xref: /linux/net/wireless/scan.c (revision b8e85e6f3a09fc56b0ff574887798962ef8a8f80)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * cfg80211 scan result handling
4  *
5  * Copyright 2008 Johannes Berg <johannes@sipsolutions.net>
6  * Copyright 2013-2014  Intel Mobile Communications GmbH
7  * Copyright 2016	Intel Deutschland GmbH
8  * Copyright (C) 2018-2023 Intel Corporation
9  */
10 #include <linux/kernel.h>
11 #include <linux/slab.h>
12 #include <linux/module.h>
13 #include <linux/netdevice.h>
14 #include <linux/wireless.h>
15 #include <linux/nl80211.h>
16 #include <linux/etherdevice.h>
17 #include <linux/crc32.h>
18 #include <linux/bitfield.h>
19 #include <net/arp.h>
20 #include <net/cfg80211.h>
21 #include <net/cfg80211-wext.h>
22 #include <net/iw_handler.h>
23 #include <kunit/visibility.h>
24 #include "core.h"
25 #include "nl80211.h"
26 #include "wext-compat.h"
27 #include "rdev-ops.h"
28 
29 /**
30  * DOC: BSS tree/list structure
31  *
32  * At the top level, the BSS list is kept in both a list in each
33  * registered device (@bss_list) as well as an RB-tree for faster
34  * lookup. In the RB-tree, entries can be looked up using their
35  * channel, MESHID, MESHCONF (for MBSSes) or channel, BSSID, SSID
36  * for other BSSes.
37  *
38  * Due to the possibility of hidden SSIDs, there's a second level
39  * structure, the "hidden_list" and "hidden_beacon_bss" pointer.
40  * The hidden_list connects all BSSes belonging to a single AP
41  * that has a hidden SSID, and connects beacon and probe response
42  * entries. For a probe response entry for a hidden SSID, the
43  * hidden_beacon_bss pointer points to the BSS struct holding the
44  * beacon's information.
45  *
46  * Reference counting is done for all these references except for
47  * the hidden_list, so that a beacon BSS struct that is otherwise
48  * not referenced has one reference for being on the bss_list and
49  * one for each probe response entry that points to it using the
50  * hidden_beacon_bss pointer. When a BSS struct that has such a
51  * pointer is get/put, the refcount update is also propagated to
52  * the referenced struct, this ensure that it cannot get removed
53  * while somebody is using the probe response version.
54  *
55  * Note that the hidden_beacon_bss pointer never changes, due to
56  * the reference counting. Therefore, no locking is needed for
57  * it.
58  *
59  * Also note that the hidden_beacon_bss pointer is only relevant
60  * if the driver uses something other than the IEs, e.g. private
61  * data stored in the BSS struct, since the beacon IEs are
62  * also linked into the probe response struct.
63  */
64 
65 /*
66  * Limit the number of BSS entries stored in mac80211. Each one is
67  * a bit over 4k at most, so this limits to roughly 4-5M of memory.
68  * If somebody wants to really attack this though, they'd likely
69  * use small beacons, and only one type of frame, limiting each of
70  * the entries to a much smaller size (in order to generate more
71  * entries in total, so overhead is bigger.)
72  */
73 static int bss_entries_limit = 1000;
74 module_param(bss_entries_limit, int, 0644);
75 MODULE_PARM_DESC(bss_entries_limit,
76                  "limit to number of scan BSS entries (per wiphy, default 1000)");
77 
78 #define IEEE80211_SCAN_RESULT_EXPIRE	(30 * HZ)
79 
80 /**
81  * struct cfg80211_colocated_ap - colocated AP information
82  *
83  * @list: linked list to all colocated aPS
84  * @bssid: BSSID of the reported AP
85  * @ssid: SSID of the reported AP
86  * @ssid_len: length of the ssid
87  * @center_freq: frequency the reported AP is on
88  * @unsolicited_probe: the reported AP is part of an ESS, where all the APs
89  *	that operate in the same channel as the reported AP and that might be
90  *	detected by a STA receiving this frame, are transmitting unsolicited
91  *	Probe Response frames every 20 TUs
92  * @oct_recommended: OCT is recommended to exchange MMPDUs with the reported AP
93  * @same_ssid: the reported AP has the same SSID as the reporting AP
94  * @multi_bss: the reported AP is part of a multiple BSSID set
95  * @transmitted_bssid: the reported AP is the transmitting BSSID
96  * @colocated_ess: all the APs that share the same ESS as the reported AP are
97  *	colocated and can be discovered via legacy bands.
98  * @short_ssid_valid: short_ssid is valid and can be used
99  * @short_ssid: the short SSID for this SSID
100  * @psd_20: The 20MHz PSD EIRP of the primary 20MHz channel for the reported AP
101  */
102 struct cfg80211_colocated_ap {
103 	struct list_head list;
104 	u8 bssid[ETH_ALEN];
105 	u8 ssid[IEEE80211_MAX_SSID_LEN];
106 	size_t ssid_len;
107 	u32 short_ssid;
108 	u32 center_freq;
109 	u8 unsolicited_probe:1,
110 	   oct_recommended:1,
111 	   same_ssid:1,
112 	   multi_bss:1,
113 	   transmitted_bssid:1,
114 	   colocated_ess:1,
115 	   short_ssid_valid:1;
116 	s8 psd_20;
117 };
118 
119 static void bss_free(struct cfg80211_internal_bss *bss)
120 {
121 	struct cfg80211_bss_ies *ies;
122 
123 	if (WARN_ON(atomic_read(&bss->hold)))
124 		return;
125 
126 	ies = (void *)rcu_access_pointer(bss->pub.beacon_ies);
127 	if (ies && !bss->pub.hidden_beacon_bss)
128 		kfree_rcu(ies, rcu_head);
129 	ies = (void *)rcu_access_pointer(bss->pub.proberesp_ies);
130 	if (ies)
131 		kfree_rcu(ies, rcu_head);
132 
133 	/*
134 	 * This happens when the module is removed, it doesn't
135 	 * really matter any more save for completeness
136 	 */
137 	if (!list_empty(&bss->hidden_list))
138 		list_del(&bss->hidden_list);
139 
140 	kfree(bss);
141 }
142 
143 static inline void bss_ref_get(struct cfg80211_registered_device *rdev,
144 			       struct cfg80211_internal_bss *bss)
145 {
146 	lockdep_assert_held(&rdev->bss_lock);
147 
148 	bss->refcount++;
149 
150 	if (bss->pub.hidden_beacon_bss)
151 		bss_from_pub(bss->pub.hidden_beacon_bss)->refcount++;
152 
153 	if (bss->pub.transmitted_bss)
154 		bss_from_pub(bss->pub.transmitted_bss)->refcount++;
155 }
156 
157 static inline void bss_ref_put(struct cfg80211_registered_device *rdev,
158 			       struct cfg80211_internal_bss *bss)
159 {
160 	lockdep_assert_held(&rdev->bss_lock);
161 
162 	if (bss->pub.hidden_beacon_bss) {
163 		struct cfg80211_internal_bss *hbss;
164 
165 		hbss = bss_from_pub(bss->pub.hidden_beacon_bss);
166 		hbss->refcount--;
167 		if (hbss->refcount == 0)
168 			bss_free(hbss);
169 	}
170 
171 	if (bss->pub.transmitted_bss) {
172 		struct cfg80211_internal_bss *tbss;
173 
174 		tbss = bss_from_pub(bss->pub.transmitted_bss);
175 		tbss->refcount--;
176 		if (tbss->refcount == 0)
177 			bss_free(tbss);
178 	}
179 
180 	bss->refcount--;
181 	if (bss->refcount == 0)
182 		bss_free(bss);
183 }
184 
185 static bool __cfg80211_unlink_bss(struct cfg80211_registered_device *rdev,
186 				  struct cfg80211_internal_bss *bss)
187 {
188 	lockdep_assert_held(&rdev->bss_lock);
189 
190 	if (!list_empty(&bss->hidden_list)) {
191 		/*
192 		 * don't remove the beacon entry if it has
193 		 * probe responses associated with it
194 		 */
195 		if (!bss->pub.hidden_beacon_bss)
196 			return false;
197 		/*
198 		 * if it's a probe response entry break its
199 		 * link to the other entries in the group
200 		 */
201 		list_del_init(&bss->hidden_list);
202 	}
203 
204 	list_del_init(&bss->list);
205 	list_del_init(&bss->pub.nontrans_list);
206 	rb_erase(&bss->rbn, &rdev->bss_tree);
207 	rdev->bss_entries--;
208 	WARN_ONCE((rdev->bss_entries == 0) ^ list_empty(&rdev->bss_list),
209 		  "rdev bss entries[%d]/list[empty:%d] corruption\n",
210 		  rdev->bss_entries, list_empty(&rdev->bss_list));
211 	bss_ref_put(rdev, bss);
212 	return true;
213 }
214 
215 bool cfg80211_is_element_inherited(const struct element *elem,
216 				   const struct element *non_inherit_elem)
217 {
218 	u8 id_len, ext_id_len, i, loop_len, id;
219 	const u8 *list;
220 
221 	if (elem->id == WLAN_EID_MULTIPLE_BSSID)
222 		return false;
223 
224 	if (elem->id == WLAN_EID_EXTENSION && elem->datalen > 1 &&
225 	    elem->data[0] == WLAN_EID_EXT_EHT_MULTI_LINK)
226 		return false;
227 
228 	if (!non_inherit_elem || non_inherit_elem->datalen < 2)
229 		return true;
230 
231 	/*
232 	 * non inheritance element format is:
233 	 * ext ID (56) | IDs list len | list | extension IDs list len | list
234 	 * Both lists are optional. Both lengths are mandatory.
235 	 * This means valid length is:
236 	 * elem_len = 1 (extension ID) + 2 (list len fields) + list lengths
237 	 */
238 	id_len = non_inherit_elem->data[1];
239 	if (non_inherit_elem->datalen < 3 + id_len)
240 		return true;
241 
242 	ext_id_len = non_inherit_elem->data[2 + id_len];
243 	if (non_inherit_elem->datalen < 3 + id_len + ext_id_len)
244 		return true;
245 
246 	if (elem->id == WLAN_EID_EXTENSION) {
247 		if (!ext_id_len)
248 			return true;
249 		loop_len = ext_id_len;
250 		list = &non_inherit_elem->data[3 + id_len];
251 		id = elem->data[0];
252 	} else {
253 		if (!id_len)
254 			return true;
255 		loop_len = id_len;
256 		list = &non_inherit_elem->data[2];
257 		id = elem->id;
258 	}
259 
260 	for (i = 0; i < loop_len; i++) {
261 		if (list[i] == id)
262 			return false;
263 	}
264 
265 	return true;
266 }
267 EXPORT_SYMBOL(cfg80211_is_element_inherited);
268 
269 static size_t cfg80211_copy_elem_with_frags(const struct element *elem,
270 					    const u8 *ie, size_t ie_len,
271 					    u8 **pos, u8 *buf, size_t buf_len)
272 {
273 	if (WARN_ON((u8 *)elem < ie || elem->data > ie + ie_len ||
274 		    elem->data + elem->datalen > ie + ie_len))
275 		return 0;
276 
277 	if (elem->datalen + 2 > buf + buf_len - *pos)
278 		return 0;
279 
280 	memcpy(*pos, elem, elem->datalen + 2);
281 	*pos += elem->datalen + 2;
282 
283 	/* Finish if it is not fragmented  */
284 	if (elem->datalen != 255)
285 		return *pos - buf;
286 
287 	ie_len = ie + ie_len - elem->data - elem->datalen;
288 	ie = (const u8 *)elem->data + elem->datalen;
289 
290 	for_each_element(elem, ie, ie_len) {
291 		if (elem->id != WLAN_EID_FRAGMENT)
292 			break;
293 
294 		if (elem->datalen + 2 > buf + buf_len - *pos)
295 			return 0;
296 
297 		memcpy(*pos, elem, elem->datalen + 2);
298 		*pos += elem->datalen + 2;
299 
300 		if (elem->datalen != 255)
301 			break;
302 	}
303 
304 	return *pos - buf;
305 }
306 
307 VISIBLE_IF_CFG80211_KUNIT size_t
308 cfg80211_gen_new_ie(const u8 *ie, size_t ielen,
309 		    const u8 *subie, size_t subie_len,
310 		    u8 *new_ie, size_t new_ie_len)
311 {
312 	const struct element *non_inherit_elem, *parent, *sub;
313 	u8 *pos = new_ie;
314 	u8 id, ext_id;
315 	unsigned int match_len;
316 
317 	non_inherit_elem = cfg80211_find_ext_elem(WLAN_EID_EXT_NON_INHERITANCE,
318 						  subie, subie_len);
319 
320 	/* We copy the elements one by one from the parent to the generated
321 	 * elements.
322 	 * If they are not inherited (included in subie or in the non
323 	 * inheritance element), then we copy all occurrences the first time
324 	 * we see this element type.
325 	 */
326 	for_each_element(parent, ie, ielen) {
327 		if (parent->id == WLAN_EID_FRAGMENT)
328 			continue;
329 
330 		if (parent->id == WLAN_EID_EXTENSION) {
331 			if (parent->datalen < 1)
332 				continue;
333 
334 			id = WLAN_EID_EXTENSION;
335 			ext_id = parent->data[0];
336 			match_len = 1;
337 		} else {
338 			id = parent->id;
339 			match_len = 0;
340 		}
341 
342 		/* Find first occurrence in subie */
343 		sub = cfg80211_find_elem_match(id, subie, subie_len,
344 					       &ext_id, match_len, 0);
345 
346 		/* Copy from parent if not in subie and inherited */
347 		if (!sub &&
348 		    cfg80211_is_element_inherited(parent, non_inherit_elem)) {
349 			if (!cfg80211_copy_elem_with_frags(parent,
350 							   ie, ielen,
351 							   &pos, new_ie,
352 							   new_ie_len))
353 				return 0;
354 
355 			continue;
356 		}
357 
358 		/* Already copied if an earlier element had the same type */
359 		if (cfg80211_find_elem_match(id, ie, (u8 *)parent - ie,
360 					     &ext_id, match_len, 0))
361 			continue;
362 
363 		/* Not inheriting, copy all similar elements from subie */
364 		while (sub) {
365 			if (!cfg80211_copy_elem_with_frags(sub,
366 							   subie, subie_len,
367 							   &pos, new_ie,
368 							   new_ie_len))
369 				return 0;
370 
371 			sub = cfg80211_find_elem_match(id,
372 						       sub->data + sub->datalen,
373 						       subie_len + subie -
374 						       (sub->data +
375 							sub->datalen),
376 						       &ext_id, match_len, 0);
377 		}
378 	}
379 
380 	/* The above misses elements that are included in subie but not in the
381 	 * parent, so do a pass over subie and append those.
382 	 * Skip the non-tx BSSID caps and non-inheritance element.
383 	 */
384 	for_each_element(sub, subie, subie_len) {
385 		if (sub->id == WLAN_EID_NON_TX_BSSID_CAP)
386 			continue;
387 
388 		if (sub->id == WLAN_EID_FRAGMENT)
389 			continue;
390 
391 		if (sub->id == WLAN_EID_EXTENSION) {
392 			if (sub->datalen < 1)
393 				continue;
394 
395 			id = WLAN_EID_EXTENSION;
396 			ext_id = sub->data[0];
397 			match_len = 1;
398 
399 			if (ext_id == WLAN_EID_EXT_NON_INHERITANCE)
400 				continue;
401 		} else {
402 			id = sub->id;
403 			match_len = 0;
404 		}
405 
406 		/* Processed if one was included in the parent */
407 		if (cfg80211_find_elem_match(id, ie, ielen,
408 					     &ext_id, match_len, 0))
409 			continue;
410 
411 		if (!cfg80211_copy_elem_with_frags(sub, subie, subie_len,
412 						   &pos, new_ie, new_ie_len))
413 			return 0;
414 	}
415 
416 	return pos - new_ie;
417 }
418 EXPORT_SYMBOL_IF_CFG80211_KUNIT(cfg80211_gen_new_ie);
419 
420 static bool is_bss(struct cfg80211_bss *a, const u8 *bssid,
421 		   const u8 *ssid, size_t ssid_len)
422 {
423 	const struct cfg80211_bss_ies *ies;
424 	const struct element *ssid_elem;
425 
426 	if (bssid && !ether_addr_equal(a->bssid, bssid))
427 		return false;
428 
429 	if (!ssid)
430 		return true;
431 
432 	ies = rcu_access_pointer(a->ies);
433 	if (!ies)
434 		return false;
435 	ssid_elem = cfg80211_find_elem(WLAN_EID_SSID, ies->data, ies->len);
436 	if (!ssid_elem)
437 		return false;
438 	if (ssid_elem->datalen != ssid_len)
439 		return false;
440 	return memcmp(ssid_elem->data, ssid, ssid_len) == 0;
441 }
442 
443 static int
444 cfg80211_add_nontrans_list(struct cfg80211_bss *trans_bss,
445 			   struct cfg80211_bss *nontrans_bss)
446 {
447 	const struct element *ssid_elem;
448 	struct cfg80211_bss *bss = NULL;
449 
450 	rcu_read_lock();
451 	ssid_elem = ieee80211_bss_get_elem(nontrans_bss, WLAN_EID_SSID);
452 	if (!ssid_elem) {
453 		rcu_read_unlock();
454 		return -EINVAL;
455 	}
456 
457 	/* check if nontrans_bss is in the list */
458 	list_for_each_entry(bss, &trans_bss->nontrans_list, nontrans_list) {
459 		if (is_bss(bss, nontrans_bss->bssid, ssid_elem->data,
460 			   ssid_elem->datalen)) {
461 			rcu_read_unlock();
462 			return 0;
463 		}
464 	}
465 
466 	rcu_read_unlock();
467 
468 	/*
469 	 * This is a bit weird - it's not on the list, but already on another
470 	 * one! The only way that could happen is if there's some BSSID/SSID
471 	 * shared by multiple APs in their multi-BSSID profiles, potentially
472 	 * with hidden SSID mixed in ... ignore it.
473 	 */
474 	if (!list_empty(&nontrans_bss->nontrans_list))
475 		return -EINVAL;
476 
477 	/* add to the list */
478 	list_add_tail(&nontrans_bss->nontrans_list, &trans_bss->nontrans_list);
479 	return 0;
480 }
481 
482 static void __cfg80211_bss_expire(struct cfg80211_registered_device *rdev,
483 				  unsigned long expire_time)
484 {
485 	struct cfg80211_internal_bss *bss, *tmp;
486 	bool expired = false;
487 
488 	lockdep_assert_held(&rdev->bss_lock);
489 
490 	list_for_each_entry_safe(bss, tmp, &rdev->bss_list, list) {
491 		if (atomic_read(&bss->hold))
492 			continue;
493 		if (!time_after(expire_time, bss->ts))
494 			continue;
495 
496 		if (__cfg80211_unlink_bss(rdev, bss))
497 			expired = true;
498 	}
499 
500 	if (expired)
501 		rdev->bss_generation++;
502 }
503 
504 static bool cfg80211_bss_expire_oldest(struct cfg80211_registered_device *rdev)
505 {
506 	struct cfg80211_internal_bss *bss, *oldest = NULL;
507 	bool ret;
508 
509 	lockdep_assert_held(&rdev->bss_lock);
510 
511 	list_for_each_entry(bss, &rdev->bss_list, list) {
512 		if (atomic_read(&bss->hold))
513 			continue;
514 
515 		if (!list_empty(&bss->hidden_list) &&
516 		    !bss->pub.hidden_beacon_bss)
517 			continue;
518 
519 		if (oldest && time_before(oldest->ts, bss->ts))
520 			continue;
521 		oldest = bss;
522 	}
523 
524 	if (WARN_ON(!oldest))
525 		return false;
526 
527 	/*
528 	 * The callers make sure to increase rdev->bss_generation if anything
529 	 * gets removed (and a new entry added), so there's no need to also do
530 	 * it here.
