1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * cfg80211 scan result handling 4 * 5 * Copyright 2008 Johannes Berg <johannes@sipsolutions.net> 6 * Copyright 2013-2014 Intel Mobile Communications GmbH 7 * Copyright 2016 Intel Deutschland GmbH 8 * Copyright (C) 2018-2023 Intel Corporation 9 */ 10 #include <linux/kernel.h> 11 #include <linux/slab.h> 12 #include <linux/module.h> 13 #include <linux/netdevice.h> 14 #include <linux/wireless.h> 15 #include <linux/nl80211.h> 16 #include <linux/etherdevice.h> 17 #include <linux/crc32.h> 18 #include <linux/bitfield.h> 19 #include <net/arp.h> 20 #include <net/cfg80211.h> 21 #include <net/cfg80211-wext.h> 22 #include <net/iw_handler.h> 23 #include <kunit/visibility.h> 24 #include "core.h" 25 #include "nl80211.h" 26 #include "wext-compat.h" 27 #include "rdev-ops.h" 28 29 /** 30 * DOC: BSS tree/list structure 31 * 32 * At the top level, the BSS list is kept in both a list in each 33 * registered device (@bss_list) as well as an RB-tree for faster 34 * lookup. In the RB-tree, entries can be looked up using their 35 * channel, MESHID, MESHCONF (for MBSSes) or channel, BSSID, SSID 36 * for other BSSes. 37 * 38 * Due to the possibility of hidden SSIDs, there's a second level 39 * structure, the "hidden_list" and "hidden_beacon_bss" pointer. 40 * The hidden_list connects all BSSes belonging to a single AP 41 * that has a hidden SSID, and connects beacon and probe response 42 * entries. For a probe response entry for a hidden SSID, the 43 * hidden_beacon_bss pointer points to the BSS struct holding the 44 * beacon's information. 45 * 46 * Reference counting is done for all these references except for 47 * the hidden_list, so that a beacon BSS struct that is otherwise 48 * not referenced has one reference for being on the bss_list and 49 * one for each probe response entry that points to it using the 50 * hidden_beacon_bss pointer. When a BSS struct that has such a 51 * pointer is get/put, the refcount update is also propagated to 52 * the referenced struct, this ensure that it cannot get removed 53 * while somebody is using the probe response version. 54 * 55 * Note that the hidden_beacon_bss pointer never changes, due to 56 * the reference counting. Therefore, no locking is needed for 57 * it. 58 * 59 * Also note that the hidden_beacon_bss pointer is only relevant 60 * if the driver uses something other than the IEs, e.g. private 61 * data stored in the BSS struct, since the beacon IEs are 62 * also linked into the probe response struct. 63 */ 64 65 /* 66 * Limit the number of BSS entries stored in mac80211. Each one is 67 * a bit over 4k at most, so this limits to roughly 4-5M of memory. 68 * If somebody wants to really attack this though, they'd likely 69 * use small beacons, and only one type of frame, limiting each of 70 * the entries to a much smaller size (in order to generate more 71 * entries in total, so overhead is bigger.) 72 */ 73 static int bss_entries_limit = 1000; 74 module_param(bss_entries_limit, int, 0644); 75 MODULE_PARM_DESC(bss_entries_limit, 76 "limit to number of scan BSS entries (per wiphy, default 1000)"); 77 78 #define IEEE80211_SCAN_RESULT_EXPIRE (30 * HZ) 79 80 /** 81 * struct cfg80211_colocated_ap - colocated AP information 82 * 83 * @list: linked list to all colocated aPS 84 * @bssid: BSSID of the reported AP 85 * @ssid: SSID of the reported AP 86 * @ssid_len: length of the ssid 87 * @center_freq: frequency the reported AP is on 88 * @unsolicited_probe: the reported AP is part of an ESS, where all the APs 89 * that operate in the same channel as the reported AP and that might be 90 * detected by a STA receiving this frame, are transmitting unsolicited 91 * Probe Response frames every 20 TUs 92 * @oct_recommended: OCT is recommended to exchange MMPDUs with the reported AP 93 * @same_ssid: the reported AP has the same SSID as the reporting AP 94 * @multi_bss: the reported AP is part of a multiple BSSID set 95 * @transmitted_bssid: the reported AP is the transmitting BSSID 96 * @colocated_ess: all the APs that share the same ESS as the reported AP are 97 * colocated and can be discovered via legacy bands. 98 * @short_ssid_valid: short_ssid is valid and can be used 99 * @short_ssid: the short SSID for this SSID 100 * @psd_20: The 20MHz PSD EIRP of the primary 20MHz channel for the reported AP 101 */ 102 struct cfg80211_colocated_ap { 103 struct list_head list; 104 u8 bssid[ETH_ALEN]; 105 u8 ssid[IEEE80211_MAX_SSID_LEN]; 106 size_t ssid_len; 107 u32 short_ssid; 108 u32 center_freq; 109 u8 unsolicited_probe:1, 110 oct_recommended:1, 111 same_ssid:1, 112 multi_bss:1, 113 transmitted_bssid:1, 114 colocated_ess:1, 115 short_ssid_valid:1; 116 s8 psd_20; 117 }; 118 119 static void bss_free(struct cfg80211_internal_bss *bss) 120 { 121 struct cfg80211_bss_ies *ies; 122 123 if (WARN_ON(atomic_read(&bss->hold))) 124 return; 125 126 ies = (void *)rcu_access_pointer(bss->pub.beacon_ies); 127 if (ies && !bss->pub.hidden_beacon_bss) 128 kfree_rcu(ies, rcu_head); 129 ies = (void *)rcu_access_pointer(bss->pub.proberesp_ies); 130 if (ies) 131 kfree_rcu(ies, rcu_head); 132 133 /* 134 * This happens when the module is removed, it doesn't 135 * really matter any more save for completeness 136 */ 137 if (!list_empty(&bss->hidden_list)) 138 list_del(&bss->hidden_list); 139 140 kfree(bss); 141 } 142 143 static inline void bss_ref_get(struct cfg80211_registered_device *rdev, 144 struct cfg80211_internal_bss *bss) 145 { 146 lockdep_assert_held(&rdev->bss_lock); 147 148 bss->refcount++; 149 150 if (bss->pub.hidden_beacon_bss) 151 bss_from_pub(bss->pub.hidden_beacon_bss)->refcount++; 152 153 if (bss->pub.transmitted_bss) 154 bss_from_pub(bss->pub.transmitted_bss)->refcount++; 155 } 156 157 static inline void bss_ref_put(struct cfg80211_registered_device *rdev, 158 struct cfg80211_internal_bss *bss) 159 { 160 lockdep_assert_held(&rdev->bss_lock); 161 162 if (bss->pub.hidden_beacon_bss) { 163 struct cfg80211_internal_bss *hbss; 164 165 hbss = bss_from_pub(bss->pub.hidden_beacon_bss); 166 hbss->refcount--; 167 if (hbss->refcount == 0) 168 bss_free(hbss); 169 } 170 171 if (bss->pub.transmitted_bss) { 172 struct cfg80211_internal_bss *tbss; 173 174 tbss = bss_from_pub(bss->pub.transmitted_bss); 175 tbss->refcount--; 176 if (tbss->refcount == 0) 177 bss_free(tbss); 178 } 179 180 bss->refcount--; 181 if (bss->refcount == 0) 182 bss_free(bss); 183 } 184 185 static bool __cfg80211_unlink_bss(struct cfg80211_registered_device *rdev, 186 struct cfg80211_internal_bss *bss) 187 { 188 lockdep_assert_held(&rdev->bss_lock); 189 190 if (!list_empty(&bss->hidden_list)) { 191 /* 192 * don't remove the beacon entry if it has 193 * probe responses associated with it 194 */ 195 if (!bss->pub.hidden_beacon_bss) 196 return false; 197 /* 198 * if it's a probe response entry break its 199 * link to the other entries in the group 200 */ 201 list_del_init(&bss->hidden_list); 202 } 203 204 list_del_init(&bss->list); 205 list_del_init(&bss->pub.nontrans_list); 206 rb_erase(&bss->rbn, &rdev->bss_tree); 207 rdev->bss_entries--; 208 WARN_ONCE((rdev->bss_entries == 0) ^ list_empty(&rdev->bss_list), 209 "rdev bss entries[%d]/list[empty:%d] corruption\n", 210 rdev->bss_entries, list_empty(&rdev->bss_list)); 211 bss_ref_put(rdev, bss); 212 return true; 213 } 214 215 bool cfg80211_is_element_inherited(const struct element *elem, 216 const struct element *non_inherit_elem) 217 { 218 u8 id_len, ext_id_len, i, loop_len, id; 219 const u8 *list; 220 221 if (elem->id == WLAN_EID_MULTIPLE_BSSID) 222 return false; 223 224 if (elem->id == WLAN_EID_EXTENSION && elem->datalen > 1 && 225 elem->data[0] == WLAN_EID_EXT_EHT_MULTI_LINK) 226 return false; 227 228 if (!non_inherit_elem || non_inherit_elem->datalen < 2) 229 return true; 230 231 /* 232 * non inheritance element format is: 233 * ext ID (56) | IDs list len | list | extension IDs list len | list 234 * Both lists are optional. Both lengths are mandatory. 235 * This means valid length is: 236 * elem_len = 1 (extension ID) + 2 (list len fields) + list lengths 237 */ 238 id_len = non_inherit_elem->data[1]; 239 if (non_inherit_elem->datalen < 3 + id_len) 240 return true; 241 242 ext_id_len = non_inherit_elem->data[2 + id_len]; 243 if (non_inherit_elem->datalen < 3 + id_len + ext_id_len) 244 return true; 245 246 if (elem->id == WLAN_EID_EXTENSION) { 247 if (!ext_id_len) 248 return true; 249 loop_len = ext_id_len; 250 list = &non_inherit_elem->data[3 + id_len]; 251 id = elem->data[0]; 252 } else { 253 if (!id_len) 254 return true; 255 loop_len = id_len; 256 list = &non_inherit_elem->data[2]; 257 id = elem->id; 258 } 259 260 for (i = 0; i < loop_len; i++) { 261 if (list[i] == id) 262 return false; 263 } 264 265 return true; 266 } 267 EXPORT_SYMBOL(cfg80211_is_element_inherited); 268 269 static size_t cfg80211_copy_elem_with_frags(const struct element *elem, 270 const u8 *ie, size_t ie_len, 271 u8 **pos, u8 *buf, size_t buf_len) 272 { 273 if (WARN_ON((u8 *)elem < ie || elem->data > ie + ie_len || 274 elem->data + elem->datalen > ie + ie_len)) 275 return 0; 276 277 if (elem->datalen + 2 > buf + buf_len - *pos) 278 return 0; 279 280 memcpy(*pos, elem, elem->datalen + 2); 281 *pos += elem->datalen + 2; 282 283 /* Finish if it is not fragmented */ 284 if (elem->datalen != 255) 285 return *pos - buf; 286 287 ie_len = ie + ie_len - elem->data - elem->datalen; 288 ie = (const u8 *)elem->data + elem->datalen; 289 290 for_each_element(elem, ie, ie_len) { 291 if (elem->id != WLAN_EID_FRAGMENT) 292 break; 293 294 if (elem->datalen + 2 > buf + buf_len - *pos) 295 return 0; 296 297 memcpy(*pos, elem, elem->datalen + 2); 298 *pos += elem->datalen + 2; 299 300 if (elem->datalen != 255) 301 break; 302 } 303 304 return *pos - buf; 305 } 306 307 VISIBLE_IF_CFG80211_KUNIT size_t 308 cfg80211_gen_new_ie(const u8 *ie, size_t ielen, 309 const u8 *subie, size_t subie_len, 310 u8 *new_ie, size_t new_ie_len) 311 { 312 const struct element *non_inherit_elem, *parent, *sub; 313 u8 *pos = new_ie; 314 u8 id, ext_id; 315 unsigned int match_len; 316 317 non_inherit_elem = cfg80211_find_ext_elem(WLAN_EID_EXT_NON_INHERITANCE, 318 subie, subie_len); 319 320 /* We copy the elements one by one from the parent to the generated 321 * elements. 322 * If they are not inherited (included in subie or in the non 323 * inheritance element), then we copy all occurrences the first time 324 * we see this element type. 325 */ 326 for_each_element(parent, ie, ielen) { 327 if (parent->id == WLAN_EID_FRAGMENT) 328 continue; 329 330 if (parent->id == WLAN_EID_EXTENSION) { 331 if (parent->datalen < 1) 332 continue; 333 334 id = WLAN_EID_EXTENSION; 335 ext_id = parent->data[0]; 336 match_len = 1; 337 } else { 338 id = parent->id; 339 match_len = 0; 340 } 341 342 /* Find first occurrence in subie */ 343 sub = cfg80211_find_elem_match(id, subie, subie_len, 344 &ext_id, match_len, 0); 345 346 /* Copy from parent if not in subie and inherited */ 347 if (!sub && 348 cfg80211_is_element_inherited(parent, non_inherit_elem)) { 349 if (!cfg80211_copy_elem_with_frags(parent, 350 ie, ielen, 351 &pos, new_ie, 352 new_ie_len)) 353 return 0; 354 355 continue; 356 } 357 358 /* Already copied if an earlier element had the same type */ 359 if (cfg80211_find_elem_match(id, ie, (u8 *)parent - ie, 360 &ext_id, match_len, 0)) 361 continue; 362 363 /* Not inheriting, copy all similar elements from subie */ 364 while (sub) { 365 if (!cfg80211_copy_elem_with_frags(sub, 366 subie, subie_len, 367 &pos, new_ie, 368 new_ie_len)) 369 return 0; 370 371 sub = cfg80211_find_elem_match(id, 372 sub->data + sub->datalen, 373 subie_len + subie - 374 (sub->data + 375 sub->datalen), 376 &ext_id, match_len, 0); 377 } 378 } 379 380 /* The above misses elements that are included in subie but not in the 381 * parent, so do a pass over subie and append those. 382 * Skip the non-tx BSSID caps and non-inheritance element. 383 */ 384 for_each_element(sub, subie, subie_len) { 385 if (sub->id == WLAN_EID_NON_TX_BSSID_CAP) 386 continue; 387 388 if (sub->id == WLAN_EID_FRAGMENT) 389 continue; 390 391 if (sub->id == WLAN_EID_EXTENSION) { 392 if (sub->datalen < 1) 393 continue; 394 395 id = WLAN_EID_EXTENSION; 396 ext_id = sub->data[0]; 397 match_len = 1; 398 399 if (ext_id == WLAN_EID_EXT_NON_INHERITANCE) 400 continue; 401 } else { 402 id = sub->id; 403 match_len = 0; 404 } 405 406 /* Processed if one was included in the parent */ 407 if (cfg80211_find_elem_match(id, ie, ielen, 408 &ext_id, match_len, 0)) 409 continue; 410 411 if (!cfg80211_copy_elem_with_frags(sub, subie, subie_len, 412 &pos, new_ie, new_ie_len)) 413 return 0; 414 } 415 416 return pos - new_ie; 417 } 418 EXPORT_SYMBOL_IF_CFG80211_KUNIT(cfg80211_gen_new_ie); 419 420 static bool is_bss(struct cfg80211_bss *a, const u8 *bssid, 421 const u8 *ssid, size_t ssid_len) 422 { 423 const struct cfg80211_bss_ies *ies; 424 const struct element *ssid_elem; 425 426 if (bssid && !ether_addr_equal(a->bssid, bssid)) 427 return false; 428 429 if (!ssid) 430 return true; 431 432 ies = rcu_access_pointer(a->ies); 433 if (!ies) 434 return false; 435 ssid_elem = cfg80211_find_elem(WLAN_EID_SSID, ies->data, ies->len); 436 if (!ssid_elem) 437 return false; 438 if (ssid_elem->datalen != ssid_len) 439 return false; 440 return memcmp(ssid_elem->data, ssid, ssid_len) == 0; 441 } 442 443 static int 444 cfg80211_add_nontrans_list(struct cfg80211_bss *trans_bss, 445 struct cfg80211_bss *nontrans_bss) 446 { 447 const struct element *ssid_elem; 448 struct cfg80211_bss *bss = NULL; 449 450 rcu_read_lock(); 451 ssid_elem = ieee80211_bss_get_elem(nontrans_bss, WLAN_EID_SSID); 452 if (!ssid_elem) { 453 rcu_read_unlock(); 454 return -EINVAL; 455 } 456 457 /* check if nontrans_bss is in the list */ 458 list_for_each_entry(bss, &trans_bss->nontrans_list, nontrans_list) { 459 if (is_bss(bss, nontrans_bss->bssid, ssid_elem->data, 460 ssid_elem->datalen)) { 461 rcu_read_unlock(); 462 return 0; 463 } 464 } 465 466 rcu_read_unlock(); 467 468 /* 469 * This is a bit weird - it's