xref: /linux/net/wireless/scan.c (revision bdce82e960d1205d118662f575cec39379984e34)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * cfg80211 scan result handling
4  *
5  * Copyright 2008 Johannes Berg <johannes@sipsolutions.net>
6  * Copyright 2013-2014  Intel Mobile Communications GmbH
7  * Copyright 2016	Intel Deutschland GmbH
8  * Copyright (C) 2018-2023 Intel Corporation
9  */
10 #include <linux/kernel.h>
11 #include <linux/slab.h>
12 #include <linux/module.h>
13 #include <linux/netdevice.h>
14 #include <linux/wireless.h>
15 #include <linux/nl80211.h>
16 #include <linux/etherdevice.h>
17 #include <linux/crc32.h>
18 #include <linux/bitfield.h>
19 #include <net/arp.h>
20 #include <net/cfg80211.h>
21 #include <net/cfg80211-wext.h>
22 #include <net/iw_handler.h>
23 #include <kunit/visibility.h>
24 #include "core.h"
25 #include "nl80211.h"
26 #include "wext-compat.h"
27 #include "rdev-ops.h"
28 
29 /**
30  * DOC: BSS tree/list structure
31  *
32  * At the top level, the BSS list is kept in both a list in each
33  * registered device (@bss_list) as well as an RB-tree for faster
34  * lookup. In the RB-tree, entries can be looked up using their
35  * channel, MESHID, MESHCONF (for MBSSes) or channel, BSSID, SSID
36  * for other BSSes.
37  *
38  * Due to the possibility of hidden SSIDs, there's a second level
39  * structure, the "hidden_list" and "hidden_beacon_bss" pointer.
40  * The hidden_list connects all BSSes belonging to a single AP
41  * that has a hidden SSID, and connects beacon and probe response
42  * entries. For a probe response entry for a hidden SSID, the
43  * hidden_beacon_bss pointer points to the BSS struct holding the
44  * beacon's information.
45  *
46  * Reference counting is done for all these references except for
47  * the hidden_list, so that a beacon BSS struct that is otherwise
48  * not referenced has one reference for being on the bss_list and
49  * one for each probe response entry that points to it using the
50  * hidden_beacon_bss pointer. When a BSS struct that has such a
51  * pointer is get/put, the refcount update is also propagated to
52  * the referenced struct, this ensure that it cannot get removed
53  * while somebody is using the probe response version.
54  *
55  * Note that the hidden_beacon_bss pointer never changes, due to
56  * the reference counting. Therefore, no locking is needed for
57  * it.
58  *
59  * Also note that the hidden_beacon_bss pointer is only relevant
60  * if the driver uses something other than the IEs, e.g. private
61  * data stored in the BSS struct, since the beacon IEs are
62  * also linked into the probe response struct.
63  */
64 
65 /*
66  * Limit the number of BSS entries stored in mac80211. Each one is
67  * a bit over 4k at most, so this limits to roughly 4-5M of memory.
68  * If somebody wants to really attack this though, they'd likely
69  * use small beacons, and only one type of frame, limiting each of
70  * the entries to a much smaller size (in order to generate more
71  * entries in total, so overhead is bigger.)
72  */
73 static int bss_entries_limit = 1000;
74 module_param(bss_entries_limit, int, 0644);
75 MODULE_PARM_DESC(bss_entries_limit,
76                  "limit to number of scan BSS entries (per wiphy, default 1000)");
77 
78 #define IEEE80211_SCAN_RESULT_EXPIRE	(30 * HZ)
79 
80 /**
81  * struct cfg80211_colocated_ap - colocated AP information
82  *
83  * @list: linked list to all colocated aPS
84  * @bssid: BSSID of the reported AP
85  * @ssid: SSID of the reported AP
86  * @ssid_len: length of the ssid
87  * @center_freq: frequency the reported AP is on
88  * @unsolicited_probe: the reported AP is part of an ESS, where all the APs
89  *	that operate in the same channel as the reported AP and that might be
90  *	detected by a STA receiving this frame, are transmitting unsolicited
91  *	Probe Response frames every 20 TUs
92  * @oct_recommended: OCT is recommended to exchange MMPDUs with the reported AP
93  * @same_ssid: the reported AP has the same SSID as the reporting AP
94  * @multi_bss: the reported AP is part of a multiple BSSID set
95  * @transmitted_bssid: the reported AP is the transmitting BSSID
96  * @colocated_ess: all the APs that share the same ESS as the reported AP are
97  *	colocated and can be discovered via legacy bands.
98  * @short_ssid_valid: short_ssid is valid and can be used
99  * @short_ssid: the short SSID for this SSID
100  * @psd_20: The 20MHz PSD EIRP of the primary 20MHz channel for the reported AP
101  */
102 struct cfg80211_colocated_ap {
103 	struct list_head list;
104 	u8 bssid[ETH_ALEN];
105 	u8 ssid[IEEE80211_MAX_SSID_LEN];
106 	size_t ssid_len;
107 	u32 short_ssid;
108 	u32 center_freq;
109 	u8 unsolicited_probe:1,
110 	   oct_recommended:1,
111 	   same_ssid:1,
112 	   multi_bss:1,
113 	   transmitted_bssid:1,
114 	   colocated_ess:1,
115 	   short_ssid_valid:1;
116 	s8 psd_20;
117 };
118 
119 static void bss_free(struct cfg80211_internal_bss *bss)
120 {
121 	struct cfg80211_bss_ies *ies;
122 
123 	if (WARN_ON(atomic_read(&bss->hold)))
124 		return;
125 
126 	ies = (void *)rcu_access_pointer(bss->pub.beacon_ies);
127 	if (ies && !bss->pub.hidden_beacon_bss)
128 		kfree_rcu(ies, rcu_head);
129 	ies = (void *)rcu_access_pointer(bss->pub.proberesp_ies);
130 	if (ies)
131 		kfree_rcu(ies, rcu_head);
132 
133 	/*
134 	 * This happens when the module is removed, it doesn't
135 	 * really matter any more save for completeness
136 	 */
137 	if (!list_empty(&bss->hidden_list))
138 		list_del(&bss->hidden_list);
139 
140 	kfree(bss);
141 }
142 
143 static inline void bss_ref_get(struct cfg80211_registered_device *rdev,
144 			       struct cfg80211_internal_bss *bss)
145 {
146 	lockdep_assert_held(&rdev->bss_lock);
147 
148 	bss->refcount++;
149 
150 	if (bss->pub.hidden_beacon_bss)
151 		bss_from_pub(bss->pub.hidden_beacon_bss)->refcount++;
152 
153 	if (bss->pub.transmitted_bss)
154 		bss_from_pub(bss->pub.transmitted_bss)->refcount++;
155 }
156 
157 static inline void bss_ref_put(struct cfg80211_registered_device *rdev,
158 			       struct cfg80211_internal_bss *bss)
159 {
160 	lockdep_assert_held(&rdev->bss_lock);
161 
162 	if (bss->pub.hidden_beacon_bss) {
163 		struct cfg80211_internal_bss *hbss;
164 
165 		hbss = bss_from_pub(bss->pub.hidden_beacon_bss);
166 		hbss->refcount--;
167 		if (hbss->refcount == 0)
168 			bss_free(hbss);
169 	}
170 
171 	if (bss->pub.transmitted_bss) {
172 		struct cfg80211_internal_bss *tbss;
173 
174 		tbss = bss_from_pub(bss->pub.transmitted_bss);
175 		tbss->refcount--;
176 		if (tbss->refcount == 0)
177 			bss_free(tbss);
178 	}
179 
180 	bss->refcount--;
181 	if (bss->refcount == 0)
182 		bss_free(bss);
183 }
184 
185 static bool __cfg80211_unlink_bss(struct cfg80211_registered_device *rdev,
186 				  struct cfg80211_internal_bss *bss)
187 {
188 	lockdep_assert_held(&rdev->bss_lock);
189 
190 	if (!list_empty(&bss->hidden_list)) {
191 		/*
192 		 * don't remove the beacon entry if it has
193 		 * probe responses associated with it
194 		 */
195 		if (!bss->pub.hidden_beacon_bss)
196 			return false;
197 		/*
198 		 * if it's a probe response entry break its
199 		 * link to the other entries in the group
200 		 */
201 		list_del_init(&bss->hidden_list);
202 	}
203 
204 	list_del_init(&bss->list);
205 	list_del_init(&bss->pub.nontrans_list);
206 	rb_erase(&bss->rbn, &rdev->bss_tree);
207 	rdev->bss_entries--;
208 	WARN_ONCE((rdev->bss_entries == 0) ^ list_empty(&rdev->bss_list),
209 		  "rdev bss entries[%d]/list[empty:%d] corruption\n",
210 		  rdev->bss_entries, list_empty(&rdev->bss_list));
211 	bss_ref_put(rdev, bss);
212 	return true;
213 }
214 
215 bool cfg80211_is_element_inherited(const struct element *elem,
216 				   const struct element *non_inherit_elem)
217 {
218 	u8 id_len, ext_id_len, i, loop_len, id;
219 	const u8 *list;
220 
221 	if (elem->id == WLAN_EID_MULTIPLE_BSSID)
222 		return false;
223 
224 	if (elem->id == WLAN_EID_EXTENSION && elem->datalen > 1 &&
225 	    elem->data[0] == WLAN_EID_EXT_EHT_MULTI_LINK)
226 		return false;
227 
228 	if (!non_inherit_elem || non_inherit_elem->datalen < 2)
229 		return true;
230 
231 	/*
232 	 * non inheritance element format is:
233 	 * ext ID (56) | IDs list len | list | extension IDs list len | list
234 	 * Both lists are optional. Both lengths are mandatory.
235 	 * This means valid length is:
236 	 * elem_len = 1 (extension ID) + 2 (list len fields) + list lengths
237 	 */
238 	id_len = non_inherit_elem->data[1];
239 	if (non_inherit_elem->datalen < 3 + id_len)
240 		return true;
241 
242 	ext_id_len = non_inherit_elem->data[2 + id_len];
243 	if (non_inherit_elem->datalen < 3 + id_len + ext_id_len)
244 		return true;
245 
246 	if (elem->id == WLAN_EID_EXTENSION) {
247 		if (!ext_id_len)
248 			return true;
249 		loop_len = ext_id_len;
250 		list = &non_inherit_elem->data[3 + id_len];
251 		id = elem->data[0];
252 	} else {
253 		if (!id_len)
254 			return true;
255 		loop_len = id_len;
256 		list = &non_inherit_elem->data[2];
257 		id = elem->id;
258 	}
259 
260 	for (i = 0; i < loop_len; i++) {
261 		if (list[i] == id)
262 			return false;
263 	}
264 
265 	return true;
266 }
267 EXPORT_SYMBOL(cfg80211_is_element_inherited);
268 
269 static size_t cfg80211_copy_elem_with_frags(const struct element *elem,
270 					    const u8 *ie, size_t ie_len,
271 					    u8 **pos, u8 *buf, size_t buf_len)
272 {
273 	if (WARN_ON((u8 *)elem < ie || elem->data > ie + ie_len ||
274 		    elem->data + elem->datalen > ie + ie_len))
275 		return 0;
276 
277 	if (elem->datalen + 2 > buf + buf_len - *pos)
278 		return 0;
279 
280 	memcpy(*pos, elem, elem->datalen + 2);
281 	*pos += elem->datalen + 2;
282 
283 	/* Finish if it is not fragmented  */
284 	if (elem->datalen != 255)
285 		return *pos - buf;
286 
287 	ie_len = ie + ie_len - elem->data - elem->datalen;
288 	ie = (const u8 *)elem->data + elem->datalen;
289 
290 	for_each_element(elem, ie, ie_len) {
291 		if (elem->id != WLAN_EID_FRAGMENT)
292 			break;
293 
294 		if (elem->datalen + 2 > buf + buf_len - *pos)
295 			return 0;
296 
297 		memcpy(*pos, elem, elem->datalen + 2);
298 		*pos += elem->datalen + 2;
299 
300 		if (elem->datalen != 255)
301 			break;
302 	}
303 
304 	return *pos - buf;
305 }
306 
307 VISIBLE_IF_CFG80211_KUNIT size_t
308 cfg80211_gen_new_ie(const u8 *ie, size_t ielen,
309 		    const u8 *subie, size_t subie_len,
310 		    u8 *new_ie, size_t new_ie_len)
311 {
312 	const struct element *non_inherit_elem, *parent, *sub;
313 	u8 *pos = new_ie;
314 	u8 id, ext_id;
315 	unsigned int match_len;
316 
317 	non_inherit_elem = cfg80211_find_ext_elem(WLAN_EID_EXT_NON_INHERITANCE,
318 						  subie, subie_len);
319 
320 	/* We copy the elements one by one from the parent to the generated
321 	 * elements.
322 	 * If they are not inherited (included in subie or in the non
323 	 * inheritance element), then we copy all occurrences the first time
324 	 * we see this element type.
325 	 */
326 	for_each_element(parent, ie, ielen) {
327 		if (parent->id == WLAN_EID_FRAGMENT)
328 			continue;
329 
330 		if (parent->id == WLAN_EID_EXTENSION) {
331 			if (parent->datalen < 1)
332 				continue;
333 
334 			id = WLAN_EID_EXTENSION;
335 			ext_id = parent->data[0];
336 			match_len = 1;
337 		} else {
338 			id = parent->id;
339 			match_len = 0;
340 		}
341 
342 		/* Find first occurrence in subie */
343 		sub = cfg80211_find_elem_match(id, subie, subie_len,
344 					       &ext_id, match_len, 0);
345 
346 		/* Copy from parent if not in subie and inherited */
347 		if (!sub &&
348 		    cfg80211_is_element_inherited(parent, non_inherit_elem)) {
349 			if (!cfg80211_copy_elem_with_frags(parent,
350 							   ie, ielen,
351 							   &pos, new_ie,
352 							   new_ie_len))
353 				return 0;
354 
355 			continue;
356 		}
357 
358 		/* Already copied if an earlier element had the same type */
359 		if (cfg80211_find_elem_match(id, ie, (u8 *)parent - ie,
360 					     &ext_id, match_len, 0))
361 			continue;
362 
363 		/* Not inheriting, copy all similar elements from subie */
364 		while (sub) {
365 			if (!cfg80211_copy_elem_with_frags(sub,
366 							   subie, subie_len,
367 							   &pos, new_ie,
368 							   new_ie_len))
369 				return 0;
370 
371 			sub = cfg80211_find_elem_match(id,
372 						       sub->data + sub->datalen,
373 						       subie_len + subie -
374 						       (sub->data +
375 							sub->datalen),
376 						       &ext_id, match_len, 0);
377 		}
378 	}
379 
380 	/* The above misses elements that are included in subie but not in the
381 	 * parent, so do a pass over subie and append those.
382 	 * Skip the non-tx BSSID caps and non-inheritance element.
383 	 */
384 	for_each_element(sub, subie, subie_len) {
385 		if (sub->id == WLAN_EID_NON_TX_BSSID_CAP)
386 			continue;
387 
388 		if (sub->id == WLAN_EID_FRAGMENT)
389 			continue;
390 
391 		if (sub->id == WLAN_EID_EXTENSION) {
392 			if (sub->datalen < 1)
393 				continue;
394 
395 			id = WLAN_EID_EXTENSION;
396 			ext_id = sub->data[0];
397 			match_len = 1;
398 
399 			if (ext_id == WLAN_EID_EXT_NON_INHERITANCE)
400 				continue;
401 		} else {
402 			id = sub->id;
403 			match_len = 0;
404 		}
405 
406 		/* Processed if one was included in the parent */
407 		if (cfg80211_find_elem_match(id, ie, ielen,
408 					     &ext_id, match_len, 0))
409 			continue;
410 
411 		if (!cfg80211_copy_elem_with_frags(sub, subie, subie_len,
412 						   &pos, new_ie, new_ie_len))
413 			return 0;
414 	}
415 
416 	return pos - new_ie;
417 }
418 EXPORT_SYMBOL_IF_CFG80211_KUNIT(cfg80211_gen_new_ie);
419 
420 static bool is_bss(struct cfg80211_bss *a, const u8 *bssid,
421 		   const u8 *ssid, size_t ssid_len)
422 {
423 	const struct cfg80211_bss_ies *ies;
424 	const struct element *ssid_elem;
425 
426 	if (bssid && !ether_addr_equal(a->bssid, bssid))
427 		return false;
428 
429 	if (!ssid)
430 		return true;
431 
432 	ies = rcu_access_pointer(a->ies);
433 	if (!ies)
434 		return false;
435 	ssid_elem = cfg80211_find_elem(WLAN_EID_SSID, ies->data, ies->len);
436 	if (!ssid_elem)
437 		return false;
438 	if (ssid_elem->datalen != ssid_len)
439 		return false;
440 	return memcmp(ssid_elem->data, ssid, ssid_len) == 0;
441 }
442 
443 static int
444 cfg80211_add_nontrans_list(struct cfg80211_bss *trans_bss,
445 			   struct cfg80211_bss *nontrans_bss)
446 {
447 	const struct element *ssid_elem;
448 	struct cfg80211_bss *bss = NULL;
449 
450 	rcu_read_lock();
451 	ssid_elem = ieee80211_bss_get_elem(nontrans_bss, WLAN_EID_SSID);
452 	if (!ssid_elem) {
453 		rcu_read_unlock();
454 		return -EINVAL;
455 	}
456 
457 	/* check if nontrans_bss is in the list */
458 	list_for_each_entry(bss, &trans_bss->nontrans_list, nontrans_list) {
459 		if (is_bss(bss, nontrans_bss->bssid, ssid_elem->data,
460 			   ssid_elem->datalen)) {
461 			rcu_read_unlock();
462 			return 0;
463 		}
464 	}
465 
466 	rcu_read_unlock();
467 
468 	/*
469 	 * This is a bit weird - it's not on the list, but already on another
470 	 * one! The only way that could happen is if there's some BSSID/SSID
471 	 * shared by multiple APs in their multi-BSSID profiles, potentially
472 	 * with hidden SSID mixed in ... ignore it.
473 	 */
474 	if (!list_empty(&nontrans_bss->nontrans_list))
475 		return -EINVAL;
476 
477 	/* add to the list */
478 	list_add_tail(&nontrans_bss->nontrans_list, &trans_bss->nontrans_list);
479 	return 0;
480 }
481 
482 static void __cfg80211_bss_expire(struct cfg80211_registered_device *rdev,
483 				  unsigned long expire_time)
484 {
485 	struct cfg80211_internal_bss *bss, *tmp;
486 	bool expired = false;
487 
488 	lockdep_assert_held(&rdev->bss_lock);
489 
490 	list_for_each_entry_safe(bss, tmp, &rdev->bss_list, list) {
491 		if (atomic_read(&bss->hold))
492 			continue;
493 		if (!time_after(expire_time, bss->ts))
494 			continue;
495 
496 		if (__cfg80211_unlink_bss(rdev, bss))
497 			expired = true;
498 	}
499 
500 	if (expired)
501 		rdev->bss_generation++;
502 }
503 
504 static bool cfg80211_bss_expire_oldest(struct cfg80211_registered_device *rdev)
505 {
506 	struct cfg80211_internal_bss *bss, *oldest = NULL;
507 	bool ret;
508 
509 	lockdep_assert_held(&rdev->bss_lock);
510 
511 	list_for_each_entry(bss, &rdev->bss_list, list) {
512 		if (atomic_read(&bss->hold))
513 			continue;
514 
515 		if (!list_empty(&bss->hidden_list) &&
516 		    !bss->pub.hidden_beacon_bss)
517 			continue;
518 
519 		if (oldest && time_before(oldest->ts, bss->ts))
520 			continue;
521 		oldest = bss;
522 	}
523 
524 	if (WARN_ON(!oldest))
525 		return false;
526 
527 	/*
528 	 * The callers make sure to increase rdev->bss_generation if anything
529 	 * gets removed (and a new entry added), so there's no need to also do
530 	 * it here.