531 	 */
532 
533 	ret = __cfg80211_unlink_bss(rdev, oldest);
534 	WARN_ON(!ret);
535 	return ret;
536 }
537 
538 static u8 cfg80211_parse_bss_param(u8 data,
539 				   struct cfg80211_colocated_ap *coloc_ap)
540 {
541 	coloc_ap->oct_recommended =
542 		u8_get_bits(data, IEEE80211_RNR_TBTT_PARAMS_OCT_RECOMMENDED);
543 	coloc_ap->same_ssid =
544 		u8_get_bits(data, IEEE80211_RNR_TBTT_PARAMS_SAME_SSID);
545 	coloc_ap->multi_bss =
546 		u8_get_bits(data, IEEE80211_RNR_TBTT_PARAMS_MULTI_BSSID);
547 	coloc_ap->transmitted_bssid =
548 		u8_get_bits(data, IEEE80211_RNR_TBTT_PARAMS_TRANSMITTED_BSSID);
549 	coloc_ap->unsolicited_probe =
550 		u8_get_bits(data, IEEE80211_RNR_TBTT_PARAMS_PROBE_ACTIVE);
551 	coloc_ap->colocated_ess =
552 		u8_get_bits(data, IEEE80211_RNR_TBTT_PARAMS_COLOC_ESS);
553 
554 	return u8_get_bits(data, IEEE80211_RNR_TBTT_PARAMS_COLOC_AP);
555 }
556 
557 static int cfg80211_calc_short_ssid(const struct cfg80211_bss_ies *ies,
558 				    const struct element **elem, u32 *s_ssid)
559 {
560 
561 	*elem = cfg80211_find_elem(WLAN_EID_SSID, ies->data, ies->len);
562 	if (!*elem || (*elem)->datalen > IEEE80211_MAX_SSID_LEN)
563 		return -EINVAL;
564 
565 	*s_ssid = ~crc32_le(~0, (*elem)->data, (*elem)->datalen);
566 	return 0;
567 }
568 
569 static void cfg80211_free_coloc_ap_list(struct list_head *coloc_ap_list)
570 {
571 	struct cfg80211_colocated_ap *ap, *tmp_ap;
572 
573 	list_for_each_entry_safe(ap, tmp_ap, coloc_ap_list, list) {
574 		list_del(&ap->list);
575 		kfree(ap);
576 	}
577 }
578 
579 static int cfg80211_parse_ap_info(struct cfg80211_colocated_ap *entry,
580 				  const u8 *pos, u8 length,
581 				  const struct element *ssid_elem,
582 				  u32 s_ssid_tmp)
583 {
584 	u8 bss_params;
585 
586 	entry->psd_20 = IEEE80211_RNR_TBTT_PARAMS_PSD_RESERVED;
587 
588 	/* The length is already verified by the caller to contain bss_params */
589 	if (length > sizeof(struct ieee80211_tbtt_info_7_8_9)) {
590 		struct ieee80211_tbtt_info_ge_11 *tbtt_info = (void *)pos;
591 
592 		memcpy(entry->bssid, tbtt_info->bssid, ETH_ALEN);
593 		entry->short_ssid = le32_to_cpu(tbtt_info->short_ssid);
594 		entry->short_ssid_valid = true;
595 
596 		bss_params = tbtt_info->bss_params;
597 
598 		/* Ignore disabled links */
599 		if (length >= offsetofend(typeof(*tbtt_info), mld_params)) {
600 			if (le16_get_bits(tbtt_info->mld_params.params,
601 					  IEEE80211_RNR_MLD_PARAMS_DISABLED_LINK))
602 				return -EINVAL;
603 		}
604 
605 		if (length >= offsetofend(struct ieee80211_tbtt_info_ge_11,
606 					  psd_20))
607 			entry->psd_20 = tbtt_info->psd_20;
608 	} else {
609 		struct ieee80211_tbtt_info_7_8_9 *tbtt_info = (void *)pos;
610 
611 		memcpy(entry->bssid, tbtt_info->bssid, ETH_ALEN);
612 
613 		bss_params = tbtt_info->bss_params;
614 
615 		if (length == offsetofend(struct ieee80211_tbtt_info_7_8_9,
616 					  psd_20))
617 			entry->psd_20 = tbtt_info->psd_20;
618 	}
619 
620 	/* ignore entries with invalid BSSID */
621 	if (!is_valid_ether_addr(entry->bssid))
622 		return -EINVAL;
623 
624 	/* skip non colocated APs */
625 	if (!cfg80211_parse_bss_param(bss_params, entry))
626 		return -EINVAL;
627 
628 	/* no information about the short ssid. Consider the entry valid
629 	 * for now. It would later be dropped in case there are explicit
630 	 * SSIDs that need to be matched
631 	 */
632 	if (!entry->same_ssid && !entry->short_ssid_valid)
633 		return 0;
634 
635 	if (entry->same_ssid) {
636 		entry->short_ssid = s_ssid_tmp;
637 		entry->short_ssid_valid = true;
638 
639 		/*
640 		 * This is safe because we validate datalen in
641 		 * cfg80211_parse_colocated_ap(), before calling this
642 		 * function.
643 		 */
644 		memcpy(&entry->ssid, &ssid_elem->data, ssid_elem->datalen);
645 		entry->ssid_len = ssid_elem->datalen;
646 	}
647 
648 	return 0;
649 }
650 
651 static int cfg80211_parse_colocated_ap(const struct cfg80211_bss_ies *ies,
652 				       struct list_head *list)
653 {
654 	struct ieee80211_neighbor_ap_info *ap_info;
655 	const struct element *elem, *ssid_elem;
656 	const u8 *pos, *end;
657 	u32 s_ssid_tmp;
658 	int n_coloc = 0, ret;
659 	LIST_HEAD(ap_list);
660 
661 	ret = cfg80211_calc_short_ssid(ies, &ssid_elem, &s_ssid_tmp);
662 	if (ret)
663 		return 0;
664 
665 	for_each_element_id(elem, WLAN_EID_REDUCED_NEIGHBOR_REPORT,
666 			    ies->data, ies->len) {
667 		pos = elem->data;
668 		end = elem->data + elem->datalen;
669 
670 		/* RNR IE may contain more than one NEIGHBOR_AP_INFO */
671 		while (pos + sizeof(*ap_info) <= end) {
672 			enum nl80211_band band;
673 			int freq;
674 			u8 length, i, count;
675 
676 			ap_info = (void *)pos;
677 			count = u8_get_bits(ap_info->tbtt_info_hdr,
678 					    IEEE80211_AP_INFO_TBTT_HDR_COUNT) + 1;
679 			length = ap_info->tbtt_info_len;
680 
681 			pos += sizeof(*ap_info);
682 
683 			if (!ieee80211_operating_class_to_band(ap_info->op_class,
684 							       &band))
685 				break;
686 
687 			freq = ieee80211_channel_to_frequency(ap_info->channel,
688 							      band);
689 
690 			if (end - pos < count * length)
691 				break;
692 
693 			if (u8_get_bits(ap_info->tbtt_info_hdr,
694 					IEEE80211_AP_INFO_TBTT_HDR_TYPE) !=
695 			    IEEE80211_TBTT_INFO_TYPE_TBTT) {
696 				pos += count * length;
697 				continue;
698 			}
699 
700 			/* TBTT info must include bss param + BSSID +
701 			 * (short SSID or same_ssid bit to be set).
702 			 * ignore other options, and move to the
703 			 * next AP info
704 			 */
705 			if (band != NL80211_BAND_6GHZ ||
706 			    !(length == offsetofend(struct ieee80211_tbtt_info_7_8_9,
707 						    bss_params) ||
708 			      length == sizeof(struct ieee80211_tbtt_info_7_8_9) ||
709 			      length >= offsetofend(struct ieee80211_tbtt_info_ge_11,
710 						    bss_params))) {
711 				pos += count * length;
712 				continue;
713 			}
714 
715 			for (i = 0; i < count; i++) {
716 				struct cfg80211_colocated_ap *entry;
717 
718 				entry = kzalloc(sizeof(*entry) + IEEE80211_MAX_SSID_LEN,
719 						GFP_ATOMIC);
720 
721 				if (!entry)
722 					goto error;
723 
724 				entry->center_freq = freq;
725 
726 				if (!cfg80211_parse_ap_info(entry, pos, length,
727 							    ssid_elem,
728 							    s_ssid_tmp)) {
729 					n_coloc++;
730 					list_add_tail(&entry->list, &ap_list);
731 				} else {
732 					kfree(entry);
733 				}
734 
735 				pos += length;
736 			}
737 		}
738 
739 error:
740 		if (pos != end) {
741 			cfg80211_free_coloc_ap_list(&ap_list);
742 			return 0;
743 		}
744 	}
745 
746 	list_splice_tail(&ap_list, list);
747 	return n_coloc;
748 }
749 
750 static  void cfg80211_scan_req_add_chan(struct cfg80211_scan_request *request,
751 					struct ieee80211_channel *chan,
752 					bool add_to_6ghz)
753 {
754 	int i;
755 	u32 n_channels = request->n_channels;
756 	struct cfg80211_scan_6ghz_params *params =
757 		&request->scan_6ghz_params[request->n_6ghz_params];
758 
759 	for (i = 0; i < n_channels; i++) {
760 		if (request->channels[i] == chan) {
761 			if (add_to_6ghz)
762 				params->channel_idx = i;
763 			return;
764 		}
765 	}
766 
767 	request->channels[n_channels] = chan;
768 	if (add_to_6ghz)
769 		request->scan_6ghz_params[request->n_6ghz_params].channel_idx =
770 			n_channels;
771 
772 	request->n_channels++;
773 }
774 
775 static bool cfg80211_find_ssid_match(struct cfg80211_colocated_ap *ap,
776 				     struct cfg80211_scan_request *request)
777 {
778 	int i;
779 	u32 s_ssid;
780 
781 	for (i = 0; i < request->n_ssids; i++) {
782 		/* wildcard ssid in the scan request */
783 		if (!request->ssids[i].ssid_len) {
784 			if (ap->multi_bss && !ap->transmitted_bssid)
785 				continue;
786 
787 			return true;
788 		}
789 
790 		if (ap->ssid_len &&
791 		    ap->ssid_len == request->ssids[i].ssid_len) {
792 			if (!memcmp(request->ssids[i].ssid, ap->ssid,
793 				    ap->ssid_len))
794 				return true;
795 		} else if (ap->short_ssid_valid) {
796 			s_ssid = ~crc32_le(~0, request->ssids[i].ssid,
797 					   request->ssids[i].ssid_len);
798 
799 			if (ap->short_ssid == s_ssid)
800 				return true;
801 		}
802 	}
803 
804 	return false;
805 }
806 
807 static int cfg80211_scan_6ghz(struct cfg80211_registered_device *rdev)
808 {
809 	u8 i;
810 	struct cfg80211_colocated_ap *ap;
811 	int n_channels, count = 0, err;
812 	struct cfg80211_scan_request *request, *rdev_req = rdev->scan_req;
813 	LIST_HEAD(coloc_ap_list);
814 	bool need_scan_psc = true;
815 	const struct ieee80211_sband_iftype_data *iftd;
816 
817 	rdev_req->scan_6ghz = true;
818 
819 	if (!rdev->wiphy.bands[NL80211_BAND_6GHZ])
820 		return -EOPNOTSUPP;
821 
822 	iftd = ieee80211_get_sband_iftype_data(rdev->wiphy.bands[NL80211_BAND_6GHZ],
823 					       rdev_req->wdev->iftype);
824 	if (!iftd || !iftd->he_cap.has_he)
825 		return -EOPNOTSUPP;
826 
827 	n_channels = rdev->wiphy.bands[NL80211_BAND_6GHZ]->n_channels;
828 
829 	if (rdev_req->flags & NL80211_SCAN_FLAG_COLOCATED_6GHZ) {
830 		struct cfg80211_internal_bss *intbss;
831 
832 		spin_lock_bh(&rdev->bss_lock);
833 		list_for_each_entry(intbss, &rdev->bss_list, list) {
834 			struct cfg80211_bss *res = &intbss->pub;
835 			const struct cfg80211_bss_ies *ies;
836 			const struct element *ssid_elem;
837 			struct cfg80211_colocated_ap *entry;
838 			u32 s_ssid_tmp;
839 			int ret;
840 
841 			ies = rcu_access_pointer(res->ies);
842 			count += cfg80211_parse_colocated_ap(ies,
843 							     &coloc_ap_list);
844 
845 			/* In case the scan request specified a specific BSSID
846 			 * and the BSS is found and operating on 6GHz band then
847 			 * add this AP to the collocated APs list.
848 			 * This is relevant for ML probe requests when the lower
849 			 * band APs have not been discovered.
850 			 */
851 			if (is_broadcast_ether_addr(rdev_req->bssid) ||
852 			    !ether_addr_equal(rdev_req->bssid, res->bssid) ||
853 			    res->channel->band != NL80211_BAND_6GHZ)
854 				continue;
855 
856 			ret = cfg80211_calc_short_ssid(ies, &ssid_elem,
857 						       &s_ssid_tmp);
858 			if (ret)
859 				continue;
860 
861 			entry = kzalloc(sizeof(*entry) + IEEE80211_MAX_SSID_LEN,
862 					GFP_ATOMIC);
863 
864 			if (!entry)
865 				continue;
866 
867 			memcpy(entry->bssid, res->bssid, ETH_ALEN);
868 			entry->short_ssid = s_ssid_tmp;
869 			memcpy(entry->ssid, ssid_elem->data,
870 			       ssid_elem->datalen);
871 			entry->ssid_len = ssid_elem->datalen;
872 			entry->short_ssid_valid = true;
873 			entry->center_freq = res->channel->center_freq;
874 
875 			list_add_tail(&entry->list, &coloc_ap_list);
876 			count++;
877 		}
878 		spin_unlock_bh(&rdev->bss_lock);
879 	}
880 
881 	request = kzalloc(struct_size(request, channels, n_channels) +
882 			  sizeof(*request->scan_6ghz_params) * count +
883 			  sizeof(*request->ssids) * rdev_req->n_ssids,
884 			  GFP_KERNEL);
885 	if (!request) {
886 		cfg80211_free_coloc_ap_list(&coloc_ap_list);
887 		return -ENOMEM;
888 	}
889 
890 	*request = *rdev_req;
891 	request->n_channels = 0;
892 	request->scan_6ghz_params =
893 		(void *)&request->channels[n_channels];
894 
895 	/*
896 	 * PSC channels should not be scanned in case of direct scan with 1 SSID
897 	 * and at least one of the reported co-located APs with same SSID
898 	 * indicating that all APs in the same ESS are co-located
899 	 */
900 	if (count && request->n_ssids == 1 && request->ssids[0].ssid_len) {
901 		list_for_each_entry(ap, &coloc_ap_list, list) {
902 			if (ap->colocated_ess &&
903 			    cfg80211_find_ssid_match(ap, request)) {
904 				need_scan_psc = false;
905 				break;
906 			}
907 		}
908 	}
909 
910 	/*
911 	 * add to the scan request the channels that need to be scanned
912 	 * regardless of the collocated APs (PSC channels or all channels
913 	 * in case that NL80211_SCAN_FLAG_COLOCATED_6GHZ is not set)
914 	 */
915 	for (i = 0; i < rdev_req->n_channels; i++) {
916 		if (rdev_req->channels[i]->band == NL80211_BAND_6GHZ &&
917 		    ((need_scan_psc &&
918 		      cfg80211_channel_is_psc(rdev_req->channels[i])) ||
919 		     !(rdev_req->flags & NL80211_SCAN_FLAG_COLOCATED_6GHZ))) {
920 			cfg80211_scan_req_add_chan(request,
921 						   rdev_req->channels[i],
922 						   false);
923 		}
924 	}
925 
926 	if (!(rdev_req->flags & NL80211_SCAN_FLAG_COLOCATED_6GHZ))
927 		goto skip;
928 
929 	list_for_each_entry(ap, &coloc_ap_list, list) {
930 		bool found = false;
931 		struct cfg80211_scan_6ghz_params *scan_6ghz_params =
932 			&request->scan_6ghz_params[request->n_6ghz_params];
933 		struct ieee80211_channel *chan =
934 			ieee80211_get_channel(&rdev->wiphy, ap->center_freq);
935 
936 		if (!chan || chan->flags & IEEE80211_CHAN_DISABLED)
937 			continue;
938 
939 		for (i = 0; i < rdev_req->n_channels; i++) {
940 			if (rdev_req->channels[i] == chan)
941 				found = true;
942 		}
943 
944 		if (!found)
945 			continue;
946 
947 		if (request->n_ssids > 0 &&
948 		    !cfg80211_find_ssid_match(ap, request))
949 			continue;
950 
951 		if (!is_broadcast_ether_addr(request->bssid) &&
952 		    !ether_addr_equal(request->bssid, ap->bssid))
953 			continue;
954 
955 		if (!request->n_ssids && ap->multi_bss && !ap->transmitted_bssid)
956 			continue;
957 
958 		cfg80211_scan_req_add_chan(request, chan, true);
959 		memcpy(scan_6ghz_params->bssid, ap->bssid, ETH_ALEN);
960 		scan_6ghz_params->short_ssid = ap->short_ssid;
961 		scan_6ghz_params->short_ssid_valid = ap->short_ssid_valid;
962 		scan_6ghz_params->unsolicited_probe = ap->unsolicited_probe;
963 		scan_6ghz_params->psd_20 = ap->psd_20;
964 
965 		/*
966 		 * If a PSC channel is added to the scan and 'need_scan_psc' is
967 		 * set to false, then all the APs that the scan logic is
968 		 * interested with on the channel are collocated and thus there
969 		 * is no need to perform the initial PSC channel listen.
970 		 */
971 		if (cfg80211_channel_is_psc(chan) && !need_scan_psc)
972 			scan_6ghz_params->psc_no_listen = true;
973 
974 		request->n_6ghz_params++;
975 	}
976 
977 skip:
978 	cfg80211_free_coloc_ap_list(&coloc_ap_list);
979 
980 	if (request->n_channels) {
981 		struct cfg80211_scan_request *old = rdev->int_scan_req;
982 		rdev->int_scan_req = request;
983 
984 		/*
985 		 * Add the ssids from the parent scan request to the new scan
986 		 * request, so the driver would be able to use them in its
987 		 * probe requests to discover hidden APs on PSC channels.