not on the list, but already on another 470 * one! The only way that could happen is if there's some BSSID/SSID 471 * shared by multiple APs in their multi-BSSID profiles, potentially 472 * with hidden SSID mixed in ... ignore it. 473 */ 474 if (!list_empty(&nontrans_bss->nontrans_list)) 475 return -EINVAL; 476 477 /* add to the list */ 478 list_add_tail(&nontrans_bss->nontrans_list, &trans_bss->nontrans_list); 479 return 0; 480 } 481 482 static void __cfg80211_bss_expire(struct cfg80211_registered_device *rdev, 483 unsigned long expire_time) 484 { 485 struct cfg80211_internal_bss *bss, *tmp; 486 bool expired = false; 487 488 lockdep_assert_held(&rdev->bss_lock); 489 490 list_for_each_entry_safe(bss, tmp, &rdev->bss_list, list) { 491 if (atomic_read(&bss->hold)) 492 continue; 493 if (!time_after(expire_time, bss->ts)) 494 continue; 495 496 if (__cfg80211_unlink_bss(rdev, bss)) 497 expired = true; 498 } 499 500 if (expired) 501 rdev->bss_generation++; 502 } 503 504 static bool cfg80211_bss_expire_oldest(struct cfg80211_registered_device *rdev) 505 { 506 struct cfg80211_internal_bss *bss, *oldest = NULL; 507 bool ret; 508 509 lockdep_assert_held(&rdev->bss_lock); 510 511 list_for_each_entry(bss, &rdev->bss_list, list) { 512 if (atomic_read(&bss->hold)) 513 continue; 514 515 if (!list_empty(&bss->hidden_list) && 516 !bss->pub.hidden_beacon_bss) 517 continue; 518 519 if (oldest && time_before(oldest->ts, bss->ts)) 520 continue; 521 oldest = bss; 522 } 523 524 if (WARN_ON(!oldest)) 525 return false; 526 527 /* 528 * The callers make sure to increase rdev->bss_generation if anything 529 * gets removed (and a new entry added), so there's no need to also do 530 * it here. 531 */ 532 533 ret = __cfg80211_unlink_bss(rdev, oldest); 534 WARN_ON(!ret); 535 return ret; 536 } 537 538 static u8 cfg80211_parse_bss_param(u8 data, 539 struct cfg80211_colocated_ap *coloc_ap) 540 { 541 coloc_ap->oct_recommended = 542 u8_get_bits(data, IEEE80211_RNR_TBTT_PARAMS_OCT_RECOMMENDED); 543 coloc_ap->same_ssid = 544 u8_get_bits(data, IEEE80211_RNR_TBTT_PARAMS_SAME_SSID); 545 coloc_ap->multi_bss = 546 u8_get_bits(data, IEEE80211_RNR_TBTT_PARAMS_MULTI_BSSID); 547 coloc_ap->transmitted_bssid = 548 u8_get_bits(data, IEEE80211_RNR_TBTT_PARAMS_TRANSMITTED_BSSID); 549 coloc_ap->unsolicited_probe = 550 u8_get_bits(data, IEEE80211_RNR_TBTT_PARAMS_PROBE_ACTIVE); 551 coloc_ap->colocated_ess = 552 u8_get_bits(data, IEEE80211_RNR_TBTT_PARAMS_COLOC_ESS); 553 554 return u8_get_bits(data, IEEE80211_RNR_TBTT_PARAMS_COLOC_AP); 555 } 556 557 static int cfg80211_calc_short_ssid(const struct cfg80211_bss_ies *ies, 558 const struct element **elem, u32 *s_ssid) 559 { 560 561 *elem = cfg80211_find_elem(WLAN_EID_SSID, ies->data, ies->len); 562 if (!*elem || (*elem)->datalen > IEEE80211_MAX_SSID_LEN) 563 return -EINVAL; 564 565 *s_ssid = ~crc32_le(~0, (*elem)->data, (*elem)->datalen); 566 return 0; 567 } 568 569 static void cfg80211_free_coloc_ap_list(struct list_head *coloc_ap_list) 570 { 571 struct cfg80211_colocated_ap *ap, *tmp_ap; 572 573 list_for_each_entry_safe(ap, tmp_ap, coloc_ap_list, list) { 574 list_del(&ap->list); 575 kfree(ap); 576 } 577 } 578 579 static int cfg80211_parse_ap_info(struct cfg80211_colocated_ap *entry, 580 const u8 *pos, u8 length, 581 const struct element *ssid_elem, 582 u32 s_ssid_tmp) 583 { 584 u8 bss_params; 585 586 entry->psd_20 = IEEE80211_RNR_TBTT_PARAMS_PSD_RESERVED; 587 588 /* The length is already verified by the caller to contain bss_params */ 589 if (length > sizeof(struct ieee80211_tbtt_info_7_8_9)) { 590 struct ieee80211_tbtt_info_ge_11 *tbtt_info = (void *)pos; 591 592 memcpy(entry->bssid, tbtt_info->bssid, ETH_ALEN); 593 entry->short_ssid = le32_to_cpu(tbtt_info->short_ssid); 594 entry->short_ssid_valid = true; 595 596 bss_params = tbtt_info->bss_params; 597 598 /* Ignore disabled links */ 599 if (length >= offsetofend(typeof(*tbtt_info), mld_params)) { 600 if (le16_get_bits(tbtt_info->mld_params.params, 601 IEEE80211_RNR_MLD_PARAMS_DISABLED_LINK)) 602 return -EINVAL; 603 } 604 605 if (length >= offsetofend(struct ieee80211_tbtt_info_ge_11, 606 psd_20)) 607 entry->psd_20 = tbtt_info->psd_20; 608 } else { 609 struct ieee80211_tbtt_info_7_8_9 *tbtt_info = (void *)pos; 610 611 memcpy(entry->bssid, tbtt_info->bssid, ETH_ALEN); 612 613 bss_params = tbtt_info->bss_params; 614 615 if (length == offsetofend(struct ieee80211_tbtt_info_7_8_9, 616 psd_20)) 617 entry->psd_20 = tbtt_info->psd_20; 618 } 619 620 /* ignore entries with invalid BSSID */ 621 if (!is_valid_ether_addr(entry->bssid)) 622 return -EINVAL; 623 624 /* skip non colocated APs */ 625 if (!cfg80211_parse_bss_param(bss_params, entry)) 626 return -EINVAL; 627 628 /* no information about the short ssid. Consider the entry valid 629 * for now. It would later be dropped in case there are explicit 630 * SSIDs that need to be matched 631 */ 632 if (!entry->same_ssid && !entry->short_ssid_valid) 633 return 0; 634 635 if (entry->same_ssid) { 636 entry->short_ssid = s_ssid_tmp; 637 entry->short_ssid_valid = true; 638 639 /* 640 * This is safe because we validate datalen in 641 * cfg80211_parse_colocated_ap(), before calling this 642 * function. 643 */ 644 memcpy(&entry->ssid, &ssid_elem->data, ssid_elem->datalen); 645 entry->ssid_len = ssid_elem->datalen; 646 } 647 648 return 0; 649 } 650 651 static int cfg80211_parse_colocated_ap(const struct cfg80211_bss_ies *ies, 652 struct list_head *list) 653 { 654 struct ieee80211_neighbor_ap_info *ap_info; 655 const struct element *elem, *ssid_elem; 656 const u8 *pos, *end; 657 u32 s_ssid_tmp; 658 int n_coloc = 0, ret; 659 LIST_HEAD(ap_list); 660 661 ret = cfg80211_calc_short_ssid(ies, &ssid_elem, &s_ssid_tmp); 662 if (ret) 663 return 0; 664 665 for_each_element_id(elem, WLAN_EID_REDUCED_NEIGHBOR_REPORT, 666 ies->data, ies->len) { 667 pos = elem->data; 668 end = elem->data + elem->datalen; 669 670 /* RNR IE may contain more than one NEIGHBOR_AP_INFO */ 671 while (pos + sizeof(*ap_info) <= end) { 672 enum nl80211_band band; 673 int freq; 674 u8 length, i, count; 675 676 ap_info = (void *)pos; 677 count = u8_get_bits(ap_info->tbtt_info_hdr, 678 IEEE80211_AP_INFO_TBTT_HDR_COUNT) + 1; 679 length = ap_info->tbtt_info_len; 680 681 pos += sizeof(*ap_info); 682 683 if (!ieee80211_operating_class_to_band(ap_info->op_class, 684 &band)) 685 break; 686 687 freq = ieee80211_channel_to_frequency(ap_info->channel, 688 band); 689 690 if (end - pos < count * length) 691 break; 692 693 if (u8_get_bits(ap_info->tbtt_info_hdr, 694 IEEE80211_AP_INFO_TBTT_HDR_TYPE) != 695 IEEE80211_TBTT_INFO_TYPE_TBTT) { 696 pos += count * length; 697 continue; 698 } 699 700 /* TBTT info must include bss param + BSSID + 701 * (short SSID or same_ssid bit to be set). 702 * ignore other options, and move to the 703 * next AP info 704 */ 705 if (band != NL80211_BAND_6GHZ || 706 !(length == offsetofend(struct ieee80211_tbtt_info_7_8_9, 707 bss_params) || 708 length == sizeof(struct ieee80211_tbtt_info_7_8_9) || 709 length >= offsetofend(struct ieee80211_tbtt_info_ge_11, 710 bss_params))) { 711 pos += count * length; 712 continue; 713 } 714 715 for (i = 0; i < count; i++) { 716 struct cfg80211_colocated_ap *entry; 717 718 entry = kzalloc(sizeof(*entry) + IEEE80211_MAX_SSID_LEN, 719 GFP_ATOMIC); 720 721 if (!entry) 722 goto error; 723 724 entry->center_freq = freq; 725 726 if (!cfg80211_parse_ap_info(entry, pos, length, 727 ssid_elem, 728 s_ssid_tmp)) { 729 n_coloc++; 730 list_add_tail(&entry->list, &ap_list); 731 } else { 732 kfree(entry); 733 } 734 735 pos += length; 736 } 737 } 738 739 error: 740 if (pos != end) { 741 cfg80211_free_coloc_ap_list(&ap_list); 742 return 0; 743 } 744 } 745 746 list_splice_tail(&ap_list, list); 747 return n_coloc; 748 } 749 750 static void cfg80211_scan_req_add_chan(struct cfg80211_scan_request *request, 751 struct ieee80211_channel *chan, 752 bool add_to_6ghz) 753 { 754 int i; 755 u32 n_channels = request->n_channels; 756 struct cfg80211_scan_6ghz_params *params = 757 &request->scan_6ghz_params[request->n_6ghz_params]; 758 759 for (i = 0; i < n_channels; i++) { 760 if (request->channels[i] == chan) { 761 if (add_to_6ghz) 762 params->channel_idx = i; 763 return; 764 } 765 } 766 767 request->channels[n_channels] = chan; 768 if (add_to_6ghz) 769 request->scan_6ghz_params[request->n_6ghz_params].channel_idx = 770 n_channels; 771 772 request->n_channels++; 773 } 774 775 static bool cfg80211_find_ssid_match(struct cfg80211_colocated_ap *ap, 776 struct cfg80211_scan_request *request) 777 { 778 int i; 779 u32 s_ssid; 780 781 for (i = 0; i < request->n_ssids; i++) { 782 /* wildcard ssid in the scan request */ 783 if (!request->ssids[i].ssid_len) { 784 if (ap->multi_bss && !ap->transmitted_bssid) 785 continue; 786 787 return true; 788 } 789 790 if (ap->ssid_len && 791 ap->ssid_len == request->ssids[i].ssid_len) { 792 if (!memcmp(request->ssids[i].ssid, ap->ssid, 793 ap->ssid_len)) 794 return true; 795 } else if (ap->short_ssid_valid) { 796 s_ssid = ~crc32_le(~0, request->ssids[i].ssid, 797 request->ssids[i].ssid_len); 798 799 if (ap->short_ssid == s_ssid) 800 return true; 801 } 802 } 803 804 return false; 805 } 806 807 static int cfg80211_scan_6ghz(struct cfg80211_registered_device *rdev) 808 { 809 u8 i; 810 struct cfg80211_colocated_ap *ap; 811 int n_channels, count = 0, err; 812 struct cfg80211_scan_request *request, *rdev_req = rdev->scan_req; 813 LIST_HEAD(coloc_ap_list); 814 bool need_scan_psc = true; 815 const struct ieee80211_sband_iftype_data *iftd; 816 817 rdev_req->scan_6ghz = true; 818 819 if (!rdev->wiphy.bands[NL80211_BAND_6GHZ]) 820 return -EOPNOTSUPP; 821 822 iftd = ieee80211_get_sband_iftype_data(rdev->wiphy.bands[NL80211_BAND_6GHZ], 823 rdev_req->wdev->iftype); 824 if (!iftd || !iftd->he_cap.has_he) 825 return -EOPNOTSUPP; 826 827 n_channels = rdev->wiphy.bands[NL80211_BAND_6GHZ]->n_channels; 828 829 if (rdev_req->flags & NL80211_SCAN_FLAG_COLOCATED_6GHZ) { 830 struct cfg80211_internal_bss *intbss; 831 832 spin_lock_bh(&rdev->bss_lock); 833 list_for_each_entry(intbss, &rdev->bss_list, list) { 834 struct cfg80211_bss *res = &intbss->pub; 835 const struct cfg80211_bss_ies *ies; 836 const struct element *ssid_elem; 837 struct cfg80211_colocated_ap *entry; 838 u32 s_ssid_tmp; 839 int ret; 840 841 ies = rcu_access_pointer(res->ies); 842 count += cfg80211_parse_colocated_ap(ies, 843 &coloc_ap_list); 844 845 /* In case the scan request specified a specific BSSID 846 * and the BSS is found and operating on 6GHz band then 847 * add this AP to the collocated APs list. 848 * This is relevant for ML probe requests when the lower 849 * band APs have not been discovered. 850 */ 851 if (is_broadcast_ether_addr(rdev_req->bssid) || 852 !ether_addr_equal(rdev_req->bssid, res->bssid) || 853 res->channel->band != NL80211_BAND_6GHZ) 854 continue; 855 856 ret = cfg80211_calc_short_ssid(ies, &ssid_elem, 857 &s_ssid_tmp); 858 if (ret) 859 continue; 860 861 entry = kzalloc(sizeof(*entry) + IEEE80211_MAX_SSID_LEN, 862 GFP_ATOMIC); 863 864 if (!entry) 865 continue; 866 867 memcpy(entry->bssid, res->bssid, ETH_ALEN); 868 entry->short_ssid = s_ssid_tmp; 869 memcpy(entry->ssid, ssid_elem->data, 870 ssid_elem->datalen); 871 entry->ssid_len = ssid_elem->datalen; 872 entry->short_ssid_valid = true; 873 entry->center_freq = res->channel->center_freq; 874 875 list_add_tail(&entry->list, &coloc_ap_list); 876 count++; 877 } 878 spin_unlock_bh(&rdev->bss_lock); 879 } 880 881 request = kzalloc(struct_size(request, channels, n_channels) + 882 sizeof(*request->scan_6ghz_params) * count + 883 sizeof(*request->ssids) * rdev_req->n_ssids, 884 GFP_KERNEL); 885 if (!request) { 886 cfg80211_free_coloc_ap_list(&coloc_ap_list); 887 return -ENOMEM; 888 } 889 890 *request = *rdev_req; 891 request->n_channels = 0; 892 request->scan_6ghz_params = 893 (void *)&request->channels[n_channels]; 894 895 /* 896 * PSC channels should not be scanned in case of direct scan with 1 SSID 897 * and at least one of the reported co-located APs with same SSID 898 * indicating that all APs in the same ESS are co-located 899 */ 900 if (count && request->n_ssids == 1 && request->ssids[0].ssid_len) { 901 list_for_each_entry(ap, &coloc_ap_list, list) { 902 if (ap->colocated_ess && 903 cfg80211_find_ssid_match(ap, request)) { 904 need_scan_psc = false; 905 break; 906 } 907 } 908 } 909 910 /* 911 * add to the scan request the channels that need to be scanned 912 * regardless of the collocated APs (PSC channels or all channels 913 * in case that NL80211_SCAN_FLAG_COLOCATED_6GHZ is not set) 914 */ 915 for (i = 0; i < rdev_req->n_channels; i++) { 916 if (rdev_req->channels[i]->band == NL80211_BAND_6GHZ && 917 ((need_scan_psc && 918 cfg80211_channel_is_psc(rdev_req->channels[i])) || 919 !(rdev_req->flags & NL80211_SCAN_FLAG_COLOCATED_6GHZ))) { 920 cfg80211_scan_req_add_chan(request, 921 rdev_req->channels[i], 922 false); 923 } 924 } 925 926 if (!(rdev_req->flags & NL80211_SCAN_FLAG_COLOCATED_6GHZ)) 927 goto skip; 928 929 list_for_each_entry(ap, &coloc_ap_list, list) { 930 bool found = false; 931 struct cfg80211_scan_6ghz_params *scan_6ghz_params = 932 &request->scan_6ghz_params[request->n_6ghz_params]; 933 struct ieee80211_channel *chan = 934 ieee80211_get_channel(&rdev->wiphy, ap->center_freq); 935 936 if (!chan || chan->flags & IEEE80211_CHAN_DISABLED) 937 continue; 938 939 for (i = 0; i < rdev_req->n_channels; i++) { 940 if (rdev_req->channels[i] == chan) 941 found = true; 942 } 943 944 if (!found) 945 continue; 946 947 if (request->n_ssids > 0 && 948 !cfg80211_find_ssid_match(ap, request)) 949 continue; 950 951 if (!is_broadcast_ether_addr(request->bssid) && 952 !ether_addr_equal(request->bssid, ap->bssid)) 953 continue; 954 955 if (!request->n_ssids && ap->multi_bss && !ap->transmitted_bssid) 956 continue; 957 958 cfg80211_scan_req_add_chan(request, chan, true); 959 memcpy(scan_6ghz_params->bssid, ap->bssid, ETH_ALEN); 960 scan_6ghz_params->short_ssid = ap->short_ssid; 961 scan_6ghz_params->short_ssid_valid = ap->short_ssid_valid; 962 scan_6ghz_params->unsolicited_probe = ap->unsolicited_probe; 963 scan_6ghz_params->psd_20 = ap->psd_20; 964 965 /* 966 * If a PSC channel is added to the scan and 'need_scan_psc' is 967 * set to false, then all the APs that the scan logic is 968 * interested with on the channel are collocated and thus there 969 * is no need to perform the initial PSC channel listen. 