,
2221 			      const struct element *mbssid_elem,
2222 			      const struct element *sub_elem,
2223 			      u8 *merged_ie, size_t max_copy_len)
2224 {
2225 	size_t copied_len = sub_elem->datalen;
2226 	const struct element *next_mbssid;
2227 
2228 	if (sub_elem->datalen > max_copy_len)
2229 		return 0;
2230 
2231 	memcpy(merged_ie, sub_elem->data, sub_elem->datalen);
2232 
2233 	while ((next_mbssid = cfg80211_get_profile_continuation(ie, ielen,
2234 								mbssid_elem,
2235 								sub_elem))) {
2236 		const struct element *next_sub = (void *)&next_mbssid->data[1];
2237 
2238 		if (copied_len + next_sub->datalen > max_copy_len)
2239 			break;
2240 		memcpy(merged_ie + copied_len, next_sub->data,
2241 		       next_sub->datalen);
2242 		copied_len += next_sub->datalen;
2243 	}
2244 
2245 	return copied_len;
2246 }
2247 EXPORT_SYMBOL(cfg80211_merge_profile);
2248 
2249 static void
2250 cfg80211_parse_mbssid_data(struct wiphy *wiphy,
2251 			   struct cfg80211_inform_single_bss_data *tx_data,
2252 			   struct cfg80211_bss *source_bss,
2253 			   gfp_t gfp)
2254 {
2255 	struct cfg80211_inform_single_bss_data data = {
2256 		.drv_data = tx_data->drv_data,
2257 		.ftype = tx_data->ftype,
2258 		.tsf = tx_data->tsf,
2259 		.beacon_interval = tx_data->beacon_interval,
2260 		.source_bss = source_bss,
2261 		.bss_source = BSS_SOURCE_MBSSID,
2262 	};
2263 	const u8 *mbssid_index_ie;
2264 	const struct element *elem, *sub;
2265 	u8 *new_ie, *profile;
2266 	u64 seen_indices = 0;
2267 	struct cfg80211_bss *bss;
2268 
2269 	if (!source_bss)
2270 		return;
2271 	if (!cfg80211_find_elem(WLAN_EID_MULTIPLE_BSSID,
2272 				tx_data->ie, tx_data->ielen))
2273 		return;
2274 	if (!wiphy->support_mbssid)
2275 		return;
2276 	if (wiphy->support_only_he_mbssid &&
2277 	    !cfg80211_find_ext_elem(WLAN_EID_EXT_HE_CAPABILITY,
2278 				    tx_data->ie, tx_data->ielen))
2279 		return;
2280 
2281 	new_ie = kmalloc(IEEE80211_MAX_DATA_LEN, gfp);
2282 	if (!new_ie)
2283 		return;
2284 
2285 	profile = kmalloc(tx_data->ielen, gfp);
2286 	if (!profile)
2287 		goto out;
2288 
2289 	for_each_element_id(elem, WLAN_EID_MULTIPLE_BSSID,
2290 			    tx_data->ie, tx_data->ielen) {
2291 		if (elem->datalen < 4)
2292 			continue;
2293 		if (elem->data[0] < 1 || (int)elem->data[0] > 8)
2294 			continue;
2295 		for_each_element(sub, elem->data + 1, elem->datalen - 1) {
2296 			u8 profile_len;
2297 
2298 			if (sub->id != 0 || sub->datalen < 4) {
2299 				/* not a valid BSS profile */
2300 				continue;
2301 			}
2302 
2303 			if (sub->data[0] != WLAN_EID_NON_TX_BSSID_CAP ||
2304 			    sub->data[1] != 2) {
2305 				/* The first element within the Nontransmitted
2306 				 * BSSID Profile is not the Nontransmitted
2307 				 * BSSID Capability element.
2308 				 */
2309 				continue;
2310 			}
2311 
2312 			memset(profile, 0, tx_data->ielen);
2313 			profile_len = cfg80211_merge_profile(tx_data->ie,
2314 							     tx_data->ielen,
2315 							     elem,
2316 							     sub,
2317 							     profile,
2318 							     tx_data->ielen);
2319 
2320 			/* found a Nontransmitted BSSID Profile */
2321 			mbssid_index_ie = cfg80211_find_ie
2322 				(WLAN_EID_MULTI_BSSID_IDX,
2323 				 profile, profile_len);
2324 			if (!mbssid_index_ie || mbssid_index_ie[1] < 1 ||
2325 			    mbssid_index_ie[2] == 0 ||
2326 			    mbssid_index_ie[2] > 46) {
2327 				/* No valid Multiple BSSID-Index element */
2328 				continue;
2329 			}
2330 
2331 			if (seen_indices & BIT_ULL(mbssid_index_ie[2]))
2332 				/* We don't support legacy split of a profile */
2333 				net_dbg_ratelimited("Partial info for BSSID index %d\n",
2334 						    mbssid_index_ie[2]);
2335 
2336 			seen_indices |= BIT_ULL(mbssid_index_ie[2]);
2337 
2338 			data.bssid_index = mbssid_index_ie[2];
2339 			data.max_bssid_indicator = elem->data[0];
2340 
2341 			cfg80211_gen_new_bssid(tx_data->bssid,
2342 					       data.max_bssid_indicator,
2343 					       data.bssid_index,
2344 					       data.bssid);
2345 
2346 			memset(new_ie, 0, IEEE80211_MAX_DATA_LEN);
2347 			data.ie = new_ie;
2348 			data.ielen = cfg80211_gen_new_ie(tx_data->ie,
2349 							 tx_data->ielen,
2350 							 profile,
2351 							 profile_len,
2352 							 new_ie,
2353 							 IEEE80211_MAX_DATA_LEN);
2354 			if (!data.ielen)
2355 				continue;
2356 
2357 			data.capability = get_unaligned_le16(profile + 2);
2358 			bss = cfg80211_inform_single_bss_data(wiphy, &data, gfp);
2359 			if (!bss)
2360 				break;
2361 			cfg80211_put_bss(wiphy, bss);
2362 		}
2363 	}
2364 
2365 out:
2366 	kfree(new_ie);
2367 	kfree(profile);
2368 }
2369 
2370 ssize_t cfg80211_defragment_element(const struct element *elem, const u8 *ies,
2371 				    size_t ieslen, u8 *data, size_t data_len,
2372 				    u8 frag_id)
2373 {
2374 	const struct element *next;
2375 	ssize_t copied;
2376 	u8 elem_datalen;
2377 
2378 	if (!elem)
2379 		return -EINVAL;
2380 
2381 	/* elem might be invalid after the memmove */
2382 	next = (void *)(elem->data + elem->datalen);
2383 	elem_datalen = elem->datalen;
2384 
2385 	if (elem->id == WLAN_EID_EXTENSION) {