531 	 */
532 
533 	ret = __cfg80211_unlink_bss(rdev, oldest);
534 	WARN_ON(!ret);
535 	return ret;
536 }
537 
538 static u8 cfg80211_parse_bss_param(u8 data,
539 				   struct cfg80211_colocated_ap *coloc_ap)
540 {
541 	coloc_ap->oct_recommended =
542 		u8_get_bits(data, IEEE80211_RNR_TBTT_PARAMS_OCT_RECOMMENDED);
543 	coloc_ap->same_ssid =
544 		u8_get_bits(data, IEEE80211_RNR_TBTT_PARAMS_SAME_SSID);
545 	coloc_ap->multi_bss =
546 		u8_get_bits(data, IEEE80211_RNR_TBTT_PARAMS_MULTI_BSSID);
547 	coloc_ap->transmitted_bssid =
548 		u8_get_bits(data, IEEE80211_RNR_TBTT_PARAMS_TRANSMITTED_BSSID);
549 	coloc_ap->unsolicited_probe =
550 		u8_get_bits(data, IEEE80211_RNR_TBTT_PARAMS_PROBE_ACTIVE);
551 	coloc_ap->colocated_ess =
552 		u8_get_bits(data, IEEE80211_RNR_TBTT_PARAMS_COLOC_ESS);
553 
554 	return u8_get_bits(data, IEEE80211_RNR_TBTT_PARAMS_COLOC_AP);
555 }
556 
557 static int cfg80211_calc_short_ssid(const struct cfg80211_bss_ies *ies,
558 				    const struct element **elem, u32 *s_ssid)
559 {
560 
561 	*elem = cfg80211_find_elem(WLAN_EID_SSID, ies->data, ies->len);
562 	if (!*elem || (*elem)->datalen > IEEE80211_MAX_SSID_LEN)
563 		return -EINVAL;
564 
565 	*s_ssid = ~crc32_le(~0, (*elem)->data, (*elem)->datalen);
566 	return 0;
567 }
568 
569 static void cfg80211_free_coloc_ap_list(struct list_head *coloc_ap_list)
570 {
571 	struct cfg80211_colocated_ap *ap, *tmp_ap;
572 
573 	list_for_each_entry_safe(ap, tmp_ap, coloc_ap_list, list) {
574 		list_del(&ap->list);
575 		kfree(ap);
576 	}
577 }
578 
579 static int cfg80211_parse_ap_info(struct cfg80211_colocated_ap *entry,
580 				  const u8 *pos, u8 length,
581 				  const struct element *ssid_elem,
582 				  u32 s_ssid_tmp)
583 {
584 	u8 bss_params;
585 
586 	entry->psd_20 = IEEE80211_RNR_TBTT_PARAMS_PSD_RESERVED;
587 
588 	/* The length is already verified by the caller to contain bss_params */
589 	if (length > sizeof(struct ieee80211_tbtt_info_7_8_9)) {
590 		struct ieee80211_tbtt_info_ge_11 *tbtt_info = (void *)pos;
591 
592 		memcpy(entry->bssid, tbtt_info->bssid, ETH_ALEN);
593 		entry->short_ssid = le32_to_cpu(tbtt_info->short_ssid);
594 		entry->short_ssid_valid = true;
595 
596 		bss_params = tbtt_info->bss_params;
597 
598 		/* Ignore disabled links */
599 		if (length >= offsetofend(typeof(*tbtt_info), mld_params)) {
600 			if (le16_get_bits(tbtt_info->mld_params.params,
601 					  IEEE80211_RNR_MLD_PARAMS_DISABLED_LINK))
602 				return -EINVAL;
603 		}
604 
605 		if (length >= offsetofend(struct ieee80211_tbtt_info_ge_11,
606 					  psd_20))
607 			entry->psd_20 = tbtt_info->psd_20;
608 	} else {
609 		struct ieee80211_tbtt_info_7_8_9 *tbtt_info = (void *)pos;
610 
611 		memcpy(entry->bssid, tbtt_info->bssid, ETH_ALEN);
612 
613 		bss_params = tbtt_info->bss_params;
614 
615 		if (length == offsetofend(struct ieee80211_tbtt_info_7_8_9,
616 					  psd_20))
617 			entry->psd_20 = tbtt_info->psd_20;
618 	}
619 
620 	/* ignore entries with invalid BSSID */
621 	if (!is_valid_ether_addr(entry->bssid))
622 		return -EINVAL;
623 
624 	/* skip non colocated APs */
625 	if (!cfg80211_parse_bss_param(bss_params, entry))
626 		return -EINVAL;
627 
628 	/* no information about the short ssid. Consider the entry valid
629 	 * for now. It would later be dropped in case there are explicit
630 	 * SSIDs that need to be matched
631 	 */
632 	if (!entry->same_ssid && !entry->short_ssid_valid)
633 		return 0;
634 
635 	if (entry->same_ssid) {
636 		entry->short_ssid = s_ssid_tmp;
637 		entry->short_ssid_valid = true;
638 
639 		/*
640 		 * This is safe because we validate datalen in
641 		 * cfg80211_parse_colocated_ap(), before calling this
642 		 * function.
643 		 */
644 		memcpy(&entry->ssid, &ssid_elem->data, ssid_elem->datalen);
645 		entry->ssid_len = ssid_elem->datalen;
646 	}
647 
648 	return 0;
649 }
650 
651 static int cfg80211_parse_colocated_ap(const struct cfg80211_bss_ies *ies,
652 				       struct list_head *list)
653 {
654 	struct ieee80211_neighbor_ap_info *ap_info;
655 	const struct element *elem, *ssid_elem;
656 	const u8 *pos, *end;
657 	u32 s_ssid_tmp;
658 	int n_coloc = 0, ret;
659 	LIST_HEAD(ap_list);
660 
661 	ret = cfg80211_calc_short_ssid(ies, &ssid_elem, &s_ssid_tmp);
662 	if (ret)
663 		return 0;
664 
665 	for_each_element_id(elem, WLAN_EID_REDUCED_NEIGHBOR_REPORT,
666 			    ies->data, ies->len) {
667 		pos = elem->data;
668 		end = elem->data + elem->datalen;
669 
670 		/* RNR IE may contain more than one NEIGHBOR_AP_INFO */
671 		while (pos + sizeof(*ap_info) <= end) {
672 			enum nl80211_band band;
673 			int freq;
674 			u8 length, i, count;
675 
676 			ap_info = (void *)pos;
677 			count = u8_get_bits(ap_info->tbtt_info_hdr,
678 					    IEEE80211_AP_INFO_TBTT_HDR_COUNT) + 1;
679 			length = ap_info->tbtt_info_len;
680 
681 			pos += sizeof(*ap_info);
682 
683 			if (!ieee80211_operating_class_to_band(ap_info->op_class,
684 							       &band))
685 				break;
686 
687 			freq = ieee80211_channel_to_frequency(ap_info->channel,
688 							      band);
689 
690 			if (end - pos < count * length)
691 				break;
692 
693 			if (u8_get_bits(ap_info->tbtt_info_hdr,
694 					IEEE80211_AP_INFO_TBTT_HDR_TYPE) !=
695 			    IEEE80211_TBTT_INFO_TYPE_TBTT) {
696 				pos += count * length;
697 				continue;
698 			}
699 
700 			/* TBTT info must include bss param + BSSID +
701 			 * (short SSID or same_ssid bit to be set).
702 			 * ignore other options, and move to the
703 			 * next AP info
704 			 */
705 			if (band != NL80211_BAND_6GHZ ||
706 			    !(length == offsetofend(struct ieee80211_tbtt_info_7_8_9,
707 						    bss_params) ||
708 			      length == sizeof(struct ieee80211_tbtt_info_7_8_9) ||
709 			      length >= offsetofend(struct ieee80211_tbtt_info_ge_11,
710 						    bss_params))) {
711 				pos += count * length;
712 				continue;
713 			}
714 
715 			for (i = 0; i < count; i++) {
716 				struct cfg80211_colocated_ap *entry;
717 
718 				entry = kzalloc(sizeof(*entry) + IEEE80211_MAX_SSID_LEN,
719 						GFP_ATOMIC);
720 
721 				if (!entry)
722 					goto error;
723 
724 				entry->center_freq = freq;
725 
726 				if (!cfg80211_parse_ap_info(entry, pos, length,
727 							    ssid_elem,
728 							    s_ssid_tmp)) {
729 					n_coloc++;
730 					list_add_tail(&entry->list, &ap_list);
731 				} else {
732 					kfree(entry);
733 				}
734 
735 				pos += length;
736 			}
737 		}
738 
739 error:
740 		if (pos != end) {
741 			cfg80211_free_coloc_ap_list(&ap_list);
742 			return 0;
743 		}
744 	}
745 
746 	list_splice_tail(&ap_list, list);
747 	return n_coloc;
748 }
749 
750 static  void cfg80211_scan_req_add_chan(struct cfg80211_scan_request *request,
751 					struct ieee80211_channel *chan,
752 					bool add_to_6ghz)
753 {
754 	int i;
755 	u32 n_channels = request->n_channels;
756 	struct cfg80211_scan_6ghz_params *params =
757 		&request->scan_6ghz_params[request->n_6ghz_params];
758 
759 	for (i = 0; i < n_channels; i++) {
760 		if (request->channels[i] == chan) {
761 			if (add_to_6ghz)
762 				params->channel_idx = i;
763 			return;
764 		}
765 	}
766 
767 	request->channels[n_channels] = chan;
768 	if (add_to_6ghz)
769 		request->scan_6ghz_params[request->n_6ghz_params].channel_idx =
770 			n_channels;
771 
772 	request->n_channels++;
773 }
774 
775 static bool cfg80211_find_ssid_match(struct cfg80211_colocated_ap *ap,
776 				     struct cfg80211_scan_request *request)
777 {
778 	int i;
779 	u32 s_ssid;
780 
781 	for (i = 0; i < request->n_ssids; i++) {
782 		/* wildcard ssid in the scan request */
783 		if (!request->ssids[i].ssid_len) {
784 			if (ap->multi_bss && !ap->transmitted_bssid)
785 				continue;
786 
787 			return true;
788 		}
789 
790 		if (ap->ssid_len &&
791 		    ap->ssid_len == request->ssids[i].ssid_len) {
792 			if (!memcmp(request->ssids[i].ssid, ap->ssid,
793 				    ap->ssid_len))
794 				return true;
795 		} else if (ap->short_ssid_valid) {
796 			s_ssid = ~crc32_le(~0, request->ssids[i].ssid,
797 					   request->ssids[i].ssid_len);
798 
799 			if (ap->short_ssid == s_ssid)
800 				return true;
801 		}
802 	}
803 
804 	return false;
805 }
806 
807 static int cfg80211_scan_6ghz(struct cfg80211_registered_device *rdev)
808 {
809 	u8 i;
810 	struct cfg80211_colocated_ap *ap;
811 	int n_channels, count = 0, err;
812 	struct cfg80211_scan_request *request, *rdev_req = rdev->scan_req;
813 	LIST_HEAD(coloc_ap_list);
814 	bool need_scan_psc = true;
815 	const struct ieee80211_sband_iftype_data *iftd;
816 
817 	rdev_req->scan_6ghz = true;
818 
819 	if (!rdev->wiphy.bands[NL80211_BAND_6GHZ])
820 		return -EOPNOTSUPP;
821 
822 	iftd = ieee80211_get_sband_iftype_data(rdev->wiphy.bands[NL80211_BAND_6GHZ],
823 					       rdev_req->wdev->iftype);
824 	if (!iftd || !iftd->he_cap.has_he)
825 		return -EOPNOTSUPP;
826 
827 	n_channels = rdev->wiphy.bands[NL80211_BAND_6GHZ]->n_channels;
828 
829 	if (rdev_req->flags & NL80211_SCAN_FLAG_COLOCATED_6GHZ) {
830 		struct cfg80211_internal_bss *intbss;
831 
832 		spin_lock_bh(&rdev->bss_lock);
833 		list_for_each_entry(intbss, &rdev->bss_list, list) {
834 			struct cfg80211_bss *res = &intbss->pub;
835 			const struct cfg80211_bss_ies *ies;
836 			const struct element *ssid_elem;
837 			struct cfg80211_colocated_ap *entry;
838 			u32 s_ssid_tmp;
839 			int ret;
840 
841 			ies = rcu_access_pointer(res->ies);
842 			count += cfg80211_parse_colocated_ap(ies,
843 							     &coloc_ap_list);
844 
845 			/* In case the scan request specified a specific BSSID
846 			 * and the BSS is found and operating on 6GHz band then
847 			 * add this AP to the collocated APs list.
848 			 * This is relevant for ML probe requests when the lower
849 			 * band APs have not been discovered.
850 			 */
851 			if (is_broadcast_ether_addr(rdev_req->bssid) ||
852 			    !ether_addr_equal(rdev_req->bssid, res->bssid) ||
853 			    res->channel->band != NL80211_BAND_6GHZ)
854 				continue;
855 
856 			ret = cfg80211_calc_short_ssid(ies, &ssid_elem,
857 						       &s_ssid_tmp);
858 			if (ret)
859 				continue;
860 
861 			entry = kzalloc(sizeof(*entry) + IEEE80211_MAX_SSID_LEN,
862 					GFP_ATOMIC);
863 
864 			if (!entry)
865 				continue;
866 
867 			memcpy(entry->bssid, res->bssid, ETH_ALEN);
868 			entry->short_ssid = s_ssid_tmp;
869 			memcpy(entry->ssid, ssid_elem->data,
870 			       ssid_elem->datalen);
871 			entry->ssid_len = ssid_elem->datalen;
872 			entry->short_ssid_valid = true;
873 			entry->center_freq = res->channel->center_freq;
874 
875 			list_add_tail(&entry->list, &coloc_ap_list);
876 			count++;
877 		}
878 		spin_unlock_bh(&rdev->bss_lock);
879 	}
880 
881 	request = kzalloc(struct_size(request, channels, n_channels) +
882 			  sizeof(*request->scan_6ghz_params) * count +
883 			  sizeof(*request->ssids) * rdev_req->n_ssids,
884 			  GFP_KERNEL);
885 	if (!request) {
886 		cfg80211_free_coloc_ap_list(&coloc_ap_list);
887 		return -ENOMEM;
888 	}
889 
890 	*request = *rdev_req;
891 	request->n_channels = 0;
892 	request->scan_6ghz_params =
893 		(void *)&request->channels[n_channels];
894 
895 	/*
896 	 * PSC channels should not be scanned in case of direct scan with 1 SSID
897 	 * and at least one of the reported co-located APs with same SSID
898 	 * indicating that all APs in the same ESS are co-located
899 	 */
900 	if (count && request->n_ssids == 1 && request->ssids[0].ssid_len) {
901 		list_for_each_entry(ap, &coloc_ap_list, list) {
902 			if (ap->colocated_ess &&
903 			    cfg80211_find_ssid_match(ap, request)) {
904 				need_scan_psc = false;
905 				break;
906 			}
907 		}
908 	}
909 
910 	/*
911 	 * add to the scan request the channels that need to be scanned
912 	 * regardless of the collocated APs (PSC channels or all channels
913 	 * in case that NL80211_SCAN_FLAG_COLOCATED_6GHZ is not set)
914 	 */
915 	for (i = 0; i < rdev_req->n_channels; i++) {
916 		if (rdev_req->channels[i]->band == NL80211_BAND_6GHZ &&
917 		    ((need_scan_psc &&
918 		      cfg80211_channel_is_psc(rdev_req->channels[i])) ||
919 		     !(rdev_req->flags & NL80211_SCAN_FLAG_COLOCATED_6GHZ))) {
920 			cfg80211_scan_req_add_chan(request,
921 						   rdev_req->channels[i],
922 						   false);
923 		}
924 	}
925 
926 	if (!(rdev_req->flags & NL80211_SCAN_FLAG_COLOCATED_6GHZ))
927 		goto skip;
928 
929 	list_for_each_entry(ap, &coloc_ap_list, list) {
930 		bool found = false;
931 		struct cfg80211_scan_6ghz_params *scan_6ghz_params =
932 			&request->scan_6ghz_params[request->n_6ghz_params];
933 		struct ieee80211_channel *chan =
934 			ieee80211_get_channel(&rdev->wiphy, ap->center_freq);
935 
936 		if (!chan || chan->flags & IEEE80211_CHAN_DISABLED)
937 			continue;
938 
939 		for (i = 0; i < rdev_req->n_channels; i++) {
940 			if (rdev_req->channels[i] == chan)
941 				found = true;
942 		}
943 
944 		if (!found)
945 			continue;
946 
947 		if (request->n_ssids > 0 &&
948 		    !cfg80211_find_ssid_match(ap, request))
949 			continue;
950 
951 		if (!is_broadcast_ether_addr(request->bssid) &&
952 		    !ether_addr_equal(request->bssid, ap->bssid))
953 			continue;
954 
955 		if (!request->n_ssids && ap->multi_bss && !ap->transmitted_bssid)
956 			continue;
957 
958 		cfg80211_scan_req_add_chan(request, chan, true);
959 		memcpy(scan_6ghz_params->bssid, ap->bssid, ETH_ALEN);
960 		scan_6ghz_params->short_ssid = ap->short_ssid;
961 		scan_6ghz_params->short_ssid_valid = ap->short_ssid_valid;
962 		scan_6ghz_params->unsolicited_probe = ap->unsolicited_probe;
963 		scan_6ghz_params->psd_20 = ap->psd_20;
964 
965 		/*
966 		 * If a PSC channel is added to the scan and 'need_scan_psc' is
967 		 * set to false, then all the APs that the scan logic is
968 		 * interested with on the channel are collocated and thus there
969 		 * is no need to perform the initial PSC channel listen.
970 		 */
971 		if (cfg80211_channel_is_psc(chan) && !need_scan_psc)
972 			scan_6ghz_params->psc_no_listen = true;
973 
974 		request->n_6ghz_params++;
975 	}
976 
977 skip:
978 	cfg80211_free_coloc_ap_list(&coloc_ap_list);
979 
980 	if (request->n_channels) {
981 		struct cfg80211_scan_request *old = rdev->int_scan_req;
982 		rdev->int_scan_req = request;
983 
984 		/*
985 		 * Add the ssids from the parent scan request to the new scan
986 		 * request, so the driver would be able to use them in its
987 		 * probe requests to discover hidden APs on PSC channels.