988 		 */
989 		request->ssids = (void *)&request->channels[request->n_channels];
990 		request->n_ssids = rdev_req->n_ssids;
991 		memcpy(request->ssids, rdev_req->ssids, sizeof(*request->ssids) *
992 		       request->n_ssids);
993 
994 		/*
995 		 * If this scan follows a previous scan, save the scan start
996 		 * info from the first part of the scan
997 		 */
998 		if (old)
999 			rdev->int_scan_req->info = old->info;
1000 
1001 		err = rdev_scan(rdev, request);
1002 		if (err) {
1003 			rdev->int_scan_req = old;
1004 			kfree(request);
1005 		} else {
1006 			kfree(old);
1007 		}
1008 
1009 		return err;
1010 	}
1011 
1012 	kfree(request);
1013 	return -EINVAL;
1014 }
1015 
1016 int cfg80211_scan(struct cfg80211_registered_device *rdev)
1017 {
1018 	struct cfg80211_scan_request *request;
1019 	struct cfg80211_scan_request *rdev_req = rdev->scan_req;
1020 	u32 n_channels = 0, idx, i;
1021 
1022 	if (!(rdev->wiphy.flags & WIPHY_FLAG_SPLIT_SCAN_6GHZ))
1023 		return rdev_scan(rdev, rdev_req);
1024 
1025 	for (i = 0; i < rdev_req->n_channels; i++) {
1026 		if (rdev_req->channels[i]->band != NL80211_BAND_6GHZ)
1027 			n_channels++;
1028 	}
1029 
1030 	if (!n_channels)
1031 		return cfg80211_scan_6ghz(rdev);
1032 
1033 	request = kzalloc(struct_size(request, channels, n_channels),
1034 			  GFP_KERNEL);
1035 	if (!request)
1036 		return -ENOMEM;
1037 
1038 	*request = *rdev_req;
1039 	request->n_channels = n_channels;
1040 
1041 	for (i = idx = 0; i < rdev_req->n_channels; i++) {
1042 		if (rdev_req->channels[i]->band != NL80211_BAND_6GHZ)
1043 			request->channels[idx++] = rdev_req->channels[i];
1044 	}
1045 
1046 	rdev_req->scan_6ghz = false;
1047 	rdev->int_scan_req = request;
1048 	return rdev_scan(rdev, request);
1049 }
1050 
1051 void ___cfg80211_scan_done(struct cfg80211_registered_device *rdev,
1052 			   bool send_message)
1053 {
1054 	struct cfg80211_scan_request *request, *rdev_req;
1055 	struct wireless_dev *wdev;
1056 	struct sk_buff *msg;
1057 #ifdef CONFIG_CFG80211_WEXT
1058 	union iwreq_data wrqu;
1059 #endif
1060 
1061 	lockdep_assert_held(&rdev->wiphy.mtx);
1062 
1063 	if (rdev->scan_msg) {
1064 		nl80211_send_scan_msg(rdev, rdev->scan_msg);
1065 		rdev->scan_msg = NULL;
1066 		return;
1067 	}
1068 
1069 	rdev_req = rdev->scan_req;
1070 	if (!rdev_req)
1071 		return;
1072 
1073 	wdev = rdev_req->wdev;
1074 	request = rdev->int_scan_req ? rdev->int_scan_req : rdev_req;
1075 
1076 	if (wdev_running(wdev) &&
1077 	    (rdev->wiphy.flags & WIPHY_FLAG_SPLIT_SCAN_6GHZ) &&
1078 	    !rdev_req->scan_6ghz && !request->info.aborted &&
1079 	    !cfg80211_scan_6ghz(rdev))
1080 		return;
1081 
1082 	/*
1083 	 * This must be before sending the other events!
1084 	 * Otherwise, wpa_supplicant gets completely confused with
1085 	 * wext events.
1086 	 */
1087 	if (wdev->netdev)
1088 		cfg80211_sme_scan_done(wdev->netdev);
1089 
1090 	if (!request->info.aborted &&
1091 	    request->flags & NL80211_SCAN_FLAG_FLUSH) {
1092 		/* flush entries from previous scans */
1093 		spin_lock_bh(&rdev->bss_lock);
1094 		__cfg80211_bss_expire(rdev, request->scan_start);
1095 		spin_unlock_bh(&rdev->bss_lock);
1096 	}
1097 
1098 	msg = nl80211_build_scan_msg(rdev, wdev, request->info.aborted);
1099 
1100 #ifdef CONFIG_CFG80211_WEXT
1101 	if (wdev->netdev && !request->info.aborted) {
1102 		memset(&wrqu, 0, sizeof(wrqu));
1103 
1104 		wireless_send_event(wdev->netdev, SIOCGIWSCAN, &wrqu, NULL);
1105 	}
1106 #endif
1107 
1108 	dev_put(wdev->netdev);
1109 
1110 	kfree(rdev->int_scan_req);
1111 	rdev->int_scan_req = NULL;
1112 
1113 	kfree(rdev->scan_req);
1114 	rdev->scan_req = NULL;
1115 
1116 	if (!send_message)
1117 		rdev->scan_msg = msg;
1118 	else
1119 		nl80211_send_scan_msg(rdev, msg);
1120 }
1121 
1122 void __cfg80211_scan_done(struct wiphy *wiphy, struct wiphy_work *wk)
1123 {
1124 	___cfg80211_scan_done(wiphy_to_rdev(wiphy), true);
1125 }
1126 
1127 void cfg80211_scan_done(struct cfg80211_scan_request *request,
1128 			struct cfg80211_scan_info *info)
1129 {
1130 	struct cfg80211_scan_info old_info = request->info;
1131 
1132 	trace_cfg80211_scan_done(request, info);
1133 	WARN_ON(request != wiphy_to_rdev(request->wiphy)->scan_req &&
1134 		request != wiphy_to_rdev(request->wiphy)->int_scan_req);
1135 
1136 	request->info = *info;
1137 
1138 	/*
1139 	 * In case the scan is split, the scan_start_tsf and tsf_bssid should
1140 	 * be of the first part. In such a case old_info.scan_start_tsf should
1141 	 * be non zero.
1142 	 */
1143 	if (request->scan_6ghz && old_info.scan_start_tsf) {
1144 		request->info.scan_start_tsf = old_info.scan_start_tsf;
1145 		memcpy(request->info.tsf_bssid, old_info.tsf_bssid,
1146 		       sizeof(request->info.tsf_bssid));
1147 	}
1148 
1149 	request->notified = true;
1150 	wiphy_work_queue(request->wiphy,
1151 			 &wiphy_to_rdev(request->wiphy)->scan_done_wk);
1152 }
1153 EXPORT_SYMBOL(cfg80211_scan_done);
1154 
1155 void cfg80211_add_sched_scan_req(struct cfg80211_registered_device *rdev,
1156 				 struct cfg80211_sched_scan_request *req)
1157 {
1158 	lockdep_assert_held(&rdev->wiphy.mtx);
1159 
1160 	list_add_rcu(&req->list, &rdev->sched_scan_req_list);
1161 }
1162 
1163 static void cfg80211_del_sched_scan_req(struct cfg80211_registered_device *rdev,
1164 					struct cfg80211_sched_scan_request *req)
1165 {
1166 	lockdep_assert_held(&rdev->wiphy.mtx);
1167 
1168 	list_del_rcu(&req->list);
1169 	kfree_rcu(req, rcu_head);
1170 }
1171 
1172 static struct cfg80211_sched_scan_request *
1173 cfg80211_find_sched_scan_req(struct cfg80211_registered_device *rdev, u64 reqid)
1174 {
1175 	struct cfg80211_sched_scan_request *pos;
1176 
1177 	list_for_each_entry_rcu(pos, &rdev->sched_scan_req_list, list,
1178 				lockdep_is_held(&rdev->wiphy.mtx)) {
1179 		if (pos->reqid == reqid)
1180 			return pos;
1181 	}
1182 	return NULL;
1183 }
1184 
1185 /*
1186  * Determines if a scheduled scan request can be handled. When a legacy
1187  * scheduled scan is running no other scheduled scan is allowed regardless
1188  * whether the request is for legacy or multi-support scan. When a multi-support
1189  * scheduled scan is running a request for legacy scan is not allowed. In this
1190  * case a request for multi-support scan can be handled if resources are
1191  * available, ie. struct wiphy::max_sched_scan_reqs limit is not yet reached.
1192  */
1193 int cfg80211_sched_scan_req_possible(struct cfg80211_registered_device *rdev,
1194 				     bool want_multi)
1195 {
1196 	struct cfg80211_sched_scan_request *pos;
1197 	int i = 0;
1198 
1199 	list_for_each_entry(pos, &rdev->sched_scan_req_list, list) {
1200 		/* request id zero means legacy in progress */
1201 		if (!i && !pos->reqid)
1202 			return -EINPROGRESS;
1203 		i++;
1204 	}
1205 
1206 	if (i) {
1207 		/* no legacy allowed when multi request(s) are active */
1208 		if (!want_multi)
1209 			return -EINPROGRESS;
1210 
1211 		/* resource limit reached */
1212 		if (i == rdev->wiphy.max_sched_scan_reqs)
1213 			return -ENOSPC;
1214 	}
1215 	return 0;
1216 }
1217 
1218 void cfg80211_sched_scan_results_wk(struct work_struct *work)
1219 {
1220 	struct cfg80211_registered_device *rdev;
1221 	struct cfg80211_sched_scan_request *req, *tmp;
1222 
1223 	rdev = container_of(work, struct cfg80211_registered_device,
1224 			   sched_scan_res_wk);
1225 
1226 	wiphy_lock(&rdev->wiphy);
1227 	list_for_each_entry_safe(req, tmp, &rdev->sched_scan_req_list, list) {
1228 		if (req->report_results) {
1229 			req->report_results = false;
1230 			if (req->flags & NL80211_SCAN_FLAG_FLUSH) {
1231 				/* flush entries from previous scans */
1232 				spin_lock_bh(&rdev->bss_lock);
1233 				__cfg80211_bss_expire(rdev, req->scan_start);
1234 				spin_unlock_bh(&rdev->bss_lock);
1235 				req->scan_start = jiffies;
1236 			}
1237 			nl80211_send_sched_scan(req,
1238 						NL80211_CMD_SCHED_SCAN_RESULTS);
1239 		}
1240 	}
1241 	wiphy_unlock(&rdev->wiphy);
1242 }
1243 
1244 void cfg80211_sched_scan_results(struct wiphy *wiphy, u64 reqid)
1245 {
1246 	struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
1247 	struct cfg80211_sched_scan_request *request;
1248 
1249 	trace_cfg80211_sched_scan_results(wiphy, reqid);
1250 	/* ignore if we're not scanning */
1251 
1252 	rcu_read_lock();
1253 	request = cfg80211_find_sched_scan_req(rdev, reqid);
1254 	if (request) {
1255 		request->report_results = true;
1256 		queue_work(cfg80211_wq, &rdev->sched_scan_res_wk);
1257 	}
1258 	rcu_read_unlock();
1259 }
1260 EXPORT_SYMBOL(cfg80211_sched_scan_results);
1261 
1262 void cfg80211_sched_scan_stopped_locked(struct wiphy *wiphy, u64 reqid)
1263 {
1264 	struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
1265 
1266 	lockdep_assert_held(&wiphy->mtx);
1267 
1268 	trace_cfg80211_sched_scan_stopped(wiphy, reqid);
1269 
1270 	__cfg80211_stop_sched_scan(rdev, reqid, true);
1271 }
1272 EXPORT_SYMBOL(cfg80211_sched_scan_stopped_locked);
1273 
1274 void cfg80211_sched_scan_stopped(struct wiphy *wiphy, u64 reqid)
1275 {
1276 	wiphy_lock(wiphy);
1277 	cfg80211_sched_scan_stopped_locked(wiphy, reqid);
1278 	wiphy_unlock(wiphy);
1279 }
1280 EXPORT_SYMBOL(cfg80211_sched_scan_stopped);
1281 
1282 int cfg80211_stop_sched_scan_req(struct cfg80211_registered_device *rdev,
1283 				 struct cfg80211_sched_scan_request *req,
1284 				 bool driver_initiated)
1285 {
1286 	lockdep_assert_held(&rdev->wiphy.mtx);
1287 
1288 	if (!driver_initiated) {
1289 		int err = rdev_sched_scan_stop(rdev, req->dev, req->reqid);
1290 		if (err)
1291 			return err;
1292 	}
1293 
1294 	nl80211_send_sched_scan(req, NL80211_CMD_SCHED_SCAN_STOPPED);
1295 
1296 	cfg80211_del_sched_scan_req(rdev, req);
1297 
1298 	return 0;
1299 }
1300 
1301 int __cfg80211_stop_sched_scan(struct cfg80211_registered_device *rdev,
1302 			       u64 reqid, bool driver_initiated)
1303 {
1304 	struct cfg80211_sched_scan_request *sched_scan_req;
1305 
1306 	lockdep_assert_held(&rdev->wiphy.mtx);
1307 
1308 	sched_scan_req = cfg80211_find_sched_scan_req(rdev, reqid);
1309 	if (!sched_scan_req)
1310 		return -ENOENT;
1311 
1312 	return cfg80211_stop_sched_scan_req(rdev, sched_scan_req,
1313 					    driver_initiated);
1314 }
1315 
1316 void cfg80211_bss_age(struct cfg80211_registered_device *rdev,
1317                       unsigned long age_secs)
1318 {
1319 	struct cfg80211_internal_bss *bss;
1320 	unsigned long age_jiffies = msecs_to_jiffies(age_secs * MSEC_PER_SEC);
1321 
1322 	spin_lock_bh(&rdev->bss_lock);
1323 	list_for_each_entry(bss, &rdev->bss_list, list)
1324 		bss->ts -= age_jiffies;
1325 	spin_unlock_bh(&rdev->bss_lock);
1326 }
1327 
1328 void cfg80211_bss_expire(struct cfg80211_registered_device *rdev)
1329 {
1330 	__cfg80211_bss_expire(rdev, jiffies - IEEE80211_SCAN_RESULT_EXPIRE);
1331 }
1332 
1333 void cfg80211_bss_flush(struct wiphy *wiphy)
1334 {
1335 	struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
1336 
1337 	spin_lock_bh(&rdev->bss_lock);
1338 	__cfg80211_bss_expire(rdev, jiffies);
1339 	spin_unlock_bh(&rdev->bss_lock);
1340 }
1341 EXPORT_SYMBOL(cfg80211_bss_flush);
1342 
1343 const struct element *
1344 cfg80211_find_elem_match(u8 eid, const u8 *ies, unsigned int len,
1345 			 const u8 *match, unsigned int match_len,
1346 			 unsigned int match_offset)
1347 {
1348 	const struct element *elem;
1349 
1350 	for_each_element_id(elem, eid, ies, len) {
1351 		if (elem->datalen >= match_offset + match_len &&
1352 		    !memcmp(elem->data + match_offset, match, match_len))
1353 			return elem;
1354 	}
1355 
1356 	return NULL;
1357 }
1358 EXPORT_SYMBOL(cfg80211_find_elem_match);
1359 
1360 const struct element *cfg80211_find_vendor_elem(unsigned int oui, int oui_type,
1361 						const u8 *ies,
1362 						unsigned int len)
1363 {
1364 	const struct element *elem;
1365 	u8 match[] = { oui >> 16, oui >> 8, oui, oui_type };
1366 	int match_len = (oui_type < 0) ? 3 : sizeof(match);
1367 
1368 	if (WARN_ON(oui_type > 0xff))
1369 		return NULL;
1370 
1371 	elem = cfg80211_find_elem_match(WLAN_EID_VENDOR_SPECIFIC, ies, len,
1372 					match, match_len, 0);
1373 
1374 	if (!elem || elem->datalen < 4)
1375 		return NULL;
1376 
1377 	return elem;
1378 }
1379 EXPORT_SYMBOL(cfg80211_find_vendor_elem);
1380 
1381 /**
1382  * enum bss_compare_mode - BSS compare mode
1383  * @BSS_CMP_REGULAR: regular compare mode (for insertion and normal find)
1384  * @BSS_CMP_HIDE_ZLEN: find hidden SSID with zero-length mode
1385  * @BSS_CMP_HIDE_NUL: find hidden SSID with NUL-ed out mode
1386  */
1387 enum bss_compare_mode {
1388 	BSS_CMP_REGULAR,
1389 	BSS_CMP_HIDE_ZLEN,
1390 	BSS_CMP_HIDE_NUL,
1391 };
1392 
1393 static int cmp_bss(struct cfg80211_bss *a,
1394 		   struct cfg80211_bss *b,
1395 		   enum bss_compare_mode mode)
1396 {
1397 	const struct cfg80211_bss_ies *a_ies, *b_ies;
1398 	const u8 *ie1 = NULL;
1399 	const u8 *ie2 = NULL;
1400 	int i, r;
1401 
1402 	if (a->channel != b->channel)
1403 		return (b->channel->center_freq * 1000 + b->channel->freq_offset) -
1404 		       (a->channel->center_freq * 1000 + a->channel->freq_offset);
1405 
1406 	a_ies = rcu_access_pointer(a->ies);
1407 	if (!a_ies)
1408 		return -1;
1409 	b_ies = rcu_access_pointer(b->ies);
1410 	if (!b_ies)
1411 		return 1;
1412 
1413 	if (WLAN_CAPABILITY_IS_STA_BSS(a->capability))
1414 		ie1 = cfg80211_find_ie(WLAN_EID_MESH_ID,
1415 				       a_ies->data, a_ies->len);
1416 	if (WLAN_CAPABILITY_IS_STA_BSS(b->capability))
1417 		ie2 = cfg80211_find_ie(WLAN_EID_MESH_ID,
1418 				       b_ies->data, b_ies->len);
1419 	if (ie1 && ie2) {
1420 		int mesh_id_cmp;
1421 
1422 		if (ie1[1] == ie2[1])
1423 			mesh_id_cmp = memcmp(ie1 + 2, ie2 + 2, ie1[1]);
1424 		else
1425 			mesh_id_cmp = ie2[1] - ie1[1];
1426 
1427 		ie1 = cfg80211_find_ie(WLAN_EID_MESH_CONFIG,
1428 				       a_ies->data, a_ies->len);
1429 		ie2 = cfg80211_find_ie(WLAN_EID_MESH_CONFIG,
1430 				       b_ies->data, b_ies->len);
1431 		if (ie1 && ie2) {
1432 			if (mesh_id_cmp)
1433 				return mesh_id_cmp;
1434 			if (ie1[1] != ie2[1])
1435 				return ie2[1] - ie1[1];
1436 			return memcmp(ie1 + 2, ie2 + 2, ie1[1]);
1437 		}
1438 	}
1439 
1440 	r = memcmp(a->bssid, b->bssid, sizeof(a->bssid));
1441 	if (r)
1442 		return r;
1443 
1444 	ie1 = cfg80211_find_ie(WLAN_EID_SSID, a_ies->data, a_ies->len);
1445 	ie2 = cfg80211_find_ie(WLAN_EID_SSID, b_ies->data, b_ies->len);
1446 
1447 	if (!ie1 && !ie2)
1448 		return 0;
1449 
1450 	/*
1451 	 * Note that with "hide_ssid", the function returns a match if
1452 	 * the already-present BSS ("b") is a hidden SSID beacon for
1453 	 * the new BSS ("a").
1454 	 */
1455 
1456 	/* sort missing IE before (left of) present IE */
1457 	if (!ie1)
1458 		return -1;
1459 	if (!ie2)
1460 		return 1;
1461 
1462 	switch (mode) {
1463 	case BSS_CMP_HIDE_ZLEN:
1464 		/*
1465 		 * In ZLEN mode we assume the BSS entry we're
1466 		 * looking for has a zero-length SSID. So if
1467 		 * the one we're looking at right now has that,
1468 		 * return 0. Otherwise, return the difference
1469 		 * in length, but since we're looking for the
1470 		 * 0-length it's really equivalent to returning
1471 		 * the length of the one we're looking at.