970 */ 971 if (cfg80211_channel_is_psc(chan) && !need_scan_psc) 972 scan_6ghz_params->psc_no_listen = true; 973 974 request->n_6ghz_params++; 975 } 976 977 skip: 978 cfg80211_free_coloc_ap_list(&coloc_ap_list); 979 980 if (request->n_channels) { 981 struct cfg80211_scan_request *old = rdev->int_scan_req; 982 rdev->int_scan_req = request; 983 984 /* 985 * Add the ssids from the parent scan request to the new scan 986 * request, so the driver would be able to use them in its 987 * probe requests to discover hidden APs on PSC channels. 988 */ 989 request->ssids = (void *)&request->channels[request->n_channels]; 990 request->n_ssids = rdev_req->n_ssids; 991 memcpy(request->ssids, rdev_req->ssids, sizeof(*request->ssids) * 992 request->n_ssids); 993 994 /* 995 * If this scan follows a previous scan, save the scan start 996 * info from the first part of the scan 997 */ 998 if (old) 999 rdev->int_scan_req->info = old->info; 1000 1001 err = rdev_scan(rdev, request); 1002 if (err) { 1003 rdev->int_scan_req = old; 1004 kfree(request); 1005 } else { 1006 kfree(old); 1007 } 1008 1009 return err; 1010 } 1011 1012 kfree(request); 1013 return -EINVAL; 1014 } 1015 1016 int cfg80211_scan(struct cfg80211_registered_device *rdev) 1017 { 1018 struct cfg80211_scan_request *request; 1019 struct cfg80211_scan_request *rdev_req = rdev->scan_req; 1020 u32 n_channels = 0, idx, i; 1021 1022 if (!(rdev->wiphy.flags & WIPHY_FLAG_SPLIT_SCAN_6GHZ)) 1023 return rdev_scan(rdev, rdev_req); 1024 1025 for (i = 0; i < rdev_req->n_channels; i++) { 1026 if (rdev_req->channels[i]->band != NL80211_BAND_6GHZ) 1027 n_channels++; 1028 } 1029 1030 if (!n_channels) 1031 return cfg80211_scan_6ghz(rdev); 1032 1033 request = kzalloc(struct_size(request, channels, n_channels), 1034 GFP_KERNEL); 1035 if (!request) 1036 return -ENOMEM; 1037 1038 *request = *rdev_req; 1039 request->n_channels = n_channels; 1040 1041 for (i = idx = 0; i < rdev_req->n_channels; i++) { 1042 if (rdev_req->channels[i]->band != NL80211_BAND_6GHZ) 1043 request->channels[idx++] = rdev_req->channels[i]; 1044 } 1045 1046 rdev_req->scan_6ghz = false; 1047 rdev->int_scan_req = request; 1048 return rdev_scan(rdev, request); 1049 } 1050 1051 void ___cfg80211_scan_done(struct cfg80211_registered_device *rdev, 1052 bool send_message) 1053 { 1054 struct cfg80211_scan_request *request, *rdev_req; 1055 struct wireless_dev *wdev; 1056 struct sk_buff *msg; 1057 #ifdef CONFIG_CFG80211_WEXT 1058 union iwreq_data wrqu; 1059 #endif 1060 1061 lockdep_assert_held(&rdev->wiphy.mtx); 1062 1063 if (rdev->scan_msg) { 1064 nl80211_send_scan_msg(rdev, rdev->scan_msg); 1065 rdev->scan_msg = NULL; 1066 return; 1067 } 1068 1069 rdev_req = rdev->scan_req; 1070 if (!rdev_req) 1071 return; 1072 1073 wdev = rdev_req->wdev; 1074 request = rdev->int_scan_req ? rdev->int_scan_req : rdev_req; 1075 1076 if (wdev_running(wdev) && 1077 (rdev->wiphy.flags & WIPHY_FLAG_SPLIT_SCAN_6GHZ) && 1078 !rdev_req->scan_6ghz && !request->info.aborted && 1079 !cfg80211_scan_6ghz(rdev)) 1080 return; 1081 1082 /* 1083 * This must be before sending the other events! 1084 * Otherwise, wpa_supplicant gets completely confused with 1085 * wext events. 1086 */ 1087 if (wdev->netdev) 1088 cfg80211_sme_scan_done(wdev->netdev); 1089 1090 if (!request->info.aborted && 1091 request->flags & NL80211_SCAN_FLAG_FLUSH) { 1092 /* flush entries from previous scans */ 1093 spin_lock_bh(&rdev->bss_lock); 1094 __cfg80211_bss_expire(rdev, request->scan_start); 1095 spin_unlock_bh(&rdev->bss_lock); 1096 } 1097 1098 msg = nl80211_build_scan_msg(rdev, wdev, request->info.aborted); 1099 1100 #ifdef CONFIG_CFG80211_WEXT 1101 if (wdev->netdev && !request->info.aborted) { 1102 memset(&wrqu, 0, sizeof(wrqu)); 1103 1104 wireless_send_event(wdev->netdev, SIOCGIWSCAN, &wrqu, NULL); 1105 } 1106 #endif 1107 1108 dev_put(wdev->netdev); 1109 1110 kfree(rdev->int_scan_req); 1111 rdev->int_scan_req = NULL; 1112 1113 kfree(rdev->scan_req); 1114 rdev->scan_req = NULL; 1115 1116 if (!send_message) 1117 rdev->scan_msg = msg; 1118 else 1119 nl80211_send_scan_msg(rdev, msg); 1120 } 1121 1122 void __cfg80211_scan_done(struct wiphy *wiphy, struct wiphy_work *wk) 1123 { 1124 ___cfg80211_scan_done(wiphy_to_rdev(wiphy), true); 1125 } 1126 1127 void cfg80211_scan_done(struct cfg80211_scan_request *request, 1128 struct cfg80211_scan_info *info) 1129 { 1130 struct cfg80211_scan_info old_info = request->info; 1131 1132 trace_cfg80211_scan_done(request, info); 1133 WARN_ON(request != wiphy_to_rdev(request->wiphy)->scan_req && 1134 request != wiphy_to_rdev(request->wiphy)->int_scan_req); 1135 1136 request->info = *info; 1137 1138 /* 1139 * In case the scan is split, the scan_start_tsf and tsf_bssid should 1140 * be of the first part. In such a case old_info.scan_start_tsf should 1141 * be non zero. 1142 */ 1143 if (request->scan_6ghz && old_info.scan_start_tsf) { 1144 request->info.scan_start_tsf = old_info.scan_start_tsf; 1145 memcpy(request->info.tsf_bssid, old_info.tsf_bssid, 1146 sizeof(request->info.tsf_bssid)); 1147 } 1148 1149 request->notified = true; 1150 wiphy_work_queue(request->wiphy, 1151 &wiphy_to_rdev(request->wiphy)->scan_done_wk); 1152 } 1153 EXPORT_SYMBOL(cfg80211_scan_done); 1154 1155 void cfg80211_add_sched_scan_req(struct cfg80211_registered_device *rdev, 1156 struct cfg80211_sched_scan_request *req) 1157 { 1158 lockdep_assert_held(&rdev->wiphy.mtx); 1159 1160 list_add_rcu(&req->list, &rdev->sched_scan_req_list); 1161 } 1162 1163 static void cfg80211_del_sched_scan_req(struct cfg80211_registered_device *rdev, 1164 struct cfg80211_sched_scan_request *req) 1165 { 1166 lockdep_assert_held(&rdev->wiphy.mtx); 1167 1168 list_del_rcu(&req->list); 1169 kfree_rcu(req, rcu_head); 1170 } 1171 1172 static struct cfg80211_sched_scan_request * 1173 cfg80211_find_sched_scan_req(struct cfg80211_registered_device *rdev, u64 reqid) 1174 { 1175 struct cfg80211_sched_scan_request *pos; 1176 1177 list_for_each_entry_rcu(pos, &rdev->sched_scan_req_list, list, 1178 lockdep_is_held(&rdev->wiphy.mtx)) { 1179 if (pos->reqid == reqid) 1180 return pos; 1181 } 1182 return NULL; 1183 } 1184 1185 /* 1186 * Determines if a scheduled scan request can be handled. When a legacy 1187 * scheduled scan is running no other scheduled scan is allowed regardless 1188 * whether the request is for legacy or multi-support scan. When a multi-support 1189 * scheduled scan is running a request for legacy scan is not allowed. In this 1190 * case a request for multi-support scan can be handled if resources are 1191 * available, ie. struct wiphy::max_sched_scan_reqs limit is not yet reached. 1192 */ 1193 int cfg80211_sched_scan_req_possible(struct cfg80211_registered_device *rdev, 1194 bool want_multi) 1195 { 1196 struct cfg80211_sched_scan_request *pos; 1197 int i = 0; 1198 1199 list_for_each_entry(pos, &rdev->sched_scan_req_list, list) { 1200 /* request id zero means legacy in progress */ 1201 if (!i && !pos->reqid) 1202 return -EINPROGRESS; 1203 i++; 1204 } 1205 1206 if (i) { 1207 /* no legacy allowed when multi request(s) are active */ 1208 if (!want_multi) 1209 return -EINPROGRESS; 1210 1211 /* resource limit reached */ 1212 if (i == rdev->wiphy.max_sched_scan_reqs) 1213 return -ENOSPC; 1214 } 1215 return 0; 1216 } 1217 1218 void cfg80211_sched_scan_results_wk(struct work_struct *work) 1219 { 1220 struct cfg80211_registered_device *rdev; 1221 struct cfg80211_sched_scan_request *req, *tmp; 1222 1223 rdev = container_of(work, struct cfg80211_registered_device, 1224 sched_scan_res_wk); 1225 1226 wiphy_lock(&rdev->wiphy); 1227 list_for_each_entry_safe(req, tmp, &rdev->sched_scan_req_list, list) { 1228 if (req->report_results) { 1229 req->report_results = false; 1230 if (req->flags & NL80211_SCAN_FLAG_FLUSH) { 1231 /* flush entries from previous scans */ 1232 spin_lock_bh(&rdev->bss_lock); 1233 __cfg80211_bss_expire(rdev, req->scan_start); 1234 spin_unlock_bh(&rdev->bss_lock); 1235 req->scan_start = jiffies; 1236 } 1237 nl80211_send_sched_scan(req, 1238 NL80211_CMD_SCHED_SCAN_RESULTS); 1239 } 1240 } 1241 wiphy_unlock(&rdev->wiphy); 1242 } 1243 1244 void cfg80211_sched_scan_results(struct wiphy *wiphy, u64 reqid) 1245 { 1246 struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy); 1247 struct cfg80211_sched_scan_request *request; 1248 1249 trace_cfg80211_sched_scan_results(wiphy, reqid); 1250 /* ignore if we're not scanning */ 1251 1252 rcu_read_lock(); 1253 request = cfg80211_find_sched_scan_req(rdev, reqid); 1254 if (request) { 1255 request->report_results = true; 1256 queue_work(cfg80211_wq, &rdev->sched_scan_res_wk); 1257 } 1258 rcu_read_unlock(); 1259 } 1260 EXPORT_SYMBOL(cfg80211_sched_scan_results); 1261 1262 void cfg80211_sched_scan_stopped_locked(struct wiphy *wiphy, u64 reqid) 1263 { 1264 struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy); 1265 1266 lockdep_assert_held(&wiphy->mtx); 1267 1268 trace_cfg80211_sched_scan_stopped(wiphy, reqid); 1269 1270 __cfg80211_stop_sched_scan(rdev, reqid, true); 1271 } 1272 EXPORT_SYMBOL(cfg80211_sched_scan_stopped_locked); 1273 1274 void cfg80211_sched_scan_stopped(struct wiphy *wiphy, u64 reqid) 1275 { 1276 wiphy_lock(wiphy); 1277 cfg80211_sched_scan_stopped_locked(wiphy, reqid); 1278 wiphy_unlock(wiphy); 1279 } 1280 EXPORT_SYMBOL(cfg80211_sched_scan_stopped); 1281 1282 int cfg80211_stop_sched_scan_req(struct cfg80211_registered_device *rdev, 1283 struct cfg80211_sched_scan_request *req, 1284 bool driver_initiated) 1285 { 1286 lockdep_assert_held(&rdev->wiphy.mtx); 1287 1288 if (!driver_initiated) { 1289 int err = rdev_sched_scan_stop(rdev, req->dev, req->reqid); 1290 if (err) 1291 return err; 1292 } 1293 1294 nl80211_send_sched_scan(req, NL80211_CMD_SCHED_SCAN_STOPPED); 1295 1296 cfg80211_del_sched_scan_req(rdev, req); 1297 1298 return 0; 1299 } 1300 1301 int __cfg80211_stop_sched_scan(struct cfg80211_registered_device *rdev, 1302 u64 reqid, bool driver_initiated) 1303 { 1304 struct cfg80211_sched_scan_request *sched_scan_req; 1305 1306 lockdep_assert_held(&rdev->wiphy.mtx); 1307 1308 sched_scan_req = cfg80211_find_sched_scan_req(rdev, reqid); 1309 if (!sched_scan_req) 1310 return -ENOENT; 1311 1312 return cfg80211_stop_sched_scan_req(rdev, sched_scan_req, 1313 driver_initiated); 1314 } 1315 1316 void cfg80211_bss_age(struct cfg80211_registered_device *rdev, 1317 unsigned long age_secs) 1318 { 1319 struct cfg80211_internal_bss *bss; 1320 unsigned long age_jiffies = msecs_to_jiffies(age_secs * MSEC_PER_SEC); 1321 1322 spin_lock_bh(&rdev->bss_lock); 1323 list_for_each_entry(bss, &rdev->bss_list, list) 1324 bss->ts -= age_jiffies; 1325 spin_unlock_bh(&rdev->bss_lock); 1326 } 1327 1328 void cfg80211_bss_expire(struct cfg80211_registered_device *rdev) 1329 { 1330 __cfg80211_bss_expire(rdev, jiffies - IEEE80211_SCAN_RESULT_EXPIRE); 1331 } 1332 1333 void cfg80211_bss_flush(struct wiphy *wiphy) 1334 { 1335 struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy); 1336 1337 spin_lock_bh(&rdev->bss_lock); 1338 __cfg80211_bss_expire(rdev, jiffies); 1339 spin_unlock_bh(&rdev->bss_lock); 1340 } 1341 EXPORT_SYMBOL(cfg80211_bss_flush); 1342 1343 const struct element * 1344 cfg80211_find_elem_match(u8 eid, const u8 *ies, unsigned int len, 1345 const u8 *match, unsigned int match_len, 1346 unsigned int match_offset) 1347 { 1348 const struct element *elem; 1349 1350 for_each_element_id(elem, eid, ies, len) { 1351 if (elem->datalen >= match_offset + match_len && 1352 !memcmp(elem->data + match_offset, match, match_len)) 1353 return elem; 1354 } 1355 1356 return NULL; 1357 } 1358 EXPORT_SYMBOL(cfg80211_find_elem_match); 1359 1360 const struct element *cfg80211_find_vendor_elem(unsigned int oui, int oui_type, 1361 const u8 *ies, 1362 unsigned int len) 1363 { 1364 const struct element *elem; 1365 u8 match[] = { oui >> 16, oui >> 8, oui, oui_type }; 1366 int match_len = (oui_type < 0) ? 3 : sizeof(match); 1367 1368 if (WARN_ON(oui_type > 0xff)) 1369 return NULL; 1370 1371 elem = cfg80211_find_elem_match(WLAN_EID_VENDOR_SPECIFIC, ies, len, 1372 match, match_len, 0); 1373 1374 if (!elem || elem->datalen < 4) 1375 return NULL; 1376 1377 return elem; 1378 } 1379 EXPORT_SYMBOL(cfg80211_find_vendor_elem); 1380 1381 /** 1382 * enum bss_compare_mode - BSS compare mode 1383 * @BSS_CMP_REGULAR: regular compare mode (for insertion and normal find) 1384 * @BSS_CMP_HIDE_ZLEN: find hidden SSID with zero-length mode 1385 * @BSS_CMP_HIDE_NUL: find hidden SSID with NUL-ed out mode 1386 */ 1387 enum bss_compare_mode { 1388 BSS_CMP_REGULAR, 1389 BSS_CMP_HIDE_ZLEN, 1390 BSS_CMP_HIDE_NUL, 1391 }; 1392 1393 static int cmp_bss(struct cfg80211_bss *a, 1394 struct cfg80211_bss *b, 1395 enum bss_compare_mode mode) 1396 { 1397 const struct cfg80211_bss_ies *a_ies, *b_ies; 1398 const u8 *ie1 = NULL; 1399 const u8 *ie2 = NULL; 1400 int i, r; 1401 1402 if (a->channel != b->channel) 1403 return (b->channel->center_freq * 1000 + b->channel->freq_offset) - 1404 (a->channel->center_freq * 1000 + a->channel->freq_offset); 1405 1406 a_ies = rcu_access_pointer(a->ies); 1407 if (!a_ies) 1408 return -1; 1409 b_ies = rcu_access_pointer(b->ies); 1410 if (!b_ies) 1411 return 1; 1412 1413 if (WLAN_CAPABILITY_IS_STA_BSS(a->capability)) 1414 ie1 = cfg80211_find_ie(WLAN_EID_MESH_ID, 1415 a_ies->data, a_ies->len); 1416 if (WLAN_CAPABILITY_IS_STA_BSS(b->capability)) 1417 ie2 = cfg80211_find_ie(WLAN_EID_MESH_ID, 1418 b_ies->data, b_ies->len); 1419 if (ie1 && ie2) { 1420 int mesh_id_cmp; 1421 1422 if (ie1[1] == ie2[1]) 1423 mesh_id_cmp = memcmp(ie1 + 2, ie2 + 2, ie1[1]); 1424 else 1425 mesh_id_cmp = ie2[1] - ie1[1]; 1426 1427 ie1 = cfg80211_find_ie(WLAN_EID_MESH_CONFIG, 1428 a_ies->data, a_ies->len); 1429 ie2 = cfg80211_find_ie(WLAN_EID_MESH_CONFIG, 1430 b_ies->data, b_ies->len); 1431 if (ie1 && ie2) { 1432 if (mesh_id_cmp) 1433 return mesh_id_cmp; 1434 if (ie1[1] != ie2[1]) 1435 return ie2[1] - ie1[1]; 1436 return memcmp(ie1 + 2, ie2 + 2, ie1[1]); 1437 } 1438 } 1439 1440 r = memcmp(a->bssid, b->bssid, sizeof(a->bssid)); 1441 if (r) 1442 return r; 1443 1444 ie1 = cfg80211_find_ie(WLAN_EID_SSID, a_ies->data, a_ies->len); 1445 ie2 = cfg80211_find_ie(WLAN_EID_SSID, b_ies->data, b_ies->len); 1446 1447 if (!ie1 && !ie2) 1448 return 0; 1449 1450 /* 1451 * Note that with "hide_ssid", the function returns a match if 1452 * the already-present BSS ("b") is a hidden SSID beacon for 1453 * the new BSS ("a"). 