988 		 */
989 		request->ssids = (void *)&request->channels[request->n_channels];
990 		request->n_ssids = rdev_req->n_ssids;
991 		memcpy(request->ssids, rdev_req->ssids, sizeof(*request->ssids) *
992 		       request->n_ssids);
993 
994 		/*
995 		 * If this scan follows a previous scan, save the scan start
996 		 * info from the first part of the scan
997 		 */
998 		if (old)
999 			rdev->int_scan_req->info = old->info;
1000 
1001 		err = rdev_scan(rdev, request);
1002 		if (err) {
1003 			rdev->int_scan_req = old;
1004 			kfree(request);
1005 		} else {
1006 			kfree(old);
1007 		}
1008 
1009 		return err;
1010 	}
1011 
1012 	kfree(request);
1013 	return -EINVAL;
1014 }
1015 
1016 int cfg80211_scan(struct cfg80211_registered_device *rdev)
1017 {
1018 	struct cfg80211_scan_request *request;
1019 	struct cfg80211_scan_request *rdev_req = rdev->scan_req;
1020 	u32 n_channels = 0, idx, i;
1021 
1022 	if (!(rdev->wiphy.flags & WIPHY_FLAG_SPLIT_SCAN_6GHZ))
1023 		return rdev_scan(rdev, rdev_req);
1024 
1025 	for (i = 0; i < rdev_req->n_channels; i++) {
1026 		if (rdev_req->channels[i]->band != NL80211_BAND_6GHZ)
1027 			n_channels++;
1028 	}
1029 
1030 	if (!n_channels)
1031 		return cfg80211_scan_6ghz(rdev);
1032 
1033 	request = kzalloc(struct_size(request, channels, n_channels),
1034 			  GFP_KERNEL);
1035 	if (!request)
1036 		return -ENOMEM;
1037 
1038 	*request = *rdev_req;
1039 	request->n_channels = n_channels;
1040 
1041 	for (i = idx = 0; i < rdev_req->n_channels; i++) {
1042 		if (rdev_req->channels[i]->band != NL80211_BAND_6GHZ)
1043 			request->channels[idx++] = rdev_req->channels[i];
1044 	}
1045 
1046 	rdev_req->scan_6ghz = false;
1047 	rdev->int_scan_req = request;
1048 	return rdev_scan(rdev, request);
1049 }
1050 
1051 void ___cfg80211_scan_done(struct cfg80211_registered_device *rdev,
1052 			   bool send_message)
1053 {
1054 	struct cfg80211_scan_request *request, *rdev_req;
1055 	struct wireless_dev *wdev;
1056 	struct sk_buff *msg;
1057 #ifdef CONFIG_CFG80211_WEXT
1058 	union iwreq_data wrqu;
1059 #endif
1060 
1061 	lockdep_assert_held(&rdev->wiphy.mtx);
1062 
1063 	if (rdev->scan_msg) {
1064 		nl80211_send_scan_msg(rdev, rdev->scan_msg);
1065 		rdev->scan_msg = NULL;
1066 		return;
1067 	}
1068 
1069 	rdev_req = rdev->scan_req;
1070 	if (!rdev_req)
1071 		return;
1072 
1073 	wdev = rdev_req->wdev;
1074 	request = rdev->int_scan_req ? rdev->int_scan_req : rdev_req;
1075 
1076 	if (wdev_running(wdev) &&
1077 	    (rdev->wiphy.flags & WIPHY_FLAG_SPLIT_SCAN_6GHZ) &&
1078 	    !rdev_req->scan_6ghz && !request->info.aborted &&
1079 	    !cfg80211_scan_6ghz(rdev))
1080 		return;
1081 
1082 	/*
1083 	 * This must be before sending the other events!
1084 	 * Otherwise, wpa_supplicant gets completely confused with
1085 	 * wext events.
1086 	 */
1087 	if (wdev->netdev)
1088 		cfg80211_sme_scan_done(wdev->netdev);
1089 
1090 	if (!request->info.aborted &&
1091 	    request->flags & NL80211_SCAN_FLAG_FLUSH) {
1092 		/* flush entries from previous scans */
1093 		spin_lock_bh(&rdev->bss_lock);
1094 		__cfg80211_bss_expire(rdev, request->scan_start);
1095 		spin_unlock_bh(&rdev->bss_lock);
1096 	}
1097 
1098 	msg = nl80211_build_scan_msg(rdev, wdev, request->info.aborted);
1099 
1100 #ifdef CONFIG_CFG80211_WEXT
1101 	if (wdev->netdev && !request->info.aborted) {
1102 		memset(&wrqu, 0, sizeof(wrqu));
1103 
1104 		wireless_send_event(wdev->netdev, SIOCGIWSCAN, &wrqu, NULL);
1105 	}
1106 #endif
1107 
1108 	dev_put(wdev->netdev);
1109 
1110 	kfree(rdev->int_scan_req);
1111 	rdev->int_scan_req = NULL;
1112 
1113 	kfree(rdev->scan_req);
1114 	rdev->scan_req = NULL;
1115 
1116 	if (!send_message)
1117 		rdev->scan_msg = msg;
1118 	else
1119 		nl80211_send_scan_msg(rdev, msg);
1120 }
1121 
1122 void __cfg80211_scan_done(struct wiphy *wiphy, struct wiphy_work *wk)
1123 {
1124 	___cfg80211_scan_done(wiphy_to_rdev(wiphy), true);
1125 }
1126 
1127 void cfg80211_scan_done(struct cfg80211_scan_request *request,
1128 			struct cfg80211_scan_info *info)
1129 {
1130 	struct cfg80211_scan_info old_info = request->info;
1131 
1132 	trace_cfg80211_scan_done(request, info);
1133 	WARN_ON(request != wiphy_to_rdev(request->wiphy)->scan_req &&
1134 		request != wiphy_to_rdev(request->wiphy)->int_scan_req);
1135 
1136 	request->info = *info;
1137 
1138 	/*
1139 	 * In case the scan is split, the scan_start_tsf and tsf_bssid should
1140 	 * be of the first part. In such a case old_info.scan_start_tsf should
1141 	 * be non zero.
1142 	 */
1143 	if (request->scan_6ghz && old_info.scan_start_tsf) {
1144 		request->info.scan_start_tsf = old_info.scan_start_tsf;
1145 		memcpy(request->info.tsf_bssid, old_info.tsf_bssid,
1146 		       sizeof(request->info.tsf_bssid));
1147 	}
1148 
1149 	request->notified = true;
1150 	wiphy_work_queue(request->wiphy,
1151 			 &wiphy_to_rdev(request->wiphy)->scan_done_wk);
1152 }
1153 EXPORT_SYMBOL(cfg80211_scan_done);
1154 
1155 void cfg80211_add_sched_scan_req(struct cfg80211_registered_device *rdev,
1156 				 struct cfg80211_sched_scan_request *req)
1157 {
1158 	lockdep_assert_held(&rdev->wiphy.mtx);
1159 
1160 	list_add_rcu(&req->list, &rdev->sched_scan_req_list);
1161 }
1162 
1163 static void cfg80211_del_sched_scan_req(struct cfg80211_registered_device *rdev,
1164 					struct cfg80211_sched_scan_request *req)
1165 {
1166 	lockdep_assert_held(&rdev->wiphy.mtx);
1167 
1168 	list_del_rcu(&req->list);
1169 	kfree_rcu(req, rcu_head);
1170 }
1171 
1172 static struct cfg80211_sched_scan_request *
1173 cfg80211_find_sched_scan_req(struct cfg80211_registered_device *rdev, u64 reqid)
1174 {
1175 	struct cfg80211_sched_scan_request *pos;
1176 
1177 	list_for_each_entry_rcu(pos, &rdev->sched_scan_req_list, list,
1178 				lockdep_is_held(&rdev->wiphy.mtx)) {
1179 		if (pos->reqid == reqid)
1180 			return pos;
1181 	}
1182 	return NULL;
1183 }
1184 
1185 /*
1186  * Determines if a scheduled scan request can be handled. When a legacy
1187  * scheduled scan is running no other scheduled scan is allowed regardless
1188  * whether the request is for legacy or multi-support scan. When a multi-support
1189  * scheduled scan is running a request for legacy scan is not allowed. In this
1190  * case a request for multi-support scan can be handled if resources are
1191  * available, ie. struct wiphy::max_sched_scan_reqs limit is not yet reached.
1192  */
1193 int cfg80211_sched_scan_req_possible(struct cfg80211_registered_device *rdev,
1194 				     bool want_multi)
1195 {
1196 	struct cfg80211_sched_scan_request *pos;
1197 	int i = 0;
1198 
1199 	list_for_each_entry(pos, &rdev->sched_scan_req_list, list) {
1200 		/* request id zero means legacy in progress */
1201 		if (!i && !pos->reqid)
1202 			return -EINPROGRESS;
1203 		i++;
1204 	}
1205 
1206 	if (i) {
1207 		/* no legacy allowed when multi request(s) are active */
1208 		if (!want_multi)
1209 			return -EINPROGRESS;
1210 
1211 		/* resource limit reached */
1212 		if (i == rdev->wiphy.max_sched_scan_reqs)
1213 			return -ENOSPC;
1214 	}
1215 	return 0;
1216 }
1217 
1218 void cfg80211_sched_scan_results_wk(struct work_struct *work)
1219 {
1220 	struct cfg80211_registered_device *rdev;
1221 	struct cfg80211_sched_scan_request *req, *tmp;
1222 
1223 	rdev = container_of(work, struct cfg80211_registered_device,
1224 			   sched_scan_res_wk);
1225 
1226 	wiphy_lock(&rdev->wiphy);
1227 	list_for_each_entry_safe(req, tmp, &rdev->sched_scan_req_list, list) {
1228 		if (req->report_results) {
1229 			req->report_results = false;
1230 			if (req->flags & NL80211_SCAN_FLAG_FLUSH) {
1231 				/* flush entries from previous scans */
1232 				spin_lock_bh(&rdev->bss_lock);
1233 				__cfg80211_bss_expire(rdev, req->scan_start);
1234 				spin_unlock_bh(&rdev->bss_lock);
1235 				req->scan_start = jiffies;
1236 			}
1237 			nl80211_send_sched_scan(req,
1238 						NL80211_CMD_SCHED_SCAN_RESULTS);
1239 		}
1240 	}
1241 	wiphy_unlock(&rdev->wiphy);
1242 }
1243 
1244 void cfg80211_sched_scan_results(struct wiphy *wiphy, u64 reqid)
1245 {
1246 	struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
1247 	struct cfg80211_sched_scan_request *request;
1248 
1249 	trace_cfg80211_sched_scan_results(wiphy, reqid);
1250 	/* ignore if we're not scanning */
1251 
1252 	rcu_read_lock();
1253 	request = cfg80211_find_sched_scan_req(rdev, reqid);
1254 	if (request) {
1255 		request->report_results = true;
1256 		queue_work(cfg80211_wq, &rdev->sched_scan_res_wk);
1257 	}
1258 	rcu_read_unlock();
1259 }
1260 EXPORT_SYMBOL(cfg80211_sched_scan_results);
1261 
1262 void cfg80211_sched_scan_stopped_locked(struct wiphy *wiphy, u64 reqid)
1263 {
1264 	struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
1265 
1266 	lockdep_assert_held(&wiphy->mtx);
1267 
1268 	trace_cfg80211_sched_scan_stopped(wiphy, reqid);
1269 
1270 	__cfg80211_stop_sched_scan(rdev, reqid, true);
1271 }
1272 EXPORT_SYMBOL(cfg80211_sched_scan_stopped_locked);
1273 
1274 void cfg80211_sched_scan_stopped(struct wiphy *wiphy, u64 reqid)
1275 {
1276 	wiphy_lock(wiphy);
1277 	cfg80211_sched_scan_stopped_locked(wiphy, reqid);
1278 	wiphy_unlock(wiphy);
1279 }
1280 EXPORT_SYMBOL(cfg80211_sched_scan_stopped);
1281 
1282 int cfg80211_stop_sched_scan_req(struct cfg80211_registered_device *rdev,
1283 				 struct cfg80211_sched_scan_request *req,
1284 				 bool driver_initiated)
1285 {
1286 	lockdep_assert_held(&rdev->wiphy.mtx);
1287 
1288 	if (!driver_initiated) {
1289 		int err = rdev_sched_scan_stop(rdev, req->dev, req->reqid);
1290 		if (err)
1291 			return err;
1292 	}
1293 
1294 	nl80211_send_sched_scan(req, NL80211_CMD_SCHED_SCAN_STOPPED);
1295 
1296 	cfg80211_del_sched_scan_req(rdev, req);
1297 
1298 	return 0;
1299 }
1300 
1301 int __cfg80211_stop_sched_scan(struct cfg80211_registered_device *rdev,
1302 			       u64 reqid, bool driver_initiated)
1303 {
1304 	struct cfg80211_sched_scan_request *sched_scan_req;
1305 
1306 	lockdep_assert_held(&rdev->wiphy.mtx);
1307 
1308 	sched_scan_req = cfg80211_find_sched_scan_req(rdev, reqid);
1309 	if (!sched_scan_req)
1310 		return -ENOENT;
1311 
1312 	return cfg80211_stop_sched_scan_req(rdev, sched_scan_req,
1313 					    driver_initiated);
1314 }
1315 
1316 void cfg80211_bss_age(struct cfg80211_registered_device *rdev,
1317                       unsigned long age_secs)
1318 {
1319 	struct cfg80211_internal_bss *bss;
1320 	unsigned long age_jiffies = msecs_to_jiffies(age_secs * MSEC_PER_SEC);
1321 
1322 	spin_lock_bh(&rdev->bss_lock);
1323 	list_for_each_entry(bss, &rdev->bss_list, list)
1324 		bss->ts -= age_jiffies;
1325 	spin_unlock_bh(&rdev->bss_lock);
1326 }
1327 
1328 void cfg80211_bss_expire(struct cfg80211_registered_device *rdev)
1329 {
1330 	__cfg80211_bss_expire(rdev, jiffies - IEEE80211_SCAN_RESULT_EXPIRE);
1331 }
1332 
1333 void cfg80211_bss_flush(struct wiphy *wiphy)
1334 {
1335 	struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
1336 
1337 	spin_lock_bh(&rdev->bss_lock);
1338 	__cfg80211_bss_expire(rdev, jiffies);
1339 	spin_unlock_bh(&rdev->bss_lock);
1340 }
1341 EXPORT_SYMBOL(cfg80211_bss_flush);
1342 
1343 const struct element *
1344 cfg80211_find_elem_match(u8 eid, const u8 *ies, unsigned int len,
1345 			 const u8 *match, unsigned int match_len,
1346 			 unsigned int match_offset)
1347 {
1348 	const struct element *elem;
1349 
1350 	for_each_element_id(elem, eid, ies, len) {
1351 		if (elem->datalen >= match_offset + match_len &&
1352 		    !memcmp(elem->data + match_offset, match, match_len))
1353 			return elem;
1354 	}
1355 
1356 	return NULL;
1357 }
1358 EXPORT_SYMBOL(cfg80211_find_elem_match);
1359 
1360 const struct element *cfg80211_find_vendor_elem(unsigned int oui, int oui_type,
1361 						const u8 *ies,
1362 						unsigned int len)
1363 {
1364 	const struct element *elem;
1365 	u8 match[] = { oui >> 16, oui >> 8, oui, oui_type };
1366 	int match_len = (oui_type < 0) ? 3 : sizeof(match);
1367 
1368 	if (WARN_ON(oui_type > 0xff))
1369 		return NULL;
1370 
1371 	elem = cfg80211_find_elem_match(WLAN_EID_VENDOR_SPECIFIC, ies, len,
1372 					match, match_len, 0);
1373 
1374 	if (!elem || elem->datalen < 4)
1375 		return NULL;
1376 
1377 	return elem;
1378 }
1379 EXPORT_SYMBOL(cfg80211_find_vendor_elem);
1380 
1381 /**
1382  * enum bss_compare_mode - BSS compare mode
1383  * @BSS_CMP_REGULAR: regular compare mode (for insertion and normal find)
1384  * @BSS_CMP_HIDE_ZLEN: find hidden SSID with zero-length mode
1385  * @BSS_CMP_HIDE_NUL: find hidden SSID with NUL-ed out mode
1386  */
1387 enum bss_compare_mode {
1388 	BSS_CMP_REGULAR,
1389 	BSS_CMP_HIDE_ZLEN,
1390 	BSS_CMP_HIDE_NUL,
1391 };
1392 
1393 static int cmp_bss(struct cfg80211_bss *a,
1394 		   struct cfg80211_bss *b,
1395 		   enum bss_compare_mode mode)
1396 {
1397 	const struct cfg80211_bss_ies *a_ies, *b_ies;
1398 	const u8 *ie1 = NULL;
1399 	const u8 *ie2 = NULL;
1400 	int i, r;
1401 
1402 	if (a->channel != b->channel)
1403 		return (b->channel->center_freq * 1000 + b->channel->freq_offset) -
1404 		       (a->channel->center_freq * 1000 + a->channel->freq_offset);
1405 
1406 	a_ies = rcu_access_pointer(a->ies);
1407 	if (!a_ies)
1408 		return -1;
1409 	b_ies = rcu_access_pointer(b->ies);
1410 	if (!b_ies)
1411 		return 1;
1412 
1413 	if (WLAN_CAPABILITY_IS_STA_BSS(a->capability))
1414 		ie1 = cfg80211_find_ie(WLAN_EID_MESH_ID,
1415 				       a_ies->data, a_ies->len);
1416 	if (WLAN_CAPABILITY_IS_STA_BSS(b->capability))
1417 		ie2 = cfg80211_find_ie(WLAN_EID_MESH_ID,
1418 				       b_ies->data, b_ies->len);
1419 	if (ie1 && ie2) {
1420 		int mesh_id_cmp;
1421 
1422 		if (ie1[1] == ie2[1])
1423 			mesh_id_cmp = memcmp(ie1 + 2, ie2 + 2, ie1[1]);
1424 		else
1425 			mesh_id_cmp = ie2[1] - ie1[1];
1426 
1427 		ie1 = cfg80211_find_ie(WLAN_EID_MESH_CONFIG,
1428 				       a_ies->data, a_ies->len);
1429 		ie2 = cfg80211_find_ie(WLAN_EID_MESH_CONFIG,
1430 				       b_ies->data, b_ies->len);
1431 		if (ie1 && ie2) {
1432 			if (mesh_id_cmp)
1433 				return mesh_id_cmp;
1434 			if (ie1[1] != ie2[1])
1435 				return ie2[1] - ie1[1];
1436 			return memcmp(ie1 + 2, ie2 + 2, ie1[1]);
1437 		}
1438 	}
1439 
1440 	r = memcmp(a->bssid, b->bssid, sizeof(a->bssid));
1441 	if (r)
1442 		return r;
1443 
1444 	ie1 = cfg80211_find_ie(WLAN_EID_SSID, a_ies->data, a_ies->len);
1445 	ie2 = cfg80211_find_ie(WLAN_EID_SSID, b_ies->data, b_ies->len);
1446 
1447 	if (!ie1 && !ie2)
1448 		return 0;
1449 
1450 	/*
1451 	 * Note that with "hide_ssid", the function returns a match if
1452 	 * the already-present BSS ("b") is a hidden SSID beacon for
1453 	 * the new BSS ("a").
1454 	 */
1455 
1456 	/* sort missing IE before (left of) present IE */
1457 	if (!ie1)
1458 		return -1;
1459 	if (!ie2)
1460 		return 1;
1461 
1462 	switch (mode) {
1463 	case BSS_CMP_HIDE_ZLEN:
1464 		/*
1465 		 * In ZLEN mode we assume the BSS entry we're
1466 		 * looking for has a zero-length SSID. So if
1467 		 * the one we're looking at right now has that,
1468 		 * return 0. Otherwise, return the difference
1469 		 * in length, but since we're looking for the
1470 		 * 0-length it's really equivalent to returning
1471 		 * the length of the one we're looking at.