1472 		 *
1473 		 * No content comparison is needed as we assume
1474 		 * the content length is zero.
1475 		 */
1476 		return ie2[1];
1477 	case BSS_CMP_REGULAR:
1478 	default:
1479 		/* sort by length first, then by contents */
1480 		if (ie1[1] != ie2[1])
1481 			return ie2[1] - ie1[1];
1482 		return memcmp(ie1 + 2, ie2 + 2, ie1[1]);
1483 	case BSS_CMP_HIDE_NUL:
1484 		if (ie1[1] != ie2[1])
1485 			return ie2[1] - ie1[1];
1486 		/* this is equivalent to memcmp(zeroes, ie2 + 2, len) */
1487 		for (i = 0; i < ie2[1]; i++)
1488 			if (ie2[i + 2])
1489 				return -1;
1490 		return 0;
1491 	}
1492 }
1493 
1494 static bool cfg80211_bss_type_match(u16 capability,
1495 				    enum nl80211_band band,
1496 				    enum ieee80211_bss_type bss_type)
1497 {
1498 	bool ret = true;
1499 	u16 mask, val;
1500 
1501 	if (bss_type == IEEE80211_BSS_TYPE_ANY)
1502 		return ret;
1503 
1504 	if (band == NL80211_BAND_60GHZ) {
1505 		mask = WLAN_CAPABILITY_DMG_TYPE_MASK;
1506 		switch (bss_type) {
1507 		case IEEE80211_BSS_TYPE_ESS:
1508 			val = WLAN_CAPABILITY_DMG_TYPE_AP;
1509 			break;
1510 		case IEEE80211_BSS_TYPE_PBSS:
1511 			val = WLAN_CAPABILITY_DMG_TYPE_PBSS;
1512 			break;
1513 		case IEEE80211_BSS_TYPE_IBSS:
1514 			val = WLAN_CAPABILITY_DMG_TYPE_IBSS;
1515 			break;
1516 		default:
1517 			return false;
1518 		}
1519 	} else {
1520 		mask = WLAN_CAPABILITY_ESS | WLAN_CAPABILITY_IBSS;
1521 		switch (bss_type) {
1522 		case IEEE80211_BSS_TYPE_ESS:
1523 			val = WLAN_CAPABILITY_ESS;
1524 			break;
1525 		case IEEE80211_BSS_TYPE_IBSS:
1526 			val = WLAN_CAPABILITY_IBSS;
1527 			break;
1528 		case IEEE80211_BSS_TYPE_MBSS:
1529 			val = 0;
1530 			break;
1531 		default:
1532 			return false;
1533 		}
1534 	}
1535 
1536 	ret = ((capability & mask) == val);
1537 	return ret;
1538 }
1539 
1540 /* Returned bss is reference counted and must be cleaned up appropriately. */
1541 struct cfg80211_bss *__cfg80211_get_bss(struct wiphy *wiphy,
1542 					struct ieee80211_channel *channel,
1543 					const u8 *bssid,
1544 					const u8 *ssid, size_t ssid_len,
1545 					enum ieee80211_bss_type bss_type,
1546 					enum ieee80211_privacy privacy,
1547 					u32 use_for)
1548 {
1549 	struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
1550 	struct cfg80211_internal_bss *bss, *res = NULL;
1551 	unsigned long now = jiffies;
1552 	int bss_privacy;
1553 
1554 	trace_cfg80211_get_bss(wiphy, channel, bssid, ssid, ssid_len, bss_type,
1555 			       privacy);
1556 
1557 	spin_lock_bh(&rdev->bss_lock);
1558 
1559 	list_for_each_entry(bss, &rdev->bss_list, list) {
1560 		if (!cfg80211_bss_type_match(bss->pub.capability,
1561 					     bss->pub.channel->band, bss_type))
1562 			continue;
1563 
1564 		bss_privacy = (bss->pub.capability & WLAN_CAPABILITY_PRIVACY);
1565 		if ((privacy == IEEE80211_PRIVACY_ON && !bss_privacy) ||
1566 		    (privacy == IEEE80211_PRIVACY_OFF && bss_privacy))
1567 			continue;
1568 		if (channel && bss->pub.channel != channel)
1569 			continue;
1570 		if (!is_valid_ether_addr(bss->pub.bssid))
1571 			continue;
1572 		if ((bss->pub.use_for & use_for) != use_for)
1573 			continue;
1574 		/* Don't get expired BSS structs */
1575 		if (time_after(now, bss->ts + IEEE80211_SCAN_RESULT_EXPIRE) &&
1576 		    !atomic_read(&bss->hold))
1577 			continue;
1578 		if (is_bss(&bss->pub, bssid, ssid, ssid_len)) {
1579 			res = bss;
1580 			bss_ref_get(rdev, res);
1581 			break;
1582 		}
1583 	}
1584 
1585 	spin_unlock_bh(&rdev->bss_lock);
1586 	if (!res)
1587 		return NULL;
1588 	trace_cfg80211_return_bss(&res->pub);
1589 	return &res->pub;
1590 }
1591 EXPORT_SYMBOL(__cfg80211_get_bss);
1592 
1593 static void rb_insert_bss(struct cfg80211_registered_device *rdev,
1594 			  struct cfg80211_internal_bss *bss)
1595 {
1596 	struct rb_node **p = &rdev->bss_tree.rb_node;
1597 	struct rb_node *parent = NULL;
1598 	struct cfg80211_internal_bss *tbss;
1599 	int cmp;
1600 
1601 	while (*p) {
1602 		parent = *p;
1603 		tbss = rb_entry(parent, struct cfg80211_internal_bss, rbn);
1604 
1605 		cmp = cmp_bss(&bss->pub, &tbss->pub, BSS_CMP_REGULAR);
1606 
1607 		if (WARN_ON(!cmp)) {
1608 			/* will sort of leak this BSS */
1609 			return;
1610 		}
1611 
1612 		if (cmp < 0)
1613 			p = &(*p)->rb_left;
1614 		else
1615 			p = &(*p)->rb_right;
1616 	}
1617 
1618 	rb_link_node(&bss->rbn, parent, p);
1619 	rb_insert_color(&bss->rbn, &rdev->bss_tree);
1620 }
1621 
1622 static struct cfg80211_internal_bss *
1623 rb_find_bss(struct cfg80211_registered_device *rdev,
1624 	    struct cfg80211_internal_bss *res,
1625 	    enum bss_compare_mode mode)
1626 {
1627 	struct rb_node *n = rdev->bss_tree.rb_node;
1628 	struct cfg80211_internal_bss *bss;
1629 	int r;
1630 
1631 	while (n) {
1632 		bss = rb_entry(n, struct cfg80211_internal_bss, rbn);
1633 		r = cmp_bss(&res->pub, &bss->pub, mode);
1634 
1635 		if (r == 0)
1636 			return bss;
1637 		else if (r < 0)
1638 			n = n->rb_left;
1639 		else
1640 			n = n->rb_right;
1641 	}
1642 
1643 	return NULL;
1644 }
1645 
1646 static bool cfg80211_combine_bsses(struct cfg80211_registered_device *rdev,
1647 				   struct cfg80211_internal_bss *new)
1648 {
1649 	const struct cfg80211_bss_ies *ies;
1650 	struct cfg80211_internal_bss *bss;
1651 	const u8 *ie;
1652 	int i, ssidlen;
1653 	u8 fold = 0;
1654 	u32 n_entries = 0;
1655 
1656 	ies = rcu_access_pointer(new->pub.beacon_ies);
1657 	if (WARN_ON(!ies))
1658 		return false;
1659 
1660 	ie = cfg80211_find_ie(WLAN_EID_SSID, ies->data, ies->len);
1661 	if (!ie) {
1662 		/* nothing to do */
1663 		return true;
1664 	}
1665 
1666 	ssidlen = ie[1];
1667 	for (i = 0; i < ssidlen; i++)
1668 		fold |= ie[2 + i];
1669 
1670 	if (fold) {
1671 		/* not a hidden SSID */
1672 		return true;
1673 	}
1674 
1675 	/* This is the bad part ... */
1676 
1677 	list_for_each_entry(bss, &rdev->bss_list, list) {
1678 		/*
1679 		 * we're iterating all the entries anyway, so take the
1680 		 * opportunity to validate the list length accounting
1681 		 */
1682 		n_entries++;
1683 
1684 		if (!ether_addr_equal(bss->pub.bssid, new->pub.bssid))
1685 			continue;
1686 		if (bss->pub.channel != new->pub.channel)
1687 			continue;
1688 		if (rcu_access_pointer(bss->pub.beacon_ies))
1689 			continue;
1690 		ies = rcu_access_pointer(bss->pub.ies);
1691 		if (!ies)
1692 			continue;
1693 		ie = cfg80211_find_ie(WLAN_EID_SSID, ies->data, ies->len);
1694 		if (!ie)
1695 			continue;
1696 		if (ssidlen && ie[1] != ssidlen)
1697 			continue;
1698 		if (WARN_ON_ONCE(bss->pub.hidden_beacon_bss))
1699 			continue;
1700 		if (WARN_ON_ONCE(!list_empty(&bss->hidden_list)))
1701 			list_del(&bss->hidden_list);
1702 		/* combine them */
1703 		list_add(&bss->hidden_list, &new->hidden_list);
1704 		bss->pub.hidden_beacon_bss = &new->pub;
1705 		new->refcount += bss->refcount;
1706 		rcu_assign_pointer(bss->pub.beacon_ies,
1707 				   new->pub.beacon_ies);
1708 	}
1709 
1710 	WARN_ONCE(n_entries != rdev->bss_entries,
1711 		  "rdev bss entries[%d]/list[len:%d] corruption\n",
1712 		  rdev->bss_entries, n_entries);
1713 
1714 	return true;
1715 }
1716 
1717 static void cfg80211_update_hidden_bsses(struct cfg80211_internal_bss *known,
1718 					 const struct cfg80211_bss_ies *new_ies,
1719 					 const struct cfg80211_bss_ies *old_ies)
1720 {
1721 	struct cfg80211_internal_bss *bss;
1722 
1723 	/* Assign beacon IEs to all sub entries */
1724 	list_for_each_entry(bss, &known->hidden_list, hidden_list) {
1725 		const struct cfg80211_bss_ies *ies;
1726 
1727 		ies = rcu_access_pointer(bss->pub.beacon_ies);
1728 		WARN_ON(ies != old_ies);
1729 
1730 		rcu_assign_pointer(bss->pub.beacon_ies, new_ies);
1731 	}
1732 }
1733 
1734 static void cfg80211_check_stuck_ecsa(struct cfg80211_registered_device *rdev,
1735 				      struct cfg80211_internal_bss *known,
1736 				      const struct cfg80211_bss_ies *old)
1737 {
1738 	const struct ieee80211_ext_chansw_ie *ecsa;
1739 	const struct element *elem_new, *elem_old;
1740 	const struct cfg80211_bss_ies *new, *bcn;
1741 
1742 	if (known->pub.proberesp_ecsa_stuck)
1743 		return;
1744 
1745 	new = rcu_dereference_protected(known->pub.proberesp_ies,
1746 					lockdep_is_held(&rdev->bss_lock));
1747 	if (WARN_ON(!new))
1748 		return;
1749 
1750 	if (new->tsf - old->tsf < USEC_PER_SEC)
1751 		return;
1752 
1753 	elem_old = cfg80211_find_elem(WLAN_EID_EXT_CHANSWITCH_ANN,
1754 				      old->data, old->len);
1755 	if (!elem_old)
1756 		return;
1757 
1758 	elem_new = cfg80211_find_elem(WLAN_EID_EXT_CHANSWITCH_ANN,
1759 				      new->data, new->len);
1760 	if (!elem_new)
1761 		return;
1762 
1763 	bcn = rcu_dereference_protected(known->pub.beacon_ies,
1764 					lockdep_is_held(&rdev->bss_lock));
1765 	if (bcn &&
1766 	    cfg80211_find_elem(WLAN_EID_EXT_CHANSWITCH_ANN,
1767 			       bcn->data, bcn->len))
1768 		return;
1769 
1770 	if (elem_new->datalen != elem_old->datalen)
1771 		return;
1772 	if (elem_new->datalen < sizeof(struct ieee80211_ext_chansw_ie))
1773 		return;
1774 	if (memcmp(elem_new->data, elem_old->data, elem_new->datalen))
1775 		return;
1776 
1777 	ecsa = (void *)elem_new->data;
1778 
1779 	if (!ecsa->mode)
1780 		return;
1781 
1782 	if (ecsa->new_ch_num !=
1783 	    ieee80211_frequency_to_channel(known->pub.channel->center_freq))
1784 		return;
1785 
1786 	known->pub.proberesp_ecsa_stuck = 1;
1787 }
1788 
1789 static bool
1790 cfg80211_update_known_bss(struct cfg80211_registered_device *rdev,
1791 			  struct cfg80211_internal_bss *known,
1792 			  struct cfg80211_internal_bss *new,
1793 			  bool signal_valid)
1794 {
1795 	lockdep_assert_held(&rdev->bss_lock);
1796 
1797 	/* Update IEs */
1798 	if (rcu_access_pointer(new->pub.proberesp_ies)) {
1799 		const struct cfg80211_bss_ies *old;
1800 
1801 		old = rcu_access_pointer(known->pub.proberesp_ies);
1802 
1803 		rcu_assign_pointer(known->pub.proberesp_ies,
1804 				   new->pub.proberesp_ies);
1805 		/* Override possible earlier Beacon frame IEs */
1806 		rcu_assign_pointer(known->pub.ies,
1807 				   new->pub.proberesp_ies);
1808 		if (old) {
1809 			cfg80211_check_stuck_ecsa(rdev, known, old);
1810 			kfree_rcu((struct cfg80211_bss_ies *)old, rcu_head);
1811 		}
1812 	}
1813 
1814 	if (rcu_access_pointer(new->pub.beacon_ies)) {
1815 		const struct cfg80211_bss_ies *old;
1816 
1817 		if (known->pub.hidden_beacon_bss &&
1818 		    !list_empty(&known->hidden_list)) {
1819 			const struct cfg80211_bss_ies *f;
1820 
1821 			/* The known BSS struct is one of the probe
1822 			 * response members of a group, but we're
1823 			 * receiving a beacon (beacon_ies in the new
1824 			 * bss is used). This can only mean that the
1825 			 * AP changed its beacon from not having an
1826 			 * SSID to showing it, which is confusing so
1827 			 * drop this information.
1828 			 */
1829 
1830 			f = rcu_access_pointer(new->pub.beacon_ies);
1831 			kfree_rcu((struct cfg80211_bss_ies *)f, rcu_head);
1832 			return false;
1833 		}
1834 
1835 		old = rcu_access_pointer(known->pub.beacon_ies);
1836 
1837 		rcu_assign_pointer(known->pub.beacon_ies, new->pub.beacon_ies);
1838 
1839 		/* Override IEs if they were from a beacon before */
1840 		if (old == rcu_access_pointer(known->pub.ies))
1841 			rcu_assign_pointer(known->pub.ies, new->pub.beacon_ies);
1842 
1843 		cfg80211_update_hidden_bsses(known,
1844 					     rcu_access_pointer(new->pub.beacon_ies),
1845 					     old);
1846 
1847 		if (old)
1848 			kfree_rcu((struct cfg80211_bss_ies *)old, rcu_head);
1849 	}
1850 
1851 	known->pub.beacon_interval = new->pub.beacon_interval;
1852 
1853 	/* don't update the signal if beacon was heard on
1854 	 * adjacent channel.
1855 	 */
1856 	if (signal_valid)
1857 		known->pub.signal = new->pub.signal;
1858 	known->pub.capability = new->pub.capability;
1859 	known->ts = new->ts;
1860 	known->ts_boottime = new->ts_boottime;
1861 	known->parent_tsf = new->parent_tsf;
1862 	known->pub.chains = new->pub.chains;
1863 	memcpy(known->pub.chain_signal, new->pub.chain_signal,
1864 	       IEEE80211_MAX_CHAINS);
1865 	ether_addr_copy(known->parent_bssid, new->parent_bssid);
1866 	known->pub.max_bssid_indicator = new->pub.max_bssid_indicator;
1867 	known->pub.bssid_index = new->pub.bssid_index;
1868 	known->pub.use_for &= new->pub.use_for;
1869 	known->pub.cannot_use_reasons = new->pub.cannot_use_reasons;
1870 
1871 	return true;
1872 }
1873 
1874 /* Returned bss is reference counted and must be cleaned up appropriately. */
1875 static struct cfg80211_internal_bss *
1876 __cfg80211_bss_update(struct cfg80211_registered_device *rdev,
1877 		      struct cfg80211_internal_bss *tmp,
1878 		      bool signal_valid, unsigned long ts)
1879 {
1880 	struct cfg80211_internal_bss *found = NULL;
1881 	struct cfg80211_bss_ies *ies;
1882 
1883 	if (WARN_ON(!tmp->pub.channel))
1884 		goto free_ies;
1885 
1886 	tmp->ts = ts;
1887 
1888 	if (WARN_ON(!rcu_access_pointer(tmp->pub.ies)))
1889 		goto free_ies;
1890 
1891 	found = rb_find_bss(rdev, tmp, BSS_CMP_REGULAR);
1892 
1893 	if (found) {
1894 		if (!cfg80211_update_known_bss(rdev, found, tmp, signal_valid))
1895 			return NULL;
1896 	} else {
1897 		struct cfg80211_internal_bss *new;
1898 		struct cfg80211_internal_bss *hidden;
1899 
1900 		/*
1901 		 * create a copy -- the "res" variable that is passed in
1902 		 * is allocated on the stack since it's not needed in the
1903 		 * more common case of an update
1904 		 */
1905 		new = kzalloc(sizeof(*new) + rdev->wiphy.bss_priv_size,
1906 			      GFP_ATOMIC);
1907 		if (!new)
1908 			goto free_ies;
1909 		memcpy(new, tmp, sizeof(*new));
1910 		new->refcount = 1;
1911 		INIT_LIST_HEAD(&new->hidden_list);
1912 		INIT_LIST_HEAD(&new->pub.nontrans_list);
1913 		/* we'll set this later if it was non-NULL */
1914 		new->pub.transmitted_bss = NULL;
1915 
1916 		if (rcu_access_pointer(tmp->pub.proberesp_ies)) {
1917 			hidden = rb_find_bss(rdev, tmp, BSS_CMP_HIDE_ZLEN);
1918 			if (!hidden)
1919 				hidden = rb_find_bss(rdev, tmp,
1920 						     BSS_CMP_HIDE_NUL);
1921 			if (hidden) {
1922 				new->pub.hidden_beacon_bss = &hidden->pub;
1923 				list_add(&new->hidden_list,
1924 					 &hidden->hidden_list);
1925 				hidden->refcount++;
1926 
1927 				ies = (void *)rcu_access_pointer(new->pub.beacon_ies);
1928 				rcu_assign_pointer(new->pub.beacon_ies,
1929 						   hidden->pub.beacon_ies);
1930 				if (ies)
1931 					kfree_rcu(ies, rcu_head);
1932 			}
1933 		} else {
1934 			/*
1935 			 * Ok so we found a beacon, and don't have an entry. If
1936 			 * it's a beacon with hidden SSID, we might be in for an
1937 			 * expensive search for any probe responses that should
1938 			 * be grouped with this beacon for updates ...
