1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * cfg80211 scan result handling 4 * 5 * Copyright 2008 Johannes Berg <johannes@sipsolutions.net> 6 * Copyright 2013-2014 Intel Mobile Communications GmbH 7 * Copyright 2016 Intel Deutschland GmbH 8 * Copyright (C) 2018-2023 Intel Corporation 9 */ 10 #include <linux/kernel.h> 11 #include <linux/slab.h> 12 #include <linux/module.h> 13 #include <linux/netdevice.h> 14 #include <linux/wireless.h> 15 #include <linux/nl80211.h> 16 #include <linux/etherdevice.h> 17 #include <linux/crc32.h> 18 #include <linux/bitfield.h> 19 #include <net/arp.h> 20 #include <net/cfg80211.h> 21 #include <net/cfg80211-wext.h> 22 #include <net/iw_handler.h> 23 #include "core.h" 24 #include "nl80211.h" 25 #include "wext-compat.h" 26 #include "rdev-ops.h" 27 28 /** 29 * DOC: BSS tree/list structure 30 * 31 * At the top level, the BSS list is kept in both a list in each 32 * registered device (@bss_list) as well as an RB-tree for faster 33 * lookup. In the RB-tree, entries can be looked up using their 34 * channel, MESHID, MESHCONF (for MBSSes) or channel, BSSID, SSID 35 * for other BSSes. 36 * 37 * Due to the possibility of hidden SSIDs, there's a second level 38 * structure, the "hidden_list" and "hidden_beacon_bss" pointer. 39 * The hidden_list connects all BSSes belonging to a single AP 40 * that has a hidden SSID, and connects beacon and probe response 41 * entries. For a probe response entry for a hidden SSID, the 42 * hidden_beacon_bss pointer points to the BSS struct holding the 43 * beacon's information. 44 * 45 * Reference counting is done for all these references except for 46 * the hidden_list, so that a beacon BSS struct that is otherwise 47 * not referenced has one reference for being on the bss_list and 48 * one for each probe response entry that points to it using the 49 * hidden_beacon_bss pointer. When a BSS struct that has such a 50 * pointer is get/put, the refcount update is also propagated to 51 * the referenced struct, this ensure that it cannot get removed 52 * while somebody is using the probe response version. 53 * 54 * Note that the hidden_beacon_bss pointer never changes, due to 55 * the reference counting. Therefore, no locking is needed for 56 * it. 57 * 58 * Also note that the hidden_beacon_bss pointer is only relevant 59 * if the driver uses something other than the IEs, e.g. private 60 * data stored in the BSS struct, since the beacon IEs are 61 * also linked into the probe response struct. 62 */ 63 64 /* 65 * Limit the number of BSS entries stored in mac80211. Each one is 66 * a bit over 4k at most, so this limits to roughly 4-5M of memory. 67 * If somebody wants to really attack this though, they'd likely 68 * use small beacons, and only one type of frame, limiting each of 69 * the entries to a much smaller size (in order to generate more 70 * entries in total, so overhead is bigger.) 71 */ 72 static int bss_entries_limit = 1000; 73 module_param(bss_entries_limit, int, 0644); 74 MODULE_PARM_DESC(bss_entries_limit, 75 "limit to number of scan BSS entries (per wiphy, default 1000)"); 76 77 #define IEEE80211_SCAN_RESULT_EXPIRE (30 * HZ) 78 79 /** 80 * struct cfg80211_colocated_ap - colocated AP information 81 * 82 * @list: linked list to all colocated aPS 83 * @bssid: BSSID of the reported AP 84 * @ssid: SSID of the reported AP 85 * @ssid_len: length of the ssid 86 * @center_freq: frequency the reported AP is on 87 * @unsolicited_probe: the reported AP is part of an ESS, where all the APs 88 * that operate in the same channel as the reported AP and that might be 89 * detected by a STA receiving this frame, are transmitting unsolicited 90 * Probe Response frames every 20 TUs 91 * @oct_recommended: OCT is recommended to exchange MMPDUs with the reported AP 92 * @same_ssid: the reported AP has the same SSID as the reporting AP 93 * @multi_bss: the reported AP is part of a multiple BSSID set 94 * @transmitted_bssid: the reported AP is the transmitting BSSID 95 * @colocated_ess: all the APs that share the same ESS as the reported AP are 96 * colocated and can be discovered via legacy bands. 97 * @short_ssid_valid: short_ssid is valid and can be used 98 * @short_ssid: the short SSID for this SSID 99 * @psd_20: The 20MHz PSD EIRP of the primary 20MHz channel for the reported AP 100 */ 101 struct cfg80211_colocated_ap { 102 struct list_head list; 103 u8 bssid[ETH_ALEN]; 104 u8 ssid[IEEE80211_MAX_SSID_LEN]; 105 size_t ssid_len; 106 u32 short_ssid; 107 u32 center_freq; 108 u8 unsolicited_probe:1, 109 oct_recommended:1, 110 same_ssid:1, 111 multi_bss:1, 112 transmitted_bssid:1, 113 colocated_ess:1, 114 short_ssid_valid:1; 115 s8 psd_20; 116 }; 117 118 static void bss_free(struct cfg80211_internal_bss *bss) 119 { 120 struct cfg80211_bss_ies *ies; 121 122 if (WARN_ON(atomic_read(&bss->hold))) 123 return; 124 125 ies = (void *)rcu_access_pointer(bss->pub.beacon_ies); 126 if (ies && !bss->pub.hidden_beacon_bss) 127 kfree_rcu(ies, rcu_head); 128 ies = (void *)rcu_access_pointer(bss->pub.proberesp_ies); 129 if (ies) 130 kfree_rcu(ies, rcu_head); 131 132 /* 133 * This happens when the module is removed, it doesn't 134 * really matter any more save for completeness 135 */ 136 if (!list_empty(&bss->hidden_list)) 137 list_del(&bss->hidden_list); 138 139 kfree(bss); 140 } 141 142 static inline void bss_ref_get(struct cfg80211_registered_device *rdev, 143 struct cfg80211_internal_bss *bss) 144 { 145 lockdep_assert_held(&rdev->bss_lock); 146 147 bss->refcount++; 148 149 if (bss->pub.hidden_beacon_bss) 150 bss_from_pub(bss->pub.hidden_beacon_bss)->refcount++; 151 152 if (bss->pub.transmitted_bss) 153 bss_from_pub(bss->pub.transmitted_bss)->refcount++; 154 } 155 156 static inline void bss_ref_put(struct cfg80211_registered_device *rdev, 157 struct cfg80211_internal_bss *bss) 158 { 159 lockdep_assert_held(&rdev->bss_lock); 160 161 if (bss->pub.hidden_beacon_bss) { 162 struct cfg80211_internal_bss *hbss; 163 164 hbss = bss_from_pub(bss->pub.hidden_beacon_bss); 165 hbss->refcount--; 166 if (hbss->refcount == 0) 167 bss_free(hbss); 168 } 169 170 if (bss->pub.transmitted_bss) { 171 struct cfg80211_internal_bss *tbss; 172 173 tbss = bss_from_pub(bss->pub.transmitted_bss); 174 tbss->refcount--; 175 if (tbss->refcount == 0) 176 bss_free(tbss); 177 } 178 179 bss->refcount--; 180 if (bss->refcount == 0) 181 bss_free(bss); 182 } 183 184 static bool __cfg80211_unlink_bss(struct cfg80211_registered_device *rdev, 185 struct cfg80211_internal_bss *bss) 186 { 187 lockdep_assert_held(&rdev->bss_lock); 188 189 if (!list_empty(&bss->hidden_list)) { 190 /* 191 * don't remove the beacon entry if it has 192 * probe responses associated with it 193 */ 194 if (!bss->pub.hidden_beacon_bss) 195 return false; 196 /* 197 * if it's a probe response entry break its 198 * link to the other entries in the group 199 */ 200 list_del_init(&bss->hidden_list); 201 } 202 203 list_del_init(&bss->list); 204 list_del_init(&bss->pub.nontrans_list); 205 rb_erase(&bss->rbn, &rdev->bss_tree); 206 rdev->bss_entries--; 207 WARN_ONCE((rdev->bss_entries == 0) ^ list_empty(&rdev->bss_list), 208 "rdev bss entries[%d]/list[empty:%d] corruption\n", 209 rdev->bss_entries, list_empty(&rdev->bss_list)); 210 bss_ref_put(rdev, bss); 211 return true; 212 } 213 214 bool cfg80211_is_element_inherited(const struct element *elem, 215 const struct element *non_inherit_elem) 216 { 217 u8 id_len, ext_id_len, i, loop_len, id; 218 const u8 *list; 219 220 if (elem->id == WLAN_EID_MULTIPLE_BSSID) 221 return false; 222 223 if (elem->id == WLAN_EID_EXTENSION && elem->datalen > 1 && 224 elem->data[0] == WLAN_EID_EXT_EHT_MULTI_LINK) 225 return false; 226 227 if (!non_inherit_elem || non_inherit_elem->datalen < 2) 228 return true; 229 230 /* 231 * non inheritance element format is: 232 * ext ID (56) | IDs list len | list | extension IDs list len | list 233 * Both lists are optional. Both lengths are mandatory. 234 * This means valid length is: 235 * elem_len = 1 (extension ID) + 2 (list len fields) + list lengths 236 */ 237 id_len = non_inherit_elem->data[1]; 238 if (non_inherit_elem->datalen < 3 + id_len) 239 return true; 240 241 ext_id_len = non_inherit_elem->data[2 + id_len]; 242 if (non_inherit_elem->datalen < 3 + id_len + ext_id_len) 243 return true; 244 245 if (elem->id == WLAN_EID_EXTENSION) { 246 if (!ext_id_len) 247 return true; 248 loop_len = ext_id_len; 249 list = &non_inherit_elem->data[3 + id_len]; 250 id = elem->data[0]; 251 } else { 252 if (!id_len) 253 return true; 254 loop_len = id_len; 255 list = &non_inherit_elem->data[2]; 256 id = elem->id; 257 } 258 259 for (i = 0; i < loop_len; i++) { 260 if (list[i] == id) 261 return false; 262 } 263 264 return true; 265 } 266 EXPORT_SYMBOL(cfg80211_is_element_inherited); 267 268 static size_t cfg80211_copy_elem_with_frags(const struct element *elem, 269 const u8 *ie, size_t ie_len, 270 u8 **pos, u8 *buf, size_t buf_len) 271 { 272 if (WARN_ON((u8 *)elem < ie || elem->data > ie + ie_len || 273 elem->data + elem->datalen > ie + ie_len)) 274 return 0; 275 276 if (elem->datalen + 2 > buf + buf_len - *pos) 277 return 0; 278 279 memcpy(*pos, elem, elem->datalen + 2); 280 *pos += elem->datalen + 2; 281 282 /* Finish if it is not fragmented */ 283 if (elem->datalen != 255) 284 return *pos - buf; 285 286 ie_len = ie + ie_len - elem->data - elem->datalen; 287 ie = (const u8 *)elem->data + elem->datalen; 288 289 for_each_element(elem, ie, ie_len) { 290 if (elem->id != WLAN_EID_FRAGMENT) 291 break; 292 293 if (elem->datalen + 2 > buf + buf_len - *pos) 294 return 0; 295 296 memcpy(*pos, elem, elem->datalen + 2); 297 *pos += elem->datalen + 2; 298 299 if (elem->datalen != 255) 300 break; 301 } 302 303 return *pos - buf; 304 } 305 306 static size_t cfg80211_gen_new_ie(const u8 *ie, size_t ielen, 307 const u8 *subie, size_t subie_len, 308 u8 *new_ie, size_t new_ie_len) 309 { 310 const struct element *non_inherit_elem, *parent, *sub; 311 u8 *pos = new_ie; 312 u8 id, ext_id; 313 unsigned int match_len; 314 315 non_inherit_elem = cfg80211_find_ext_elem(WLAN_EID_EXT_NON_INHERITANCE, 316 subie, subie_len); 317 318 /* We copy the elements one by one from the parent to the generated 319 * elements. 320 * If they are not inherited (included in subie or in the non 321 * inheritance element), then we copy all occurrences the first time 322 * we see this element type. 323 */ 324 for_each_element(parent, ie, ielen) { 325 if (parent->id == WLAN_EID_FRAGMENT) 326 continue; 327 328 if (parent->id == WLAN_EID_EXTENSION) { 329 if (parent->datalen < 1) 330 continue; 331 332 id = WLAN_EID_EXTENSION; 333 ext_id = parent->data[0]; 334 match_len = 1; 335 } else { 336 id = parent->id; 337 match_len = 0; 338 } 339 340 /* Find first occurrence in subie */ 341 sub = cfg80211_find_elem_match(id, subie, subie_len, 342 &ext_id, match_len, 0); 343 344 /* Copy from parent if not in subie and inherited */ 345 if (!sub && 346 cfg80211_is_element_inherited(parent, non_inherit_elem)) { 347 if (!cfg80211_copy_elem_with_frags(parent, 348 ie, ielen, 349 &pos, new_ie, 350 new_ie_len)) 351 return 0; 352 353 continue; 354 } 355 356 /* Already copied if an earlier element had the same type */ 357 if (cfg80211_find_elem_match(id, ie, (u8 *)parent - ie, 358 &ext_id, match_len, 0)) 359 continue; 360 361 /* Not inheriting, copy all similar elements from subie */ 362 while (sub) { 363 if (!cfg80211_copy_elem_with_frags(sub, 364 subie, subie_len, 365 &pos, new_ie, 366 new_ie_len)) 367 return 0; 368 369 sub = cfg80211_find_elem_match(id, 370 sub->data + sub->datalen, 371 subie_len + subie - 372 (sub->data + 373 sub->datalen), 374 &ext_id, match_len, 0); 375 } 376 } 377 378 /* The above misses elements that are included in subie but not in the 379 * parent, so do a pass over subie and append those. 380 * Skip the non-tx BSSID caps and non-inheritance element. 