1454 */ 1455 1456 /* sort missing IE before (left of) present IE */ 1457 if (!ie1) 1458 return -1; 1459 if (!ie2) 1460 return 1; 1461 1462 switch (mode) { 1463 case BSS_CMP_HIDE_ZLEN: 1464 /* 1465 * In ZLEN mode we assume the BSS entry we're 1466 * looking for has a zero-length SSID. So if 1467 * the one we're looking at right now has that, 1468 * return 0. Otherwise, return the difference 1469 * in length, but since we're looking for the 1470 * 0-length it's really equivalent to returning 1471 * the length of the one we're looking at. 1472 * 1473 * No content comparison is needed as we assume 1474 * the content length is zero. 1475 */ 1476 return ie2[1]; 1477 case BSS_CMP_REGULAR: 1478 default: 1479 /* sort by length first, then by contents */ 1480 if (ie1[1] != ie2[1]) 1481 return ie2[1] - ie1[1]; 1482 return memcmp(ie1 + 2, ie2 + 2, ie1[1]); 1483 case BSS_CMP_HIDE_NUL: 1484 if (ie1[1] != ie2[1]) 1485 return ie2[1] - ie1[1]; 1486 /* this is equivalent to memcmp(zeroes, ie2 + 2, len) */ 1487 for (i = 0; i < ie2[1]; i++) 1488 if (ie2[i + 2]) 1489 return -1; 1490 return 0; 1491 } 1492 } 1493 1494 static bool cfg80211_bss_type_match(u16 capability, 1495 enum nl80211_band band, 1496 enum ieee80211_bss_type bss_type) 1497 { 1498 bool ret = true; 1499 u16 mask, val; 1500 1501 if (bss_type == IEEE80211_BSS_TYPE_ANY) 1502 return ret; 1503 1504 if (band == NL80211_BAND_60GHZ) { 1505 mask = WLAN_CAPABILITY_DMG_TYPE_MASK; 1506 switch (bss_type) { 1507 case IEEE80211_BSS_TYPE_ESS: 1508 val = WLAN_CAPABILITY_DMG_TYPE_AP; 1509 break; 1510 case IEEE80211_BSS_TYPE_PBSS: 1511 val = WLAN_CAPABILITY_DMG_TYPE_PBSS; 1512 break; 1513 case IEEE80211_BSS_TYPE_IBSS: 1514 val = WLAN_CAPABILITY_DMG_TYPE_IBSS; 1515 break; 1516 default: 1517 return false; 1518 } 1519 } else { 1520 mask = WLAN_CAPABILITY_ESS | WLAN_CAPABILITY_IBSS; 1521 switch (bss_type) { 1522 case IEEE80211_BSS_TYPE_ESS: 1523 val = WLAN_CAPABILITY_ESS; 1524 break; 1525 case IEEE80211_BSS_TYPE_IBSS: 1526 val = WLAN_CAPABILITY_IBSS; 1527 break; 1528 case IEEE80211_BSS_TYPE_MBSS: 1529 val = 0; 1530 break; 1531 default: 1532 return false; 1533 } 1534 } 1535 1536 ret = ((capability & mask) == val); 1537 return ret; 1538 } 1539 1540 /* Returned bss is reference counted and must be cleaned up appropriately. */ 1541 struct cfg80211_bss *__cfg80211_get_bss(struct wiphy *wiphy, 1542 struct ieee80211_channel *channel, 1543 const u8 *bssid, 1544 const u8 *ssid, size_t ssid_len, 1545 enum ieee80211_bss_type bss_type, 1546 enum ieee80211_privacy privacy, 1547 u32 use_for) 1548 { 1549 struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy); 1550 struct cfg80211_internal_bss *bss, *res = NULL; 1551 unsigned long now = jiffies; 1552 int bss_privacy; 1553 1554 trace_cfg80211_get_bss(wiphy, channel, bssid, ssid, ssid_len, bss_type, 1555 privacy); 1556 1557 spin_lock_bh(&rdev->bss_lock); 1558 1559 list_for_each_entry(bss, &rdev->bss_list, list) { 1560 if (!cfg80211_bss_type_match(bss->pub.capability, 1561 bss->pub.channel->band, bss_type)) 1562 continue; 1563 1564 bss_privacy = (bss->pub.capability & WLAN_CAPABILITY_PRIVACY); 1565 if ((privacy == IEEE80211_PRIVACY_ON && !bss_privacy) || 1566 (privacy == IEEE80211_PRIVACY_OFF && bss_privacy)) 1567 continue; 1568 if (channel && bss->pub.channel != channel) 1569 continue; 1570 if (!is_valid_ether_addr(bss->pub.bssid)) 1571 continue; 1572 if ((bss->pub.use_for & use_for) != use_for) 1573 continue; 1574 /* Don't get expired BSS structs */ 1575 if (time_after(now, bss->ts + IEEE80211_SCAN_RESULT_EXPIRE) && 1576 !atomic_read(&bss->hold)) 1577 continue; 1578 if (is_bss(&bss->pub, bssid, ssid, ssid_len)) { 1579 res = bss; 1580 bss_ref_get(rdev, res); 1581 break; 1582 } 1583 } 1584 1585 spin_unlock_bh(&rdev->bss_lock); 1586 if (!res) 1587 return NULL; 1588 trace_cfg80211_return_bss(&res->pub); 1589 return &res->pub; 1590 } 1591 EXPORT_SYMBOL(__cfg80211_get_bss); 1592 1593 static void rb_insert_bss(struct cfg80211_registered_device *rdev, 1594 struct cfg80211_internal_bss *bss) 1595 { 1596 struct rb_node **p = &rdev->bss_tree.rb_node; 1597 struct rb_node *parent = NULL; 1598 struct cfg80211_internal_bss *tbss; 1599 int cmp; 1600 1601 while (*p) { 1602 parent = *p; 1603 tbss = rb_entry(parent, struct cfg80211_internal_bss, rbn); 1604 1605 cmp = cmp_bss(&bss->pub, &tbss->pub, BSS_CMP_REGULAR); 1606 1607 if (WARN_ON(!cmp)) { 1608 /* will sort of leak this BSS */ 1609 return; 1610 } 1611 1612 if (cmp < 0) 1613 p = &(*p)->rb_left; 1614 else 1615 p = &(*p)->rb_right; 1616 } 1617 1618 rb_link_node(&bss->rbn, parent, p); 1619 rb_insert_color(&bss->rbn, &rdev->bss_tree); 1620 } 1621 1622 static struct cfg80211_internal_bss * 1623 rb_find_bss(struct cfg80211_registered_device *rdev, 1624 struct cfg80211_internal_bss *res, 1625 enum bss_compare_mode mode) 1626 { 1627 struct rb_node *n = rdev->bss_tree.rb_node; 1628 struct cfg80211_internal_bss *bss; 1629 int r; 1630 1631 while (n) { 1632 bss = rb_entry(n, struct cfg80211_internal_bss, rbn); 1633 r = cmp_bss(&res->pub, &bss->pub, mode); 1634 1635 if (r == 0) 1636 return bss; 1637 else if (r < 0) 1638 n = n->rb_left; 1639 else 1640 n = n->rb_right; 1641 } 1642 1643 return NULL; 1644 } 1645 1646 static bool cfg80211_combine_bsses(struct cfg80211_registered_device *rdev, 1647 struct cfg80211_internal_bss *new) 1648 { 1649 const struct cfg80211_bss_ies *ies; 1650 struct cfg80211_internal_bss *bss; 1651 const u8 *ie; 1652 int i, ssidlen; 1653 u8 fold = 0; 1654 u32 n_entries = 0; 1655 1656 ies = rcu_access_pointer(new->pub.beacon_ies); 1657 if (WARN_ON(!ies)) 1658 return false; 1659 1660 ie = cfg80211_find_ie(WLAN_EID_SSID, ies->data, ies->len); 1661 if (!ie) { 1662 /* nothing to do */ 1663 return true; 1664 } 1665 1666 ssidlen = ie[1]; 1667 for (i = 0; i < ssidlen; i++) 1668 fold |= ie[2 + i]; 1669 1670 if (fold) { 1671 /* not a hidden SSID */ 1672 return true; 1673 } 1674 1675 /* This is the bad part ... */ 1676 1677 list_for_each_entry(bss, &rdev->bss_list, list) { 1678 /* 1679 * we're iterating all the entries anyway, so take the 1680 * opportunity to validate the list length accounting 1681 */ 1682 n_entries++; 1683 1684 if (!ether_addr_equal(bss->pub.bssid, new->pub.bssid)) 1685 continue; 1686 if (bss->pub.channel != new->pub.channel) 1687 continue; 1688 if (rcu_access_pointer(bss->pub.beacon_ies)) 1689 continue; 1690 ies = rcu_access_pointer(bss->pub.ies); 1691 if (!ies) 1692 continue; 1693 ie = cfg80211_find_ie(WLAN_EID_SSID, ies->data, ies->len); 1694 if (!ie) 1695 continue; 1696 if (ssidlen && ie[1] != ssidlen) 1697 continue; 1698 if (WARN_ON_ONCE(bss->pub.hidden_beacon_bss)) 1699 continue; 1700 if (WARN_ON_ONCE(!list_empty(&bss->hidden_list))) 1701 list_del(&bss->hidden_list); 1702 /* combine them */ 1703 list_add(&bss->hidden_list, &new->hidden_list); 1704 bss->pub.hidden_beacon_bss = &new->pub; 1705 new->refcount += bss->refcount; 1706 rcu_assign_pointer(bss->pub.beacon_ies, 1707 new->pub.beacon_ies); 1708 } 1709 1710 WARN_ONCE(n_entries != rdev->bss_entries, 1711 "rdev bss entries[%d]/list[len:%d] corruption\n", 1712 rdev->bss_entries, n_entries); 1713 1714 return true; 1715 } 1716 1717 static void cfg80211_update_hidden_bsses(struct cfg80211_internal_bss *known, 1718 const struct cfg80211_bss_ies *new_ies, 1719 const struct cfg80211_bss_ies *old_ies) 1720 { 1721 struct cfg80211_internal_bss *bss; 1722 1723 /* Assign beacon IEs to all sub entries */ 1724 list_for_each_entry(bss, &known->hidden_list, hidden_list) { 1725 const struct cfg80211_bss_ies *ies; 1726 1727 ies = rcu_access_pointer(bss->pub.beacon_ies); 1728 WARN_ON(ies != old_ies); 1729 1730 rcu_assign_pointer(bss->pub.beacon_ies, new_ies); 1731 } 1732 } 1733 1734 static void cfg80211_check_stuck_ecsa(struct cfg80211_registered_device *rdev, 1735 struct cfg80211_internal_bss *known, 1736 const struct cfg80211_bss_ies *old) 1737 { 1738 const struct ieee80211_ext_chansw_ie *ecsa; 1739 const struct element *elem_new, *elem_old; 1740 const struct cfg80211_bss_ies *new, *bcn; 1741 1742 if (known->pub.proberesp_ecsa_stuck) 1743 return; 1744 1745 new = rcu_dereference_protected(known->pub.proberesp_ies, 1746 lockdep_is_held(&rdev->bss_lock)); 1747 if (WARN_ON(!new)) 1748 return; 1749 1750 if (new->tsf - old->tsf < USEC_PER_SEC) 1751 return; 1752 1753 elem_old = cfg80211_find_elem(WLAN_EID_EXT_CHANSWITCH_ANN, 1754 old->data, old->len); 1755 if (!elem_old) 1756 return; 1757 1758 elem_new = cfg80211_find_elem(WLAN_EID_EXT_CHANSWITCH_ANN, 1759 new->data, new->len); 1760 if (!elem_new) 1761 return; 1762 1763 bcn = rcu_dereference_protected(known->pub.beacon_ies, 1764 lockdep_is_held(&rdev->bss_lock)); 1765 if (bcn && 1766 cfg80211_find_elem(WLAN_EID_EXT_CHANSWITCH_ANN, 1767 bcn->data, bcn->len)) 1768 return; 1769 1770 if (elem_new->datalen != elem_old->datalen) 1771 return; 1772 if (elem_new->datalen < sizeof(struct ieee80211_ext_chansw_ie)) 1773 return; 1774 if (memcmp(elem_new->data, elem_old->data, elem_new->datalen)) 1775 return; 1776 1777 ecsa = (void *)elem_new->data; 1778 1779 if (!ecsa->mode) 1780 return; 1781 1782 if (ecsa->new_ch_num != 1783 ieee80211_frequency_to_channel(known->pub.channel->center_freq)) 1784 return; 1785 1786 known->pub.proberesp_ecsa_stuck = 1; 1787 } 1788 1789 static bool 1790 cfg80211_update_known_bss(struct cfg80211_registered_device *rdev, 1791 struct cfg80211_internal_bss *known, 1792 struct cfg80211_internal_bss *new, 1793 bool signal_valid) 1794 { 1795 lockdep_assert_held(&rdev->bss_lock); 1796 1797 /* Update IEs */ 1798 if (rcu_access_pointer(new->pub.proberesp_ies)) { 1799 const struct cfg80211_bss_ies *old; 1800 1801 old = rcu_access_pointer(known->pub.proberesp_ies); 1802 1803 rcu_assign_pointer(known->pub.proberesp_ies, 1804 new->pub.proberesp_ies); 1805 /* Override possible earlier Beacon frame IEs */ 1806 rcu_assign_pointer(known->pub.ies, 1807 new->pub.proberesp_ies); 1808 if (old) { 1809 cfg80211_check_stuck_ecsa(rdev, known, old); 1810 kfree_rcu((struct cfg80211_bss_ies *)old, rcu_head); 1811 } 1812 } 1813 1814 if (rcu_access_pointer(new->pub.beacon_ies)) { 1815 const struct cfg80211_bss_ies *old; 1816 1817 if (known->pub.hidden_beacon_bss && 1818 !list_empty(&known->hidden_list)) { 1819 const struct cfg80211_bss_ies *f; 1820 1821 /* The known BSS struct is one of the probe 1822 * response members of a group, but we're 1823 * receiving a beacon (beacon_ies in the new 1824 * bss is used). This can only mean that the 1825 * AP changed its beacon from not having an 1826 * SSID to showing it, which is confusing so 1827 * drop this information. 1828 */ 1829 1830 f = rcu_access_pointer(new->pub.beacon_ies); 1831 kfree_rcu((struct cfg80211_bss_ies *)f, rcu_head); 1832 return false; 1833 } 1834 1835 old = rcu_access_pointer(known->pub.beacon_ies); 1836 1837 rcu_assign_pointer(known->pub.beacon_ies, new->pub.beacon_ies); 1838 1839 /* Override IEs if they were from a beacon before */ 1840 if (old == rcu_access_pointer(known->pub.ies)) 1841 rcu_assign_pointer(known->pub.ies, new->pub.beacon_ies); 1842 1843 cfg80211_update_hidden_bsses(known, 1844 rcu_access_pointer(new->pub.beacon_ies), 1845 old); 1846 1847 if (old) 1848 kfree_rcu((struct cfg80211_bss_ies *)old, rcu_head); 1849 } 1850 1851 known->pub.beacon_interval = new->pub.beacon_interval; 1852 1853 /* don't update the signal if beacon was heard on 1854 * adjacent channel. 1855 */ 1856 if (signal_valid) 1857 known->pub.signal = new->pub.signal; 1858 known->pub.capability = new->pub.capability; 1859 known->ts = new->ts; 1860 known->ts_boottime = new->ts_boottime; 1861 known->parent_tsf = new->parent_tsf; 1862 known->pub.chains = new->pub.chains; 1863 memcpy(known->pub.chain_signal, new->pub.chain_signal, 1864 IEEE80211_MAX_CHAINS); 1865 ether_addr_copy(known->parent_bssid, new->parent_bssid); 1866 known->pub.max_bssid_indicator = new->pub.max_bssid_indicator; 1867 known->pub.bssid_index = new->pub.bssid_index; 1868 known->pub.use_for &= new->pub.use_for; 1869 known->pub.cannot_use_reasons = new->pub.cannot_use_reasons; 1870 1871 return true; 1872 } 1873 1874 /* Returned bss is reference counted and must be cleaned up appropriately. */ 1875 static struct cfg80211_internal_bss * 1876 __cfg80211_bss_update(struct cfg80211_registered_device *rdev, 1877 struct cfg80211_internal_bss *tmp, 1878 bool signal_valid, unsigned long ts) 1879 { 1880 struct cfg80211_internal_bss *found = NULL; 1881 struct cfg80211_bss_ies *ies; 1882 1883 if (WARN_ON(!tmp->pub.channel)) 1884 goto free_ies; 1885 1886 tmp->ts = ts; 1887 1888 if (WARN_ON(!rcu_access_pointer(tmp->pub.ies))) 1889 goto free_ies; 1890 1891 found = rb_find_bss(rdev, tmp, BSS_CMP_REGULAR); 1892 1893 if (found) { 1894 if (!cfg80211_update_known_bss(rdev, found, tmp, signal_valid)) 1895 return NULL; 1896 } else { 1897 struct cfg80211_internal_bss *new; 1898 struct cfg80211_internal_bss *hidden; 1899 1900 /* 1901 * create a copy -- the "res" variable that is passed in 1902 * is allocated on the stack since it's not needed in the 1903 * more common case of an update 1904 */ 1905 new = kzalloc(sizeof(*new) + rdev->wiphy.bss_priv_size, 1906 GFP_ATOMIC); 1907 if (!new) 1908 goto free_ies; 1909 memcpy(new, tmp, sizeof(*new)); 1910 new->refcount = 1; 1911 INIT_LIST_HEAD(&new->hidden_list); 1912 INIT_LIST_HEAD(&new->pub.nontrans_list); 1913 /* we'll set this later if it was non-NULL */ 1914 new->pub.transmitted_bss = NULL; 1915 1916 if (rcu_access_pointer(tmp->pub.proberesp_ies)) { 1917 hidden = rb_find_bss(rdev, tmp, BSS_CMP_HIDE_ZLEN); 1918 if (!hidden) 1919 hidden = rb_find_bss(rdev, tmp, 1920 BSS_CMP_HIDE_NUL); 1921 if (hidden) { 1922 new->pub.hidden_beacon_bss = &hidden->pub; 1923 list_add(&new->hidden_list, 1924 &hidden->hidden_list); 1925 hidden->refcount++; 1926 1927 ies = (void *)rcu_access_pointer(new->pub.beacon_ies); 1928 rcu_assign_pointer(new->pub.beacon_ies, 1929 hidden->pub.beacon_ies); 1930 if (ies) 1931 kfree_rcu(ies, rcu_head); 1932 } 1933 } else { 1934 /* 1935 * Ok so we found a beacon, and don't have an entry. If 1936 * it's a beacon with hidden SSID, we might be in for an 1937 * expensive search for any probe responses that should 1938 * be grouped with this beacon for updates ... 