1939 			 */
1940 			if (!cfg80211_combine_bsses(rdev, new)) {
1941 				bss_ref_put(rdev, new);
1942 				return NULL;
1943 			}
1944 		}
1945 
1946 		if (rdev->bss_entries >= bss_entries_limit &&
1947 		    !cfg80211_bss_expire_oldest(rdev)) {
1948 			bss_ref_put(rdev, new);
1949 			return NULL;
1950 		}
1951 
1952 		/* This must be before the call to bss_ref_get */
1953 		if (tmp->pub.transmitted_bss) {
1954 			new->pub.transmitted_bss = tmp->pub.transmitted_bss;
1955 			bss_ref_get(rdev, bss_from_pub(tmp->pub.transmitted_bss));
1956 		}
1957 
1958 		list_add_tail(&new->list, &rdev->bss_list);
1959 		rdev->bss_entries++;
1960 		rb_insert_bss(rdev, new);
1961 		found = new;
1962 	}
1963 
1964 	rdev->bss_generation++;
1965 	bss_ref_get(rdev, found);
1966 
1967 	return found;
1968 
1969 free_ies:
1970 	ies = (void *)rcu_dereference(tmp->pub.beacon_ies);
1971 	if (ies)
1972 		kfree_rcu(ies, rcu_head);
1973 	ies = (void *)rcu_dereference(tmp->pub.proberesp_ies);
1974 	if (ies)
1975 		kfree_rcu(ies, rcu_head);
1976 
1977 	return NULL;
1978 }
1979 
1980 struct cfg80211_internal_bss *
1981 cfg80211_bss_update(struct cfg80211_registered_device *rdev,
1982 		    struct cfg80211_internal_bss *tmp,
1983 		    bool signal_valid, unsigned long ts)
1984 {
1985 	struct cfg80211_internal_bss *res;
1986 
1987 	spin_lock_bh(&rdev->bss_lock);
1988 	res = __cfg80211_bss_update(rdev, tmp, signal_valid, ts);
1989 	spin_unlock_bh(&rdev->bss_lock);
1990 
1991 	return res;
1992 }
1993 
1994 int cfg80211_get_ies_channel_number(const u8 *ie, size_t ielen,
1995 				    enum nl80211_band band)
1996 {
1997 	const struct element *tmp;
1998 
1999 	if (band == NL80211_BAND_6GHZ) {
2000 		struct ieee80211_he_operation *he_oper;
2001 
2002 		tmp = cfg80211_find_ext_elem(WLAN_EID_EXT_HE_OPERATION, ie,
2003 					     ielen);
2004 		if (tmp && tmp->datalen >= sizeof(*he_oper) &&
2005 		    tmp->datalen >= ieee80211_he_oper_size(&tmp->data[1])) {
2006 			const struct ieee80211_he_6ghz_oper *he_6ghz_oper;
2007 
2008 			he_oper = (void *)&tmp->data[1];
2009 
2010 			he_6ghz_oper = ieee80211_he_6ghz_oper(he_oper);
2011 			if (!he_6ghz_oper)
2012 				return -1;
2013 
2014 			return he_6ghz_oper->primary;
2015 		}
2016 	} else if (band == NL80211_BAND_S1GHZ) {
2017 		tmp = cfg80211_find_elem(WLAN_EID_S1G_OPERATION, ie, ielen);
2018 		if (tmp && tmp->datalen >= sizeof(struct ieee80211_s1g_oper_ie)) {
2019 			struct ieee80211_s1g_oper_ie *s1gop = (void *)tmp->data;
2020 
2021 			return s1gop->oper_ch;
2022 		}
2023 	} else {
2024 		tmp = cfg80211_find_elem(WLAN_EID_DS_PARAMS, ie, ielen);
2025 		if (tmp && tmp->datalen == 1)
2026 			return tmp->data[0];
2027 
2028 		tmp = cfg80211_find_elem(WLAN_EID_HT_OPERATION, ie, ielen);
2029 		if (tmp &&
2030 		    tmp->datalen >= sizeof(struct ieee80211_ht_operation)) {
2031 			struct ieee80211_ht_operation *htop = (void *)tmp->data;
2032 
2033 			return htop->primary_chan;
2034 		}
2035 	}
2036 
2037 	return -1;
2038 }
2039 EXPORT_SYMBOL(cfg80211_get_ies_channel_number);
2040 
2041 /*
2042  * Update RX channel information based on the available frame payload
2043  * information. This is mainly for the 2.4 GHz band where frames can be received
2044  * from neighboring channels and the Beacon frames use the DSSS Parameter Set
2045  * element to indicate the current (transmitting) channel, but this might also
2046  * be needed on other bands if RX frequency does not match with the actual
2047  * operating channel of a BSS, or if the AP reports a different primary channel.
2048  */
2049 static struct ieee80211_channel *
2050 cfg80211_get_bss_channel(struct wiphy *wiphy, const u8 *ie, size_t ielen,
2051 			 struct ieee80211_channel *channel)
2052 {
2053 	u32 freq;
2054 	int channel_number;
2055 	struct ieee80211_channel *alt_channel;
2056 
2057 	channel_number = cfg80211_get_ies_channel_number(ie, ielen,
2058 							 channel->band);
2059 
2060 	if (channel_number < 0) {
2061 		/* No channel information in frame payload */
2062 		return channel;
2063 	}
2064 
2065 	freq = ieee80211_channel_to_freq_khz(channel_number, channel->band);
2066 
2067 	/*
2068 	 * Frame info (beacon/prob res) is the same as received channel,
2069 	 * no need for further processing.
2070 	 */
2071 	if (freq == ieee80211_channel_to_khz(channel))
2072 		return channel;
2073 
2074 	alt_channel = ieee80211_get_channel_khz(wiphy, freq);
2075 	if (!alt_channel) {
2076 		if (channel->band == NL80211_BAND_2GHZ ||
2077 		    channel->band == NL80211_BAND_6GHZ) {
2078 			/*
2079 			 * Better not allow unexpected channels when that could
2080 			 * be going beyond the 1-11 range (e.g., discovering
2081 			 * BSS on channel 12 when radio is configured for
2082 			 * channel 11) or beyond the 6 GHz channel range.
2083 			 */
2084 			return NULL;
2085 		}
2086 
2087 		/* No match for the payload channel number - ignore it */
2088 		return channel;
2089 	}
2090 
2091 	/*
2092 	 * Use the channel determined through the payload channel number
2093 	 * instead of the RX channel reported by the driver.
2094 	 */
2095 	if (alt_channel->flags & IEEE80211_CHAN_DISABLED)
2096 		return NULL;
2097 	return alt_channel;
2098 }
2099 
2100 struct cfg80211_inform_single_bss_data {
2101 	struct cfg80211_inform_bss *drv_data;
2102 	enum cfg80211_bss_frame_type ftype;
2103 	struct ieee80211_channel *channel;
2104 	u8 bssid[ETH_ALEN];
2105 	u64 tsf;
2106 	u16 capability;
2107 	u16 beacon_interval;
2108 	const u8 *ie;
2109 	size_t ielen;
2110 
2111 	enum {
2112 		BSS_SOURCE_DIRECT = 0,
2113 		BSS_SOURCE_MBSSID,
2114 		BSS_SOURCE_STA_PROFILE,
2115 	} bss_source;
2116 	/* Set if reporting bss_source != BSS_SOURCE_DIRECT */
2117 	struct cfg80211_bss *source_bss;
2118 	u8 max_bssid_indicator;
2119 	u8 bssid_index;
2120 
2121 	u8 use_for;
2122 	u64 cannot_use_reasons;
2123 };
2124 
2125 /* Returned bss is reference counted and must be cleaned up appropriately. */
2126 static struct cfg80211_bss *
2127 cfg80211_inform_single_bss_data(struct wiphy *wiphy,
2128 				struct cfg80211_inform_single_bss_data *data,
2129 				gfp_t gfp)
2130 {
2131 	struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
2132 	struct cfg80211_inform_bss *drv_data = data->drv_data;
2133 	struct cfg80211_bss_ies *ies;
2134 	struct ieee80211_channel *channel;
2135 	struct cfg80211_internal_bss tmp = {}, *res;
2136 	int bss_type;
2137 	bool signal_valid;
2138 	unsigned long ts;
2139 
2140 	if (WARN_ON(!wiphy))
2141 		return NULL;
2142 
2143 	if (WARN_ON(wiphy->signal_type == CFG80211_SIGNAL_TYPE_UNSPEC &&
2144 		    (drv_data->signal < 0 || drv_data->signal > 100)))
2145 		return NULL;
2146 
2147 	if (WARN_ON(data->bss_source != BSS_SOURCE_DIRECT && !data->source_bss))
2148 		return NULL;
2149 
2150 	channel = data->channel;
2151 	if (!channel)
2152 		channel = cfg80211_get_bss_channel(wiphy, data->ie, data->ielen,
2153 						   drv_data->chan);
2154 	if (!channel)
2155 		return NULL;
2156 
2157 	memcpy(tmp.pub.bssid, data->bssid, ETH_ALEN);
2158 	tmp.pub.channel = channel;
2159 	if (data->bss_source != BSS_SOURCE_STA_PROFILE)
2160 		tmp.pub.signal = drv_data->signal;
2161 	else
2162 		tmp.pub.signal = 0;
2163 	tmp.pub.beacon_interval = data->beacon_interval;
2164 	tmp.pub.capability = data->capability;
2165 	tmp.ts_boottime = drv_data->boottime_ns;
2166 	tmp.parent_tsf = drv_data->parent_tsf;
2167 	ether_addr_copy(tmp.parent_bssid, drv_data->parent_bssid);
2168 	tmp.pub.use_for = data->use_for;
2169 	tmp.pub.cannot_use_reasons = data->cannot_use_reasons;
2170 
2171 	if (data->bss_source != BSS_SOURCE_DIRECT) {
2172 		tmp.pub.transmitted_bss = data->source_bss;
2173 		ts = bss_from_pub(data->source_bss)->ts;
2174 		tmp.pub.bssid_index = data->bssid_index;
2175 		tmp.pub.max_bssid_indicator = data->max_bssid_indicator;
2176 	} else {
2177 		ts = jiffies;
2178 
2179 		if (channel->band == NL80211_BAND_60GHZ) {
2180 			bss_type = data->capability &
2181 				   WLAN_CAPABILITY_DMG_TYPE_MASK;
2182 			if (bss_type == WLAN_CAPABILITY_DMG_TYPE_AP ||
2183 			    bss_type == WLAN_CAPABILITY_DMG_TYPE_PBSS)
2184 				regulatory_hint_found_beacon(wiphy, channel,
2185 							     gfp);
2186 		} else {
2187 			if (data->capability & WLAN_CAPABILITY_ESS)
2188 				regulatory_hint_found_beacon(wiphy, channel,
2189 							     gfp);
2190 		}
2191 	}
2192 
2193 	/*
2194 	 * If we do not know here whether the IEs are from a Beacon or Probe
2195 	 * Response frame, we need to pick one of the options and only use it
2196 	 * with the driver that does not provide the full Beacon/Probe Response
2197 	 * frame. Use Beacon frame pointer to avoid indicating that this should
2198 	 * override the IEs pointer should we have received an earlier
2199 	 * indication of Probe Response data.
2200 	 */
2201 	ies = kzalloc(sizeof(*ies) + data->ielen, gfp);
2202 	if (!ies)
2203 		return NULL;
2204 	ies->len = data->ielen;
2205 	ies->tsf = data->tsf;
2206 	ies->from_beacon = false;
2207 	memcpy(ies->data, data->ie, data->ielen);
2208 
2209 	switch (data->ftype) {
2210 	case CFG80211_BSS_FTYPE_BEACON:
2211 		ies->from_beacon = true;
2212 		fallthrough;
2213 	case CFG80211_BSS_FTYPE_UNKNOWN:
2214 		rcu_assign_pointer(tmp.pub.beacon_ies, ies);
2215 		break;
2216 	case CFG80211_BSS_FTYPE_PRESP:
2217 		rcu_assign_pointer(tmp.pub.proberesp_ies, ies);
2218 		break;
2219 	}
2220 	rcu_assign_pointer(tmp.pub.ies, ies);
2221 
2222 	signal_valid = drv_data->chan == channel;
2223 	spin_lock_bh(&rdev->bss_lock);
2224 	res = __cfg80211_bss_update(rdev, &tmp, signal_valid, ts);
2225 	if (!res)
2226 		goto drop;
2227 
2228 	rdev_inform_bss(rdev, &res->pub, ies, drv_data->drv_data);
2229 
2230 	if (data->bss_source == BSS_SOURCE_MBSSID) {
2231 		/* this is a nontransmitting bss, we need to add it to
2232 		 * transmitting bss' list if it is not there
2233 		 */
2234 		if (cfg80211_add_nontrans_list(data->source_bss, &res->pub)) {
2235 			if (__cfg80211_unlink_bss(rdev, res)) {
2236 				rdev->bss_generation++;
2237 				res = NULL;
2238 			}
2239 		}
2240 
2241 		if (!res)
2242 			goto drop;
2243 	}
2244 	spin_unlock_bh(&rdev->bss_lock);
2245 
2246 	trace_cfg80211_return_bss(&res->pub);
2247 	/* __cfg80211_bss_update gives us a referenced result */
2248 	return &res->pub;
2249 
2250 drop:
2251 	spin_unlock_bh(&rdev->bss_lock);
2252 	return NULL;
2253 }
2254 
2255 static const struct element
2256 *cfg80211_get_profile_continuation(const u8 *ie, size_t ielen,
2257 				   const struct element *mbssid_elem,
2258 				   const struct element *sub_elem)
2259 {
2260 	const u8 *mbssid_end = mbssid_elem->data + mbssid_elem->datalen;
2261 	const struct element *next_mbssid;
2262 	const struct element *next_sub;
2263 
2264 	next_mbssid = cfg80211_find_elem(WLAN_EID_MULTIPLE_BSSID,
2265 					 mbssid_end,
2266 					 ielen - (mbssid_end - ie));
2267 
2268 	/*
2269 	 * If it is not the last subelement in current MBSSID IE or there isn't
2270 	 * a next MBSSID IE - profile is complete.
2271 	*/
2272 	if ((sub_elem->data + sub_elem->datalen < mbssid_end - 1) ||
2273 	    !next_mbssid)
2274 		return NULL;
2275 
2276 	/* For any length error, just return NULL */
2277 
2278 	if (next_mbssid->datalen < 4)
2279 		return NULL;
2280 
2281 	next_sub = (void *)&next_mbssid->data[1];
2282 
2283 	if (next_mbssid->data + next_mbssid->datalen <
2284 	    next_sub->data + next_sub->datalen)
2285 		return NULL;
2286 
2287 	if (next_sub->id != 0 || next_sub->datalen < 2)
2288 		return NULL;
2289 
2290 	/*
2291 	 * Check if the first element in the next sub element is a start
2292 	 * of a new profile
2293 	 */
2294 	return next_sub->data[0] == WLAN_EID_NON_TX_BSSID_CAP ?
2295 	       NULL : next_mbssid;
2296 }
2297 
2298 size_t cfg80211_merge_profile(const u8 *ie, size_t ielen,
2299 			      const struct element *mbssid_elem,
2300 			      const struct element *sub_elem,
2301 			      u8 *merged_ie, size_t max_copy_len)
2302 {
2303 	size_t copied_len = sub_elem->datalen;
2304 	const struct element *next_mbssid;
2305 
2306 	if (sub_elem->datalen > max_copy_len)
2307 		return 0;
2308 
2309 	memcpy(merged_ie, sub_elem->data, sub_elem->datalen);
2310 
2311 	while ((next_mbssid = cfg80211_get_profile_continuation(ie, ielen,
2312 								mbssid_elem,
2313 								sub_elem))) {
2314 		const struct element *next_sub = (void *)&next_mbssid->data[1];
2315 
2316 		if (copied_len + next_sub->datalen > max_copy_len)
2317 			break;
2318 		memcpy(merged_ie + copied_len, next_sub->data,
2319 		       next_sub->datalen);
2320 		copied_len += next_sub->datalen;
2321 	}
2322 
2323 	return copied_len;
2324 }
2325 EXPORT_SYMBOL(cfg80211_merge_profile);
2326 
2327 static void
2328 cfg80211_parse_mbssid_data(struct wiphy *wiphy,
2329 			   struct cfg80211_inform_single_bss_data *tx_data,
2330 			   struct cfg80211_bss *source_bss,
2331 			   gfp_t gfp)
2332 {
2333 	struct cfg80211_inform_single_bss_data data = {
2334 		.drv_data = tx_data->drv_data,
2335 		.ftype = tx_data->ftype,
2336 		.tsf = tx_data->tsf,
2337 		.beacon_interval = tx_data->beacon_interval,
2338 		.source_bss = source_bss,
2339 		.bss_source = BSS_SOURCE_MBSSID,
2340 		.use_for = tx_data->use_for,
2341 		.cannot_use_reasons = tx_data->cannot_use_reasons,
2342 	};
2343 	const u8 *mbssid_index_ie;
2344 	const struct element *elem, *sub;
2345 	u8 *new_ie, *profile;
2346 	u64 seen_indices = 0;
2347 	struct cfg80211_bss *bss;
2348 
2349 	if (!source_bss)
2350 		return;
2351 	if (!cfg80211_find_elem(WLAN_EID_MULTIPLE_BSSID,
2352 				tx_data->ie, tx_data->ielen))
2353 		return;
2354 	if (!wiphy->support_mbssid)
2355 		return;
2356 	if (wiphy->support_only_he_mbssid &&
2357 	    !cfg80211_find_ext_elem(WLAN_EID_EXT_HE_CAPABILITY,
2358 				    tx_data->ie, tx_data->ielen))
2359 		return;
2360 
2361 	new_ie = kmalloc(IEEE80211_MAX_DATA_LEN, gfp);
2362 	if (!new_ie)
2363 		return;
2364 
2365 	profile = kmalloc(tx_data->ielen, gfp);
2366 	if (!profile)
2367 		goto out;
2368 
2369 	for_each_element_id(elem, WLAN_EID_MULTIPLE_BSSID,
2370 			    tx_data->ie, tx_data->ielen) {
2371 		if (elem->datalen < 4)
2372 			continue;
2373 		if (elem->data[0] < 1 || (int)elem->data[0] > 8)
2374 			continue;
2375 		for_each_element(sub, elem->data + 1, elem->datalen - 1) {
2376 			u8 profile_len;
2377 
2378 			if (sub->id != 0 || sub->datalen < 4) {
2379 				/* not a valid BSS profile */
2380 				continue;
2381 			}
2382 
2383 			if (sub->data[0] != WLAN_EID_NON_TX_BSSID_CAP ||
2384 			    sub->data[1] != 2) {
2385 				/* The first element within the Nontransmitted
2386 				 * BSSID Profile is not the Nontransmitted
2387 				 * BSSID Capability element.