381 */ 382 for_each_element(sub, subie, subie_len) { 383 if (sub->id == WLAN_EID_NON_TX_BSSID_CAP) 384 continue; 385 386 if (sub->id == WLAN_EID_FRAGMENT) 387 continue; 388 389 if (sub->id == WLAN_EID_EXTENSION) { 390 if (sub->datalen < 1) 391 continue; 392 393 id = WLAN_EID_EXTENSION; 394 ext_id = sub->data[0]; 395 match_len = 1; 396 397 if (ext_id == WLAN_EID_EXT_NON_INHERITANCE) 398 continue; 399 } else { 400 id = sub->id; 401 match_len = 0; 402 } 403 404 /* Processed if one was included in the parent */ 405 if (cfg80211_find_elem_match(id, ie, ielen, 406 &ext_id, match_len, 0)) 407 continue; 408 409 if (!cfg80211_copy_elem_with_frags(sub, subie, subie_len, 410 &pos, new_ie, new_ie_len)) 411 return 0; 412 } 413 414 return pos - new_ie; 415 } 416 417 static bool is_bss(struct cfg80211_bss *a, const u8 *bssid, 418 const u8 *ssid, size_t ssid_len) 419 { 420 const struct cfg80211_bss_ies *ies; 421 const struct element *ssid_elem; 422 423 if (bssid && !ether_addr_equal(a->bssid, bssid)) 424 return false; 425 426 if (!ssid) 427 return true; 428 429 ies = rcu_access_pointer(a->ies); 430 if (!ies) 431 return false; 432 ssid_elem = cfg80211_find_elem(WLAN_EID_SSID, ies->data, ies->len); 433 if (!ssid_elem) 434 return false; 435 if (ssid_elem->datalen != ssid_len) 436 return false; 437 return memcmp(ssid_elem->data, ssid, ssid_len) == 0; 438 } 439 440 static int 441 cfg80211_add_nontrans_list(struct cfg80211_bss *trans_bss, 442 struct cfg80211_bss *nontrans_bss) 443 { 444 const struct element *ssid_elem; 445 struct cfg80211_bss *bss = NULL; 446 447 rcu_read_lock(); 448 ssid_elem = ieee80211_bss_get_elem(nontrans_bss, WLAN_EID_SSID); 449 if (!ssid_elem) { 450 rcu_read_unlock(); 451 return -EINVAL; 452 } 453 454 /* check if nontrans_bss is in the list */ 455 list_for_each_entry(bss, &trans_bss->nontrans_list, nontrans_list) { 456 if (is_bss(bss, nontrans_bss->bssid, ssid_elem->data, 457 ssid_elem->datalen)) { 458 rcu_read_unlock(); 459 return 0; 460 } 461 } 462 463 rcu_read_unlock(); 464 465 /* 466 * This is a bit weird - it's not on the list, but already on another 467 * one! The only way that could happen is if there's some BSSID/SSID 468 * shared by multiple APs in their multi-BSSID profiles, potentially 469 * with hidden SSID mixed in ... ignore it. 470 */ 471 if (!list_empty(&nontrans_bss->nontrans_list)) 472 return -EINVAL; 473 474 /* add to the list */ 475 list_add_tail(&nontrans_bss->nontrans_list, &trans_bss->nontrans_list); 476 return 0; 477 } 478 479 static void __cfg80211_bss_expire(struct cfg80211_registered_device *rdev, 480 unsigned long expire_time) 481 { 482 struct cfg80211_internal_bss *bss, *tmp; 483 bool expired = false; 484 485 lockdep_assert_held(&rdev->bss_lock); 486 487 list_for_each_entry_safe(bss, tmp, &rdev->bss_list, list) { 488 if (atomic_read(&bss->hold)) 489 continue; 490 if (!time_after(expire_time, bss->ts)) 491 continue; 492 493 if (__cfg80211_unlink_bss(rdev, bss)) 494 expired = true; 495 } 496 497 if (expired) 498 rdev->bss_generation++; 499 } 500 501 static bool cfg80211_bss_expire_oldest(struct cfg80211_registered_device *rdev) 502 { 503 struct cfg80211_internal_bss *bss, *oldest = NULL; 504 bool ret; 505 506 lockdep_assert_held(&rdev->bss_lock); 507 508 list_for_each_entry(bss, &rdev->bss_list, list) { 509 if (atomic_read(&bss->hold)) 510 continue; 511 512 if (!list_empty(&bss->hidden_list) && 513 !bss->pub.hidden_beacon_bss) 514 continue; 515 516 if (oldest && time_before(oldest->ts, bss->ts)) 517 continue; 518 oldest = bss; 519 } 520 521 if (WARN_ON(!oldest)) 522 return false; 523 524 /* 525 * The callers make sure to increase rdev->bss_generation if anything 526 * gets removed (and a new entry added), so there's no need to also do 527 * it here. 528 */ 529 530 ret = __cfg80211_unlink_bss(rdev, oldest); 531 WARN_ON(!ret); 532 return ret; 533 } 534 535 static u8 cfg80211_parse_bss_param(u8 data, 536 struct cfg80211_colocated_ap *coloc_ap) 537 { 538 coloc_ap->oct_recommended = 539 u8_get_bits(data, IEEE80211_RNR_TBTT_PARAMS_OCT_RECOMMENDED); 540 coloc_ap->same_ssid = 541 u8_get_bits(data, IEEE80211_RNR_TBTT_PARAMS_SAME_SSID); 542 coloc_ap->multi_bss = 543 u8_get_bits(data, IEEE80211_RNR_TBTT_PARAMS_MULTI_BSSID); 544 coloc_ap->transmitted_bssid = 545 u8_get_bits(data, IEEE80211_RNR_TBTT_PARAMS_TRANSMITTED_BSSID); 546 coloc_ap->unsolicited_probe = 547 u8_get_bits(data, IEEE80211_RNR_TBTT_PARAMS_PROBE_ACTIVE); 548 coloc_ap->colocated_ess = 549 u8_get_bits(data, IEEE80211_RNR_TBTT_PARAMS_COLOC_ESS); 550 551 return u8_get_bits(data, IEEE80211_RNR_TBTT_PARAMS_COLOC_AP); 552 } 553 554 static int cfg80211_calc_short_ssid(const struct cfg80211_bss_ies *ies, 555 const struct element **elem, u32 *s_ssid) 556 { 557 558 *elem = cfg80211_find_elem(WLAN_EID_SSID, ies->data, ies->len); 559 if (!*elem || (*elem)->datalen > IEEE80211_MAX_SSID_LEN) 560 return -EINVAL; 561 562 *s_ssid = ~crc32_le(~0, (*elem)->data, (*elem)->datalen); 563 return 0; 564 } 565 566 static void cfg80211_free_coloc_ap_list(struct list_head *coloc_ap_list) 567 { 568 struct cfg80211_colocated_ap *ap, *tmp_ap; 569 570 list_for_each_entry_safe(ap, tmp_ap, coloc_ap_list, list) { 571 list_del(&ap->list); 572 kfree(ap); 573 } 574 } 575 576 static int cfg80211_parse_ap_info(struct cfg80211_colocated_ap *entry, 577 const u8 *pos, u8 length, 578 const struct element *ssid_elem, 579 u32 s_ssid_tmp) 580 { 581 u8 bss_params; 582 583 entry->psd_20 = IEEE80211_RNR_TBTT_PARAMS_PSD_RESERVED; 584 585 /* The length is already verified by the caller to contain bss_params */ 586 if (length > sizeof(struct ieee80211_tbtt_info_7_8_9)) { 587 struct ieee80211_tbtt_info_ge_11 *tbtt_info = (void *)pos; 588 589 memcpy(entry->bssid, tbtt_info->bssid, ETH_ALEN); 590 entry->short_ssid = le32_to_cpu(tbtt_info->short_ssid); 591 entry->short_ssid_valid = true; 592 593 bss_params = tbtt_info->bss_params; 594 595 /* Ignore disabled links */ 596 if (length >= offsetofend(typeof(*tbtt_info), mld_params)) { 597 if (le16_get_bits(tbtt_info->mld_params.params, 598 IEEE80211_RNR_MLD_PARAMS_DISABLED_LINK)) 599 return -EINVAL; 600 } 601 602 if (length >= offsetofend(struct ieee80211_tbtt_info_ge_11, 603 psd_20)) 604 entry->psd_20 = tbtt_info->psd_20; 605 } else { 606 struct ieee80211_tbtt_info_7_8_9 *tbtt_info = (void *)pos; 607 608 memcpy(entry->bssid, tbtt_info->bssid, ETH_ALEN); 609 610 bss_params = tbtt_info->bss_params; 611 612 if (length == offsetofend(struct ieee80211_tbtt_info_7_8_9, 613 psd_20)) 614 entry->psd_20 = tbtt_info->psd_20; 615 } 616 617 /* ignore entries with invalid BSSID */ 618 if (!is_valid_ether_addr(entry->bssid)) 619 return -EINVAL; 620 621 /* skip non colocated APs */ 622 if (!cfg80211_parse_bss_param(bss_params, entry)) 623 return -EINVAL; 624 625 /* no information about the short ssid. Consider the entry valid 626 * for now. It would later be dropped in case there are explicit 627 * SSIDs that need to be matched 628 */ 629 if (!entry->same_ssid && !entry->short_ssid_valid) 630 return 0; 631 632 if (entry->same_ssid) { 633 entry->short_ssid = s_ssid_tmp; 634 entry->short_ssid_valid = true; 635 636 /* 637 * This is safe because we validate datalen in 638 * cfg80211_parse_colocated_ap(), before calling this 639 * function. 640 */ 641 memcpy(&entry->ssid, &ssid_elem->data, ssid_elem->datalen); 642 entry->ssid_len = ssid_elem->datalen; 643 } 644 645 return 0; 646 } 647 648 static int cfg80211_parse_colocated_ap(const struct cfg80211_bss_ies *ies, 649 struct list_head *list) 650 { 651 struct ieee80211_neighbor_ap_info *ap_info; 652 const struct element *elem, *ssid_elem; 653 const u8 *pos, *end; 654 u32 s_ssid_tmp; 655 int n_coloc = 0, ret; 656 LIST_HEAD(ap_list); 657 658 ret = cfg80211_calc_short_ssid(ies, &ssid_elem, &s_ssid_tmp); 659 if (ret) 660 return 0; 661 662 for_each_element_id(elem, WLAN_EID_REDUCED_NEIGHBOR_REPORT, 663 ies->data, ies->len) { 664 pos = elem->data; 665 end = elem->data + elem->datalen; 666 667 /* RNR IE may contain more than one NEIGHBOR_AP_INFO */ 668 while (pos + sizeof(*ap_info) <= end) { 669 enum nl80211_band band; 670 int freq; 671 u8 length, i, count; 672 673 ap_info = (void *)pos; 674 count = u8_get_bits(ap_info->tbtt_info_hdr, 675 IEEE80211_AP_INFO_TBTT_HDR_COUNT) + 1; 676 length = ap_info->tbtt_info_len; 677 678 pos += sizeof(*ap_info); 679 680 if (!ieee80211_operating_class_to_band(ap_info->op_class, 681 &band)) 682 break; 683 684 freq = ieee80211_channel_to_frequency(ap_info->channel, 685 band); 686 687 if (end - pos < count * length) 688 break; 689 690 if (u8_get_bits(ap_info->tbtt_info_hdr, 691 IEEE80211_AP_INFO_TBTT_HDR_TYPE) != 692 IEEE80211_TBTT_INFO_TYPE_TBTT) { 693 pos += count * length; 694 continue; 695 } 696 697 /* TBTT info must include bss param + BSSID + 698 * (short SSID or same_ssid bit to be set). 699 * ignore other options, and move to the 700 * next AP info 701 */ 702 if (band != NL80211_BAND_6GHZ || 703 !(length == offsetofend(struct ieee80211_tbtt_info_7_8_9, 704 bss_params) || 705 length == sizeof(struct ieee80211_tbtt_info_7_8_9) || 706 length >= offsetofend(struct ieee80211_tbtt_info_ge_11, 707 bss_params))) { 708 pos += count * length; 709 continue; 710 } 711 712 for (i = 0; i < count; i++) { 713 struct cfg80211_colocated_ap *entry; 714 715 entry = kzalloc(sizeof(*entry) + IEEE80211_MAX_SSID_LEN, 716 GFP_ATOMIC); 717 718 if (!entry) 719 goto error; 720 721 entry->center_freq = freq; 722 723 if (!cfg80211_parse_ap_info(entry, pos, length, 724 ssid_elem, 725 s_ssid_tmp)) { 726 n_coloc++; 727 list_add_tail(&entry->list, &ap_list); 728 } else { 729 kfree(entry); 730 } 731 732 pos += length; 733 } 734 } 735 736 error: 737 if (pos != end) { 738 cfg80211_free_coloc_ap_list(&ap_list); 739 return 0; 740 } 741 } 742 743 list_splice_tail(&ap_list, list); 744 return n_coloc; 745 } 746 747 static void cfg80211_scan_req_add_chan(struct cfg80211_scan_request *request, 748 struct ieee80211_channel *chan, 749 bool add_to_6ghz) 750 { 751 int i; 752 u32 n_channels = request->n_channels; 753 struct cfg80211_scan_6ghz_params *params = 754 &request->scan_6ghz_params[request->n_6ghz_params]; 755 756 for (i = 0; i < n_channels; i++) { 757 if (request->channels[i] == chan) { 758 if (add_to_6ghz) 759 params->channel_idx = i; 760 return; 761 } 762 } 763 764 request->channels[n_channels] = chan; 765 if (add_to_6ghz) 766 request->scan_6ghz_params[request->n_6ghz_params].channel_idx = 767 n_channels; 768 769 request->n_channels++; 770 } 771 772 static bool cfg80211_find_ssid_match(struct cfg80211_colocated_ap *ap, 773 struct cfg80211_scan_request *request) 774 { 775 int i; 776 u32 s_ssid; 777 778 for (i = 0; i < request->n_ssids; i++) { 779 /* wildcard ssid in the scan request */ 780 if (!request->ssids[i].ssid_len) { 781 if (ap->multi_bss && !ap->transmitted_bssid) 782 continue; 783 784 return true; 785 } 786 787 if (ap->ssid_len && 788 ap->ssid_len == request->ssids[i].ssid_len) { 789 if (!memcmp(request->ssids[i].ssid, ap->ssid, 790 ap->ssid_len)) 791 return true; 792 } else if (ap->short_ssid_valid) { 793 s_ssid = ~crc32_le(~0, request->ssids[i].ssid, 794 request->ssids[i].ssid_len); 795 796 if (ap->short_ssid == s_ssid) 797 return true; 798 } 799 } 800 801 return false; 802 } 803 804 static int cfg80211_scan_6ghz(struct cfg80211_registered_device *rdev) 805 { 806 u8 i; 807 struct cfg80211_colocated_ap *ap; 808 int n_channels, count = 0, err; 809 struct cfg80211_scan_request *request, *rdev_req = rdev->scan_req; 810 LIST_HEAD(coloc_ap_list); 811 bool need_scan_psc = true; 812 const struct ieee80211_sband_iftype_data *iftd; 813 814 rdev_req->scan_6ghz = true; 815 816 if (!rdev->wiphy.bands[NL80211_BAND_6GHZ]) 817 return -EOPNOTSUPP; 818 819 iftd = ieee80211_get_sband_iftype_data(rdev->wiphy.bands[NL80211_BAND_6GHZ], 820 rdev_req->wdev->iftype); 821 if (!iftd || !iftd->he_cap.has_he) 822 return -EOPNOTSUPP; 823 824 n_channels = rdev->wiphy.bands[NL80211_BAND_6GHZ]->n_channels; 825 826 if (rdev_req->flags & NL80211_SCAN_FLAG_COLOCATED_6GHZ) { 827 struct cfg80211_internal_bss *intbss; 828 829 spin_lock_bh(&rdev->bss_lock); 830 list_for_each_entry(intbss, &rdev->bss_list, list) { 831 struct cfg80211_bss *res = &intbss->pub; 832 const struct cfg80211_bss_ies *ies; 833 const struct element *ssid_elem; 834 struct cfg80211_colocated_ap *entry; 835 u32 s_ssid_tmp; 836 int ret; 837 838 ies = rcu_access_pointer(res->ies); 839 count += cfg80211_parse_colocated_ap(ies, 840 &coloc_ap_list); 841 842 /* In case the scan request specified a specific BSSID 843 * and the BSS is found and operating on 6GHz band then 844 * add this AP to the collocated APs list. 845 * This is relevant for ML probe requests when the lower 846 * band APs have not been discovered. 847 */ 848 if (is_broadcast_ether_addr(rdev_req->bssid) || 849 !ether_addr_equal(rdev_req->bssid, res->bssid) || 850 res->channel->band != NL80211_BAND_6GHZ) 851 continue; 852 853 ret = cfg80211_calc_short_ssid(ies, &ssid_elem, 854 &s_ssid_tmp); 855 if (ret) 856 continue; 857 858 entry = kzalloc(sizeof(*entry) + IEEE80211_MAX_SSID_LEN, 859 GFP_ATOMIC); 860 861 if (!entry) 862 continue; 863 864 memcpy(entry->bssid, res->bssid, ETH_ALEN); 865 entry->short_ssid = s_ssid_tmp; 866 memcpy(entry->ssid, ssid_elem->data, 867 ssid_elem->datalen); 868 entry->ssid_len = ssid_elem->datalen; 869 entry->short_ssid_valid = true; 870 entry->center_freq = res->channel->center_freq; 871 872 list_add_tail(&entry->list, &coloc_ap_list); 873 count++; 874 } 875 spin_unlock_bh(&rdev->bss_lock); 876 } 877 878 request = kzalloc(struct_size(request, channels, n_channels) + 879 sizeof(*request->scan_6ghz_params) * count + 880 sizeof(*request->ssids) * rdev_req->n_ssids, 881 GFP_KERNEL); 882 if (!request) { 883 cfg80211_free_coloc_ap_list(&coloc_ap_list); 884 return -ENOMEM; 885 } 886 887 *request = *rdev_req; 888 request->n_channels = 0; 889 request->scan_6ghz_params = 890 (void *)&request->channels[n_channels]; 891 892 /* 893 * PSC channels should not be scanned in case of direct scan with 1 SSID 894 * and at least one of the reported co-located APs with same SSID 895 * indicating that all APs in the same ESS are co-located 896 */ 897 if (count && request->n_ssids == 1 && request->ssids[0].ssid_len) { 898 list_for_each_entry(ap, &coloc_ap_list, list) { 899 if (ap->colocated_ess && 900 cfg80211_find_ssid_match(ap, request)) { 901 need_scan_psc = false; 902 break; 903 } 904 } 905 } 906 907 /* 908 * add to the scan request the channels that need to be scanned 909 * regardless of the collocated APs (PSC channels or all channels 910 * in case that NL80211_SCAN_FLAG_COLOCATED_6GHZ is not set) 911 */ 912 for (i = 0; i < rdev_req->n_channels; i++) { 913 if (rdev_req->channels[i]->band == NL80211_BAND_6GHZ && 914 ((need_scan_psc && 915 cfg80211_channel_is_psc(rdev_req->channels[i])) || 916 !(rdev_req->flags & NL80211_SCAN_FLAG_COLOCATED_6GHZ))) { 917 cfg80211_scan_req_add_chan(request, 918 rdev_req->channels[i], 919 false); 920 } 921 } 922 923 if (!