1472 		 *
1473 		 * No content comparison is needed as we assume
1474 		 * the content length is zero.
1475 		 */
1476 		return ie2[1];
1477 	case BSS_CMP_REGULAR:
1478 	default:
1479 		/* sort by length first, then by contents */
1480 		if (ie1[1] != ie2[1])
1481 			return ie2[1] - ie1[1];
1482 		return memcmp(ie1 + 2, ie2 + 2, ie1[1]);
1483 	case BSS_CMP_HIDE_NUL:
1484 		if (ie1[1] != ie2[1])
1485 			return ie2[1] - ie1[1];
1486 		/* this is equivalent to memcmp(zeroes, ie2 + 2, len) */
1487 		for (i = 0; i < ie2[1]; i++)
1488 			if (ie2[i + 2])
1489 				return -1;
1490 		return 0;
1491 	}
1492 }
1493 
1494 static bool cfg80211_bss_type_match(u16 capability,
1495 				    enum nl80211_band band,
1496 				    enum ieee80211_bss_type bss_type)
1497 {
1498 	bool ret = true;
1499 	u16 mask, val;
1500 
1501 	if (bss_type == IEEE80211_BSS_TYPE_ANY)
1502 		return ret;
1503 
1504 	if (band == NL80211_BAND_60GHZ) {
1505 		mask = WLAN_CAPABILITY_DMG_TYPE_MASK;
1506 		switch (bss_type) {
1507 		case IEEE80211_BSS_TYPE_ESS:
1508 			val = WLAN_CAPABILITY_DMG_TYPE_AP;
1509 			break;
1510 		case IEEE80211_BSS_TYPE_PBSS:
1511 			val = WLAN_CAPABILITY_DMG_TYPE_PBSS;
1512 			break;
1513 		case IEEE80211_BSS_TYPE_IBSS:
1514 			val = WLAN_CAPABILITY_DMG_TYPE_IBSS;
1515 			break;
1516 		default:
1517 			return false;
1518 		}
1519 	} else {
1520 		mask = WLAN_CAPABILITY_ESS | WLAN_CAPABILITY_IBSS;
1521 		switch (bss_type) {
1522 		case IEEE80211_BSS_TYPE_ESS:
1523 			val = WLAN_CAPABILITY_ESS;
1524 			break;
1525 		case IEEE80211_BSS_TYPE_IBSS:
1526 			val = WLAN_CAPABILITY_IBSS;
1527 			break;
1528 		case IEEE80211_BSS_TYPE_MBSS:
1529 			val = 0;
1530 			break;
1531 		default:
1532 			return false;
1533 		}
1534 	}
1535 
1536 	ret = ((capability & mask) == val);
1537 	return ret;
1538 }
1539 
1540 /* Returned bss is reference counted and must be cleaned up appropriately. */
1541 struct cfg80211_bss *__cfg80211_get_bss(struct wiphy *wiphy,
1542 					struct ieee80211_channel *channel,
1543 					const u8 *bssid,
1544 					const u8 *ssid, size_t ssid_len,
1545 					enum ieee80211_bss_type bss_type,
1546 					enum ieee80211_privacy privacy,
1547 					u32 use_for)
1548 {
1549 	struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
1550 	struct cfg80211_internal_bss *bss, *res = NULL;
1551 	unsigned long now = jiffies;
1552 	int bss_privacy;
1553 
1554 	trace_cfg80211_get_bss(wiphy, channel, bssid, ssid, ssid_len, bss_type,
1555 			       privacy);
1556 
1557 	spin_lock_bh(&rdev->bss_lock);
1558 
1559 	list_for_each_entry(bss, &rdev->bss_list, list) {
1560 		if (!cfg80211_bss_type_match(bss->pub.capability,
1561 					     bss->pub.channel->band, bss_type))
1562 			continue;
1563 
1564 		bss_privacy = (bss->pub.capability & WLAN_CAPABILITY_PRIVACY);
1565 		if ((privacy == IEEE80211_PRIVACY_ON && !bss_privacy) ||
1566 		    (privacy == IEEE80211_PRIVACY_OFF && bss_privacy))
1567 			continue;
1568 		if (channel && bss->pub.channel != channel)
1569 			continue;
1570 		if (!is_valid_ether_addr(bss->pub.bssid))
1571 			continue;
1572 		if ((bss->pub.use_for & use_for) != use_for)
1573 			continue;
1574 		/* Don't get expired BSS structs */
1575 		if (time_after(now, bss->ts + IEEE80211_SCAN_RESULT_EXPIRE) &&
1576 		    !atomic_read(&bss->hold))
1577 			continue;
1578 		if (is_bss(&bss->pub, bssid, ssid, ssid_len)) {
1579 			res = bss;
1580 			bss_ref_get(rdev, res);
1581 			break;
1582 		}
1583 	}
1584 
1585 	spin_unlock_bh(&rdev->bss_lock);
1586 	if (!res)
1587 		return NULL;
1588 	trace_cfg80211_return_bss(&res->pub);
1589 	return &res->pub;
1590 }
1591 EXPORT_SYMBOL(__cfg80211_get_bss);
1592 
1593 static void rb_insert_bss(struct cfg80211_registered_device *rdev,
1594 			  struct cfg80211_internal_bss *bss)
1595 {
1596 	struct rb_node **p = &rdev->bss_tree.rb_node;
1597 	struct rb_node *parent = NULL;
1598 	struct cfg80211_internal_bss *tbss;
1599 	int cmp;
1600 
1601 	while (*p) {
1602 		parent = *p;
1603 		tbss = rb_entry(parent, struct cfg80211_internal_bss, rbn);
1604 
1605 		cmp = cmp_bss(&bss->pub, &tbss->pub, BSS_CMP_REGULAR);
1606 
1607 		if (WARN_ON(!cmp)) {
1608 			/* will sort of leak this BSS */
1609 			return;
1610 		}
1611 
1612 		if (cmp < 0)
1613 			p = &(*p)->rb_left;
1614 		else
1615 			p = &(*p)->rb_right;
1616 	}
1617 
1618 	rb_link_node(&bss->rbn, parent, p);
1619 	rb_insert_color(&bss->rbn, &rdev->bss_tree);
1620 }
1621 
1622 static struct cfg80211_internal_bss *
1623 rb_find_bss(struct cfg80211_registered_device *rdev,
1624 	    struct cfg80211_internal_bss *res,
1625 	    enum bss_compare_mode mode)
1626 {
1627 	struct rb_node *n = rdev->bss_tree.rb_node;
1628 	struct cfg80211_internal_bss *bss;
1629 	int r;
1630 
1631 	while (n) {
1632 		bss = rb_entry(n, struct cfg80211_internal_bss, rbn);
1633 		r = cmp_bss(&res->pub, &bss->pub, mode);
1634 
1635 		if (r == 0)
1636 			return bss;
1637 		else if (r < 0)
1638 			n = n->rb_left;
1639 		else
1640 			n = n->rb_right;
1641 	}
1642 
1643 	return NULL;
1644 }
1645 
1646 static bool cfg80211_combine_bsses(struct cfg80211_registered_device *rdev,
1647 				   struct cfg80211_internal_bss *new)
1648 {
1649 	const struct cfg80211_bss_ies *ies;
1650 	struct cfg80211_internal_bss *bss;
1651 	const u8 *ie;
1652 	int i, ssidlen;
1653 	u8 fold = 0;
1654 	u32 n_entries = 0;
1655 
1656 	ies = rcu_access_pointer(new->pub.beacon_ies);
1657 	if (WARN_ON(!ies))
1658 		return false;
1659 
1660 	ie = cfg80211_find_ie(WLAN_EID_SSID, ies->data, ies->len);
1661 	if (!ie) {
1662 		/* nothing to do */
1663 		return true;
1664 	}
1665 
1666 	ssidlen = ie[1];
1667 	for (i = 0; i < ssidlen; i++)
1668 		fold |= ie[2 + i];
1669 
1670 	if (fold) {
1671 		/* not a hidden SSID */
1672 		return true;
1673 	}
1674 
1675 	/* This is the bad part ... */
1676 
1677 	list_for_each_entry(bss, &rdev->bss_list, list) {
1678 		/*
1679 		 * we're iterating all the entries anyway, so take the
1680 		 * opportunity to validate the list length accounting
1681 		 */
1682 		n_entries++;
1683 
1684 		if (!ether_addr_equal(bss->pub.bssid, new->pub.bssid))
1685 			continue;
1686 		if (bss->pub.channel != new->pub.channel)
1687 			continue;
1688 		if (rcu_access_pointer(bss->pub.beacon_ies))
1689 			continue;
1690 		ies = rcu_access_pointer(bss->pub.ies);
1691 		if (!ies)
1692 			continue;
1693 		ie = cfg80211_find_ie(WLAN_EID_SSID, ies->data, ies->len);
1694 		if (!ie)
1695 			continue;
1696 		if (ssidlen && ie[1] != ssidlen)
1697 			continue;
1698 		if (WARN_ON_ONCE(bss->pub.hidden_beacon_bss))
1699 			continue;
1700 		if (WARN_ON_ONCE(!list_empty(&bss->hidden_list)))
1701 			list_del(&bss->hidden_list);
1702 		/* combine them */
1703 		list_add(&bss->hidden_list, &new->hidden_list);
1704 		bss->pub.hidden_beacon_bss = &new->pub;
1705 		new->refcount += bss->refcount;
1706 		rcu_assign_pointer(bss->pub.beacon_ies,
1707 				   new->pub.beacon_ies);
1708 	}
1709 
1710 	WARN_ONCE(n_entries != rdev->bss_entries,
1711 		  "rdev bss entries[%d]/list[len:%d] corruption\n",
1712 		  rdev->bss_entries, n_entries);
1713 
1714 	return true;
1715 }
1716 
1717 static void cfg80211_update_hidden_bsses(struct cfg80211_internal_bss *known,
1718 					 const struct cfg80211_bss_ies *new_ies,
1719 					 const struct cfg80211_bss_ies *old_ies)
1720 {
1721 	struct cfg80211_internal_bss *bss;
1722 
1723 	/* Assign beacon IEs to all sub entries */
1724 	list_for_each_entry(bss, &known->hidden_list, hidden_list) {
1725 		const struct cfg80211_bss_ies *ies;
1726 
1727 		ies = rcu_access_pointer(bss->pub.beacon_ies);
1728 		WARN_ON(ies != old_ies);
1729 
1730 		rcu_assign_pointer(bss->pub.beacon_ies, new_ies);
1731 	}
1732 }
1733 
1734 static bool
1735 cfg80211_update_known_bss(struct cfg80211_registered_device *rdev,
1736 			  struct cfg80211_internal_bss *known,
1737 			  struct cfg80211_internal_bss *new,
1738 			  bool signal_valid)
1739 {
1740 	lockdep_assert_held(&rdev->bss_lock);
1741 
1742 	/* Update IEs */
1743 	if (rcu_access_pointer(new->pub.proberesp_ies)) {
1744 		const struct cfg80211_bss_ies *old;
1745 
1746 		old = rcu_access_pointer(known->pub.proberesp_ies);
1747 
1748 		rcu_assign_pointer(known->pub.proberesp_ies,
1749 				   new->pub.proberesp_ies);
1750 		/* Override possible earlier Beacon frame IEs */
1751 		rcu_assign_pointer(known->pub.ies,
1752 				   new->pub.proberesp_ies);
1753 		if (old)
1754 			kfree_rcu((struct cfg80211_bss_ies *)old, rcu_head);
1755 	}
1756 
1757 	if (rcu_access_pointer(new->pub.beacon_ies)) {
1758 		const struct cfg80211_bss_ies *old;
1759 
1760 		if (known->pub.hidden_beacon_bss &&
1761 		    !list_empty(&known->hidden_list)) {
1762 			const struct cfg80211_bss_ies *f;
1763 
1764 			/* The known BSS struct is one of the probe
1765 			 * response members of a group, but we're
1766 			 * receiving a beacon (beacon_ies in the new
1767 			 * bss is used). This can only mean that the
1768 			 * AP changed its beacon from not having an
1769 			 * SSID to showing it, which is confusing so
1770 			 * drop this information.
1771 			 */
1772 
1773 			f = rcu_access_pointer(new->pub.beacon_ies);
1774 			kfree_rcu((struct cfg80211_bss_ies *)f, rcu_head);
1775 			return false;
1776 		}
1777 
1778 		old = rcu_access_pointer(known->pub.beacon_ies);
1779 
1780 		rcu_assign_pointer(known->pub.beacon_ies, new->pub.beacon_ies);
1781 
1782 		/* Override IEs if they were from a beacon before */
1783 		if (old == rcu_access_pointer(known->pub.ies))
1784 			rcu_assign_pointer(known->pub.ies, new->pub.beacon_ies);
1785 
1786 		cfg80211_update_hidden_bsses(known,
1787 					     rcu_access_pointer(new->pub.beacon_ies),
1788 					     old);
1789 
1790 		if (old)
1791 			kfree_rcu((struct cfg80211_bss_ies *)old, rcu_head);
1792 	}
1793 
1794 	known->pub.beacon_interval = new->pub.beacon_interval;
1795 
1796 	/* don't update the signal if beacon was heard on
1797 	 * adjacent channel.
1798 	 */
1799 	if (signal_valid)
1800 		known->pub.signal = new->pub.signal;
1801 	known->pub.capability = new->pub.capability;
1802 	known->ts = new->ts;
1803 	known->ts_boottime = new->ts_boottime;
1804 	known->parent_tsf = new->parent_tsf;
1805 	known->pub.chains = new->pub.chains;
1806 	memcpy(known->pub.chain_signal, new->pub.chain_signal,
1807 	       IEEE80211_MAX_CHAINS);
1808 	ether_addr_copy(known->parent_bssid, new->parent_bssid);
1809 	known->pub.max_bssid_indicator = new->pub.max_bssid_indicator;
1810 	known->pub.bssid_index = new->pub.bssid_index;
1811 	known->pub.use_for &= new->pub.use_for;
1812 	known->pub.cannot_use_reasons = new->pub.cannot_use_reasons;
1813 
1814 	return true;
1815 }
1816 
1817 /* Returned bss is reference counted and must be cleaned up appropriately. */
1818 static struct cfg80211_internal_bss *
1819 __cfg80211_bss_update(struct cfg80211_registered_device *rdev,
1820 		      struct cfg80211_internal_bss *tmp,
1821 		      bool signal_valid, unsigned long ts)
1822 {
1823 	struct cfg80211_internal_bss *found = NULL;
1824 	struct cfg80211_bss_ies *ies;
1825 
1826 	if (WARN_ON(!tmp->pub.channel))
1827 		goto free_ies;
1828 
1829 	tmp->ts = ts;
1830 
1831 	if (WARN_ON(!rcu_access_pointer(tmp->pub.ies)))
1832 		goto free_ies;
1833 
1834 	found = rb_find_bss(rdev, tmp, BSS_CMP_REGULAR);
1835 
1836 	if (found) {
1837 		if (!cfg80211_update_known_bss(rdev, found, tmp, signal_valid))
1838 			return NULL;
1839 	} else {
1840 		struct cfg80211_internal_bss *new;
1841 		struct cfg80211_internal_bss *hidden;
1842 
1843 		/*
1844 		 * create a copy -- the "res" variable that is passed in
1845 		 * is allocated on the stack since it's not needed in the
1846 		 * more common case of an update
1847 		 */
1848 		new = kzalloc(sizeof(*new) + rdev->wiphy.bss_priv_size,
1849 			      GFP_ATOMIC);
1850 		if (!new)
1851 			goto free_ies;
1852 		memcpy(new, tmp, sizeof(*new));
1853 		new->refcount = 1;
1854 		INIT_LIST_HEAD(&new->hidden_list);
1855 		INIT_LIST_HEAD(&new->pub.nontrans_list);
1856 		/* we'll set this later if it was non-NULL */
1857 		new->pub.transmitted_bss = NULL;
1858 
1859 		if (rcu_access_pointer(tmp->pub.proberesp_ies)) {
1860 			hidden = rb_find_bss(rdev, tmp, BSS_CMP_HIDE_ZLEN);
1861 			if (!hidden)
1862 				hidden = rb_find_bss(rdev, tmp,
1863 						     BSS_CMP_HIDE_NUL);
1864 			if (hidden) {
1865 				new->pub.hidden_beacon_bss = &hidden->pub;
1866 				list_add(&new->hidden_list,
1867 					 &hidden->hidden_list);
1868 				hidden->refcount++;
1869 
1870 				ies = (void *)rcu_access_pointer(new->pub.beacon_ies);
1871 				rcu_assign_pointer(new->pub.beacon_ies,
1872 						   hidden->pub.beacon_ies);
1873 				if (ies)
1874 					kfree_rcu(ies, rcu_head);
1875 			}
1876 		} else {
1877 			/*
1878 			 * Ok so we found a beacon, and don't have an entry. If
1879 			 * it's a beacon with hidden SSID, we might be in for an
1880 			 * expensive search for any probe responses that should
1881 			 * be grouped with this beacon for updates ...
1882 			 */
1883 			if (!cfg80211_combine_bsses(rdev, new)) {
1884 				bss_ref_put(rdev, new);
1885 				return NULL;
1886 			}
1887 		}
1888 
1889 		if (rdev->bss_entries >= bss_entries_limit &&
1890 		    !cfg80211_bss_expire_oldest(rdev)) {
1891 			bss_ref_put(rdev, new);
1892 			return NULL;
1893 		}
1894 
1895 		/* This must be before the call to bss_ref_get */
1896 		if (tmp->pub.transmitted_bss) {
1897 			new->pub.transmitted_bss = tmp->pub.transmitted_bss;
1898 			bss_ref_get(rdev, bss_from_pub(tmp->pub.transmitted_bss));
1899 		}
1900 
1901 		list_add_tail(&new->list, &rdev->bss_list);
1902 		rdev->bss_entries++;
1903 		rb_insert_bss(rdev, new);
1904 		found = new;
1905 	}
1906 
1907 	rdev->bss_generation++;
1908 	bss_ref_get(rdev, found);
1909 
1910 	return found;
1911 
1912 free_ies:
1913 	ies = (void *)rcu_dereference(tmp->pub.beacon_ies);
1914 	if (ies)
1915 		kfree_rcu(ies, rcu_head);
1916 	ies = (void *)rcu_dereference(tmp->pub.proberesp_ies);
1917 	if (ies)
1918 		kfree_rcu(ies, rcu_head);
1919 
1920 	return NULL;
1921 }
1922 
1923 struct cfg80211_internal_bss *
1924 cfg80211_bss_update(struct cfg80211_registered_device *rdev,
1925 		    struct cfg80211_internal_bss *tmp,
1926 		    bool signal_valid, unsigned long ts)
1927 {
1928 	struct cfg80211_internal_bss *res;
1929 
1930 	spin_lock_bh(&rdev->bss_lock);
1931 	res = __cfg80211_bss_update(rdev, tmp, signal_valid, ts);
1932 	spin_unlock_bh(&rdev->bss_lock);
1933 
1934 	return res;
1935 }
1936 
1937 int cfg80211_get_ies_channel_number(const u8 *ie, size_t ielen,
1938 				    enum nl80211_band band)
1939 {
1940 	const struct element *tmp;
1941 
1942 	if (band == NL80211_BAND_6GHZ) {
1943 		struct ieee80211_he_operation *he_oper;
1944 
1945 		tmp = cfg80211_find_ext_elem(WLAN_EID_EXT_HE_OPERATION, ie,
1946 					     ielen);
1947 		if (tmp && tmp->datalen >= sizeof(*he_oper) &&
1948 		    tmp->datalen >= ieee80211_he_oper_size(&tmp->data[1])) {
1949 			const struct ieee80211_he_6ghz_oper *he_6ghz_oper;
1950 
1951 			he_oper = (void *)&tmp->data[1];
1952 
1953 			he_6ghz_oper = ieee80211_he_6ghz_oper(he_oper);
1954 			if (!he_6ghz_oper)
1955 				return -1;
1956 
1957 			return he_6ghz_oper->primary;
1958 		}
1959 	} else if (band == NL80211_BAND_S1GHZ) {
1960 		tmp = cfg80211_find_elem(WLAN_EID_S1G_OPERATION, ie, ielen);
1961 		if (tmp && tmp->datalen >= sizeof(struct ieee80211_s1g_oper_ie)) {
1962 			struct ieee80211_s1g_oper_ie *s1gop = (void *)tmp->data;
1963 
1964 			return s1gop->oper_ch;
1965 		}
1966 	} else {
1967 		tmp = cfg80211_find_elem(WLAN_EID_DS_PARAMS, ie, ielen);
1968 		if (tmp && tmp->datalen == 1)
1969 			return tmp->data[0];
1970 
1971 		tmp = cfg80211_find_elem(WLAN_EID_HT_OPERATION, ie, ielen);
1972 		if (tmp &&
1973 		    tmp->datalen >= sizeof(struct ieee80211_ht_operation)) {
1974 			struct ieee80211_ht_operation *htop = (void *)tmp->data;
1975 
1976 			return htop->primary_chan;
1977 		}
1978 	}
1979 
1980 	return -1;
1981 }
1982 EXPORT_SYMBOL(cfg80211_get_ies_channel_number);
1983 
1984 /*
1985  * Update RX channel information based on the available frame payload
1986  * information. This is mainly for the 2.4 GHz band where frames can be received
1987  * from neighboring channels and the Beacon frames use the DSSS Parameter Set
1988  * element to indicate the current (transmitting) channel, but this might also
1989  * be needed on other bands if RX frequency does not match with the actual
1990  * operating channel of a BSS, or if the AP reports a different primary channel.
