xref: /linux/net/wireless/scan.c (revision dacef016c088f8f69fe1e6e5feab3543df3dab83)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * cfg80211 scan result handling
4  *
5  * Copyright 2008 Johannes Berg <johannes@sipsolutions.net>
6  * Copyright 2013-2014  Intel Mobile Communications GmbH
7  * Copyright 2016	Intel Deutschland GmbH
8  * Copyright (C) 2018-2021 Intel Corporation
9  */
10 #include <linux/kernel.h>
11 #include <linux/slab.h>
12 #include <linux/module.h>
13 #include <linux/netdevice.h>
14 #include <linux/wireless.h>
15 #include <linux/nl80211.h>
16 #include <linux/etherdevice.h>
17 #include <linux/crc32.h>
18 #include <linux/bitfield.h>
19 #include <net/arp.h>
20 #include <net/cfg80211.h>
21 #include <net/cfg80211-wext.h>
22 #include <net/iw_handler.h>
23 #include "core.h"
24 #include "nl80211.h"
25 #include "wext-compat.h"
26 #include "rdev-ops.h"
27 
28 /**
29  * DOC: BSS tree/list structure
30  *
31  * At the top level, the BSS list is kept in both a list in each
32  * registered device (@bss_list) as well as an RB-tree for faster
33  * lookup. In the RB-tree, entries can be looked up using their
34  * channel, MESHID, MESHCONF (for MBSSes) or channel, BSSID, SSID
35  * for other BSSes.
36  *
37  * Due to the possibility of hidden SSIDs, there's a second level
38  * structure, the "hidden_list" and "hidden_beacon_bss" pointer.
39  * The hidden_list connects all BSSes belonging to a single AP
40  * that has a hidden SSID, and connects beacon and probe response
41  * entries. For a probe response entry for a hidden SSID, the
42  * hidden_beacon_bss pointer points to the BSS struct holding the
43  * beacon's information.
44  *
45  * Reference counting is done for all these references except for
46  * the hidden_list, so that a beacon BSS struct that is otherwise
47  * not referenced has one reference for being on the bss_list and
48  * one for each probe response entry that points to it using the
49  * hidden_beacon_bss pointer. When a BSS struct that has such a
50  * pointer is get/put, the refcount update is also propagated to
51  * the referenced struct, this ensure that it cannot get removed
52  * while somebody is using the probe response version.
53  *
54  * Note that the hidden_beacon_bss pointer never changes, due to
55  * the reference counting. Therefore, no locking is needed for
56  * it.
57  *
58  * Also note that the hidden_beacon_bss pointer is only relevant
59  * if the driver uses something other than the IEs, e.g. private
60  * data stored in the BSS struct, since the beacon IEs are
61  * also linked into the probe response struct.
62  */
63 
64 /*
65  * Limit the number of BSS entries stored in mac80211. Each one is
66  * a bit over 4k at most, so this limits to roughly 4-5M of memory.
67  * If somebody wants to really attack this though, they'd likely
68  * use small beacons, and only one type of frame, limiting each of
69  * the entries to a much smaller size (in order to generate more
70  * entries in total, so overhead is bigger.)
71  */
72 static int bss_entries_limit = 1000;
73 module_param(bss_entries_limit, int, 0644);
74 MODULE_PARM_DESC(bss_entries_limit,
75                  "limit to number of scan BSS entries (per wiphy, default 1000)");
76 
77 #define IEEE80211_SCAN_RESULT_EXPIRE	(30 * HZ)
78 
79 /**
80  * struct cfg80211_colocated_ap - colocated AP information
81  *
82  * @list: linked list to all colocated aPS
83  * @bssid: BSSID of the reported AP
84  * @ssid: SSID of the reported AP
85  * @ssid_len: length of the ssid
86  * @center_freq: frequency the reported AP is on
87  * @unsolicited_probe: the reported AP is part of an ESS, where all the APs
88  *	that operate in the same channel as the reported AP and that might be
89  *	detected by a STA receiving this frame, are transmitting unsolicited
90  *	Probe Response frames every 20 TUs
91  * @oct_recommended: OCT is recommended to exchange MMPDUs with the reported AP
92  * @same_ssid: the reported AP has the same SSID as the reporting AP
93  * @multi_bss: the reported AP is part of a multiple BSSID set
94  * @transmitted_bssid: the reported AP is the transmitting BSSID
95  * @colocated_ess: all the APs that share the same ESS as the reported AP are
96  *	colocated and can be discovered via legacy bands.
97  * @short_ssid_valid: short_ssid is valid and can be used
98  * @short_ssid: the short SSID for this SSID
99  */
100 struct cfg80211_colocated_ap {
101 	struct list_head list;
102 	u8 bssid[ETH_ALEN];
103 	u8 ssid[IEEE80211_MAX_SSID_LEN];
104 	size_t ssid_len;
105 	u32 short_ssid;
106 	u32 center_freq;
107 	u8 unsolicited_probe:1,
108 	   oct_recommended:1,
109 	   same_ssid:1,
110 	   multi_bss:1,
111 	   transmitted_bssid:1,
112 	   colocated_ess:1,
113 	   short_ssid_valid:1;
114 };
115 
116 static void bss_free(struct cfg80211_internal_bss *bss)
117 {
118 	struct cfg80211_bss_ies *ies;
119 
120 	if (WARN_ON(atomic_read(&bss->hold)))
121 		return;
122 
123 	ies = (void *)rcu_access_pointer(bss->pub.beacon_ies);
124 	if (ies && !bss->pub.hidden_beacon_bss)
125 		kfree_rcu(ies, rcu_head);
126 	ies = (void *)rcu_access_pointer(bss->pub.proberesp_ies);
127 	if (ies)
128 		kfree_rcu(ies, rcu_head);
129 
130 	/*
131 	 * This happens when the module is removed, it doesn't
132 	 * really matter any more save for completeness
133 	 */
134 	if (!list_empty(&bss->hidden_list))
135 		list_del(&bss->hidden_list);
136 
137 	kfree(bss);
138 }
139 
140 static inline void bss_ref_get(struct cfg80211_registered_device *rdev,
141 			       struct cfg80211_internal_bss *bss)
142 {
143 	lockdep_assert_held(&rdev->bss_lock);
144 
145 	bss->refcount++;
146 	if (bss->pub.hidden_beacon_bss) {
147 		bss = container_of(bss->pub.hidden_beacon_bss,
148 				   struct cfg80211_internal_bss,
149 				   pub);
150 		bss->refcount++;
151 	}
152 	if (bss->pub.transmitted_bss) {
153 		bss = container_of(bss->pub.transmitted_bss,
154 				   struct cfg80211_internal_bss,
155 				   pub);
156 		bss->refcount++;
157 	}
158 }
159 
160 static inline void bss_ref_put(struct cfg80211_registered_device *rdev,
161 			       struct cfg80211_internal_bss *bss)
162 {
163 	lockdep_assert_held(&rdev->bss_lock);
164 
165 	if (bss->pub.hidden_beacon_bss) {
166 		struct cfg80211_internal_bss *hbss;
167 		hbss = container_of(bss->pub.hidden_beacon_bss,
168 				    struct cfg80211_internal_bss,
169 				    pub);
170 		hbss->refcount--;
171 		if (hbss->refcount == 0)
172 			bss_free(hbss);
173 	}
174 
175 	if (bss->pub.transmitted_bss) {
176 		struct cfg80211_internal_bss *tbss;
177 
178 		tbss = container_of(bss->pub.transmitted_bss,
179 				    struct cfg80211_internal_bss,
180 				    pub);
181 		tbss->refcount--;
182 		if (tbss->refcount == 0)
183 			bss_free(tbss);
184 	}
185 
186 	bss->refcount--;
187 	if (bss->refcount == 0)
188 		bss_free(bss);
189 }
190 
191 static bool __cfg80211_unlink_bss(struct cfg80211_registered_device *rdev,
192 				  struct cfg80211_internal_bss *bss)
193 {
194 	lockdep_assert_held(&rdev->bss_lock);
195 
196 	if (!list_empty(&bss->hidden_list)) {
197 		/*
198 		 * don't remove the beacon entry if it has
199 		 * probe responses associated with it
200 		 */
201 		if (!bss->pub.hidden_beacon_bss)
202 			return false;
203 		/*
204 		 * if it's a probe response entry break its
205 		 * link to the other entries in the group
206 		 */
207 		list_del_init(&bss->hidden_list);
208 	}
209 
210 	list_del_init(&bss->list);
211 	list_del_init(&bss->pub.nontrans_list);
212 	rb_erase(&bss->rbn, &rdev->bss_tree);
213 	rdev->bss_entries--;
214 	WARN_ONCE((rdev->bss_entries == 0) ^ list_empty(&rdev->bss_list),
215 		  "rdev bss entries[%d]/list[empty:%d] corruption\n",
216 		  rdev->bss_entries, list_empty(&rdev->bss_list));
217 	bss_ref_put(rdev, bss);
218 	return true;
219 }
220 
221 bool cfg80211_is_element_inherited(const struct element *elem,
222 				   const struct element *non_inherit_elem)
223 {
224 	u8 id_len, ext_id_len, i, loop_len, id;
225 	const u8 *list;
226 
227 	if (elem->id == WLAN_EID_MULTIPLE_BSSID)
228 		return false;
229 
230 	if (!non_inherit_elem || non_inherit_elem->datalen < 2)
231 		return true;
232 
233 	/*
234 	 * non inheritance element format is:
235 	 * ext ID (56) | IDs list len | list | extension IDs list len | list
236 	 * Both lists are optional. Both lengths are mandatory.
237 	 * This means valid length is:
238 	 * elem_len = 1 (extension ID) + 2 (list len fields) + list lengths
239 	 */
240 	id_len = non_inherit_elem->data[1];
241 	if (non_inherit_elem->datalen < 3 + id_len)
242 		return true;
243 
244 	ext_id_len = non_inherit_elem->data[2 + id_len];
245 	if (non_inherit_elem->datalen < 3 + id_len + ext_id_len)
246 		return true;
247 
248 	if (elem->id == WLAN_EID_EXTENSION) {
249 		if (!ext_id_len)
250 			return true;
251 		loop_len = ext_id_len;
252 		list = &non_inherit_elem->data[3 + id_len];
253 		id = elem->data[0];
254 	} else {
255 		if (!id_len)
256 			return true;
257 		loop_len = id_len;
258 		list = &non_inherit_elem->data[2];
259 		id = elem->id;
260 	}
261 
262 	for (i = 0; i < loop_len; i++) {
263 		if (list[i] == id)
264 			return false;
265 	}
266 
267 	return true;
268 }
269 EXPORT_SYMBOL(cfg80211_is_element_inherited);
270 
271 static size_t cfg80211_gen_new_ie(const u8 *ie, size_t ielen,
272 				  const u8 *subelement, size_t subie_len,
273 				  u8 *new_ie, gfp_t gfp)
274 {
275 	u8 *pos, *tmp;
276 	const u8 *tmp_old, *tmp_new;
277 	const struct element *non_inherit_elem;
278 	u8 *sub_copy;
279 
280 	/* copy subelement as we need to change its content to
281 	 * mark an ie after it is processed.
282 	 */
283 	sub_copy = kmemdup(subelement, subie_len, gfp);
284 	if (!sub_copy)
285 		return 0;
286 
287 	pos = &new_ie[0];
288 
289 	/* set new ssid */
290 	tmp_new = cfg80211_find_ie(WLAN_EID_SSID, sub_copy, subie_len);
291 	if (tmp_new) {
292 		memcpy(pos, tmp_new, tmp_new[1] + 2);
293 		pos += (tmp_new[1] + 2);
294 	}
295 
296 	/* get non inheritance list if exists */
297 	non_inherit_elem =
298 		cfg80211_find_ext_elem(WLAN_EID_EXT_NON_INHERITANCE,
299 				       sub_copy, subie_len);
300 
301 	/* go through IEs in ie (skip SSID) and subelement,
302 	 * merge them into new_ie
303 	 */
304 	tmp_old = cfg80211_find_ie(WLAN_EID_SSID, ie, ielen);
305 	tmp_old = (tmp_old) ? tmp_old + tmp_old[1] + 2 : ie;
306 
307 	while (tmp_old + tmp_old[1] + 2 - ie <= ielen) {
308 		if (tmp_old[0] == 0) {
309 			tmp_old++;
310 			continue;
311 		}
312 
313 		if (tmp_old[0] == WLAN_EID_EXTENSION)
314 			tmp = (u8 *)cfg80211_find_ext_ie(tmp_old[2], sub_copy,
315 							 subie_len);
316 		else
317 			tmp = (u8 *)cfg80211_find_ie(tmp_old[0], sub_copy,
318 						     subie_len);
319 
320 		if (!tmp) {
321 			const struct element *old_elem = (void *)tmp_old;
322 
323 			/* ie in old ie but not in subelement */
324 			if (cfg80211_is_element_inherited(old_elem,
325 							  non_inherit_elem)) {
326 				memcpy(pos, tmp_old, tmp_old[1] + 2);
327 				pos += tmp_old[1] + 2;
328 			}
329 		} else {
330 			/* ie in transmitting ie also in subelement,
331 			 * copy from subelement and flag the ie in subelement
332 			 * as copied (by setting eid field to WLAN_EID_SSID,
333 			 * which is skipped anyway).
334 			 * For vendor ie, compare OUI + type + subType to
335 			 * determine if they are the same ie.
336 			 */
337 			if (tmp_old[0] == WLAN_EID_VENDOR_SPECIFIC) {
338 				if (!memcmp(tmp_old + 2, tmp + 2, 5)) {
339 					/* same vendor ie, copy from
340 					 * subelement
341 					 */
342 					memcpy(pos, tmp, tmp[1] + 2);
343 					pos += tmp[1] + 2;
344 					tmp[0] = WLAN_EID_SSID;
345 				} else {
346 					memcpy(pos, tmp_old, tmp_old[1] + 2);
347 					pos += tmp_old[1] + 2;
348 				}
349 			} else {
350 				/* copy ie from subelement into new ie */
351 				memcpy(pos, tmp, tmp[1] + 2);
352 				pos += tmp[1] + 2;
353 				tmp[0] = WLAN_EID_SSID;
354 			}
355 		}
356 
357 		if (tmp_old + tmp_old[1] + 2 - ie == ielen)
358 			break;
359 
360 		tmp_old += tmp_old[1] + 2;
361 	}
362 
363 	/* go through subelement again to check if there is any ie not
364 	 * copied to new ie, skip ssid, capability, bssid-index ie
365 	 */
366 	tmp_new = sub_copy;
367 	while (tmp_new + tmp_new[1] + 2 - sub_copy <= subie_len) {
368 		if (!(tmp_new[0] == WLAN_EID_NON_TX_BSSID_CAP ||
369 		      tmp_new[0] == WLAN_EID_SSID)) {
370 			memcpy(pos, tmp_new, tmp_new[1] + 2);
371 			pos += tmp_new[1] + 2;
372 		}
373 		if (tmp_new + tmp_new[1] + 2 - sub_copy == subie_len)
374 			break;
375 		tmp_new += tmp_new[1] + 2;
376 	}
377 
378 	kfree(sub_copy);
379 	return pos - new_ie;
380 }
381 
382 static bool is_bss(struct cfg80211_bss *a, const u8 *bssid,
383 		   const u8 *ssid, size_t ssid_len)
384 {
385 	const struct cfg80211_bss_ies *ies;
386 	const struct element *ssid_elem;
387 
388 	if (bssid && !ether_addr_equal(a->bssid, bssid))
389 		return false;
390 
391 	if (!ssid)
392 		return true;
393 
394 	ies = rcu_access_pointer(a->ies);
395 	if (!ies)
396 		return false;
397 	ssid_elem = cfg80211_find_elem(WLAN_EID_SSID, ies->data, ies->len);
398 	if (!ssid_elem)
399 		return false;
400 	if (ssid_elem->datalen != ssid_len)
401 		return false;
402 	return memcmp(ssid_elem->data, ssid, ssid_len) == 0;
403 }
404 
405 static int
406 cfg80211_add_nontrans_list(struct cfg80211_bss *trans_bss,
407 			   struct cfg80211_bss *nontrans_bss)
408 {
409 	const u8 *ssid;
410 	size_t ssid_len;
411 	struct cfg80211_bss *bss = NULL;
412 
413 	rcu_read_lock();
414 	ssid = ieee80211_bss_get_ie(nontrans_bss, WLAN_EID_SSID);
415 	if (!ssid) {
416 		rcu_read_unlock();
417 		return -EINVAL;
418 	}
419 	ssid_len = ssid[1];
420 	ssid = ssid + 2;
421 
422 	/* check if nontrans_bss is in the list */
423 	list_for_each_entry(bss, &trans_bss->nontrans_list, nontrans_list) {
424 		if (is_bss(bss, nontrans_bss->bssid, ssid, ssid_len)) {
425 			rcu_read_unlock();
426 			return 0;
427 		}
428 	}
429 
430 	rcu_read_unlock();
431 
432 	/* add to the list */
433 	list_add_tail(&nontrans_bss->nontrans_list, &trans_bss->nontrans_list);
434 	return 0;
435 }
436 
437 static void __cfg80211_bss_expire(struct cfg80211_registered_device *rdev,
438 				  unsigned long expire_time)
439 {
440 	struct cfg80211_internal_bss *bss, *tmp;
441 	bool expired = false;
442 
443 	lockdep_assert_held(&rdev->bss_lock);
444 
445 	list_for_each_entry_safe(bss, tmp, &rdev->bss_list, list) {
446 		if (atomic_read(&bss->hold))
447 			continue;
448 		if (!time_after(expire_time, bss->ts))
449 			continue;
450 
451 		if (__cfg80211_unlink_bss(rdev, bss))
452 			expired = true;
453 	}
454 
455 	if (expired)
456 		rdev->bss_generation++;
457 }
458 
459 static bool cfg80211_bss_expire_oldest(struct cfg80211_registered_device *rdev)
460 {
461 	struct cfg80211_internal_bss *bss, *oldest = NULL;
462 	bool ret;
463 
464 	lockdep_assert_held(&rdev->bss_lock);
465 
466 	list_for_each_entry(bss, &rdev->bss_list, list) {
467 		if (atomic_read(&bss->hold))
468 			continue;
469 
470 		if (!list_empty(&bss->hidden_list) &&
471 		    !bss->pub.hidden_beacon_bss)
472 			continue;
473 
474 		if (oldest && time_before(oldest->ts, bss->ts))
475 			continue;
476 		oldest = bss;
477 	}
478 
479 	if (WARN_ON(!oldest))
480 		return false;
481 
482 	/*
483 	 * The callers make sure to increase rdev->bss_generation if anything
484 	 * gets removed (and a new entry added), so there's no need to also do
485 	 * it here.