(rdev_req->flags & NL80211_SCAN_FLAG_COLOCATED_6GHZ)) 924 goto skip; 925 926 list_for_each_entry(ap, &coloc_ap_list, list) { 927 bool found = false; 928 struct cfg80211_scan_6ghz_params *scan_6ghz_params = 929 &request->scan_6ghz_params[request->n_6ghz_params]; 930 struct ieee80211_channel *chan = 931 ieee80211_get_channel(&rdev->wiphy, ap->center_freq); 932 933 if (!chan || chan->flags & IEEE80211_CHAN_DISABLED) 934 continue; 935 936 for (i = 0; i < rdev_req->n_channels; i++) { 937 if (rdev_req->channels[i] == chan) 938 found = true; 939 } 940 941 if (!found) 942 continue; 943 944 if (request->n_ssids > 0 && 945 !cfg80211_find_ssid_match(ap, request)) 946 continue; 947 948 if (!is_broadcast_ether_addr(request->bssid) && 949 !ether_addr_equal(request->bssid, ap->bssid)) 950 continue; 951 952 if (!request->n_ssids && ap->multi_bss && !ap->transmitted_bssid) 953 continue; 954 955 cfg80211_scan_req_add_chan(request, chan, true); 956 memcpy(scan_6ghz_params->bssid, ap->bssid, ETH_ALEN); 957 scan_6ghz_params->short_ssid = ap->short_ssid; 958 scan_6ghz_params->short_ssid_valid = ap->short_ssid_valid; 959 scan_6ghz_params->unsolicited_probe = ap->unsolicited_probe; 960 scan_6ghz_params->psd_20 = ap->psd_20; 961 962 /* 963 * If a PSC channel is added to the scan and 'need_scan_psc' is 964 * set to false, then all the APs that the scan logic is 965 * interested with on the channel are collocated and thus there 966 * is no need to perform the initial PSC channel listen. 967 */ 968 if (cfg80211_channel_is_psc(chan) && !need_scan_psc) 969 scan_6ghz_params->psc_no_listen = true; 970 971 request->n_6ghz_params++; 972 } 973 974 skip: 975 cfg80211_free_coloc_ap_list(&coloc_ap_list); 976 977 if (request->n_channels) { 978 struct cfg80211_scan_request *old = rdev->int_scan_req; 979 rdev->int_scan_req = request; 980 981 /* 982 * Add the ssids from the parent scan request to the new scan 983 * request, so the driver would be able to use them in its 984 * probe requests to discover hidden APs on PSC channels. 985 */ 986 request->ssids = (void *)&request->channels[request->n_channels]; 987 request->n_ssids = rdev_req->n_ssids; 988 memcpy(request->ssids, rdev_req->ssids, sizeof(*request->ssids) * 989 request->n_ssids); 990 991 /* 992 * If this scan follows a previous scan, save the scan start 993 * info from the first part of the scan 994 */ 995 if (old) 996 rdev->int_scan_req->info = old->info; 997 998 err = rdev_scan(rdev, request); 999 if (err) { 1000 rdev->int_scan_req = old; 1001 kfree(request); 1002 } else { 1003 kfree(old); 1004 } 1005 1006 return err; 1007 } 1008 1009 kfree(request); 1010 return -EINVAL; 1011 } 1012 1013 int cfg80211_scan(struct cfg80211_registered_device *rdev) 1014 { 1015 struct cfg80211_scan_request *request; 1016 struct cfg80211_scan_request *rdev_req = rdev->scan_req; 1017 u32 n_channels = 0, idx, i; 1018 1019 if (!(rdev->wiphy.flags & WIPHY_FLAG_SPLIT_SCAN_6GHZ)) 1020 return rdev_scan(rdev, rdev_req); 1021 1022 for (i = 0; i < rdev_req->n_channels; i++) { 1023 if (rdev_req->channels[i]->band != NL80211_BAND_6GHZ) 1024 n_channels++; 1025 } 1026 1027 if (!n_channels) 1028 return cfg80211_scan_6ghz(rdev); 1029 1030 request = kzalloc(struct_size(request, channels, n_channels), 1031 GFP_KERNEL); 1032 if (!request) 1033 return -ENOMEM; 1034 1035 *request = *rdev_req; 1036 request->n_channels = n_channels; 1037 1038 for (i = idx = 0; i < rdev_req->n_channels; i++) { 1039 if (rdev_req->channels[i]->band != NL80211_BAND_6GHZ) 1040 request->channels[idx++] = rdev_req->channels[i]; 1041 } 1042 1043 rdev_req->scan_6ghz = false; 1044 rdev->int_scan_req = request; 1045 return rdev_scan(rdev, request); 1046 } 1047 1048 void ___cfg80211_scan_done(struct cfg80211_registered_device *rdev, 1049 bool send_message) 1050 { 1051 struct cfg80211_scan_request *request, *rdev_req; 1052 struct wireless_dev *wdev; 1053 struct sk_buff *msg; 1054 #ifdef CONFIG_CFG80211_WEXT 1055 union iwreq_data wrqu; 1056 #endif 1057 1058 lockdep_assert_held(&rdev->wiphy.mtx); 1059 1060 if (rdev->scan_msg) { 1061 nl80211_send_scan_msg(rdev, rdev->scan_msg); 1062 rdev->scan_msg = NULL; 1063 return; 1064 } 1065 1066 rdev_req = rdev->scan_req; 1067 if (!rdev_req) 1068 return; 1069 1070 wdev = rdev_req->wdev; 1071 request = rdev->int_scan_req ? rdev->int_scan_req : rdev_req; 1072 1073 if (wdev_running(wdev) && 1074 (rdev->wiphy.flags & WIPHY_FLAG_SPLIT_SCAN_6GHZ) && 1075 !rdev_req->scan_6ghz && !request->info.aborted && 1076 !cfg80211_scan_6ghz(rdev)) 1077 return; 1078 1079 /* 1080 * This must be before sending the other events! 1081 * Otherwise, wpa_supplicant gets completely confused with 1082 * wext events. 1083 */ 1084 if (wdev->netdev) 1085 cfg80211_sme_scan_done(wdev->netdev); 1086 1087 if (!request->info.aborted && 1088 request->flags & NL80211_SCAN_FLAG_FLUSH) { 1089 /* flush entries from previous scans */ 1090 spin_lock_bh(&rdev->bss_lock); 1091 __cfg80211_bss_expire(rdev, request->scan_start); 1092 spin_unlock_bh(&rdev->bss_lock); 1093 } 1094 1095 msg = nl80211_build_scan_msg(rdev, wdev, request->info.aborted); 1096 1097 #ifdef CONFIG_CFG80211_WEXT 1098 if (wdev->netdev && !request->info.aborted) { 1099 memset(&wrqu, 0, sizeof(wrqu)); 1100 1101 wireless_send_event(wdev->netdev, SIOCGIWSCAN, &wrqu, NULL); 1102 } 1103 #endif 1104 1105 dev_put(wdev->netdev); 1106 1107 kfree(rdev->int_scan_req); 1108 rdev->int_scan_req = NULL; 1109 1110 kfree(rdev->scan_req); 1111 rdev->scan_req = NULL; 1112 1113 if (!send_message) 1114 rdev->scan_msg = msg; 1115 else 1116 nl80211_send_scan_msg(rdev, msg); 1117 } 1118 1119 void __cfg80211_scan_done(struct wiphy *wiphy, struct wiphy_work *wk) 1120 { 1121 ___cfg80211_scan_done(wiphy_to_rdev(wiphy), true); 1122 } 1123 1124 void cfg80211_scan_done(struct cfg80211_scan_request *request, 1125 struct cfg80211_scan_info *info) 1126 { 1127 struct cfg80211_scan_info old_info = request->info; 1128 1129 trace_cfg80211_scan_done(request, info); 1130 WARN_ON(request != wiphy_to_rdev(request->wiphy)->scan_req && 1131 request != wiphy_to_rdev(request->wiphy)->int_scan_req); 1132 1133 request->info = *info; 1134 1135 /* 1136 * In case the scan is split, the scan_start_tsf and tsf_bssid should 1137 * be of the first part. In such a case old_info.scan_start_tsf should 1138 * be non zero. 1139 */ 1140 if (request->scan_6ghz && old_info.scan_start_tsf) { 1141 request->info.scan_start_tsf = old_info.scan_start_tsf; 1142 memcpy(request->info.tsf_bssid, old_info.tsf_bssid, 1143 sizeof(request->info.tsf_bssid)); 1144 } 1145 1146 request->notified = true; 1147 wiphy_work_queue(request->wiphy, 1148 &wiphy_to_rdev(request->wiphy)->scan_done_wk); 1149 } 1150 EXPORT_SYMBOL(cfg80211_scan_done); 1151 1152 void cfg80211_add_sched_scan_req(struct cfg80211_registered_device *rdev, 1153 struct cfg80211_sched_scan_request *req) 1154 { 1155 lockdep_assert_held(&rdev->wiphy.mtx); 1156 1157 list_add_rcu(&req->list, &rdev->sched_scan_req_list); 1158 } 1159 1160 static void cfg80211_del_sched_scan_req(struct cfg80211_registered_device *rdev, 1161 struct cfg80211_sched_scan_request *req) 1162 { 1163 lockdep_assert_held(&rdev->wiphy.mtx); 1164 1165 list_del_rcu(&req->list); 1166 kfree_rcu(req, rcu_head); 1167 } 1168 1169 static struct cfg80211_sched_scan_request * 1170 cfg80211_find_sched_scan_req(struct cfg80211_registered_device *rdev, u64 reqid) 1171 { 1172 struct cfg80211_sched_scan_request *pos; 1173 1174 list_for_each_entry_rcu(pos, &rdev->sched_scan_req_list, list, 1175 lockdep_is_held(&rdev->wiphy.mtx)) { 1176 if (pos->reqid == reqid) 1177 return pos; 1178 } 1179 return NULL; 1180 } 1181 1182 /* 1183 * Determines if a scheduled scan request can be handled. When a legacy 1184 * scheduled scan is running no other scheduled scan is allowed regardless 1185 * whether the request is for legacy or multi-support scan. When a multi-support 1186 * scheduled scan is running a request for legacy scan is not allowed. In this 1187 * case a request for multi-support scan can be handled if resources are 1188 * available, ie. struct wiphy::max_sched_scan_reqs limit is not yet reached. 1189 */ 1190 int cfg80211_sched_scan_req_possible(struct cfg80211_registered_device *rdev, 1191 bool want_multi) 1192 { 1193 struct cfg80211_sched_scan_request *pos; 1194 int i = 0; 1195 1196 list_for_each_entry(pos, &rdev->sched_scan_req_list, list) { 1197 /* request id zero means legacy in progress */ 1198 if (!i && !pos->reqid) 1199 return -EINPROGRESS; 1200 i++; 1201 } 1202 1203 if (i) { 1204 /* no legacy allowed when multi request(s) are active */ 1205 if (!want_multi) 1206 return -EINPROGRESS; 1207 1208 /* resource limit reached */ 1209 if (i == rdev->wiphy.max_sched_scan_reqs) 1210 return -ENOSPC; 1211 } 1212 return 0; 1213 } 1214 1215 void cfg80211_sched_scan_results_wk(struct work_struct *work) 1216 { 1217 struct cfg80211_registered_device *rdev; 1218 struct cfg80211_sched_scan_request *req, *tmp; 1219 1220 rdev = container_of(work, struct cfg80211_registered_device, 1221 sched_scan_res_wk); 1222 1223 wiphy_lock(&rdev->wiphy); 1224 list_for_each_entry_safe(req, tmp, &rdev->sched_scan_req_list, list) { 1225 if (req->report_results) { 1226 req->report_results = false; 1227 if (req->flags & NL80211_SCAN_FLAG_FLUSH) { 1228 /* flush entries from previous scans */ 1229 spin_lock_bh(&rdev->bss_lock); 1230 __cfg80211_bss_expire(rdev, req->scan_start); 1231 spin_unlock_bh(&rdev->bss_lock); 1232 req->scan_start = jiffies; 1233 } 1234 nl80211_send_sched_scan(req, 1235 NL80211_CMD_SCHED_SCAN_RESULTS); 1236 } 1237 } 1238 wiphy_unlock(&rdev->wiphy); 1239 } 1240 1241 void cfg80211_sched_scan_results(struct wiphy *wiphy, u64 reqid) 1242 { 1243 struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy); 1244 struct cfg80211_sched_scan_request *request; 1245 1246 trace_cfg80211_sched_scan_results(wiphy, reqid); 1247 /* ignore if we're not scanning */ 1248 1249 rcu_read_lock(); 1250 request = cfg80211_find_sched_scan_req(rdev, reqid); 1251 if (request) { 1252 request->report_results = true; 1253 queue_work(cfg80211_wq, &rdev->sched_scan_res_wk); 1254 } 1255 rcu_read_unlock(); 1256 } 1257 EXPORT_SYMBOL(cfg80211_sched_scan_results); 1258 1259 void cfg80211_sched_scan_stopped_locked(struct wiphy *wiphy, u64 reqid) 1260 { 1261 struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy); 1262 1263 lockdep_assert_held(&wiphy->mtx); 1264 1265 trace_cfg80211_sched_scan_stopped(wiphy, reqid); 1266 1267 __cfg80211_stop_sched_scan(rdev, reqid, true); 1268 } 1269 EXPORT_SYMBOL(cfg80211_sched_scan_stopped_locked); 1270 1271 void cfg80211_sched_scan_stopped(struct wiphy *wiphy, u64 reqid) 1272 { 1273 wiphy_lock(wiphy); 1274 cfg80211_sched_scan_stopped_locked(wiphy, reqid); 1275 wiphy_unlock(wiphy); 1276 } 1277 EXPORT_SYMBOL(cfg80211_sched_scan_stopped); 1278 1279 int cfg80211_stop_sched_scan_req(struct cfg80211_registered_device *rdev, 1280 struct cfg80211_sched_scan_request *req, 1281 bool driver_initiated) 1282 { 1283 lockdep_assert_held(&rdev->wiphy.mtx); 1284 1285 if (!driver_initiated) { 1286 int err = rdev_sched_scan_stop(rdev, req->dev, req->reqid); 1287 if (err) 1288 return err; 1289 } 1290 1291 nl80211_send_sched_scan(req, NL80211_CMD_SCHED_SCAN_STOPPED); 1292 1293 cfg80211_del_sched_scan_req(rdev, req); 1294 1295 return 0; 1296 } 1297 1298 int __cfg80211_stop_sched_scan(struct cfg80211_registered_device *rdev, 1299 u64 reqid, bool driver_initiated) 1300 { 1301 struct cfg80211_sched_scan_request *sched_scan_req; 1302 1303 lockdep_assert_held(&rdev->wiphy.mtx); 1304 1305 sched_scan_req = cfg80211_find_sched_scan_req(rdev, reqid); 1306 if (!sched_scan_req) 1307 return -ENOENT; 1308 1309 return cfg80211_stop_sched_scan_req(rdev, sched_scan_req, 1310 driver_initiated); 1311 } 1312 1313 void cfg80211_bss_age(struct cfg80211_registered_device *rdev, 1314 unsigned long age_secs) 1315 { 1316 struct cfg80211_internal_bss *bss; 1317 unsigned long age_jiffies = msecs_to_jiffies(age_secs * MSEC_PER_SEC); 1318 1319 spin_lock_bh(&rdev->bss_lock); 1320 list_for_each_entry(bss, &rdev->bss_list, list) 1321 bss->ts -= age_jiffies; 1322 spin_unlock_bh(&rdev->bss_lock); 1323 } 1324 1325 void cfg80211_bss_expire(struct cfg80211_registered_device *rdev) 1326 { 1327 __cfg80211_bss_expire(rdev, jiffies - IEEE80211_SCAN_RESULT_EXPIRE); 1328 } 1329 1330 void cfg80211_bss_flush(struct wiphy *wiphy) 1331 { 1332 struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy); 1333 1334 spin_lock_bh(&rdev->bss_lock); 1335 __cfg80211_bss_expire(rdev, jiffies); 1336 spin_unlock_bh(&rdev->bss_lock); 1337 } 1338 EXPORT_SYMBOL(cfg80211_bss_flush); 1339 1340 const struct element * 1341 cfg80211_find_elem_match(u8 eid, const u8 *ies, unsigned int len, 1342 const u8 *match, unsigned int match_len, 1343 unsigned int match_offset) 1344 { 1345 const struct element *elem; 1346 1347 for_each_element_id(elem, eid, ies, len) { 1348 if (elem->datalen >= match_offset + match_len && 1349 !memcmp(elem->data + match_offset, match, match_len)) 1350 return elem; 1351 } 1352 1353 return NULL; 1354 } 1355 EXPORT_SYMBOL(cfg80211_find_elem_match); 1356 1357 const struct element *cfg80211_find_vendor_elem(unsigned int oui, int oui_type, 1358 const u8 *ies, 1359 unsigned int len) 1360 { 1361 const struct element *elem; 1362 u8 match[] = { oui >> 16, oui >> 8, oui, oui_type }; 1363 int match_len = (oui_type < 0) ? 