1939 */ 1940 if (!cfg80211_combine_bsses(rdev, new)) { 1941 bss_ref_put(rdev, new); 1942 return NULL; 1943 } 1944 } 1945 1946 if (rdev->bss_entries >= bss_entries_limit && 1947 !cfg80211_bss_expire_oldest(rdev)) { 1948 bss_ref_put(rdev, new); 1949 return NULL; 1950 } 1951 1952 /* This must be before the call to bss_ref_get */ 1953 if (tmp->pub.transmitted_bss) { 1954 new->pub.transmitted_bss = tmp->pub.transmitted_bss; 1955 bss_ref_get(rdev, bss_from_pub(tmp->pub.transmitted_bss)); 1956 } 1957 1958 list_add_tail(&new->list, &rdev->bss_list); 1959 rdev->bss_entries++; 1960 rb_insert_bss(rdev, new); 1961 found = new; 1962 } 1963 1964 rdev->bss_generation++; 1965 bss_ref_get(rdev, found); 1966 1967 return found; 1968 1969 free_ies: 1970 ies = (void *)rcu_dereference(tmp->pub.beacon_ies); 1971 if (ies) 1972 kfree_rcu(ies, rcu_head); 1973 ies = (void *)rcu_dereference(tmp->pub.proberesp_ies); 1974 if (ies) 1975 kfree_rcu(ies, rcu_head); 1976 1977 return NULL; 1978 } 1979 1980 struct cfg80211_internal_bss * 1981 cfg80211_bss_update(struct cfg80211_registered_device *rdev, 1982 struct cfg80211_internal_bss *tmp, 1983 bool signal_valid, unsigned long ts) 1984 { 1985 struct cfg80211_internal_bss *res; 1986 1987 spin_lock_bh(&rdev->bss_lock); 1988 res = __cfg80211_bss_update(rdev, tmp, signal_valid, ts); 1989 spin_unlock_bh(&rdev->bss_lock); 1990 1991 return res; 1992 } 1993 1994 int cfg80211_get_ies_channel_number(const u8 *ie, size_t ielen, 1995 enum nl80211_band band) 1996 { 1997 const struct element *tmp; 1998 1999 if (band == NL80211_BAND_6GHZ) { 2000 struct ieee80211_he_operation *he_oper; 2001 2002 tmp = cfg80211_find_ext_elem(WLAN_EID_EXT_HE_OPERATION, ie, 2003 ielen); 2004 if (tmp && tmp->datalen >= sizeof(*he_oper) && 2005 tmp->datalen >= ieee80211_he_oper_size(&tmp->data[1])) { 2006 const struct ieee80211_he_6ghz_oper *he_6ghz_oper; 2007 2008 he_oper = (void *)&tmp->data[1]; 2009 2010 he_6ghz_oper = ieee80211_he_6ghz_oper(he_oper); 2011 if (!he_6ghz_oper) 2012 return -1; 2013 2014 return he_6ghz_oper->primary; 2015 } 2016 } else if (band == NL80211_BAND_S1GHZ) { 2017 tmp = cfg80211_find_elem(WLAN_EID_S1G_OPERATION, ie, ielen); 2018 if (tmp && tmp->datalen >= sizeof(struct ieee80211_s1g_oper_ie)) { 2019 struct ieee80211_s1g_oper_ie *s1gop = (void *)tmp->data; 2020 2021 return s1gop->oper_ch; 2022 } 2023 } else { 2024 tmp = cfg80211_find_elem(WLAN_EID_DS_PARAMS, ie, ielen); 2025 if (tmp && tmp->datalen == 1) 2026 return tmp->data[0]; 2027 2028 tmp = cfg80211_find_elem(WLAN_EID_HT_OPERATION, ie, ielen); 2029 if (tmp && 2030 tmp->datalen >= sizeof(struct ieee80211_ht_operation)) { 2031 struct ieee80211_ht_operation *htop = (void *)tmp->data; 2032 2033 return htop->primary_chan; 2034 } 2035 } 2036 2037 return -1; 2038 } 2039 EXPORT_SYMBOL(cfg80211_get_ies_channel_number); 2040 2041 /* 2042 * Update RX channel information based on the available frame payload 2043 * information. This is mainly for the 2.4 GHz band where frames can be received 2044 * from neighboring channels and the Beacon frames use the DSSS Parameter Set 2045 * element to indicate the current (transmitting) channel, but this might also 2046 * be needed on other bands if RX frequency does not match with the actual 2047 * operating channel of a BSS, or if the AP reports a different primary channel. 2048 */ 2049 static struct ieee80211_channel * 2050 cfg80211_get_bss_channel(struct wiphy *wiphy, const u8 *ie, size_t ielen, 2051 struct ieee80211_channel *channel) 2052 { 2053 u32 freq; 2054 int channel_number; 2055 struct ieee80211_channel *alt_channel; 2056 2057 channel_number = cfg80211_get_ies_channel_number(ie, ielen, 2058 channel->band); 2059 2060 if (channel_number < 0) { 2061 /* No channel information in frame payload */ 2062 return channel; 2063 } 2064 2065 freq = ieee80211_channel_to_freq_khz(channel_number, channel->band); 2066 2067 /* 2068 * Frame info (beacon/prob res) is the same as received channel, 2069 * no need for further processing. 2070 */ 2071 if (freq == ieee80211_channel_to_khz(channel)) 2072 return channel; 2073 2074 alt_channel = ieee80211_get_channel_khz(wiphy, freq); 2075 if (!alt_channel) { 2076 if (channel->band == NL80211_BAND_2GHZ || 2077 channel->band == NL80211_BAND_6GHZ) { 2078 /* 2079 * Better not allow unexpected channels when that could 2080 * be going beyond the 1-11 range (e.g., discovering 2081 * BSS on channel 12 when radio is configured for 2082 * channel 11) or beyond the 6 GHz channel range. 2083 */ 2084 return NULL; 2085 } 2086 2087 /* No match for the payload channel number - ignore it */ 2088 return channel; 2089 } 2090 2091 /* 2092 * Use the channel determined through the payload channel number 2093 * instead of the RX channel reported by the driver. 2094 */ 2095 if (alt_channel->flags & IEEE80211_CHAN_DISABLED) 2096 return NULL; 2097 return alt_channel; 2098 } 2099 2100 struct cfg80211_inform_single_bss_data { 2101 struct cfg80211_inform_bss *drv_data; 2102 enum cfg80211_bss_frame_type ftype; 2103 struct ieee80211_channel *channel; 2104 u8 bssid[ETH_ALEN]; 2105 u64 tsf; 2106 u16 capability; 2107 u16 beacon_interval; 2108 const u8 *ie; 2109 size_t ielen; 2110 2111 enum { 2112 BSS_SOURCE_DIRECT = 0, 2113 BSS_SOURCE_MBSSID, 2114 BSS_SOURCE_STA_PROFILE, 2115 } bss_source; 2116 /* Set if reporting bss_source != BSS_SOURCE_DIRECT */ 2117 struct cfg80211_bss *source_bss; 2118 u8 max_bssid_indicator; 2119 u8 bssid_index; 2120 2121 u8 use_for; 2122 u64 cannot_use_reasons; 2123 }; 2124 2125 /* Returned bss is reference counted and must be cleaned up appropriately. */ 2126 static struct cfg80211_bss * 2127 cfg80211_inform_single_bss_data(struct wiphy *wiphy, 2128 struct cfg80211_inform_single_bss_data *data, 2129 gfp_t gfp) 2130 { 2131 struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy); 2132 struct cfg80211_inform_bss *drv_data = data->drv_data; 2133 struct cfg80211_bss_ies *ies; 2134 struct ieee80211_channel *channel; 2135 struct cfg80211_internal_bss tmp = {}, *res; 2136 int bss_type; 2137 bool signal_valid; 2138 unsigned long ts; 2139 2140 if (WARN_ON(!wiphy)) 2141 return NULL; 2142 2143 if (WARN_ON(wiphy->signal_type == CFG80211_SIGNAL_TYPE_UNSPEC && 2144 (drv_data->signal < 0 || drv_data->signal > 100))) 2145 return NULL; 2146 2147 if (WARN_ON(data->bss_source != BSS_SOURCE_DIRECT && !data->source_bss)) 2148 return NULL; 2149 2150 channel = data->channel; 2151 if (!channel) 2152 channel = cfg80211_get_bss_channel(wiphy, data->ie, data->ielen, 2153 drv_data->chan); 2154 if (!channel) 2155 return NULL; 2156 2157 memcpy(tmp.pub.bssid, data->bssid, ETH_ALEN); 2158 tmp.pub.channel = channel; 2159 if (data->bss_source != BSS_SOURCE_STA_PROFILE) 2160 tmp.pub.signal = drv_data->signal; 2161 else 2162 tmp.pub.signal = 0; 2163 tmp.pub.beacon_interval = data->beacon_interval; 2164 tmp.pub.capability = data->capability; 2165 tmp.ts_boottime = drv_data->boottime_ns; 2166 tmp.parent_tsf = drv_data->parent_tsf; 2167 ether_addr_copy(tmp.parent_bssid, drv_data->parent_bssid); 2168 tmp.pub.use_for = data->use_for; 2169 tmp.pub.cannot_use_reasons = data->cannot_use_reasons; 2170 2171 if (data->bss_source != BSS_SOURCE_DIRECT) { 2172 tmp.pub.transmitted_bss = data->source_bss; 2173 ts = bss_from_pub(data->source_bss)->ts; 2174 tmp.pub.bssid_index = data->bssid_index; 2175 tmp.pub.max_bssid_indicator = data->max_bssid_indicator; 2176 } else { 2177 ts = jiffies; 2178 2179 if (channel->band == NL80211_BAND_60GHZ) { 2180 bss_type = data->capability & 2181 WLAN_CAPABILITY_DMG_TYPE_MASK; 2182 if (bss_type == WLAN_CAPABILITY_DMG_TYPE_AP || 2183 bss_type == WLAN_CAPABILITY_DMG_TYPE_PBSS) 2184 regulatory_hint_found_beacon(wiphy, channel, 2185 gfp); 2186 } else { 2187 if (data->capability & WLAN_CAPABILITY_ESS) 2188 regulatory_hint_found_beacon(wiphy, channel, 2189 gfp); 2190 } 2191 } 2192 2193 /* 2194 * If we do not know here whether the IEs are from a Beacon or Probe 2195 * Response frame, we need to pick one of the options and only use it 2196 * with the driver that does not provide the full Beacon/Probe Response 2197 * frame. Use Beacon frame pointer to avoid indicating that this should 2198 * override the IEs pointer should we have received an earlier 2199 * indication of Probe Response data. 2200 */ 2201 ies = kzalloc(sizeof(*ies) + data->ielen, gfp); 2202 if (!ies) 2203 return NULL; 2204 ies->len = data->ielen; 2205 ies->tsf = data->tsf; 2206 ies->from_beacon = false; 2207 memcpy(ies->data, data->ie, data->ielen); 2208 2209 switch (data->ftype) { 2210 case CFG80211_BSS_FTYPE_BEACON: 2211 ies->from_beacon = true; 2212 fallthrough; 2213 case CFG80211_BSS_FTYPE_UNKNOWN: 2214 rcu_assign_pointer(tmp.pub.beacon_ies, ies); 2215 break; 2216 case CFG80211_BSS_FTYPE_PRESP: 2217 rcu_assign_pointer(tmp.pub.proberesp_ies, ies); 2218 break; 2219 } 2220 rcu_assign_pointer(tmp.pub.ies, ies); 2221 2222 signal_valid = drv_data->chan == channel; 2223 spin_lock_bh(&rdev->bss_lock); 2224 res = __cfg80211_bss_update(rdev, &tmp, signal_valid, ts); 2225 if (!res) 2226 goto drop; 2227 2228 rdev_inform_bss(rdev, &res->pub, ies, drv_data->drv_data); 2229 2230 if (data->bss_source == BSS_SOURCE_MBSSID) { 2231 /* this is a nontransmitting bss, we need to add it to 2232 * transmitting bss' list if it is not there 2233 */ 2234 if (cfg80211_add_nontrans_list(data->source_bss, &res->pub)) { 2235 if (__cfg80211_unlink_bss(rdev, res)) { 2236 rdev->bss_generation++; 2237 res = NULL; 2238 } 2239 } 2240 2241 if (!res) 2242 goto drop; 2243 } 2244 spin_unlock_bh(&rdev->bss_lock); 2245 2246 trace_cfg80211_return_bss(&res->pub); 2247 /* __cfg80211_bss_update gives us a referenced result */ 2248 return &res->pub; 2249 2250 drop: 2251 spin_unlock_bh(&rdev->bss_lock); 2252 return NULL; 2253 } 2254 2255 static const struct element 2256 *cfg80211_get_profile_continuation(const u8 *ie, size_t ielen, 2257 const struct element *mbssid_elem, 2258 const struct element *sub_elem) 2259 { 2260 const u8 *mbssid_end = mbssid_elem->data + mbssid_elem->datalen; 2261 const struct element *next_mbssid; 2262 const struct element *next_sub; 2263 2264 next_mbssid = cfg80211_find_elem(WLAN_EID_MULTIPLE_BSSID, 2265 mbssid_end, 2266 ielen - (mbssid_end - ie)); 2267 2268 /* 2269 * If it is not the last subelement in current MBSSID IE or there isn't 2270 * a next MBSSID IE - profile is complete. 2271 */ 2272 if ((sub_elem->data + sub_elem->datalen < mbssid_end - 1) || 2273 !next_mbssid) 2274 return NULL; 2275 2276 /* For any length error, just return NULL */ 2277 2278 if (next_mbssid->datalen < 4) 2279 return NULL; 2280 2281 next_sub = (void *)&next_mbssid->data[1]; 2282 2283 if (next_mbssid->data + next_mbssid->datalen < 2284 next_sub->data + next_sub->datalen) 2285 return NULL; 2286 2287 if (next_sub->id != 0 || next_sub->datalen < 2) 2288 return NULL; 2289 2290 /* 2291 * Check if the first element in the next sub element is a start 2292 * of a new profile 2293 */ 2294 return next_sub->data[0] == WLAN_EID_NON_TX_BSSID_CAP ? 2295 NULL : next_mbssid; 2296 } 2297 2298 size_t cfg80211_merge_profile(const u8 *ie, size_t ielen, 2299 const struct element *mbssid_elem, 2300 const struct element *sub_elem, 2301 u8 *merged_ie, size_t max_copy_len) 2302 { 2303 size_t copied_len = sub_elem->datalen; 2304 const struct element *next_mbssid; 2305 2306 if (sub_elem->datalen > max_copy_len) 2307 return 0; 2308 2309 memcpy(merged_ie, sub_elem->data, sub_elem->datalen); 2310 2311 while ((next_mbssid = cfg80211_get_profile_continuation(ie, ielen, 2312 mbssid_elem, 2313 sub_elem))) { 2314 const struct element *next_sub = (void *)&next_mbssid->data[1]; 2315 2316 if (copied_len + next_sub->datalen > max_copy_len) 2317 break; 2318 memcpy(merged_ie + copied_len, next_sub->data, 2319 next_sub->datalen); 2320 copied_len += next_sub->datalen; 2321 } 2322 2323 return copied_len; 2324 } 2325 EXPORT_SYMBOL(cfg80211_merge_profile); 2326 2327 static void 2328 cfg80211_parse_mbssid_data(struct wiphy *wiphy, 2329 struct cfg80211_inform_single_bss_data *tx_data, 2330 struct cfg80211_bss *source_bss, 2331 gfp_t gfp) 2332 { 2333 struct cfg80211_inform_single_bss_data data = { 2334 .drv_data = tx_data->drv_data, 2335 .ftype = tx_data->ftype, 2336 .tsf = tx_data->tsf, 2337 .beacon_interval = tx_data->beacon_interval, 2338 .source_bss = source_bss, 2339 .bss_source = BSS_SOURCE_MBSSID, 2340 .use_for = tx_data->use_for, 2341 .cannot_use_reasons = tx_data->cannot_use_reasons, 2342 }; 2343 const u8 *mbssid_index_ie; 2344 const struct element *elem, *sub; 2345 u8 *new_ie, *profile; 2346 u64 seen_indices = 0; 2347 struct cfg80211_bss *bss; 2348 2349 if (!source_bss) 2350 return; 2351 if (!cfg80211_find_elem(WLAN_EID_MULTIPLE_BSSID, 2352 tx_data->ie, tx_data->ielen)) 2353 return; 2354 if (!wiphy->support_mbssid) 2355 return; 2356 if (wiphy->support_only_he_mbssid && 2357 !cfg80211_find_ext_elem(WLAN_EID_EXT_HE_CAPABILITY, 2358 tx_data->ie, tx_data->ielen)) 2359 return; 2360 2361 new_ie = kmalloc(IEEE80211_MAX_DATA_LEN, gfp); 2362 if (!new_ie) 2363 return; 2364 2365 profile = kmalloc(tx_data->ielen, gfp); 2366 if (!profile) 2367 goto out; 2368 2369 for_each_element_id(elem, WLAN_EID_MULTIPLE_BSSID, 2370 tx_data->ie, tx_data->ielen) { 2371 if (elem->datalen < 4) 2372 continue; 2373 if (elem->data[0] < 1 || (int)elem->data[0] > 8) 2374 continue; 2375 for_each_element(sub, elem->data + 1, elem->datalen - 1) { 2376 u8 profile_len; 2377 2378 if (sub->id != 0 || sub->datalen < 4) { 2379 /* not a valid BSS profile */ 2380 continue; 2381 } 2382 2383 if (sub->data[0] != WLAN_EID_NON_TX_BSSID_CAP || 2384 sub->data[1] != 2) { 2385 /* The first element within the Nontransmitted 2386 * BSSID Profile is not the Nontransmitted 2387 * BSSID Capability element. 