2388 				 */
2389 				continue;
2390 			}
2391 
2392 			memset(profile, 0, tx_data->ielen);
2393 			profile_len = cfg80211_merge_profile(tx_data->ie,
2394 							     tx_data->ielen,
2395 							     elem,
2396 							     sub,
2397 							     profile,
2398 							     tx_data->ielen);
2399 
2400 			/* found a Nontransmitted BSSID Profile */
2401 			mbssid_index_ie = cfg80211_find_ie
2402 				(WLAN_EID_MULTI_BSSID_IDX,
2403 				 profile, profile_len);
2404 			if (!mbssid_index_ie || mbssid_index_ie[1] < 1 ||
2405 			    mbssid_index_ie[2] == 0 ||
2406 			    mbssid_index_ie[2] > 46) {
2407 				/* No valid Multiple BSSID-Index element */
2408 				continue;
2409 			}
2410 
2411 			if (seen_indices & BIT_ULL(mbssid_index_ie[2]))
2412 				/* We don't support legacy split of a profile */
2413 				net_dbg_ratelimited("Partial info for BSSID index %d\n",
2414 						    mbssid_index_ie[2]);
2415 
2416 			seen_indices |= BIT_ULL(mbssid_index_ie[2]);
2417 
2418 			data.bssid_index = mbssid_index_ie[2];
2419 			data.max_bssid_indicator = elem->data[0];
2420 
2421 			cfg80211_gen_new_bssid(tx_data->bssid,
2422 					       data.max_bssid_indicator,
2423 					       data.bssid_index,
2424 					       data.bssid);
2425 
2426 			memset(new_ie, 0, IEEE80211_MAX_DATA_LEN);
2427 			data.ie = new_ie;
2428 			data.ielen = cfg80211_gen_new_ie(tx_data->ie,
2429 							 tx_data->ielen,
2430 							 profile,
2431 							 profile_len,
2432 							 new_ie,
2433 							 IEEE80211_MAX_DATA_LEN);
2434 			if (!data.ielen)
2435 				continue;
2436 
2437 			data.capability = get_unaligned_le16(profile + 2);
2438 			bss = cfg80211_inform_single_bss_data(wiphy, &data, gfp);
2439 			if (!bss)
2440 				break;
2441 			cfg80211_put_bss(wiphy, bss);
2442 		}
2443 	}
2444 
2445 out:
2446 	kfree(new_ie);
2447 	kfree(profile);
2448 }
2449 
2450 ssize_t cfg80211_defragment_element(const struct element *elem, const u8 *ies,
2451 				    size_t ieslen, u8 *data, size_t data_len,
2452 				    u8 frag_id)
2453 {
2454 	const struct element *next;
2455 	ssize_t copied;
2456 	u8 elem_datalen;
2457 
2458 	if (!elem)
2459 		return -EINVAL;
2460 
2461 	/* elem might be invalid after the memmove */
2462 	next = (void *)(elem->data + elem->datalen);
2463 	elem_datalen = elem->datalen;
2464 
2465 	if (elem->id == WLAN_EID_EXTENSION) {
2466 		copied = elem->datalen - 1;
2467 		if (copied > data_len)
2468 			return -ENOSPC;
2469 
2470 		memmove(data, elem->data + 1, copied);
2471 	} else {
2472 		copied = elem->datalen;
2473 		if (copied > data_len)
2474 			return -ENOSPC;
2475 
2476 		memmove(data, elem->data, copied);
2477 	}
2478 
2479 	/* Fragmented elements must have 255 bytes */
2480 	if (elem_datalen < 255)
2481 		return copied;
2482 
2483 	for (elem = next;
2484 	     elem->data < ies + ieslen &&
2485 		elem->data + elem->datalen <= ies + ieslen;
2486 	     elem = next) {
2487 		/* elem might be invalid after the memmove */
2488 		next = (void *)(elem->data + elem->datalen);
2489 
2490 		if (elem->id != frag_id)
2491 			break;
2492 
2493 		elem_datalen = elem->datalen;
2494 
2495 		if (copied + elem_datalen > data_len)
2496 			return -ENOSPC;
2497 
2498 		memmove(data + copied, elem->data, elem_datalen);
2499 		copied += elem_datalen;
2500 
2501 		/* Only the last fragment may be short */
2502 		if (elem_datalen != 255)
2503 			break;
2504 	}
2505 
2506 	return copied;
2507 }
2508 EXPORT_SYMBOL(cfg80211_defragment_element);
2509 
2510 struct cfg80211_mle {
2511 	struct ieee80211_multi_link_elem *mle;
2512 	struct ieee80211_mle_per_sta_profile
2513 		*sta_prof[IEEE80211_MLD_MAX_NUM_LINKS];
2514 	ssize_t sta_prof_len[IEEE80211_MLD_MAX_NUM_LINKS];
2515 
2516 	u8 data[];
2517 };
2518 
2519 static struct cfg80211_mle *
2520 cfg80211_defrag_mle(const struct element *mle, const u8 *ie, size_t ielen,
2521 		    gfp_t gfp)
2522 {
2523 	const struct element *elem;
2524 	struct cfg80211_mle *res;
2525 	size_t buf_len;
2526 	ssize_t mle_len;
2527 	u8 common_size, idx;
2528 
2529 	if (!mle || !ieee80211_mle_size_ok(mle->data + 1, mle->datalen - 1))
2530 		return NULL;
2531 
2532 	/* Required length for first defragmentation */
2533 	buf_len = mle->datalen - 1;
2534 	for_each_element(elem, mle->data + mle->datalen,
2535 			 ielen - sizeof(*mle) + mle->datalen) {
2536 		if (elem->id != WLAN_EID_FRAGMENT)
2537 			break;
2538 
2539 		buf_len += elem->datalen;
2540 	}
2541 
2542 	res = kzalloc(struct_size(res, data, buf_len), gfp);
2543 	if (!res)
2544 		return NULL;
2545 
2546 	mle_len = cfg80211_defragment_element(mle, ie, ielen,
2547 					      res->data, buf_len,
2548 					      WLAN_EID_FRAGMENT);
2549 	if (mle_len < 0)
2550 		goto error;
2551 
2552 	res->mle = (void *)res->data;
2553 
2554 	/* Find the sub-element area in the buffer */
2555 	common_size = ieee80211_mle_common_size((u8 *)res->mle);
2556 	ie = res->data + common_size;
2557 	ielen = mle_len - common_size;
2558 
2559 	idx = 0;
2560 	for_each_element_id(elem, IEEE80211_MLE_SUBELEM_PER_STA_PROFILE,
2561 			    ie, ielen) {
2562 		res->sta_prof[idx] = (void *)elem->data;
2563 		res->sta_prof_len[idx] = elem->datalen;
2564 
2565 		idx++;
2566 		if (idx >= IEEE80211_MLD_MAX_NUM_LINKS)
2567 			break;
2568 	}
2569 	if (!for_each_element_completed(elem, ie, ielen))
2570 		goto error;
2571 
2572 	/* Defragment sta_info in-place */
2573 	for (idx = 0; idx < IEEE80211_MLD_MAX_NUM_LINKS && res->sta_prof[idx];
2574 	     idx++) {
2575 		if (res->sta_prof_len[idx] < 255)
2576 			continue;
2577 
2578 		elem = (void *)res->sta_prof[idx] - 2;
2579 
2580 		if (idx + 1 < ARRAY_SIZE(res->sta_prof) &&
2581 		    res->sta_prof[idx + 1])
2582 			buf_len = (u8 *)res->sta_prof[idx + 1] -
2583 				  (u8 *)res->sta_prof[idx];
2584 		else
2585 			buf_len = ielen + ie - (u8 *)elem;
2586 
2587 		res->sta_prof_len[idx] =
2588 			cfg80211_defragment_element(elem,
2589 						    (u8 *)elem, buf_len,
2590 						    (u8 *)res->sta_prof[idx],
2591 						    buf_len,
2592 						    IEEE80211_MLE_SUBELEM_FRAGMENT);
2593 		if (res->sta_prof_len[idx] < 0)
2594 			goto error;
2595 	}
2596 
2597 	return res;
2598 
2599 error:
2600 	kfree(res);
2601 	return NULL;
2602 }
2603 
2604 static u8
2605 cfg80211_tbtt_info_for_mld_ap(const u8 *ie, size_t ielen, u8 mld_id, u8 link_id,
2606 			      const struct ieee80211_neighbor_ap_info **ap_info,
2607 			      const u8 **tbtt_info)
2608 {
2609 	const struct ieee80211_neighbor_ap_info *info;
2610 	const struct element *rnr;
2611 	const u8 *pos, *end;
2612 
2613 	for_each_element_id(rnr, WLAN_EID_REDUCED_NEIGHBOR_REPORT, ie, ielen) {
2614 		pos = rnr->data;
2615 		end = rnr->data + rnr->datalen;
2616 
2617 		/* RNR IE may contain more than one NEIGHBOR_AP_INFO */
2618 		while (sizeof(*info) <= end - pos) {
2619 			const struct ieee80211_rnr_mld_params *mld_params;
2620 			u16 params;
2621 			u8 length, i, count, mld_params_offset;
2622 			u8 type, lid;
2623 			u32 use_for;
2624 
2625 			info = (void *)pos;
2626 			count = u8_get_bits(info->tbtt_info_hdr,
2627 					    IEEE80211_AP_INFO_TBTT_HDR_COUNT) + 1;
2628 			length = info->tbtt_info_len;
2629 
2630 			pos += sizeof(*info);
2631 
2632 			if (count * length > end - pos)
2633 				return 0;
2634 
2635 			type = u8_get_bits(info->tbtt_info_hdr,
2636 					   IEEE80211_AP_INFO_TBTT_HDR_TYPE);
2637 
2638 			if (type == IEEE80211_TBTT_INFO_TYPE_TBTT &&
2639 			    length >=
2640 			    offsetofend(struct ieee80211_tbtt_info_ge_11,
2641 					mld_params)) {
2642 				mld_params_offset =
2643 					offsetof(struct ieee80211_tbtt_info_ge_11, mld_params);
2644 				use_for = NL80211_BSS_USE_FOR_ALL;
2645 			} else if (type == IEEE80211_TBTT_INFO_TYPE_MLD &&
2646 				   length >= sizeof(struct ieee80211_rnr_mld_params)) {
2647 				mld_params_offset = 0;
2648 				use_for = NL80211_BSS_USE_FOR_MLD_LINK;
2649 			} else {
2650 				pos += count * length;
2651 				continue;
2652 			}
2653 
2654 			for (i = 0; i < count; i++) {
2655 				mld_params = (void *)pos + mld_params_offset;
2656 				params = le16_to_cpu(mld_params->params);
2657 
2658 				lid = u16_get_bits(params,
2659 						   IEEE80211_RNR_MLD_PARAMS_LINK_ID);
2660 
2661 				if (mld_id == mld_params->mld_id &&
2662 				    link_id == lid) {
2663 					*ap_info = info;
2664 					*tbtt_info = pos;
2665 
2666 					return use_for;
2667 				}
2668 
2669 				pos += length;
2670 			}
2671 		}
2672 	}
2673 
2674 	return 0;
2675 }
2676 
2677 static void
2678 cfg80211_parse_ml_elem_sta_data(struct wiphy *wiphy,
2679 				struct cfg80211_inform_single_bss_data *tx_data,
2680 				struct cfg80211_bss *source_bss,
2681 				const struct element *elem,
2682 				gfp_t gfp)
2683 {
2684 	struct cfg80211_inform_single_bss_data data = {
2685 		.drv_data = tx_data->drv_data,
2686 		.ftype = tx_data->ftype,
2687 		.source_bss = source_bss,
2688 		.bss_source = BSS_SOURCE_STA_PROFILE,
2689 	};
2690 	struct ieee80211_multi_link_elem *ml_elem;
2691 	struct cfg80211_mle *mle;
2692 	u16 control;
2693 	u8 ml_common_len;
2694 	u8 *new_ie;
2695 	struct cfg80211_bss *bss;
2696 	int mld_id;
2697 	u16 seen_links = 0;
2698 	const u8 *pos;
2699 	u8 i;
2700 
2701 	if (!ieee80211_mle_size_ok(elem->data + 1, elem->datalen - 1))
2702 		return;
2703 
2704 	ml_elem = (void *)elem->data + 1;
2705 	control = le16_to_cpu(ml_elem->control);
2706 	if (u16_get_bits(control, IEEE80211_ML_CONTROL_TYPE) !=
2707 	    IEEE80211_ML_CONTROL_TYPE_BASIC)
2708 		return;
2709 
2710 	/* Must be present when transmitted by an AP (in a probe response) */
2711 	if (!(control & IEEE80211_MLC_BASIC_PRES_BSS_PARAM_CH_CNT) ||
2712 	    !(control & IEEE80211_MLC_BASIC_PRES_LINK_ID) ||
2713 	    !(control & IEEE80211_MLC_BASIC_PRES_MLD_CAPA_OP))
2714 		return;
2715 
2716 	ml_common_len = ml_elem->variable[0];
2717 
2718 	/* length + MLD MAC address + link ID info + BSS Params Change Count */
2719 	pos = ml_elem->variable + 1 + 6 + 1 + 1;
2720 
2721 	if (u16_get_bits(control, IEEE80211_MLC_BASIC_PRES_MED_SYNC_DELAY))
2722 		pos += 2;
2723 	if (u16_get_bits(control, IEEE80211_MLC_BASIC_PRES_EML_CAPA))
2724 		pos += 2;
2725 
2726 	/* MLD capabilities and operations */
2727 	pos += 2;
2728 
2729 	/*
2730 	 * The MLD ID of the reporting AP is always zero. It is set if the AP
2731 	 * is part of an MBSSID set and will be non-zero for ML Elements
2732 	 * relating to a nontransmitted BSS (matching the Multi-BSSID Index,
2733 	 * Draft P802.11be_D3.2, 35.3.4.2)
2734 	 */
2735 	if (u16_get_bits(control, IEEE80211_MLC_BASIC_PRES_MLD_ID)) {
2736 		mld_id = *pos;
2737 		pos += 1;
2738 	} else {
2739 		mld_id = 0;
2740 	}
2741 
2742 	/* Extended MLD capabilities and operations */
2743 	pos += 2;
2744 
2745 	/* Fully defrag the ML element for sta information/profile iteration */
2746 	mle = cfg80211_defrag_mle(elem, tx_data->ie, tx_data->ielen, gfp);
2747 	if (!mle)
2748 		return;
2749 
2750 	new_ie = kmalloc(IEEE80211_MAX_DATA_LEN, gfp);
2751 	if (!new_ie)
2752 		goto out;
2753 
2754 	for (i = 0; i < ARRAY_SIZE(mle->sta_prof) && mle->sta_prof[i]; i++) {
2755 		const struct ieee80211_neighbor_ap_info *ap_info;
2756 		enum nl80211_band band;
2757 		u32 freq;
2758 		const u8 *profile;
2759 		const u8 *tbtt_info;
2760 		ssize_t profile_len;
2761 		u8 link_id, use_for;
2762 
2763 		if (!ieee80211_mle_basic_sta_prof_size_ok((u8 *)mle->sta_prof[i],
2764 							  mle->sta_prof_len[i]))
2765 			continue;
2766 
2767 		control = le16_to_cpu(mle->sta_prof[i]->control);
2768 
2769 		if (!(control & IEEE80211_MLE_STA_CONTROL_COMPLETE_PROFILE))
2770 			continue;
2771 
2772 		link_id = u16_get_bits(control,
2773 				       IEEE80211_MLE_STA_CONTROL_LINK_ID);
2774 		if (seen_links & BIT(link_id))
2775 			break;
2776 		seen_links |= BIT(link_id);
2777 
2778 		if (!(control & IEEE80211_MLE_STA_CONTROL_BEACON_INT_PRESENT) ||
2779 		    !(control & IEEE80211_MLE_STA_CONTROL_TSF_OFFS_PRESENT) ||
2780 		    !(control & IEEE80211_MLE_STA_CONTROL_STA_MAC_ADDR_PRESENT))
2781 			continue;
2782 
2783 		memcpy(data.bssid, mle->sta_prof[i]->variable, ETH_ALEN);
2784 		data.beacon_interval =
2785 			get_unaligned_le16(mle->sta_prof[i]->variable + 6);
2786 		data.tsf = tx_data->tsf +
2787 			   get_unaligned_le64(mle->sta_prof[i]->variable + 8);
2788 
2789 		/* sta_info_len counts itself */
2790 		profile = mle->sta_prof[i]->variable +
2791 			  mle->sta_prof[i]->sta_info_len - 1;
2792 		profile_len = (u8 *)mle->sta_prof[i] + mle->sta_prof_len[i] -
2793 			      profile;
2794 
2795 		if (profile_len < 2)
2796 			continue;
2797 
2798 		data.capability = get_unaligned_le16(profile);
2799 		profile += 2;
2800 		profile_len -= 2;
2801 
2802 		/* Find in RNR to look up channel information */
2803 		use_for = cfg80211_tbtt_info_for_mld_ap(tx_data->ie,
2804 							tx_data->ielen,
2805 							mld_id, link_id,
2806 							&ap_info, &tbtt_info);
2807 		if (!use_for)
2808 			continue;
2809 
2810 		/* We could sanity check the BSSID is included */
2811 
2812 		if (!ieee80211_operating_class_to_band(ap_info->op_class,
2813 						       &band))
2814 			continue;
2815 
2816 		freq = ieee80211_channel_to_freq_khz(ap_info->channel, band);
2817 		data.channel = ieee80211_get_channel_khz(wiphy, freq);
2818 
2819 		if (use_for == NL80211_BSS_USE_FOR_MLD_LINK &&
2820 		    !(wiphy->flags & WIPHY_FLAG_SUPPORTS_NSTR_NONPRIMARY)) {
2821 			use_for = 0;
2822 			data.cannot_use_reasons =
2823 				NL80211_BSS_CANNOT_USE_NSTR_NONPRIMARY;
2824 		}
2825 		data.use_for = use_for;
2826 
2827 		/* Generate new elements */
2828 		memset(new_ie, 0, IEEE80211_MAX_DATA_LEN);
2829 		data.ie = new_ie;
2830 		data.ielen = cfg80211_gen_new_ie(tx_data->ie, tx_data->ielen,
2831 						 profile, profile_len,
2832 						 new_ie,
2833 						 IEEE80211_MAX_DATA_LEN);
2834 		if (!data.ielen)
2835 			continue;
2836 
2837 		/* The generated elements do not contain:
2838 		 *  - Basic ML element
2839 		 *  - A TBTT entry in the RNR for the transmitting AP
2840 		 *
2841 		 * This information is needed both internally and in userspace
2842 		 * as such, we should append it here.
2843 		 */
2844 		if (data.ielen + 3 + sizeof(*ml_elem) + ml_common_len >
2845 		    IEEE80211_MAX_DATA_LEN)
2846 			continue;
2847 
2848 		/* Copy the Basic Multi-Link element including the common
2849 		 * information, and then fix up the link ID.
2850 		 * Note that the ML element length has been verified and we
2851 		 * also checked that it contains the link ID.