3 : sizeof(match); 1364 1365 if (WARN_ON(oui_type > 0xff)) 1366 return NULL; 1367 1368 elem = cfg80211_find_elem_match(WLAN_EID_VENDOR_SPECIFIC, ies, len, 1369 match, match_len, 0); 1370 1371 if (!elem || elem->datalen < 4) 1372 return NULL; 1373 1374 return elem; 1375 } 1376 EXPORT_SYMBOL(cfg80211_find_vendor_elem); 1377 1378 /** 1379 * enum bss_compare_mode - BSS compare mode 1380 * @BSS_CMP_REGULAR: regular compare mode (for insertion and normal find) 1381 * @BSS_CMP_HIDE_ZLEN: find hidden SSID with zero-length mode 1382 * @BSS_CMP_HIDE_NUL: find hidden SSID with NUL-ed out mode 1383 */ 1384 enum bss_compare_mode { 1385 BSS_CMP_REGULAR, 1386 BSS_CMP_HIDE_ZLEN, 1387 BSS_CMP_HIDE_NUL, 1388 }; 1389 1390 static int cmp_bss(struct cfg80211_bss *a, 1391 struct cfg80211_bss *b, 1392 enum bss_compare_mode mode) 1393 { 1394 const struct cfg80211_bss_ies *a_ies, *b_ies; 1395 const u8 *ie1 = NULL; 1396 const u8 *ie2 = NULL; 1397 int i, r; 1398 1399 if (a->channel != b->channel) 1400 return (b->channel->center_freq * 1000 + b->channel->freq_offset) - 1401 (a->channel->center_freq * 1000 + a->channel->freq_offset); 1402 1403 a_ies = rcu_access_pointer(a->ies); 1404 if (!a_ies) 1405 return -1; 1406 b_ies = rcu_access_pointer(b->ies); 1407 if (!b_ies) 1408 return 1; 1409 1410 if (WLAN_CAPABILITY_IS_STA_BSS(a->capability)) 1411 ie1 = cfg80211_find_ie(WLAN_EID_MESH_ID, 1412 a_ies->data, a_ies->len); 1413 if (WLAN_CAPABILITY_IS_STA_BSS(b->capability)) 1414 ie2 = cfg80211_find_ie(WLAN_EID_MESH_ID, 1415 b_ies->data, b_ies->len); 1416 if (ie1 && ie2) { 1417 int mesh_id_cmp; 1418 1419 if (ie1[1] == ie2[1]) 1420 mesh_id_cmp = memcmp(ie1 + 2, ie2 + 2, ie1[1]); 1421 else 1422 mesh_id_cmp = ie2[1] - ie1[1]; 1423 1424 ie1 = cfg80211_find_ie(WLAN_EID_MESH_CONFIG, 1425 a_ies->data, a_ies->len); 1426 ie2 = cfg80211_find_ie(WLAN_EID_MESH_CONFIG, 1427 b_ies->data, b_ies->len); 1428 if (ie1 && ie2) { 1429 if (mesh_id_cmp) 1430 return mesh_id_cmp; 1431 if (ie1[1] != ie2[1]) 1432 return ie2[1] - ie1[1]; 1433 return memcmp(ie1 + 2, ie2 + 2, ie1[1]); 1434 } 1435 } 1436 1437 r = memcmp(a->bssid, b->bssid, sizeof(a->bssid)); 1438 if (r) 1439 return r; 1440 1441 ie1 = cfg80211_find_ie(WLAN_EID_SSID, a_ies->data, a_ies->len); 1442 ie2 = cfg80211_find_ie(WLAN_EID_SSID, b_ies->data, b_ies->len); 1443 1444 if (!ie1 && !ie2) 1445 return 0; 1446 1447 /* 1448 * Note that with "hide_ssid", the function returns a match if 1449 * the already-present BSS ("b") is a hidden SSID beacon for 1450 * the new BSS ("a"). 1451 */ 1452 1453 /* sort missing IE before (left of) present IE */ 1454 if (!ie1) 1455 return -1; 1456 if (!ie2) 1457 return 1; 1458 1459 switch (mode) { 1460 case BSS_CMP_HIDE_ZLEN: 1461 /* 1462 * In ZLEN mode we assume the BSS entry we're 1463 * looking for has a zero-length SSID. So if 1464 * the one we're looking at right now has that, 1465 * return 0. Otherwise, return the difference 1466 * in length, but since we're looking for the 1467 * 0-length it's really equivalent to returning 1468 * the length of the one we're looking at. 1469 * 1470 * No content comparison is needed as we assume 1471 * the content length is zero. 1472 */ 1473 return ie2[1]; 1474 case BSS_CMP_REGULAR: 1475 default: 1476 /* sort by length first, then by contents */ 1477 if (ie1[1] != ie2[1]) 1478 return ie2[1] - ie1[1]; 1479 return memcmp(ie1 + 2, ie2 + 2, ie1[1]); 1480 case BSS_CMP_HIDE_NUL: 1481 if (ie1[1] != ie2[1]) 1482 return ie2[1] - ie1[1]; 1483 /* this is equivalent to memcmp(zeroes, ie2 + 2, len) */ 1484 for (i = 0; i < ie2[1]; i++) 1485 if (ie2[i + 2]) 1486 return -1; 1487 return 0; 1488 } 1489 } 1490 1491 static bool cfg80211_bss_type_match(u16 capability, 1492 enum nl80211_band band, 1493 enum ieee80211_bss_type bss_type) 1494 { 1495 bool ret = true; 1496 u16 mask, val; 1497 1498 if (bss_type == IEEE80211_BSS_TYPE_ANY) 1499 return ret; 1500 1501 if (band == NL80211_BAND_60GHZ) { 1502 mask = WLAN_CAPABILITY_DMG_TYPE_MASK; 1503 switch (bss_type) { 1504 case IEEE80211_BSS_TYPE_ESS: 1505 val = WLAN_CAPABILITY_DMG_TYPE_AP; 1506 break; 1507 case IEEE80211_BSS_TYPE_PBSS: 1508 val = WLAN_CAPABILITY_DMG_TYPE_PBSS; 1509 break; 1510 case IEEE80211_BSS_TYPE_IBSS: 1511 val = WLAN_CAPABILITY_DMG_TYPE_IBSS; 1512 break; 1513 default: 1514 return false; 1515 } 1516 } else { 1517 mask = WLAN_CAPABILITY_ESS | WLAN_CAPABILITY_IBSS; 1518 switch (bss_type) { 1519 case IEEE80211_BSS_TYPE_ESS: 1520 val = WLAN_CAPABILITY_ESS; 1521 break; 1522 case IEEE80211_BSS_TYPE_IBSS: 1523 val = WLAN_CAPABILITY_IBSS; 1524 break; 1525 case IEEE80211_BSS_TYPE_MBSS: 1526 val = 0; 1527 break; 1528 default: 1529 return false; 1530 } 1531 } 1532 1533 ret = ((capability & mask) == val); 1534 return ret; 1535 } 1536 1537 /* Returned bss is reference counted and must be cleaned up appropriately. */ 1538 struct cfg80211_bss *__cfg80211_get_bss(struct wiphy *wiphy, 1539 struct ieee80211_channel *channel, 1540 const u8 *bssid, 1541 const u8 *ssid, size_t ssid_len, 1542 enum ieee80211_bss_type bss_type, 1543 enum ieee80211_privacy privacy, 1544 u32 use_for) 1545 { 1546 struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy); 1547 struct cfg80211_internal_bss *bss, *res = NULL; 1548 unsigned long now = jiffies; 1549 int bss_privacy; 1550 1551 trace_cfg80211_get_bss(wiphy, channel, bssid, ssid, ssid_len, bss_type, 1552 privacy); 1553 1554 spin_lock_bh(&rdev->bss_lock); 1555 1556 list_for_each_entry(bss, &rdev->bss_list, list) { 1557 if (!cfg80211_bss_type_match(bss->pub.capability, 1558 bss->pub.channel->band, bss_type)) 1559 continue; 1560 1561 bss_privacy = (bss->pub.capability & WLAN_CAPABILITY_PRIVACY); 1562 if ((privacy == IEEE80211_PRIVACY_ON && !bss_privacy) || 1563 (privacy == IEEE80211_PRIVACY_OFF && bss_privacy)) 1564 continue; 1565 if (channel && bss->pub.channel != channel) 1566 continue; 1567 if (!is_valid_ether_addr(bss->pub.bssid)) 1568 continue; 1569 if ((bss->pub.use_for & use_for) != use_for) 1570 continue; 1571 /* Don't get expired BSS structs */ 1572 if (time_after(now, bss->ts + IEEE80211_SCAN_RESULT_EXPIRE) && 1573 !atomic_read(&bss->hold)) 1574 continue; 1575 if (is_bss(&bss->pub, bssid, ssid, ssid_len)) { 1576 res = bss; 1577 bss_ref_get(rdev, res); 1578 break; 1579 } 1580 } 1581 1582 spin_unlock_bh(&rdev->bss_lock); 1583 if (!res) 1584 return NULL; 1585 trace_cfg80211_return_bss(&res->pub); 1586 return &res->pub; 1587 } 1588 EXPORT_SYMBOL(__cfg80211_get_bss); 1589 1590 static void rb_insert_bss(struct cfg80211_registered_device *rdev, 1591 struct cfg80211_internal_bss *bss) 1592 { 1593 struct rb_node **p = &rdev->bss_tree.rb_node; 1594 struct rb_node *parent = NULL; 1595 struct cfg80211_internal_bss *tbss; 1596 int cmp; 1597 1598 while (*p) { 1599 parent = *p; 1600 tbss = rb_entry(parent, struct cfg80211_internal_bss, rbn); 1601 1602 cmp = cmp_bss(&bss->pub, &tbss->pub, BSS_CMP_REGULAR); 1603 1604 if (WARN_ON(!cmp)) { 1605 /* will sort of leak this BSS */ 1606 return; 1607 } 1608 1609 if (cmp < 0) 1610 p = &(*p)->rb_left; 1611 else 1612 p = &(*p)->rb_right; 1613 } 1614 1615 rb_link_node(&bss->rbn, parent, p); 1616 rb_insert_color(&bss->rbn, &rdev->bss_tree); 1617 } 1618 1619 static struct cfg80211_internal_bss * 1620 rb_find_bss(struct cfg80211_registered_device *rdev, 1621 struct cfg80211_internal_bss *res, 1622 enum bss_compare_mode mode) 1623 { 1624 struct rb_node *n = rdev->bss_tree.rb_node; 1625 struct cfg80211_internal_bss *bss; 1626 int r; 1627 1628 while (n) { 1629 bss = rb_entry(n, struct cfg80211_internal_bss, rbn); 1630 r = cmp_bss(&res->pub, &bss->pub, mode); 1631 1632 if (r == 0) 1633 return bss; 1634 else if (r < 0) 1635 n = n->rb_left; 1636 else 1637 n = n->rb_right; 1638 } 1639 1640 return NULL; 1641 } 1642 1643 static bool cfg80211_combine_bsses(struct cfg80211_registered_device *rdev, 1644 struct cfg80211_internal_bss *new) 1645 { 1646 const struct cfg80211_bss_ies *ies; 1647 struct cfg80211_internal_bss *bss; 1648 const u8 *ie; 1649 int i, ssidlen; 1650 u8 fold = 0; 1651 u32 n_entries = 0; 1652 1653 ies = rcu_access_pointer(new->pub.beacon_ies); 1654 if (WARN_ON(!ies)) 1655 return false; 1656 1657 ie = cfg80211_find_ie(WLAN_EID_SSID, ies->data, ies->len); 1658 if (!ie) { 1659 /* nothing to do */ 1660 return true; 1661 } 1662 1663 ssidlen = ie[1]; 1664 for (i = 0; i < ssidlen; i++) 1665 fold |= ie[2 + i]; 1666 1667 if (fold) { 1668 /* not a hidden SSID */ 1669 return true; 1670 } 1671 1672 /* This is the bad part ... */ 1673 1674 list_for_each_entry(bss, &rdev->bss_list, list) { 1675 /* 1676 * we're iterating all the entries anyway, so take the 1677 * opportunity to validate the list length accounting 1678 */ 1679 n_entries++; 1680 1681 if (!ether_addr_equal(bss->pub.bssid, new->pub.bssid)) 1682 continue; 1683 if (bss->pub.channel != new->pub.channel) 1684 continue; 1685 if (rcu_access_pointer(bss->pub.beacon_ies)) 1686 continue; 1687 ies = rcu_access_pointer(bss->pub.ies); 1688 if (!ies) 1689 continue; 1690 ie = cfg80211_find_ie(WLAN_EID_SSID, ies->data, ies->len); 1691 if (!ie) 1692 continue; 1693 if (ssidlen && ie[1] != ssidlen) 1694 continue; 1695 if (WARN_ON_ONCE(bss->pub.hidden_beacon_bss)) 1696 continue; 1697 if (WARN_ON_ONCE(!list_empty(&bss->hidden_list))) 1698 list_del(&bss->hidden_list); 1699 /* combine them */ 1700 list_add(&bss->hidden_list, &new->hidden_list); 1701 bss->pub.hidden_beacon_bss = &new->pub; 1702 new->refcount += bss->refcount; 1703 rcu_assign_pointer(bss->pub.beacon_ies, 1704 new->pub.beacon_ies); 1705 } 1706 1707 WARN_ONCE(n_entries != rdev->bss_entries, 1708 "rdev bss entries[%d]/list[len:%d] corruption\n", 1709 rdev->bss_entries, n_entries); 1710 1711 return true; 1712 } 1713 1714 static void cfg80211_update_hidden_bsses(struct cfg80211_internal_bss *known, 1715 const struct cfg80211_bss_ies *new_ies, 1716 const struct cfg80211_bss_ies *old_ies) 1717 { 1718 struct cfg80211_internal_bss *bss; 1719 1720 /* Assign beacon IEs to all sub entries */ 1721 list_for_each_entry(bss, &known->hidden_list, hidden_list) { 1722 const struct cfg80211_bss_ies *ies; 1723 1724 ies = rcu_access_pointer(bss->pub.beacon_ies); 1725 WARN_ON(ies != old_ies); 1726 1727 rcu_assign_pointer(bss->pub.beacon_ies, new_ies); 1728 } 1729 } 1730 1731 static bool 1732 cfg80211_update_known_bss(struct cfg80211_registered_device *rdev, 1733 struct cfg80211_internal_bss *known, 1734 struct cfg80211_internal_bss *new, 1735 bool signal_valid) 1736 { 1737 lockdep_assert_held(&rdev->bss_lock); 1738 1739 /* Update IEs */ 1740 if (rcu_access_pointer(new->pub.proberesp_ies)) { 1741 const struct cfg80211_bss_ies *old; 1742 1743 old = rcu_access_pointer(known->pub.proberesp_ies); 1744 1745 rcu_assign_pointer(known->pub.proberesp_ies, 1746 new->pub.proberesp_ies); 1747 /* Override possible earlier Beacon frame IEs */ 1748 rcu_assign_pointer(known->pub.ies, 1749 new->pub.proberesp_ies); 1750 if (old) 1751 kfree_rcu((struct cfg80211_bss_ies *)old, rcu_head); 1752 } 1753 1754 if (rcu_access_pointer(new->pub.beacon_ies)) { 1755 const struct cfg80211_bss_ies *old; 1756 1757 if (known->pub.hidden_beacon_bss && 1758 !list_empty(&known->hidden_list)) { 1759 const struct cfg80211_bss_ies *f; 1760 1761 /* The known BSS struct is one of the probe 1762 * response members of a group, but we're 1763 * receiving a beacon (beacon_ies in the new 1764 * bss is used). This can only mean that the 1765 * AP changed its beacon from not having an 1766 * SSID to showing it, which is confusing so 1767 * drop this information. 1768 */ 1769 1770 f = rcu_access_pointer(new->pub.beacon_ies); 1771 kfree_rcu((struct cfg80211_bss_ies *)f, rcu_head); 1772 return false; 1773 } 1774 1775 old = rcu_access_pointer(known->pub.beacon_ies); 1776 1777 rcu_assign_pointer(known->pub.beacon_ies, new->pub.beacon_ies); 1778 1779 /* Override IEs if they were from a beacon before */ 1780 if (old == rcu_access_pointer(known->pub.ies)) 1781 rcu_assign_pointer(known->pub.ies, new->pub.beacon_ies); 1782 1783 cfg80211_update_hidden_bsses(known, 1784 rcu_access_pointer(new->pub.beacon_ies), 1785 old); 1786 1787 if (old) 1788 kfree_rcu((struct cfg80211_bss_ies *)old, rcu_head); 1789 } 1790 1791 known->pub.beacon_interval = new->pub.beacon_interval; 1792 1793 /* don't update the signal if beacon was heard on 1794 * adjacent channel. 1795 */ 1796 if (signal_valid) 1797 known->pub.signal = new->pub.signal; 1798 known->pub.capability = new->pub.capability; 1799 known->ts = new->ts; 1800 known->ts_boottime = new->ts_boottime; 1801 known->parent_tsf = new->parent_tsf; 1802 known->pub.chains = new->pub.chains; 1803 memcpy(known->pub.chain_signal, new->pub.chain_signal, 1804 IEEE80211_MAX_CHAINS); 1805 ether_addr_copy(known->parent_bssid, new->parent_bssid); 1806 known->pub.max_bssid_indicator = new->pub.max_bssid_indicator; 1807 known->pub.bssid_index = new->pub.bssid_index; 1808 known->pub.use_for &= new->pub.use_for; 1809 known->pub.cannot_use_reasons = new->pub.cannot_use_reasons; 1810 1811 return true; 1812 } 1813 1814 /* Returned bss is reference counted and must be cleaned up appropriately. */ 1815 static struct cfg80211_internal_bss * 1816 __cfg80211_bss_update(struct cfg80211_registered_device *rdev, 1817 struct cfg80211_internal_bss *tmp, 1818 bool signal_valid, unsigned long ts) 1819 { 1820 struct cfg80211_internal_bss *found = NULL; 1821 struct cfg80211_bss_ies *ies; 1822 1823 if (WARN_ON(!tmp->pub.channel)) 1824 goto free_ies; 1825 1826 tmp->ts = ts; 1827 1828 if (WARN_ON(!rcu_access_pointer(tmp->pub.ies))) 1829 goto free_ies; 1830 1831 found = rb_find_bss(rdev, tmp, BSS_CMP_REGULAR); 1832 1833 if (found) { 1834 if (!cfg80211_update_known_bss(rdev, found, tmp, signal_valid)) 1835 return NULL; 1836 } else { 1837 struct cfg80211_internal_bss *new; 1838 struct cfg80211_internal_bss *hidden; 1839 1840 /* 1841 * create a copy -- the "res" variable that is passed in 1842 * is allocated on the stack since it's not needed in the 1843 * more common case of an update 1844 */ 1845 new = kzalloc(sizeof(*new) + rdev->wiphy.bss_priv_size, 1846 GFP_ATOMIC); 1847 if (!new) 1848 goto free_ies; 1849 memcpy(new, tmp, sizeof(*new)); 1850 new->refcount = 1; 1851 INIT_LIST_HEAD(&new->hidden_list); 1852 INIT_LIST_HEAD(&new->pub.nontrans_list); 1853 /* we'll set this later if it was non-NULL */ 1854 new->pub.transmitted_bss = NULL; 1855 1856 if (rcu_access_pointer(tmp->pub.proberesp_ies)) { 1857 hidden = rb_find_bss(rdev, tmp, BSS_CMP_HIDE_ZLEN); 1858 if (!hidden) 1859 hidden = rb_find_bss(rdev, tmp, 1860 BSS_CMP_HIDE_NUL); 1861 if (hidden) { 1862 new->pub.hidden_beacon_bss = &hidden->pub; 1863 list_add(&new->hidden_list, 1864 &hidden->hidden_list); 1865 hidden->refcount++; 1866 1867 ies = (void *)rcu_dereference(new->pub.beacon_ies); 1868 rcu_assign_pointer(new->pub.beacon_ies, 1869 hidden->pub.beacon_ies); 1870 if (ies) 1871 kfree_rcu(ies, rcu_head); 1872 } 1873 } else { 1874 /* 1875 * Ok so we found a beacon, and don't have an entry. If 1876 * it's a beacon with hidden SSID, we might be in for an 1877 * expensive search for any probe responses that should 1878 * be grouped with this beacon for updates ... 