2388 */ 2389 continue; 2390 } 2391 2392 memset(profile, 0, tx_data->ielen); 2393 profile_len = cfg80211_merge_profile(tx_data->ie, 2394 tx_data->ielen, 2395 elem, 2396 sub, 2397 profile, 2398 tx_data->ielen); 2399 2400 /* found a Nontransmitted BSSID Profile */ 2401 mbssid_index_ie = cfg80211_find_ie 2402 (WLAN_EID_MULTI_BSSID_IDX, 2403 profile, profile_len); 2404 if (!mbssid_index_ie || mbssid_index_ie[1] < 1 || 2405 mbssid_index_ie[2] == 0 || 2406 mbssid_index_ie[2] > 46) { 2407 /* No valid Multiple BSSID-Index element */ 2408 continue; 2409 } 2410 2411 if (seen_indices & BIT_ULL(mbssid_index_ie[2])) 2412 /* We don't support legacy split of a profile */ 2413 net_dbg_ratelimited("Partial info for BSSID index %d\n", 2414 mbssid_index_ie[2]); 2415 2416 seen_indices |= BIT_ULL(mbssid_index_ie[2]); 2417 2418 data.bssid_index = mbssid_index_ie[2]; 2419 data.max_bssid_indicator = elem->data[0]; 2420 2421 cfg80211_gen_new_bssid(tx_data->bssid, 2422 data.max_bssid_indicator, 2423 data.bssid_index, 2424 data.bssid); 2425 2426 memset(new_ie, 0, IEEE80211_MAX_DATA_LEN); 2427 data.ie = new_ie; 2428 data.ielen = cfg80211_gen_new_ie(tx_data->ie, 2429 tx_data->ielen, 2430 profile, 2431 profile_len, 2432 new_ie, 2433 IEEE80211_MAX_DATA_LEN); 2434 if (!data.ielen) 2435 continue; 2436 2437 data.capability = get_unaligned_le16(profile + 2); 2438 bss = cfg80211_inform_single_bss_data(wiphy, &data, gfp); 2439 if (!bss) 2440 break; 2441 cfg80211_put_bss(wiphy, bss); 2442 } 2443 } 2444 2445 out: 2446 kfree(new_ie); 2447 kfree(profile); 2448 } 2449 2450 ssize_t cfg80211_defragment_element(const struct element *elem, const u8 *ies, 2451 size_t ieslen, u8 *data, size_t data_len, 2452 u8 frag_id) 2453 { 2454 const struct element *next; 2455 ssize_t copied; 2456 u8 elem_datalen; 2457 2458 if (!elem) 2459 return -EINVAL; 2460 2461 /* elem might be invalid after the memmove */ 2462 next = (void *)(elem->data + elem->datalen); 2463 elem_datalen = elem->datalen; 2464 2465 if (elem->id == WLAN_EID_EXTENSION) { 2466 copied = elem->datalen - 1; 2467 if (copied > data_len) 2468 return -ENOSPC; 2469 2470 memmove(data, elem->data + 1, copied); 2471 } else { 2472 copied = elem->datalen; 2473 if (copied > data_len) 2474 return -ENOSPC; 2475 2476 memmove(data, elem->data, copied); 2477 } 2478 2479 /* Fragmented elements must have 255 bytes */ 2480 if (elem_datalen < 255) 2481 return copied; 2482 2483 for (elem = next; 2484 elem->data < ies + ieslen && 2485 elem->data + elem->datalen <= ies + ieslen; 2486 elem = next) { 2487 /* elem might be invalid after the memmove */ 2488 next = (void *)(elem->data + elem->datalen); 2489 2490 if (elem->id != frag_id) 2491 break; 2492 2493 elem_datalen = elem->datalen; 2494 2495 if (copied + elem_datalen > data_len) 2496 return -ENOSPC; 2497 2498 memmove(data + copied, elem->data, elem_datalen); 2499 copied += elem_datalen; 2500 2501 /* Only the last fragment may be short */ 2502 if (elem_datalen != 255) 2503 break; 2504 } 2505 2506 return copied; 2507 } 2508 EXPORT_SYMBOL(cfg80211_defragment_element); 2509 2510 struct cfg80211_mle { 2511 struct ieee80211_multi_link_elem *mle; 2512 struct ieee80211_mle_per_sta_profile 2513 *sta_prof[IEEE80211_MLD_MAX_NUM_LINKS]; 2514 ssize_t sta_prof_len[IEEE80211_MLD_MAX_NUM_LINKS]; 2515 2516 u8 data[]; 2517 }; 2518 2519 static struct cfg80211_mle * 2520 cfg80211_defrag_mle(const struct element *mle, const u8 *ie, size_t ielen, 2521 gfp_t gfp) 2522 { 2523 const struct element *elem; 2524 struct cfg80211_mle *res; 2525 size_t buf_len; 2526 ssize_t mle_len; 2527 u8 common_size, idx; 2528 2529 if (!mle || !ieee80211_mle_size_ok(mle->data + 1, mle->datalen - 1)) 2530 return NULL; 2531 2532 /* Required length for first defragmentation */ 2533 buf_len = mle->datalen - 1; 2534 for_each_element(elem, mle->data + mle->datalen, 2535 ielen - sizeof(*mle) + mle->datalen) { 2536 if (elem->id != WLAN_EID_FRAGMENT) 2537 break; 2538 2539 buf_len += elem->datalen; 2540 } 2541 2542 res = kzalloc(struct_size(res, data, buf_len), gfp); 2543 if (!res) 2544 return NULL; 2545 2546 mle_len = cfg80211_defragment_element(mle, ie, ielen, 2547 res->data, buf_len, 2548 WLAN_EID_FRAGMENT); 2549 if (mle_len < 0) 2550 goto error; 2551 2552 res->mle = (void *)res->data; 2553 2554 /* Find the sub-element area in the buffer */ 2555 common_size = ieee80211_mle_common_size((u8 *)res->mle); 2556 ie = res->data + common_size; 2557 ielen = mle_len - common_size; 2558 2559 idx = 0; 2560 for_each_element_id(elem, IEEE80211_MLE_SUBELEM_PER_STA_PROFILE, 2561 ie, ielen) { 2562 res->sta_prof[idx] = (void *)elem->data; 2563 res->sta_prof_len[idx] = elem->datalen; 2564 2565 idx++; 2566 if (idx >= IEEE80211_MLD_MAX_NUM_LINKS) 2567 break; 2568 } 2569 if (!for_each_element_completed(elem, ie, ielen)) 2570 goto error; 2571 2572 /* Defragment sta_info in-place */ 2573 for (idx = 0; idx < IEEE80211_MLD_MAX_NUM_LINKS && res->sta_prof[idx]; 2574 idx++) { 2575 if (res->sta_prof_len[idx] < 255) 2576 continue; 2577 2578 elem = (void *)res->sta_prof[idx] - 2; 2579 2580 if (idx + 1 < ARRAY_SIZE(res->sta_prof) && 2581 res->sta_prof[idx + 1]) 2582 buf_len = (u8 *)res->sta_prof[idx + 1] - 2583 (u8 *)res->sta_prof[idx]; 2584 else 2585 buf_len = ielen + ie - (u8 *)elem; 2586 2587 res->sta_prof_len[idx] = 2588 cfg80211_defragment_element(elem, 2589 (u8 *)elem, buf_len, 2590 (u8 *)res->sta_prof[idx], 2591 buf_len, 2592 IEEE80211_MLE_SUBELEM_FRAGMENT); 2593 if (res->sta_prof_len[idx] < 0) 2594 goto error; 2595 } 2596 2597 return res; 2598 2599 error: 2600 kfree(res); 2601 return NULL; 2602 } 2603 2604 static u8 2605 cfg80211_tbtt_info_for_mld_ap(const u8 *ie, size_t ielen, u8 mld_id, u8 link_id, 2606 const struct ieee80211_neighbor_ap_info **ap_info, 2607 const u8 **tbtt_info) 2608 { 2609 const struct ieee80211_neighbor_ap_info *info; 2610 const struct element *rnr; 2611 const u8 *pos, *end; 2612 2613 for_each_element_id(rnr, WLAN_EID_REDUCED_NEIGHBOR_REPORT, ie, ielen) { 2614 pos = rnr->data; 2615 end = rnr->data + rnr->datalen; 2616 2617 /* RNR IE may contain more than one NEIGHBOR_AP_INFO */ 2618 while (sizeof(*info) <= end - pos) { 2619 const struct ieee80211_rnr_mld_params *mld_params; 2620 u16 params; 2621 u8 length, i, count, mld_params_offset; 2622 u8 type, lid; 2623 u32 use_for; 2624 2625 info = (void *)pos; 2626 count = u8_get_bits(info->tbtt_info_hdr, 2627 IEEE80211_AP_INFO_TBTT_HDR_COUNT) + 1; 2628 length = info->tbtt_info_len; 2629 2630 pos += sizeof(*info); 2631 2632 if (count * length > end - pos) 2633 return 0; 2634 2635 type = u8_get_bits(info->tbtt_info_hdr, 2636 IEEE80211_AP_INFO_TBTT_HDR_TYPE); 2637 2638 if (type == IEEE80211_TBTT_INFO_TYPE_TBTT && 2639 length >= 2640 offsetofend(struct ieee80211_tbtt_info_ge_11, 2641 mld_params)) { 2642 mld_params_offset = 2643 offsetof(struct ieee80211_tbtt_info_ge_11, mld_params); 2644 use_for = NL80211_BSS_USE_FOR_ALL; 2645 } else if (type == IEEE80211_TBTT_INFO_TYPE_MLD && 2646 length >= sizeof(struct ieee80211_rnr_mld_params)) { 2647 mld_params_offset = 0; 2648 use_for = NL80211_BSS_USE_FOR_MLD_LINK; 2649 } else { 2650 pos += count * length; 2651 continue; 2652 } 2653 2654 for (i = 0; i < count; i++) { 2655 mld_params = (void *)pos + mld_params_offset; 2656 params = le16_to_cpu(mld_params->params); 2657 2658 lid = u16_get_bits(params, 2659 IEEE80211_RNR_MLD_PARAMS_LINK_ID); 2660 2661 if (mld_id == mld_params->mld_id && 2662 link_id == lid) { 2663 *ap_info = info; 2664 *tbtt_info = pos; 2665 2666 return use_for; 2667 } 2668 2669 pos += length; 2670 } 2671 } 2672 } 2673 2674 return 0; 2675 } 2676 2677 static void 2678 cfg80211_parse_ml_elem_sta_data(struct wiphy *wiphy, 2679 struct cfg80211_inform_single_bss_data *tx_data, 2680 struct cfg80211_bss *source_bss, 2681 const struct element *elem, 2682 gfp_t gfp) 2683 { 2684 struct cfg80211_inform_single_bss_data data = { 2685 .drv_data = tx_data->drv_data, 2686 .ftype = tx_data->ftype, 2687 .source_bss = source_bss, 2688 .bss_source = BSS_SOURCE_STA_PROFILE, 2689 }; 2690 struct ieee80211_multi_link_elem *ml_elem; 2691 struct cfg80211_mle *mle; 2692 u16 control; 2693 u8 ml_common_len; 2694 u8 *new_ie; 2695 struct cfg80211_bss *bss; 2696 int mld_id; 2697 u16 seen_links = 0; 2698 const u8 *pos; 2699 u8 i; 2700 2701 if (!ieee80211_mle_size_ok(elem->data + 1, elem->datalen - 1)) 2702 return; 2703 2704 ml_elem = (void *)elem->data + 1; 2705 control = le16_to_cpu(ml_elem->control); 2706 if (u16_get_bits(control, IEEE80211_ML_CONTROL_TYPE) != 2707 IEEE80211_ML_CONTROL_TYPE_BASIC) 2708 return; 2709 2710 /* Must be present when transmitted by an AP (in a probe response) */ 2711 if (!(control & IEEE80211_MLC_BASIC_PRES_BSS_PARAM_CH_CNT) || 2712 !(control & IEEE80211_MLC_BASIC_PRES_LINK_ID) || 2713 !(control & IEEE80211_MLC_BASIC_PRES_MLD_CAPA_OP)) 2714 return; 2715 2716 ml_common_len = ml_elem->variable[0]; 2717 2718 /* length + MLD MAC address + link ID info + BSS Params Change Count */ 2719 pos = ml_elem->variable + 1 + 6 + 1 + 1; 2720 2721 if (u16_get_bits(control, IEEE80211_MLC_BASIC_PRES_MED_SYNC_DELAY)) 2722 pos += 2; 2723 if (u16_get_bits(control, IEEE80211_MLC_BASIC_PRES_EML_CAPA)) 2724 pos += 2; 2725 2726 /* MLD capabilities and operations */ 2727 pos += 2; 2728 2729 /* 2730 * The MLD ID of the reporting AP is always zero. It is set if the AP 2731 * is part of an MBSSID set and will be non-zero for ML Elements 2732 * relating to a nontransmitted BSS (matching the Multi-BSSID Index, 2733 * Draft P802.11be_D3.2, 35.3.4.2) 2734 */ 2735 if (u16_get_bits(control, IEEE80211_MLC_BASIC_PRES_MLD_ID)) { 2736 mld_id = *pos; 2737 pos += 1; 2738 } else { 2739 mld_id = 0; 2740 } 2741 2742 /* Extended MLD capabilities and operations */ 2743 pos += 2; 2744 2745 /* Fully defrag the ML element for sta information/profile iteration */ 2746 mle = cfg80211_defrag_mle(elem, tx_data->ie, tx_data->ielen, gfp); 2747 if (!mle) 2748 return; 2749 2750 new_ie = kmalloc(IEEE80211_MAX_DATA_LEN, gfp); 2751 if (!new_ie) 2752 goto out; 2753 2754 for (i = 0; i < ARRAY_SIZE(mle->sta_prof) && mle->sta_prof[i]; i++) { 2755 const struct ieee80211_neighbor_ap_info *ap_info; 2756 enum nl80211_band band; 2757 u32 freq; 2758 const u8 *profile; 2759 const u8 *tbtt_info; 2760 ssize_t profile_len; 2761 u8 link_id, use_for; 2762 2763 if (!ieee80211_mle_basic_sta_prof_size_ok((u8 *)mle->sta_prof[i], 2764 mle->sta_prof_len[i])) 2765 continue; 2766 2767 control = le16_to_cpu(mle->sta_prof[i]->control); 2768 2769 if (!(control & IEEE80211_MLE_STA_CONTROL_COMPLETE_PROFILE)) 2770 continue; 2771 2772 link_id = u16_get_bits(control, 2773 IEEE80211_MLE_STA_CONTROL_LINK_ID); 2774 if (seen_links & BIT(link_id)) 2775 break; 2776 seen_links |= BIT(link_id); 2777 2778 if (!(control & IEEE80211_MLE_STA_CONTROL_BEACON_INT_PRESENT) || 2779 !(control & IEEE80211_MLE_STA_CONTROL_TSF_OFFS_PRESENT) || 2780 !(control & IEEE80211_MLE_STA_CONTROL_STA_MAC_ADDR_PRESENT)) 2781 continue; 2782 2783 memcpy(data.bssid, mle->sta_prof[i]->variable, ETH_ALEN); 2784 data.beacon_interval = 2785 get_unaligned_le16(mle->sta_prof[i]->variable + 6); 2786 data.tsf = tx_data->tsf + 2787 get_unaligned_le64(mle->sta_prof[i]->variable + 8); 2788 2789 /* sta_info_len counts itself */ 2790 profile = mle->sta_prof[i]->variable + 2791 mle->sta_prof[i]->sta_info_len - 1; 2792 profile_len = (u8 *)mle->sta_prof[i] + mle->sta_prof_len[i] - 2793 profile; 2794 2795 if (profile_len < 2) 2796 continue; 2797 2798 data.capability = get_unaligned_le16(profile); 2799 profile += 2; 2800 profile_len -= 2; 2801 2802 /* Find in RNR to look up channel information */ 2803 use_for = cfg80211_tbtt_info_for_mld_ap(tx_data->ie, 2804 tx_data->ielen, 2805 mld_id, link_id, 2806 &ap_info, &tbtt_info); 2807 if (!use_for) 2808 continue; 2809 2810 /* We could sanity check the BSSID is included */ 2811 2812 if (!ieee80211_operating_class_to_band(ap_info->op_class, 2813 &band)) 2814 continue; 2815 2816 freq = ieee80211_channel_to_freq_khz(ap_info->channel, band); 2817 data.channel = ieee80211_get_channel_khz(wiphy, freq); 2818 2819 if (use_for == NL80211_BSS_USE_FOR_MLD_LINK && 2820 !