2386 		copied = elem->datalen - 1;
2387 		if (copied > data_len)
2388 			return -ENOSPC;
2389 
2390 		memmove(data, elem->data + 1, copied);
2391 	} else {
2392 		copied = elem->datalen;
2393 		if (copied > data_len)
2394 			return -ENOSPC;
2395 
2396 		memmove(data, elem->data, copied);
2397 	}
2398 
2399 	/* Fragmented elements must have 255 bytes */
2400 	if (elem_datalen < 255)
2401 		return copied;
2402 
2403 	for (elem = next;
2404 	     elem->data < ies + ieslen &&
2405 		elem->data + elem->datalen <= ies + ieslen;
2406 	     elem = next) {
2407 		/* elem might be invalid after the memmove */
2408 		next = (void *)(elem->data + elem->datalen);
2409 
2410 		if (elem->id != frag_id)
2411 			break;
2412 
2413 		elem_datalen = elem->datalen;
2414 
2415 		if (copied + elem_datalen > data_len)
2416 			return -ENOSPC;
2417 
2418 		memmove(data + copied, elem->data, elem_datalen);
2419 		copied += elem_datalen;
2420 
2421 		/* Only the last fragment may be short */
2422 		if (elem_datalen != 255)
2423 			break;
2424 	}
2425 
2426 	return copied;
2427 }
2428 EXPORT_SYMBOL(cfg80211_defragment_element);
2429 
2430 struct cfg80211_mle {
2431 	struct ieee80211_multi_link_elem *mle;
2432 	struct ieee80211_mle_per_sta_profile
2433 		*sta_prof[IEEE80211_MLD_MAX_NUM_LINKS];
2434 	ssize_t sta_prof_len[IEEE80211_MLD_MAX_NUM_LINKS];
2435 
2436 	u8 data[];
2437 };
2438 
2439 static struct cfg80211_mle *
2440 cfg80211_defrag_mle(const struct element *mle, const u8 *ie, size_t ielen,
2441 		    gfp_t gfp)
2442 {
2443 	const struct element *elem;
2444 	struct cfg80211_mle *res;
2445 	size_t buf_len;
2446 	ssize_t mle_len;
2447 	u8 common_size, idx;
2448 
2449 	if (!mle || !ieee80211_mle_size_ok(mle->data + 1, mle->datalen - 1))
2450 		return NULL;
2451 
2452 	/* Required length for first defragmentation */
2453 	buf_len = mle->datalen - 1;
2454 	for_each_element(elem, mle->data + mle->datalen,
2455 			 ielen - sizeof(*mle) + mle->datalen) {
2456 		if (elem->id != WLAN_EID_FRAGMENT)
2457 			break;
2458 
2459 		buf_len += elem->datalen;
2460 	}
2461 
2462 	res = kzalloc(struct_size(res, data, buf_len), gfp);
2463 	if (!res)
2464 		return NULL;
2465 
2466 	mle_len = cfg80211_defragment_element(mle, ie, ielen,
2467 					      res->data, buf_len,
2468 					      WLAN_EID_FRAGMENT);
2469 	if (mle_len < 0)
2470 		goto error;
2471 
2472 	res->mle = (void *)res->data;
2473 
2474 	/* Find the sub-element area in the buffer */
2475 	common_size = ieee80211_mle_common_size((u8 *)res->mle);
2476 	ie = res->data + common_size;
2477 	ielen = mle_len - common_size;
2478 
2479 	idx = 0;
2480 	for_each_element_id(elem, IEEE80211_MLE_SUBELEM_PER_STA_PROFILE,
2481 			    ie, ielen) {
2482 		res->sta_prof[idx] = (void *)elem->data;
2483 		res->sta_prof_len[idx] = elem->datalen;
2484 
2485 		idx++;
2486 		if (idx >= IEEE80211_MLD_MAX_NUM_LINKS)
2487 			break;
2488 	}
2489 	if (!for_each_element_completed(elem, ie, ielen))
2490 		goto error;
2491 
2492 	/* Defragment sta_info in-place */
2493 	for (idx = 0; idx < IEEE80211_MLD_MAX_NUM_LINKS && res->sta_prof[idx];
2494 	     idx++) {
2495 		if (res->sta_prof_len[idx] < 255)
2496 			continue;
2497 
2498 		elem = (void *)res->sta_prof[idx] - 2;
2499 
2500 		if (idx + 1 < ARRAY_SIZE(res->sta_prof) &&
2501 		    res->sta_prof[idx + 1])
2502 			buf_len = (u8 *)res->sta_prof[idx + 1] -
2503 				  (u8 *)res->sta_prof[idx];
2504 		else
2505 			buf_len = ielen + ie - (u8 *)elem;
2506 
2507 		res->sta_prof_len[idx] =
2508 			cfg80211_defragment_element(elem,
2509 						    (u8 *)elem, buf_len,
2510 						    (u8 *)res->sta_prof[idx],
2511 						    buf_len,
2512 						    IEEE80211_MLE_SUBELEM_FRAGMENT);
2513 		if (res->sta_prof_len[idx] < 0)
2514 			goto error;
2515 	}
2516 
2517 	return res;
2518 
2519 error:
2520 	kfree(res);
2521 	return NULL;
2522 }
2523 
2524 static bool
2525 cfg80211_tbtt_info_for_mld_ap(const u8 *ie, size_t ielen, u8 mld_id, u8 link_id,
2526 			      const struct ieee80211_neighbor_ap_info **ap_info,
2527 			      const u8 **tbtt_info)
2528 {
2529 	const struct ieee80211_neighbor_ap_info *info;
2530 	const struct element *rnr;
2531 	const u8 *pos, *end;
2532 
2533 	for_each_element_id(rnr, WLAN_EID_REDUCED_NEIGHBOR_REPORT, ie, ielen) {
2534 		pos = rnr->data;
2535 		end = rnr->data + rnr->datalen;
2536 
2537 		/* RNR IE may contain more than one NEIGHBOR_AP_INFO */
2538 		while (sizeof(*info) <= end - pos) {
2539 			const struct ieee80211_rnr_mld_params *mld_params;
2540 			u16 params;
2541 			u8 length, i, count, mld_params_offset;
2542 			u8 type, lid;
2543 
2544 			info = (void *)pos;
2545 			count = u8_get_bits(info->tbtt_info_hdr,
2546 					    IEEE80211_AP_INFO_TBTT_HDR_COUNT) + 1;
2547 			length = info->tbtt_info_len;
2548 
2549 			pos += sizeof(*info);
2550 
2551 			if (count * length > end - pos)
2552 				return false;
2553 
2554 			type = u8_get_bits(info->tbtt_info_hdr,
2555 					   IEEE80211_AP_INFO_TBTT_HDR_TYPE);
2556 
2557 			/* Only accept full TBTT information. NSTR mobile APs
2558 			 * use the shortened version, but we ignore them here.