1879 */ 1880 if (!cfg80211_combine_bsses(rdev, new)) { 1881 bss_ref_put(rdev, new); 1882 return NULL; 1883 } 1884 } 1885 1886 if (rdev->bss_entries >= bss_entries_limit && 1887 !cfg80211_bss_expire_oldest(rdev)) { 1888 bss_ref_put(rdev, new); 1889 return NULL; 1890 } 1891 1892 /* This must be before the call to bss_ref_get */ 1893 if (tmp->pub.transmitted_bss) { 1894 new->pub.transmitted_bss = tmp->pub.transmitted_bss; 1895 bss_ref_get(rdev, bss_from_pub(tmp->pub.transmitted_bss)); 1896 } 1897 1898 list_add_tail(&new->list, &rdev->bss_list); 1899 rdev->bss_entries++; 1900 rb_insert_bss(rdev, new); 1901 found = new; 1902 } 1903 1904 rdev->bss_generation++; 1905 bss_ref_get(rdev, found); 1906 1907 return found; 1908 1909 free_ies: 1910 ies = (void *)rcu_dereference(tmp->pub.beacon_ies); 1911 if (ies) 1912 kfree_rcu(ies, rcu_head); 1913 ies = (void *)rcu_dereference(tmp->pub.proberesp_ies); 1914 if (ies) 1915 kfree_rcu(ies, rcu_head); 1916 1917 return NULL; 1918 } 1919 1920 struct cfg80211_internal_bss * 1921 cfg80211_bss_update(struct cfg80211_registered_device *rdev, 1922 struct cfg80211_internal_bss *tmp, 1923 bool signal_valid, unsigned long ts) 1924 { 1925 struct cfg80211_internal_bss *res; 1926 1927 spin_lock_bh(&rdev->bss_lock); 1928 res = __cfg80211_bss_update(rdev, tmp, signal_valid, ts); 1929 spin_unlock_bh(&rdev->bss_lock); 1930 1931 return res; 1932 } 1933 1934 int cfg80211_get_ies_channel_number(const u8 *ie, size_t ielen, 1935 enum nl80211_band band) 1936 { 1937 const struct element *tmp; 1938 1939 if (band == NL80211_BAND_6GHZ) { 1940 struct ieee80211_he_operation *he_oper; 1941 1942 tmp = cfg80211_find_ext_elem(WLAN_EID_EXT_HE_OPERATION, ie, 1943 ielen); 1944 if (tmp && tmp->datalen >= sizeof(*he_oper) && 1945 tmp->datalen >= ieee80211_he_oper_size(&tmp->data[1])) { 1946 const struct ieee80211_he_6ghz_oper *he_6ghz_oper; 1947 1948 he_oper = (void *)&tmp->data[1]; 1949 1950 he_6ghz_oper = ieee80211_he_6ghz_oper(he_oper); 1951 if (!he_6ghz_oper) 1952 return -1; 1953 1954 return he_6ghz_oper->primary; 1955 } 1956 } else if (band == NL80211_BAND_S1GHZ) { 1957 tmp = cfg80211_find_elem(WLAN_EID_S1G_OPERATION, ie, ielen); 1958 if (tmp && tmp->datalen >= sizeof(struct ieee80211_s1g_oper_ie)) { 1959 struct ieee80211_s1g_oper_ie *s1gop = (void *)tmp->data; 1960 1961 return s1gop->oper_ch; 1962 } 1963 } else { 1964 tmp = cfg80211_find_elem(WLAN_EID_DS_PARAMS, ie, ielen); 1965 if (tmp && tmp->datalen == 1) 1966 return tmp->data[0]; 1967 1968 tmp = cfg80211_find_elem(WLAN_EID_HT_OPERATION, ie, ielen); 1969 if (tmp && 1970 tmp->datalen >= sizeof(struct ieee80211_ht_operation)) { 1971 struct ieee80211_ht_operation *htop = (void *)tmp->data; 1972 1973 return htop->primary_chan; 1974 } 1975 } 1976 1977 return -1; 1978 } 1979 EXPORT_SYMBOL(cfg80211_get_ies_channel_number); 1980 1981 /* 1982 * Update RX channel information based on the available frame payload 1983 * information. This is mainly for the 2.4 GHz band where frames can be received 1984 * from neighboring channels and the Beacon frames use the DSSS Parameter Set 1985 * element to indicate the current (transmitting) channel, but this might also 1986 * be needed on other bands if RX frequency does not match with the actual 1987 * operating channel of a BSS, or if the AP reports a different primary channel. 1988 */ 1989 static struct ieee80211_channel * 1990 cfg80211_get_bss_channel(struct wiphy *wiphy, const u8 *ie, size_t ielen, 1991 struct ieee80211_channel *channel) 1992 { 1993 u32 freq; 1994 int channel_number; 1995 struct ieee80211_channel *alt_channel; 1996 1997 channel_number = cfg80211_get_ies_channel_number(ie, ielen, 1998 channel->band); 1999 2000 if (channel_number < 0) { 2001 /* No channel information in frame payload */ 2002 return channel; 2003 } 2004 2005 freq = ieee80211_channel_to_freq_khz(channel_number, channel->band); 2006 2007 /* 2008 * Frame info (beacon/prob res) is the same as received channel, 2009 * no need for further processing. 2010 */ 2011 if (freq == ieee80211_channel_to_khz(channel)) 2012 return channel; 2013 2014 alt_channel = ieee80211_get_channel_khz(wiphy, freq); 2015 if (!alt_channel) { 2016 if (channel->band == NL80211_BAND_2GHZ || 2017 channel->band == NL80211_BAND_6GHZ) { 2018 /* 2019 * Better not allow unexpected channels when that could 2020 * be going beyond the 1-11 range (e.g., discovering 2021 * BSS on channel 12 when radio is configured for 2022 * channel 11) or beyond the 6 GHz channel range. 2023 */ 2024 return NULL; 2025 } 2026 2027 /* No match for the payload channel number - ignore it */ 2028 return channel; 2029 } 2030 2031 /* 2032 * Use the channel determined through the payload channel number 2033 * instead of the RX channel reported by the driver. 2034 */ 2035 if (alt_channel->flags & IEEE80211_CHAN_DISABLED) 2036 return NULL; 2037 return alt_channel; 2038 } 2039 2040 struct cfg80211_inform_single_bss_data { 2041 struct cfg80211_inform_bss *drv_data; 2042 enum cfg80211_bss_frame_type ftype; 2043 struct ieee80211_channel *channel; 2044 u8 bssid[ETH_ALEN]; 2045 u64 tsf; 2046 u16 capability; 2047 u16 beacon_interval; 2048 const u8 *ie; 2049 size_t ielen; 2050 2051 enum { 2052 BSS_SOURCE_DIRECT = 0, 2053 BSS_SOURCE_MBSSID, 2054 BSS_SOURCE_STA_PROFILE, 2055 } bss_source; 2056 /* Set if reporting bss_source != BSS_SOURCE_DIRECT */ 2057 struct cfg80211_bss *source_bss; 2058 u8 max_bssid_indicator; 2059 u8 bssid_index; 2060 2061 u8 use_for; 2062 u64 cannot_use_reasons; 2063 }; 2064 2065 /* Returned bss is reference counted and must be cleaned up appropriately. */ 2066 static struct cfg80211_bss * 2067 cfg80211_inform_single_bss_data(struct wiphy *wiphy, 2068 struct cfg80211_inform_single_bss_data *data, 2069 gfp_t gfp) 2070 { 2071 struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy); 2072 struct cfg80211_inform_bss *drv_data = data->drv_data; 2073 struct cfg80211_bss_ies *ies; 2074 struct ieee80211_channel *channel; 2075 struct cfg80211_internal_bss tmp = {}, *res; 2076 int bss_type; 2077 bool signal_valid; 2078 unsigned long ts; 2079 2080 if (WARN_ON(!wiphy)) 2081 return NULL; 2082 2083 if (WARN_ON(wiphy->signal_type == CFG80211_SIGNAL_TYPE_UNSPEC && 2084 (drv_data->signal < 0 || drv_data->signal > 100))) 2085 return NULL; 2086 2087 if (WARN_ON(data->bss_source != BSS_SOURCE_DIRECT && !data->source_bss)) 2088 return NULL; 2089 2090 channel = data->channel; 2091 if (!channel) 2092 channel = cfg80211_get_bss_channel(wiphy, data->ie, data->ielen, 2093 drv_data->chan); 2094 if (!channel) 2095 return NULL; 2096 2097 memcpy(tmp.pub.bssid, data->bssid, ETH_ALEN); 2098 tmp.pub.channel = channel; 2099 if (data->bss_source != BSS_SOURCE_STA_PROFILE) 2100 tmp.pub.signal = drv_data->signal; 2101 else 2102 tmp.pub.signal = 0; 2103 tmp.pub.beacon_interval = data->beacon_interval; 2104 tmp.pub.capability = data->capability; 2105 tmp.ts_boottime = drv_data->boottime_ns; 2106 tmp.parent_tsf = drv_data->parent_tsf; 2107 ether_addr_copy(tmp.parent_bssid, drv_data->parent_bssid); 2108 tmp.pub.use_for = data->use_for; 2109 tmp.pub.cannot_use_reasons = data->cannot_use_reasons; 2110 2111 if (data->bss_source != BSS_SOURCE_DIRECT) { 2112 tmp.pub.transmitted_bss = data->source_bss; 2113 ts = bss_from_pub(data->source_bss)->ts; 2114 tmp.pub.bssid_index = data->bssid_index; 2115 tmp.pub.max_bssid_indicator = data->max_bssid_indicator; 2116 } else { 2117 ts = jiffies; 2118 2119 if (channel->band == NL80211_BAND_60GHZ) { 2120 bss_type = data->capability & 2121 WLAN_CAPABILITY_DMG_TYPE_MASK; 2122 if (bss_type == WLAN_CAPABILITY_DMG_TYPE_AP || 2123 bss_type == WLAN_CAPABILITY_DMG_TYPE_PBSS) 2124 regulatory_hint_found_beacon(wiphy, channel, 2125 gfp); 2126 } else { 2127 if (data->capability & WLAN_CAPABILITY_ESS) 2128 regulatory_hint_found_beacon(wiphy, channel, 2129 gfp); 2130 } 2131 } 2132 2133 /* 2134 * If we do not know here whether the IEs are from a Beacon or Probe 2135 * Response frame, we need to pick one of the options and only use it 2136 * with the driver that does not provide the full Beacon/Probe Response 2137 * frame. Use Beacon frame pointer to avoid indicating that this should 2138 * override the IEs pointer should we have received an earlier 2139 * indication of Probe Response data. 2140 */ 2141 ies = kzalloc(sizeof(*ies) + data->ielen, gfp); 2142 if (!ies) 2143 return NULL; 2144 ies->len = data->ielen; 2145 ies->tsf = data->tsf; 2146 ies->from_beacon = false; 2147 memcpy(ies->data, data->ie, data->ielen); 2148 2149 switch (data->ftype) { 2150 case CFG80211_BSS_FTYPE_BEACON: 2151 ies->from_beacon = true; 2152 fallthrough; 2153 case CFG80211_BSS_FTYPE_UNKNOWN: 2154 rcu_assign_pointer(tmp.pub.beacon_ies, ies); 2155 break; 2156 case CFG80211_BSS_FTYPE_PRESP: 2157 rcu_assign_pointer(tmp.pub.proberesp_ies, ies); 2158 break; 2159 } 2160 rcu_assign_pointer(tmp.pub.ies, ies); 2161 2162 signal_valid = drv_data->chan == channel; 2163 spin_lock_bh(&rdev->bss_lock); 2164 res = __cfg80211_bss_update(rdev, &tmp, signal_valid, ts); 2165 if (!res) 2166 goto drop; 2167 2168 rdev_inform_bss(rdev, &res->pub, ies, drv_data->drv_data); 2169 2170 if (data->bss_source == BSS_SOURCE_MBSSID) { 2171 /* this is a nontransmitting bss, we need to add it to 2172 * transmitting bss' list if it is not there 2173 */ 2174 if (cfg80211_add_nontrans_list(data->source_bss, &res->pub)) { 2175 if (__cfg80211_unlink_bss(rdev, res)) { 2176 rdev->bss_generation++; 2177 res = NULL; 2178 } 2179 } 2180 2181 if (!res) 2182 goto drop; 2183 } 2184 spin_unlock_bh(&rdev->bss_lock); 2185 2186 trace_cfg80211_return_bss(&res->pub); 2187 /* __cfg80211_bss_update gives us a referenced result */ 2188 return &res->pub; 2189 2190 drop: 2191 spin_unlock_bh(&rdev->bss_lock); 2192 return NULL; 2193 } 2194 2195 static const struct element 2196 *cfg80211_get_profile_continuation(const u8 *ie, size_t ielen, 2197 const struct element *mbssid_elem, 2198 const struct element *sub_elem) 2199 { 2200 const u8 *mbssid_end = mbssid_elem->data + mbssid_elem->datalen; 2201 const struct element *next_mbssid; 2202 const struct element *next_sub; 2203 2204 next_mbssid = cfg80211_find_elem(WLAN_EID_MULTIPLE_BSSID, 2205 mbssid_end, 2206 ielen - (mbssid_end - ie)); 2207 2208 /* 2209 * If it is not the last subelement in current MBSSID IE or there isn't 2210 * a next MBSSID IE - profile is complete. 2211 */ 2212 if ((sub_elem->data + sub_elem->datalen < mbssid_end - 1) || 2213 !next_mbssid) 2214 return NULL; 2215 2216 /* For any length error, just return NULL */ 2217 2218 if (next_mbssid->datalen < 4) 2219 return NULL; 2220 2221 next_sub = (void *)&next_mbssid->data[1]; 2222 2223 if (next_mbssid->data + next_mbssid->datalen < 2224 next_sub->data + next_sub->datalen) 2225 return NULL; 2226 2227 if (next_sub->id != 0 || next_sub->datalen < 2) 2228 return NULL; 2229 2230 /* 2231 * Check if the first element in the next sub element is a start 2232 * of a new profile 2233 */ 2234 return next_sub->data[0] == WLAN_EID_NON_TX_BSSID_CAP ? 2235 NULL : next_mbssid; 2236 } 2237 2238 size_t cfg80211_merge_profile(const u8 *ie, size_t ielen, 2239 const struct element *mbssid_elem, 2240 const struct element *sub_elem, 2241 u8 *merged_ie, size_t max_copy_len) 2242 { 2243 size_t copied_len = sub_elem->datalen; 2244 const struct element *next_mbssid; 2245 2246 if (sub_elem->datalen > max_copy_len) 2247 return 0; 2248 2249 memcpy(merged_ie, sub_elem->data, sub_elem->datalen); 2250 2251 while ((next_mbssid = cfg80211_get_profile_continuation(ie, ielen, 2252 mbssid_elem, 2253 sub_elem))) { 2254 const struct element *next_sub = (void *)&next_mbssid->data[1]; 2255 2256 if (copied_len + next_sub->datalen > max_copy_len) 2257 break; 2258 memcpy(merged_ie + copied_len, next_sub->data, 2259 next_sub->datalen); 2260 copied_len += next_sub->datalen; 2261 } 2262 2263 return copied_len; 2264 } 2265 EXPORT_SYMBOL(cfg80211_merge_profile); 2266 2267 static void 2268 cfg80211_parse_mbssid_data(struct wiphy *wiphy, 2269 struct cfg80211_inform_single_bss_data *tx_data, 2270 struct cfg80211_bss *source_bss, 2271 gfp_t gfp) 2272 { 2273 struct cfg80211_inform_single_bss_data data = { 2274 .drv_data = tx_data->drv_data, 2275 .ftype = tx_data->ftype, 2276 .tsf = tx_data->tsf, 2277 .beacon_interval = tx_data->beacon_interval, 2278 .source_bss = source_bss, 2279 .bss_source = BSS_SOURCE_MBSSID, 2280 .use_for = tx_data->use_for, 2281 .cannot_use_reasons = tx_data->cannot_use_reasons, 2282 }; 2283 const u8 *mbssid_index_ie; 2284 const struct element *elem, *sub; 2285 u8 *new_ie, *profile; 2286 u64 seen_indices = 0; 2287 struct cfg80211_bss *bss; 2288 2289 if (!source_bss) 2290 return; 2291 if (!cfg80211_find_elem(WLAN_EID_MULTIPLE_BSSID, 2292 tx_data->ie, tx_data->ielen)) 2293 return; 2294 if (!wiphy->support_mbssid) 2295 return; 2296 if (wiphy->support_only_he_mbssid && 2297 !cfg80211_find_ext_elem(WLAN_EID_EXT_HE_CAPABILITY, 2298 tx_data->ie, tx_data->ielen)) 2299 return; 2300 2301 new_ie = kmalloc(IEEE80211_MAX_DATA_LEN, gfp); 2302 if (!new_ie) 2303 return; 2304 2305 profile = kmalloc(tx_data->ielen, gfp); 2306 if (!profile) 2307 goto out; 2308 2309 for_each_element_id(elem, WLAN_EID_MULTIPLE_BSSID, 2310 tx_data->ie, tx_data->ielen) { 2311 if (elem->datalen < 4) 2312 continue; 2313 if (elem->data[0] < 1 || (int)elem->data[0] > 8) 2314 continue; 2315 for_each_element(sub, elem->data + 1, elem->datalen - 1) { 2316 u8 profile_len; 2317 2318 if (sub->id != 0 || sub->datalen < 4) { 2319 /* not a valid BSS profile */ 2320 continue; 2321 } 2322 2323 if (sub->data[0] != WLAN_EID_NON_TX_BSSID_CAP || 2324 sub->data[1] != 2) { 2325 /* The first element within the Nontransmitted 2326 * BSSID Profile is not the Nontransmitted 2327 * BSSID Capability element. 