486 	 */
487 
488 	ret = __cfg80211_unlink_bss(rdev, oldest);
489 	WARN_ON(!ret);
490 	return ret;
491 }
492 
493 static u8 cfg80211_parse_bss_param(u8 data,
494 				   struct cfg80211_colocated_ap *coloc_ap)
495 {
496 	coloc_ap->oct_recommended =
497 		u8_get_bits(data, IEEE80211_RNR_TBTT_PARAMS_OCT_RECOMMENDED);
498 	coloc_ap->same_ssid =
499 		u8_get_bits(data, IEEE80211_RNR_TBTT_PARAMS_SAME_SSID);
500 	coloc_ap->multi_bss =
501 		u8_get_bits(data, IEEE80211_RNR_TBTT_PARAMS_MULTI_BSSID);
502 	coloc_ap->transmitted_bssid =
503 		u8_get_bits(data, IEEE80211_RNR_TBTT_PARAMS_TRANSMITTED_BSSID);
504 	coloc_ap->unsolicited_probe =
505 		u8_get_bits(data, IEEE80211_RNR_TBTT_PARAMS_PROBE_ACTIVE);
506 	coloc_ap->colocated_ess =
507 		u8_get_bits(data, IEEE80211_RNR_TBTT_PARAMS_COLOC_ESS);
508 
509 	return u8_get_bits(data, IEEE80211_RNR_TBTT_PARAMS_COLOC_AP);
510 }
511 
512 static int cfg80211_calc_short_ssid(const struct cfg80211_bss_ies *ies,
513 				    const struct element **elem, u32 *s_ssid)
514 {
515 
516 	*elem = cfg80211_find_elem(WLAN_EID_SSID, ies->data, ies->len);
517 	if (!*elem || (*elem)->datalen > IEEE80211_MAX_SSID_LEN)
518 		return -EINVAL;
519 
520 	*s_ssid = ~crc32_le(~0, (*elem)->data, (*elem)->datalen);
521 	return 0;
522 }
523 
524 static void cfg80211_free_coloc_ap_list(struct list_head *coloc_ap_list)
525 {
526 	struct cfg80211_colocated_ap *ap, *tmp_ap;
527 
528 	list_for_each_entry_safe(ap, tmp_ap, coloc_ap_list, list) {
529 		list_del(&ap->list);
530 		kfree(ap);
531 	}
532 }
533 
534 static int cfg80211_parse_ap_info(struct cfg80211_colocated_ap *entry,
535 				  const u8 *pos, u8 length,
536 				  const struct element *ssid_elem,
537 				  int s_ssid_tmp)
538 {
539 	/* skip the TBTT offset */
540 	pos++;
541 
542 	memcpy(entry->bssid, pos, ETH_ALEN);
543 	pos += ETH_ALEN;
544 
545 	if (length == IEEE80211_TBTT_INFO_OFFSET_BSSID_SSSID_BSS_PARAM) {
546 		memcpy(&entry->short_ssid, pos,
547 		       sizeof(entry->short_ssid));
548 		entry->short_ssid_valid = true;
549 		pos += 4;
550 	}
551 
552 	/* skip non colocated APs */
553 	if (!cfg80211_parse_bss_param(*pos, entry))
554 		return -EINVAL;
555 	pos++;
556 
557 	if (length == IEEE80211_TBTT_INFO_OFFSET_BSSID_BSS_PARAM) {
558 		/*
559 		 * no information about the short ssid. Consider the entry valid
560 		 * for now. It would later be dropped in case there are explicit
561 		 * SSIDs that need to be matched
562 		 */
563 		if (!entry->same_ssid)
564 			return 0;
565 	}
566 
567 	if (entry->same_ssid) {
568 		entry->short_ssid = s_ssid_tmp;
569 		entry->short_ssid_valid = true;
570 
571 		/*
572 		 * This is safe because we validate datalen in
573 		 * cfg80211_parse_colocated_ap(), before calling this
574 		 * function.
575 		 */
576 		memcpy(&entry->ssid, &ssid_elem->data,
577 		       ssid_elem->datalen);
578 		entry->ssid_len = ssid_elem->datalen;
579 	}
580 	return 0;
581 }
582 
583 static int cfg80211_parse_colocated_ap(const struct cfg80211_bss_ies *ies,
584 				       struct list_head *list)
585 {
586 	struct ieee80211_neighbor_ap_info *ap_info;
587 	const struct element *elem, *ssid_elem;
588 	const u8 *pos, *end;
589 	u32 s_ssid_tmp;
590 	int n_coloc = 0, ret;
591 	LIST_HEAD(ap_list);
592 
593 	elem = cfg80211_find_elem(WLAN_EID_REDUCED_NEIGHBOR_REPORT, ies->data,
594 				  ies->len);
595 	if (!elem)
596 		return 0;
597 
598 	pos = elem->data;
599 	end = pos + elem->datalen;
600 
601 	ret = cfg80211_calc_short_ssid(ies, &ssid_elem, &s_ssid_tmp);
602 	if (ret)
603 		return ret;
604 
605 	/* RNR IE may contain more than one NEIGHBOR_AP_INFO */
606 	while (pos + sizeof(*ap_info) <= end) {
607 		enum nl80211_band band;
608 		int freq;
609 		u8 length, i, count;
610 
611 		ap_info = (void *)pos;
612 		count = u8_get_bits(ap_info->tbtt_info_hdr,
613 				    IEEE80211_AP_INFO_TBTT_HDR_COUNT) + 1;
614 		length = ap_info->tbtt_info_len;
615 
616 		pos += sizeof(*ap_info);
617 
618 		if (!ieee80211_operating_class_to_band(ap_info->op_class,
619 						       &band))
620 			break;
621 
622 		freq = ieee80211_channel_to_frequency(ap_info->channel, band);
623 
624 		if (end - pos < count * length)
625 			break;
626 
627 		/*
628 		 * TBTT info must include bss param + BSSID +
629 		 * (short SSID or same_ssid bit to be set).
630 		 * ignore other options, and move to the
631 		 * next AP info
632 		 */
633 		if (band != NL80211_BAND_6GHZ ||
634 		    (length != IEEE80211_TBTT_INFO_OFFSET_BSSID_BSS_PARAM &&
635 		     length < IEEE80211_TBTT_INFO_OFFSET_BSSID_SSSID_BSS_PARAM)) {
636 			pos += count * length;
637 			continue;
638 		}
639 
640 		for (i = 0; i < count; i++) {
641 			struct cfg80211_colocated_ap *entry;
642 
643 			entry = kzalloc(sizeof(*entry) + IEEE80211_MAX_SSID_LEN,
644 					GFP_ATOMIC);
645 
646 			if (!entry)
647 				break;
648 
649 			entry->center_freq = freq;
650 
651 			if (!cfg80211_parse_ap_info(entry, pos, length,
652 						    ssid_elem, s_ssid_tmp)) {
653 				n_coloc++;
654 				list_add_tail(&entry->list, &ap_list);
655 			} else {
656 				kfree(entry);
657 			}
658 
659 			pos += length;
660 		}
661 	}
662 
663 	if (pos != end) {
664 		cfg80211_free_coloc_ap_list(&ap_list);
665 		return 0;
666 	}
667 
668 	list_splice_tail(&ap_list, list);
669 	return n_coloc;
670 }
671 
672 static  void cfg80211_scan_req_add_chan(struct cfg80211_scan_request *request,
673 					struct ieee80211_channel *chan,
674 					bool add_to_6ghz)
675 {
676 	int i;
677 	u32 n_channels = request->n_channels;
678 	struct cfg80211_scan_6ghz_params *params =
679 		&request->scan_6ghz_params[request->n_6ghz_params];
680 
681 	for (i = 0; i < n_channels; i++) {
682 		if (request->channels[i] == chan) {
683 			if (add_to_6ghz)
684 				params->channel_idx = i;
685 			return;
686 		}
687 	}
688 
689 	request->channels[n_channels] = chan;
690 	if (add_to_6ghz)
691 		request->scan_6ghz_params[request->n_6ghz_params].channel_idx =
692 			n_channels;
693 
694 	request->n_channels++;
695 }
696 
697 static bool cfg80211_find_ssid_match(struct cfg80211_colocated_ap *ap,
698 				     struct cfg80211_scan_request *request)
699 {
700 	int i;
701 	u32 s_ssid;
702 
703 	for (i = 0; i < request->n_ssids; i++) {
704 		/* wildcard ssid in the scan request */
705 		if (!request->ssids[i].ssid_len)
706 			return true;
707 
708 		if (ap->ssid_len &&
709 		    ap->ssid_len == request->ssids[i].ssid_len) {
710 			if (!memcmp(request->ssids[i].ssid, ap->ssid,
711 				    ap->ssid_len))
712 				return true;
713 		} else if (ap->short_ssid_valid) {
714 			s_ssid = ~crc32_le(~0, request->ssids[i].ssid,
715 					   request->ssids[i].ssid_len);
716 
717 			if (ap->short_ssid == s_ssid)
718 				return true;
719 		}
720 	}
721 
722 	return false;
723 }
724 
725 static int cfg80211_scan_6ghz(struct cfg80211_registered_device *rdev)
726 {
727 	u8 i;
728 	struct cfg80211_colocated_ap *ap;
729 	int n_channels, count = 0, err;
730 	struct cfg80211_scan_request *request, *rdev_req = rdev->scan_req;
731 	LIST_HEAD(coloc_ap_list);
732 	bool need_scan_psc = true;
733 	const struct ieee80211_sband_iftype_data *iftd;
734 
735 	rdev_req->scan_6ghz = true;
736 
737 	if (!rdev->wiphy.bands[NL80211_BAND_6GHZ])
738 		return -EOPNOTSUPP;
739 
740 	iftd = ieee80211_get_sband_iftype_data(rdev->wiphy.bands[NL80211_BAND_6GHZ],
741 					       rdev_req->wdev->iftype);
742 	if (!iftd || !iftd->he_cap.has_he)
743 		return -EOPNOTSUPP;
744 
745 	n_channels = rdev->wiphy.bands[NL80211_BAND_6GHZ]->n_channels;
746 
747 	if (rdev_req->flags & NL80211_SCAN_FLAG_COLOCATED_6GHZ) {
748 		struct cfg80211_internal_bss *intbss;
749 
750 		spin_lock_bh(&rdev->bss_lock);
751 		list_for_each_entry(intbss, &rdev->bss_list, list) {
752 			struct cfg80211_bss *res = &intbss->pub;
753 			const struct cfg80211_bss_ies *ies;
754 
755 			ies = rcu_access_pointer(res->ies);
756 			count += cfg80211_parse_colocated_ap(ies,
757 							     &coloc_ap_list);
758 		}
759 		spin_unlock_bh(&rdev->bss_lock);
760 	}
761 
762 	request = kzalloc(struct_size(request, channels, n_channels) +
763 			  sizeof(*request->scan_6ghz_params) * count +
764 			  sizeof(*request->ssids) * rdev_req->n_ssids,
765 			  GFP_KERNEL);
766 	if (!request) {
767 		cfg80211_free_coloc_ap_list(&coloc_ap_list);
768 		return -ENOMEM;
769 	}
770 
771 	*request = *rdev_req;
772 	request->n_channels = 0;
773 	request->scan_6ghz_params =
774 		(void *)&request->channels[n_channels];
775 
776 	/*
777 	 * PSC channels should not be scanned in case of direct scan with 1 SSID
778 	 * and at least one of the reported co-located APs with same SSID
779 	 * indicating that all APs in the same ESS are co-located
780 	 */
781 	if (count && request->n_ssids == 1 && request->ssids[0].ssid_len) {
782 		list_for_each_entry(ap, &coloc_ap_list, list) {
783 			if (ap->colocated_ess &&
784 			    cfg80211_find_ssid_match(ap, request)) {
785 				need_scan_psc = false;
786 				break;
787 			}
788 		}
789 	}
790 
791 	/*
792 	 * add to the scan request the channels that need to be scanned
793 	 * regardless of the collocated APs (PSC channels or all channels
794 	 * in case that NL80211_SCAN_FLAG_COLOCATED_6GHZ is not set)
795 	 */
796 	for (i = 0; i < rdev_req->n_channels; i++) {
797 		if (rdev_req->channels[i]->band == NL80211_BAND_6GHZ &&
798 		    ((need_scan_psc &&
799 		      cfg80211_channel_is_psc(rdev_req->channels[i])) ||
800 		     !(rdev_req->flags & NL80211_SCAN_FLAG_COLOCATED_6GHZ))) {
801 			cfg80211_scan_req_add_chan(request,
802 						   rdev_req->channels[i],
803 						   false);
804 		}
805 	}
806 
807 	if (!(rdev_req->flags & NL80211_SCAN_FLAG_COLOCATED_6GHZ))
808 		goto skip;
809 
810 	list_for_each_entry(ap, &coloc_ap_list, list) {
811 		bool found = false;
812 		struct cfg80211_scan_6ghz_params *scan_6ghz_params =
813 			&request->scan_6ghz_params[request->n_6ghz_params];
814 		struct ieee80211_channel *chan =
815 			ieee80211_get_channel(&rdev->wiphy, ap->center_freq);
816 
817 		if (!chan || chan->flags & IEEE80211_CHAN_DISABLED)
818 			continue;
819 
820 		for (i = 0; i < rdev_req->n_channels; i++) {
821 			if (rdev_req->channels[i] == chan)
822 				found = true;
823 		}
824 
825 		if (!found)
826 			continue;
827 
828 		if (request->n_ssids > 0 &&
829 		    !cfg80211_find_ssid_match(ap, request))
830 			continue;
831 
832 		cfg80211_scan_req_add_chan(request, chan, true);
833 		memcpy(scan_6ghz_params->bssid, ap->bssid, ETH_ALEN);
834 		scan_6ghz_params->short_ssid = ap->short_ssid;
835 		scan_6ghz_params->short_ssid_valid = ap->short_ssid_valid;
836 		scan_6ghz_params->unsolicited_probe = ap->unsolicited_probe;
837 
838 		/*
839 		 * If a PSC channel is added to the scan and 'need_scan_psc' is
840 		 * set to false, then all the APs that the scan logic is
841 		 * interested with on the channel are collocated and thus there
842 		 * is no need to perform the initial PSC channel listen.