2559 			 */
2560 			if (type == IEEE80211_TBTT_INFO_TYPE_TBTT &&
2561 			    length >=
2562 			    offsetofend(struct ieee80211_tbtt_info_ge_11,
2563 					mld_params)) {
2564 				mld_params_offset =
2565 					offsetof(struct ieee80211_tbtt_info_ge_11, mld_params);
2566 			} else {
2567 				pos += count * length;
2568 				continue;
2569 			}
2570 
2571 			for (i = 0; i < count; i++) {
2572 				mld_params = (void *)pos + mld_params_offset;
2573 				params = le16_to_cpu(mld_params->params);
2574 
2575 				lid = u16_get_bits(params,
2576 						   IEEE80211_RNR_MLD_PARAMS_LINK_ID);
2577 
2578 				if (mld_id == mld_params->mld_id &&
2579 				    link_id == lid) {
2580 					*ap_info = info;
2581 					*tbtt_info = pos;
2582 
2583 					return true;
2584 				}
2585 
2586 				pos += length;
2587 			}
2588 		}
2589 	}
2590 
2591 	return false;
2592 }
2593 
2594 static void cfg80211_parse_ml_sta_data(struct wiphy *wiphy,
2595 				       struct cfg80211_inform_single_bss_data *tx_data,
2596 				       struct cfg80211_bss *source_bss,
2597 				       gfp_t gfp)
2598 {
2599 	struct cfg80211_inform_single_bss_data data = {
2600 		.drv_data = tx_data->drv_data,
2601 		.ftype = tx_data->ftype,
2602 		.source_bss = source_bss,
2603 		.bss_source = BSS_SOURCE_STA_PROFILE,
2604 	};
2605 	struct ieee80211_multi_link_elem *ml_elem;
2606 	const struct element *elem;
2607 	struct cfg80211_mle *mle;
2608 	u16 control;
2609 	u8 *new_ie;
2610 	struct cfg80211_bss *bss;
2611 	int mld_id;
2612 	u16 seen_links = 0;
2613 	const u8 *pos;
2614 	u8 i;
2615 
2616 	if (!source_bss)
2617 		return;
2618 
2619 	if (tx_data->ftype != CFG80211_BSS_FTYPE_PRESP)
2620 		return;
2621 
2622 	elem = cfg80211_find_ext_elem(WLAN_EID_EXT_EHT_MULTI_LINK,
2623 				      tx_data->ie, tx_data->ielen);
2624 	if (!elem || !ieee80211_mle_size_ok(elem->data + 1, elem->datalen - 1))
2625 		return;
2626 
2627 	ml_elem = (void *)elem->data + 1;
2628 	control = le16_to_cpu(ml_elem->control);
2629 	if (u16_get_bits(control, IEEE80211_ML_CONTROL_TYPE) !=
2630 	    IEEE80211_ML_CONTROL_TYPE_BASIC)
2631 		return;
2632 
2633 	/* Must be present when transmitted by an AP (in a probe response) */
2634 	if (!(control & IEEE80211_MLC_BASIC_PRES_BSS_PARAM_CH_CNT) ||
2635 	    !(control & IEEE80211_MLC_BASIC_PRES_LINK_ID) ||
2636 	    !(control & IEEE80211_MLC_BASIC_PRES_MLD_CAPA_OP))
2637 		return;
2638 
2639 	/* length + MLD MAC address + link ID info + BSS Params Change Count */
2640 	pos = ml_elem->variable + 1 + 6 + 1 + 1;
2641 
2642 	if (u16_get_bits(control, IEEE80211_MLC_BASIC_PRES_MED_SYNC_DELAY))
2643 		pos += 2;
2644 	if (u16_get_bits(control, IEEE80211_MLC_BASIC_PRES_EML_CAPA))
2645 		pos += 2;
2646 
2647 	/* MLD capabilities and operations */
2648 	pos += 2;
2649 
2650 	/* Not included when the (nontransmitted) AP is responding itself,
2651 	 * but defined to zero then (Draft P802.11be_D3.0, 9.4.2.170.2)
2652 	 */
2653 	if (u16_get_bits(control, IEEE80211_MLC_BASIC_PRES_MLD_ID)) {
2654 		mld_id = *pos;
2655 		pos += 1;
2656 	} else {
2657 		mld_id = 0;
2658 	}
2659 
2660 	/* Extended MLD capabilities and operations */
2661 	pos += 2;
2662 
2663 	/* Fully defrag the ML element for sta information/profile iteration */
2664 	mle = cfg80211_defrag_mle(elem, tx_data->ie, tx_data->ielen, gfp);
2665 	if (!mle)
2666 		return;
2667 
2668 	new_ie = kmalloc(IEEE80211_MAX_DATA_LEN, gfp);
2669 	if (!new_ie)
2670 		goto out;
2671 
2672 	for (i = 0; i < ARRAY_SIZE(mle->sta_prof) && mle->sta_prof[i]; i++) {
2673 		const struct ieee80211_neighbor_ap_info *ap_info;
2674 		enum nl80211_band band;
2675 		u32 freq;
2676 		const u8 *profile;
2677 		const u8 *tbtt_info;
2678 		ssize_t profile_len;
2679 		u8 link_id;
2680 
2681 		if (!ieee80211_mle_basic_sta_prof_size_ok((u8 *)mle->sta_prof[i],
2682 							  mle->sta_prof_len[i]))
2683 			continue;
2684 
2685 		control = le16_to_cpu(mle->sta_prof[i]->control);
2686 
2687 		if (!(control & IEEE80211_MLE_STA_CONTROL_COMPLETE_PROFILE))
2688 			continue;
2689 
2690 		link_id = u16_get_bits(control,
2691 				       IEEE80211_MLE_STA_CONTROL_LINK_ID);
2692 		if (seen_links & BIT(link_id))
2693 			break;
2694 		seen_links |= BIT(link_id);
2695 
2696 		if (!(control & IEEE80211_MLE_STA_CONTROL_BEACON_INT_PRESENT) ||
2697 		    !(control & IEEE80211_MLE_STA_CONTROL_TSF_OFFS_PRESENT) ||
2698 		    !(control & IEEE80211_MLE_STA_CONTROL_STA_MAC_ADDR_PRESENT))
2699 			continue;
2700 
2701 		memcpy(data.bssid, mle->sta_prof[i]->variable, ETH_ALEN);
2702 		data.beacon_interval =
2703 			get_unaligned_le16(mle->sta_prof[i]->variable + 6);
2704 		data.tsf = tx_data->tsf +
2705 			   get_unaligned_le64(mle->sta_prof[i]->variable + 8);
2706 
2707 		/* sta_info_len counts itself */
2708 		profile = mle->sta_prof[i]->variable +
2709 			  mle->sta_prof[i]->sta_info_len - 1;
2710 		profile_len = (u8 *)mle->sta_prof[i] + mle->sta_prof_len[i] -
2711 			      profile;
2712 
2713 		if (profile_len < 2)
2714 			continue;
2715 
2716 		data.capability = get_unaligned_le16(profile);
2717 		profile += 2;
2718 		profile_len -= 2;
2719 
2720 		/* Find in RNR to look up channel information */
2721 		if (!cfg80211_tbtt_info_for_mld_ap(tx_data->ie, tx_data->ielen,
2722 						   mld_id, link_id,
2723 						   &ap_info, &tbtt_info))
2724 			continue;
2725 
2726 		/* We could sanity check the BSSID is included */
2727 
2728 		if (!ieee80211_operating_class_to_band(ap_info->op_class,
2729 						       &band))
2730 			continue;
2731 
2732 		freq = ieee80211_channel_to_freq_khz(ap_info->channel, band);
2733 		data.channel = ieee80211_get_channel_khz(wiphy, freq);
2734 
2735 		/* Generate new elements */
2736 		memset(new_ie, 0, IEEE80211_MAX_DATA_LEN);
2737 		data.ie = new_ie;
2738 		data.ielen = cfg80211_gen_new_ie(tx_data->ie, tx_data->ielen,
2739 						 profile, profile_len,
2740 						 new_ie,
2741 						 IEEE80211_MAX_DATA_LEN);
2742 		if (!data.ielen)
2743 			continue;
2744 
2745 		bss = cfg80211_inform_single_bss_data(wiphy, &data, gfp);
2746 		if (!bss)
2747 			break;
2748 		cfg80211_put_bss(wiphy, bss);
2749 	}
2750 
2751 out:
2752 	kfree(new_ie);
2753 	kfree(mle);
2754 }
2755 
2756 struct cfg80211_bss *
2757 cfg80211_inform_bss_data(struct wiphy *wiphy,
2758 			 struct cfg80211_inform_bss *data,
2759 			 enum cfg80211_bss_frame_type ftype,