1991  */
1992 static struct ieee80211_channel *
1993 cfg80211_get_bss_channel(struct wiphy *wiphy, const u8 *ie, size_t ielen,
1994 			 struct ieee80211_channel *channel)
1995 {
1996 	u32 freq;
1997 	int channel_number;
1998 	struct ieee80211_channel *alt_channel;
1999 
2000 	channel_number = cfg80211_get_ies_channel_number(ie, ielen,
2001 							 channel->band);
2002 
2003 	if (channel_number < 0) {
2004 		/* No channel information in frame payload */
2005 		return channel;
2006 	}
2007 
2008 	freq = ieee80211_channel_to_freq_khz(channel_number, channel->band);
2009 
2010 	/*
2011 	 * Frame info (beacon/prob res) is the same as received channel,
2012 	 * no need for further processing.
2013 	 */
2014 	if (freq == ieee80211_channel_to_khz(channel))
2015 		return channel;
2016 
2017 	alt_channel = ieee80211_get_channel_khz(wiphy, freq);
2018 	if (!alt_channel) {
2019 		if (channel->band == NL80211_BAND_2GHZ ||
2020 		    channel->band == NL80211_BAND_6GHZ) {
2021 			/*
2022 			 * Better not allow unexpected channels when that could
2023 			 * be going beyond the 1-11 range (e.g., discovering
2024 			 * BSS on channel 12 when radio is configured for
2025 			 * channel 11) or beyond the 6 GHz channel range.
2026 			 */
2027 			return NULL;
2028 		}
2029 
2030 		/* No match for the payload channel number - ignore it */
2031 		return channel;
2032 	}
2033 
2034 	/*
2035 	 * Use the channel determined through the payload channel number
2036 	 * instead of the RX channel reported by the driver.
2037 	 */
2038 	if (alt_channel->flags & IEEE80211_CHAN_DISABLED)
2039 		return NULL;
2040 	return alt_channel;
2041 }
2042 
2043 struct cfg80211_inform_single_bss_data {
2044 	struct cfg80211_inform_bss *drv_data;
2045 	enum cfg80211_bss_frame_type ftype;
2046 	struct ieee80211_channel *channel;
2047 	u8 bssid[ETH_ALEN];
2048 	u64 tsf;
2049 	u16 capability;
2050 	u16 beacon_interval;
2051 	const u8 *ie;
2052 	size_t ielen;
2053 
2054 	enum {
2055 		BSS_SOURCE_DIRECT = 0,
2056 		BSS_SOURCE_MBSSID,
2057 		BSS_SOURCE_STA_PROFILE,
2058 	} bss_source;
2059 	/* Set if reporting bss_source != BSS_SOURCE_DIRECT */
2060 	struct cfg80211_bss *source_bss;
2061 	u8 max_bssid_indicator;
2062 	u8 bssid_index;
2063 
2064 	u8 use_for;
2065 	u64 cannot_use_reasons;
2066 };
2067 
2068 /* Returned bss is reference counted and must be cleaned up appropriately. */
2069 static struct cfg80211_bss *
2070 cfg80211_inform_single_bss_data(struct wiphy *wiphy,
2071 				struct cfg80211_inform_single_bss_data *data,
2072 				gfp_t gfp)
2073 {
2074 	struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
2075 	struct cfg80211_inform_bss *drv_data = data->drv_data;
2076 	struct cfg80211_bss_ies *ies;
2077 	struct ieee80211_channel *channel;
2078 	struct cfg80211_internal_bss tmp = {}, *res;
2079 	int bss_type;
2080 	bool signal_valid;
2081 	unsigned long ts;
2082 
2083 	if (WARN_ON(!wiphy))
2084 		return NULL;
2085 
2086 	if (WARN_ON(wiphy->signal_type == CFG80211_SIGNAL_TYPE_UNSPEC &&
2087 		    (drv_data->signal < 0 || drv_data->signal > 100)))
2088 		return NULL;
2089 
2090 	if (WARN_ON(data->bss_source != BSS_SOURCE_DIRECT && !data->source_bss))
2091 		return NULL;
2092 
2093 	channel = data->channel;
2094 	if (!channel)
2095 		channel = cfg80211_get_bss_channel(wiphy, data->ie, data->ielen,
2096 						   drv_data->chan);
2097 	if (!channel)
2098 		return NULL;
2099 
2100 	memcpy(tmp.pub.bssid, data->bssid, ETH_ALEN);
2101 	tmp.pub.channel = channel;
2102 	if (data->bss_source != BSS_SOURCE_STA_PROFILE)
2103 		tmp.pub.signal = drv_data->signal;
2104 	else
2105 		tmp.pub.signal = 0;
2106 	tmp.pub.beacon_interval = data->beacon_interval;
2107 	tmp.pub.capability = data->capability;
2108 	tmp.ts_boottime = drv_data->boottime_ns;
2109 	tmp.parent_tsf = drv_data->parent_tsf;
2110 	ether_addr_copy(tmp.parent_bssid, drv_data->parent_bssid);
2111 	tmp.pub.use_for = data->use_for;
2112 	tmp.pub.cannot_use_reasons = data->cannot_use_reasons;
2113 
2114 	if (data->bss_source != BSS_SOURCE_DIRECT) {
2115 		tmp.pub.transmitted_bss = data->source_bss;
2116 		ts = bss_from_pub(data->source_bss)->ts;
2117 		tmp.pub.bssid_index = data->bssid_index;
2118 		tmp.pub.max_bssid_indicator = data->max_bssid_indicator;
2119 	} else {
2120 		ts = jiffies;
2121 
2122 		if (channel->band == NL80211_BAND_60GHZ) {
2123 			bss_type = data->capability &
2124 				   WLAN_CAPABILITY_DMG_TYPE_MASK;
2125 			if (bss_type == WLAN_CAPABILITY_DMG_TYPE_AP ||
2126 			    bss_type == WLAN_CAPABILITY_DMG_TYPE_PBSS)
2127 				regulatory_hint_found_beacon(wiphy, channel,
2128 							     gfp);
2129 		} else {
2130 			if (data->capability & WLAN_CAPABILITY_ESS)
2131 				regulatory_hint_found_beacon(wiphy, channel,
2132 							     gfp);
2133 		}
2134 	}
2135 
2136 	/*
2137 	 * If we do not know here whether the IEs are from a Beacon or Probe
2138 	 * Response frame, we need to pick one of the options and only use it
2139 	 * with the driver that does not provide the full Beacon/Probe Response
2140 	 * frame. Use Beacon frame pointer to avoid indicating that this should
2141 	 * override the IEs pointer should we have received an earlier
2142 	 * indication of Probe Response data.
2143 	 */
2144 	ies = kzalloc(sizeof(*ies) + data->ielen, gfp);
2145 	if (!ies)
2146 		return NULL;
2147 	ies->len = data->ielen;
2148 	ies->tsf = data->tsf;
2149 	ies->from_beacon = false;
2150 	memcpy(ies->data, data->ie, data->ielen);
2151 
2152 	switch (data->ftype) {
2153 	case CFG80211_BSS_FTYPE_BEACON:
2154 		ies->from_beacon = true;
2155 		fallthrough;
2156 	case CFG80211_BSS_FTYPE_UNKNOWN:
2157 		rcu_assign_pointer(tmp.pub.beacon_ies, ies);
2158 		break;
2159 	case CFG80211_BSS_FTYPE_PRESP:
2160 		rcu_assign_pointer(tmp.pub.proberesp_ies, ies);
2161 		break;
2162 	}
2163 	rcu_assign_pointer(tmp.pub.ies, ies);
2164 
2165 	signal_valid = drv_data->chan == channel;
2166 	spin_lock_bh(&rdev->bss_lock);
2167 	res = __cfg80211_bss_update(rdev, &tmp, signal_valid, ts);
2168 	if (!res)
2169 		goto drop;
2170 
2171 	rdev_inform_bss(rdev, &res->pub, ies, drv_data->drv_data);
2172 
2173 	if (data->bss_source == BSS_SOURCE_MBSSID) {
2174 		/* this is a nontransmitting bss, we need to add it to
2175 		 * transmitting bss' list if it is not there
2176 		 */
2177 		if (cfg80211_add_nontrans_list(data->source_bss, &res->pub)) {
2178 			if (__cfg80211_unlink_bss(rdev, res)) {
2179 				rdev->bss_generation++;
2180 				res = NULL;
2181 			}
2182 		}
2183 
2184 		if (!res)
2185 			goto drop;
2186 	}
2187 	spin_unlock_bh(&rdev->bss_lock);
2188 
2189 	trace_cfg80211_return_bss(&res->pub);
2190 	/* __cfg80211_bss_update gives us a referenced result */
2191 	return &res->pub;
2192 
2193 drop:
2194 	spin_unlock_bh(&rdev->bss_lock);
2195 	return NULL;
2196 }
2197 
2198 static const struct element
2199 *cfg80211_get_profile_continuation(const u8 *ie, size_t ielen,
2200 				   const struct element *mbssid_elem,
2201 				   const struct element *sub_elem)
2202 {
2203 	const u8 *mbssid_end = mbssid_elem->data + mbssid_elem->datalen;
2204 	const struct element *next_mbssid;
2205 	const struct element *next_sub;
2206 
2207 	next_mbssid = cfg80211_find_elem(WLAN_EID_MULTIPLE_BSSID,
2208 					 mbssid_end,
2209 					 ielen - (mbssid_end - ie));
2210 
2211 	/*
2212 	 * If it is not the last subelement in current MBSSID IE or there isn't
2213 	 * a next MBSSID IE - profile is complete.
2214 	*/
2215 	if ((sub_elem->data + sub_elem->datalen < mbssid_end - 1) ||
2216 	    !next_mbssid)
2217 		return NULL;
2218 
2219 	/* For any length error, just return NULL */
2220 
2221 	if (next_mbssid->datalen < 4)
2222 		return NULL;
2223 
2224 	next_sub = (void *)&next_mbssid->data[1];
2225 
2226 	if (next_mbssid->data + next_mbssid->datalen <
2227 	    next_sub->data + next_sub->datalen)
2228 		return NULL;
2229 
2230 	if (next_sub->id != 0 || next_sub->datalen < 2)
2231 		return NULL;
2232 
2233 	/*
2234 	 * Check if the first element in the next sub element is a start
2235 	 * of a new profile
2236 	 */
2237 	return next_sub->data[0] == WLAN_EID_NON_TX_BSSID_CAP ?
2238 	       NULL : next_mbssid;
2239 }
2240 
2241 size_t cfg80211_merge_profile(const u8 *ie, size_t ielen,
2242 			      const struct element *mbssid_elem,
2243 			      const struct element *sub_elem,
2244 			      u8 *merged_ie, size_t max_copy_len)
2245 {
2246 	size_t copied_len = sub_elem->datalen;
2247 	const struct element *next_mbssid;
2248 
2249 	if (sub_elem->datalen > max_copy_len)
2250 		return 0;
2251 
2252 	memcpy(merged_ie, sub_elem->data, sub_elem->datalen);
2253 
2254 	while ((next_mbssid = cfg80211_get_profile_continuation(ie, ielen,
2255 								mbssid_elem,
2256 								sub_elem))) {
2257 		const struct element *next_sub = (void *)&next_mbssid->data[1];
2258 
2259 		if (copied_len + next_sub->datalen > max_copy_len)
2260 			break;
2261 		memcpy(merged_ie + copied_len, next_sub->data,
2262 		       next_sub->datalen);
2263 		copied_len += next_sub->datalen;
2264 	}
2265 
2266 	return copied_len;
2267 }
2268 EXPORT_SYMBOL(cfg80211_merge_profile);
2269 
2270 static void
2271 cfg80211_parse_mbssid_data(struct wiphy *wiphy,
2272 			   struct cfg80211_inform_single_bss_data *tx_data,
2273 			   struct cfg80211_bss *source_bss,
2274 			   gfp_t gfp)
2275 {
2276 	struct cfg80211_inform_single_bss_data data = {
2277 		.drv_data = tx_data->drv_data,
2278 		.ftype = tx_data->ftype,
2279 		.tsf = tx_data->tsf,
2280 		.beacon_interval = tx_data->beacon_interval,
2281 		.source_bss = source_bss,
2282 		.bss_source = BSS_SOURCE_MBSSID,
2283 		.use_for = tx_data->use_for,
2284 		.cannot_use_reasons = tx_data->cannot_use_reasons,
2285 	};
2286 	const u8 *mbssid_index_ie;
2287 	const struct element *elem, *sub;
2288 	u8 *new_ie, *profile;
2289 	u64 seen_indices = 0;
2290 	struct cfg80211_bss *bss;
2291 
2292 	if (!source_bss)
2293 		return;
2294 	if (!cfg80211_find_elem(WLAN_EID_MULTIPLE_BSSID,
2295 				tx_data->ie, tx_data->ielen))
2296 		return;
2297 	if (!wiphy->support_mbssid)
2298 		return;
2299 	if (wiphy->support_only_he_mbssid &&
2300 	    !cfg80211_find_ext_elem(WLAN_EID_EXT_HE_CAPABILITY,
2301 				    tx_data->ie, tx_data->ielen))
2302 		return;
2303 
2304 	new_ie = kmalloc(IEEE80211_MAX_DATA_LEN, gfp);
2305 	if (!new_ie)
2306 		return;
2307 
2308 	profile = kmalloc(tx_data->ielen, gfp);
2309 	if (!profile)
2310 		goto out;
2311 
2312 	for_each_element_id(elem, WLAN_EID_MULTIPLE_BSSID,
2313 			    tx_data->ie, tx_data->ielen) {
2314 		if (elem->datalen < 4)
2315 			continue;
2316 		if (elem->data[0] < 1 || (int)elem->data[0] > 8)
2317 			continue;
2318 		for_each_element(sub, elem->data + 1, elem->datalen - 1) {
2319 			u8 profile_len;
2320 
2321 			if (sub->id != 0 || sub->datalen < 4) {
2322 				/* not a valid BSS profile */
2323 				continue;
2324 			}
2325 
2326 			if (sub->data[0] != WLAN_EID_NON_TX_BSSID_CAP ||
2327 			    sub->data[1] != 2) {
2328 				/* The first element within the Nontransmitted
2329 				 * BSSID Profile is not the Nontransmitted
2330 				 * BSSID Capability element.