2328 */ 2329 continue; 2330 } 2331 2332 memset(profile, 0, tx_data->ielen); 2333 profile_len = cfg80211_merge_profile(tx_data->ie, 2334 tx_data->ielen, 2335 elem, 2336 sub, 2337 profile, 2338 tx_data->ielen); 2339 2340 /* found a Nontransmitted BSSID Profile */ 2341 mbssid_index_ie = cfg80211_find_ie 2342 (WLAN_EID_MULTI_BSSID_IDX, 2343 profile, profile_len); 2344 if (!mbssid_index_ie || mbssid_index_ie[1] < 1 || 2345 mbssid_index_ie[2] == 0 || 2346 mbssid_index_ie[2] > 46) { 2347 /* No valid Multiple BSSID-Index element */ 2348 continue; 2349 } 2350 2351 if (seen_indices & BIT_ULL(mbssid_index_ie[2])) 2352 /* We don't support legacy split of a profile */ 2353 net_dbg_ratelimited("Partial info for BSSID index %d\n", 2354 mbssid_index_ie[2]); 2355 2356 seen_indices |= BIT_ULL(mbssid_index_ie[2]); 2357 2358 data.bssid_index = mbssid_index_ie[2]; 2359 data.max_bssid_indicator = elem->data[0]; 2360 2361 cfg80211_gen_new_bssid(tx_data->bssid, 2362 data.max_bssid_indicator, 2363 data.bssid_index, 2364 data.bssid); 2365 2366 memset(new_ie, 0, IEEE80211_MAX_DATA_LEN); 2367 data.ie = new_ie; 2368 data.ielen = cfg80211_gen_new_ie(tx_data->ie, 2369 tx_data->ielen, 2370 profile, 2371 profile_len, 2372 new_ie, 2373 IEEE80211_MAX_DATA_LEN); 2374 if (!data.ielen) 2375 continue; 2376 2377 data.capability = get_unaligned_le16(profile + 2); 2378 bss = cfg80211_inform_single_bss_data(wiphy, &data, gfp); 2379 if (!bss) 2380 break; 2381 cfg80211_put_bss(wiphy, bss); 2382 } 2383 } 2384 2385 out: 2386 kfree(new_ie); 2387 kfree(profile); 2388 } 2389 2390 ssize_t cfg80211_defragment_element(const struct element *elem, const u8 *ies, 2391 size_t ieslen, u8 *data, size_t data_len, 2392 u8 frag_id) 2393 { 2394 const struct element *next; 2395 ssize_t copied; 2396 u8 elem_datalen; 2397 2398 if (!elem) 2399 return -EINVAL; 2400 2401 /* elem might be invalid after the memmove */ 2402 next = (void *)(elem->data + elem->datalen); 2403 elem_datalen = elem->datalen; 2404 2405 if (elem->id == WLAN_EID_EXTENSION) { 2406 copied = elem->datalen - 1; 2407 if (copied > data_len) 2408 return -ENOSPC; 2409 2410 memmove(data, elem->data + 1, copied); 2411 } else { 2412 copied = elem->datalen; 2413 if (copied > data_len) 2414 return -ENOSPC; 2415 2416 memmove(data, elem->data, copied); 2417 } 2418 2419 /* Fragmented elements must have 255 bytes */ 2420 if (elem_datalen < 255) 2421 return copied; 2422 2423 for (elem = next; 2424 elem->data < ies + ieslen && 2425 elem->data + elem->datalen <= ies + ieslen; 2426 elem = next) { 2427 /* elem might be invalid after the memmove */ 2428 next = (void *)(elem->data + elem->datalen); 2429 2430 if (elem->id != frag_id) 2431 break; 2432 2433 elem_datalen = elem->datalen; 2434 2435 if (copied + elem_datalen > data_len) 2436 return -ENOSPC; 2437 2438 memmove(data + copied, elem->data, elem_datalen); 2439 copied += elem_datalen; 2440 2441 /* Only the last fragment may be short */ 2442 if (elem_datalen != 255) 2443 break; 2444 } 2445 2446 return copied; 2447 } 2448 EXPORT_SYMBOL(cfg80211_defragment_element); 2449 2450 struct cfg80211_mle { 2451 struct ieee80211_multi_link_elem *mle; 2452 struct ieee80211_mle_per_sta_profile 2453 *sta_prof[IEEE80211_MLD_MAX_NUM_LINKS]; 2454 ssize_t sta_prof_len[IEEE80211_MLD_MAX_NUM_LINKS]; 2455 2456 u8 data[]; 2457 }; 2458 2459 static struct cfg80211_mle * 2460 cfg80211_defrag_mle(const struct element *mle, const u8 *ie, size_t ielen, 2461 gfp_t gfp) 2462 { 2463 const struct element *elem; 2464 struct cfg80211_mle *res; 2465 size_t buf_len; 2466 ssize_t mle_len; 2467 u8 common_size, idx; 2468 2469 if (!mle || !ieee80211_mle_size_ok(mle->data + 1, mle->datalen - 1)) 2470 return NULL; 2471 2472 /* Required length for first defragmentation */ 2473 buf_len = mle->datalen - 1; 2474 for_each_element(elem, mle->data + mle->datalen, 2475 ielen - sizeof(*mle) + mle->datalen) { 2476 if (elem->id != WLAN_EID_FRAGMENT) 2477 break; 2478 2479 buf_len += elem->datalen; 2480 } 2481 2482 res = kzalloc(struct_size(res, data, buf_len), gfp); 2483 if (!res) 2484 return NULL; 2485 2486 mle_len = cfg80211_defragment_element(mle, ie, ielen, 2487 res->data, buf_len, 2488 WLAN_EID_FRAGMENT); 2489 if (mle_len < 0) 2490 goto error; 2491 2492 res->mle = (void *)res->data; 2493 2494 /* Find the sub-element area in the buffer */ 2495 common_size = ieee80211_mle_common_size((u8 *)res->mle); 2496 ie = res->data + common_size; 2497 ielen = mle_len - common_size; 2498 2499 idx = 0; 2500 for_each_element_id(elem, IEEE80211_MLE_SUBELEM_PER_STA_PROFILE, 2501 ie, ielen) { 2502 res->sta_prof[idx] = (void *)elem->data; 2503 res->sta_prof_len[idx] = elem->datalen; 2504 2505 idx++; 2506 if (idx >= IEEE80211_MLD_MAX_NUM_LINKS) 2507 break; 2508 } 2509 if (!for_each_element_completed(elem, ie, ielen)) 2510 goto error; 2511 2512 /* Defragment sta_info in-place */ 2513 for (idx = 0; idx < IEEE80211_MLD_MAX_NUM_LINKS && res->sta_prof[idx]; 2514 idx++) { 2515 if (res->sta_prof_len[idx] < 255) 2516 continue; 2517 2518 elem = (void *)res->sta_prof[idx] - 2; 2519 2520 if (idx + 1 < ARRAY_SIZE(res->sta_prof) && 2521 res->sta_prof[idx + 1]) 2522 buf_len = (u8 *)res->sta_prof[idx + 1] - 2523 (u8 *)res->sta_prof[idx]; 2524 else 2525 buf_len = ielen + ie - (u8 *)elem; 2526 2527 res->sta_prof_len[idx] = 2528 cfg80211_defragment_element(elem, 2529 (u8 *)elem, buf_len, 2530 (u8 *)res->sta_prof[idx], 2531 buf_len, 2532 IEEE80211_MLE_SUBELEM_FRAGMENT); 2533 if (res->sta_prof_len[idx] < 0) 2534 goto error; 2535 } 2536 2537 return res; 2538 2539 error: 2540 kfree(res); 2541 return NULL; 2542 } 2543 2544 static u8 2545 cfg80211_tbtt_info_for_mld_ap(const u8 *ie, size_t ielen, u8 mld_id, u8 link_id, 2546 const struct ieee80211_neighbor_ap_info **ap_info, 2547 const u8 **tbtt_info) 2548 { 2549 const struct ieee80211_neighbor_ap_info *info; 2550 const struct element *rnr; 2551 const u8 *pos, *end; 2552 2553 for_each_element_id(rnr, WLAN_EID_REDUCED_NEIGHBOR_REPORT, ie, ielen) { 2554 pos = rnr->data; 2555 end = rnr->data + rnr->datalen; 2556 2557 /* RNR IE may contain more than one NEIGHBOR_AP_INFO */ 2558 while (sizeof(*info) <= end - pos) { 2559 const struct ieee80211_rnr_mld_params *mld_params; 2560 u16 params; 2561 u8 length, i, count, mld_params_offset; 2562 u8 type, lid; 2563 u32 use_for; 2564 2565 info = (void *)pos; 2566 count = u8_get_bits(info->tbtt_info_hdr, 2567 IEEE80211_AP_INFO_TBTT_HDR_COUNT) + 1; 2568 length = info->tbtt_info_len; 2569 2570 pos += sizeof(*info); 2571 2572 if (count * length > end - pos) 2573 return 0; 2574 2575 type = u8_get_bits(info->tbtt_info_hdr, 2576 IEEE80211_AP_INFO_TBTT_HDR_TYPE); 2577 2578 if (type == IEEE80211_TBTT_INFO_TYPE_TBTT && 2579 length >= 2580 offsetofend(struct ieee80211_tbtt_info_ge_11, 2581 mld_params)) { 2582 mld_params_offset = 2583 offsetof(struct ieee80211_tbtt_info_ge_11, mld_params); 2584 use_for = NL80211_BSS_USE_FOR_ALL; 2585 } else if (type == IEEE80211_TBTT_INFO_TYPE_MLD && 2586 length >= sizeof(struct ieee80211_rnr_mld_params)) { 2587 mld_params_offset = 0; 2588 use_for = NL80211_BSS_USE_FOR_MLD_LINK; 2589 } else { 2590 pos += count * length; 2591 continue; 2592 } 2593 2594 for (i = 0; i < count; i++) { 2595 mld_params = (void *)pos + mld_params_offset; 2596 params = le16_to_cpu(mld_params->params); 2597 2598 lid = u16_get_bits(params, 2599 IEEE80211_RNR_MLD_PARAMS_LINK_ID); 2600 2601 if (mld_id == mld_params->mld_id && 2602 link_id == lid) { 2603 *ap_info = info; 2604 *tbtt_info = pos; 2605 2606 return use_for; 2607 } 2608 2609 pos += length; 2610 } 2611 } 2612 } 2613 2614 return 0; 2615 } 2616 2617 static void cfg80211_parse_ml_sta_data(struct wiphy *wiphy, 2618 struct cfg80211_inform_single_bss_data *tx_data, 2619 struct cfg80211_bss *source_bss, 2620 gfp_t gfp) 2621 { 2622 struct cfg80211_inform_single_bss_data data = { 2623 .drv_data = tx_data->drv_data, 2624 .ftype = tx_data->ftype, 2625 .source_bss = source_bss, 2626 .bss_source = BSS_SOURCE_STA_PROFILE, 2627 }; 2628 struct ieee80211_multi_link_elem *ml_elem; 2629 const struct element *elem; 2630 struct cfg80211_mle *mle; 2631 u16 control; 2632 u8 ml_common_len; 2633 u8 *new_ie; 2634 struct cfg80211_bss *bss; 2635 int mld_id; 2636 u16 seen_links = 0; 2637 const u8 *pos; 2638 u8 i; 2639 2640 if (!source_bss) 2641 return; 2642 2643 if (tx_data->ftype != CFG80211_BSS_FTYPE_PRESP) 2644 return; 2645 2646 elem = cfg80211_find_ext_elem(WLAN_EID_EXT_EHT_MULTI_LINK, 2647 tx_data->ie, tx_data->ielen); 2648 if (!elem || !ieee80211_mle_size_ok(elem->data + 1, elem->datalen - 1)) 2649 return; 2650 2651 ml_elem = (void *)elem->data + 1; 2652 control = le16_to_cpu(ml_elem->control); 2653 if (u16_get_bits(control, IEEE80211_ML_CONTROL_TYPE) != 2654 IEEE80211_ML_CONTROL_TYPE_BASIC) 2655 return; 2656 2657 /* Must be present when transmitted by an AP (in a probe response) */ 2658 if (!(control & IEEE80211_MLC_BASIC_PRES_BSS_PARAM_CH_CNT) || 2659 !(control & IEEE80211_MLC_BASIC_PRES_LINK_ID) || 2660 !(control & IEEE80211_MLC_BASIC_PRES_MLD_CAPA_OP)) 2661 return; 2662 2663 ml_common_len = ml_elem->variable[0]; 2664 2665 /* length + MLD MAC address + link ID info + BSS Params Change Count */ 2666 pos = ml_elem->variable + 1 + 6 + 1 + 1; 2667 2668 if (u16_get_bits(control, IEEE80211_MLC_BASIC_PRES_MED_SYNC_DELAY)) 2669 pos += 2; 2670 if (u16_get_bits(control, IEEE80211_MLC_BASIC_PRES_EML_CAPA)) 2671 pos += 2; 2672 2673 /* MLD capabilities and operations */ 2674 pos += 2; 2675 2676 /* Not included when the (nontransmitted) AP is responding itself, 2677 * but defined to zero then (Draft P802.11be_D3.0, 9.4.2.170.2) 2678 */ 2679 if (u16_get_bits(control, IEEE80211_MLC_BASIC_PRES_MLD_ID)) { 2680 mld_id = *pos; 2681 pos += 1; 2682 } else { 2683 mld_id = 0; 2684 } 2685 2686 /* Extended MLD capabilities and operations */ 2687 pos += 2; 2688 2689 /* Fully defrag the ML element for sta information/profile iteration */ 2690 mle = cfg80211_defrag_mle(elem, tx_data->ie, tx_data->ielen, gfp); 2691 if (!mle) 2692 return; 2693 2694 new_ie = kmalloc(IEEE80211_MAX_DATA_LEN, gfp); 2695 if (!new_ie) 2696 goto out; 2697 2698 for (i = 0; i < ARRAY_SIZE(mle->sta_prof) && mle->sta_prof[i]; i++) { 2699 const struct ieee80211_neighbor_ap_info *ap_info; 2700 enum nl80211_band band; 2701 u32 freq; 2702 const u8 *profile; 2703 const u8 *tbtt_info; 2704 ssize_t profile_len; 2705 u8 link_id, use_for; 2706 2707 if (!ieee80211_mle_basic_sta_prof_size_ok((u8 *)mle->sta_prof[i], 2708 mle->sta_prof_len[i])) 2709 continue; 2710 2711 control = le16_to_cpu(mle->sta_prof[i]->control); 2712 2713 if (!(control & IEEE80211_MLE_STA_CONTROL_COMPLETE_PROFILE)) 2714 continue; 2715 2716 link_id = u16_get_bits(control, 2717 IEEE80211_MLE_STA_CONTROL_LINK_ID); 2718 if (seen_links & BIT(link_id)) 2719 break; 2720 seen_links |= BIT(link_id); 2721 2722 if (!(control & IEEE80211_MLE_STA_CONTROL_BEACON_INT_PRESENT) || 2723 !(control & IEEE80211_MLE_STA_CONTROL_TSF_OFFS_PRESENT) || 2724 !(control & IEEE80211_MLE_STA_CONTROL_STA_MAC_ADDR_PRESENT)) 2725 continue; 2726 2727 memcpy(data.bssid, mle->sta_prof[i]->variable, ETH_ALEN); 2728 data.beacon_interval = 2729 get_unaligned_le16(mle->sta_prof[i]->variable + 6); 2730 data.tsf = tx_data->tsf + 2731 get_unaligned_le64(mle->sta_prof[i]->variable + 8); 2732 2733 /* sta_info_len counts itself */ 2734 profile = mle->sta_prof[i]->variable + 2735 mle->sta_prof[i]->sta_info_len - 1; 2736 profile_len = (u8 *)mle->sta_prof[i] + mle->sta_prof_len[i] - 2737 profile; 2738 2739 if (profile_len < 2) 2740 continue; 2741 2742 data.capability = get_unaligned_le16(profile); 2743 profile += 2; 2744 profile_len -= 2; 2745 2746 /* Find in RNR to look up channel information */ 2747 use_for = cfg80211_tbtt_info_for_mld_ap(tx_data->ie, 2748 tx_data->ielen, 2749 mld_id, link_id, 2750 &ap_info, &tbtt_info); 2751 if (!use_for) 2752 continue; 2753 2754 /* We could sanity check the BSSID is included */ 2755 2756 if (!ieee80211_operating_class_to_band(ap_info->op_class, 2757 &band)) 2758 continue; 2759 2760 freq = ieee80211_channel_to_freq_khz(ap_info->channel, band); 2761 data.channel = ieee80211_get_channel_khz(wiphy, freq); 2762 2763 if (use_for == NL80211_BSS_USE_FOR_MLD_LINK && 2764 !(wiphy->flags & WIPHY_FLAG_SUPPORTS_NSTR_NONPRIMARY)) { 2765 use_for = 0; 2766 data.cannot_use_reasons = 2767 NL80211_BSS_CANNOT_USE_NSTR_NONPRIMARY; 2768 } 2769 data.use_for = use_for; 2770 2771 /* Generate new elements */ 2772 memset(new_ie, 0, IEEE80211_MAX_DATA_LEN); 2773 data.ie = new_ie; 2774 data.ielen = cfg80211_gen_new_ie(tx_data->ie, tx_data->ielen, 2775 profile, profile_len, 2776 new_ie, 2777 IEEE80211_MAX_DATA_LEN); 2778 if (!data.ielen) 2779 continue; 2780 2781 /* The generated elements do not contain: 2782 * - Basic ML element 2783 * - A TBTT entry in the RNR for the transmitting AP 2784 * 2785 * This information is needed both internally and in userspace 2786 * as such, we should append it here. 2787 */ 2788 if (data.ielen + 3 + sizeof(*ml_elem) + ml_common_len > 2789 IEEE80211_MAX_DATA_LEN) 2790 continue; 2791 2792 /* Copy the Basic Multi-Link element including the common 2793 * information, and then fix up the link ID. 2794 * Note that the ML element length has been verified and we 2795 * also checked that it contains the link ID. 2796 */ 2797 new_ie[data.ielen++] = WLAN_EID_EXTENSION; 2798 new_ie[data.ielen++] = 1 + sizeof(*ml_elem) + ml_common_len; 2799 new_ie[data.ielen++] = WLAN_EID_EXT_EHT_MULTI_LINK; 2800 memcpy(new_ie + data.ielen, ml_elem, 2801 sizeof(*ml_elem) + ml_common_len); 2802 2803 new_ie[data.ielen + sizeof(*ml_elem) + 1 + ETH_ALEN] = link_id; 2804 2805 data.ielen += sizeof(*ml_elem) + ml_common_len; 2806 2807 /* TODO: Add an RNR containing only the reporting AP */ 2808 2809 bss = cfg80211_inform_single_bss_data(wiphy, &data, gfp); 2810 if (!bss) 2811 break; 2812 cfg80211_put_bss(wiphy, bss); 2813 } 2814 2815 out: 2816 kfree(new_ie); 2817 kfree(mle); 2818 } 2819 2820 struct cfg80211_bss * 2821 cfg80211_inform_bss_data(struct wiphy *wiphy, 2822 struct cfg80211_inform_bss *data, 2823 enum cfg80211_bss_frame_type ftype, 2824 const u8 *bssid, u64 tsf, u16 capability, 2825 u16 beacon_interval, const u8 *ie, size_t ielen, 2826 gfp_t gfp) 2827 { 2828 struct cfg80211_inform_single_bss_data inform_data = { 2829 .drv_data = data, 2830 .ftype = ftype, 2831 .tsf = tsf, 2832 .capability = capability, 2833 .beacon_interval = beacon_interval, 2834 .ie = ie, 2835 .ielen = ielen, 2836 .use_for = data->restrict_use ? 