2760 			 const u8 *bssid, u64 tsf, u16 capability,
2761 			 u16 beacon_interval, const u8 *ie, size_t ielen,
2762 			 gfp_t gfp)
2763 {
2764 	struct cfg80211_inform_single_bss_data inform_data = {
2765 		.drv_data = data,
2766 		.ftype = ftype,
2767 		.tsf = tsf,
2768 		.capability = capability,
2769 		.beacon_interval = beacon_interval,
2770 		.ie = ie,
2771 		.ielen = ielen,
2772 	};
2773 	struct cfg80211_bss *res;
2774 
2775 	memcpy(inform_data.bssid, bssid, ETH_ALEN);
2776 
2777 	res = cfg80211_inform_single_bss_data(wiphy, &inform_data, gfp);
2778 	if (!res)
2779 		return NULL;
2780 
2781 	cfg80211_parse_mbssid_data(wiphy, &inform_data, res, gfp);
2782 
2783 	cfg80211_parse_ml_sta_data(wiphy, &inform_data, res, gfp);
2784 
2785 	return res;
2786 }
2787 EXPORT_SYMBOL(cfg80211_inform_bss_data);
2788 
2789 /* cfg80211_inform_bss_width_frame helper */
2790 static struct cfg80211_bss *
2791 cfg80211_inform_single_bss_frame_data(struct wiphy *wiphy,
2792 				      struct cfg80211_inform_bss *data,
2793 				      struct ieee80211_mgmt *mgmt, size_t len,
2794 				      gfp_t gfp)
2795 {
2796 	struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
2797 	struct cfg80211_internal_bss tmp = {}, *res;
2798 	struct cfg80211_bss_ies *ies;
2799 	struct ieee80211_channel *channel;
2800 	bool signal_valid;
2801 	struct ieee80211_ext *ext = NULL;
2802 	u8 *bssid, *variable;
2803 	u16 capability, beacon_int;
2804 	size_t ielen, min_hdr_len = offsetof(struct ieee80211_mgmt,
2805 					     u.probe_resp.variable);
2806 	int bss_type;
2807 
2808 	BUILD_BUG_ON(offsetof(struct ieee80211_mgmt, u.probe_resp.variable) !=
2809 			offsetof(struct ieee80211_mgmt, u.beacon.variable));
2810 
2811 	trace_cfg80211_inform_bss_frame(wiphy, data, mgmt, len);
2812 
2813 	if (WARN_ON(!mgmt))
2814 		return NULL;
2815 
2816 	if (WARN_ON(!wiphy))
2817 		return NULL;
2818 
2819 	if (WARN_ON(wiphy->signal_type == CFG80211_SIGNAL_TYPE_UNSPEC &&
2820 		    (data->signal < 0 || data->signal > 100)))
2821 		return NULL;
2822 
2823 	if (ieee80211_is_s1g_beacon(mgmt->frame_control)) {
2824 		ext = (void *) mgmt;
2825 		min_hdr_len = offsetof(struct ieee80211_ext, u.s1g_beacon);
2826 		if (ieee80211_is_s1g_short_beacon(mgmt->frame_control))
2827 			min_hdr_len = offsetof(struct ieee80211_ext,
2828 					       u.s1g_short_beacon.variable);
2829 	}
2830 
2831 	if (WARN_ON(len < min_hdr_len))
2832 		return NULL;
2833 
2834 	ielen = len - min_hdr_len;
2835 	variable = mgmt->u.probe_resp.variable;
2836 	if (ext) {
2837 		if (ieee80211_is_s1g_short_beacon(mgmt->frame_control))
2838 			variable = ext->u.s1g_short_beacon.variable;
2839 		else
2840 			variable = ext->u.s1g_beacon.variable;
2841 	}
2842 
2843 	channel = cfg80211_get_bss_channel(wiphy, variable, ielen, data->chan);
2844 	if (!channel)
2845 		return NULL;
2846 
2847 	if (ext) {
2848 		const struct ieee80211_s1g_bcn_compat_ie *compat;
2849 		const struct element *elem;
2850 
2851 		elem = cfg80211_find_elem(WLAN_EID_S1G_BCN_COMPAT,
2852 					  variable, ielen);
2853 		if (!elem)
2854 			return NULL;
2855 		if (elem->datalen < sizeof(*compat))
2856 			return NULL;
2857 		compat = (void *)elem->data;
2858 		bssid = ext->u.s1g_beacon.sa;
2859 		capability = le16_to_cpu(compat->compat_info);
2860 		beacon_int = le16_to_cpu(compat->beacon_int);
2861 	} else {
2862 		bssid = mgmt->bssid;
2863 		beacon_int = le16_to_cpu(mgmt->u.probe_resp.beacon_int);
2864 		capability = le16_to_cpu(mgmt->u.probe_resp.capab_info);
2865 	}
2866 
2867 	if (channel->band == NL80211_BAND_60GHZ) {
2868 		bss_type = capability & WLAN_CAPABILITY_DMG_TYPE_MASK;
2869 		if (bss_type == WLAN_CAPABILITY_DMG_TYPE_AP ||
2870 		    bss_type == WLAN_CAPABILITY_DMG_TYPE_PBSS)
2871 			regulatory_hint_found_beacon(wiphy, channel, gfp);
2872 	} else {
2873 		if (capability & WLAN_CAPABILITY_ESS)
2874 			regulatory_hint_found_beacon(wiphy, channel, gfp);
2875 	}
2876 
2877 	ies = kzalloc(sizeof(*ies) + ielen, gfp);
2878 	if (!ies)
2879 		return NULL;
2880 	ies->len = ielen;
2881 	ies->tsf = le64_to_cpu(mgmt->u.probe_resp.timestamp);
2882 	ies->from_beacon = ieee80211_is_beacon(mgmt->frame_control) ||
2883 			   ieee80211_is_s1g_beacon(mgmt->frame_control);
2884 	memcpy(ies->data, variable, ielen);
2885 
2886 	if (ieee80211_is_probe_resp(mgmt->frame_control))
2887 		rcu_assign_pointer(tmp.pub.proberesp_ies, ies);
2888 	else
2889 		rcu_assign_pointer(tmp.pub.beacon_ies, ies);
2890 	rcu_assign_pointer(tmp.pub.ies, ies);
2891 
2892 	memcpy(tmp.pub.bssid, bssid, ETH_ALEN);
2893 	tmp.pub.beacon_interval = beacon_int;
2894 	tmp.pub.capability = capability;
2895 	tmp.pub.channel = channel;
2896 	tmp.pub.signal = data->signal;
2897 	tmp.ts_boottime = data->boottime_ns;
2898 	tmp.parent_tsf = data->parent_tsf;
2899 	tmp.pub.chains = data->chains;
2900 	memcpy(tmp.pub.chain_signal, data->chain_signal, IEEE80211_MAX_CHAINS);
2901 	ether_addr_copy(tmp.parent_bssid, data->parent_bssid);
2902 
2903 	signal_valid = data->chan == channel;
2904 	spin_lock_bh(&rdev->bss_lock);
2905 	res = __cfg80211_bss_update(rdev, &tmp, signal_valid, jiffies);
2906 	if (!res)
2907 		goto drop;
2908 
2909 	rdev_inform_bss(rdev, &res->pub, ies, data->drv_data);
2910 
2911 	spin_unlock_bh(&rdev->bss_lock);
2912 
2913 	trace_cfg80211_return_bss(&res->pub);
2914 	/* __cfg80211_bss_update gives us a referenced result */
2915 	return &res->pub;
2916 
2917 drop:
2918 	spin_unlock_bh(&rdev->bss_lock);
2919 	return NULL;
2920 }
2921 
2922 struct cfg80211_bss *
2923 cfg80211_inform_bss_frame_data(struct wiphy *wiphy,
2924 			       struct cfg80211_inform_bss *data,
2925 			       struct ieee80211_mgmt *mgmt, size_t len,
2926 			       gfp_t gfp)
2927 {
2928 	struct cfg80211_inform_single_bss_data inform_data = {
2929 		.drv_data = data,
2930 		.ie = mgmt->u.probe_resp.variable,
2931 		.ielen = len - offsetof(struct ieee80211_mgmt,
2932 					u.probe_resp.variable),
2933 	};
2934 	struct cfg80211_bss *res;
2935 
2936 	res = cfg80211_inform_single_bss_frame_data(wiphy, data, mgmt,
2937 						    len, gfp);
2938 	if (!res)
2939 		return NULL;
2940 
2941 	/* don't do any further MBSSID/ML handling for S1G */
2942 	if (ieee80211_is_s1g_beacon(mgmt->frame_control))
2943 		return res;
2944 
2945 	inform_data.ftype = ieee80211_is_beacon(mgmt->frame_control) ?