843 		 */
844 		if (cfg80211_channel_is_psc(chan) && !need_scan_psc)
845 			scan_6ghz_params->psc_no_listen = true;
846 
847 		request->n_6ghz_params++;
848 	}
849 
850 skip:
851 	cfg80211_free_coloc_ap_list(&coloc_ap_list);
852 
853 	if (request->n_channels) {
854 		struct cfg80211_scan_request *old = rdev->int_scan_req;
855 		rdev->int_scan_req = request;
856 
857 		/*
858 		 * Add the ssids from the parent scan request to the new scan
859 		 * request, so the driver would be able to use them in its
860 		 * probe requests to discover hidden APs on PSC channels.
861 		 */
862 		request->ssids = (void *)&request->channels[request->n_channels];
863 		request->n_ssids = rdev_req->n_ssids;
864 		memcpy(request->ssids, rdev_req->ssids, sizeof(*request->ssids) *
865 		       request->n_ssids);
866 
867 		/*
868 		 * If this scan follows a previous scan, save the scan start
869 		 * info from the first part of the scan
870 		 */
871 		if (old)
872 			rdev->int_scan_req->info = old->info;
873 
874 		err = rdev_scan(rdev, request);
875 		if (err) {
876 			rdev->int_scan_req = old;
877 			kfree(request);
878 		} else {
879 			kfree(old);
880 		}
881 
882 		return err;
883 	}
884 
885 	kfree(request);
886 	return -EINVAL;
887 }
888 
889 int cfg80211_scan(struct cfg80211_registered_device *rdev)
890 {
891 	struct cfg80211_scan_request *request;
892 	struct cfg80211_scan_request *rdev_req = rdev->scan_req;
893 	u32 n_channels = 0, idx, i;
894 
895 	if (!(rdev->wiphy.flags & WIPHY_FLAG_SPLIT_SCAN_6GHZ))
896 		return rdev_scan(rdev, rdev_req);
897 
898 	for (i = 0; i < rdev_req->n_channels; i++) {
899 		if (rdev_req->channels[i]->band != NL80211_BAND_6GHZ)
900 			n_channels++;
901 	}
902 
903 	if (!n_channels)
904 		return cfg80211_scan_6ghz(rdev);
905 
906 	request = kzalloc(struct_size(request, channels, n_channels),
907 			  GFP_KERNEL);
908 	if (!request)
909 		return -ENOMEM;
910 
911 	*request = *rdev_req;
912 	request->n_channels = n_channels;
913 
914 	for (i = idx = 0; i < rdev_req->n_channels; i++) {
915 		if (rdev_req->channels[i]->band != NL80211_BAND_6GHZ)
916 			request->channels[idx++] = rdev_req->channels[i];
917 	}
918 
919 	rdev_req->scan_6ghz = false;
920 	rdev->int_scan_req = request;
921 	return rdev_scan(rdev, request);
922 }
923 
924 void ___cfg80211_scan_done(struct cfg80211_registered_device *rdev,
925 			   bool send_message)
926 {
927 	struct cfg80211_scan_request *request, *rdev_req;
928 	struct wireless_dev *wdev;
929 	struct sk_buff *msg;
930 #ifdef CONFIG_CFG80211_WEXT
931 	union iwreq_data wrqu;
932 #endif
933 
934 	lockdep_assert_held(&rdev->wiphy.mtx);
935 
936 	if (rdev->scan_msg) {
937 		nl80211_send_scan_msg(rdev, rdev->scan_msg);
938 		rdev->scan_msg = NULL;
939 		return;
940 	}
941 
942 	rdev_req = rdev->scan_req;
943 	if (!rdev_req)
944 		return;
945 
946 	wdev = rdev_req->wdev;
947 	request = rdev->int_scan_req ? rdev->int_scan_req : rdev_req;
948 
949 	if (wdev_running(wdev) &&
950 	    (rdev->wiphy.flags & WIPHY_FLAG_SPLIT_SCAN_6GHZ) &&
951 	    !rdev_req->scan_6ghz && !request->info.aborted &&
952 	    !cfg80211_scan_6ghz(rdev))
953 		return;
954 
955 	/*
956 	 * This must be before sending the other events!
957 	 * Otherwise, wpa_supplicant gets completely confused with
958 	 * wext events.
959 	 */
960 	if (wdev->netdev)
961 		cfg80211_sme_scan_done(wdev->netdev);
962 
963 	if (!request->info.aborted &&
964 	    request->flags & NL80211_SCAN_FLAG_FLUSH) {
965 		/* flush entries from previous scans */
966 		spin_lock_bh(&rdev->bss_lock);
967 		__cfg80211_bss_expire(rdev, request->scan_start);
968 		spin_unlock_bh(&rdev->bss_lock);
969 	}
970 
971 	msg = nl80211_build_scan_msg(rdev, wdev, request->info.aborted);
972 
973 #ifdef CONFIG_CFG80211_WEXT
974 	if (wdev->netdev && !request->info.aborted) {
975 		memset(&wrqu, 0, sizeof(wrqu));
976 
977 		wireless_send_event(wdev->netdev, SIOCGIWSCAN, &wrqu, NULL);
978 	}
979 #endif
980 
981 	dev_put(wdev->netdev);
982 
983 	kfree(rdev->int_scan_req);
984 	rdev->int_scan_req = NULL;
985 
986 	kfree(rdev->scan_req);
987 	rdev->scan_req = NULL;
988 
989 	if (!send_message)
990 		rdev->scan_msg = msg;
991 	else
992 		nl80211_send_scan_msg(rdev, msg);
993 }
994 
995 void __cfg80211_scan_done(struct work_struct *wk)
996 {
997 	struct cfg80211_registered_device *rdev;
998 
999 	rdev = container_of(wk, struct cfg80211_registered_device,
1000 			    scan_done_wk);
1001 
1002 	wiphy_lock(&rdev->wiphy);
1003 	___cfg80211_scan_done(rdev, true);
1004 	wiphy_unlock(&rdev->wiphy);
1005 }
1006 
1007 void cfg80211_scan_done(struct cfg80211_scan_request *request,
1008 			struct cfg80211_scan_info *info)
1009 {
1010 	struct cfg80211_scan_info old_info = request->info;
1011 
1012 	trace_cfg80211_scan_done(request, info);
1013 	WARN_ON(request != wiphy_to_rdev(request->wiphy)->scan_req &&
1014 		request != wiphy_to_rdev(request->wiphy)->int_scan_req);
1015 
1016 	request->info = *info;
1017 
1018 	/*
1019 	 * In case the scan is split, the scan_start_tsf and tsf_bssid should
1020 	 * be of the first part. In such a case old_info.scan_start_tsf should
1021 	 * be non zero.
1022 	 */
1023 	if (request->scan_6ghz && old_info.scan_start_tsf) {
1024 		request->info.scan_start_tsf = old_info.scan_start_tsf;
1025 		memcpy(request->info.tsf_bssid, old_info.tsf_bssid,
1026 		       sizeof(request->info.tsf_bssid));
1027 	}
1028 
1029 	request->notified = true;
1030 	queue_work(cfg80211_wq, &wiphy_to_rdev(request->wiphy)->scan_done_wk);
1031 }
1032 EXPORT_SYMBOL(cfg80211_scan_done);
1033 
1034 void cfg80211_add_sched_scan_req(struct cfg80211_registered_device *rdev,
1035 				 struct cfg80211_sched_scan_request *req)
1036 {
1037 	lockdep_assert_held(&rdev->wiphy.mtx);
1038 
1039 	list_add_rcu(&req->list, &rdev->sched_scan_req_list);
1040 }
1041 
1042 static void cfg80211_del_sched_scan_req(struct cfg80211_registered_device *rdev,
1043 					struct cfg80211_sched_scan_request *req)
1044 {
1045 	lockdep_assert_held(&rdev->wiphy.mtx);
1046 
1047 	list_del_rcu(&req->list);
1048 	kfree_rcu(req, rcu_head);
1049 }
1050 
1051 static struct cfg80211_sched_scan_request *
1052 cfg80211_find_sched_scan_req(struct cfg80211_registered_device *rdev, u64 reqid)
1053 {
1054 	struct cfg80211_sched_scan_request *pos;
1055 
1056 	list_for_each_entry_rcu(pos, &rdev->sched_scan_req_list, list,
1057 				lockdep_is_held(&rdev->wiphy.mtx)) {
1058 		if (pos->reqid == reqid)
1059 			return pos;
1060 	}
1061 	return NULL;
1062 }
1063 
1064 /*
1065  * Determines if a scheduled scan request can be handled. When a legacy
1066  * scheduled scan is running no other scheduled scan is allowed regardless
1067  * whether the request is for legacy or multi-support scan. When a multi-support
1068  * scheduled scan is running a request for legacy scan is not allowed. In this
1069  * case a request for multi-support scan can be handled if resources are
1070  * available, ie. struct wiphy::max_sched_scan_reqs limit is not yet reached.
1071  */
1072 int cfg80211_sched_scan_req_possible(struct cfg80211_registered_device *rdev,
1073 				     bool want_multi)
1074 {
1075 	struct cfg80211_sched_scan_request *pos;
1076 	int i = 0;
1077 
1078 	list_for_each_entry(pos, &rdev->sched_scan_req_list, list) {
1079 		/* request id zero means legacy in progress */
1080 		if (!i && !pos->reqid)
1081 			return -EINPROGRESS;
1082 		i++;
1083 	}
1084 
1085 	if (i) {
1086 		/* no legacy allowed when multi request(s) are active */
1087 		if (!want_multi)
1088 			return -EINPROGRESS;
1089 
1090 		/* resource limit reached */
1091 		if (i == rdev->wiphy.max_sched_scan_reqs)
1092 			return -ENOSPC;
1093 	}
1094 	return 0;
1095 }
1096 
1097 void cfg80211_sched_scan_results_wk(struct work_struct *work)
1098 {
1099 	struct cfg80211_registered_device *rdev;
1100 	struct cfg80211_sched_scan_request *req, *tmp;
1101 
1102 	rdev = container_of(work, struct cfg80211_registered_device,
1103 			   sched_scan_res_wk);
1104 
1105 	wiphy_lock(&rdev->wiphy);
1106 	list_for_each_entry_safe(req, tmp, &rdev->sched_scan_req_list, list) {
1107 		if (req->report_results) {
1108 			req->report_results = false;
1109 			if (req->flags & NL80211_SCAN_FLAG_FLUSH) {
1110 				/* flush entries from previous scans */
1111 				spin_lock_bh(&rdev->bss_lock);
1112 				__cfg80211_bss_expire(rdev, req->scan_start);
1113 				spin_unlock_bh(&rdev->bss_lock);
1114 				req->scan_start = jiffies;
1115 			}
1116 			nl80211_send_sched_scan(req,
1117 						NL80211_CMD_SCHED_SCAN_RESULTS);
1118 		}
1119 	}
1120 	wiphy_unlock(&rdev->wiphy);
1121 }
1122 
1123 void cfg80211_sched_scan_results(struct wiphy *wiphy, u64 reqid)
1124 {
1125 	struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
1126 	struct cfg80211_sched_scan_request *request;
1127 
1128 	trace_cfg80211_sched_scan_results(wiphy, reqid);
1129 	/* ignore if we're not scanning */
1130 
1131 	rcu_read_lock();
1132 	request = cfg80211_find_sched_scan_req(rdev, reqid);
1133 	if (request) {
1134 		request->report_results = true;
1135 		queue_work(cfg80211_wq, &rdev->sched_scan_res_wk);
1136 	}
1137 	rcu_read_unlock();
1138 }
1139 EXPORT_SYMBOL(cfg80211_sched_scan_results);
1140 
1141 void cfg80211_sched_scan_stopped_locked(struct wiphy *wiphy, u64 reqid)
1142 {
1143 	struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
1144 
1145 	lockdep_assert_held(&wiphy->mtx);
1146 
1147 	trace_cfg80211_sched_scan_stopped(wiphy, reqid);
1148 
1149 	__cfg80211_stop_sched_scan(rdev, reqid, true);
1150 }
1151 EXPORT_SYMBOL(cfg80211_sched_scan_stopped_locked);
1152 
1153 void cfg80211_sched_scan_stopped(struct wiphy *wiphy, u64 reqid)
1154 {
1155 	wiphy_lock(wiphy);
1156 	cfg80211_sched_scan_stopped_locked(wiphy, reqid);
1157 	wiphy_unlock(wiphy);
1158 }
1159 EXPORT_SYMBOL(cfg80211_sched_scan_stopped);
1160 
1161 int cfg80211_stop_sched_scan_req(struct cfg80211_registered_device *rdev,
1162 				 struct cfg80211_sched_scan_request *req,
1163 				 bool driver_initiated)
1164 {
1165 	lockdep_assert_held(&rdev->wiphy.mtx);
1166 
1167 	if (!driver_initiated) {
1168 		int err = rdev_sched_scan_stop(rdev, req->dev, req->reqid);
1169 		if (err)
1170 			return err;
1171 	}
1172 
1173 	nl80211_send_sched_scan(req, NL80211_CMD_SCHED_SCAN_STOPPED);
1174 
1175 	cfg80211_del_sched_scan_req(rdev, req);
1176 
1177 	return 0;
1178 }
1179 
1180 int __cfg80211_stop_sched_scan(struct cfg80211_registered_device *rdev,
1181 			       u64 reqid, bool driver_initiated)
1182 {
1183 	struct cfg80211_sched_scan_request *sched_scan_req;
1184 
1185 	lockdep_assert_held(&rdev->wiphy.mtx);
1186 
1187 	sched_scan_req = cfg80211_find_sched_scan_req(rdev, reqid);
1188 	if (!sched_scan_req)
1189 		return -ENOENT;
1190 
1191 	return cfg80211_stop_sched_scan_req(rdev, sched_scan_req,
1192 					    driver_initiated);
1193 }
1194 
1195 void cfg80211_bss_age(struct cfg80211_registered_device *rdev,
1196                       unsigned long age_secs)
1197 {
1198 	struct cfg80211_internal_bss *bss;
1199 	unsigned long age_jiffies = msecs_to_jiffies(age_secs * MSEC_PER_SEC);
1200 
1201 	spin_lock_bh(&rdev->bss_lock);
1202 	list_for_each_entry(bss, &rdev->bss_list, list)
1203 		bss->ts -= age_jiffies;
1204 	spin_unlock_bh(&rdev->bss_lock);
1205 }
1206 
1207 void cfg80211_bss_expire(struct cfg80211_registered_device *rdev)
1208 {
1209 	__cfg80211_bss_expire(rdev, jiffies - IEEE80211_SCAN_RESULT_EXPIRE);
1210 }
1211 
1212 void cfg80211_bss_flush(struct wiphy *wiphy)
1213 {
1214 	struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
1215 
1216 	spin_lock_bh(&rdev->bss_lock);
1217 	__cfg80211_bss_expire(rdev, jiffies);
1218 	spin_unlock_bh(&rdev->bss_lock);
1219 }
1220 EXPORT_SYMBOL(cfg80211_bss_flush);
1221 
1222 const struct element *
1223 cfg80211_find_elem_match(u8 eid, const u8 *ies, unsigned int len,
1224 			 const u8 *match, unsigned int match_len,
1225 			 unsigned int match_offset)
1226 {
1227 	const struct element *elem;
1228 
1229 	for_each_element_id(elem, eid, ies, len) {
1230 		if (elem->datalen >= match_offset + match_len &&
1231 		    !memcmp(elem->data + match_offset, match, match_len))
1232 			return elem;
1233 	}
1234 
1235 	return NULL;
1236 }
1237 EXPORT_SYMBOL(cfg80211_find_elem_match);
1238 
1239 const struct element *cfg80211_find_vendor_elem(unsigned int oui, int oui_type,
1240 						const u8 *ies,
1241 						unsigned int len)
1242 {
1243 	const struct element *elem;
1244 	u8 match[] = { oui >> 16, oui >> 8, oui, oui_type };
1245 	int match_len = (oui_type < 0) ? 3 : sizeof(match);
1246 
1247 	if (WARN_ON(oui_type > 0xff))
1248 		return NULL;
1249 
1250 	elem = cfg80211_find_elem_match(WLAN_EID_VENDOR_SPECIFIC, ies, len,
1251 					match, match_len, 0);
1252 
1253 	if (!elem || elem->datalen < 4)
1254 		return NULL;
1255 
1256 	return elem;
1257 }
1258 EXPORT_SYMBOL(cfg80211_find_vendor_elem);
1259 
1260 /**
1261  * enum bss_compare_mode - BSS compare mode
1262  * @BSS_CMP_REGULAR: regular compare mode (for insertion and normal find)
1263  * @BSS_CMP_HIDE_ZLEN: find hidden SSID with zero-length mode
1264  * @BSS_CMP_HIDE_NUL: find hidden SSID with NUL-ed out mode
1265  */
1266 enum bss_compare_mode {
1267 	BSS_CMP_REGULAR,
1268 	BSS_CMP_HIDE_ZLEN,
1269 	BSS_CMP_HIDE_NUL,
1270 };
1271 
1272 static int cmp_bss(struct cfg80211_bss *a,
1273 		   struct cfg80211_bss *b,
1274 		   enum bss_compare_mode mode)
1275 {
1276 	const struct cfg80211_bss_ies *a_ies, *b_ies;
1277 	const u8 *ie1 = NULL;
1278 	const u8 *ie2 = NULL;
1279 	int i, r;
1280 
1281 	if (a->channel != b->channel)
1282 		return b->channel->center_freq - a->channel->center_freq;
1283 
1284 	a_ies = rcu_access_pointer(a->ies);
1285 	if (!a_ies)
1286 		return -1;
1287 	b_ies = rcu_access_pointer(b->ies);
1288 	if (!b_ies)
1289 		return 1;
1290 
1291 	if (WLAN_CAPABILITY_IS_STA_BSS(a->capability))
1292 		ie1 = cfg80211_find_ie(WLAN_EID_MESH_ID,
1293 				       a_ies->data, a_ies->len);
1294 	if (WLAN_CAPABILITY_IS_STA_BSS(b->capability))
1295 		ie2 = cfg80211_find_ie(WLAN_EID_MESH_ID,
1296 				       b_ies->data, b_ies->len);
1297 	if (ie1 && ie2) {
1298 		int mesh_id_cmp;
1299 
1300 		if (ie1[1] == ie2[1])
1301 			mesh_id_cmp = memcmp(ie1 + 2, ie2 + 2, ie1[1]);
1302 		else
1303 			mesh_id_cmp = ie2[1] - ie1[1];
1304 
1305 		ie1 = cfg80211_find_ie(WLAN_EID_MESH_CONFIG,
1306 				       a_ies->data, a_ies->len);
1307 		ie2 = cfg80211_find_ie(WLAN_EID_MESH_CONFIG,
1308 				       b_ies->data, b_ies->len);
1309 		if (ie1 && ie2) {
1310 			if (mesh_id_cmp)
1311 				return mesh_id_cmp;
1312 			if (ie1[1] != ie2[1])
1313 				return ie2[1] - ie1[1];
1314 			return memcmp(ie1 + 2, ie2 + 2, ie1[1]);
1315 		}
1316 	}
1317 
1318 	r = memcmp(a->bssid, b->bssid, sizeof(a->bssid));
1319 	if (r)
1320 		return r;
1321 
1322 	ie1 = cfg80211_find_ie(WLAN_EID_SSID, a_ies->data, a_ies->len);
1323 	ie2 = cfg80211_find_ie(WLAN_EID_SSID, b_ies->data, b_ies->len);
1324 
1325 	if (!ie1 && !ie2)
1326 		return 0;
1327 
1328 	/*
1329 	 * Note that with "hide_ssid", the function returns a match if
1330 	 * the already-present BSS ("b") is a hidden SSID beacon for
1331 	 * the new BSS ("a").