2852 		 */
2853 		new_ie[data.ielen++] = WLAN_EID_EXTENSION;
2854 		new_ie[data.ielen++] = 1 + sizeof(*ml_elem) + ml_common_len;
2855 		new_ie[data.ielen++] = WLAN_EID_EXT_EHT_MULTI_LINK;
2856 		memcpy(new_ie + data.ielen, ml_elem,
2857 		       sizeof(*ml_elem) + ml_common_len);
2858 
2859 		new_ie[data.ielen + sizeof(*ml_elem) + 1 + ETH_ALEN] = link_id;
2860 
2861 		data.ielen += sizeof(*ml_elem) + ml_common_len;
2862 
2863 		/* TODO: Add an RNR containing only the reporting AP */
2864 
2865 		bss = cfg80211_inform_single_bss_data(wiphy, &data, gfp);
2866 		if (!bss)
2867 			break;
2868 		cfg80211_put_bss(wiphy, bss);
2869 	}
2870 
2871 out:
2872 	kfree(new_ie);
2873 	kfree(mle);
2874 }
2875 
2876 static void cfg80211_parse_ml_sta_data(struct wiphy *wiphy,
2877 				       struct cfg80211_inform_single_bss_data *tx_data,
2878 				       struct cfg80211_bss *source_bss,
2879 				       gfp_t gfp)
2880 {
2881 	const struct element *elem;
2882 
2883 	if (!source_bss)
2884 		return;
2885 
2886 	if (tx_data->ftype != CFG80211_BSS_FTYPE_PRESP)
2887 		return;
2888 
2889 	for_each_element_extid(elem, WLAN_EID_EXT_EHT_MULTI_LINK,
2890 			       tx_data->ie, tx_data->ielen)
2891 		cfg80211_parse_ml_elem_sta_data(wiphy, tx_data, source_bss,
2892 						elem, gfp);
2893 }
2894 
2895 struct cfg80211_bss *
2896 cfg80211_inform_bss_data(struct wiphy *wiphy,
2897 			 struct cfg80211_inform_bss *data,
2898 			 enum cfg80211_bss_frame_type ftype,
2899 			 const u8 *bssid, u64 tsf, u16 capability,
2900 			 u16 beacon_interval, const u8 *ie, size_t ielen,
2901 			 gfp_t gfp)
2902 {
2903 	struct cfg80211_inform_single_bss_data inform_data = {
2904 		.drv_data = data,
2905 		.ftype = ftype,
2906 		.tsf = tsf,
2907 		.capability = capability,
2908 		.beacon_interval = beacon_interval,
2909 		.ie = ie,
2910 		.ielen = ielen,
2911 		.use_for = data->restrict_use ?
2912 				data->use_for :
2913 				NL80211_BSS_USE_FOR_ALL,
2914 		.cannot_use_reasons = data->cannot_use_reasons,
2915 	};
2916 	struct cfg80211_bss *res;
2917 
2918 	memcpy(inform_data.bssid, bssid, ETH_ALEN);
2919 
2920 	res = cfg80211_inform_single_bss_data(wiphy, &inform_data, gfp);
2921 	if (!res)
2922 		return NULL;
2923 
2924 	cfg80211_parse_mbssid_data(wiphy, &inform_data, res, gfp);
2925 
2926 	cfg80211_parse_ml_sta_data(wiphy, &inform_data, res, gfp);
2927 
2928 	return res;
2929 }
2930 EXPORT_SYMBOL(cfg80211_inform_bss_data);
2931 
2932 static bool cfg80211_uhb_power_type_valid(const u8 *ie,
2933 					  size_t ielen,
2934 					  const u32 flags)
2935 {
2936 	const struct element *tmp;
2937 	struct ieee80211_he_operation *he_oper;
2938 
2939 	tmp = cfg80211_find_ext_elem(WLAN_EID_EXT_HE_OPERATION, ie, ielen);
2940 	if (tmp && tmp->datalen >= sizeof(*he_oper) + 1) {
2941 		const struct ieee80211_he_6ghz_oper *he_6ghz_oper;
2942 
2943 		he_oper = (void *)&tmp->data[1];
2944 		he_6ghz_oper = ieee80211_he_6ghz_oper(he_oper);
2945 
2946 		if (!he_6ghz_oper)
2947 			return false;
2948 
2949 		switch (u8_get_bits(he_6ghz_oper->control,
2950 				    IEEE80211_HE_6GHZ_OPER_CTRL_REG_INFO)) {
2951 		case IEEE80211_6GHZ_CTRL_REG_LPI_AP:
2952 			return true;
2953 		case IEEE80211_6GHZ_CTRL_REG_SP_AP:
2954 			return !(flags & IEEE80211_CHAN_NO_UHB_AFC_CLIENT);
2955 		case IEEE80211_6GHZ_CTRL_REG_VLP_AP:
2956 			return !(flags & IEEE80211_CHAN_NO_UHB_VLP_CLIENT);
2957 		}
2958 	}
2959 	return false;
2960 }
2961 
2962 /* cfg80211_inform_bss_width_frame helper */
2963 static struct cfg80211_bss *
2964 cfg80211_inform_single_bss_frame_data(struct wiphy *wiphy,
2965 				      struct cfg80211_inform_bss *data,
2966 				      struct ieee80211_mgmt *mgmt, size_t len,
2967 				      gfp_t gfp)
2968 {
2969 	struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
2970 	struct cfg80211_internal_bss tmp = {}, *res;
2971 	struct cfg80211_bss_ies *ies;
2972 	struct ieee80211_channel *channel;
2973 	bool signal_valid;
2974 	struct ieee80211_ext *ext = NULL;
2975 	u8 *bssid, *variable;
2976 	u16 capability, beacon_int;
2977 	size_t ielen, min_hdr_len = offsetof(struct ieee80211_mgmt,
2978 					     u.probe_resp.variable);
2979 	int bss_type;
2980 
2981 	BUILD_BUG_ON(offsetof(struct ieee80211_mgmt, u.probe_resp.variable) !=
2982 			offsetof(struct ieee80211_mgmt, u.beacon.variable));
2983 
2984 	trace_cfg80211_inform_bss_frame(wiphy, data, mgmt, len);
2985 
2986 	if (WARN_ON(!mgmt))
2987 		return NULL;
2988 
2989 	if (WARN_ON(!wiphy))
2990 		return NULL;
2991 
2992 	if (WARN_ON(wiphy->signal_type == CFG80211_SIGNAL_TYPE_UNSPEC &&
2993 		    (data->signal < 0 || data->signal > 100)))
2994 		return NULL;
2995 
2996 	if (ieee80211_is_s1g_beacon(mgmt->frame_control)) {
2997 		ext = (void *) mgmt;
2998 		min_hdr_len = offsetof(struct ieee80211_ext, u.s1g_beacon);
2999 		if (ieee80211_is_s1g_short_beacon(mgmt->frame_control))
3000 			min_hdr_len = offsetof(struct ieee80211_ext,
3001 					       u.s1g_short_beacon.variable);
3002 	}
3003 
3004 	if (WARN_ON(len < min_hdr_len))
3005 		return NULL;
3006 
3007 	ielen = len - min_hdr_len;
3008 	variable = mgmt->u.probe_resp.variable;
3009 	if (ext) {
3010 		if (ieee80211_is_s1g_short_beacon(mgmt->frame_control))
3011 			variable = ext->u.s1g_short_beacon.variable;
3012 		else
3013 			variable = ext->u.s1g_beacon.variable;
3014 	}
3015 
3016 	channel = cfg80211_get_bss_channel(wiphy, variable, ielen, data->chan);
3017 	if (!channel)
3018 		return NULL;
3019 
3020 	if (channel->band == NL80211_BAND_6GHZ &&
3021 	    !cfg80211_uhb_power_type_valid(variable, ielen, channel->flags)) {
3022 		data->restrict_use = 1;
3023 		data->use_for = 0;
3024 		data->cannot_use_reasons =
3025 			NL80211_BSS_CANNOT_USE_UHB_PWR_MISMATCH;
3026 	}
3027 
3028 	if (ext) {
3029 		const struct ieee80211_s1g_bcn_compat_ie *compat;
3030 		const struct element *elem;
3031 
3032 		elem = cfg80211_find_elem(WLAN_EID_S1G_BCN_COMPAT,
3033 					  variable, ielen);
3034 		if (!elem)
3035 			return NULL;
3036 		if (elem->datalen < sizeof(*compat))
3037 			return NULL;
3038 		compat = (void *)elem->data;
3039 		bssid = ext->u.s1g_beacon.sa;
3040 		capability = le16_to_cpu(compat->compat_info);
3041 		beacon_int = le16_to_cpu(compat->beacon_int);
3042 	} else {
3043 		bssid = mgmt->bssid;
3044 		beacon_int = le16_to_cpu(mgmt->u.probe_resp.beacon_int);
3045 		capability = le16_to_cpu(mgmt->u.probe_resp.capab_info);
3046 	}
3047 
3048 	if (channel->band == NL80211_BAND_60GHZ) {
3049 		bss_type = capability & WLAN_CAPABILITY_DMG_TYPE_MASK;
3050 		if (bss_type == WLAN_CAPABILITY_DMG_TYPE_AP ||
3051 		    bss_type == WLAN_CAPABILITY_DMG_TYPE_PBSS)
3052 			regulatory_hint_found_beacon(wiphy, channel, gfp);
3053 	} else {
3054 		if (capability & WLAN_CAPABILITY_ESS)
3055 			regulatory_hint_found_beacon(wiphy, channel, gfp);
3056 	}
3057 
3058 	ies = kzalloc(sizeof(*ies) + ielen, gfp);
3059 	if (!ies)
3060 		return NULL;
3061 	ies->len = ielen;
3062 	ies->tsf = le64_to_cpu(mgmt->u.probe_resp.timestamp);
3063 	ies->from_beacon = ieee80211_is_beacon(mgmt->frame_control) ||
3064 			   ieee80211_is_s1g_beacon(mgmt->frame_control);
3065 	memcpy(ies->data, variable, ielen);
3066 
3067 	if (ieee80211_is_probe_resp(mgmt->frame_control))
3068 		rcu_assign_pointer(tmp.pub.proberesp_ies, ies);
3069 	else
3070 		rcu_assign_pointer(tmp.pub.beacon_ies, ies);
3071 	rcu_assign_pointer(tmp.pub.ies, ies);
3072 
3073 	memcpy(tmp.pub.bssid, bssid, ETH_ALEN);
3074 	tmp.pub.beacon_interval = beacon_int;
3075 	tmp.pub.capability = capability;
3076 	tmp.pub.channel = channel;
3077 	tmp.pub.signal = data->signal;
3078 	tmp.ts_boottime = data->boottime_ns;
3079 	tmp.parent_tsf = data->parent_tsf;
3080 	tmp.pub.chains = data->chains;
3081 	memcpy(tmp.pub.chain_signal, data->chain_signal, IEEE80211_MAX_CHAINS);
3082 	ether_addr_copy(tmp.parent_bssid, data->parent_bssid);
3083 	tmp.pub.use_for = data->restrict_use ?
3084 				data->use_for :
3085 				NL80211_BSS_USE_FOR_ALL;
3086 	tmp.pub.cannot_use_reasons = data->cannot_use_reasons;
3087 
3088 	signal_valid = data->chan == channel;
3089 	spin_lock_bh(&rdev->bss_lock);
3090 	res = __cfg80211_bss_update(rdev, &tmp, signal_valid, jiffies);
3091 	if (!res)
3092 		goto drop;
3093 
3094 	rdev_inform_bss(rdev, &res->pub, ies, data->drv_data);
3095 
3096 	spin_unlock_bh(&rdev->bss_lock);
3097 
3098 	trace_cfg80211_return_bss(&res->pub);
3099 	/* __cfg80211_bss_update gives us a referenced result */
3100 	return &res->pub;
3101 
3102 drop:
3103 	spin_unlock_bh(&rdev->bss_lock);
3104 	return NULL;
3105 }
3106 
3107 struct cfg80211_bss *
3108 cfg80211_inform_bss_frame_data(struct wiphy *wiphy,
3109 			       struct cfg80211_inform_bss *data,
3110 			       struct ieee80211_mgmt *mgmt, size_t len,
3111 			       gfp_t gfp)
3112 {
3113 	struct cfg80211_inform_single_bss_data inform_data = {
3114 		.drv_data = data,
3115 		.ie = mgmt->u.probe_resp.variable,
3116 		.ielen = len - offsetof(struct ieee80211_mgmt,
3117 					u.probe_resp.variable),
3118 		.use_for = data->restrict_use ?
3119 				data->use_for :
3120 				NL80211_BSS_USE_FOR_ALL,
3121 		.cannot_use_reasons = data->cannot_use_reasons,
3122 	};
3123 	struct cfg80211_bss *res;
3124 
3125 	res = cfg80211_inform_single_bss_frame_data(wiphy, data, mgmt,
3126 						    len, gfp);
3127 	if (!res)
3128 		return NULL;
3129 
3130 	/* don't do any further MBSSID/ML handling for S1G */
3131 	if (ieee80211_is_s1g_beacon(mgmt->frame_control))
3132 		return res;
3133 
3134 	inform_data.ftype = ieee80211_is_beacon(mgmt->frame_control) ?
3135 		CFG80211_BSS_FTYPE_BEACON : CFG80211_BSS_FTYPE_PRESP;
3136 	memcpy(inform_data.bssid, mgmt->bssid, ETH_ALEN);
3137 	inform_data.tsf = le64_to_cpu(mgmt->u.probe_resp.timestamp);
3138 	inform_data.beacon_interval =
3139 		le16_to_cpu(mgmt->u.probe_resp.beacon_int);
3140 
3141 	/* process each non-transmitting bss */
3142 	cfg80211_parse_mbssid_data(wiphy, &inform_data, res, gfp);
3143 
3144 	cfg80211_parse_ml_sta_data(wiphy, &inform_data, res, gfp);
3145 
3146 	return res;
3147 }
3148 EXPORT_SYMBOL(cfg80211_inform_bss_frame_data);
3149 
3150 void cfg80211_ref_bss(struct wiphy *wiphy, struct cfg80211_bss *pub)
3151 {
3152 	struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
3153 
3154 	if (!pub)
3155 		return;
3156 
3157 	spin_lock_bh(&rdev->bss_lock);
3158 	bss_ref_get(rdev, bss_from_pub(pub));
3159 	spin_unlock_bh(&rdev->bss_lock);
3160 }
3161 EXPORT_SYMBOL(cfg80211_ref_bss);
3162 
3163 void cfg80211_put_bss(struct wiphy *wiphy, struct cfg80211_bss *pub)
3164 {
3165 	struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
3166 
3167 	if (!pub)
3168 		return;
3169 
3170 	spin_lock_bh(&rdev->bss_lock);
3171 	bss_ref_put(rdev, bss_from_pub(pub));
3172 	spin_unlock_bh(&rdev->bss_lock);
3173 }
3174 EXPORT_SYMBOL(cfg80211_put_bss);
3175 
3176 void cfg80211_unlink_bss(struct wiphy *wiphy, struct cfg80211_bss *pub)
3177 {
3178 	struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
3179 	struct cfg80211_internal_bss *bss, *tmp1;
3180 	struct cfg80211_bss *nontrans_bss, *tmp;
3181 
3182 	if (WARN_ON(!pub))
3183 		return;
3184 
3185 	bss = bss_from_pub(pub);
3186 
3187 	spin_lock_bh(&rdev->bss_lock);
3188 	if (list_empty(&bss->list))
3189 		goto out;
3190 
3191 	list_for_each_entry_safe(nontrans_bss, tmp,
3192 				 &pub->nontrans_list,
3193 				 nontrans_list) {
3194 		tmp1 = bss_from_pub(nontrans_bss);
3195 		if (__cfg80211_unlink_bss(rdev, tmp1))
3196 			rdev->bss_generation++;
3197 	}
3198 
3199 	if (__cfg80211_unlink_bss(rdev, bss))
3200 		rdev->bss_generation++;
3201 out:
3202 	spin_unlock_bh(&rdev->bss_lock);
3203 }
3204 EXPORT_SYMBOL(cfg80211_unlink_bss);
3205 
3206 void cfg80211_bss_iter(struct wiphy *wiphy,
3207 		       struct cfg80211_chan_def *chandef,
3208 		       void (*iter)(struct wiphy *wiphy,
3209 				    struct cfg80211_bss *bss,
3210 				    void *data),
3211 		       void *iter_data)
3212 {
3213 	struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
3214 	struct cfg80211_internal_bss *bss;
3215 
3216 	spin_lock_bh(&rdev->bss_lock);
3217 
3218 	list_for_each_entry(bss, &rdev->bss_list, list) {
3219 		if (!chandef || cfg80211_is_sub_chan(chandef, bss->pub.channel,
3220 						     false))
3221 			iter(wiphy, &bss->pub, iter_data);
3222 	}
3223 
3224 	spin_unlock_bh(&rdev->bss_lock);
3225 }
3226 EXPORT_SYMBOL(cfg80211_bss_iter);
3227 
3228 void cfg80211_update_assoc_bss_entry(struct wireless_dev *wdev,
3229 				     unsigned int link_id,
3230 				     struct ieee80211_channel *chan)
3231 {
3232 	struct wiphy *wiphy = wdev->wiphy;
3233 	struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
3234 	struct cfg80211_internal_bss *cbss = wdev->links[link_id].client.current_bss;
3235 	struct cfg80211_internal_bss *new = NULL;
3236 	struct cfg80211_internal_bss *bss;
3237 	struct cfg80211_bss *nontrans_bss;
3238 	struct cfg80211_bss *tmp;
3239 
3240 	spin_lock_bh(&rdev->bss_lock);
3241 
3242 	/*
3243 	 * Some APs use CSA also for bandwidth changes, i.e., without actually
3244 	 * changing the control channel, so no need to update in such a case.