2946 		CFG80211_BSS_FTYPE_BEACON : CFG80211_BSS_FTYPE_PRESP;
2947 	memcpy(inform_data.bssid, mgmt->bssid, ETH_ALEN);
2948 	inform_data.tsf = le64_to_cpu(mgmt->u.probe_resp.timestamp);
2949 	inform_data.beacon_interval =
2950 		le16_to_cpu(mgmt->u.probe_resp.beacon_int);
2951 
2952 	/* process each non-transmitting bss */
2953 	cfg80211_parse_mbssid_data(wiphy, &inform_data, res, gfp);
2954 
2955 	cfg80211_parse_ml_sta_data(wiphy, &inform_data, res, gfp);
2956 
2957 	return res;
2958 }
2959 EXPORT_SYMBOL(cfg80211_inform_bss_frame_data);
2960 
2961 void cfg80211_ref_bss(struct wiphy *wiphy, struct cfg80211_bss *pub)
2962 {
2963 	struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
2964 
2965 	if (!pub)
2966 		return;
2967 
2968 	spin_lock_bh(&rdev->bss_lock);
2969 	bss_ref_get(rdev, bss_from_pub(pub));
2970 	spin_unlock_bh(&rdev->bss_lock);
2971 }
2972 EXPORT_SYMBOL(cfg80211_ref_bss);
2973 
2974 void cfg80211_put_bss(struct wiphy *wiphy, struct cfg80211_bss *pub)
2975 {
2976 	struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
2977 
2978 	if (!pub)
2979 		return;
2980 
2981 	spin_lock_bh(&rdev->bss_lock);
2982 	bss_ref_put(rdev, bss_from_pub(pub));
2983 	spin_unlock_bh(&rdev->bss_lock);
2984 }
2985 EXPORT_SYMBOL(cfg80211_put_bss);
2986 
2987 void cfg80211_unlink_bss(struct wiphy *wiphy, struct cfg80211_bss *pub)
2988 {
2989 	struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
2990 	struct cfg80211_internal_bss *bss, *tmp1;
2991 	struct cfg80211_bss *nontrans_bss, *tmp;
2992 
2993 	if (WARN_ON(!pub))
2994 		return;
2995 
2996 	bss = bss_from_pub(pub);
2997 
2998 	spin_lock_bh(&rdev->bss_lock);
2999 	if (list_empty(&bss->list))
3000 		goto out;
3001 
3002 	list_for_each_entry_safe(nontrans_bss, tmp,
3003 				 &pub->nontrans_list,
3004 				 nontrans_list) {
3005 		tmp1 = bss_from_pub(nontrans_bss);
3006 		if (__cfg80211_unlink_bss(rdev, tmp1))
3007 			rdev->bss_generation++;
3008 	}
3009 
3010 	if (__cfg80211_unlink_bss(rdev, bss))
3011 		rdev->bss_generation++;
3012 out:
3013 	spin_unlock_bh(&rdev->bss_lock);
3014 }
3015 EXPORT_SYMBOL(cfg80211_unlink_bss);
3016 
3017 void cfg80211_bss_iter(struct wiphy *wiphy,
3018 		       struct cfg80211_chan_def *chandef,
3019 		       void (*iter)(struct wiphy *wiphy,
3020 				    struct cfg80211_bss *bss,
3021 				    void *data),
3022 		       void *iter_data)
3023 {
3024 	struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
3025 	struct cfg80211_internal_bss *bss;
3026 
3027 	spin_lock_bh(&rdev->bss_lock);
3028 
3029 	list_for_each_entry(bss, &rdev->bss_list, list) {
3030 		if (!chandef || cfg80211_is_sub_chan(chandef, bss->pub.channel,
3031 						     false))
3032 			iter(wiphy, &bss->pub, iter_data);
3033 	}
3034 
3035 	spin_unlock_bh(&rdev->bss_lock);
3036 }
3037 EXPORT_SYMBOL(cfg80211_bss_iter);
3038 
3039 void cfg80211_update_assoc_bss_entry(struct wireless_dev *wdev,
3040 				     unsigned int link_id,
3041 				     struct ieee80211_channel *chan)
3042 {
3043 	struct wiphy *wiphy = wdev->wiphy;
3044 	struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
3045 	struct cfg80211_internal_bss *cbss = wdev->links[link_id].client.current_bss;
3046 	struct cfg80211_internal_bss *new = NULL;
3047 	struct cfg80211_internal_bss *bss;
3048 	struct cfg80211_bss *nontrans_bss;
3049 	struct cfg80211_bss *tmp;
3050 
3051 	spin_lock_bh(&rdev->bss_lock);
3052 
3053 	/*
3054 	 * Some APs use CSA also for bandwidth changes, i.e., without actually
3055 	 * changing the control channel, so no need to update in such a case.