(wiphy->flags & WIPHY_FLAG_SUPPORTS_NSTR_NONPRIMARY)) { 2821 use_for = 0; 2822 data.cannot_use_reasons = 2823 NL80211_BSS_CANNOT_USE_NSTR_NONPRIMARY; 2824 } 2825 data.use_for = use_for; 2826 2827 /* Generate new elements */ 2828 memset(new_ie, 0, IEEE80211_MAX_DATA_LEN); 2829 data.ie = new_ie; 2830 data.ielen = cfg80211_gen_new_ie(tx_data->ie, tx_data->ielen, 2831 profile, profile_len, 2832 new_ie, 2833 IEEE80211_MAX_DATA_LEN); 2834 if (!data.ielen) 2835 continue; 2836 2837 /* The generated elements do not contain: 2838 * - Basic ML element 2839 * - A TBTT entry in the RNR for the transmitting AP 2840 * 2841 * This information is needed both internally and in userspace 2842 * as such, we should append it here. 2843 */ 2844 if (data.ielen + 3 + sizeof(*ml_elem) + ml_common_len > 2845 IEEE80211_MAX_DATA_LEN) 2846 continue; 2847 2848 /* Copy the Basic Multi-Link element including the common 2849 * information, and then fix up the link ID. 2850 * Note that the ML element length has been verified and we 2851 * also checked that it contains the link ID. 2852 */ 2853 new_ie[data.ielen++] = WLAN_EID_EXTENSION; 2854 new_ie[data.ielen++] = 1 + sizeof(*ml_elem) + ml_common_len; 2855 new_ie[data.ielen++] = WLAN_EID_EXT_EHT_MULTI_LINK; 2856 memcpy(new_ie + data.ielen, ml_elem, 2857 sizeof(*ml_elem) + ml_common_len); 2858 2859 new_ie[data.ielen + sizeof(*ml_elem) + 1 + ETH_ALEN] = link_id; 2860 2861 data.ielen += sizeof(*ml_elem) + ml_common_len; 2862 2863 /* TODO: Add an RNR containing only the reporting AP */ 2864 2865 bss = cfg80211_inform_single_bss_data(wiphy, &data, gfp); 2866 if (!bss) 2867 break; 2868 cfg80211_put_bss(wiphy, bss); 2869 } 2870 2871 out: 2872 kfree(new_ie); 2873 kfree(mle); 2874 } 2875 2876 static void cfg80211_parse_ml_sta_data(struct wiphy *wiphy, 2877 struct cfg80211_inform_single_bss_data *tx_data, 2878 struct cfg80211_bss *source_bss, 2879 gfp_t gfp) 2880 { 2881 const struct element *elem; 2882 2883 if (!source_bss) 2884 return; 2885 2886 if (tx_data->ftype != CFG80211_BSS_FTYPE_PRESP) 2887 return; 2888 2889 for_each_element_extid(elem, WLAN_EID_EXT_EHT_MULTI_LINK, 2890 tx_data->ie, tx_data->ielen) 2891 cfg80211_parse_ml_elem_sta_data(wiphy, tx_data, source_bss, 2892 elem, gfp); 2893 } 2894 2895 struct cfg80211_bss * 2896 cfg80211_inform_bss_data(struct wiphy *wiphy, 2897 struct cfg80211_inform_bss *data, 2898 enum cfg80211_bss_frame_type ftype, 2899 const u8 *bssid, u64 tsf, u16 capability, 2900 u16 beacon_interval, const u8 *ie, size_t ielen, 2901 gfp_t gfp) 2902 { 2903 struct cfg80211_inform_single_bss_data inform_data = { 2904 .drv_data = data, 2905 .ftype = ftype, 2906 .tsf = tsf, 2907 .capability = capability, 2908 .beacon_interval = beacon_interval, 2909 .ie = ie, 2910 .ielen = ielen, 2911 .use_for = data->restrict_use ? 2912 data->use_for : 2913 NL80211_BSS_USE_FOR_ALL, 2914 .cannot_use_reasons = data->cannot_use_reasons, 2915 }; 2916 struct cfg80211_bss *res; 2917 2918 memcpy(inform_data.bssid, bssid, ETH_ALEN); 2919 2920 res = cfg80211_inform_single_bss_data(wiphy, &inform_data, gfp); 2921 if (!res) 2922 return NULL; 2923 2924 cfg80211_parse_mbssid_data(wiphy, &inform_data, res, gfp); 2925 2926 cfg80211_parse_ml_sta_data(wiphy, &inform_data, res, gfp); 2927 2928 return res; 2929 } 2930 EXPORT_SYMBOL(cfg80211_inform_bss_data); 2931 2932 static bool cfg80211_uhb_power_type_valid(const u8 *ie, 2933 size_t ielen, 2934 const u32 flags) 2935 { 2936 const struct element *tmp; 2937 struct ieee80211_he_operation *he_oper; 2938 2939 tmp = cfg80211_find_ext_elem(WLAN_EID_EXT_HE_OPERATION, ie, ielen); 2940 if (tmp && tmp->datalen >= sizeof(*he_oper) + 1) { 2941 const struct ieee80211_he_6ghz_oper *he_6ghz_oper; 2942 2943 he_oper = (void *)&tmp->data[1]; 2944 he_6ghz_oper = ieee80211_he_6ghz_oper(he_oper); 2945 2946 if (!he_6ghz_oper) 2947 return false; 2948 2949 switch (u8_get_bits(he_6ghz_oper->control, 2950 IEEE80211_HE_6GHZ_OPER_CTRL_REG_INFO)) { 2951 case IEEE80211_6GHZ_CTRL_REG_LPI_AP: 2952 return true; 2953 case IEEE80211_6GHZ_CTRL_REG_SP_AP: 2954 return !(flags & IEEE80211_CHAN_NO_UHB_AFC_CLIENT); 2955 case IEEE80211_6GHZ_CTRL_REG_VLP_AP: 2956 return !(flags & IEEE80211_CHAN_NO_UHB_VLP_CLIENT); 2957 } 2958 } 2959 return false; 2960 } 2961 2962 /* cfg80211_inform_bss_width_frame helper */ 2963 static struct cfg80211_bss * 2964 cfg80211_inform_single_bss_frame_data(struct wiphy *wiphy, 2965 struct cfg80211_inform_bss *data, 2966 struct ieee80211_mgmt *mgmt, size_t len, 2967 gfp_t gfp) 2968 { 2969 struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy); 2970 struct cfg80211_internal_bss tmp = {}, *res; 2971 struct cfg80211_bss_ies *ies; 2972 struct ieee80211_channel *channel; 2973 bool signal_valid; 2974 struct ieee80211_ext *ext = NULL; 2975 u8 *bssid, *variable; 2976 u16 capability, beacon_int; 2977 size_t ielen, min_hdr_len = offsetof(struct ieee80211_mgmt, 2978 u.probe_resp.variable); 2979 int bss_type; 2980 2981 BUILD_BUG_ON(offsetof(struct ieee80211_mgmt, u.probe_resp.variable) != 2982 offsetof(struct ieee80211_mgmt, u.beacon.variable)); 2983 2984 trace_cfg80211_inform_bss_frame(wiphy, data, mgmt, len); 2985 2986 if (WARN_ON(!mgmt)) 2987 return NULL; 2988 2989 if (WARN_ON(!wiphy)) 2990 return NULL; 2991 2992 if (WARN_ON(wiphy->signal_type == CFG80211_SIGNAL_TYPE_UNSPEC && 2993 (data->signal < 0 || data->signal > 100))) 2994 return NULL; 2995 2996 if (ieee80211_is_s1g_beacon(mgmt->frame_control)) { 2997 ext = (void *) mgmt; 2998 min_hdr_len = offsetof(struct ieee80211_ext, u.s1g_beacon); 2999 if (ieee80211_is_s1g_short_beacon(mgmt->frame_control)) 3000 min_hdr_len = offsetof(struct ieee80211_ext, 3001 u.s1g_short_beacon.variable); 3002 } 3003 3004 if (WARN_ON(len < min_hdr_len)) 3005 return NULL; 3006 3007 ielen = len - min_hdr_len; 3008 variable = mgmt->u.probe_resp.variable; 3009 if (ext) { 3010 if (ieee80211_is_s1g_short_beacon(mgmt->frame_control)) 3011 variable = ext->u.s1g_short_beacon.variable; 3012 else 3013 variable = ext->u.s1g_beacon.variable; 3014 } 3015 3016 channel = cfg80211_get_bss_channel(wiphy, variable, ielen, data->chan); 3017 if (!channel) 3018 return NULL; 3019 3020 if (channel->band == NL80211_BAND_6GHZ && 3021 !cfg80211_uhb_power_type_valid(variable, ielen, channel->flags)) { 3022 data->restrict_use = 1; 3023 data->use_for = 0; 3024 data->cannot_use_reasons = 3025 NL80211_BSS_CANNOT_USE_UHB_PWR_MISMATCH; 3026 } 3027 3028 if (ext) { 3029 const struct ieee80211_s1g_bcn_compat_ie *compat; 3030 const struct element *elem; 3031 3032 elem = cfg80211_find_elem(WLAN_EID_S1G_BCN_COMPAT, 3033 variable, ielen); 3034 if (!elem) 3035 return NULL; 3036 if (elem->datalen < sizeof(*compat)) 3037 return NULL; 3038 compat = (void *)elem->data; 3039 bssid = ext->u.s1g_beacon.sa; 3040 capability = le16_to_cpu(compat->compat_info); 3041 beacon_int = le16_to_cpu(compat->beacon_int); 3042 } else { 3043 bssid = mgmt->bssid; 3044 beacon_int = le16_to_cpu(mgmt->u.probe_resp.beacon_int); 3045 capability = le16_to_cpu(mgmt->u.probe_resp.capab_info); 3046 } 3047 3048 if (channel->band == NL80211_BAND_60GHZ) { 3049 bss_type = capability & WLAN_CAPABILITY_DMG_TYPE_MASK; 3050 if (bss_type == WLAN_CAPABILITY_DMG_TYPE_AP || 3051 bss_type == WLAN_CAPABILITY_DMG_TYPE_PBSS) 3052 regulatory_hint_found_beacon(wiphy, channel, gfp); 3053 } else { 3054 if (capability & WLAN_CAPABILITY_ESS) 3055 regulatory_hint_found_beacon(wiphy, channel, gfp); 3056 } 3057 3058 ies = kzalloc(sizeof(*ies) + ielen, gfp); 3059 if (!ies) 3060 return NULL; 3061 ies->len = ielen; 3062 ies->tsf = le64_to_cpu(mgmt->u.probe_resp.timestamp); 3063 ies->from_beacon = ieee80211_is_beacon(mgmt->frame_control) || 3064 ieee80211_is_s1g_beacon(mgmt->frame_control); 3065 memcpy(ies->data, variable, ielen); 3066 3067 if (ieee80211_is_probe_resp(mgmt->frame_control)) 3068 rcu_assign_pointer(tmp.pub.proberesp_ies, ies); 3069 else 3070 rcu_assign_pointer(tmp.pub.beacon_ies, ies); 3071 rcu_assign_pointer(tmp.pub.ies, ies); 3072 3073 memcpy(tmp.pub.bssid, bssid, ETH_ALEN); 3074 tmp.pub.beacon_interval = beacon_int; 3075 tmp.pub.capability = capability; 3076 tmp.pub.channel = channel; 3077 tmp.pub.signal = data->signal; 3078 tmp.ts_boottime = data->boottime_ns; 3079 tmp.parent_tsf = data->parent_tsf; 3080 tmp.pub.chains = data->chains; 3081 memcpy(tmp.pub.chain_signal, data->chain_signal, IEEE80211_MAX_CHAINS); 3082 ether_addr_copy(tmp.parent_bssid, data->parent_bssid); 3083 tmp.pub.use_for = data->restrict_use ? 3084 data->use_for : 3085 NL80211_BSS_USE_FOR_ALL; 3086 tmp.pub.cannot_use_reasons = data->cannot_use_reasons; 3087 3088 signal_valid = data->chan == channel; 3089 spin_lock_bh(&rdev->bss_lock); 3090 res = __cfg80211_bss_update(rdev, &tmp, signal_valid, jiffies); 3091 if (!res) 3092 goto drop; 3093 3094 rdev_inform_bss(rdev, &res->pub, ies, data->drv_data); 3095 3096 spin_unlock_bh(&rdev->bss_lock); 3097 3098 trace_cfg80211_return_bss(&res->pub); 3099 /* __cfg80211_bss_update gives us a referenced result */ 3100 return &res->pub; 3101 3102 drop: 3103 spin_unlock_bh(&rdev->bss_lock); 3104 return NULL; 3105 } 3106 3107 struct cfg80211_bss * 3108 cfg80211_inform_bss_frame_data(struct wiphy *wiphy, 3109 struct cfg80211_inform_bss *data, 3110 struct ieee80211_mgmt *mgmt, size_t len, 3111 gfp_t gfp) 3112 { 3113 struct cfg80211_inform_single_bss_data inform_data = { 3114 .drv_data = data, 3115 .ie = mgmt->u.probe_resp.variable, 3116 .ielen = len - offsetof(struct ieee80211_mgmt, 3117 u.probe_resp.variable), 3118 .use_for = data->restrict_use ? 3119 data->use_for : 3120 NL80211_BSS_USE_FOR_ALL, 3121 .cannot_use_reasons = data->cannot_use_reasons, 3122 }; 3123 struct cfg80211_bss *res; 3124 3125 res = cfg80211_inform_single_bss_frame_data(wiphy, data, mgmt, 3126 len, gfp); 3127 if (!res) 3128 return NULL; 3129 3130 /* don't do any further MBSSID/ML handling for S1G */ 3131 if (ieee80211_is_s1g_beacon(mgmt->frame_control)) 3132 return res; 3133 3134 inform_data.ftype = ieee80211_is_beacon(mgmt->frame_control) ? 3135 CFG80211_BSS_FTYPE_BEACON : CFG80211_BSS_FTYPE_PRESP; 3136 memcpy(inform_data.bssid, mgmt->bssid, ETH_ALEN); 3137 inform_data.tsf = le64_to_cpu(mgmt->u.probe_resp.timestamp); 3138 inform_data.beacon_interval = 3139 le16_to_cpu(mgmt->u.probe_resp.beacon_int); 3140 3141 /* process each non-transmitting bss */ 3142 cfg80211_parse_mbssid_data(wiphy, &inform_data, res, gfp); 3143 3144 cfg80211_parse_ml_sta_data(wiphy, &inform_data, res, gfp); 3145 3146 return res; 3147 } 3148 EXPORT_SYMBOL(cfg80211_inform_bss_frame_data); 3149 3150 void cfg80211_ref_bss(struct wiphy *wiphy, struct cfg80211_bss *pub) 3151 { 3152 struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy); 3153 3154 if (!pub) 3155 return; 3156 3157 spin_lock_bh(&rdev->bss_lock); 3158 bss_ref_get(rdev, bss_from_pub(pub)); 3159 spin_unlock_bh(&rdev->bss_lock); 3160 } 3161 EXPORT_SYMBOL(cfg80211_ref_bss); 3162 3163 void cfg80211_put_bss(struct wiphy *wiphy, struct cfg80211_bss *pub) 3164 { 3165 struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy); 3166 3167 if (!pub) 3168 return; 3169 3170 spin_lock_bh(&rdev->bss_lock); 3171 bss_ref_put(rdev, bss_from_pub(pub)); 3172 spin_unlock_bh(&rdev->bss_lock); 3173 } 3174 EXPORT_SYMBOL(cfg80211_put_bss); 3175 3176 void cfg80211_unlink_bss(struct wiphy *wiphy, struct cfg80211_bss *pub) 3177 { 3178 struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy); 3179 struct cfg80211_internal_bss *bss, *tmp1; 3180 struct cfg80211_bss *nontrans_bss, *tmp; 3181 3182 if (WARN_ON(!pub)) 3183 return; 3184 3185 bss = bss_from_pub(pub); 3186 3187 spin_lock_bh(&rdev->bss_lock); 3188 if (list_empty(&bss->list)) 3189 goto out; 3190 3191 list_for_each_entry_safe(nontrans_bss, tmp, 3192 &pub->nontrans_list, 3193 nontrans_list) { 3194 tmp1 = bss_from_pub(nontrans_bss); 3195 if (__cfg80211_unlink_bss(rdev, tmp1)) 3196 rdev->bss_generation++; 3197 } 3198 3199 if (__cfg80211_unlink_bss(rdev, bss)) 3200 rdev->bss_generation++; 3201 out: 3202 spin_unlock_bh(&rdev->bss_lock); 3203 } 3204 EXPORT_SYMBOL(cfg80211_unlink_bss); 3205 3206 void cfg80211_bss_iter(struct wiphy *wiphy, 3207 struct cfg80211_chan_def *chandef, 3208 void (*iter)(struct wiphy *wiphy, 3209 struct cfg80211_bss *bss, 3210 void *data), 3211 void *iter_data) 3212 { 3213 struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy); 3214 struct cfg80211_internal_bss *bss; 3215 3216 spin_lock_bh(&rdev->bss_lock); 3217 3218 list_for_each_entry(bss, &rdev->bss_list, list) { 3219 if (!chandef || cfg80211_is_sub_chan(chandef, bss->pub.channel, 3220 false)) 3221 iter(wiphy, &bss->pub, iter_data); 3222 } 3223 3224 spin_unlock_bh(&rdev->bss_lock); 3225 } 3226 EXPORT_SYMBOL(cfg80211_bss_iter); 3227 3228 void cfg80211_update_assoc_bss_entry(struct wireless_dev *wdev, 3229 unsigned int link_id, 3230 struct ieee80211_channel *chan) 3231 { 3232 struct wiphy *wiphy = wdev->wiphy; 3233 struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy); 3234 struct cfg80211_internal_bss *cbss = wdev->links[link_id].client.current_bss; 3235 struct cfg80211_internal_bss *new = NULL; 3236 struct cfg80211_internal_bss *bss; 3237 struct cfg80211_bss *nontrans_bss; 3238 struct cfg80211_bss *tmp; 3239 3240 spin_lock_bh(&rdev->bss_lock); 3241 3242 /* 3243 * Some APs use CSA also for bandwidth changes, i.e., without actually 3244 * changing the control channel, so no need to update in such a case. 3245 */ 3246 if (cbss->pub.channel == chan) 3247 goto done; 3248 3249 /* use transmitting bss */ 3250 if (cbss->pub.transmitted_bss) 3251 cbss = bss_from_pub(cbss->pub.transmitted_bss); 3252 3253 cbss->pub.channel = chan; 3254 3255 list_for_each_entry(bss, &rdev->bss_list, list) { 3256 if (!cfg80211_bss_type_match(bss->pub.capability, 3257 bss->pub.channel->band, 3258 wdev->conn_bss_type)) 3259 continue; 3260 3261 if (bss == cbss) 3262 continue; 3263 3264 if (!cmp_bss(&bss->pub, &cbss->pub, BSS_CMP_REGULAR)) { 3265 new = bss; 3266 break; 3267 } 3268 } 3269 3270 if (new) { 3271 /* to save time, update IEs for transmitting bss only */ 3272 cfg80211_update_known_bss(rdev, cbss, new, false); 3273 new->pub.proberesp_ies = NULL; 3274 new->pub.beacon_ies = NULL; 3275 3276 list_for_each_entry_safe(nontrans_bss, tmp, 3277 &new->pub.nontrans_list, 3278 nontrans_list) { 3279 bss = bss_from_pub(nontrans_bss); 3280 if (__cfg80211_unlink_bss(rdev, bss)) 3281 rdev->bss_generation++; 3282 } 3283 3284 WARN_ON(atomic_read(&new->hold)); 3285 if (!WARN_ON(!