1332 	 */
1333 
1334 	/* sort missing IE before (left of) present IE */
1335 	if (!ie1)
1336 		return -1;
1337 	if (!ie2)
1338 		return 1;
1339 
1340 	switch (mode) {
1341 	case BSS_CMP_HIDE_ZLEN:
1342 		/*
1343 		 * In ZLEN mode we assume the BSS entry we're
1344 		 * looking for has a zero-length SSID. So if
1345 		 * the one we're looking at right now has that,
1346 		 * return 0. Otherwise, return the difference
1347 		 * in length, but since we're looking for the
1348 		 * 0-length it's really equivalent to returning
1349 		 * the length of the one we're looking at.
1350 		 *
1351 		 * No content comparison is needed as we assume
1352 		 * the content length is zero.
1353 		 */
1354 		return ie2[1];
1355 	case BSS_CMP_REGULAR:
1356 	default:
1357 		/* sort by length first, then by contents */
1358 		if (ie1[1] != ie2[1])
1359 			return ie2[1] - ie1[1];
1360 		return memcmp(ie1 + 2, ie2 + 2, ie1[1]);
1361 	case BSS_CMP_HIDE_NUL:
1362 		if (ie1[1] != ie2[1])
1363 			return ie2[1] - ie1[1];
1364 		/* this is equivalent to memcmp(zeroes, ie2 + 2, len) */
1365 		for (i = 0; i < ie2[1]; i++)
1366 			if (ie2[i + 2])
1367 				return -1;
1368 		return 0;
1369 	}
1370 }
1371 
1372 static bool cfg80211_bss_type_match(u16 capability,
1373 				    enum nl80211_band band,
1374 				    enum ieee80211_bss_type bss_type)
1375 {
1376 	bool ret = true;
1377 	u16 mask, val;
1378 
1379 	if (bss_type == IEEE80211_BSS_TYPE_ANY)
1380 		return ret;
1381 
1382 	if (band == NL80211_BAND_60GHZ) {
1383 		mask = WLAN_CAPABILITY_DMG_TYPE_MASK;
1384 		switch (bss_type) {
1385 		case IEEE80211_BSS_TYPE_ESS:
1386 			val = WLAN_CAPABILITY_DMG_TYPE_AP;
1387 			break;
1388 		case IEEE80211_BSS_TYPE_PBSS:
1389 			val = WLAN_CAPABILITY_DMG_TYPE_PBSS;
1390 			break;
1391 		case IEEE80211_BSS_TYPE_IBSS:
1392 			val = WLAN_CAPABILITY_DMG_TYPE_IBSS;
1393 			break;
1394 		default:
1395 			return false;
1396 		}
1397 	} else {
1398 		mask = WLAN_CAPABILITY_ESS | WLAN_CAPABILITY_IBSS;
1399 		switch (bss_type) {
1400 		case IEEE80211_BSS_TYPE_ESS:
1401 			val = WLAN_CAPABILITY_ESS;
1402 			break;
1403 		case IEEE80211_BSS_TYPE_IBSS:
1404 			val = WLAN_CAPABILITY_IBSS;
1405 			break;
1406 		case IEEE80211_BSS_TYPE_MBSS:
1407 			val = 0;
1408 			break;
1409 		default:
1410 			return false;
1411 		}
1412 	}
1413 
1414 	ret = ((capability & mask) == val);
1415 	return ret;
1416 }
1417 
1418 /* Returned bss is reference counted and must be cleaned up appropriately. */
1419 struct cfg80211_bss *cfg80211_get_bss(struct wiphy *wiphy,
1420 				      struct ieee80211_channel *channel,
1421 				      const u8 *bssid,
1422 				      const u8 *ssid, size_t ssid_len,
1423 				      enum ieee80211_bss_type bss_type,
1424 				      enum ieee80211_privacy privacy)
1425 {
1426 	struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
1427 	struct cfg80211_internal_bss *bss, *res = NULL;
1428 	unsigned long now = jiffies;
1429 	int bss_privacy;
1430 
1431 	trace_cfg80211_get_bss(wiphy, channel, bssid, ssid, ssid_len, bss_type,
1432 			       privacy);
1433 
1434 	spin_lock_bh(&rdev->bss_lock);
1435 
1436 	list_for_each_entry(bss, &rdev->bss_list, list) {
1437 		if (!cfg80211_bss_type_match(bss->pub.capability,
1438 					     bss->pub.channel->band, bss_type))
1439 			continue;
1440 
1441 		bss_privacy = (bss->pub.capability & WLAN_CAPABILITY_PRIVACY);
1442 		if ((privacy == IEEE80211_PRIVACY_ON && !bss_privacy) ||
1443 		    (privacy == IEEE80211_PRIVACY_OFF && bss_privacy))
1444 			continue;
1445 		if (channel && bss->pub.channel != channel)
1446 			continue;
1447 		if (!is_valid_ether_addr(bss->pub.bssid))
1448 			continue;
1449 		/* Don't get expired BSS structs */
1450 		if (time_after(now, bss->ts + IEEE80211_SCAN_RESULT_EXPIRE) &&
1451 		    !atomic_read(&bss->hold))
1452 			continue;
1453 		if (is_bss(&bss->pub, bssid, ssid, ssid_len)) {
1454 			res = bss;
1455 			bss_ref_get(rdev, res);
1456 			break;
1457 		}
1458 	}
1459 
1460 	spin_unlock_bh(&rdev->bss_lock);
1461 	if (!res)
1462 		return NULL;
1463 	trace_cfg80211_return_bss(&res->pub);
1464 	return &res->pub;
1465 }
1466 EXPORT_SYMBOL(cfg80211_get_bss);
1467 
1468 static void rb_insert_bss(struct cfg80211_registered_device *rdev,
1469 			  struct cfg80211_internal_bss *bss)
1470 {
1471 	struct rb_node **p = &rdev->bss_tree.rb_node;
1472 	struct rb_node *parent = NULL;
1473 	struct cfg80211_internal_bss *tbss;
1474 	int cmp;
1475 
1476 	while (*p) {
1477 		parent = *p;
1478 		tbss = rb_entry(parent, struct cfg80211_internal_bss, rbn);
1479 
1480 		cmp = cmp_bss(&bss->pub, &tbss->pub, BSS_CMP_REGULAR);
1481 
1482 		if (WARN_ON(!cmp)) {
1483 			/* will sort of leak this BSS */
1484 			return;
1485 		}
1486 
1487 		if (cmp < 0)
1488 			p = &(*p)->rb_left;
1489 		else
1490 			p = &(*p)->rb_right;
1491 	}
1492 
1493 	rb_link_node(&bss->rbn, parent, p);
1494 	rb_insert_color(&bss->rbn, &rdev->bss_tree);
1495 }
1496 
1497 static struct cfg80211_internal_bss *
1498 rb_find_bss(struct cfg80211_registered_device *rdev,
1499 	    struct cfg80211_internal_bss *res,
1500 	    enum bss_compare_mode mode)
1501 {
1502 	struct rb_node *n = rdev->bss_tree.rb_node;
1503 	struct cfg80211_internal_bss *bss;
1504 	int r;
1505 
1506 	while (n) {
1507 		bss = rb_entry(n, struct cfg80211_internal_bss, rbn);
1508 		r = cmp_bss(&res->pub, &bss->pub, mode);
1509 
1510 		if (r == 0)
1511 			return bss;
1512 		else if (r < 0)
1513 			n = n->rb_left;
1514 		else
1515 			n = n->rb_right;
1516 	}
1517 
1518 	return NULL;
1519 }
1520 
1521 static bool cfg80211_combine_bsses(struct cfg80211_registered_device *rdev,
1522 				   struct cfg80211_internal_bss *new)
1523 {
1524 	const struct cfg80211_bss_ies *ies;
1525 	struct cfg80211_internal_bss *bss;
1526 	const u8 *ie;
1527 	int i, ssidlen;
1528 	u8 fold = 0;
1529 	u32 n_entries = 0;
1530 
1531 	ies = rcu_access_pointer(new->pub.beacon_ies);
1532 	if (WARN_ON(!ies))
1533 		return false;
1534 
1535 	ie = cfg80211_find_ie(WLAN_EID_SSID, ies->data, ies->len);
1536 	if (!ie) {
1537 		/* nothing to do */
1538 		return true;
1539 	}
1540 
1541 	ssidlen = ie[1];
1542 	for (i = 0; i < ssidlen; i++)
1543 		fold |= ie[2 + i];
1544 
1545 	if (fold) {
1546 		/* not a hidden SSID */
1547 		return true;
1548 	}
1549 
1550 	/* This is the bad part ... */
1551 
1552 	list_for_each_entry(bss, &rdev->bss_list, list) {
1553 		/*
1554 		 * we're iterating all the entries anyway, so take the
1555 		 * opportunity to validate the list length accounting
1556 		 */
1557 		n_entries++;
1558 
1559 		if (!ether_addr_equal(bss->pub.bssid, new->pub.bssid))
1560 			continue;
1561 		if (bss->pub.channel != new->pub.channel)
1562 			continue;
1563 		if (bss->pub.scan_width != new->pub.scan_width)
1564 			continue;
1565 		if (rcu_access_pointer(bss->pub.beacon_ies))
1566 			continue;
1567 		ies = rcu_access_pointer(bss->pub.ies);
1568 		if (!ies)
1569 			continue;
1570 		ie = cfg80211_find_ie(WLAN_EID_SSID, ies->data, ies->len);
1571 		if (!ie)
1572 			continue;
1573 		if (ssidlen && ie[1] != ssidlen)
1574 			continue;
1575 		if (WARN_ON_ONCE(bss->pub.hidden_beacon_bss))
1576 			continue;
1577 		if (WARN_ON_ONCE(!list_empty(&bss->hidden_list)))
1578 			list_del(&bss->hidden_list);
1579 		/* combine them */
1580 		list_add(&bss->hidden_list, &new->hidden_list);
1581 		bss->pub.hidden_beacon_bss = &new->pub;
1582 		new->refcount += bss->refcount;
1583 		rcu_assign_pointer(bss->pub.beacon_ies,
1584 				   new->pub.beacon_ies);
1585 	}
1586 
1587 	WARN_ONCE(n_entries != rdev->bss_entries,
1588 		  "rdev bss entries[%d]/list[len:%d] corruption\n",
1589 		  rdev->bss_entries, n_entries);
1590 
1591 	return true;
1592 }
1593 
1594 struct cfg80211_non_tx_bss {
1595 	struct cfg80211_bss *tx_bss;
1596 	u8 max_bssid_indicator;
1597 	u8 bssid_index;
1598 };
1599 
1600 static bool
1601 cfg80211_update_known_bss(struct cfg80211_registered_device *rdev,
1602 			  struct cfg80211_internal_bss *known,
1603 			  struct cfg80211_internal_bss *new,
1604 			  bool signal_valid)
1605 {
1606 	lockdep_assert_held(&rdev->bss_lock);
1607 
1608 	/* Update IEs */
1609 	if (rcu_access_pointer(new->pub.proberesp_ies)) {
1610 		const struct cfg80211_bss_ies *old;
1611 
1612 		old = rcu_access_pointer(known->pub.proberesp_ies);
1613 
1614 		rcu_assign_pointer(known->pub.proberesp_ies,
1615 				   new->pub.proberesp_ies);
1616 		/* Override possible earlier Beacon frame IEs */
1617 		rcu_assign_pointer(known->pub.ies,
1618 				   new->pub.proberesp_ies);
1619 		if (old)
1620 			kfree_rcu((struct cfg80211_bss_ies *)old, rcu_head);
1621 	} else if (rcu_access_pointer(new->pub.beacon_ies)) {
1622 		const struct cfg80211_bss_ies *old;
1623 		struct cfg80211_internal_bss *bss;
1624 
1625 		if (known->pub.hidden_beacon_bss &&
1626 		    !list_empty(&known->hidden_list)) {
1627 			const struct cfg80211_bss_ies *f;
1628 
1629 			/* The known BSS struct is one of the probe
1630 			 * response members of a group, but we're
1631 			 * receiving a beacon (beacon_ies in the new
1632 			 * bss is used). This can only mean that the
1633 			 * AP changed its beacon from not having an
1634 			 * SSID to showing it, which is confusing so
1635 			 * drop this information.
1636 			 */
1637 
1638 			f = rcu_access_pointer(new->pub.beacon_ies);
1639 			kfree_rcu((struct cfg80211_bss_ies *)f, rcu_head);
1640 			return false;
1641 		}
1642 
1643 		old = rcu_access_pointer(known->pub.beacon_ies);
1644 
1645 		rcu_assign_pointer(known->pub.beacon_ies, new->pub.beacon_ies);
1646 
1647 		/* Override IEs if they were from a beacon before */
1648 		if (old == rcu_access_pointer(known->pub.ies))
1649 			rcu_assign_pointer(known->pub.ies, new->pub.beacon_ies);
1650 
1651 		/* Assign beacon IEs to all sub entries */
1652 		list_for_each_entry(bss, &known->hidden_list, hidden_list) {
1653 			const struct cfg80211_bss_ies *ies;
1654 
1655 			ies = rcu_access_pointer(bss->pub.beacon_ies);
1656 			WARN_ON(ies != old);
1657 
1658 			rcu_assign_pointer(bss->pub.beacon_ies,
1659 					   new->pub.beacon_ies);
1660 		}
1661 
1662 		if (old)
1663 			kfree_rcu((struct cfg80211_bss_ies *)old, rcu_head);
1664 	}
1665 
1666 	known->pub.beacon_interval = new->pub.beacon_interval;
1667 
1668 	/* don't update the signal if beacon was heard on
1669 	 * adjacent channel.