3056 	 */
3057 	if (cbss->pub.channel == chan)
3058 		goto done;
3059 
3060 	/* use transmitting bss */
3061 	if (cbss->pub.transmitted_bss)
3062 		cbss = bss_from_pub(cbss->pub.transmitted_bss);
3063 
3064 	cbss->pub.channel = chan;
3065 
3066 	list_for_each_entry(bss, &rdev->bss_list, list) {
3067 		if (!cfg80211_bss_type_match(bss->pub.capability,
3068 					     bss->pub.channel->band,
3069 					     wdev->conn_bss_type))
3070 			continue;
3071 
3072 		if (bss == cbss)
3073 			continue;
3074 
3075 		if (!cmp_bss(&bss->pub, &cbss->pub, BSS_CMP_REGULAR)) {
3076 			new = bss;
3077 			break;
3078 		}
3079 	}
3080 
3081 	if (new) {
3082 		/* to save time, update IEs for transmitting bss only */
3083 		if (cfg80211_update_known_bss(rdev, cbss, new, false)) {
3084 			new->pub.proberesp_ies = NULL;
3085 			new->pub.beacon_ies = NULL;
3086 		}
3087 
3088 		list_for_each_entry_safe(nontrans_bss, tmp,
3089 					 &new->pub.nontrans_list,
3090 					 nontrans_list) {
3091 			bss = bss_from_pub(nontrans_bss);
3092 			if (__cfg80211_unlink_bss(rdev, bss))
3093 				rdev->bss_generation++;
3094 		}
3095 
3096 		WARN_ON(atomic_read(&new->hold));
3097 		if (!WARN_ON(!__cfg80211_unlink_bss(rdev, new)))
3098 			rdev->bss_generation++;
3099 	}
3100 
3101 	rb_erase(&cbss->rbn, &rdev->bss_tree);
3102 	rb_insert_bss(rdev, cbss);
3103 	rdev->bss_generation++;
3104 
3105 	list_for_each_entry_safe(nontrans_bss, tmp,
3106 				 &cbss->pub.nontrans_list,
3107 				 nontrans_list) {
3108 		bss = bss_from_pub(nontrans_bss);
3109 		bss->pub.channel = chan;
3110 		rb_erase(&bss->rbn, &rdev->bss_tree);
3111 		rb_insert_bss(rdev, bss);
3112 		rdev->bss_generation++;
3113 	}
3114 
3115 done:
3116 	spin_unlock_bh(&rdev->bss_lock);
3117 }
3118 
3119 #ifdef CONFIG_CFG80211_WEXT
3120 static struct cfg80211_registered_device *
3121 cfg80211_get_dev_from_ifindex(struct net *net, int ifindex)
3122 {
3123 	struct cfg80211_registered_device *rdev;
3124 	struct net_device *dev;
3125 
3126 	ASSERT_RTNL();
3127 
3128 	dev = dev_get_by_index(net, ifindex);
3129 	if (!dev)
3130 		return ERR_PTR(-ENODEV);
3131 	if (dev->ieee80211_ptr)
3132 		rdev = wiphy_to_rdev(dev->ieee80211_ptr->wiphy);
3133 	else
3134 		rdev = ERR_PTR(-ENODEV);
3135 	dev_put(dev);
3136 	return rdev;
3137 }
3138 
3139 int cfg80211_wext_siwscan(struct net_device *dev,
3140 			  struct iw_request_info *info,
3141 			  union iwreq_data *wrqu, char *extra)
3142 {
3143 	struct cfg80211_registered_device *rdev;
3144 	struct wiphy *wiphy;
3145 	struct iw_scan_req *wreq = NULL;
3146 	struct cfg80211_scan_request *creq;
3147 	int i, err, n_channels = 0;
3148 	enum nl80211_band band;
3149 
3150 	if (!netif_running(dev))
3151 		return -ENETDOWN;
3152 
3153 	if (wrqu->data.length == sizeof(struct iw_scan_req))
3154 		wreq = (struct iw_scan_req *)extra;
3155 
3156 	rdev = cfg80211_get_dev_from_ifindex(dev_net(dev), dev->ifindex);
3157 
3158 	if (IS_ERR(rdev))
3159 		return PTR_ERR(rdev);
3160 
3161 	if (rdev->scan_req || rdev->scan_msg)
3162 		return -EBUSY;
3163 
3164 	wiphy = &rdev->wiphy;
3165 
3166 	/* Determine number of channels, needed to allocate creq */
3167 	if (wreq && wreq->num_channels)
3168 		n_channels = wreq->num_channels;
3169 	else
3170 		n_channels = ieee80211_get_num_supported_channels(wiphy);
3171 
3172 	creq = kzalloc(sizeof(*creq) + sizeof(struct cfg80211_ssid) +
3173 		       n_channels * sizeof(void *),
3174 		       GFP_ATOMIC);
3175 	if (!creq)
3176 		return -ENOMEM;
3177 
3178 	creq->wiphy = wiphy;
3179 	creq->wdev = dev->ieee80211_ptr;
3180 	/* SSIDs come after channels */
3181 	creq->ssids = (void *)&creq->channels[n_channels];
3182 	creq->n_channels = n_channels;
3183 	creq->n_ssids = 1;
3184 	creq->scan_start = jiffies;
3185 
3186 	/* translate "Scan on frequencies" request */
3187 	i = 0;
3188 	for (band = 0; band < NUM_NL80211_BANDS; band++) {
3189 		int j;
3190 
3191 		if (!wiphy->bands[band])
3192 			continue;
3193 
3194 		for (j = 0; j < wiphy->bands[band]->n_channels; j++) {
3195 			/* ignore disabled channels */
3196 			if (wiphy->bands[band]->channels[j].flags &
3197 						IEEE80211_CHAN_DISABLED)
3198 				continue;
3199 
3200 			/* If we have a wireless request structure and the
3201 			 * wireless request specifies frequencies, then search
3202 			 * for the matching hardware channel.
3203 			 */
3204 			if (wreq && wreq->num_channels) {
3205 				int k;
3206 				int wiphy_freq = wiphy->bands[band]->channels[j].center_freq;
3207 				for (k = 0; k < wreq->num_channels; k++) {
3208 					struct iw_freq *freq =
3209 						&wreq->channel_list[k];
3210 					int wext_freq =
3211 						cfg80211_wext_freq(freq);
3212 
3213 					if (wext_freq == wiphy_freq)
3214 						goto wext_freq_found;
3215 				}
3216 				goto wext_freq_not_found;
3217 			}
3218 
3219 		wext_freq_found:
3220 			creq->channels[i] = &wiphy->bands[band]->channels[j];
3221 			i++;
3222 		wext_freq_not_found: ;
3223 		}
3224 	}
3225 	/* No channels found? */
3226 	if (!i) {
3227 		err = -EINVAL;
3228 		goto out;
3229 	}
3230 
3231 	/* Set real number of channels specified in creq->channels[] */
3232 	creq->n_channels = i;
3233 
3234 	/* translate "Scan for SSID" request */
3235 	if (wreq) {
3236 		if (wrqu->data.flags & IW_SCAN_THIS_ESSID) {
3237 			if (wreq->essid_len > IEEE80211_MAX_SSID_LEN) {
3238 				err = -EINVAL;
3239 				goto out;
3240 			}
3241 			memcpy(creq->ssids[0].ssid, wreq->essid, wreq->essid_len);
3242 			creq->ssids[0].ssid_len = wreq->essid_len;
3243 		}
3244 		if (wreq->scan_type == IW_SCAN_TYPE_PASSIVE)
3245 			creq->n_ssids = 0;
3246 	}
3247 
3248 	for (i = 0; i < NUM_NL80211_BANDS; i++)
3249 		if (wiphy->bands[i])
3250 			creq->rates[i] = (1 << wiphy->bands[i]->n_bitrates) - 1;
3251 
3252 	eth_broadcast_addr(creq->bssid);
3253 
3254 	wiphy_lock(&rdev->wiphy);
3255 
3256 	rdev->scan_req = creq;
3257 	err = rdev_scan(rdev, creq);
3258 	if (err) {
3259 		rdev->scan_req = NULL;
3260 		/* creq will be freed below */
3261 	} else {
3262 		nl80211_send_scan_start(rdev, dev->ieee80211_ptr);
3263 		/* creq now owned by driver */
3264 		creq = NULL;
3265 		dev_hold(dev);
3266 	}
3267 	wiphy_unlock(&rdev->wiphy);
3268  out:
3269 	kfree(creq);
3270 	return err;
3271 }
3272 EXPORT_WEXT_HANDLER(cfg80211_wext_siwscan);
3273 
3274 static char *ieee80211_scan_add_ies(struct iw_request_info *info,
3275 				    const struct cfg80211_bss_ies *ies,
3276 				    char *current_ev, char *end_buf)
3277 {
3278 	const u8 *pos, *end, *next;
3279 	struct iw_event iwe;
3280 
3281 	if (!ies)
3282 		return current_ev;
3283 
3284 	/*
3285 	 * If needed, fragment the IEs buffer (at IE boundaries) into short
3286 	 * enough fragments to fit into IW_GENERIC_IE_MAX octet messages.