2331 				 */
2332 				continue;
2333 			}
2334 
2335 			memset(profile, 0, tx_data->ielen);
2336 			profile_len = cfg80211_merge_profile(tx_data->ie,
2337 							     tx_data->ielen,
2338 							     elem,
2339 							     sub,
2340 							     profile,
2341 							     tx_data->ielen);
2342 
2343 			/* found a Nontransmitted BSSID Profile */
2344 			mbssid_index_ie = cfg80211_find_ie
2345 				(WLAN_EID_MULTI_BSSID_IDX,
2346 				 profile, profile_len);
2347 			if (!mbssid_index_ie || mbssid_index_ie[1] < 1 ||
2348 			    mbssid_index_ie[2] == 0 ||
2349 			    mbssid_index_ie[2] > 46) {
2350 				/* No valid Multiple BSSID-Index element */
2351 				continue;
2352 			}
2353 
2354 			if (seen_indices & BIT_ULL(mbssid_index_ie[2]))
2355 				/* We don't support legacy split of a profile */
2356 				net_dbg_ratelimited("Partial info for BSSID index %d\n",
2357 						    mbssid_index_ie[2]);
2358 
2359 			seen_indices |= BIT_ULL(mbssid_index_ie[2]);
2360 
2361 			data.bssid_index = mbssid_index_ie[2];
2362 			data.max_bssid_indicator = elem->data[0];
2363 
2364 			cfg80211_gen_new_bssid(tx_data->bssid,
2365 					       data.max_bssid_indicator,
2366 					       data.bssid_index,
2367 					       data.bssid);
2368 
2369 			memset(new_ie, 0, IEEE80211_MAX_DATA_LEN);
2370 			data.ie = new_ie;
2371 			data.ielen = cfg80211_gen_new_ie(tx_data->ie,
2372 							 tx_data->ielen,
2373 							 profile,
2374 							 profile_len,
2375 							 new_ie,
2376 							 IEEE80211_MAX_DATA_LEN);
2377 			if (!data.ielen)
2378 				continue;
2379 
2380 			data.capability = get_unaligned_le16(profile + 2);
2381 			bss = cfg80211_inform_single_bss_data(wiphy, &data, gfp);
2382 			if (!bss)
2383 				break;
2384 			cfg80211_put_bss(wiphy, bss);
2385 		}
2386 	}
2387 
2388 out:
2389 	kfree(new_ie);
2390 	kfree(profile);
2391 }
2392 
2393 ssize_t cfg80211_defragment_element(const struct element *elem, const u8 *ies,
2394 				    size_t ieslen, u8 *data, size_t data_len,
2395 				    u8 frag_id)
2396 {
2397 	const struct element *next;
2398 	ssize_t copied;
2399 	u8 elem_datalen;
2400 
2401 	if (!elem)
2402 		return -EINVAL;
2403 
2404 	/* elem might be invalid after the memmove */
2405 	next = (void *)(elem->data + elem->datalen);
2406 	elem_datalen = elem->datalen;
2407 
2408 	if (elem->id == WLAN_EID_EXTENSION) {
2409 		copied = elem->datalen - 1;
2410 		if (copied > data_len)
2411 			return -ENOSPC;
2412 
2413 		memmove(data, elem->data + 1, copied);
2414 	} else {
2415 		copied = elem->datalen;
2416 		if (copied > data_len)
2417 			return -ENOSPC;
2418 
2419 		memmove(data, elem->data, copied);
2420 	}
2421 
2422 	/* Fragmented elements must have 255 bytes */
2423 	if (elem_datalen < 255)
2424 		return copied;
2425 
2426 	for (elem = next;
2427 	     elem->data < ies + ieslen &&
2428 		elem->data + elem->datalen <= ies + ieslen;
2429 	     elem = next) {
2430 		/* elem might be invalid after the memmove */
2431 		next = (void *)(elem->data + elem->datalen);
2432 
2433 		if (elem->id != frag_id)
2434 			break;
2435 
2436 		elem_datalen = elem->datalen;
2437 
2438 		if (copied + elem_datalen > data_len)
2439 			return -ENOSPC;
2440 
2441 		memmove(data + copied, elem->data, elem_datalen);
2442 		copied += elem_datalen;
2443 
2444 		/* Only the last fragment may be short */
2445 		if (elem_datalen != 255)
2446 			break;
2447 	}
2448 
2449 	return copied;
2450 }
2451 EXPORT_SYMBOL(cfg80211_defragment_element);
2452 
2453 struct cfg80211_mle {
2454 	struct ieee80211_multi_link_elem *mle;
2455 	struct ieee80211_mle_per_sta_profile
2456 		*sta_prof[IEEE80211_MLD_MAX_NUM_LINKS];
2457 	ssize_t sta_prof_len[IEEE80211_MLD_MAX_NUM_LINKS];
2458 
2459 	u8 data[];
2460 };
2461 
2462 static struct cfg80211_mle *
2463 cfg80211_defrag_mle(const struct element *mle, const u8 *ie, size_t ielen,
2464 		    gfp_t gfp)
2465 {
2466 	const struct element *elem;
2467 	struct cfg80211_mle *res;
2468 	size_t buf_len;
2469 	ssize_t mle_len;
2470 	u8 common_size, idx;
2471 
2472 	if (!mle || !ieee80211_mle_size_ok(mle->data + 1, mle->datalen - 1))
2473 		return NULL;
2474 
2475 	/* Required length for first defragmentation */
2476 	buf_len = mle->datalen - 1;
2477 	for_each_element(elem, mle->data + mle->datalen,
2478 			 ielen - sizeof(*mle) + mle->datalen) {
2479 		if (elem->id != WLAN_EID_FRAGMENT)
2480 			break;
2481 
2482 		buf_len += elem->datalen;
2483 	}
2484 
2485 	res = kzalloc(struct_size(res, data, buf_len), gfp);
2486 	if (!res)
2487 		return NULL;
2488 
2489 	mle_len = cfg80211_defragment_element(mle, ie, ielen,
2490 					      res->data, buf_len,
2491 					      WLAN_EID_FRAGMENT);
2492 	if (mle_len < 0)
2493 		goto error;
2494 
2495 	res->mle = (void *)res->data;
2496 
2497 	/* Find the sub-element area in the buffer */
2498 	common_size = ieee80211_mle_common_size((u8 *)res->mle);
2499 	ie = res->data + common_size;
2500 	ielen = mle_len - common_size;
2501 
2502 	idx = 0;
2503 	for_each_element_id(elem, IEEE80211_MLE_SUBELEM_PER_STA_PROFILE,
2504 			    ie, ielen) {
2505 		res->sta_prof[idx] = (void *)elem->data;
2506 		res->sta_prof_len[idx] = elem->datalen;
2507 
2508 		idx++;
2509 		if (idx >= IEEE80211_MLD_MAX_NUM_LINKS)
2510 			break;
2511 	}
2512 	if (!for_each_element_completed(elem, ie, ielen))
2513 		goto error;
2514 
2515 	/* Defragment sta_info in-place */
2516 	for (idx = 0; idx < IEEE80211_MLD_MAX_NUM_LINKS && res->sta_prof[idx];
2517 	     idx++) {
2518 		if (res->sta_prof_len[idx] < 255)
2519 			continue;
2520 
2521 		elem = (void *)res->sta_prof[idx] - 2;
2522 
2523 		if (idx + 1 < ARRAY_SIZE(res->sta_prof) &&
2524 		    res->sta_prof[idx + 1])
2525 			buf_len = (u8 *)res->sta_prof[idx + 1] -
2526 				  (u8 *)res->sta_prof[idx];
2527 		else
2528 			buf_len = ielen + ie - (u8 *)elem;
2529 
2530 		res->sta_prof_len[idx] =
2531 			cfg80211_defragment_element(elem,
2532 						    (u8 *)elem, buf_len,
2533 						    (u8 *)res->sta_prof[idx],
2534 						    buf_len,
2535 						    IEEE80211_MLE_SUBELEM_FRAGMENT);
2536 		if (res->sta_prof_len[idx] < 0)
2537 			goto error;
2538 	}
2539 
2540 	return res;
2541 
2542 error:
2543 	kfree(res);
2544 	return NULL;
2545 }
2546 
2547 static u8
2548 cfg80211_tbtt_info_for_mld_ap(const u8 *ie, size_t ielen, u8 mld_id, u8 link_id,
2549 			      const struct ieee80211_neighbor_ap_info **ap_info,
2550 			      const u8 **tbtt_info)
2551 {
2552 	const struct ieee80211_neighbor_ap_info *info;
2553 	const struct element *rnr;
2554 	const u8 *pos, *end;
2555 
2556 	for_each_element_id(rnr, WLAN_EID_REDUCED_NEIGHBOR_REPORT, ie, ielen) {
2557 		pos = rnr->data;
2558 		end = rnr->data + rnr->datalen;
2559 
2560 		/* RNR IE may contain more than one NEIGHBOR_AP_INFO */
2561 		while (sizeof(*info) <= end - pos) {
2562 			const struct ieee80211_rnr_mld_params *mld_params;
2563 			u16 params;
2564 			u8 length, i, count, mld_params_offset;
2565 			u8 type, lid;
2566 			u32 use_for;
2567 
2568 			info = (void *)pos;
2569 			count = u8_get_bits(info->tbtt_info_hdr,
2570 					    IEEE80211_AP_INFO_TBTT_HDR_COUNT) + 1;
2571 			length = info->tbtt_info_len;
2572 
2573 			pos += sizeof(*info);
2574 
2575 			if (count * length > end - pos)
2576 				return 0;
2577 
2578 			type = u8_get_bits(info->tbtt_info_hdr,
2579 					   IEEE80211_AP_INFO_TBTT_HDR_TYPE);
2580 
2581 			if (type == IEEE80211_TBTT_INFO_TYPE_TBTT &&
2582 			    length >=
2583 			    offsetofend(struct ieee80211_tbtt_info_ge_11,
2584 					mld_params)) {
2585 				mld_params_offset =
2586 					offsetof(struct ieee80211_tbtt_info_ge_11, mld_params);
2587 				use_for = NL80211_BSS_USE_FOR_ALL;
2588 			} else if (type == IEEE80211_TBTT_INFO_TYPE_MLD &&
2589 				   length >= sizeof(struct ieee80211_rnr_mld_params)) {
2590 				mld_params_offset = 0;
2591 				use_for = NL80211_BSS_USE_FOR_MLD_LINK;
2592 			} else {
2593 				pos += count * length;
2594 				continue;
2595 			}
2596 
2597 			for (i = 0; i < count; i++) {
2598 				mld_params = (void *)pos + mld_params_offset;
2599 				params = le16_to_cpu(mld_params->params);
2600 
2601 				lid = u16_get_bits(params,
2602 						   IEEE80211_RNR_MLD_PARAMS_LINK_ID);
2603 
2604 				if (mld_id == mld_params->mld_id &&
2605 				    link_id == lid) {
2606 					*ap_info = info;
2607 					*tbtt_info = pos;
2608 
2609 					return use_for;
2610 				}
2611 
2612 				pos += length;
2613 			}
2614 		}
2615 	}
2616 
2617 	return 0;
2618 }
2619 
2620 static void
2621 cfg80211_parse_ml_elem_sta_data(struct wiphy *wiphy,
2622 				struct cfg80211_inform_single_bss_data *tx_data,
2623 				struct cfg80211_bss *source_bss,
2624 				const struct element *elem,
2625 				gfp_t gfp)
2626 {
2627 	struct cfg80211_inform_single_bss_data data = {
2628 		.drv_data = tx_data->drv_data,
2629 		.ftype = tx_data->ftype,
2630 		.source_bss = source_bss,
2631 		.bss_source = BSS_SOURCE_STA_PROFILE,
2632 	};
2633 	struct ieee80211_multi_link_elem *ml_elem;
2634 	struct cfg80211_mle *mle;
2635 	u16 control;
2636 	u8 ml_common_len;
2637 	u8 *new_ie;
2638 	struct cfg80211_bss *bss;
2639 	int mld_id;
2640 	u16 seen_links = 0;
2641 	const u8 *pos;
2642 	u8 i;
2643 
2644 	if (!ieee80211_mle_size_ok(elem->data + 1, elem->datalen - 1))
2645 		return;
2646 
2647 	ml_elem = (void *)elem->data + 1;
2648 	control = le16_to_cpu(ml_elem->control);
2649 	if (u16_get_bits(control, IEEE80211_ML_CONTROL_TYPE) !=
2650 	    IEEE80211_ML_CONTROL_TYPE_BASIC)
2651 		return;
2652 
2653 	/* Must be present when transmitted by an AP (in a probe response) */
2654 	if (!(control & IEEE80211_MLC_BASIC_PRES_BSS_PARAM_CH_CNT) ||
2655 	    !(control & IEEE80211_MLC_BASIC_PRES_LINK_ID) ||
2656 	    !(control & IEEE80211_MLC_BASIC_PRES_MLD_CAPA_OP))
2657 		return;
2658 
2659 	ml_common_len = ml_elem->variable[0];
2660 
2661 	/* length + MLD MAC address + link ID info + BSS Params Change Count */
2662 	pos = ml_elem->variable + 1 + 6 + 1 + 1;
2663 
2664 	if (u16_get_bits(control, IEEE80211_MLC_BASIC_PRES_MED_SYNC_DELAY))
2665 		pos += 2;
2666 	if (u16_get_bits(control, IEEE80211_MLC_BASIC_PRES_EML_CAPA))
2667 		pos += 2;
2668 
2669 	/* MLD capabilities and operations */
2670 	pos += 2;
2671 
2672 	/*
2673 	 * The MLD ID of the reporting AP is always zero. It is set if the AP
2674 	 * is part of an MBSSID set and will be non-zero for ML Elements
2675 	 * relating to a nontransmitted BSS (matching the Multi-BSSID Index,
2676 	 * Draft P802.11be_D3.2, 35.3.4.2)
2677 	 */
2678 	if (u16_get_bits(control, IEEE80211_MLC_BASIC_PRES_MLD_ID)) {
2679 		mld_id = *pos;
2680 		pos += 1;
2681 	} else {
2682 		mld_id = 0;
2683 	}
2684 
2685 	/* Extended MLD capabilities and operations */
2686 	pos += 2;
2687 
2688 	/* Fully defrag the ML element for sta information/profile iteration */
2689 	mle = cfg80211_defrag_mle(elem, tx_data->ie, tx_data->ielen, gfp);
2690 	if (!mle)
2691 		return;
2692 
2693 	new_ie = kmalloc(IEEE80211_MAX_DATA_LEN, gfp);
2694 	if (!new_ie)
2695 		goto out;
2696 
2697 	for (i = 0; i < ARRAY_SIZE(mle->sta_prof) && mle->sta_prof[i]; i++) {
2698 		const struct ieee80211_neighbor_ap_info *ap_info;
2699 		enum nl80211_band band;
2700 		u32 freq;
2701 		const u8 *profile;
2702 		const u8 *tbtt_info;
2703 		ssize_t profile_len;
2704 		u8 link_id, use_for;
2705 
2706 		if (!ieee80211_mle_basic_sta_prof_size_ok((u8 *)mle->sta_prof[i],
2707 							  mle->sta_prof_len[i]))
2708 			continue;
2709 
2710 		control = le16_to_cpu(mle->sta_prof[i]->control);
2711 
2712 		if (!(control & IEEE80211_MLE_STA_CONTROL_COMPLETE_PROFILE))
2713 			continue;
2714 
2715 		link_id = u16_get_bits(control,
2716 				       IEEE80211_MLE_STA_CONTROL_LINK_ID);
2717 		if (seen_links & BIT(link_id))
2718 			break;
2719 		seen_links |= BIT(link_id);
2720 
2721 		if (!(control & IEEE80211_MLE_STA_CONTROL_BEACON_INT_PRESENT) ||
2722 		    !(control & IEEE80211_MLE_STA_CONTROL_TSF_OFFS_PRESENT) ||
2723 		    !(control & IEEE80211_MLE_STA_CONTROL_STA_MAC_ADDR_PRESENT))
2724 			continue;
2725 
2726 		memcpy(data.bssid, mle->sta_prof[i]->variable, ETH_ALEN);
2727 		data.beacon_interval =
2728 			get_unaligned_le16(mle->sta_prof[i]->variable + 6);
2729 		data.tsf = tx_data->tsf +
2730 			   get_unaligned_le64(mle->sta_prof[i]->variable + 8);
2731 
2732 		/* sta_info_len counts itself */
2733 		profile = mle->sta_prof[i]->variable +
2734 			  mle->sta_prof[i]->sta_info_len - 1;
2735 		profile_len = (u8 *)mle->sta_prof[i] + mle->sta_prof_len[i] -
2736 			      profile;
2737 
2738 		if (profile_len < 2)
2739 			continue;
2740 
2741 		data.capability = get_unaligned_le16(profile);
2742 		profile += 2;
2743 		profile_len -= 2;
2744 
2745 		/* Find in RNR to look up channel information */
2746 		use_for = cfg80211_tbtt_info_for_mld_ap(tx_data->ie,
2747 							tx_data->ielen,
2748 							mld_id, link_id,
2749 							&ap_info, &tbtt_info);
2750 		if (!use_for)
2751 			continue;
2752 
2753 		/* We could sanity check the BSSID is included */
2754 
2755 		if (!ieee80211_operating_class_to_band(ap_info->op_class,
2756 						       &band))
2757 			continue;
2758 
2759 		freq = ieee80211_channel_to_freq_khz(ap_info->channel, band);
2760 		data.channel = ieee80211_get_channel_khz(wiphy, freq);
2761 
2762 		if (use_for == NL80211_BSS_USE_FOR_MLD_LINK &&
2763 		    !(wiphy->flags & WIPHY_FLAG_SUPPORTS_NSTR_NONPRIMARY)) {
2764 			use_for = 0;
2765 			data.cannot_use_reasons =
2766 				NL80211_BSS_CANNOT_USE_NSTR_NONPRIMARY;
2767 		}
2768 		data.use_for = use_for;
2769 
2770 		/* Generate new elements */
2771 		memset(new_ie, 0, IEEE80211_MAX_DATA_LEN);
2772 		data.ie = new_ie;
2773 		data.ielen = cfg80211_gen_new_ie(tx_data->ie, tx_data->ielen,
2774 						 profile, profile_len,
2775 						 new_ie,
2776 						 IEEE80211_MAX_DATA_LEN);
2777 		if (!data.ielen)
2778 			continue;
2779 
2780 		/* The generated elements do not contain:
2781 		 *  - Basic ML element
2782 		 *  - A TBTT entry in the RNR for the transmitting AP
2783 		 *
2784 		 * This information is needed both internally and in userspace
2785 		 * as such, we should append it here.
2786 		 */
2787 		if (data.ielen + 3 + sizeof(*ml_elem) + ml_common_len >
2788 		    IEEE80211_MAX_DATA_LEN)
2789 			continue;
2790 
2791 		/* Copy the Basic Multi-Link element including the common
2792 		 * information, and then fix up the link ID.
2793 		 * Note that the ML element length has been verified and we
2794 		 * also checked that it contains the link ID.
2795 		 */
2796 		new_ie[data.ielen++] = WLAN_EID_EXTENSION;
2797 		new_ie[data.ielen++] = 1 + sizeof(*ml_elem) + ml_common_len;
2798 		new_ie[data.ielen++] = WLAN_EID_EXT_EHT_MULTI_LINK;
2799 		memcpy(new_ie + data.ielen, ml_elem,
2800 		       sizeof(*ml_elem) + ml_common_len);
2801 
2802 		new_ie[data.ielen + sizeof(*ml_elem) + 1 + ETH_ALEN] = link_id;
2803 
2804 		data.ielen += sizeof(*ml_elem) + ml_common_len;
2805 
2806 		/* TODO: Add an RNR containing only the reporting AP */
2807 
2808 		bss = cfg80211_inform_single_bss_data(wiphy, &data, gfp);
2809 		if (!bss)
2810 			break;
2811 		cfg80211_put_bss(wiphy, bss);
2812 	}
2813 
2814 out:
2815 	kfree(new_ie);
2816 	kfree(mle);
2817 }
2818 
2819 static void cfg80211_parse_ml_sta_data(struct wiphy *wiphy,
2820 				       struct cfg80211_inform_single_bss_data *tx_data,
2821 				       struct cfg80211_bss *source_bss,
2822 				       gfp_t gfp)
2823 {
2824 	const struct element *elem;
2825 
2826 	if (!source_bss)
2827 		return;
2828 
2829 	if (tx_data->ftype != CFG80211_BSS_FTYPE_PRESP)
2830 		return;
2831 
2832 	for_each_element_extid(elem, WLAN_EID_EXT_EHT_MULTI_LINK,
2833 			       tx_data->ie, tx_data->ielen)
2834 		cfg80211_parse_ml_elem_sta_data(wiphy, tx_data, source_bss,
2835 						elem, gfp);
2836 }
2837 
2838 struct cfg80211_bss *
2839 cfg80211_inform_bss_data(struct wiphy *wiphy,
2840 			 struct cfg80211_inform_bss *data,
2841 			 enum cfg80211_bss_frame_type ftype,
2842 			 const u8 *bssid, u64 tsf, u16 capability,
2843 			 u16 beacon_interval, const u8 *ie, size_t ielen,
2844 			 gfp_t gfp)
2845 {
2846 	struct cfg80211_inform_single_bss_data inform_data = {
2847 		.drv_data = data,
2848 		.ftype = ftype,
2849 		.tsf = tsf,
2850 		.capability = capability,
2851 		.beacon_interval = beacon_interval,
2852 		.ie = ie,
2853 		.ielen = ielen,
2854 		.use_for = data->restrict_use ?