2837 data->use_for : 2838 NL80211_BSS_USE_FOR_ALL, 2839 .cannot_use_reasons = data->cannot_use_reasons, 2840 }; 2841 struct cfg80211_bss *res; 2842 2843 memcpy(inform_data.bssid, bssid, ETH_ALEN); 2844 2845 res = cfg80211_inform_single_bss_data(wiphy, &inform_data, gfp); 2846 if (!res) 2847 return NULL; 2848 2849 cfg80211_parse_mbssid_data(wiphy, &inform_data, res, gfp); 2850 2851 cfg80211_parse_ml_sta_data(wiphy, &inform_data, res, gfp); 2852 2853 return res; 2854 } 2855 EXPORT_SYMBOL(cfg80211_inform_bss_data); 2856 2857 static bool cfg80211_uhb_power_type_valid(const u8 *ie, 2858 size_t ielen, 2859 const u32 flags) 2860 { 2861 const struct element *tmp; 2862 struct ieee80211_he_operation *he_oper; 2863 2864 tmp = cfg80211_find_ext_elem(WLAN_EID_EXT_HE_OPERATION, ie, ielen); 2865 if (tmp && tmp->datalen >= sizeof(*he_oper) + 1) { 2866 const struct ieee80211_he_6ghz_oper *he_6ghz_oper; 2867 2868 he_oper = (void *)&tmp->data[1]; 2869 he_6ghz_oper = ieee80211_he_6ghz_oper(he_oper); 2870 2871 if (!he_6ghz_oper) 2872 return false; 2873 2874 switch (u8_get_bits(he_6ghz_oper->control, 2875 IEEE80211_HE_6GHZ_OPER_CTRL_REG_INFO)) { 2876 case IEEE80211_6GHZ_CTRL_REG_LPI_AP: 2877 return true; 2878 case IEEE80211_6GHZ_CTRL_REG_SP_AP: 2879 return !(flags & IEEE80211_CHAN_NO_UHB_AFC_CLIENT); 2880 case IEEE80211_6GHZ_CTRL_REG_VLP_AP: 2881 return !(flags & IEEE80211_CHAN_NO_UHB_VLP_CLIENT); 2882 } 2883 } 2884 return false; 2885 } 2886 2887 /* cfg80211_inform_bss_width_frame helper */ 2888 static struct cfg80211_bss * 2889 cfg80211_inform_single_bss_frame_data(struct wiphy *wiphy, 2890 struct cfg80211_inform_bss *data, 2891 struct ieee80211_mgmt *mgmt, size_t len, 2892 gfp_t gfp) 2893 { 2894 struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy); 2895 struct cfg80211_internal_bss tmp = {}, *res; 2896 struct cfg80211_bss_ies *ies; 2897 struct ieee80211_channel *channel; 2898 bool signal_valid; 2899 struct ieee80211_ext *ext = NULL; 2900 u8 *bssid, *variable; 2901 u16 capability, beacon_int; 2902 size_t ielen, min_hdr_len = offsetof(struct ieee80211_mgmt, 2903 u.probe_resp.variable); 2904 int bss_type; 2905 2906 BUILD_BUG_ON(offsetof(struct ieee80211_mgmt, u.probe_resp.variable) != 2907 offsetof(struct ieee80211_mgmt, u.beacon.variable)); 2908 2909 trace_cfg80211_inform_bss_frame(wiphy, data, mgmt, len); 2910 2911 if (WARN_ON(!mgmt)) 2912 return NULL; 2913 2914 if (WARN_ON(!wiphy)) 2915 return NULL; 2916 2917 if (WARN_ON(wiphy->signal_type == CFG80211_SIGNAL_TYPE_UNSPEC && 2918 (data->signal < 0 || data->signal > 100))) 2919 return NULL; 2920 2921 if (ieee80211_is_s1g_beacon(mgmt->frame_control)) { 2922 ext = (void *) mgmt; 2923 min_hdr_len = offsetof(struct ieee80211_ext, u.s1g_beacon); 2924 if (ieee80211_is_s1g_short_beacon(mgmt->frame_control)) 2925 min_hdr_len = offsetof(struct ieee80211_ext, 2926 u.s1g_short_beacon.variable); 2927 } 2928 2929 if (WARN_ON(len < min_hdr_len)) 2930 return NULL; 2931 2932 ielen = len - min_hdr_len; 2933 variable = mgmt->u.probe_resp.variable; 2934 if (ext) { 2935 if (ieee80211_is_s1g_short_beacon(mgmt->frame_control)) 2936 variable = ext->u.s1g_short_beacon.variable; 2937 else 2938 variable = ext->u.s1g_beacon.variable; 2939 } 2940 2941 channel = cfg80211_get_bss_channel(wiphy, variable, ielen, data->chan); 2942 if (!channel) 2943 return NULL; 2944 2945 if (channel->band == NL80211_BAND_6GHZ && 2946 !cfg80211_uhb_power_type_valid(variable, ielen, channel->flags)) { 2947 data->restrict_use = 1; 2948 data->use_for = 0; 2949 data->cannot_use_reasons = 2950 NL80211_BSS_CANNOT_USE_UHB_PWR_MISMATCH; 2951 } 2952 2953 if (ext) { 2954 const struct ieee80211_s1g_bcn_compat_ie *compat; 2955 const struct element *elem; 2956 2957 elem = cfg80211_find_elem(WLAN_EID_S1G_BCN_COMPAT, 2958 variable, ielen); 2959 if (!elem) 2960 return NULL; 2961 if (elem->datalen < sizeof(*compat)) 2962 return NULL; 2963 compat = (void *)elem->data; 2964 bssid = ext->u.s1g_beacon.sa; 2965 capability = le16_to_cpu(compat->compat_info); 2966 beacon_int = le16_to_cpu(compat->beacon_int); 2967 } else { 2968 bssid = mgmt->bssid; 2969 beacon_int = le16_to_cpu(mgmt->u.probe_resp.beacon_int); 2970 capability = le16_to_cpu(mgmt->u.probe_resp.capab_info); 2971 } 2972 2973 if (channel->band == NL80211_BAND_60GHZ) { 2974 bss_type = capability & WLAN_CAPABILITY_DMG_TYPE_MASK; 2975 if (bss_type == WLAN_CAPABILITY_DMG_TYPE_AP || 2976 bss_type == WLAN_CAPABILITY_DMG_TYPE_PBSS) 2977 regulatory_hint_found_beacon(wiphy, channel, gfp); 2978 } else { 2979 if (capability & WLAN_CAPABILITY_ESS) 2980 regulatory_hint_found_beacon(wiphy, channel, gfp); 2981 } 2982 2983 ies = kzalloc(sizeof(*ies) + ielen, gfp); 2984 if (!ies) 2985 return NULL; 2986 ies->len = ielen; 2987 ies->tsf = le64_to_cpu(mgmt->u.probe_resp.timestamp); 2988 ies->from_beacon = ieee80211_is_beacon(mgmt->frame_control) || 2989 ieee80211_is_s1g_beacon(mgmt->frame_control); 2990 memcpy(ies->data, variable, ielen); 2991 2992 if (ieee80211_is_probe_resp(mgmt->frame_control)) 2993 rcu_assign_pointer(tmp.pub.proberesp_ies, ies); 2994 else 2995 rcu_assign_pointer(tmp.pub.beacon_ies, ies); 2996 rcu_assign_pointer(tmp.pub.ies, ies); 2997 2998 memcpy(tmp.pub.bssid, bssid, ETH_ALEN); 2999 tmp.pub.beacon_interval = beacon_int; 3000 tmp.pub.capability = capability; 3001 tmp.pub.channel = channel; 3002 tmp.pub.signal = data->signal; 3003 tmp.ts_boottime = data->boottime_ns; 3004 tmp.parent_tsf = data->parent_tsf; 3005 tmp.pub.chains = data->chains; 3006 memcpy(tmp.pub.chain_signal, data->chain_signal, IEEE80211_MAX_CHAINS); 3007 ether_addr_copy(tmp.parent_bssid, data->parent_bssid); 3008 tmp.pub.use_for = data->restrict_use ? 3009 data->use_for : 3010 NL80211_BSS_USE_FOR_ALL; 3011 tmp.pub.cannot_use_reasons = data->cannot_use_reasons; 3012 3013 signal_valid = data->chan == channel; 3014 spin_lock_bh(&rdev->bss_lock); 3015 res = __cfg80211_bss_update(rdev, &tmp, signal_valid, jiffies); 3016 if (!res) 3017 goto drop; 3018 3019 rdev_inform_bss(rdev, &res->pub, ies, data->drv_data); 3020 3021 spin_unlock_bh(&rdev->bss_lock); 3022 3023 trace_cfg80211_return_bss(&res->pub); 3024 /* __cfg80211_bss_update gives us a referenced result */ 3025 return &res->pub; 3026 3027 drop: 3028 spin_unlock_bh(&rdev->bss_lock); 3029 return NULL; 3030 } 3031 3032 struct cfg80211_bss * 3033 cfg80211_inform_bss_frame_data(struct wiphy *wiphy, 3034 struct cfg80211_inform_bss *data, 3035 struct ieee80211_mgmt *mgmt, size_t len, 3036 gfp_t gfp) 3037 { 3038 struct cfg80211_inform_single_bss_data inform_data = { 3039 .drv_data = data, 3040 .ie = mgmt->u.probe_resp.variable, 3041 .ielen = len - offsetof(struct ieee80211_mgmt, 3042 u.probe_resp.variable), 3043 .use_for = data->restrict_use ? 3044 data->use_for : 3045 NL80211_BSS_USE_FOR_ALL, 3046 .cannot_use_reasons = data->cannot_use_reasons, 3047 }; 3048 struct cfg80211_bss *res; 3049 3050 res = cfg80211_inform_single_bss_frame_data(wiphy, data, mgmt, 3051 len, gfp); 3052 if (!res) 3053 return NULL; 3054 3055 /* don't do any further MBSSID/ML handling for S1G */ 3056 if (ieee80211_is_s1g_beacon(mgmt->frame_control)) 3057 return res; 3058 3059 inform_data.ftype = ieee80211_is_beacon(mgmt->frame_control) ? 3060 CFG80211_BSS_FTYPE_BEACON : CFG80211_BSS_FTYPE_PRESP; 3061 memcpy(inform_data.bssid, mgmt->bssid, ETH_ALEN); 3062 inform_data.tsf = le64_to_cpu(mgmt->u.probe_resp.timestamp); 3063 inform_data.beacon_interval = 3064 le16_to_cpu(mgmt->u.probe_resp.beacon_int); 3065 3066 /* process each non-transmitting bss */ 3067 cfg80211_parse_mbssid_data(wiphy, &inform_data, res, gfp); 3068 3069 cfg80211_parse_ml_sta_data(wiphy, &inform_data, res, gfp); 3070 3071 return res; 3072 } 3073 EXPORT_SYMBOL(cfg80211_inform_bss_frame_data); 3074 3075 void cfg80211_ref_bss(struct wiphy *wiphy, struct cfg80211_bss *pub) 3076 { 3077 struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy); 3078 3079 if (!pub) 3080 return; 3081 3082 spin_lock_bh(&rdev->bss_lock); 3083 bss_ref_get(rdev, bss_from_pub(pub)); 3084 spin_unlock_bh(&rdev->bss_lock); 3085 } 3086 EXPORT_SYMBOL(cfg80211_ref_bss); 3087 3088 void cfg80211_put_bss(struct wiphy *wiphy, struct cfg80211_bss *pub) 3089 { 3090 struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy); 3091 3092 if (!pub) 3093 return; 3094 3095 spin_lock_bh(&rdev->bss_lock); 3096 bss_ref_put(rdev, bss_from_pub(pub)); 3097 spin_unlock_bh(&rdev->bss_lock); 3098 } 3099 EXPORT_SYMBOL(cfg80211_put_bss); 3100 3101 void cfg80211_unlink_bss(struct wiphy *wiphy, struct cfg80211_bss *pub) 3102 { 3103 struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy); 3104 struct cfg80211_internal_bss *bss, *tmp1; 3105 struct cfg80211_bss *nontrans_bss, *tmp; 3106 3107 if (WARN_ON(!pub)) 3108 return; 3109 3110 bss = bss_from_pub(pub); 3111 3112 spin_lock_bh(&rdev->bss_lock); 3113 if (list_empty(&bss->list)) 3114 goto out; 3115 3116 list_for_each_entry_safe(nontrans_bss, tmp, 3117 &pub->nontrans_list, 3118 nontrans_list) { 3119 tmp1 = bss_from_pub(nontrans_bss); 3120 if (__cfg80211_unlink_bss(rdev, tmp1)) 3121 rdev->bss_generation++; 3122 } 3123 3124 if (__cfg80211_unlink_bss(rdev, bss)) 3125 rdev->bss_generation++; 3126 out: 3127 spin_unlock_bh(&rdev->bss_lock); 3128 } 3129 EXPORT_SYMBOL(cfg80211_unlink_bss); 3130 3131 void cfg80211_bss_iter(struct wiphy *wiphy, 3132 struct cfg80211_chan_def *chandef, 3133 void (*iter)(struct wiphy *wiphy, 3134 struct cfg80211_bss *bss, 3135 void *data), 3136 void *iter_data) 3137 { 3138 struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy); 3139 struct cfg80211_internal_bss *bss; 3140 3141 spin_lock_bh(&rdev->bss_lock); 3142 3143 list_for_each_entry(bss, &rdev->bss_list, list) { 3144 if (!chandef || cfg80211_is_sub_chan(chandef, bss->pub.channel, 3145 false)) 3146 iter(wiphy, &bss->pub, iter_data); 3147 } 3148 3149 spin_unlock_bh(&rdev->bss_lock); 3150 } 3151 EXPORT_SYMBOL(cfg80211_bss_iter); 3152 3153 void cfg80211_update_assoc_bss_entry(struct wireless_dev *wdev, 3154 unsigned int link_id, 3155 struct ieee80211_channel *chan) 3156 { 3157 struct wiphy *wiphy = wdev->wiphy; 3158 struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy); 3159 struct cfg80211_internal_bss *cbss = wdev->links[link_id].client.current_bss; 3160 struct cfg80211_internal_bss *new = NULL; 3161 struct cfg80211_internal_bss *bss; 3162 struct cfg80211_bss *nontrans_bss; 3163 struct cfg80211_bss *tmp; 3164 3165 spin_lock_bh(&rdev->bss_lock); 3166 3167 /* 3168 * Some APs use CSA also for bandwidth changes, i.e., without actually 3169 * changing the control channel, so no need to update in such a case. 3170 */ 3171 if (cbss->pub.channel == chan) 3172 goto done; 3173 3174 /* use transmitting bss */ 3175 if (cbss->pub.transmitted_bss) 3176 cbss = bss_from_pub(cbss->pub.transmitted_bss); 3177 3178 cbss->pub.channel = chan; 3179 3180 list_for_each_entry(bss, &rdev->bss_list, list) { 3181 if (!cfg80211_bss_type_match(bss->pub.capability, 3182 bss->pub.channel->band, 3183 wdev->conn_bss_type)) 3184 continue; 3185 3186 if (bss == cbss) 3187 continue; 3188 3189 if (!cmp_bss(&bss->pub, &cbss->pub, BSS_CMP_REGULAR)) { 3190 new = bss; 3191 break; 3192 } 3193 } 3194 3195 if (new) { 3196 /* to save time, update IEs for transmitting bss only */ 3197 cfg80211_update_known_bss(rdev, cbss, new, false); 3198 new->pub.proberesp_ies = NULL; 3199 new->pub.beacon_ies = NULL; 3200 3201 list_for_each_entry_safe(nontrans_bss, tmp, 3202 &new->pub.nontrans_list, 3203 nontrans_list) { 3204 bss = bss_from_pub(nontrans_bss); 3205 if (__cfg80211_unlink_bss(rdev, bss)) 3206 rdev->bss_generation++; 3207 } 3208 3209 WARN_ON(atomic_read(&new->hold)); 3210 if (!WARN_ON(!