3287 	 */
3288 	pos = ies->data;
3289 	end = pos + ies->len;
3290 
3291 	while (end - pos > IW_GENERIC_IE_MAX) {
3292 		next = pos + 2 + pos[1];
3293 		while (next + 2 + next[1] - pos < IW_GENERIC_IE_MAX)
3294 			next = next + 2 + next[1];
3295 
3296 		memset(&iwe, 0, sizeof(iwe));
3297 		iwe.cmd = IWEVGENIE;
3298 		iwe.u.data.length = next - pos;
3299 		current_ev = iwe_stream_add_point_check(info, current_ev,
3300 							end_buf, &iwe,
3301 							(void *)pos);
3302 		if (IS_ERR(current_ev))
3303 			return current_ev;
3304 		pos = next;
3305 	}
3306 
3307 	if (end > pos) {
3308 		memset(&iwe, 0, sizeof(iwe));
3309 		iwe.cmd = IWEVGENIE;
3310 		iwe.u.data.length = end - pos;
3311 		current_ev = iwe_stream_add_point_check(info, current_ev,
3312 							end_buf, &iwe,
3313 							(void *)pos);
3314 		if (IS_ERR(current_ev))
3315 			return current_ev;
3316 	}
3317 
3318 	return current_ev;
3319 }
3320 
3321 static char *
3322 ieee80211_bss(struct wiphy *wiphy, struct iw_request_info *info,
3323 	      struct cfg80211_internal_bss *bss, char *current_ev,
3324 	      char *end_buf)
3325 {
3326 	const struct cfg80211_bss_ies *ies;
3327 	struct iw_event iwe;
3328 	const u8 *ie;
3329 	u8 buf[50];
3330 	u8 *cfg, *p, *tmp;
3331 	int rem, i, sig;
3332 	bool ismesh = false;
3333 
3334 	memset(&iwe, 0, sizeof(iwe));
3335 	iwe.cmd = SIOCGIWAP;
3336 	iwe.u.ap_addr.sa_family = ARPHRD_ETHER;
3337 	memcpy(iwe.u.ap_addr.sa_data, bss->pub.bssid, ETH_ALEN);
3338 	current_ev = iwe_stream_add_event_check(info, current_ev, end_buf, &iwe,
3339 						IW_EV_ADDR_LEN);
3340 	if (IS_ERR(current_ev))
3341 		return current_ev;
3342 
3343 	memset(&iwe, 0, sizeof(iwe));
3344 	iwe.cmd = SIOCGIWFREQ;
3345 	iwe.u.freq.m = ieee80211_frequency_to_channel(bss->pub.channel->center_freq);
3346 	iwe.u.freq.e = 0;
3347 	current_ev = iwe_stream_add_event_check(info, current_ev, end_buf, &iwe,
3348 						IW_EV_FREQ_LEN);
3349 	if (IS_ERR(current_ev))
3350 		return current_ev;
3351 
3352 	memset(&iwe, 0, sizeof(iwe));
3353 	iwe.cmd = SIOCGIWFREQ;
3354 	iwe.u.freq.m = bss->pub.channel->center_freq;
3355 	iwe.u.freq.e = 6;
3356 	current_ev = iwe_stream_add_event_check(info, current_ev, end_buf, &iwe,
3357 						IW_EV_FREQ_LEN);
3358 	if (IS_ERR(current_ev))
3359 		return current_ev;
3360 
3361 	if (wiphy->signal_type != CFG80211_SIGNAL_TYPE_NONE) {
3362 		memset(&iwe, 0, sizeof(iwe));
3363 		iwe.cmd = IWEVQUAL;
3364 		iwe.u.qual.updated = IW_QUAL_LEVEL_UPDATED |
3365 				     IW_QUAL_NOISE_INVALID |
3366 				     IW_QUAL_QUAL_UPDATED;
3367 		switch (wiphy->signal_type) {
3368 		case CFG80211_SIGNAL_TYPE_MBM:
3369 			sig = bss->pub.signal / 100;
3370 			iwe.u.qual.level = sig;
3371 			iwe.u.qual.updated |= IW_QUAL_DBM;
3372 			if (sig < -110)		/* rather bad */
3373 				sig = -110;
3374 			else if (sig > -40)	/* perfect */
3375 				sig = -40;
3376 			/* will give a range of 0 .. 70 */
3377 			iwe.u.qual.qual = sig + 110;
3378 			break;
3379 		case CFG80211_SIGNAL_TYPE_UNSPEC:
3380 			iwe.u.qual.level = bss->pub.signal;
3381 			/* will give range 0 .. 100 */
3382 			iwe.u.qual.qual = bss->pub.signal;
3383 			break;
3384 		default:
3385 			/* not reached */
3386 			break;
3387 		}
3388 		current_ev = iwe_stream_add_event_check(info, current_ev,
3389 							end_buf, &iwe,
3390 							IW_EV_QUAL_LEN);
3391 		if (IS_ERR(current_ev))
3392 			return current_ev;
3393 	}
3394 
3395 	memset(&iwe, 0, sizeof(iwe));
3396 	iwe.cmd = SIOCGIWENCODE;
3397 	if (bss->pub.capability & WLAN_CAPABILITY_PRIVACY)
3398 		iwe.u.data.flags = IW_ENCODE_ENABLED | IW_ENCODE_NOKEY;
3399 	else
3400 		iwe.u.data.flags = IW_ENCODE_DISABLED;
3401 	iwe.u.data.length = 0;
3402 	current_ev = iwe_stream_add_point_check(info, current_ev, end_buf,
3403 						&iwe, "");
3404 	if (IS_ERR(current_ev))
3405 		return current_ev;
3406 
3407 	rcu_read_lock();
3408 	ies = rcu_dereference(bss->pub.ies);
3409 	rem = ies->len;
3410 	ie = ies->data;
3411 
3412 	while (rem >= 2) {
3413 		/* invalid data */
3414 		if (ie[1] > rem - 2)
3415 			break;
3416 
3417 		switch (ie[0]) {
3418 		case WLAN_EID_SSID:
3419 			memset(&iwe, 0, sizeof(iwe));
3420 			iwe.cmd = SIOCGIWESSID;
3421 			iwe.u.data.length = ie[1];
3422 			iwe.u.data.flags = 1;
3423 			current_ev = iwe_stream_add_point_check(info,
3424 								current_ev,
3425 								end_buf, &iwe,
3426 								(u8 *)ie + 2);
3427 			if (IS_ERR(current_ev))
3428 				goto unlock;
3429 			break;
3430 		case WLAN_EID_MESH_ID:
3431 			memset(&iwe, 0, sizeof(iwe));
3432 			iwe.cmd = SIOCGIWESSID;
3433 			iwe.u.data.length = ie[1];
3434 			iwe.u.data.flags = 1;
3435 			current_ev = iwe_stream_add_point_check(info,
3436 								current_ev,
3437 								end_buf, &iwe,
3438 								(u8 *)ie + 2);
3439 			if (IS_ERR(current_ev))
3440 				goto unlock;
3441 			break;
3442 		case WLAN_EID_MESH_CONFIG:
3443 			ismesh = true;
3444 			if (ie[1] != sizeof(struct ieee80211_meshconf_ie))
3445 				break;
3446 			cfg = (u8 *)ie + 2;
3447 			memset(&iwe, 0, sizeof(iwe));
3448 			iwe.cmd = IWEVCUSTOM;
3449 			iwe.u.data.length = sprintf(buf,
3450 						    "Mesh Network Path Selection Protocol ID: 0x%02X",
3451 						    cfg[0]);
3452 			current_ev = iwe_stream_add_point_check(info,
3453 								current_ev,
3454 								end_buf,
3455 								&iwe, buf);
3456 			if (IS_ERR(current_ev))
3457 				goto unlock;
3458 			iwe.u.data.length = sprintf(buf,
3459 						    "Path Selection Metric ID: 0x%02X",
3460 						    cfg[1]);