1670 	 */
1671 	if (signal_valid)
1672 		known->pub.signal = new->pub.signal;
1673 	known->pub.capability = new->pub.capability;
1674 	known->ts = new->ts;
1675 	known->ts_boottime = new->ts_boottime;
1676 	known->parent_tsf = new->parent_tsf;
1677 	known->pub.chains = new->pub.chains;
1678 	memcpy(known->pub.chain_signal, new->pub.chain_signal,
1679 	       IEEE80211_MAX_CHAINS);
1680 	ether_addr_copy(known->parent_bssid, new->parent_bssid);
1681 	known->pub.max_bssid_indicator = new->pub.max_bssid_indicator;
1682 	known->pub.bssid_index = new->pub.bssid_index;
1683 
1684 	return true;
1685 }
1686 
1687 /* Returned bss is reference counted and must be cleaned up appropriately. */
1688 struct cfg80211_internal_bss *
1689 cfg80211_bss_update(struct cfg80211_registered_device *rdev,
1690 		    struct cfg80211_internal_bss *tmp,
1691 		    bool signal_valid, unsigned long ts)
1692 {
1693 	struct cfg80211_internal_bss *found = NULL;
1694 
1695 	if (WARN_ON(!tmp->pub.channel))
1696 		return NULL;
1697 
1698 	tmp->ts = ts;
1699 
1700 	spin_lock_bh(&rdev->bss_lock);
1701 
1702 	if (WARN_ON(!rcu_access_pointer(tmp->pub.ies))) {
1703 		spin_unlock_bh(&rdev->bss_lock);
1704 		return NULL;
1705 	}
1706 
1707 	found = rb_find_bss(rdev, tmp, BSS_CMP_REGULAR);
1708 
1709 	if (found) {
1710 		if (!cfg80211_update_known_bss(rdev, found, tmp, signal_valid))
1711 			goto drop;
1712 	} else {
1713 		struct cfg80211_internal_bss *new;
1714 		struct cfg80211_internal_bss *hidden;
1715 		struct cfg80211_bss_ies *ies;
1716 
1717 		/*
1718 		 * create a copy -- the "res" variable that is passed in
1719 		 * is allocated on the stack since it's not needed in the
1720 		 * more common case of an update
1721 		 */
1722 		new = kzalloc(sizeof(*new) + rdev->wiphy.bss_priv_size,
1723 			      GFP_ATOMIC);
1724 		if (!new) {
1725 			ies = (void *)rcu_dereference(tmp->pub.beacon_ies);
1726 			if (ies)
1727 				kfree_rcu(ies, rcu_head);
1728 			ies = (void *)rcu_dereference(tmp->pub.proberesp_ies);
1729 			if (ies)
1730 				kfree_rcu(ies, rcu_head);
1731 			goto drop;
1732 		}
1733 		memcpy(new, tmp, sizeof(*new));
1734 		new->refcount = 1;
1735 		INIT_LIST_HEAD(&new->hidden_list);
1736 		INIT_LIST_HEAD(&new->pub.nontrans_list);
1737 
1738 		if (rcu_access_pointer(tmp->pub.proberesp_ies)) {
1739 			hidden = rb_find_bss(rdev, tmp, BSS_CMP_HIDE_ZLEN);
1740 			if (!hidden)
1741 				hidden = rb_find_bss(rdev, tmp,
1742 						     BSS_CMP_HIDE_NUL);
1743 			if (hidden) {
1744 				new->pub.hidden_beacon_bss = &hidden->pub;
1745 				list_add(&new->hidden_list,
1746 					 &hidden->hidden_list);
1747 				hidden->refcount++;
1748 				rcu_assign_pointer(new->pub.beacon_ies,
1749 						   hidden->pub.beacon_ies);
1750 			}
1751 		} else {
1752 			/*
1753 			 * Ok so we found a beacon, and don't have an entry. If
1754 			 * it's a beacon with hidden SSID, we might be in for an
1755 			 * expensive search for any probe responses that should
1756 			 * be grouped with this beacon for updates ...
1757 			 */
1758 			if (!cfg80211_combine_bsses(rdev, new)) {
1759 				bss_ref_put(rdev, new);
1760 				goto drop;
1761 			}
1762 		}
1763 
1764 		if (rdev->bss_entries >= bss_entries_limit &&
1765 		    !cfg80211_bss_expire_oldest(rdev)) {
1766 			bss_ref_put(rdev, new);
1767 			goto drop;
1768 		}
1769 
1770 		/* This must be before the call to bss_ref_get */
1771 		if (tmp->pub.transmitted_bss) {
1772 			struct cfg80211_internal_bss *pbss =
1773 				container_of(tmp->pub.transmitted_bss,
1774 					     struct cfg80211_internal_bss,
1775 					     pub);
1776 
1777 			new->pub.transmitted_bss = tmp->pub.transmitted_bss;
1778 			bss_ref_get(rdev, pbss);
1779 		}
1780 
1781 		list_add_tail(&new->list, &rdev->bss_list);
1782 		rdev->bss_entries++;
1783 		rb_insert_bss(rdev, new);
1784 		found = new;
1785 	}
1786 
1787 	rdev->bss_generation++;
1788 	bss_ref_get(rdev, found);
1789 	spin_unlock_bh(&rdev->bss_lock);
1790 
1791 	return found;
1792  drop:
1793 	spin_unlock_bh(&rdev->bss_lock);
1794 	return NULL;
1795 }
1796 
1797 int cfg80211_get_ies_channel_number(const u8 *ie, size_t ielen,
1798 				    enum nl80211_band band)
1799 {
1800 	const u8 *tmp;
1801 	int channel_number = -1;
1802 
1803 	if (band == NL80211_BAND_S1GHZ) {
1804 		tmp = cfg80211_find_ie(WLAN_EID_S1G_OPERATION, ie, ielen);
1805 		if (tmp && tmp[1] >= sizeof(struct ieee80211_s1g_oper_ie)) {
1806 			struct ieee80211_s1g_oper_ie *s1gop = (void *)(tmp + 2);
1807 
1808 			channel_number = s1gop->primary_ch;
1809 		}
1810 	} else {
1811 		tmp = cfg80211_find_ie(WLAN_EID_DS_PARAMS, ie, ielen);
1812 		if (tmp && tmp[1] == 1) {
1813 			channel_number = tmp[2];
1814 		} else {
1815 			tmp = cfg80211_find_ie(WLAN_EID_HT_OPERATION, ie, ielen);
1816 			if (tmp && tmp[1] >= sizeof(struct ieee80211_ht_operation)) {
1817 				struct ieee80211_ht_operation *htop = (void *)(tmp + 2);
1818 
1819 				channel_number = htop->primary_chan;
1820 			}
1821 		}
1822 	}
1823 
1824 	return channel_number;
1825 }
1826 EXPORT_SYMBOL(cfg80211_get_ies_channel_number);
1827 
1828 /*
1829  * Update RX channel information based on the available frame payload
1830  * information. This is mainly for the 2.4 GHz band where frames can be received
1831  * from neighboring channels and the Beacon frames use the DSSS Parameter Set
1832  * element to indicate the current (transmitting) channel, but this might also
1833  * be needed on other bands if RX frequency does not match with the actual
1834  * operating channel of a BSS.
1835  */
1836 static struct ieee80211_channel *
1837 cfg80211_get_bss_channel(struct wiphy *wiphy, const u8 *ie, size_t ielen,
1838 			 struct ieee80211_channel *channel,
1839 			 enum nl80211_bss_scan_width scan_width)
1840 {
1841 	u32 freq;
1842 	int channel_number;
1843 	struct ieee80211_channel *alt_channel;
1844 
1845 	channel_number = cfg80211_get_ies_channel_number(ie, ielen, channel->band);
1846 
1847 	if (channel_number < 0) {
1848 		/* No channel information in frame payload */
1849 		return channel;
1850 	}
1851 
1852 	freq = ieee80211_channel_to_freq_khz(channel_number, channel->band);
1853 	alt_channel = ieee80211_get_channel_khz(wiphy, freq);
1854 	if (!alt_channel) {
1855 		if (channel->band == NL80211_BAND_2GHZ) {
1856 			/*
1857 			 * Better not allow unexpected channels when that could
1858 			 * be going beyond the 1-11 range (e.g., discovering
1859 			 * BSS on channel 12 when radio is configured for
1860 			 * channel 11.
1861 			 */
1862 			return NULL;
1863 		}
1864 
1865 		/* No match for the payload channel number - ignore it */
1866 		return channel;
1867 	}
1868 
1869 	if (scan_width == NL80211_BSS_CHAN_WIDTH_10 ||
1870 	    scan_width == NL80211_BSS_CHAN_WIDTH_5) {
1871 		/*
1872 		 * Ignore channel number in 5 and 10 MHz channels where there
1873 		 * may not be an n:1 or 1:n mapping between frequencies and
1874 		 * channel numbers.
1875 		 */
1876 		return channel;
1877 	}
1878 
1879 	/*
1880 	 * Use the channel determined through the payload channel number
1881 	 * instead of the RX channel reported by the driver.
1882 	 */
1883 	if (alt_channel->flags & IEEE80211_CHAN_DISABLED)
1884 		return NULL;
1885 	return alt_channel;
1886 }
1887 
1888 /* Returned bss is reference counted and must be cleaned up appropriately. */
1889 static struct cfg80211_bss *
1890 cfg80211_inform_single_bss_data(struct wiphy *wiphy,
1891 				struct cfg80211_inform_bss *data,
1892 				enum cfg80211_bss_frame_type ftype,
1893 				const u8 *bssid, u64 tsf, u16 capability,
1894 				u16 beacon_interval, const u8 *ie, size_t ielen,
1895 				struct cfg80211_non_tx_bss *non_tx_data,
1896 				gfp_t gfp)
1897 {
1898 	struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
1899 	struct cfg80211_bss_ies *ies;
1900 	struct ieee80211_channel *channel;
1901 	struct cfg80211_internal_bss tmp = {}, *res;
1902 	int bss_type;
1903 	bool signal_valid;
1904 	unsigned long ts;
1905 
1906 	if (WARN_ON(!wiphy))
1907 		return NULL;
1908 
1909 	if (WARN_ON(wiphy->signal_type == CFG80211_SIGNAL_TYPE_UNSPEC &&
1910 		    (data->signal < 0 || data->signal > 100)))
1911 		return NULL;
1912 
1913 	channel = cfg80211_get_bss_channel(wiphy, ie, ielen, data->chan,
1914 					   data->scan_width);
1915 	if (!channel)
1916 		return NULL;
1917 
1918 	memcpy(tmp.pub.bssid, bssid, ETH_ALEN);
1919 	tmp.pub.channel = channel;
1920 	tmp.pub.scan_width = data->scan_width;
1921 	tmp.pub.signal = data->signal;
1922 	tmp.pub.beacon_interval = beacon_interval;
1923 	tmp.pub.capability = capability;
1924 	tmp.ts_boottime = data->boottime_ns;
1925 	tmp.parent_tsf = data->parent_tsf;
1926 	ether_addr_copy(tmp.parent_bssid, data->parent_bssid);
1927 
1928 	if (non_tx_data) {
1929 		tmp.pub.transmitted_bss = non_tx_data->tx_bss;
1930 		ts = bss_from_pub(non_tx_data->tx_bss)->ts;
1931 		tmp.pub.bssid_index = non_tx_data->bssid_index;
1932 		tmp.pub.max_bssid_indicator = non_tx_data->max_bssid_indicator;
1933 	} else {
1934 		ts = jiffies;
1935 	}
1936 
1937 	/*
1938 	 * If we do not know here whether the IEs are from a Beacon or Probe
1939 	 * Response frame, we need to pick one of the options and only use it
1940 	 * with the driver that does not provide the full Beacon/Probe Response
1941 	 * frame. Use Beacon frame pointer to avoid indicating that this should
1942 	 * override the IEs pointer should we have received an earlier
1943 	 * indication of Probe Response data.
1944 	 */
1945 	ies = kzalloc(sizeof(*ies) + ielen, gfp);
1946 	if (!ies)
1947 		return NULL;
1948 	ies->len = ielen;
1949 	ies->tsf = tsf;
1950 	ies->from_beacon = false;
1951 	memcpy(ies->data, ie, ielen);
1952 
1953 	switch (ftype) {
1954 	case CFG80211_BSS_FTYPE_BEACON:
1955 		ies->from_beacon = true;
1956 		fallthrough;
1957 	case CFG80211_BSS_FTYPE_UNKNOWN:
1958 		rcu_assign_pointer(tmp.pub.beacon_ies, ies);
1959 		break;
1960 	case CFG80211_BSS_FTYPE_PRESP:
1961 		rcu_assign_pointer(tmp.pub.proberesp_ies, ies);
1962 		break;
1963 	}
1964 	rcu_assign_pointer(tmp.pub.ies, ies);
1965 
1966 	signal_valid = data->chan == channel;
1967 	res = cfg80211_bss_update(wiphy_to_rdev(wiphy), &tmp, signal_valid, ts);
1968 	if (!res)
1969 		return NULL;
1970 
1971 	if (channel->band == NL80211_BAND_60GHZ) {
1972 		bss_type = res->pub.capability & WLAN_CAPABILITY_DMG_TYPE_MASK;
1973 		if (bss_type == WLAN_CAPABILITY_DMG_TYPE_AP ||
1974 		    bss_type == WLAN_CAPABILITY_DMG_TYPE_PBSS)
1975 			regulatory_hint_found_beacon(wiphy, channel, gfp);
1976 	} else {
1977 		if (res->pub.capability & WLAN_CAPABILITY_ESS)
1978 			regulatory_hint_found_beacon(wiphy, channel, gfp);
1979 	}
1980 
1981 	if (non_tx_data) {
1982 		/* this is a nontransmitting bss, we need to add it to
1983 		 * transmitting bss' list if it is not there
1984 		 */
1985 		if (cfg80211_add_nontrans_list(non_tx_data->tx_bss,
1986 					       &res->pub)) {
1987 			if (__cfg80211_unlink_bss(rdev, res))
1988 				rdev->bss_generation++;
1989 		}
1990 	}
1991 
1992 	trace_cfg80211_return_bss(&res->pub);
1993 	/* cfg80211_bss_update gives us a referenced result */
1994 	return &res->pub;
1995 }
1996 
1997 static const struct element
1998 *cfg80211_get_profile_continuation(const u8 *ie, size_t ielen,
1999 				   const struct element *mbssid_elem,
2000 				   const struct element *sub_elem)
2001 {
2002 	const u8 *mbssid_end = mbssid_elem->data + mbssid_elem->datalen;
2003 	const struct element *next_mbssid;
2004 	const struct element *next_sub;
2005 
2006 	next_mbssid = cfg80211_find_elem(WLAN_EID_MULTIPLE_BSSID,
2007 					 mbssid_end,
2008 					 ielen - (mbssid_end - ie));
2009 
2010 	/*
2011 	 * If it is not the last subelement in current MBSSID IE or there isn't
2012 	 * a next MBSSID IE - profile is complete.
2013 	*/
2014 	if ((sub_elem->data + sub_elem->datalen < mbssid_end - 1) ||
2015 	    !next_mbssid)
2016 		return NULL;
2017 
2018 	/* For any length error, just return NULL */
2019 
2020 	if (next_mbssid->datalen < 4)
2021 		return NULL;
2022 
2023 	next_sub = (void *)&next_mbssid->data[1];
2024 
2025 	if (next_mbssid->data + next_mbssid->datalen <
2026 	    next_sub->data + next_sub->datalen)
2027 		return NULL;
2028 
2029 	if (next_sub->id != 0 || next_sub->datalen < 2)
2030 		return NULL;
2031 
2032 	/*
2033 	 * Check if the first element in the next sub element is a start
2034 	 * of a new profile
2035 	 */
2036 	return next_sub->data[0] == WLAN_EID_NON_TX_BSSID_CAP ?