2855 				data->use_for :
2856 				NL80211_BSS_USE_FOR_ALL,
2857 		.cannot_use_reasons = data->cannot_use_reasons,
2858 	};
2859 	struct cfg80211_bss *res;
2860 
2861 	memcpy(inform_data.bssid, bssid, ETH_ALEN);
2862 
2863 	res = cfg80211_inform_single_bss_data(wiphy, &inform_data, gfp);
2864 	if (!res)
2865 		return NULL;
2866 
2867 	cfg80211_parse_mbssid_data(wiphy, &inform_data, res, gfp);
2868 
2869 	cfg80211_parse_ml_sta_data(wiphy, &inform_data, res, gfp);
2870 
2871 	return res;
2872 }
2873 EXPORT_SYMBOL(cfg80211_inform_bss_data);
2874 
2875 static bool cfg80211_uhb_power_type_valid(const u8 *ie,
2876 					  size_t ielen,
2877 					  const u32 flags)
2878 {
2879 	const struct element *tmp;
2880 	struct ieee80211_he_operation *he_oper;
2881 
2882 	tmp = cfg80211_find_ext_elem(WLAN_EID_EXT_HE_OPERATION, ie, ielen);
2883 	if (tmp && tmp->datalen >= sizeof(*he_oper) + 1) {
2884 		const struct ieee80211_he_6ghz_oper *he_6ghz_oper;
2885 
2886 		he_oper = (void *)&tmp->data[1];
2887 		he_6ghz_oper = ieee80211_he_6ghz_oper(he_oper);
2888 
2889 		if (!he_6ghz_oper)
2890 			return false;
2891 
2892 		switch (u8_get_bits(he_6ghz_oper->control,
2893 				    IEEE80211_HE_6GHZ_OPER_CTRL_REG_INFO)) {
2894 		case IEEE80211_6GHZ_CTRL_REG_LPI_AP:
2895 			return true;
2896 		case IEEE80211_6GHZ_CTRL_REG_SP_AP:
2897 			return !(flags & IEEE80211_CHAN_NO_UHB_AFC_CLIENT);
2898 		case IEEE80211_6GHZ_CTRL_REG_VLP_AP:
2899 			return !(flags & IEEE80211_CHAN_NO_UHB_VLP_CLIENT);
2900 		}
2901 	}
2902 	return false;
2903 }
2904 
2905 /* cfg80211_inform_bss_width_frame helper */
2906 static struct cfg80211_bss *
2907 cfg80211_inform_single_bss_frame_data(struct wiphy *wiphy,
2908 				      struct cfg80211_inform_bss *data,
2909 				      struct ieee80211_mgmt *mgmt, size_t len,
2910 				      gfp_t gfp)
2911 {
2912 	struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
2913 	struct cfg80211_internal_bss tmp = {}, *res;
2914 	struct cfg80211_bss_ies *ies;
2915 	struct ieee80211_channel *channel;
2916 	bool signal_valid;
2917 	struct ieee80211_ext *ext = NULL;
2918 	u8 *bssid, *variable;
2919 	u16 capability, beacon_int;
2920 	size_t ielen, min_hdr_len = offsetof(struct ieee80211_mgmt,
2921 					     u.probe_resp.variable);
2922 	int bss_type;
2923 
2924 	BUILD_BUG_ON(offsetof(struct ieee80211_mgmt, u.probe_resp.variable) !=
2925 			offsetof(struct ieee80211_mgmt, u.beacon.variable));
2926 
2927 	trace_cfg80211_inform_bss_frame(wiphy, data, mgmt, len);
2928 
2929 	if (WARN_ON(!mgmt))
2930 		return NULL;
2931 
2932 	if (WARN_ON(!wiphy))
2933 		return NULL;
2934 
2935 	if (WARN_ON(wiphy->signal_type == CFG80211_SIGNAL_TYPE_UNSPEC &&
2936 		    (data->signal < 0 || data->signal > 100)))
2937 		return NULL;
2938 
2939 	if (ieee80211_is_s1g_beacon(mgmt->frame_control)) {
2940 		ext = (void *) mgmt;
2941 		min_hdr_len = offsetof(struct ieee80211_ext, u.s1g_beacon);
2942 		if (ieee80211_is_s1g_short_beacon(mgmt->frame_control))
2943 			min_hdr_len = offsetof(struct ieee80211_ext,
2944 					       u.s1g_short_beacon.variable);
2945 	}
2946 
2947 	if (WARN_ON(len < min_hdr_len))
2948 		return NULL;
2949 
2950 	ielen = len - min_hdr_len;
2951 	variable = mgmt->u.probe_resp.variable;
2952 	if (ext) {
2953 		if (ieee80211_is_s1g_short_beacon(mgmt->frame_control))
2954 			variable = ext->u.s1g_short_beacon.variable;
2955 		else
2956 			variable = ext->u.s1g_beacon.variable;
2957 	}
2958 
2959 	channel = cfg80211_get_bss_channel(wiphy, variable, ielen, data->chan);
2960 	if (!channel)
2961 		return NULL;
2962 
2963 	if (channel->band == NL80211_BAND_6GHZ &&
2964 	    !cfg80211_uhb_power_type_valid(variable, ielen, channel->flags)) {
2965 		data->restrict_use = 1;
2966 		data->use_for = 0;
2967 		data->cannot_use_reasons =
2968 			NL80211_BSS_CANNOT_USE_UHB_PWR_MISMATCH;
2969 	}
2970 
2971 	if (ext) {
2972 		const struct ieee80211_s1g_bcn_compat_ie *compat;
2973 		const struct element *elem;
2974 
2975 		elem = cfg80211_find_elem(WLAN_EID_S1G_BCN_COMPAT,
2976 					  variable, ielen);
2977 		if (!elem)
2978 			return NULL;
2979 		if (elem->datalen < sizeof(*compat))
2980 			return NULL;
2981 		compat = (void *)elem->data;
2982 		bssid = ext->u.s1g_beacon.sa;
2983 		capability = le16_to_cpu(compat->compat_info);
2984 		beacon_int = le16_to_cpu(compat->beacon_int);
2985 	} else {
2986 		bssid = mgmt->bssid;
2987 		beacon_int = le16_to_cpu(mgmt->u.probe_resp.beacon_int);
2988 		capability = le16_to_cpu(mgmt->u.probe_resp.capab_info);
2989 	}
2990 
2991 	if (channel->band == NL80211_BAND_60GHZ) {
2992 		bss_type = capability & WLAN_CAPABILITY_DMG_TYPE_MASK;
2993 		if (bss_type == WLAN_CAPABILITY_DMG_TYPE_AP ||
2994 		    bss_type == WLAN_CAPABILITY_DMG_TYPE_PBSS)
2995 			regulatory_hint_found_beacon(wiphy, channel, gfp);
2996 	} else {
2997 		if (capability & WLAN_CAPABILITY_ESS)
2998 			regulatory_hint_found_beacon(wiphy, channel, gfp);
2999 	}
3000 
3001 	ies = kzalloc(sizeof(*ies) + ielen, gfp);
3002 	if (!ies)
3003 		return NULL;
3004 	ies->len = ielen;
3005 	ies->tsf = le64_to_cpu(mgmt->u.probe_resp.timestamp);
3006 	ies->from_beacon = ieee80211_is_beacon(mgmt->frame_control) ||
3007 			   ieee80211_is_s1g_beacon(mgmt->frame_control);
3008 	memcpy(ies->data, variable, ielen);
3009 
3010 	if (ieee80211_is_probe_resp(mgmt->frame_control))
3011 		rcu_assign_pointer(tmp.pub.proberesp_ies, ies);
3012 	else
3013 		rcu_assign_pointer(tmp.pub.beacon_ies, ies);
3014 	rcu_assign_pointer(tmp.pub.ies, ies);
3015 
3016 	memcpy(tmp.pub.bssid, bssid, ETH_ALEN);
3017 	tmp.pub.beacon_interval = beacon_int;
3018 	tmp.pub.capability = capability;
3019 	tmp.pub.channel = channel;
3020 	tmp.pub.signal = data->signal;
3021 	tmp.ts_boottime = data->boottime_ns;
3022 	tmp.parent_tsf = data->parent_tsf;
3023 	tmp.pub.chains = data->chains;
3024 	memcpy(tmp.pub.chain_signal, data->chain_signal, IEEE80211_MAX_CHAINS);
3025 	ether_addr_copy(tmp.parent_bssid, data->parent_bssid);
3026 	tmp.pub.use_for = data->restrict_use ?
3027 				data->use_for :
3028 				NL80211_BSS_USE_FOR_ALL;
3029 	tmp.pub.cannot_use_reasons = data->cannot_use_reasons;
3030 
3031 	signal_valid = data->chan == channel;
3032 	spin_lock_bh(&rdev->bss_lock);
3033 	res = __cfg80211_bss_update(rdev, &tmp, signal_valid, jiffies);
3034 	if (!res)
3035 		goto drop;
3036 
3037 	rdev_inform_bss(rdev, &res->pub, ies, data->drv_data);
3038 
3039 	spin_unlock_bh(&rdev->bss_lock);
3040 
3041 	trace_cfg80211_return_bss(&res->pub);
3042 	/* __cfg80211_bss_update gives us a referenced result */
3043 	return &res->pub;
3044 
3045 drop:
3046 	spin_unlock_bh(&rdev->bss_lock);
3047 	return NULL;
3048 }
3049 
3050 struct cfg80211_bss *
3051 cfg80211_inform_bss_frame_data(struct wiphy *wiphy,
3052 			       struct cfg80211_inform_bss *data,
3053 			       struct ieee80211_mgmt *mgmt, size_t len,
3054 			       gfp_t gfp)
3055 {
3056 	struct cfg80211_inform_single_bss_data inform_data = {
3057 		.drv_data = data,
3058 		.ie = mgmt->u.probe_resp.variable,
3059 		.ielen = len - offsetof(struct ieee80211_mgmt,
3060 					u.probe_resp.variable),
3061 		.use_for = data->restrict_use ?
3062 				data->use_for :
3063 				NL80211_BSS_USE_FOR_ALL,
3064 		.cannot_use_reasons = data->cannot_use_reasons,
3065 	};
3066 	struct cfg80211_bss *res;
3067 
3068 	res = cfg80211_inform_single_bss_frame_data(wiphy, data, mgmt,
3069 						    len, gfp);
3070 	if (!res)
3071 		return NULL;
3072 
3073 	/* don't do any further MBSSID/ML handling for S1G */
3074 	if (ieee80211_is_s1g_beacon(mgmt->frame_control))
3075 		return res;
3076 
3077 	inform_data.ftype = ieee80211_is_beacon(mgmt->frame_control) ?
3078 		CFG80211_BSS_FTYPE_BEACON : CFG80211_BSS_FTYPE_PRESP;
3079 	memcpy(inform_data.bssid, mgmt->bssid, ETH_ALEN);
3080 	inform_data.tsf = le64_to_cpu(mgmt->u.probe_resp.timestamp);
3081 	inform_data.beacon_interval =
3082 		le16_to_cpu(mgmt->u.probe_resp.beacon_int);
3083 
3084 	/* process each non-transmitting bss */
3085 	cfg80211_parse_mbssid_data(wiphy, &inform_data, res, gfp);
3086 
3087 	cfg80211_parse_ml_sta_data(wiphy, &inform_data, res, gfp);
3088 
3089 	return res;
3090 }
3091 EXPORT_SYMBOL(cfg80211_inform_bss_frame_data);
3092 
3093 void cfg80211_ref_bss(struct wiphy *wiphy, struct cfg80211_bss *pub)
3094 {
3095 	struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
3096 
3097 	if (!pub)
3098 		return;
3099 
3100 	spin_lock_bh(&rdev->bss_lock);
3101 	bss_ref_get(rdev, bss_from_pub(pub));
3102 	spin_unlock_bh(&rdev->bss_lock);
3103 }
3104 EXPORT_SYMBOL(cfg80211_ref_bss);
3105 
3106 void cfg80211_put_bss(struct wiphy *wiphy, struct cfg80211_bss *pub)
3107 {
3108 	struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
3109 
3110 	if (!pub)
3111 		return;
3112 
3113 	spin_lock_bh(&rdev->bss_lock);
3114 	bss_ref_put(rdev, bss_from_pub(pub));
3115 	spin_unlock_bh(&rdev->bss_lock);
3116 }
3117 EXPORT_SYMBOL(cfg80211_put_bss);
3118 
3119 void cfg80211_unlink_bss(struct wiphy *wiphy, struct cfg80211_bss *pub)
3120 {
3121 	struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
3122 	struct cfg80211_internal_bss *bss, *tmp1;
3123 	struct cfg80211_bss *nontrans_bss, *tmp;
3124 
3125 	if (WARN_ON(!pub))
3126 		return;
3127 
3128 	bss = bss_from_pub(pub);
3129 
3130 	spin_lock_bh(&rdev->bss_lock);
3131 	if (list_empty(&bss->list))
3132 		goto out;
3133 
3134 	list_for_each_entry_safe(nontrans_bss, tmp,
3135 				 &pub->nontrans_list,
3136 				 nontrans_list) {
3137 		tmp1 = bss_from_pub(nontrans_bss);
3138 		if (__cfg80211_unlink_bss(rdev, tmp1))
3139 			rdev->bss_generation++;
3140 	}
3141 
3142 	if (__cfg80211_unlink_bss(rdev, bss))
3143 		rdev->bss_generation++;
3144 out:
3145 	spin_unlock_bh(&rdev->bss_lock);
3146 }
3147 EXPORT_SYMBOL(cfg80211_unlink_bss);
3148 
3149 void cfg80211_bss_iter(struct wiphy *wiphy,
3150 		       struct cfg80211_chan_def *chandef,
3151 		       void (*iter)(struct wiphy *wiphy,
3152 				    struct cfg80211_bss *bss,
3153 				    void *data),
3154 		       void *iter_data)
3155 {
3156 	struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
3157 	struct cfg80211_internal_bss *bss;
3158 
3159 	spin_lock_bh(&rdev->bss_lock);
3160 
3161 	list_for_each_entry(bss, &rdev->bss_list, list) {
3162 		if (!chandef || cfg80211_is_sub_chan(chandef, bss->pub.channel,
3163 						     false))
3164 			iter(wiphy, &bss->pub, iter_data);
3165 	}
3166 
3167 	spin_unlock_bh(&rdev->bss_lock);
3168 }
3169 EXPORT_SYMBOL(cfg80211_bss_iter);
3170 
3171 void cfg80211_update_assoc_bss_entry(struct wireless_dev *wdev,
3172 				     unsigned int link_id,
3173 				     struct ieee80211_channel *chan)
3174 {
3175 	struct wiphy *wiphy = wdev->wiphy;
3176 	struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
3177 	struct cfg80211_internal_bss *cbss = wdev->links[link_id].client.current_bss;
3178 	struct cfg80211_internal_bss *new = NULL;
3179 	struct cfg80211_internal_bss *bss;
3180 	struct cfg80211_bss *nontrans_bss;
3181 	struct cfg80211_bss *tmp;
3182 
3183 	spin_lock_bh(&rdev->bss_lock);
3184 
3185 	/*
3186 	 * Some APs use CSA also for bandwidth changes, i.e., without actually
3187 	 * changing the control channel, so no need to update in such a case.
3188 	 */
3189 	if (cbss->pub.channel == chan)
3190 		goto done;
3191 
3192 	/* use transmitting bss */
3193 	if (cbss->pub.transmitted_bss)
3194 		cbss = bss_from_pub(cbss->pub.transmitted_bss);
3195 
3196 	cbss->pub.channel = chan;
3197 
3198 	list_for_each_entry(bss, &rdev->bss_list, list) {
3199 		if (!cfg80211_bss_type_match(bss->pub.capability,
3200 					     bss->pub.channel->band,
3201 					     wdev->conn_bss_type))
3202 			continue;
3203 
3204 		if (bss == cbss)
3205 			continue;
3206 
3207 		if (!cmp_bss(&bss->pub, &cbss->pub, BSS_CMP_REGULAR)) {
3208 			new = bss;
3209 			break;
3210 		}
3211 	}
3212 
3213 	if (new) {
3214 		/* to save time, update IEs for transmitting bss only */
3215 		cfg80211_update_known_bss(rdev, cbss, new, false);
3216 		new->pub.proberesp_ies = NULL;
3217 		new->pub.beacon_ies = NULL;
3218 
3219 		list_for_each_entry_safe(nontrans_bss, tmp,
3220 					 &new->pub.nontrans_list,
3221 					 nontrans_list) {
3222 			bss = bss_from_pub(nontrans_bss);
3223 			if (__cfg80211_unlink_bss(rdev, bss))
3224 				rdev->bss_generation++;
3225 		}
3226 
3227 		WARN_ON(atomic_read(&new->hold));
3228 		if (!WARN_ON(!__cfg80211_unlink_bss(rdev, new)))
3229 			rdev->bss_generation++;
3230 	}
3231 
3232 	rb_erase(&cbss->rbn, &rdev->bss_tree);
3233 	rb_insert_bss(rdev, cbss);
3234 	rdev->bss_generation++;
3235 
3236 	list_for_each_entry_safe(nontrans_bss, tmp,
3237 				 &cbss->pub.nontrans_list,
3238 				 nontrans_list) {
3239 		bss = bss_from_pub(nontrans_bss);
3240 		bss->pub.channel = chan;
3241 		rb_erase(&bss->rbn, &rdev->bss_tree);
3242 		rb_insert_bss(rdev, bss);
3243 		rdev->bss_generation++;
3244 	}
3245 
3246 done:
3247 	spin_unlock_bh(&rdev->bss_lock);
3248 }
3249 
3250 #ifdef CONFIG_CFG80211_WEXT
3251 static struct cfg80211_registered_device *
3252 cfg80211_get_dev_from_ifindex(struct net *net, int ifindex)
3253 {
3254 	struct cfg80211_registered_device *rdev;
3255 	struct net_device *dev;
3256 
3257 	ASSERT_RTNL();
3258 
3259 	dev = dev_get_by_index(net, ifindex);
3260 	if (!dev)
3261 		return ERR_PTR(-ENODEV);
3262 	if (dev->ieee80211_ptr)
3263 		rdev = wiphy_to_rdev(dev->ieee80211_ptr->wiphy);
3264 	else
3265 		rdev = ERR_PTR(-ENODEV);
3266 	dev_put(dev);
3267 	return rdev;
3268 }
3269 
3270 int cfg80211_wext_siwscan(struct net_device *dev,
3271 			  struct iw_request_info *info,
3272 			  union iwreq_data *wrqu, char *extra)
3273 {
3274 	struct cfg80211_registered_device *rdev;
3275 	struct wiphy *wiphy;
3276 	struct iw_scan_req *wreq = NULL;
3277 	struct cfg80211_scan_request *creq;
3278 	int i, err, n_channels = 0;
3279 	enum nl80211_band band;
3280 
3281 	if (!netif_running(dev))
3282 		return -ENETDOWN;
3283 
3284 	if (wrqu->data.length == sizeof(struct iw_scan_req))
3285 		wreq = (struct iw_scan_req *)extra;
3286 
3287 	rdev = cfg80211_get_dev_from_ifindex(dev_net(dev), dev->ifindex);
3288 
3289 	if (IS_ERR(rdev))
3290 		return PTR_ERR(rdev);
3291 
3292 	if (rdev->scan_req || rdev->scan_msg)
3293 		return -EBUSY;
3294 
3295 	wiphy = &rdev->wiphy;
3296 
3297 	/* Determine number of channels, needed to allocate creq */
3298 	if (wreq && wreq->num_channels)
3299 		n_channels = wreq->num_channels;
3300 	else
3301 		n_channels = ieee80211_get_num_supported_channels(wiphy);
3302 
3303 	creq = kzalloc(sizeof(*creq) + sizeof(struct cfg80211_ssid) +
3304 		       n_channels * sizeof(void *),
3305 		       GFP_ATOMIC);
3306 	if (!creq)
3307 		return -ENOMEM;
3308 
3309 	creq->wiphy = wiphy;
3310 	creq->wdev = dev->ieee80211_ptr;
3311 	/* SSIDs come after channels */
3312 	creq->ssids = (void *)&creq->channels[n_channels];
3313 	creq->n_channels = n_channels;
3314 	creq->n_ssids = 1;
3315 	creq->scan_start = jiffies;
3316 
3317 	/* translate "Scan on frequencies" request */
3318 	i = 0;
3319 	for (band = 0; band < NUM_NL80211_BANDS; band++) {
3320 		int j;
3321 
3322 		if (!wiphy->bands[band])
3323 			continue;
3324 
3325 		for (j = 0; j < wiphy->bands[band]->n_channels; j++) {
3326 			/* ignore disabled channels */
3327 			if (wiphy->bands[band]->channels[j].flags &
3328 						IEEE80211_CHAN_DISABLED)
3329 				continue;
3330 
3331 			/* If we have a wireless request structure and the
3332 			 * wireless request specifies frequencies, then search
3333 			 * for the matching hardware channel.