3461 			current_ev = iwe_stream_add_point_check(info,
3462 								current_ev,
3463 								end_buf,
3464 								&iwe, buf);
3465 			if (IS_ERR(current_ev))
3466 				goto unlock;
3467 			iwe.u.data.length = sprintf(buf,
3468 						    "Congestion Control Mode ID: 0x%02X",
3469 						    cfg[2]);
3470 			current_ev = iwe_stream_add_point_check(info,
3471 								current_ev,
3472 								end_buf,
3473 								&iwe, buf);
3474 			if (IS_ERR(current_ev))
3475 				goto unlock;
3476 			iwe.u.data.length = sprintf(buf,
3477 						    "Synchronization ID: 0x%02X",
3478 						    cfg[3]);
3479 			current_ev = iwe_stream_add_point_check(info,
3480 								current_ev,
3481 								end_buf,
3482 								&iwe, buf);
3483 			if (IS_ERR(current_ev))
3484 				goto unlock;
3485 			iwe.u.data.length = sprintf(buf,
3486 						    "Authentication ID: 0x%02X",
3487 						    cfg[4]);
3488 			current_ev = iwe_stream_add_point_check(info,
3489 								current_ev,
3490 								end_buf,
3491 								&iwe, buf);
3492 			if (IS_ERR(current_ev))
3493 				goto unlock;
3494 			iwe.u.data.length = sprintf(buf,
3495 						    "Formation Info: 0x%02X",
3496 						    cfg[5]);
3497 			current_ev = iwe_stream_add_point_check(info,
3498 								current_ev,
3499 								end_buf,
3500 								&iwe, buf);
3501 			if (IS_ERR(current_ev))
3502 				goto unlock;
3503 			iwe.u.data.length = sprintf(buf,
3504 						    "Capabilities: 0x%02X",
3505 						    cfg[6]);
3506 			current_ev = iwe_stream_add_point_check(info,
3507 								current_ev,
3508 								end_buf,
3509 								&iwe, buf);
3510 			if (IS_ERR(current_ev))
3511 				goto unlock;
3512 			break;
3513 		case WLAN_EID_SUPP_RATES:
3514 		case WLAN_EID_EXT_SUPP_RATES:
3515 			/* display all supported rates in readable format */
3516 			p = current_ev + iwe_stream_lcp_len(info);
3517 
3518 			memset(&iwe, 0, sizeof(iwe));
3519 			iwe.cmd = SIOCGIWRATE;
3520 			/* Those two flags are ignored... */
3521 			iwe.u.bitrate.fixed = iwe.u.bitrate.disabled = 0;
3522 
3523 			for (i = 0; i < ie[1]; i++) {
3524 				iwe.u.bitrate.value =
3525 					((ie[i + 2] & 0x7f) * 500000);
3526 				tmp = p;
3527 				p = iwe_stream_add_value(info, current_ev, p,
3528 							 end_buf, &iwe,
3529 							 IW_EV_PARAM_LEN);
3530 				if (p == tmp) {
3531 					current_ev = ERR_PTR(-E2BIG);
3532 					goto unlock;
3533 				}
3534 			}
3535 			current_ev = p;
3536 			break;
3537 		}
3538 		rem -= ie[1] + 2;
3539 		ie += ie[1] + 2;
3540 	}
3541 
3542 	if (bss->pub.capability & (WLAN_CAPABILITY_ESS | WLAN_CAPABILITY_IBSS) ||
3543 	    ismesh) {
3544 		memset(&iwe, 0, sizeof(iwe));
3545 		iwe.cmd = SIOCGIWMODE;
3546 		if (ismesh)
3547 			iwe.u.mode = IW_MODE_MESH;
3548 		else if (bss->pub.capability & WLAN_CAPABILITY_ESS)
3549 			iwe.u.mode = IW_MODE_MASTER;
3550 		else
3551 			iwe.u.mode = IW_MODE_ADHOC;
3552 		current_ev = iwe_stream_add_event_check(info, current_ev,
3553 							end_buf, &iwe,
3554 							IW_EV_UINT_LEN);
3555 		if (IS_ERR(current_ev))
3556 			goto unlock;
3557 	}
3558 
3559 	memset(&iwe, 0, sizeof(iwe));
3560 	iwe.cmd = IWEVCUSTOM;
3561 	iwe.u.data.length = sprintf(buf, "tsf=%016llx",
3562 				    (unsigned long long)(ies->tsf));
3563 	current_ev = iwe_stream_add_point_check(info, current_ev, end_buf,
3564 						&iwe, buf);
3565 	if (IS_ERR(current_ev))
3566 		goto unlock;
3567 	memset(&iwe, 0, sizeof(iwe));
3568 	iwe.cmd = IWEVCUSTOM;
3569 	iwe.u.data.length = sprintf(buf, " Last beacon: %ums ago",
3570 				    elapsed_jiffies_msecs(bss->ts));
3571 	current_ev = iwe_stream_add_point_check(info, current_ev,
3572 						end_buf, &iwe, buf);
3573 	if (IS_ERR(current_ev))
3574 		goto unlock;
3575 
3576 	current_ev = ieee80211_scan_add_ies(info, ies, current_ev, end_buf);
3577 
3578  unlock:
3579 	rcu_read_unlock();
3580 	return current_ev;
3581 }
3582 
3583 
3584 static int ieee80211_scan_results(struct cfg80211_registered_device *rdev,
3585 				  struct iw_request_info *info,
3586 				  char *buf, size_t len)
3587 {
3588 	char *current_ev = buf;
3589 	char *end_buf = buf + len;
3590 	struct cfg80211_internal_bss *bss;
3591 	int err = 0;
3592 
3593 	spin_lock_bh(&rdev->bss_lock);
3594 	cfg80211_bss_expire(rdev);
3595 
3596 	list_for_each_entry(bss, &rdev->bss_list, list) {
3597 		if (buf + len - current_ev <= IW_EV_ADDR_LEN) {
3598 			err = -E2BIG;
3599 			break;
3600 		}
3601 		current_ev = ieee80211_bss(&rdev->wiphy, info, bss,
3602 					   current_ev, end_buf);
3603 		if (IS_ERR(current_ev)) {
3604 			err = PTR_ERR(current_ev);
3605 			break;
3606 		}
3607 	}
3608 	spin_unlock_bh(&rdev->bss_lock);
3609 
3610 	if (err)
3611 		return err;
3612 	return current_ev - buf;
3613 }
3614 
3615 
3616 int cfg80211_wext_giwscan(struct net_device *dev,
3617 			  struct iw_request_info *info,
3618 			  union iwreq_data *wrqu, char *extra)
3619 {
3620 	struct iw_point *data = &wrqu->data;
3621 	struct cfg80211_registered_device *rdev;
3622 	int res;
3623 
3624 	if (!netif_running(dev))
3625 		return -ENETDOWN;
3626 
3627 	rdev = cfg80211_get_dev_from_ifindex(dev_net(dev), dev->ifindex);
3628 
3629 	if (IS_ERR(rdev))
3630 		return PTR_ERR(rdev);
3631 
3632 	if (rdev->scan_req || rdev->scan_msg)
3633 		return -EAGAIN;
3634 
3635 	res = ieee80211_scan_results(rdev, info, extra, data->length);
3636 	data->length = 0;
3637 	if (res >= 0) {
3638 		data->length = res;
3639 		res = 0;
3640 	}
3641 
3642 	return res;
3643 }
3644 EXPORT_WEXT_HANDLER(cfg80211_wext_giwscan);
3645 #endif
3646