2037 	       NULL : next_mbssid;
2038 }
2039 
2040 size_t cfg80211_merge_profile(const u8 *ie, size_t ielen,
2041 			      const struct element *mbssid_elem,
2042 			      const struct element *sub_elem,
2043 			      u8 *merged_ie, size_t max_copy_len)
2044 {
2045 	size_t copied_len = sub_elem->datalen;
2046 	const struct element *next_mbssid;
2047 
2048 	if (sub_elem->datalen > max_copy_len)
2049 		return 0;
2050 
2051 	memcpy(merged_ie, sub_elem->data, sub_elem->datalen);
2052 
2053 	while ((next_mbssid = cfg80211_get_profile_continuation(ie, ielen,
2054 								mbssid_elem,
2055 								sub_elem))) {
2056 		const struct element *next_sub = (void *)&next_mbssid->data[1];
2057 
2058 		if (copied_len + next_sub->datalen > max_copy_len)
2059 			break;
2060 		memcpy(merged_ie + copied_len, next_sub->data,
2061 		       next_sub->datalen);
2062 		copied_len += next_sub->datalen;
2063 	}
2064 
2065 	return copied_len;
2066 }
2067 EXPORT_SYMBOL(cfg80211_merge_profile);
2068 
2069 static void cfg80211_parse_mbssid_data(struct wiphy *wiphy,
2070 				       struct cfg80211_inform_bss *data,
2071 				       enum cfg80211_bss_frame_type ftype,
2072 				       const u8 *bssid, u64 tsf,
2073 				       u16 beacon_interval, const u8 *ie,
2074 				       size_t ielen,
2075 				       struct cfg80211_non_tx_bss *non_tx_data,
2076 				       gfp_t gfp)
2077 {
2078 	const u8 *mbssid_index_ie;
2079 	const struct element *elem, *sub;
2080 	size_t new_ie_len;
2081 	u8 new_bssid[ETH_ALEN];
2082 	u8 *new_ie, *profile;
2083 	u64 seen_indices = 0;
2084 	u16 capability;
2085 	struct cfg80211_bss *bss;
2086 
2087 	if (!non_tx_data)
2088 		return;
2089 	if (!cfg80211_find_elem(WLAN_EID_MULTIPLE_BSSID, ie, ielen))
2090 		return;
2091 	if (!wiphy->support_mbssid)
2092 		return;
2093 	if (wiphy->support_only_he_mbssid &&
2094 	    !cfg80211_find_ext_elem(WLAN_EID_EXT_HE_CAPABILITY, ie, ielen))
2095 		return;
2096 
2097 	new_ie = kmalloc(IEEE80211_MAX_DATA_LEN, gfp);
2098 	if (!new_ie)
2099 		return;
2100 
2101 	profile = kmalloc(ielen, gfp);
2102 	if (!profile)
2103 		goto out;
2104 
2105 	for_each_element_id(elem, WLAN_EID_MULTIPLE_BSSID, ie, ielen) {
2106 		if (elem->datalen < 4)
2107 			continue;
2108 		for_each_element(sub, elem->data + 1, elem->datalen - 1) {
2109 			u8 profile_len;
2110 
2111 			if (sub->id != 0 || sub->datalen < 4) {
2112 				/* not a valid BSS profile */
2113 				continue;
2114 			}
2115 
2116 			if (sub->data[0] != WLAN_EID_NON_TX_BSSID_CAP ||
2117 			    sub->data[1] != 2) {
2118 				/* The first element within the Nontransmitted
2119 				 * BSSID Profile is not the Nontransmitted
2120 				 * BSSID Capability element.
2121 				 */
2122 				continue;
2123 			}
2124 
2125 			memset(profile, 0, ielen);
2126 			profile_len = cfg80211_merge_profile(ie, ielen,
2127 							     elem,
2128 							     sub,
2129 							     profile,
2130 							     ielen);
2131 
2132 			/* found a Nontransmitted BSSID Profile */
2133 			mbssid_index_ie = cfg80211_find_ie
2134 				(WLAN_EID_MULTI_BSSID_IDX,
2135 				 profile, profile_len);
2136 			if (!mbssid_index_ie || mbssid_index_ie[1] < 1 ||
2137 			    mbssid_index_ie[2] == 0 ||
2138 			    mbssid_index_ie[2] > 46) {
2139 				/* No valid Multiple BSSID-Index element */
2140 				continue;
2141 			}
2142 
2143 			if (seen_indices & BIT_ULL(mbssid_index_ie[2]))
2144 				/* We don't support legacy split of a profile */
2145 				net_dbg_ratelimited("Partial info for BSSID index %d\n",
2146 						    mbssid_index_ie[2]);
2147 
2148 			seen_indices |= BIT_ULL(mbssid_index_ie[2]);
2149 
2150 			non_tx_data->bssid_index = mbssid_index_ie[2];
2151 			non_tx_data->max_bssid_indicator = elem->data[0];
2152 
2153 			cfg80211_gen_new_bssid(bssid,
2154 					       non_tx_data->max_bssid_indicator,
2155 					       non_tx_data->bssid_index,
2156 					       new_bssid);
2157 			memset(new_ie, 0, IEEE80211_MAX_DATA_LEN);
2158 			new_ie_len = cfg80211_gen_new_ie(ie, ielen,
2159 							 profile,
2160 							 profile_len, new_ie,
2161 							 gfp);
2162 			if (!new_ie_len)
2163 				continue;
2164 
2165 			capability = get_unaligned_le16(profile + 2);
2166 			bss = cfg80211_inform_single_bss_data(wiphy, data,
2167 							      ftype,
2168 							      new_bssid, tsf,
2169 							      capability,
2170 							      beacon_interval,
2171 							      new_ie,
2172 							      new_ie_len,
2173 							      non_tx_data,
2174 							      gfp);
2175 			if (!bss)
2176 				break;
2177 			cfg80211_put_bss(wiphy, bss);
2178 		}
2179 	}
2180 
2181 out:
2182 	kfree(new_ie);
2183 	kfree(profile);
2184 }
2185 
2186 struct cfg80211_bss *
2187 cfg80211_inform_bss_data(struct wiphy *wiphy,
2188 			 struct cfg80211_inform_bss *data,
2189 			 enum cfg80211_bss_frame_type ftype,
2190 			 const u8 *bssid, u64 tsf, u16 capability,
2191 			 u16 beacon_interval, const u8 *ie, size_t ielen,
2192 			 gfp_t gfp)
2193 {
2194 	struct cfg80211_bss *res;
2195 	struct cfg80211_non_tx_bss non_tx_data;
2196 
2197 	res = cfg80211_inform_single_bss_data(wiphy, data, ftype, bssid, tsf,
2198 					      capability, beacon_interval, ie,
2199 					      ielen, NULL, gfp);
2200 	if (!res)
2201 		return NULL;
2202 	non_tx_data.tx_bss = res;
2203 	cfg80211_parse_mbssid_data(wiphy, data, ftype, bssid, tsf,
2204 				   beacon_interval, ie, ielen, &non_tx_data,
2205 				   gfp);
2206 	return res;
2207 }
2208 EXPORT_SYMBOL(cfg80211_inform_bss_data);
2209 
2210 static void
2211 cfg80211_parse_mbssid_frame_data(struct wiphy *wiphy,
2212 				 struct cfg80211_inform_bss *data,
2213 				 struct ieee80211_mgmt *mgmt, size_t len,
2214 				 struct cfg80211_non_tx_bss *non_tx_data,
2215 				 gfp_t gfp)
2216 {
2217 	enum cfg80211_bss_frame_type ftype;
2218 	const u8 *ie = mgmt->u.probe_resp.variable;
2219 	size_t ielen = len - offsetof(struct ieee80211_mgmt,
2220 				      u.probe_resp.variable);
2221 
2222 	ftype = ieee80211_is_beacon(mgmt->frame_control) ?
2223 		CFG80211_BSS_FTYPE_BEACON : CFG80211_BSS_FTYPE_PRESP;
2224 
2225 	cfg80211_parse_mbssid_data(wiphy, data, ftype, mgmt->bssid,
2226 				   le64_to_cpu(mgmt->u.probe_resp.timestamp),
2227 				   le16_to_cpu(mgmt->u.probe_resp.beacon_int),
2228 				   ie, ielen, non_tx_data, gfp);
2229 }
2230 
2231 static void
2232 cfg80211_update_notlisted_nontrans(struct wiphy *wiphy,
2233 				   struct cfg80211_bss *nontrans_bss,
2234 				   struct ieee80211_mgmt *mgmt, size_t len)
2235 {
2236 	u8 *ie, *new_ie, *pos;
2237 	const u8 *nontrans_ssid, *trans_ssid, *mbssid;
2238 	size_t ielen = len - offsetof(struct ieee80211_mgmt,
2239 				      u.probe_resp.variable);
2240 	size_t new_ie_len;
2241 	struct cfg80211_bss_ies *new_ies;
2242 	const struct cfg80211_bss_ies *old;
2243 	u8 cpy_len;
2244 
2245 	lockdep_assert_held(&wiphy_to_rdev(wiphy)->bss_lock);
2246 
2247 	ie = mgmt->u.probe_resp.variable;
2248 
2249 	new_ie_len = ielen;
2250 	trans_ssid = cfg80211_find_ie(WLAN_EID_SSID, ie, ielen);
2251 	if (!trans_ssid)
2252 		return;
2253 	new_ie_len -= trans_ssid[1];
2254 	mbssid = cfg80211_find_ie(WLAN_EID_MULTIPLE_BSSID, ie, ielen);
2255 	/*
2256 	 * It's not valid to have the MBSSID element before SSID
2257 	 * ignore if that happens - the code below assumes it is
2258 	 * after (while copying things inbetween).
2259 	 */
2260 	if (!mbssid || mbssid < trans_ssid)
2261 		return;
2262 	new_ie_len -= mbssid[1];
2263 
2264 	nontrans_ssid = ieee80211_bss_get_ie(nontrans_bss, WLAN_EID_SSID);
2265 	if (!nontrans_ssid)
2266 		return;
2267 
2268 	new_ie_len += nontrans_ssid[1];
2269 
2270 	/* generate new ie for nontrans BSS
2271 	 * 1. replace SSID with nontrans BSS' SSID
2272 	 * 2. skip MBSSID IE
2273 	 */
2274 	new_ie = kzalloc(new_ie_len, GFP_ATOMIC);
2275 	if (!new_ie)
2276 		return;
2277 
2278 	new_ies = kzalloc(sizeof(*new_ies) + new_ie_len, GFP_ATOMIC);
2279 	if (!new_ies)
2280 		goto out_free;
2281 
2282 	pos = new_ie;
2283 
2284 	/* copy the nontransmitted SSID */
2285 	cpy_len = nontrans_ssid[1] + 2;
2286 	memcpy(pos, nontrans_ssid, cpy_len);
2287 	pos += cpy_len;
2288 	/* copy the IEs between SSID and MBSSID */
2289 	cpy_len = trans_ssid[1] + 2;
2290 	memcpy(pos, (trans_ssid + cpy_len), (mbssid - (trans_ssid + cpy_len)));
2291 	pos += (mbssid - (trans_ssid + cpy_len));
2292 	/* copy the IEs after MBSSID */
2293 	cpy_len = mbssid[1] + 2;
2294 	memcpy(pos, mbssid + cpy_len, ((ie + ielen) - (mbssid + cpy_len)));
2295 
2296 	/* update ie */
2297 	new_ies->len = new_ie_len;
2298 	new_ies->tsf = le64_to_cpu(mgmt->u.probe_resp.timestamp);
2299 	new_ies->from_beacon = ieee80211_is_beacon(mgmt->frame_control);
2300 	memcpy(new_ies->data, new_ie, new_ie_len);
2301 	if (ieee80211_is_probe_resp(mgmt->frame_control)) {
2302 		old = rcu_access_pointer(nontrans_bss->proberesp_ies);
2303 		rcu_assign_pointer(nontrans_bss->proberesp_ies, new_ies);
2304 		rcu_assign_pointer(nontrans_bss->ies, new_ies);
2305 		if (old)
2306 			kfree_rcu((struct cfg80211_bss_ies *)old, rcu_head);
2307 	} else {
2308 		old = rcu_access_pointer(nontrans_bss->beacon_ies);
2309 		rcu_assign_pointer(nontrans_bss->beacon_ies, new_ies);
2310 		rcu_assign_pointer(nontrans_bss->ies, new_ies);
2311 		if (old)
2312 			kfree_rcu((struct cfg80211_bss_ies *)old, rcu_head);
2313 	}
2314 
2315 out_free:
2316 	kfree(new_ie);
2317 }
2318 
2319 /* cfg80211_inform_bss_width_frame helper */
2320 static struct cfg80211_bss *
2321 cfg80211_inform_single_bss_frame_data(struct wiphy *wiphy,
2322 				      struct cfg80211_inform_bss *data,
2323 				      struct ieee80211_mgmt *mgmt, size_t len,
2324 				      gfp_t gfp)
2325 {
2326 	struct cfg80211_internal_bss tmp = {}, *res;
2327 	struct cfg80211_bss_ies *ies;
2328 	struct ieee80211_channel *channel;
2329 	bool signal_valid;
2330 	struct ieee80211_ext *ext = NULL;
2331 	u8 *bssid, *variable;
2332 	u16 capability, beacon_int;
2333 	size_t ielen, min_hdr_len = offsetof(struct ieee80211_mgmt,
2334 					     u.probe_resp.variable);
2335 	int bss_type;
2336 
2337 	BUILD_BUG_ON(offsetof(struct ieee80211_mgmt, u.probe_resp.variable) !=
2338 			offsetof(struct ieee80211_mgmt, u.beacon.variable));
2339 
2340 	trace_cfg80211_inform_bss_frame(wiphy, data, mgmt, len);
2341 
2342 	if (WARN_ON(!mgmt))
2343 		return NULL;
2344 
2345 	if (WARN_ON(!wiphy))
2346 		return NULL;
2347 
2348 	if (WARN_ON(wiphy->signal_type == CFG80211_SIGNAL_TYPE_UNSPEC &&
2349 		    (data->signal < 0 || data->signal > 100)))
2350 		return NULL;
2351 
2352 	if (ieee80211_is_s1g_beacon(mgmt->frame_control)) {
2353 		ext = (void *) mgmt;
2354 		min_hdr_len = offsetof(struct ieee80211_ext, u.s1g_beacon);
2355 		if (ieee80211_is_s1g_short_beacon(mgmt->frame_control))
2356 			min_hdr_len = offsetof(struct ieee80211_ext,
2357 					       u.s1g_short_beacon.variable);
2358 	}
2359 
2360 	if (WARN_ON(len < min_hdr_len))
2361 		return NULL;
2362 
2363 	ielen = len - min_hdr_len;
2364 	variable = mgmt->u.probe_resp.variable;
2365 	if (ext) {
2366 		if (ieee80211_is_s1g_short_beacon(mgmt->frame_control))
2367 			variable = ext->u.s1g_short_beacon.variable;
2368 		else
2369 			variable = ext->u.s1g_beacon.variable;
2370 	}
2371 
2372 	channel = cfg80211_get_bss_channel(wiphy, variable,
2373 					   ielen, data->chan, data->scan_width);
2374 	if (!channel)
2375 		return NULL;
2376 
2377 	if (ext) {
2378 		const struct ieee80211_s1g_bcn_compat_ie *compat;
2379 		const struct element *elem;
2380 
2381 		elem = cfg80211_find_elem(WLAN_EID_S1G_BCN_COMPAT,
2382 					  variable, ielen);
2383 		if (!elem)
2384 			return NULL;
2385 		if (elem->datalen < sizeof(*compat))
2386 			return NULL;
2387 		compat = (void *)elem->data;
2388 		bssid = ext->u.s1g_beacon.sa;
2389 		capability = le16_to_cpu(compat->compat_info);
2390 		beacon_int = le16_to_cpu(compat->beacon_int);
2391 	} else {
2392 		bssid = mgmt->bssid;
2393 		beacon_int = le16_to_cpu(mgmt->u.probe_resp.beacon_int);
2394 		capability = le16_to_cpu(mgmt->u.probe_resp.capab_info);
2395 	}
2396 
2397 	ies = kzalloc(sizeof(*ies) + ielen, gfp);
2398 	if (!ies)
2399 		return NULL;
2400 	ies->len = ielen;
2401 	ies->tsf = le64_to_cpu(mgmt->u.probe_resp.timestamp);
2402 	ies->from_beacon = ieee80211_is_beacon(mgmt->frame_control) ||
2403 			   ieee80211_is_s1g_beacon(mgmt->frame_control);
2404 	memcpy(ies->data, variable, ielen);
2405 
2406 	if (ieee80211_is_probe_resp(mgmt->frame_control))
2407 		rcu_assign_pointer(tmp.pub.proberesp_ies, ies);
2408 	else
2409 		rcu_assign_pointer(tmp.pub.beacon_ies, ies);
2410 	rcu_assign_pointer(tmp.pub.ies, ies);
2411 
2412 	memcpy(tmp.pub.bssid, bssid, ETH_ALEN);
2413 	tmp.pub.beacon_interval = beacon_int;
2414 	tmp.pub.capability = capability;
2415 	tmp.pub.channel = channel;
2416 	tmp.pub.scan_width = data->scan_width;
2417 	tmp.pub.signal = data->signal;
2418 	tmp.ts_boottime = data->boottime_ns;
2419 	tmp.parent_tsf = data->parent_tsf;
2420 	tmp.pub.chains = data->chains;