__cfg80211_unlink_bss(rdev, new))) 3286 rdev->bss_generation++; 3287 } 3288 3289 rb_erase(&cbss->rbn, &rdev->bss_tree); 3290 rb_insert_bss(rdev, cbss); 3291 rdev->bss_generation++; 3292 3293 list_for_each_entry_safe(nontrans_bss, tmp, 3294 &cbss->pub.nontrans_list, 3295 nontrans_list) { 3296 bss = bss_from_pub(nontrans_bss); 3297 bss->pub.channel = chan; 3298 rb_erase(&bss->rbn, &rdev->bss_tree); 3299 rb_insert_bss(rdev, bss); 3300 rdev->bss_generation++; 3301 } 3302 3303 done: 3304 spin_unlock_bh(&rdev->bss_lock); 3305 } 3306 3307 #ifdef CONFIG_CFG80211_WEXT 3308 static struct cfg80211_registered_device * 3309 cfg80211_get_dev_from_ifindex(struct net *net, int ifindex) 3310 { 3311 struct cfg80211_registered_device *rdev; 3312 struct net_device *dev; 3313 3314 ASSERT_RTNL(); 3315 3316 dev = dev_get_by_index(net, ifindex); 3317 if (!dev) 3318 return ERR_PTR(-ENODEV); 3319 if (dev->ieee80211_ptr) 3320 rdev = wiphy_to_rdev(dev->ieee80211_ptr->wiphy); 3321 else 3322 rdev = ERR_PTR(-ENODEV); 3323 dev_put(dev); 3324 return rdev; 3325 } 3326 3327 int cfg80211_wext_siwscan(struct net_device *dev, 3328 struct iw_request_info *info, 3329 union iwreq_data *wrqu, char *extra) 3330 { 3331 struct cfg80211_registered_device *rdev; 3332 struct wiphy *wiphy; 3333 struct iw_scan_req *wreq = NULL; 3334 struct cfg80211_scan_request *creq; 3335 int i, err, n_channels = 0; 3336 enum nl80211_band band; 3337 3338 if (!netif_running(dev)) 3339 return -ENETDOWN; 3340 3341 if (wrqu->data.length == sizeof(struct iw_scan_req)) 3342 wreq = (struct iw_scan_req *)extra; 3343 3344 rdev = cfg80211_get_dev_from_ifindex(dev_net(dev), dev->ifindex); 3345 3346 if (IS_ERR(rdev)) 3347 return PTR_ERR(rdev); 3348 3349 if (rdev->scan_req || rdev->scan_msg) 3350 return -EBUSY; 3351 3352 wiphy = &rdev->wiphy; 3353 3354 /* Determine number of channels, needed to allocate creq */ 3355 if (wreq && wreq->num_channels) 3356 n_channels = wreq->num_channels; 3357 else 3358 n_channels = ieee80211_get_num_supported_channels(wiphy); 3359 3360 creq = kzalloc(sizeof(*creq) + sizeof(struct cfg80211_ssid) + 3361 n_channels * sizeof(void *), 3362 GFP_ATOMIC); 3363 if (!creq) 3364 return -ENOMEM; 3365 3366 creq->wiphy = wiphy; 3367 creq->wdev = dev->ieee80211_ptr; 3368 /* SSIDs come after channels */ 3369 creq->ssids = (void *)&creq->channels[n_channels]; 3370 creq->n_channels = n_channels; 3371 creq->n_ssids = 1; 3372 creq->scan_start = jiffies; 3373 3374 /* translate "Scan on frequencies" request */ 3375 i = 0; 3376 for (band = 0; band < NUM_NL80211_BANDS; band++) { 3377 int j; 3378 3379 if (!wiphy->bands[band]) 3380 continue; 3381 3382 for (j = 0; j < wiphy->bands[band]->n_channels; j++) { 3383 /* ignore disabled channels */ 3384 if (wiphy->bands[band]->channels[j].flags & 3385 IEEE80211_CHAN_DISABLED) 3386 continue; 3387 3388 /* If we have a wireless request structure and the 3389 * wireless request specifies frequencies, then search 3390 * for the matching hardware channel. 3391 */ 3392 if (wreq && wreq->num_channels) { 3393 int k; 3394 int wiphy_freq = wiphy->bands[band]->channels[j].center_freq; 3395 for (k = 0; k < wreq->num_channels; k++) { 3396 struct iw_freq *freq = 3397 &wreq->channel_list[k]; 3398 int wext_freq = 3399 cfg80211_wext_freq(freq); 3400 3401 if (wext_freq == wiphy_freq) 3402 goto wext_freq_found; 3403 } 3404 goto wext_freq_not_found; 3405 } 3406 3407 wext_freq_found: 3408 creq->channels[i] = &wiphy->bands[band]->channels[j]; 3409 i++; 3410 wext_freq_not_found: ; 3411 } 3412 } 3413 /* No channels found? */ 3414 if (!i) { 3415 err = -EINVAL; 3416 goto out; 3417 } 3418 3419 /* Set real number of channels specified in creq->channels[] */ 3420 creq->n_channels = i; 3421 3422 /* translate "Scan for SSID" request */ 3423 if (wreq) { 3424 if (wrqu->data.flags & IW_SCAN_THIS_ESSID) { 3425 if (wreq->essid_len > IEEE80211_MAX_SSID_LEN) { 3426 err = -EINVAL; 3427 goto out; 3428 } 3429 memcpy(creq->ssids[0].ssid, wreq->essid, wreq->essid_len); 3430 creq->ssids[0].ssid_len = wreq->essid_len; 3431 } 3432 if (wreq->scan_type == IW_SCAN_TYPE_PASSIVE) 3433 creq->n_ssids = 0; 3434 } 3435 3436 for (i = 0; i < NUM_NL80211_BANDS; i++) 3437 if (wiphy->bands[i]) 3438 creq->rates[i] = (1 << wiphy->bands[i]->n_bitrates) - 1; 3439 3440 eth_broadcast_addr(creq->bssid); 3441 3442 wiphy_lock(&rdev->wiphy); 3443 3444 rdev->scan_req = creq; 3445 err = rdev_scan(rdev, creq); 3446 if (err) { 3447 rdev->scan_req = NULL; 3448 /* creq will be freed below */ 3449 } else { 3450 nl80211_send_scan_start(rdev, dev->ieee80211_ptr); 3451 /* creq now owned by driver */ 3452 creq = NULL; 3453 dev_hold(dev); 3454 } 3455 wiphy_unlock(&rdev->wiphy); 3456 out: 3457 kfree(creq); 3458 return err; 3459 } 3460 EXPORT_WEXT_HANDLER(cfg80211_wext_siwscan); 3461 3462 static char *ieee80211_scan_add_ies(struct iw_request_info *info, 3463 const struct cfg80211_bss_ies *ies, 3464 char *current_ev, char *end_buf) 3465 { 3466 const u8 *pos, *end, *next; 3467 struct iw_event iwe; 3468 3469 if (!ies) 3470 return current_ev; 3471 3472 /* 3473 * If needed, fragment the IEs buffer (at IE boundaries) into short 3474 * enough fragments to fit into IW_GENERIC_IE_MAX octet messages. 3475 */ 3476 pos = ies->data; 3477 end = pos + ies->len; 3478 3479 while (end - pos > IW_GENERIC_IE_MAX) { 3480 next = pos + 2 + pos[1]; 3481 while (next + 2 + next[1] - pos < IW_GENERIC_IE_MAX) 3482 next = next + 2 + next[1]; 3483 3484 memset(&iwe, 0, sizeof(iwe)); 3485 iwe.cmd = IWEVGENIE; 3486 iwe.u.data.length = next - pos; 3487 current_ev = iwe_stream_add_point_check(info, current_ev, 3488 end_buf, &iwe, 3489 (void *)pos); 3490 if (IS_ERR(current_ev)) 3491 return current_ev; 3492 pos = next; 3493 } 3494 3495 if (end > pos) { 3496 memset(&iwe, 0, sizeof(iwe)); 3497 iwe.cmd = IWEVGENIE; 3498 iwe.u.data.length = end - pos; 3499 current_ev = iwe_stream_add_point_check(info, current_ev, 3500 end_buf, &iwe, 3501 (void *)pos); 3502 if (IS_ERR(current_ev)) 3503 return current_ev; 3504 } 3505 3506 return current_ev; 3507 } 3508 3509 static char * 3510 ieee80211_bss(struct wiphy *wiphy, struct iw_request_info *info, 3511 struct cfg80211_internal_bss *bss, char *current_ev, 3512 char *end_buf) 3513 { 3514 const struct cfg80211_bss_ies *ies; 3515 struct iw_event iwe; 3516 const u8 *ie; 3517 u8 buf[50]; 3518 u8 *cfg, *p, *tmp; 3519 int rem, i, sig; 3520 bool ismesh = false; 3521 3522 memset(&iwe, 0, sizeof(iwe)); 3523 iwe.cmd = SIOCGIWAP; 3524 iwe.u.ap_addr.sa_family = ARPHRD_ETHER; 3525 memcpy(iwe.u.ap_addr.sa_data, bss->pub.bssid, ETH_ALEN); 3526 current_ev = iwe_stream_add_event_check(info, current_ev, end_buf, &iwe, 3527 IW_EV_ADDR_LEN); 3528 if (IS_ERR(current_ev)) 3529 return current_ev; 3530 3531 memset(&iwe, 0, sizeof(iwe)); 3532 iwe.cmd = SIOCGIWFREQ; 3533 iwe.u.freq.m = ieee80211_frequency_to_channel(bss->pub.channel->center_freq); 3534 iwe.u.freq.e = 0; 3535 current_ev = iwe_stream_add_event_check(info, current_ev, end_buf, &iwe, 3536 IW_EV_FREQ_LEN); 3537 if (IS_ERR(current_ev)) 3538 return current_ev; 3539 3540 memset(&iwe, 0, sizeof(iwe)); 3541 iwe.cmd = SIOCGIWFREQ; 3542 iwe.u.freq.m = bss->pub.channel->center_freq; 3543 iwe.u.freq.e = 6; 3544 current_ev = iwe_stream_add_event_check(info, current_ev, end_buf, &iwe, 3545 IW_EV_FREQ_LEN); 3546 if (IS_ERR(current_ev)) 3547 return current_ev; 3548 3549 if (wiphy->signal_type != CFG80211_SIGNAL_TYPE_NONE) { 3550 memset(&iwe, 0, sizeof(iwe)); 3551 iwe.cmd = IWEVQUAL; 3552 iwe.u.qual.updated = IW_QUAL_LEVEL_UPDATED | 3553 IW_QUAL_NOISE_INVALID | 3554 IW_QUAL_QUAL_UPDATED; 3555 switch (wiphy->signal_type) { 3556 case CFG80211_SIGNAL_TYPE_MBM: 3557 sig = bss->pub.signal / 100; 3558 iwe.u.qual.level = sig; 3559 iwe.u.qual.updated |= IW_QUAL_DBM; 3560 if (sig < -110) /* rather bad */ 3561 sig = -110; 3562 else if (sig > -40) /* perfect */ 3563 sig = -40; 3564 /* will give a range of 0 .. 70 */ 3565 iwe.u.qual.qual = sig + 110; 3566 break; 3567 case CFG80211_SIGNAL_TYPE_UNSPEC: 3568 iwe.u.qual.level = bss->pub.signal; 3569 /* will give range 0 .. 100 */ 3570 iwe.u.qual.qual = bss->pub.signal; 3571 break; 3572 default: 3573 /* not reached */ 3574 break; 3575 } 3576 current_ev = iwe_stream_add_event_check(info, current_ev, 3577 end_buf, &iwe, 3578 IW_EV_QUAL_LEN); 3579 if (IS_ERR(current_ev)) 3580 return current_ev; 3581 } 3582 3583 memset(&iwe, 0, sizeof(iwe)); 3584 iwe.cmd = SIOCGIWENCODE; 3585 if (bss->pub.capability & WLAN_CAPABILITY_PRIVACY) 3586 iwe.u.data.flags = IW_ENCODE_ENABLED | IW_ENCODE_NOKEY; 3587 else 3588 iwe.u.data.flags = IW_ENCODE_DISABLED; 3589 iwe.u.data.length = 0; 3590 current_ev = iwe_stream_add_point_check(info, current_ev, end_buf, 3591 &iwe, ""); 3592 if (IS_ERR(current_ev)) 3593 return current_ev; 3594 3595 rcu_read_lock(); 3596 ies = rcu_dereference(bss->pub.ies); 3597 rem = ies->len; 3598 ie = ies->data; 3599 3600 while (rem >= 2) { 3601 /* invalid data */ 3602 if (ie[1] > rem - 2) 3603 break; 3604 3605 switch (ie[0]) { 3606 case WLAN_EID_SSID: 3607 memset(&iwe, 0, sizeof(iwe)); 3608 iwe.cmd = SIOCGIWESSID; 3609 iwe.u.data.length = ie[1]; 3610 iwe.u.data.flags = 1; 3611 current_ev = iwe_stream_add_point_check(info, 3612 current_ev, 3613 end_buf, &iwe, 3614 (u8 *)ie + 2); 3615 if (IS_ERR(current_ev)) 3616 goto unlock; 3617 break; 3618 case WLAN_EID_MESH_ID: 3619 memset(&iwe, 0, sizeof(iwe)); 3620 iwe.cmd = SIOCGIWESSID; 3621 iwe.u.data.length = ie[1]; 3622 iwe.u.data.flags = 1; 3623 current_ev = iwe_stream_add_point_check(info, 3624 current_ev, 3625 end_buf, &iwe, 3626 (u8 *)ie + 2); 3627 if (IS_ERR(current_ev)) 3628 goto unlock; 3629 break; 3630 case WLAN_EID_MESH_CONFIG: 3631 ismesh = true; 3632 if (ie[1] != sizeof(struct ieee80211_meshconf_ie)) 3633 break; 3634 cfg = (u8 *)ie + 2; 3635 memset(&iwe, 0, sizeof(iwe)); 3636 iwe.cmd = IWEVCUSTOM; 3637 iwe.u.data.length = sprintf(buf, 3638 "Mesh Network Path Selection Protocol ID: 0x%02X", 3639 cfg[0]); 3640 current_ev = iwe_stream_add_point_check(info, 3641 current_ev, 3642 end_buf, 3643 &iwe, buf); 3644 if (IS_ERR(current_ev)) 3645 goto unlock; 3646 iwe.u.data.length = sprintf(buf, 3647 "Path Selection Metric ID: 0x%02X", 3648 cfg[1]); 3649 current_ev = iwe_stream_add_point_check(info, 3650 current_ev, 3651 end_buf, 3652 &iwe, buf); 3653 if (IS_ERR(current_ev)) 3654 goto unlock; 3655 iwe.u.data.length = sprintf(buf, 3656 "Congestion Control Mode ID: 0x%02X", 3657 cfg[2]); 3658 current_ev = iwe_stream_add_point_check(info, 3659 current_ev, 3660 end_buf, 3661 &iwe, buf); 3662 if (IS_ERR(current_ev)) 3663 goto unlock; 3664 iwe.u.data.length = sprintf(buf, 3665 "Synchronization ID: 0x%02X", 3666 cfg[3]); 3667 current_ev = iwe_stream_add_point_check(info, 3668 current_ev, 3669 end_buf, 3670 &iwe, buf); 3671 if (IS_ERR(current_ev)) 3672 goto unlock; 3673 iwe.u.data.length = sprintf(buf, 3674 "Authentication ID: 0x%02X", 3675 cfg[4]); 3676 current_ev = iwe_stream_add_point_check(info, 3677 current_ev, 3678 end_buf, 3679 &iwe, buf); 3680 if (IS_ERR(current_ev)) 3681 goto unlock; 3682 iwe.u.data.length = sprintf(buf, 3683 "Formation Info: 0x%02X", 3684 cfg[5]); 3685 current_ev = iwe_stream_add_point_check(info, 3686 current_ev, 3687 end_buf, 3688 &iwe, buf); 3689 if (IS_ERR(current_ev)) 3690 goto unlock; 3691 iwe.u.data.length = sprintf(buf, 3692 "Capabilities: 0x%02X", 3693 cfg[6]); 3694 current_ev = iwe_stream_add_point_check(info, 3695 current_ev, 3696 end_buf, 3697 &iwe, buf); 3698 if (IS_ERR(current_ev)) 3699 goto unlock; 3700 break; 3701 case WLAN_EID_SUPP_RATES: 3702 case WLAN_EID_EXT_SUPP_RATES: 3703 /* display all supported rates in readable format */ 3704 p = current_ev + iwe_stream_lcp_len(info); 3705 3706 memset(&iwe, 0, sizeof(iwe)); 3707 iwe.cmd = SIOCGIWRATE; 3708 /* Those two flags are ignored... */ 3709 iwe.u.bitrate.fixed = iwe.u.bitrate.disabled = 0; 3710 3711 for (i = 0; i < ie[1]; i++) { 3712 iwe.u.bitrate.value = 3713 ((ie[i + 2] & 0x7f) * 500000); 3714 tmp = p; 3715 p = iwe_stream_add_value(info, current_ev, p, 3716 end_buf, &iwe, 3717 IW_EV_PARAM_LEN); 3718 if (p == tmp) { 3719 current_ev = ERR_PTR(-E2BIG); 3720 goto unlock; 3721 } 3722 } 3723 current_ev = p; 3724 break; 3725 } 3726 rem -= ie[1] + 2; 3727 ie += ie[1] + 2; 3728 } 3729 3730 if (bss->pub.capability & (WLAN_CAPABILITY_ESS | WLAN_CAPABILITY_IBSS) || 3731 ismesh) { 3732 memset(&iwe, 0, sizeof(iwe)); 3733 iwe.cmd = SIOCGIWMODE; 3734 if (ismesh) 3735 iwe.u.mode = IW_MODE_MESH; 3736 else if (bss->pub.capability & WLAN_CAPABILITY_ESS) 3737 iwe.u.mode = IW_MODE_MASTER; 3738 else 3739 iwe.u.mode = IW_MODE_ADHOC; 3740 current_ev = iwe_stream_add_event_check(info, current_ev, 3741 end_buf, &iwe, 3742 IW_EV_UINT_LEN); 3743 if (IS_ERR(current_ev)) 3744 goto unlock; 3745 } 3746 3747 memset(&iwe, 0, sizeof(iwe)); 3748 iwe.cmd = IWEVCUSTOM; 3749 iwe.u.data.length = sprintf(buf, "tsf=%016llx", 3750 (unsigned long long)(ies->tsf)); 3751 current_ev = iwe_stream_add_point_check(info, current_ev, end_buf, 3752 &iwe, buf); 3753 if (IS_ERR(current_ev)) 3754 goto unlock; 3755 memset(&iwe, 0, sizeof(iwe)); 3756 iwe.cmd = IWEVCUSTOM; 3757 iwe.u.data.length = sprintf(buf, " Last beacon: %ums ago", 3758 elapsed_jiffies_msecs(bss->ts)); 3759 current_ev = iwe_stream_add_point_check(info, current_ev, 3760 end_buf, &iwe, buf); 3761 if (IS_ERR(current_ev)) 3762 goto unlock; 3763 3764 current_ev = ieee80211_scan_add_ies(info, ies, current_ev, end_buf); 3765 3766 unlock: 3767 rcu_read_unlock(); 3768 return current_ev; 3769 } 3770 3771 3772 static int ieee80211_scan_results(struct cfg80211_registered_device *rdev, 3773 struct iw_request_info *info, 3774 char *buf, size_t len) 3775 { 3776 char *current_ev = buf; 3777 char *end_buf = buf + len; 3778 struct cfg80211_internal_bss *bss; 3779 int err = 0; 3780 3781 spin_lock_bh(&rdev->bss_lock); 3782 cfg80211_bss_expire(rdev); 3783 3784 list_for_each_entry(bss, &rdev->bss_list, list) { 3785 if (buf + len - current_ev <= IW_EV_ADDR_LEN) { 3786 err = -E2BIG; 3787 break; 3788 } 3789 current_ev = ieee80211_bss(&rdev->wiphy, info, bss, 3790 current_ev, end_buf); 3791 if (IS_ERR(current_ev)) { 3792 err = PTR_ERR(current_ev); 3793 break; 3794 } 3795 } 3796 spin_unlock_bh(&rdev->bss_lock); 3797 3798 if (err) 3799 return err; 3800 return current_ev - buf; 3801 } 3802 3803 3804 int cfg80211_wext_giwscan(struct net_device *dev, 3805 struct iw_request_info *info, 3806 union iwreq_data *wrqu, char *extra) 3807 { 3808 struct iw_point *data = &wrqu->data; 3809 struct cfg80211_registered_device *rdev; 3810 int res; 3811 3812 if (!netif_running(dev)) 3813 return -ENETDOWN; 3814 3815 rdev = cfg80211_get_dev_from_ifindex(dev_net(dev), dev->ifindex); 3816 3817 if (IS_ERR(rdev)) 3818 return PTR_ERR(rdev); 3819 3820 if (rdev->scan_req || rdev->scan_msg) 3821 return -EAGAIN; 3822 3823 res = ieee80211_scan_results(rdev, info, extra, data->length); 3824 data->length = 0; 3825 if (res >= 0) { 3826 data->length = res; 3827 res = 0; 3828 } 3829 3830 return res; 3831 } 3832 EXPORT_WEXT_HANDLER(cfg80211_wext_giwscan); 3833 #endif 3834