3334 			 */
3335 			if (wreq && wreq->num_channels) {
3336 				int k;
3337 				int wiphy_freq = wiphy->bands[band]->channels[j].center_freq;
3338 				for (k = 0; k < wreq->num_channels; k++) {
3339 					struct iw_freq *freq =
3340 						&wreq->channel_list[k];
3341 					int wext_freq =
3342 						cfg80211_wext_freq(freq);
3343 
3344 					if (wext_freq == wiphy_freq)
3345 						goto wext_freq_found;
3346 				}
3347 				goto wext_freq_not_found;
3348 			}
3349 
3350 		wext_freq_found:
3351 			creq->channels[i] = &wiphy->bands[band]->channels[j];
3352 			i++;
3353 		wext_freq_not_found: ;
3354 		}
3355 	}
3356 	/* No channels found? */
3357 	if (!i) {
3358 		err = -EINVAL;
3359 		goto out;
3360 	}
3361 
3362 	/* Set real number of channels specified in creq->channels[] */
3363 	creq->n_channels = i;
3364 
3365 	/* translate "Scan for SSID" request */
3366 	if (wreq) {
3367 		if (wrqu->data.flags & IW_SCAN_THIS_ESSID) {
3368 			if (wreq->essid_len > IEEE80211_MAX_SSID_LEN) {
3369 				err = -EINVAL;
3370 				goto out;
3371 			}
3372 			memcpy(creq->ssids[0].ssid, wreq->essid, wreq->essid_len);
3373 			creq->ssids[0].ssid_len = wreq->essid_len;
3374 		}
3375 		if (wreq->scan_type == IW_SCAN_TYPE_PASSIVE)
3376 			creq->n_ssids = 0;
3377 	}
3378 
3379 	for (i = 0; i < NUM_NL80211_BANDS; i++)
3380 		if (wiphy->bands[i])
3381 			creq->rates[i] = (1 << wiphy->bands[i]->n_bitrates) - 1;
3382 
3383 	eth_broadcast_addr(creq->bssid);
3384 
3385 	wiphy_lock(&rdev->wiphy);
3386 
3387 	rdev->scan_req = creq;
3388 	err = rdev_scan(rdev, creq);
3389 	if (err) {
3390 		rdev->scan_req = NULL;
3391 		/* creq will be freed below */
3392 	} else {
3393 		nl80211_send_scan_start(rdev, dev->ieee80211_ptr);
3394 		/* creq now owned by driver */
3395 		creq = NULL;
3396 		dev_hold(dev);
3397 	}
3398 	wiphy_unlock(&rdev->wiphy);
3399  out:
3400 	kfree(creq);
3401 	return err;
3402 }
3403 EXPORT_WEXT_HANDLER(cfg80211_wext_siwscan);
3404 
3405 static char *ieee80211_scan_add_ies(struct iw_request_info *info,
3406 				    const struct cfg80211_bss_ies *ies,
3407 				    char *current_ev, char *end_buf)
3408 {
3409 	const u8 *pos, *end, *next;
3410 	struct iw_event iwe;
3411 
3412 	if (!ies)
3413 		return current_ev;
3414 
3415 	/*
3416 	 * If needed, fragment the IEs buffer (at IE boundaries) into short
3417 	 * enough fragments to fit into IW_GENERIC_IE_MAX octet messages.
3418 	 */
3419 	pos = ies->data;
3420 	end = pos + ies->len;
3421 
3422 	while (end - pos > IW_GENERIC_IE_MAX) {
3423 		next = pos + 2 + pos[1];
3424 		while (next + 2 + next[1] - pos < IW_GENERIC_IE_MAX)
3425 			next = next + 2 + next[1];
3426 
3427 		memset(&iwe, 0, sizeof(iwe));
3428 		iwe.cmd = IWEVGENIE;
3429 		iwe.u.data.length = next - pos;
3430 		current_ev = iwe_stream_add_point_check(info, current_ev,
3431 							end_buf, &iwe,
3432 							(void *)pos);
3433 		if (IS_ERR(current_ev))
3434 			return current_ev;
3435 		pos = next;
3436 	}
3437 
3438 	if (end > pos) {
3439 		memset(&iwe, 0, sizeof(iwe));
3440 		iwe.cmd = IWEVGENIE;
3441 		iwe.u.data.length = end - pos;
3442 		current_ev = iwe_stream_add_point_check(info, current_ev,
3443 							end_buf, &iwe,
3444 							(void *)pos);
3445 		if (IS_ERR(current_ev))
3446 			return current_ev;
3447 	}
3448 
3449 	return current_ev;
3450 }
3451 
3452 static char *
3453 ieee80211_bss(struct wiphy *wiphy, struct iw_request_info *info,
3454 	      struct cfg80211_internal_bss *bss, char *current_ev,
3455 	      char *end_buf)
3456 {
3457 	const struct cfg80211_bss_ies *ies;
3458 	struct iw_event iwe;
3459 	const u8 *ie;
3460 	u8 buf[50];
3461 	u8 *cfg, *p, *tmp;
3462 	int rem, i, sig;
3463 	bool ismesh = false;
3464 
3465 	memset(&iwe, 0, sizeof(iwe));
3466 	iwe.cmd = SIOCGIWAP;
3467 	iwe.u.ap_addr.sa_family = ARPHRD_ETHER;
3468 	memcpy(iwe.u.ap_addr.sa_data, bss->pub.bssid, ETH_ALEN);
3469 	current_ev = iwe_stream_add_event_check(info, current_ev, end_buf, &iwe,
3470 						IW_EV_ADDR_LEN);
3471 	if (IS_ERR(current_ev))
3472 		return current_ev;
3473 
3474 	memset(&iwe, 0, sizeof(iwe));
3475 	iwe.cmd = SIOCGIWFREQ;
3476 	iwe.u.freq.m = ieee80211_frequency_to_channel(bss->pub.channel->center_freq);
3477 	iwe.u.freq.e = 0;
3478 	current_ev = iwe_stream_add_event_check(info, current_ev, end_buf, &iwe,
3479 						IW_EV_FREQ_LEN);
3480 	if (IS_ERR(current_ev))
3481 		return current_ev;
3482 
3483 	memset(&iwe, 0, sizeof(iwe));
3484 	iwe.cmd = SIOCGIWFREQ;
3485 	iwe.u.freq.m = bss->pub.channel->center_freq;
3486 	iwe.u.freq.e = 6;
3487 	current_ev = iwe_stream_add_event_check(info, current_ev, end_buf, &iwe,
3488 						IW_EV_FREQ_LEN);
3489 	if (IS_ERR(current_ev))
3490 		return current_ev;
3491 
3492 	if (wiphy->signal_type != CFG80211_SIGNAL_TYPE_NONE) {
3493 		memset(&iwe, 0, sizeof(iwe));
3494 		iwe.cmd = IWEVQUAL;
3495 		iwe.u.qual.updated = IW_QUAL_LEVEL_UPDATED |
3496 				     IW_QUAL_NOISE_INVALID |
3497 				     IW_QUAL_QUAL_UPDATED;
3498 		switch (wiphy->signal_type) {
3499 		case CFG80211_SIGNAL_TYPE_MBM:
3500 			sig = bss->pub.signal / 100;
3501 			iwe.u.qual.level = sig;
3502 			iwe.u.qual.updated |= IW_QUAL_DBM;
3503 			if (sig < -110)		/* rather bad */
3504 				sig = -110;
3505 			else if (sig > -40)	/* perfect */
3506 				sig = -40;
3507 			/* will give a range of 0 .. 70 */
3508 			iwe.u.qual.qual = sig + 110;
3509 			break;
3510 		case CFG80211_SIGNAL_TYPE_UNSPEC:
3511 			iwe.u.qual.level = bss->pub.signal;
3512 			/* will give range 0 .. 100 */
3513 			iwe.u.qual.qual = bss->pub.signal;
3514 			break;
3515 		default:
3516 			/* not reached */
3517 			break;
3518 		}
3519 		current_ev = iwe_stream_add_event_check(info, current_ev,
3520 							end_buf, &iwe,
3521 							IW_EV_QUAL_LEN);
3522 		if (IS_ERR(current_ev))
3523 			return current_ev;
3524 	}
3525 
3526 	memset(&iwe, 0, sizeof(iwe));
3527 	iwe.cmd = SIOCGIWENCODE;
3528 	if (bss->pub.capability & WLAN_CAPABILITY_PRIVACY)
3529 		iwe.u.data.flags = IW_ENCODE_ENABLED | IW_ENCODE_NOKEY;
3530 	else
3531 		iwe.u.data.flags = IW_ENCODE_DISABLED;
3532 	iwe.u.data.length = 0;
3533 	current_ev = iwe_stream_add_point_check(info, current_ev, end_buf,
3534 						&iwe, "");
3535 	if (IS_ERR(current_ev))
3536 		return current_ev;
3537 
3538 	rcu_read_lock();
3539 	ies = rcu_dereference(bss->pub.ies);
3540 	rem = ies->len;
3541 	ie = ies->data;
3542 
3543 	while (rem >= 2) {
3544 		/* invalid data */
3545 		if (ie[1] > rem - 2)
3546 			break;
3547 
3548 		switch (ie[0]) {
3549 		case WLAN_EID_SSID:
3550 			memset(&iwe, 0, sizeof(iwe));
3551 			iwe.cmd = SIOCGIWESSID;
3552 			iwe.u.data.length = ie[1];
3553 			iwe.u.data.flags = 1;
3554 			current_ev = iwe_stream_add_point_check(info,
3555 								current_ev,
3556 								end_buf, &iwe,
3557 								(u8 *)ie + 2);
3558 			if (IS_ERR(current_ev))
3559 				goto unlock;
3560 			break;
3561 		case WLAN_EID_MESH_ID:
3562 			memset(&iwe, 0, sizeof(iwe));
3563 			iwe.cmd = SIOCGIWESSID;
3564 			iwe.u.data.length = ie[1];
3565 			iwe.u.data.flags = 1;
3566 			current_ev = iwe_stream_add_point_check(info,
3567 								current_ev,
3568 								end_buf, &iwe,
3569 								(u8 *)ie + 2);
3570 			if (IS_ERR(current_ev))
3571 				goto unlock;
3572 			break;
3573 		case WLAN_EID_MESH_CONFIG:
3574 			ismesh = true;
3575 			if (ie[1] != sizeof(struct ieee80211_meshconf_ie))
3576 				break;
3577 			cfg = (u8 *)ie + 2;
3578 			memset(&iwe, 0, sizeof(iwe));
3579 			iwe.cmd = IWEVCUSTOM;
3580 			iwe.u.data.length = sprintf(buf,
3581 						    "Mesh Network Path Selection Protocol ID: 0x%02X",
3582 						    cfg[0]);
3583 			current_ev = iwe_stream_add_point_check(info,
3584 								current_ev,
3585 								end_buf,
3586 								&iwe, buf);
3587 			if (IS_ERR(current_ev))
3588 				goto unlock;
3589 			iwe.u.data.length = sprintf(buf,
3590 						    "Path Selection Metric ID: 0x%02X",
3591 						    cfg[1]);
3592 			current_ev = iwe_stream_add_point_check(info,
3593 								current_ev,
3594 								end_buf,
3595 								&iwe, buf);
3596 			if (IS_ERR(current_ev))
3597 				goto unlock;
3598 			iwe.u.data.length = sprintf(buf,
3599 						    "Congestion Control Mode ID: 0x%02X",
3600 						    cfg[2]);
3601 			current_ev = iwe_stream_add_point_check(info,
3602 								current_ev,
3603 								end_buf,
3604 								&iwe, buf);
3605 			if (IS_ERR(current_ev))
3606 				goto unlock;
3607 			iwe.u.data.length = sprintf(buf,
3608 						    "Synchronization ID: 0x%02X",
3609 						    cfg[3]);
3610 			current_ev = iwe_stream_add_point_check(info,
3611 								current_ev,
3612 								end_buf,
3613 								&iwe, buf);
3614 			if (IS_ERR(current_ev))
3615 				goto unlock;
3616 			iwe.u.data.length = sprintf(buf,
3617 						    "Authentication ID: 0x%02X",
3618 						    cfg[4]);
3619 			current_ev = iwe_stream_add_point_check(info,
3620 								current_ev,
3621 								end_buf,
3622 								&iwe, buf);
3623 			if (IS_ERR(current_ev))
3624 				goto unlock;
3625 			iwe.u.data.length = sprintf(buf,
3626 						    "Formation Info: 0x%02X",
3627 						    cfg[5]);
3628 			current_ev = iwe_stream_add_point_check(info,
3629 								current_ev,
3630 								end_buf,
3631 								&iwe, buf);
3632 			if (IS_ERR(current_ev))
3633 				goto unlock;
3634 			iwe.u.data.length = sprintf(buf,
3635 						    "Capabilities: 0x%02X",
3636 						    cfg[6]);
3637 			current_ev = iwe_stream_add_point_check(info,
3638 								current_ev,
3639 								end_buf,
3640 								&iwe, buf);
3641 			if (IS_ERR(current_ev))
3642 				goto unlock;
3643 			break;
3644 		case WLAN_EID_SUPP_RATES:
3645 		case WLAN_EID_EXT_SUPP_RATES:
3646 			/* display all supported rates in readable format */
3647 			p = current_ev + iwe_stream_lcp_len(info);
3648 
3649 			memset(&iwe, 0, sizeof(iwe));
3650 			iwe.cmd = SIOCGIWRATE;
3651 			/* Those two flags are ignored... */
3652 			iwe.u.bitrate.fixed = iwe.u.bitrate.disabled = 0;
3653 
3654 			for (i = 0; i < ie[1]; i++) {
3655 				iwe.u.bitrate.value =
3656 					((ie[i + 2] & 0x7f) * 500000);
3657 				tmp = p;
3658 				p = iwe_stream_add_value(info, current_ev, p,
3659 							 end_buf, &iwe,
3660 							 IW_EV_PARAM_LEN);
3661 				if (p == tmp) {
3662 					current_ev = ERR_PTR(-E2BIG);
3663 					goto unlock;
3664 				}
3665 			}
3666 			current_ev = p;
3667 			break;
3668 		}
3669 		rem -= ie[1] + 2;
3670 		ie += ie[1] + 2;
3671 	}
3672 
3673 	if (bss->pub.capability & (WLAN_CAPABILITY_ESS | WLAN_CAPABILITY_IBSS) ||
3674 	    ismesh) {
3675 		memset(&iwe, 0, sizeof(iwe));
3676 		iwe.cmd = SIOCGIWMODE;
3677 		if (ismesh)
3678 			iwe.u.mode = IW_MODE_MESH;
3679 		else if (bss->pub.capability & WLAN_CAPABILITY_ESS)
3680 			iwe.u.mode = IW_MODE_MASTER;
3681 		else
3682 			iwe.u.mode = IW_MODE_ADHOC;
3683 		current_ev = iwe_stream_add_event_check(info, current_ev,
3684 							end_buf, &iwe,
3685 							IW_EV_UINT_LEN);
3686 		if (IS_ERR(current_ev))
3687 			goto unlock;
3688 	}
3689 
3690 	memset(&iwe, 0, sizeof(iwe));
3691 	iwe.cmd = IWEVCUSTOM;
3692 	iwe.u.data.length = sprintf(buf, "tsf=%016llx",
3693 				    (unsigned long long)(ies->tsf));
3694 	current_ev = iwe_stream_add_point_check(info, current_ev, end_buf,
3695 						&iwe, buf);
3696 	if (IS_ERR(current_ev))
3697 		goto unlock;
3698 	memset(&iwe, 0, sizeof(iwe));
3699 	iwe.cmd = IWEVCUSTOM;
3700 	iwe.u.data.length = sprintf(buf, " Last beacon: %ums ago",
3701 				    elapsed_jiffies_msecs(bss->ts));
3702 	current_ev = iwe_stream_add_point_check(info, current_ev,
3703 						end_buf, &iwe, buf);
3704 	if (IS_ERR(current_ev))
3705 		goto unlock;
3706 
3707 	current_ev = ieee80211_scan_add_ies(info, ies, current_ev, end_buf);
3708 
3709  unlock:
3710 	rcu_read_unlock();
3711 	return current_ev;
3712 }
3713 
3714 
3715 static int ieee80211_scan_results(struct cfg80211_registered_device *rdev,
3716 				  struct iw_request_info *info,
3717 				  char *buf, size_t len)
3718 {
3719 	char *current_ev = buf;
3720 	char *end_buf = buf + len;
3721 	struct cfg80211_internal_bss *bss;
3722 	int err = 0;
3723 
3724 	spin_lock_bh(&rdev->bss_lock);
3725 	cfg80211_bss_expire(rdev);
3726 
3727 	list_for_each_entry(bss, &rdev->bss_list, list) {
3728 		if (buf + len - current_ev <= IW_EV_ADDR_LEN) {
3729 			err = -E2BIG;
3730 			break;
3731 		}
3732 		current_ev = ieee80211_bss(&rdev->wiphy, info, bss,
3733 					   current_ev, end_buf);
3734 		if (IS_ERR(current_ev)) {
3735 			err = PTR_ERR(current_ev);
3736 			break;
3737 		}
3738 	}
3739 	spin_unlock_bh(&rdev->bss_lock);
3740 
3741 	if (err)
3742 		return err;
3743 	return current_ev - buf;
3744 }
3745 
3746 
3747 int cfg80211_wext_giwscan(struct net_device *dev,
3748 			  struct iw_request_info *info,
3749 			  union iwreq_data *wrqu, char *extra)
3750 {
3751 	struct iw_point *data = &wrqu->data;
3752 	struct cfg80211_registered_device *rdev;
3753 	int res;
3754 
3755 	if (!netif_running(dev))
3756 		return -ENETDOWN;
3757 
3758 	rdev = cfg80211_get_dev_from_ifindex(dev_net(dev), dev->ifindex);
3759 
3760 	if (IS_ERR(rdev))
3761 		return PTR_ERR(rdev);
3762 
3763 	if (rdev->scan_req || rdev->scan_msg)
3764 		return -EAGAIN;
3765 
3766 	res = ieee80211_scan_results(rdev, info, extra, data->length);
3767 	data->length = 0;
3768 	if (res >= 0) {
3769 		data->length = res;
3770 		res = 0;
3771 	}
3772 
3773 	return res;
3774 }
3775 EXPORT_WEXT_HANDLER(cfg80211_wext_giwscan);
3776 #endif
3777