2421 	memcpy(tmp.pub.chain_signal, data->chain_signal, IEEE80211_MAX_CHAINS);
2422 	ether_addr_copy(tmp.parent_bssid, data->parent_bssid);
2423 
2424 	signal_valid = data->chan == channel;
2425 	res = cfg80211_bss_update(wiphy_to_rdev(wiphy), &tmp, signal_valid,
2426 				  jiffies);
2427 	if (!res)
2428 		return NULL;
2429 
2430 	if (channel->band == NL80211_BAND_60GHZ) {
2431 		bss_type = res->pub.capability & WLAN_CAPABILITY_DMG_TYPE_MASK;
2432 		if (bss_type == WLAN_CAPABILITY_DMG_TYPE_AP ||
2433 		    bss_type == WLAN_CAPABILITY_DMG_TYPE_PBSS)
2434 			regulatory_hint_found_beacon(wiphy, channel, gfp);
2435 	} else {
2436 		if (res->pub.capability & WLAN_CAPABILITY_ESS)
2437 			regulatory_hint_found_beacon(wiphy, channel, gfp);
2438 	}
2439 
2440 	trace_cfg80211_return_bss(&res->pub);
2441 	/* cfg80211_bss_update gives us a referenced result */
2442 	return &res->pub;
2443 }
2444 
2445 struct cfg80211_bss *
2446 cfg80211_inform_bss_frame_data(struct wiphy *wiphy,
2447 			       struct cfg80211_inform_bss *data,
2448 			       struct ieee80211_mgmt *mgmt, size_t len,
2449 			       gfp_t gfp)
2450 {
2451 	struct cfg80211_bss *res, *tmp_bss;
2452 	const u8 *ie = mgmt->u.probe_resp.variable;
2453 	const struct cfg80211_bss_ies *ies1, *ies2;
2454 	size_t ielen = len - offsetof(struct ieee80211_mgmt,
2455 				      u.probe_resp.variable);
2456 	struct cfg80211_non_tx_bss non_tx_data;
2457 
2458 	res = cfg80211_inform_single_bss_frame_data(wiphy, data, mgmt,
2459 						    len, gfp);
2460 	if (!res || !wiphy->support_mbssid ||
2461 	    !cfg80211_find_elem(WLAN_EID_MULTIPLE_BSSID, ie, ielen))
2462 		return res;
2463 	if (wiphy->support_only_he_mbssid &&
2464 	    !cfg80211_find_ext_elem(WLAN_EID_EXT_HE_CAPABILITY, ie, ielen))
2465 		return res;
2466 
2467 	non_tx_data.tx_bss = res;
2468 	/* process each non-transmitting bss */
2469 	cfg80211_parse_mbssid_frame_data(wiphy, data, mgmt, len,
2470 					 &non_tx_data, gfp);
2471 
2472 	spin_lock_bh(&wiphy_to_rdev(wiphy)->bss_lock);
2473 
2474 	/* check if the res has other nontransmitting bss which is not
2475 	 * in MBSSID IE
2476 	 */
2477 	ies1 = rcu_access_pointer(res->ies);
2478 
2479 	/* go through nontrans_list, if the timestamp of the BSS is
2480 	 * earlier than the timestamp of the transmitting BSS then
2481 	 * update it
2482 	 */
2483 	list_for_each_entry(tmp_bss, &res->nontrans_list,
2484 			    nontrans_list) {
2485 		ies2 = rcu_access_pointer(tmp_bss->ies);
2486 		if (ies2->tsf < ies1->tsf)
2487 			cfg80211_update_notlisted_nontrans(wiphy, tmp_bss,
2488 							   mgmt, len);
2489 	}
2490 	spin_unlock_bh(&wiphy_to_rdev(wiphy)->bss_lock);
2491 
2492 	return res;
2493 }
2494 EXPORT_SYMBOL(cfg80211_inform_bss_frame_data);
2495 
2496 void cfg80211_ref_bss(struct wiphy *wiphy, struct cfg80211_bss *pub)
2497 {
2498 	struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
2499 	struct cfg80211_internal_bss *bss;
2500 
2501 	if (!pub)
2502 		return;
2503 
2504 	bss = container_of(pub, struct cfg80211_internal_bss, pub);
2505 
2506 	spin_lock_bh(&rdev->bss_lock);
2507 	bss_ref_get(rdev, bss);
2508 	spin_unlock_bh(&rdev->bss_lock);
2509 }
2510 EXPORT_SYMBOL(cfg80211_ref_bss);
2511 
2512 void cfg80211_put_bss(struct wiphy *wiphy, struct cfg80211_bss *pub)
2513 {
2514 	struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
2515 	struct cfg80211_internal_bss *bss;
2516 
2517 	if (!pub)
2518 		return;
2519 
2520 	bss = container_of(pub, struct cfg80211_internal_bss, pub);
2521 
2522 	spin_lock_bh(&rdev->bss_lock);
2523 	bss_ref_put(rdev, bss);
2524 	spin_unlock_bh(&rdev->bss_lock);
2525 }
2526 EXPORT_SYMBOL(cfg80211_put_bss);
2527 
2528 void cfg80211_unlink_bss(struct wiphy *wiphy, struct cfg80211_bss *pub)
2529 {
2530 	struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
2531 	struct cfg80211_internal_bss *bss, *tmp1;
2532 	struct cfg80211_bss *nontrans_bss, *tmp;
2533 
2534 	if (WARN_ON(!pub))
2535 		return;
2536 
2537 	bss = container_of(pub, struct cfg80211_internal_bss, pub);
2538 
2539 	spin_lock_bh(&rdev->bss_lock);
2540 	if (list_empty(&bss->list))
2541 		goto out;
2542 
2543 	list_for_each_entry_safe(nontrans_bss, tmp,
2544 				 &pub->nontrans_list,
2545 				 nontrans_list) {
2546 		tmp1 = container_of(nontrans_bss,
2547 				    struct cfg80211_internal_bss, pub);
2548 		if (__cfg80211_unlink_bss(rdev, tmp1))
2549 			rdev->bss_generation++;
2550 	}
2551 
2552 	if (__cfg80211_unlink_bss(rdev, bss))
2553 		rdev->bss_generation++;
2554 out:
2555 	spin_unlock_bh(&rdev->bss_lock);
2556 }
2557 EXPORT_SYMBOL(cfg80211_unlink_bss);
2558 
2559 void cfg80211_bss_iter(struct wiphy *wiphy,
2560 		       struct cfg80211_chan_def *chandef,
2561 		       void (*iter)(struct wiphy *wiphy,
2562 				    struct cfg80211_bss *bss,
2563 				    void *data),
2564 		       void *iter_data)
2565 {
2566 	struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
2567 	struct cfg80211_internal_bss *bss;
2568 
2569 	spin_lock_bh(&rdev->bss_lock);
2570 
2571 	list_for_each_entry(bss, &rdev->bss_list, list) {
2572 		if (!chandef || cfg80211_is_sub_chan(chandef, bss->pub.channel))
2573 			iter(wiphy, &bss->pub, iter_data);
2574 	}
2575 
2576 	spin_unlock_bh(&rdev->bss_lock);
2577 }
2578 EXPORT_SYMBOL(cfg80211_bss_iter);
2579 
2580 void cfg80211_update_assoc_bss_entry(struct wireless_dev *wdev,
2581 				     struct ieee80211_channel *chan)
2582 {
2583 	struct wiphy *wiphy = wdev->wiphy;
2584 	struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
2585 	struct cfg80211_internal_bss *cbss = wdev->current_bss;
2586 	struct cfg80211_internal_bss *new = NULL;
2587 	struct cfg80211_internal_bss *bss;
2588 	struct cfg80211_bss *nontrans_bss;
2589 	struct cfg80211_bss *tmp;
2590 
2591 	spin_lock_bh(&rdev->bss_lock);
2592 
2593 	/*
2594 	 * Some APs use CSA also for bandwidth changes, i.e., without actually
2595 	 * changing the control channel, so no need to update in such a case.
2596 	 */
2597 	if (cbss->pub.channel == chan)
2598 		goto done;
2599 
2600 	/* use transmitting bss */
2601 	if (cbss->pub.transmitted_bss)
2602 		cbss = container_of(cbss->pub.transmitted_bss,
2603 				    struct cfg80211_internal_bss,
2604 				    pub);
2605 
2606 	cbss->pub.channel = chan;
2607 
2608 	list_for_each_entry(bss, &rdev->bss_list, list) {
2609 		if (!cfg80211_bss_type_match(bss->pub.capability,
2610 					     bss->pub.channel->band,
2611 					     wdev->conn_bss_type))
2612 			continue;
2613 
2614 		if (bss == cbss)
2615 			continue;
2616 
2617 		if (!cmp_bss(&bss->pub, &cbss->pub, BSS_CMP_REGULAR)) {
2618 			new = bss;
2619 			break;
2620 		}
2621 	}
2622 
2623 	if (new) {
2624 		/* to save time, update IEs for transmitting bss only */
2625 		if (cfg80211_update_known_bss(rdev, cbss, new, false)) {
2626 			new->pub.proberesp_ies = NULL;
2627 			new->pub.beacon_ies = NULL;
2628 		}
2629 
2630 		list_for_each_entry_safe(nontrans_bss, tmp,
2631 					 &new->pub.nontrans_list,
2632 					 nontrans_list) {
2633 			bss = container_of(nontrans_bss,
2634 					   struct cfg80211_internal_bss, pub);
2635 			if (__cfg80211_unlink_bss(rdev, bss))
2636 				rdev->bss_generation++;
2637 		}
2638 
2639 		WARN_ON(atomic_read(&new->hold));
2640 		if (!WARN_ON(!__cfg80211_unlink_bss(rdev, new)))
2641 			rdev->bss_generation++;
2642 	}
2643 
2644 	rb_erase(&cbss->rbn, &rdev->bss_tree);
2645 	rb_insert_bss(rdev, cbss);
2646 	rdev->bss_generation++;
2647 
2648 	list_for_each_entry_safe(nontrans_bss, tmp,
2649 				 &cbss->pub.nontrans_list,
2650 				 nontrans_list) {
2651 		bss = container_of(nontrans_bss,
2652 				   struct cfg80211_internal_bss, pub);
2653 		bss->pub.channel = chan;
2654 		rb_erase(&bss->rbn, &rdev->bss_tree);
2655 		rb_insert_bss(rdev, bss);
2656 		rdev->bss_generation++;
2657 	}
2658 
2659 done:
2660 	spin_unlock_bh(&rdev->bss_lock);
2661 }
2662 
2663 #ifdef CONFIG_CFG80211_WEXT
2664 static struct cfg80211_registered_device *
2665 cfg80211_get_dev_from_ifindex(struct net *net, int ifindex)
2666 {
2667 	struct cfg80211_registered_device *rdev;
2668 	struct net_device *dev;
2669 
2670 	ASSERT_RTNL();
2671 
2672 	dev = dev_get_by_index(net, ifindex);
2673 	if (!dev)
2674 		return ERR_PTR(-ENODEV);
2675 	if (dev->ieee80211_ptr)
2676 		rdev = wiphy_to_rdev(dev->ieee80211_ptr->wiphy);
2677 	else
2678 		rdev = ERR_PTR(-ENODEV);
2679 	dev_put(dev);
2680 	return rdev;
2681 }
2682 
2683 int cfg80211_wext_siwscan(struct net_device *dev,
2684 			  struct iw_request_info *info,
2685 			  union iwreq_data *wrqu, char *extra)
2686 {
2687 	struct cfg80211_registered_device *rdev;
2688 	struct wiphy *wiphy;
2689 	struct iw_scan_req *wreq = NULL;
2690 	struct cfg80211_scan_request *creq = NULL;
2691 	int i, err, n_channels = 0;
2692 	enum nl80211_band band;
2693 
2694 	if (!netif_running(dev))
2695 		return -ENETDOWN;
2696 
2697 	if (wrqu->data.length == sizeof(struct iw_scan_req))
2698 		wreq = (struct iw_scan_req *)extra;
2699 
2700 	rdev = cfg80211_get_dev_from_ifindex(dev_net(dev), dev->ifindex);
2701 
2702 	if (IS_ERR(rdev))
2703 		return PTR_ERR(rdev);
2704 
2705 	if (rdev->scan_req || rdev->scan_msg) {
2706 		err = -EBUSY;
2707 		goto out;
2708 	}
2709 
2710 	wiphy = &rdev->wiphy;
2711 
2712 	/* Determine number of channels, needed to allocate creq */
2713 	if (wreq && wreq->num_channels)
2714 		n_channels = wreq->num_channels;
2715 	else
2716 		n_channels = ieee80211_get_num_supported_channels(wiphy);
2717 
2718 	creq = kzalloc(sizeof(*creq) + sizeof(struct cfg80211_ssid) +
2719 		       n_channels * sizeof(void *),
2720 		       GFP_ATOMIC);
2721 	if (!creq) {
2722 		err = -ENOMEM;
2723 		goto out;
2724 	}
2725 
2726 	creq->wiphy = wiphy;
2727 	creq->wdev = dev->ieee80211_ptr;
2728 	/* SSIDs come after channels */
2729 	creq->ssids = (void *)&creq->channels[n_channels];
2730 	creq->n_channels = n_channels;
2731 	creq->n_ssids = 1;
2732 	creq->scan_start = jiffies;
2733 
2734 	/* translate "Scan on frequencies" request */
2735 	i = 0;
2736 	for (band = 0; band < NUM_NL80211_BANDS; band++) {
2737 		int j;
2738 
2739 		if (!wiphy->bands[band])
2740 			continue;
2741 
2742 		for (j = 0; j < wiphy->bands[band]->n_channels; j++) {
2743 			/* ignore disabled channels */
2744 			if (wiphy->bands[band]->channels[j].flags &
2745 						IEEE80211_CHAN_DISABLED)
2746 				continue;
2747 
2748 			/* If we have a wireless request structure and the
2749 			 * wireless request specifies frequencies, then search
2750 			 * for the matching hardware channel.
2751 			 */
2752 			if (wreq && wreq->num_channels) {
2753 				int k;
2754 				int wiphy_freq = wiphy->bands[band]->channels[j].center_freq;
2755 				for (k = 0; k < wreq->num_channels; k++) {
2756 					struct iw_freq *freq =
2757 						&wreq->channel_list[k];
2758 					int wext_freq =
2759 						cfg80211_wext_freq(freq);
2760 
2761 					if (wext_freq == wiphy_freq)
2762 						goto wext_freq_found;
2763 				}
2764 				goto wext_freq_not_found;
2765 			}
2766 
2767 		wext_freq_found:
2768 			creq->channels[i] = &wiphy->bands[band]->channels[j];
2769 			i++;
2770 		wext_freq_not_found: ;
2771 		}
2772 	}
2773 	/* No channels found? */
2774 	if (!i) {
2775 		err = -EINVAL;
2776 		goto out;
2777 	}
2778 
2779 	/* Set real number of channels specified in creq->channels[] */
2780 	creq->n_channels = i;
2781 
2782 	/* translate "Scan for SSID" request */
2783 	if (wreq) {
2784 		if (wrqu->data.flags & IW_SCAN_THIS_ESSID) {
2785 			if (wreq->essid_len > IEEE80211_MAX_SSID_LEN) {
2786 				err = -EINVAL;
2787 				goto out;
2788 			}
2789 			memcpy(creq->ssids[0].ssid, wreq->essid, wreq->essid_len);
2790 			creq->ssids[0].ssid_len = wreq->essid_len;
2791 		}
2792 		if (wreq->scan_type == IW_SCAN_TYPE_PASSIVE)
2793 			creq->n_ssids = 0;
2794 	}
2795 
2796 	for (i = 0; i < NUM_NL80211_BANDS; i++)
2797 		if (wiphy->bands[i])
2798 			creq->rates[i] = (1 << wiphy->bands[i]->n_bitrates) - 1;
2799 
2800 	eth_broadcast_addr(creq->bssid);
2801 
2802 	wiphy_lock(&rdev->wiphy);
2803 
2804 	rdev->scan_req = creq;
2805 	err = rdev_scan(rdev, creq);
2806 	if (err) {
2807 		rdev->scan_req = NULL;
2808 		/* creq will be freed below */
2809 	} else {
2810 		nl80211_send_scan_start(rdev, dev->ieee80211_ptr);
2811 		/* creq now owned by driver */
2812 		creq = NULL;
2813 		dev_hold(dev);
2814 	}
2815 	wiphy_unlock(&rdev->wiphy);
2816  out:
2817 	kfree(creq);
2818 	return err;
2819 }
2820 EXPORT_WEXT_HANDLER(cfg80211_wext_siwscan);
2821 
2822 static char *ieee80211_scan_add_ies(struct iw_request_info *info,
2823 				    const struct cfg80211_bss_ies *ies,
2824 				    char *current_ev, char *end_buf)
2825 {
2826 	const u8 *pos, *end, *next;
2827 	struct iw_event iwe;
2828 
2829 	if (!ies)
2830 		return current_ev;
2831 
2832 	/*
2833 	 * If needed, fragment the IEs buffer (at IE boundaries) into short
2834 	 * enough fragments to fit into IW_GENERIC_IE_MAX octet messages.