__cfg80211_unlink_bss(rdev, new))) 3211 rdev->bss_generation++; 3212 } 3213 3214 rb_erase(&cbss->rbn, &rdev->bss_tree); 3215 rb_insert_bss(rdev, cbss); 3216 rdev->bss_generation++; 3217 3218 list_for_each_entry_safe(nontrans_bss, tmp, 3219 &cbss->pub.nontrans_list, 3220 nontrans_list) { 3221 bss = bss_from_pub(nontrans_bss); 3222 bss->pub.channel = chan; 3223 rb_erase(&bss->rbn, &rdev->bss_tree); 3224 rb_insert_bss(rdev, bss); 3225 rdev->bss_generation++; 3226 } 3227 3228 done: 3229 spin_unlock_bh(&rdev->bss_lock); 3230 } 3231 3232 #ifdef CONFIG_CFG80211_WEXT 3233 static struct cfg80211_registered_device * 3234 cfg80211_get_dev_from_ifindex(struct net *net, int ifindex) 3235 { 3236 struct cfg80211_registered_device *rdev; 3237 struct net_device *dev; 3238 3239 ASSERT_RTNL(); 3240 3241 dev = dev_get_by_index(net, ifindex); 3242 if (!dev) 3243 return ERR_PTR(-ENODEV); 3244 if (dev->ieee80211_ptr) 3245 rdev = wiphy_to_rdev(dev->ieee80211_ptr->wiphy); 3246 else 3247 rdev = ERR_PTR(-ENODEV); 3248 dev_put(dev); 3249 return rdev; 3250 } 3251 3252 int cfg80211_wext_siwscan(struct net_device *dev, 3253 struct iw_request_info *info, 3254 union iwreq_data *wrqu, char *extra) 3255 { 3256 struct cfg80211_registered_device *rdev; 3257 struct wiphy *wiphy; 3258 struct iw_scan_req *wreq = NULL; 3259 struct cfg80211_scan_request *creq; 3260 int i, err, n_channels = 0; 3261 enum nl80211_band band; 3262 3263 if (!netif_running(dev)) 3264 return -ENETDOWN; 3265 3266 if (wrqu->data.length == sizeof(struct iw_scan_req)) 3267 wreq = (struct iw_scan_req *)extra; 3268 3269 rdev = cfg80211_get_dev_from_ifindex(dev_net(dev), dev->ifindex); 3270 3271 if (IS_ERR(rdev)) 3272 return PTR_ERR(rdev); 3273 3274 if (rdev->scan_req || rdev->scan_msg) 3275 return -EBUSY; 3276 3277 wiphy = &rdev->wiphy; 3278 3279 /* Determine number of channels, needed to allocate creq */ 3280 if (wreq && wreq->num_channels) 3281 n_channels = wreq->num_channels; 3282 else 3283 n_channels = ieee80211_get_num_supported_channels(wiphy); 3284 3285 creq = kzalloc(sizeof(*creq) + sizeof(struct cfg80211_ssid) + 3286 n_channels * sizeof(void *), 3287 GFP_ATOMIC); 3288 if (!creq) 3289 return -ENOMEM; 3290 3291 creq->wiphy = wiphy; 3292 creq->wdev = dev->ieee80211_ptr; 3293 /* SSIDs come after channels */ 3294 creq->ssids = (void *)&creq->channels[n_channels]; 3295 creq->n_channels = n_channels; 3296 creq->n_ssids = 1; 3297 creq->scan_start = jiffies; 3298 3299 /* translate "Scan on frequencies" request */ 3300 i = 0; 3301 for (band = 0; band < NUM_NL80211_BANDS; band++) { 3302 int j; 3303 3304 if (!wiphy->bands[band]) 3305 continue; 3306 3307 for (j = 0; j < wiphy->bands[band]->n_channels; j++) { 3308 /* ignore disabled channels */ 3309 if (wiphy->bands[band]->channels[j].flags & 3310 IEEE80211_CHAN_DISABLED) 3311 continue; 3312 3313 /* If we have a wireless request structure and the 3314 * wireless request specifies frequencies, then search 3315 * for the matching hardware channel. 3316 */ 3317 if (wreq && wreq->num_channels) { 3318 int k; 3319 int wiphy_freq = wiphy->bands[band]->channels[j].center_freq; 3320 for (k = 0; k < wreq->num_channels; k++) { 3321 struct iw_freq *freq = 3322 &wreq->channel_list[k]; 3323 int wext_freq = 3324 cfg80211_wext_freq(freq); 3325 3326 if (wext_freq == wiphy_freq) 3327 goto wext_freq_found; 3328 } 3329 goto wext_freq_not_found; 3330 } 3331 3332 wext_freq_found: 3333 creq->channels[i] = &wiphy->bands[band]->channels[j]; 3334 i++; 3335 wext_freq_not_found: ; 3336 } 3337 } 3338 /* No channels found? */ 3339 if (!i) { 3340 err = -EINVAL; 3341 goto out; 3342 } 3343 3344 /* Set real number of channels specified in creq->channels[] */ 3345 creq->n_channels = i; 3346 3347 /* translate "Scan for SSID" request */ 3348 if (wreq) { 3349 if (wrqu->data.flags & IW_SCAN_THIS_ESSID) { 3350 if (wreq->essid_len > IEEE80211_MAX_SSID_LEN) { 3351 err = -EINVAL; 3352 goto out; 3353 } 3354 memcpy(creq->ssids[0].ssid, wreq->essid, wreq->essid_len); 3355 creq->ssids[0].ssid_len = wreq->essid_len; 3356 } 3357 if (wreq->scan_type == IW_SCAN_TYPE_PASSIVE) 3358 creq->n_ssids = 0; 3359 } 3360 3361 for (i = 0; i < NUM_NL80211_BANDS; i++) 3362 if (wiphy->bands[i]) 3363 creq->rates[i] = (1 << wiphy->bands[i]->n_bitrates) - 1; 3364 3365 eth_broadcast_addr(creq->bssid); 3366 3367 wiphy_lock(&rdev->wiphy); 3368 3369 rdev->scan_req = creq; 3370 err = rdev_scan(rdev, creq); 3371 if (err) { 3372 rdev->scan_req = NULL; 3373 /* creq will be freed below */ 3374 } else { 3375 nl80211_send_scan_start(rdev, dev->ieee80211_ptr); 3376 /* creq now owned by driver */ 3377 creq = NULL; 3378 dev_hold(dev); 3379 } 3380 wiphy_unlock(&rdev->wiphy); 3381 out: 3382 kfree(creq); 3383 return err; 3384 } 3385 EXPORT_WEXT_HANDLER(cfg80211_wext_siwscan); 3386 3387 static char *ieee80211_scan_add_ies(struct iw_request_info *info, 3388 const struct cfg80211_bss_ies *ies, 3389 char *current_ev, char *end_buf) 3390 { 3391 const u8 *pos, *end, *next; 3392 struct iw_event iwe; 3393 3394 if (!ies) 3395 return current_ev; 3396 3397 /* 3398 * If needed, fragment the IEs buffer (at IE boundaries) into short 3399 * enough fragments to fit into IW_GENERIC_IE_MAX octet messages. 3400 */ 3401 pos = ies->data; 3402 end = pos + ies->len; 3403 3404 while (end - pos > IW_GENERIC_IE_MAX) { 3405 next = pos + 2 + pos[1]; 3406 while (next + 2 + next[1] - pos < IW_GENERIC_IE_MAX) 3407 next = next + 2 + next[1]; 3408 3409 memset(&iwe, 0, sizeof(iwe)); 3410 iwe.cmd = IWEVGENIE; 3411 iwe.u.data.length = next - pos; 3412 current_ev = iwe_stream_add_point_check(info, current_ev, 3413 end_buf, &iwe, 3414 (void *)pos); 3415 if (IS_ERR(current_ev)) 3416 return current_ev; 3417 pos = next; 3418 } 3419 3420 if (end > pos) { 3421 memset(&iwe, 0, sizeof(iwe)); 3422 iwe.cmd = IWEVGENIE; 3423 iwe.u.data.length = end - pos; 3424 current_ev = iwe_stream_add_point_check(info, current_ev, 3425 end_buf, &iwe, 3426 (void *)pos); 3427 if (IS_ERR(current_ev)) 3428 return current_ev; 3429 } 3430 3431 return current_ev; 3432 } 3433 3434 static char * 3435 ieee80211_bss(struct wiphy *wiphy, struct iw_request_info *info, 3436 struct cfg80211_internal_bss *bss, char *current_ev, 3437 char *end_buf) 3438 { 3439 const struct cfg80211_bss_ies *ies; 3440 struct iw_event iwe; 3441 const u8 *ie; 3442 u8 buf[50]; 3443 u8 *cfg, *p, *tmp; 3444 int rem, i, sig; 3445 bool ismesh = false; 3446 3447 memset(&iwe, 0, sizeof(iwe)); 3448 iwe.cmd = SIOCGIWAP; 3449 iwe.u.ap_addr.sa_family = ARPHRD_ETHER; 3450 memcpy(iwe.u.ap_addr.sa_data, bss->pub.bssid, ETH_ALEN); 3451 current_ev = iwe_stream_add_event_check(info, current_ev, end_buf, &iwe, 3452 IW_EV_ADDR_LEN); 3453 if (IS_ERR(current_ev)) 3454 return current_ev; 3455 3456 memset(&iwe, 0, sizeof(iwe)); 3457 iwe.cmd = SIOCGIWFREQ; 3458 iwe.u.freq.m = ieee80211_frequency_to_channel(bss->pub.channel->center_freq); 3459 iwe.u.freq.e = 0; 3460 current_ev = iwe_stream_add_event_check(info, current_ev, end_buf, &iwe, 3461 IW_EV_FREQ_LEN); 3462 if (IS_ERR(current_ev)) 3463 return current_ev; 3464 3465 memset(&iwe, 0, sizeof(iwe)); 3466 iwe.cmd = SIOCGIWFREQ; 3467 iwe.u.freq.m = bss->pub.channel->center_freq; 3468 iwe.u.freq.e = 6; 3469 current_ev = iwe_stream_add_event_check(info, current_ev, end_buf, &iwe, 3470 IW_EV_FREQ_LEN); 3471 if (IS_ERR(current_ev)) 3472 return current_ev; 3473 3474 if (wiphy->signal_type != CFG80211_SIGNAL_TYPE_NONE) { 3475 memset(&iwe, 0, sizeof(iwe)); 3476 iwe.cmd = IWEVQUAL; 3477 iwe.u.qual.updated = IW_QUAL_LEVEL_UPDATED | 3478 IW_QUAL_NOISE_INVALID | 3479 IW_QUAL_QUAL_UPDATED; 3480 switch (wiphy->signal_type) { 3481 case CFG80211_SIGNAL_TYPE_MBM: 3482 sig = bss->pub.signal / 100; 3483 iwe.u.qual.level = sig; 3484 iwe.u.qual.updated |= IW_QUAL_DBM; 3485 if (sig < -110) /* rather bad */ 3486 sig = -110; 3487 else if (sig > -40) /* perfect */ 3488 sig = -40; 3489 /* will give a range of 0 .. 70 */ 3490 iwe.u.qual.qual = sig + 110; 3491 break; 3492 case CFG80211_SIGNAL_TYPE_UNSPEC: 3493 iwe.u.qual.level = bss->pub.signal; 3494 /* will give range 0 .. 100 */ 3495 iwe.u.qual.qual = bss->pub.signal; 3496 break; 3497 default: 3498 /* not reached */ 3499 break; 3500 } 3501 current_ev = iwe_stream_add_event_check(info, current_ev, 3502 end_buf, &iwe, 3503 IW_EV_QUAL_LEN); 3504 if (IS_ERR(current_ev)) 3505 return current_ev; 3506 } 3507 3508 memset(&iwe, 0, sizeof(iwe)); 3509 iwe.cmd = SIOCGIWENCODE; 3510 if (bss->pub.capability & WLAN_CAPABILITY_PRIVACY) 3511 iwe.u.data.flags = IW_ENCODE_ENABLED | IW_ENCODE_NOKEY; 3512 else 3513 iwe.u.data.flags = IW_ENCODE_DISABLED; 3514 iwe.u.data.length = 0; 3515 current_ev = iwe_stream_add_point_check(info, current_ev, end_buf, 3516 &iwe, ""); 3517 if (IS_ERR(current_ev)) 3518 return current_ev; 3519 3520 rcu_read_lock(); 3521 ies = rcu_dereference(bss->pub.ies); 3522 rem = ies->len; 3523 ie = ies->data; 3524 3525 while (rem >= 2) { 3526 /* invalid data */ 3527 if (ie[1] > rem - 2) 3528 break; 3529 3530 switch (ie[0]) { 3531 case WLAN_EID_SSID: 3532 memset(&iwe, 0, sizeof(iwe)); 3533 iwe.cmd = SIOCGIWESSID; 3534 iwe.u.data.length = ie[1]; 3535 iwe.u.data.flags = 1; 3536 current_ev = iwe_stream_add_point_check(info, 3537 current_ev, 3538 end_buf, &iwe, 3539 (u8 *)ie + 2); 3540 if (IS_ERR(current_ev)) 3541 goto unlock; 3542 break; 3543 case WLAN_EID_MESH_ID: 3544 memset(&iwe, 0, sizeof(iwe)); 3545 iwe.cmd = SIOCGIWESSID; 3546 iwe.u.data.length = ie[1]; 3547 iwe.u.data.flags = 1; 3548 current_ev = iwe_stream_add_point_check(info, 3549 current_ev, 3550 end_buf, &iwe, 3551 (u8 *)ie + 2); 3552 if (IS_ERR(current_ev)) 3553 goto unlock; 3554 break; 3555 case WLAN_EID_MESH_CONFIG: 3556 ismesh = true; 3557 if (ie[1] != sizeof(struct ieee80211_meshconf_ie)) 3558 break; 3559 cfg = (u8 *)ie + 2; 3560 memset(&iwe, 0, sizeof(iwe)); 3561 iwe.cmd = IWEVCUSTOM; 3562 iwe.u.data.length = sprintf(buf, 3563 "Mesh Network Path Selection Protocol ID: 0x%02X", 3564 cfg[0]); 3565 current_ev = iwe_stream_add_point_check(info, 3566 current_ev, 3567 end_buf, 3568 &iwe, buf); 3569 if (IS_ERR(current_ev)) 3570 goto unlock; 3571 iwe.u.data.length = sprintf(buf, 3572 "Path Selection Metric ID: 0x%02X", 3573 cfg[1]); 3574 current_ev = iwe_stream_add_point_check(info, 3575 current_ev, 3576 end_buf, 3577 &iwe, buf); 3578 if (IS_ERR(current_ev)) 3579 goto unlock; 3580 iwe.u.data.length = sprintf(buf, 3581 "Congestion Control Mode ID: 0x%02X", 3582 cfg[2]); 3583 current_ev = iwe_stream_add_point_check(info, 3584 current_ev, 3585 end_buf, 3586 &iwe, buf); 3587 if (IS_ERR(current_ev)) 3588 goto unlock; 3589 iwe.u.data.length = sprintf(buf, 3590 "Synchronization ID: 0x%02X", 3591 cfg[3]); 3592 current_ev = iwe_stream_add_point_check(info, 3593 current_ev, 3594 end_buf, 3595 &iwe, buf); 3596 if (IS_ERR(current_ev)) 3597 goto unlock; 3598 iwe.u.data.length = sprintf(buf, 3599 "Authentication ID: 0x%02X", 3600 cfg[4]); 3601 current_ev = iwe_stream_add_point_check(info, 3602 current_ev, 3603 end_buf, 3604 &iwe, buf); 3605 if (IS_ERR(current_ev)) 3606 goto unlock; 3607 iwe.u.data.length = sprintf(buf, 3608 "Formation Info: 0x%02X", 3609 cfg[5]); 3610 current_ev = iwe_stream_add_point_check(info, 3611 current_ev, 3612 end_buf, 3613 &iwe, buf); 3614 if (IS_ERR(current_ev)) 3615 goto unlock; 3616 iwe.u.data.length = sprintf(buf, 3617 "Capabilities: 0x%02X", 3618 cfg[6]); 3619 current_ev = iwe_stream_add_point_check(info, 3620 current_ev, 3621 end_buf, 3622 &iwe, buf); 3623 if (IS_ERR(current_ev)) 3624 goto unlock; 3625 break; 3626 case WLAN_EID_SUPP_RATES: 3627 case WLAN_EID_EXT_SUPP_RATES: 3628 /* display all supported rates in readable format */ 3629 p = current_ev + iwe_stream_lcp_len(info); 3630 3631 memset(&iwe, 0, sizeof(iwe)); 3632 iwe.cmd = SIOCGIWRATE; 3633 /* Those two flags are ignored... */ 3634 iwe.u.bitrate.fixed = iwe.u.bitrate.disabled = 0; 3635 3636 for (i = 0; i < ie[1]; i++) { 3637 iwe.u.bitrate.value = 3638 ((ie[i + 2] & 0x7f) * 500000); 3639 tmp = p; 3640 p = iwe_stream_add_value(info, current_ev, p, 3641 end_buf, &iwe, 3642 IW_EV_PARAM_LEN); 3643 if (p == tmp) { 3644 current_ev = ERR_PTR(-E2BIG); 3645 goto unlock; 3646 } 3647 } 3648 current_ev = p; 3649 break; 3650 } 3651 rem -= ie[1] + 2; 3652 ie += ie[1] + 2; 3653 } 3654 3655 if (bss->pub.capability & (WLAN_CAPABILITY_ESS | WLAN_CAPABILITY_IBSS) || 3656 ismesh) { 3657 memset(&iwe, 0, sizeof(iwe)); 3658 iwe.cmd = SIOCGIWMODE; 3659 if (ismesh) 3660 iwe.u.mode = IW_MODE_MESH; 3661 else if (bss->pub.capability & WLAN_CAPABILITY_ESS) 3662 iwe.u.mode = IW_MODE_MASTER; 3663 else 3664 iwe.u.mode = IW_MODE_ADHOC; 3665 current_ev = iwe_stream_add_event_check(info, current_ev, 3666 end_buf, &iwe, 3667 IW_EV_UINT_LEN); 3668 if (IS_ERR(current_ev)) 3669 goto unlock; 3670 } 3671 3672 memset(&iwe, 0, sizeof(iwe)); 3673 iwe.cmd = IWEVCUSTOM; 3674 iwe.u.data.length = sprintf(buf, "tsf=%016llx", 3675 (unsigned long long)(ies->tsf)); 3676 current_ev = iwe_stream_add_point_check(info, current_ev, end_buf, 3677 &iwe, buf); 3678 if (IS_ERR(current_ev)) 3679 goto unlock; 3680 memset(&iwe, 0, sizeof(iwe)); 3681 iwe.cmd = IWEVCUSTOM; 3682 iwe.u.data.length = sprintf(buf, " Last beacon: %ums ago", 3683 elapsed_jiffies_msecs(bss->ts)); 3684 current_ev = iwe_stream_add_point_check(info, current_ev, 3685 end_buf, &iwe, buf); 3686 if (IS_ERR(current_ev)) 3687 goto unlock; 3688 3689 current_ev = ieee80211_scan_add_ies(info, ies, current_ev, end_buf); 3690 3691 unlock: 3692 rcu_read_unlock(); 3693 return current_ev; 3694 } 3695 3696 3697 static int ieee80211_scan_results(struct cfg80211_registered_device *rdev, 3698 struct iw_request_info *info, 3699 char *buf, size_t len) 3700 { 3701 char *current_ev = buf; 3702 char *end_buf = buf + len; 3703 struct cfg80211_internal_bss *bss; 3704 int err = 0; 3705 3706 spin_lock_bh(&rdev->bss_lock); 3707 cfg80211_bss_expire(rdev); 3708 3709 list_for_each_entry(bss, &rdev->bss_list, list) { 3710 if (buf + len - current_ev <= IW_EV_ADDR_LEN) { 3711 err = -E2BIG; 3712 break; 3713 } 3714 current_ev = ieee80211_bss(&rdev->wiphy, info, bss, 3715 current_ev, end_buf); 3716 if (IS_ERR(current_ev)) { 3717 err = PTR_ERR(current_ev); 3718 break; 3719 } 3720 } 3721 spin_unlock_bh(&rdev->bss_lock); 3722 3723 if (err) 3724 return err; 3725 return current_ev - buf; 3726 } 3727 3728 3729 int cfg80211_wext_giwscan(struct net_device *dev, 3730 struct iw_request_info *info, 3731 union iwreq_data *wrqu, char *extra) 3732 { 3733 struct iw_point *data = &wrqu->data; 3734 struct cfg80211_registered_device *rdev; 3735 int res; 3736 3737 if (!netif_running(dev)) 3738 return -ENETDOWN; 3739 3740 rdev = cfg80211_get_dev_from_ifindex(dev_net(dev), dev->ifindex); 3741 3742 if (IS_ERR(rdev)) 3743 return PTR_ERR(rdev); 3744 3745 if (rdev->scan_req || rdev->scan_msg) 3746 return -EAGAIN; 3747 3748 res = ieee80211_scan_results(rdev, info, extra, data->length); 3749 data->length = 0; 3750 if (res >= 0) { 3751 data->length = res; 3752 res = 0; 3753 } 3754 3755 return res; 3756 } 3757 EXPORT_WEXT_HANDLER(cfg80211_wext_giwscan); 3758 #endif 3759