2835 	 */
2836 	pos = ies->data;
2837 	end = pos + ies->len;
2838 
2839 	while (end - pos > IW_GENERIC_IE_MAX) {
2840 		next = pos + 2 + pos[1];
2841 		while (next + 2 + next[1] - pos < IW_GENERIC_IE_MAX)
2842 			next = next + 2 + next[1];
2843 
2844 		memset(&iwe, 0, sizeof(iwe));
2845 		iwe.cmd = IWEVGENIE;
2846 		iwe.u.data.length = next - pos;
2847 		current_ev = iwe_stream_add_point_check(info, current_ev,
2848 							end_buf, &iwe,
2849 							(void *)pos);
2850 		if (IS_ERR(current_ev))
2851 			return current_ev;
2852 		pos = next;
2853 	}
2854 
2855 	if (end > pos) {
2856 		memset(&iwe, 0, sizeof(iwe));
2857 		iwe.cmd = IWEVGENIE;
2858 		iwe.u.data.length = end - pos;
2859 		current_ev = iwe_stream_add_point_check(info, current_ev,
2860 							end_buf, &iwe,
2861 							(void *)pos);
2862 		if (IS_ERR(current_ev))
2863 			return current_ev;
2864 	}
2865 
2866 	return current_ev;
2867 }
2868 
2869 static char *
2870 ieee80211_bss(struct wiphy *wiphy, struct iw_request_info *info,
2871 	      struct cfg80211_internal_bss *bss, char *current_ev,
2872 	      char *end_buf)
2873 {
2874 	const struct cfg80211_bss_ies *ies;
2875 	struct iw_event iwe;
2876 	const u8 *ie;
2877 	u8 buf[50];
2878 	u8 *cfg, *p, *tmp;
2879 	int rem, i, sig;
2880 	bool ismesh = false;
2881 
2882 	memset(&iwe, 0, sizeof(iwe));
2883 	iwe.cmd = SIOCGIWAP;
2884 	iwe.u.ap_addr.sa_family = ARPHRD_ETHER;
2885 	memcpy(iwe.u.ap_addr.sa_data, bss->pub.bssid, ETH_ALEN);
2886 	current_ev = iwe_stream_add_event_check(info, current_ev, end_buf, &iwe,
2887 						IW_EV_ADDR_LEN);
2888 	if (IS_ERR(current_ev))
2889 		return current_ev;
2890 
2891 	memset(&iwe, 0, sizeof(iwe));
2892 	iwe.cmd = SIOCGIWFREQ;
2893 	iwe.u.freq.m = ieee80211_frequency_to_channel(bss->pub.channel->center_freq);
2894 	iwe.u.freq.e = 0;
2895 	current_ev = iwe_stream_add_event_check(info, current_ev, end_buf, &iwe,
2896 						IW_EV_FREQ_LEN);
2897 	if (IS_ERR(current_ev))
2898 		return current_ev;
2899 
2900 	memset(&iwe, 0, sizeof(iwe));
2901 	iwe.cmd = SIOCGIWFREQ;
2902 	iwe.u.freq.m = bss->pub.channel->center_freq;
2903 	iwe.u.freq.e = 6;
2904 	current_ev = iwe_stream_add_event_check(info, current_ev, end_buf, &iwe,
2905 						IW_EV_FREQ_LEN);
2906 	if (IS_ERR(current_ev))
2907 		return current_ev;
2908 
2909 	if (wiphy->signal_type != CFG80211_SIGNAL_TYPE_NONE) {
2910 		memset(&iwe, 0, sizeof(iwe));
2911 		iwe.cmd = IWEVQUAL;
2912 		iwe.u.qual.updated = IW_QUAL_LEVEL_UPDATED |
2913 				     IW_QUAL_NOISE_INVALID |
2914 				     IW_QUAL_QUAL_UPDATED;
2915 		switch (wiphy->signal_type) {
2916 		case CFG80211_SIGNAL_TYPE_MBM:
2917 			sig = bss->pub.signal / 100;
2918 			iwe.u.qual.level = sig;
2919 			iwe.u.qual.updated |= IW_QUAL_DBM;
2920 			if (sig < -110)		/* rather bad */
2921 				sig = -110;
2922 			else if (sig > -40)	/* perfect */
2923 				sig = -40;
2924 			/* will give a range of 0 .. 70 */
2925 			iwe.u.qual.qual = sig + 110;
2926 			break;
2927 		case CFG80211_SIGNAL_TYPE_UNSPEC:
2928 			iwe.u.qual.level = bss->pub.signal;
2929 			/* will give range 0 .. 100 */
2930 			iwe.u.qual.qual = bss->pub.signal;
2931 			break;
2932 		default:
2933 			/* not reached */
2934 			break;
2935 		}
2936 		current_ev = iwe_stream_add_event_check(info, current_ev,
2937 							end_buf, &iwe,
2938 							IW_EV_QUAL_LEN);
2939 		if (IS_ERR(current_ev))
2940 			return current_ev;
2941 	}
2942 
2943 	memset(&iwe, 0, sizeof(iwe));
2944 	iwe.cmd = SIOCGIWENCODE;
2945 	if (bss->pub.capability & WLAN_CAPABILITY_PRIVACY)
2946 		iwe.u.data.flags = IW_ENCODE_ENABLED | IW_ENCODE_NOKEY;
2947 	else
2948 		iwe.u.data.flags = IW_ENCODE_DISABLED;
2949 	iwe.u.data.length = 0;
2950 	current_ev = iwe_stream_add_point_check(info, current_ev, end_buf,
2951 						&iwe, "");
2952 	if (IS_ERR(current_ev))
2953 		return current_ev;
2954 
2955 	rcu_read_lock();
2956 	ies = rcu_dereference(bss->pub.ies);
2957 	rem = ies->len;
2958 	ie = ies->data;
2959 
2960 	while (rem >= 2) {
2961 		/* invalid data */
2962 		if (ie[1] > rem - 2)
2963 			break;
2964 
2965 		switch (ie[0]) {
2966 		case WLAN_EID_SSID:
2967 			memset(&iwe, 0, sizeof(iwe));
2968 			iwe.cmd = SIOCGIWESSID;
2969 			iwe.u.data.length = ie[1];
2970 			iwe.u.data.flags = 1;
2971 			current_ev = iwe_stream_add_point_check(info,
2972 								current_ev,
2973 								end_buf, &iwe,
2974 								(u8 *)ie + 2);
2975 			if (IS_ERR(current_ev))
2976 				goto unlock;
2977 			break;
2978 		case WLAN_EID_MESH_ID:
2979 			memset(&iwe, 0, sizeof(iwe));
2980 			iwe.cmd = SIOCGIWESSID;
2981 			iwe.u.data.length = ie[1];
2982 			iwe.u.data.flags = 1;
2983 			current_ev = iwe_stream_add_point_check(info,
2984 								current_ev,
2985 								end_buf, &iwe,
2986 								(u8 *)ie + 2);
2987 			if (IS_ERR(current_ev))
2988 				goto unlock;
2989 			break;
2990 		case WLAN_EID_MESH_CONFIG:
2991 			ismesh = true;
2992 			if (ie[1] != sizeof(struct ieee80211_meshconf_ie))
2993 				break;
2994 			cfg = (u8 *)ie + 2;
2995 			memset(&iwe, 0, sizeof(iwe));
2996 			iwe.cmd = IWEVCUSTOM;
2997 			sprintf(buf, "Mesh Network Path Selection Protocol ID: "
2998 				"0x%02X", cfg[0]);
2999 			iwe.u.data.length = strlen(buf);
3000 			current_ev = iwe_stream_add_point_check(info,
3001 								current_ev,
3002 								end_buf,
3003 								&iwe, buf);
3004 			if (IS_ERR(current_ev))
3005 				goto unlock;
3006 			sprintf(buf, "Path Selection Metric ID: 0x%02X",
3007 				cfg[1]);
3008 			iwe.u.data.length = strlen(buf);
3009 			current_ev = iwe_stream_add_point_check(info,
3010 								current_ev,
3011 								end_buf,
3012 								&iwe, buf);
3013 			if (IS_ERR(current_ev))
3014 				goto unlock;
3015 			sprintf(buf, "Congestion Control Mode ID: 0x%02X",
3016 				cfg[2]);
3017 			iwe.u.data.length = strlen(buf);
3018 			current_ev = iwe_stream_add_point_check(info,
3019 								current_ev,
3020 								end_buf,
3021 								&iwe, buf);
3022 			if (IS_ERR(current_ev))
3023 				goto unlock;
3024 			sprintf(buf, "Synchronization ID: 0x%02X", cfg[3]);
3025 			iwe.u.data.length = strlen(buf);
3026 			current_ev = iwe_stream_add_point_check(info,
3027 								current_ev,
3028 								end_buf,
3029 								&iwe, buf);
3030 			if (IS_ERR(current_ev))
3031 				goto unlock;
3032 			sprintf(buf, "Authentication ID: 0x%02X", cfg[4]);
3033 			iwe.u.data.length = strlen(buf);
3034 			current_ev = iwe_stream_add_point_check(info,
3035 								current_ev,
3036 								end_buf,
3037 								&iwe, buf);
3038 			if (IS_ERR(current_ev))
3039 				goto unlock;
3040 			sprintf(buf, "Formation Info: 0x%02X", cfg[5]);
3041 			iwe.u.data.length = strlen(buf);
3042 			current_ev = iwe_stream_add_point_check(info,
3043 								current_ev,
3044 								end_buf,
3045 								&iwe, buf);
3046 			if (IS_ERR(current_ev))
3047 				goto unlock;
3048 			sprintf(buf, "Capabilities: 0x%02X", cfg[6]);
3049 			iwe.u.data.length = strlen(buf);
3050 			current_ev = iwe_stream_add_point_check(info,
3051 								current_ev,
3052 								end_buf,
3053 								&iwe, buf);
3054 			if (IS_ERR(current_ev))
3055 				goto unlock;
3056 			break;
3057 		case WLAN_EID_SUPP_RATES:
3058 		case WLAN_EID_EXT_SUPP_RATES:
3059 			/* display all supported rates in readable format */
3060 			p = current_ev + iwe_stream_lcp_len(info);
3061 
3062 			memset(&iwe, 0, sizeof(iwe));
3063 			iwe.cmd = SIOCGIWRATE;
3064 			/* Those two flags are ignored... */
3065 			iwe.u.bitrate.fixed = iwe.u.bitrate.disabled = 0;
3066 
3067 			for (i = 0; i < ie[1]; i++) {
3068 				iwe.u.bitrate.value =
3069 					((ie[i + 2] & 0x7f) * 500000);
3070 				tmp = p;
3071 				p = iwe_stream_add_value(info, current_ev, p,
3072 							 end_buf, &iwe,
3073 							 IW_EV_PARAM_LEN);
3074 				if (p == tmp) {
3075 					current_ev = ERR_PTR(-E2BIG);
3076 					goto unlock;
3077 				}
3078 			}
3079 			current_ev = p;
3080 			break;
3081 		}
3082 		rem -= ie[1] + 2;
3083 		ie += ie[1] + 2;
3084 	}
3085 
3086 	if (bss->pub.capability & (WLAN_CAPABILITY_ESS | WLAN_CAPABILITY_IBSS) ||
3087 	    ismesh) {
3088 		memset(&iwe, 0, sizeof(iwe));
3089 		iwe.cmd = SIOCGIWMODE;
3090 		if (ismesh)
3091 			iwe.u.mode = IW_MODE_MESH;
3092 		else if (bss->pub.capability & WLAN_CAPABILITY_ESS)
3093 			iwe.u.mode = IW_MODE_MASTER;
3094 		else
3095 			iwe.u.mode = IW_MODE_ADHOC;
3096 		current_ev = iwe_stream_add_event_check(info, current_ev,
3097 							end_buf, &iwe,
3098 							IW_EV_UINT_LEN);
3099 		if (IS_ERR(current_ev))
3100 			goto unlock;
3101 	}
3102 
3103 	memset(&iwe, 0, sizeof(iwe));
3104 	iwe.cmd = IWEVCUSTOM;
3105 	sprintf(buf, "tsf=%016llx", (unsigned long long)(ies->tsf));
3106 	iwe.u.data.length = strlen(buf);
3107 	current_ev = iwe_stream_add_point_check(info, current_ev, end_buf,
3108 						&iwe, buf);
3109 	if (IS_ERR(current_ev))
3110 		goto unlock;
3111 	memset(&iwe, 0, sizeof(iwe));
3112 	iwe.cmd = IWEVCUSTOM;
3113 	sprintf(buf, " Last beacon: %ums ago",
3114 		elapsed_jiffies_msecs(bss->ts));
3115 	iwe.u.data.length = strlen(buf);
3116 	current_ev = iwe_stream_add_point_check(info, current_ev,
3117 						end_buf, &iwe, buf);
3118 	if (IS_ERR(current_ev))
3119 		goto unlock;
3120 
3121 	current_ev = ieee80211_scan_add_ies(info, ies, current_ev, end_buf);
3122 
3123  unlock:
3124 	rcu_read_unlock();
3125 	return current_ev;
3126 }
3127 
3128 
3129 static int ieee80211_scan_results(struct cfg80211_registered_device *rdev,
3130 				  struct iw_request_info *info,
3131 				  char *buf, size_t len)
3132 {
3133 	char *current_ev = buf;
3134 	char *end_buf = buf + len;
3135 	struct cfg80211_internal_bss *bss;
3136 	int err = 0;
3137 
3138 	spin_lock_bh(&rdev->bss_lock);
3139 	cfg80211_bss_expire(rdev);
3140 
3141 	list_for_each_entry(bss, &rdev->bss_list, list) {
3142 		if (buf + len - current_ev <= IW_EV_ADDR_LEN) {
3143 			err = -E2BIG;
3144 			break;
3145 		}
3146 		current_ev = ieee80211_bss(&rdev->wiphy, info, bss,
3147 					   current_ev, end_buf);
3148 		if (IS_ERR(current_ev)) {
3149 			err = PTR_ERR(current_ev);
3150 			break;
3151 		}
3152 	}
3153 	spin_unlock_bh(&rdev->bss_lock);
3154 
3155 	if (err)
3156 		return err;
3157 	return current_ev - buf;
3158 }
3159 
3160 
3161 int cfg80211_wext_giwscan(struct net_device *dev,
3162 			  struct iw_request_info *info,
3163 			  struct iw_point *data, char *extra)
3164 {
3165 	struct cfg80211_registered_device *rdev;
3166 	int res;
3167 
3168 	if (!netif_running(dev))
3169 		return -ENETDOWN;
3170 
3171 	rdev = cfg80211_get_dev_from_ifindex(dev_net(dev), dev->ifindex);
3172 
3173 	if (IS_ERR(rdev))
3174 		return PTR_ERR(rdev);
3175 
3176 	if (rdev->scan_req || rdev->scan_msg)
3177 		return -EAGAIN;
3178 
3179 	res = ieee80211_scan_results(rdev, info, extra, data->length);
3180 	data->length = 0;
3181 	if (res >= 0) {
3182 		data->length = res;
3183 		res = 0;
3184 	}
3185 
3186 	return res;
3187 }
3188 EXPORT_WEXT_HANDLER(cfg80211_wext_giwscan);
3189 #endif
3190