3245 	 */
3246 	if (cbss->pub.channel == chan)
3247 		goto done;
3248 
3249 	/* use transmitting bss */
3250 	if (cbss->pub.transmitted_bss)
3251 		cbss = bss_from_pub(cbss->pub.transmitted_bss);
3252 
3253 	cbss->pub.channel = chan;
3254 
3255 	list_for_each_entry(bss, &rdev->bss_list, list) {
3256 		if (!cfg80211_bss_type_match(bss->pub.capability,
3257 					     bss->pub.channel->band,
3258 					     wdev->conn_bss_type))
3259 			continue;
3260 
3261 		if (bss == cbss)
3262 			continue;
3263 
3264 		if (!cmp_bss(&bss->pub, &cbss->pub, BSS_CMP_REGULAR)) {
3265 			new = bss;
3266 			break;
3267 		}
3268 	}
3269 
3270 	if (new) {
3271 		/* to save time, update IEs for transmitting bss only */
3272 		cfg80211_update_known_bss(rdev, cbss, new, false);
3273 		new->pub.proberesp_ies = NULL;
3274 		new->pub.beacon_ies = NULL;
3275 
3276 		list_for_each_entry_safe(nontrans_bss, tmp,
3277 					 &new->pub.nontrans_list,
3278 					 nontrans_list) {
3279 			bss = bss_from_pub(nontrans_bss);
3280 			if (__cfg80211_unlink_bss(rdev, bss))
3281 				rdev->bss_generation++;
3282 		}
3283 
3284 		WARN_ON(atomic_read(&new->hold));
3285 		if (!WARN_ON(!__cfg80211_unlink_bss(rdev, new)))
3286 			rdev->bss_generation++;
3287 	}
3288 
3289 	rb_erase(&cbss->rbn, &rdev->bss_tree);
3290 	rb_insert_bss(rdev, cbss);
3291 	rdev->bss_generation++;
3292 
3293 	list_for_each_entry_safe(nontrans_bss, tmp,
3294 				 &cbss->pub.nontrans_list,
3295 				 nontrans_list) {
3296 		bss = bss_from_pub(nontrans_bss);
3297 		bss->pub.channel = chan;
3298 		rb_erase(&bss->rbn, &rdev->bss_tree);
3299 		rb_insert_bss(rdev, bss);
3300 		rdev->bss_generation++;
3301 	}
3302 
3303 done:
3304 	spin_unlock_bh(&rdev->bss_lock);
3305 }
3306 
3307 #ifdef CONFIG_CFG80211_WEXT
3308 static struct cfg80211_registered_device *
3309 cfg80211_get_dev_from_ifindex(struct net *net, int ifindex)
3310 {
3311 	struct cfg80211_registered_device *rdev;
3312 	struct net_device *dev;
3313 
3314 	ASSERT_RTNL();
3315 
3316 	dev = dev_get_by_index(net, ifindex);
3317 	if (!dev)
3318 		return ERR_PTR(-ENODEV);
3319 	if (dev->ieee80211_ptr)
3320 		rdev = wiphy_to_rdev(dev->ieee80211_ptr->wiphy);
3321 	else
3322 		rdev = ERR_PTR(-ENODEV);
3323 	dev_put(dev);
3324 	return rdev;
3325 }
3326 
3327 int cfg80211_wext_siwscan(struct net_device *dev,
3328 			  struct iw_request_info *info,
3329 			  union iwreq_data *wrqu, char *extra)
3330 {
3331 	struct cfg80211_registered_device *rdev;
3332 	struct wiphy *wiphy;
3333 	struct iw_scan_req *wreq = NULL;
3334 	struct cfg80211_scan_request *creq;
3335 	int i, err, n_channels = 0;
3336 	enum nl80211_band band;
3337 
3338 	if (!netif_running(dev))
3339 		return -ENETDOWN;
3340 
3341 	if (wrqu->data.length == sizeof(struct iw_scan_req))
3342 		wreq = (struct iw_scan_req *)extra;
3343 
3344 	rdev = cfg80211_get_dev_from_ifindex(dev_net(dev), dev->ifindex);
3345 
3346 	if (IS_ERR(rdev))
3347 		return PTR_ERR(rdev);
3348 
3349 	if (rdev->scan_req || rdev->scan_msg)
3350 		return -EBUSY;
3351 
3352 	wiphy = &rdev->wiphy;
3353 
3354 	/* Determine number of channels, needed to allocate creq */
3355 	if (wreq && wreq->num_channels)
3356 		n_channels = wreq->num_channels;
3357 	else
3358 		n_channels = ieee80211_get_num_supported_channels(wiphy);
3359 
3360 	creq = kzalloc(sizeof(*creq) + sizeof(struct cfg80211_ssid) +
3361 		       n_channels * sizeof(void *),
3362 		       GFP_ATOMIC);
3363 	if (!creq)
3364 		return -ENOMEM;
3365 
3366 	creq->wiphy = wiphy;
3367 	creq->wdev = dev->ieee80211_ptr;
3368 	/* SSIDs come after channels */
3369 	creq->ssids = (void *)&creq->channels[n_channels];
3370 	creq->n_channels = n_channels;
3371 	creq->n_ssids = 1;
3372 	creq->scan_start = jiffies;
3373 
3374 	/* translate "Scan on frequencies" request */
3375 	i = 0;
3376 	for (band = 0; band < NUM_NL80211_BANDS; band++) {
3377 		int j;
3378 
3379 		if (!wiphy->bands[band])
3380 			continue;
3381 
3382 		for (j = 0; j < wiphy->bands[band]->n_channels; j++) {
3383 			/* ignore disabled channels */
3384 			if (wiphy->bands[band]->channels[j].flags &
3385 						IEEE80211_CHAN_DISABLED)
3386 				continue;
3387 
3388 			/* If we have a wireless request structure and the
3389 			 * wireless request specifies frequencies, then search
3390 			 * for the matching hardware channel.
3391 			 */
3392 			if (wreq && wreq->num_channels) {
3393 				int k;
3394 				int wiphy_freq = wiphy->bands[band]->channels[j].center_freq;
3395 				for (k = 0; k < wreq->num_channels; k++) {
3396 					struct iw_freq *freq =
3397 						&wreq->channel_list[k];
3398 					int wext_freq =
3399 						cfg80211_wext_freq(freq);
3400 
3401 					if (wext_freq == wiphy_freq)
3402 						goto wext_freq_found;
3403 				}
3404 				goto wext_freq_not_found;
3405 			}
3406 
3407 		wext_freq_found:
3408 			creq->channels[i] = &wiphy->bands[band]->channels[j];
3409 			i++;
3410 		wext_freq_not_found: ;
3411 		}
3412 	}
3413 	/* No channels found? */
3414 	if (!i) {
3415 		err = -EINVAL;
3416 		goto out;
3417 	}
3418 
3419 	/* Set real number of channels specified in creq->channels[] */
3420 	creq->n_channels = i;
3421 
3422 	/* translate "Scan for SSID" request */
3423 	if (wreq) {
3424 		if (wrqu->data.flags & IW_SCAN_THIS_ESSID) {
3425 			if (wreq->essid_len > IEEE80211_MAX_SSID_LEN) {
3426 				err = -EINVAL;
3427 				goto out;
3428 			}
3429 			memcpy(creq->ssids[0].ssid, wreq->essid, wreq->essid_len);
3430 			creq->ssids[0].ssid_len = wreq->essid_len;
3431 		}
3432 		if (wreq->scan_type == IW_SCAN_TYPE_PASSIVE)
3433 			creq->n_ssids = 0;
3434 	}
3435 
3436 	for (i = 0; i < NUM_NL80211_BANDS; i++)
3437 		if (wiphy->bands[i])
3438 			creq->rates[i] = (1 << wiphy->bands[i]->n_bitrates) - 1;
3439 
3440 	eth_broadcast_addr(creq->bssid);
3441 
3442 	wiphy_lock(&rdev->wiphy);
3443 
3444 	rdev->scan_req = creq;
3445 	err = rdev_scan(rdev, creq);
3446 	if (err) {
3447 		rdev->scan_req = NULL;
3448 		/* creq will be freed below */
3449 	} else {
3450 		nl80211_send_scan_start(rdev, dev->ieee80211_ptr);
3451 		/* creq now owned by driver */
3452 		creq = NULL;
3453 		dev_hold(dev);
3454 	}
3455 	wiphy_unlock(&rdev->wiphy);
3456  out:
3457 	kfree(creq);
3458 	return err;
3459 }
3460 EXPORT_WEXT_HANDLER(cfg80211_wext_siwscan);
3461 
3462 static char *ieee80211_scan_add_ies(struct iw_request_info *info,
3463 				    const struct cfg80211_bss_ies *ies,
3464 				    char *current_ev, char *end_buf)
3465 {
3466 	const u8 *pos, *end, *next;
3467 	struct iw_event iwe;
3468 
3469 	if (!ies)
3470 		return current_ev;
3471 
3472 	/*
3473 	 * If needed, fragment the IEs buffer (at IE boundaries) into short
3474 	 * enough fragments to fit into IW_GENERIC_IE_MAX octet messages.
3475 	 */
3476 	pos = ies->data;
3477 	end = pos + ies->len;
3478 
3479 	while (end - pos > IW_GENERIC_IE_MAX) {
3480 		next = pos + 2 + pos[1];
3481 		while (next + 2 + next[1] - pos < IW_GENERIC_IE_MAX)
3482 			next = next + 2 + next[1];
3483 
3484 		memset(&iwe, 0, sizeof(iwe));
3485 		iwe.cmd = IWEVGENIE;
3486 		iwe.u.data.length = next - pos;
3487 		current_ev = iwe_stream_add_point_check(info, current_ev,
3488 							end_buf, &iwe,
3489 							(void *)pos);
3490 		if (IS_ERR(current_ev))
3491 			return current_ev;
3492 		pos = next;
3493 	}
3494 
3495 	if (end > pos) {
3496 		memset(&iwe, 0, sizeof(iwe));
3497 		iwe.cmd = IWEVGENIE;
3498 		iwe.u.data.length = end - pos;
3499 		current_ev = iwe_stream_add_point_check(info, current_ev,
3500 							end_buf, &iwe,
3501 							(void *)pos);
3502 		if (IS_ERR(current_ev))
3503 			return current_ev;
3504 	}
3505 
3506 	return current_ev;
3507 }
3508 
3509 static char *
3510 ieee80211_bss(struct wiphy *wiphy, struct iw_request_info *info,
3511 	      struct cfg80211_internal_bss *bss, char *current_ev,
3512 	      char *end_buf)
3513 {
3514 	const struct cfg80211_bss_ies *ies;
3515 	struct iw_event iwe;
3516 	const u8 *ie;
3517 	u8 buf[50];
3518 	u8 *cfg, *p, *tmp;
3519 	int rem, i, sig;
3520 	bool ismesh = false;
3521 
3522 	memset(&iwe, 0, sizeof(iwe));
3523 	iwe.cmd = SIOCGIWAP;
3524 	iwe.u.ap_addr.sa_family = ARPHRD_ETHER;
3525 	memcpy(iwe.u.ap_addr.sa_data, bss->pub.bssid, ETH_ALEN);
3526 	current_ev = iwe_stream_add_event_check(info, current_ev, end_buf, &iwe,
3527 						IW_EV_ADDR_LEN);
3528 	if (IS_ERR(current_ev))
3529 		return current_ev;
3530 
3531 	memset(&iwe, 0, sizeof(iwe));
3532 	iwe.cmd = SIOCGIWFREQ;
3533 	iwe.u.freq.m = ieee80211_frequency_to_channel(bss->pub.channel->center_freq);
3534 	iwe.u.freq.e = 0;
3535 	current_ev = iwe_stream_add_event_check(info, current_ev, end_buf, &iwe,
3536 						IW_EV_FREQ_LEN);
3537 	if (IS_ERR(current_ev))
3538 		return current_ev;
3539 
3540 	memset(&iwe, 0, sizeof(iwe));
3541 	iwe.cmd = SIOCGIWFREQ;
3542 	iwe.u.freq.m = bss->pub.channel->center_freq;
3543 	iwe.u.freq.e = 6;
3544 	current_ev = iwe_stream_add_event_check(info, current_ev, end_buf, &iwe,
3545 						IW_EV_FREQ_LEN);
3546 	if (IS_ERR(current_ev))
3547 		return current_ev;
3548 
3549 	if (wiphy->signal_type != CFG80211_SIGNAL_TYPE_NONE) {
3550 		memset(&iwe, 0, sizeof(iwe));
3551 		iwe.cmd = IWEVQUAL;
3552 		iwe.u.qual.updated = IW_QUAL_LEVEL_UPDATED |
3553 				     IW_QUAL_NOISE_INVALID |
3554 				     IW_QUAL_QUAL_UPDATED;
3555 		switch (wiphy->signal_type) {
3556 		case CFG80211_SIGNAL_TYPE_MBM:
3557 			sig = bss->pub.signal / 100;
3558 			iwe.u.qual.level = sig;
3559 			iwe.u.qual.updated |= IW_QUAL_DBM;
3560 			if (sig < -110)		/* rather bad */
3561 				sig = -110;
3562 			else if (sig > -40)	/* perfect */
3563 				sig = -40;
3564 			/* will give a range of 0 .. 70 */
3565 			iwe.u.qual.qual = sig + 110;
3566 			break;
3567 		case CFG80211_SIGNAL_TYPE_UNSPEC:
3568 			iwe.u.qual.level = bss->pub.signal;
3569 			/* will give range 0 .. 100 */
3570 			iwe.u.qual.qual = bss->pub.signal;
3571 			break;
3572 		default:
3573 			/* not reached */
3574 			break;
3575 		}
3576 		current_ev = iwe_stream_add_event_check(info, current_ev,
3577 							end_buf, &iwe,
3578 							IW_EV_QUAL_LEN);
3579 		if (IS_ERR(current_ev))
3580 			return current_ev;
3581 	}
3582 
3583 	memset(&iwe, 0, sizeof(iwe));
3584 	iwe.cmd = SIOCGIWENCODE;
3585 	if (bss->pub.capability & WLAN_CAPABILITY_PRIVACY)
3586 		iwe.u.data.flags = IW_ENCODE_ENABLED | IW_ENCODE_NOKEY;
3587 	else
3588 		iwe.u.data.flags = IW_ENCODE_DISABLED;
3589 	iwe.u.data.length = 0;
3590 	current_ev = iwe_stream_add_point_check(info, current_ev, end_buf,
3591 						&iwe, "");
3592 	if (IS_ERR(current_ev))
3593 		return current_ev;
3594 
3595 	rcu_read_lock();
3596 	ies = rcu_dereference(bss->pub.ies);
3597 	rem = ies->len;
3598 	ie = ies->data;
3599 
3600 	while (rem >= 2) {
3601 		/* invalid data */
3602 		if (ie[1] > rem - 2)
3603 			break;
3604 
3605 		switch (ie[0]) {
3606 		case WLAN_EID_SSID:
3607 			memset(&iwe, 0, sizeof(iwe));
3608 			iwe.cmd = SIOCGIWESSID;
3609 			iwe.u.data.length = ie[1];
3610 			iwe.u.data.flags = 1;
3611 			current_ev = iwe_stream_add_point_check(info,
3612 								current_ev,
3613 								end_buf, &iwe,
3614 								(u8 *)ie + 2);
3615 			if (IS_ERR(current_ev))
3616 				goto unlock;
3617 			break;
3618 		case WLAN_EID_MESH_ID:
3619 			memset(&iwe, 0, sizeof(iwe));
3620 			iwe.cmd = SIOCGIWESSID;
3621 			iwe.u.data.length = ie[1];
3622 			iwe.u.data.flags = 1;
3623 			current_ev = iwe_stream_add_point_check(info,
3624 								current_ev,
3625 								end_buf, &iwe,
3626 								(u8 *)ie + 2);
3627 			if (IS_ERR(current_ev))
3628 				goto unlock;
3629 			break;
3630 		case WLAN_EID_MESH_CONFIG:
3631 			ismesh = true;
3632 			if (ie[1] != sizeof(struct ieee80211_meshconf_ie))
3633 				break;
3634 			cfg = (u8 *)ie + 2;
3635 			memset(&iwe, 0, sizeof(iwe));
3636 			iwe.cmd = IWEVCUSTOM;
3637 			iwe.u.data.length = sprintf(buf,
3638 						    "Mesh Network Path Selection Protocol ID: 0x%02X",
3639 						    cfg[0]);
3640 			current_ev = iwe_stream_add_point_check(info,
3641 								current_ev,
3642 								end_buf,
3643 								&iwe, buf);
3644 			if (IS_ERR(current_ev))
3645 				goto unlock;
3646 			iwe.u.data.length = sprintf(buf,
3647 						    "Path Selection Metric ID: 0x%02X",
3648 						    cfg[1]);
3649 			current_ev = iwe_stream_add_point_check(info,
3650 								current_ev,
3651 								end_buf,
3652 								&iwe, buf);
3653 			if (IS_ERR(current_ev))
3654 				goto unlock;
3655 			iwe.u.data.length = sprintf(buf,
3656 						    "Congestion Control Mode ID: 0x%02X",
3657 						    cfg[2]);
3658 			current_ev = iwe_stream_add_point_check(info,
3659 								current_ev,
3660 								end_buf,
3661 								&iwe, buf);
3662 			if (IS_ERR(current_ev))
3663 				goto unlock;
3664 			iwe.u.data.length = sprintf(buf,
3665 						    "Synchronization ID: 0x%02X",
3666 						    cfg[3]);
3667 			current_ev = iwe_stream_add_point_check(info,
3668 								current_ev,
3669 								end_buf,
3670 								&iwe, buf);
3671 			if (IS_ERR(current_ev))
3672 				goto unlock;
3673 			iwe.u.data.length = sprintf(buf,
3674 						    "Authentication ID: 0x%02X",
3675 						    cfg[4]);
3676 			current_ev = iwe_stream_add_point_check(info,
3677 								current_ev,
3678 								end_buf,
3679 								&iwe, buf);
3680 			if (IS_ERR(current_ev))
3681 				goto unlock;
3682 			iwe.u.data.length = sprintf(buf,
3683 						    "Formation Info: 0x%02X",
3684 						    cfg[5]);
3685 			current_ev = iwe_stream_add_point_check(info,
3686 								current_ev,
3687 								end_buf,
3688 								&iwe, buf);
3689 			if (IS_ERR(current_ev))
3690 				goto unlock;
3691 			iwe.u.data.length = sprintf(buf,
3692 						    "Capabilities: 0x%02X",
3693 						    cfg[6]);
3694 			current_ev = iwe_stream_add_point_check(info,
3695 								current_ev,
3696 								end_buf,
3697 								&iwe, buf);
3698 			if (IS_ERR(current_ev))
3699 				goto unlock;
3700 			break;
3701 		case WLAN_EID_SUPP_RATES:
3702 		case WLAN_EID_EXT_SUPP_RATES:
3703 			/* display all supported rates in readable format */
3704 			p = current_ev + iwe_stream_lcp_len(info);
3705 
3706 			memset(&iwe, 0, sizeof(iwe));
3707 			iwe.cmd = SIOCGIWRATE;
3708 			/* Those two flags are ignored... */
3709 			iwe.u.bitrate.fixed = iwe.u.bitrate.disabled = 0;
3710 
3711 			for (i = 0; i < ie[1]; i++) {
3712 				iwe.u.bitrate.value =
3713 					((ie[i + 2] & 0x7f) * 500000);
3714 				tmp = p;
3715 				p = iwe_stream_add_value(info, current_ev, p,
3716 							 end_buf, &iwe,
3717 							 IW_EV_PARAM_LEN);
3718 				if (p == tmp) {
3719 					current_ev = ERR_PTR(-E2BIG);
3720 					goto unlock;
3721 				}
3722 			}
3723 			current_ev = p;
3724 			break;
3725 		}
3726 		rem -= ie[1] + 2;
3727 		ie += ie[1] + 2;
3728 	}
3729 
3730 	if (bss->pub.capability & (WLAN_CAPABILITY_ESS | WLAN_CAPABILITY_IBSS) ||
3731 	    ismesh) {
3732 		memset(&iwe, 0, sizeof(iwe));
3733 		iwe.cmd = SIOCGIWMODE;
3734 		if (ismesh)
3735 			iwe.u.mode = IW_MODE_MESH;
3736 		else if (bss->pub.capability & WLAN_CAPABILITY_ESS)
3737 			iwe.u.mode = IW_MODE_MASTER;
3738 		else
3739 			iwe.u.mode = IW_MODE_ADHOC;
3740 		current_ev = iwe_stream_add_event_check(info, current_ev,
3741 							end_buf, &iwe,
3742 							IW_EV_UINT_LEN);
3743 		if (IS_ERR(current_ev))
3744 			goto unlock;
3745 	}
3746 
3747 	memset(&iwe, 0, sizeof(iwe));
3748 	iwe.cmd = IWEVCUSTOM;
3749 	iwe.u.data.length = sprintf(buf, "tsf=%016llx",
3750 				    (unsigned long long)(ies->tsf));
3751 	current_ev = iwe_stream_add_point_check(info, current_ev, end_buf,
3752 						&iwe, buf);
3753 	if (IS_ERR(current_ev))
3754 		goto unlock;
3755 	memset(&iwe, 0, sizeof(iwe));
3756 	iwe.cmd = IWEVCUSTOM;
3757 	iwe.u.data.length = sprintf(buf, " Last beacon: %ums ago",
3758 				    elapsed_jiffies_msecs(bss->ts));
3759 	current_ev = iwe_stream_add_point_check(info, current_ev,
3760 						end_buf, &iwe, buf);
3761 	if (IS_ERR(current_ev))
3762 		goto unlock;
3763 
3764 	current_ev = ieee80211_scan_add_ies(info, ies, current_ev, end_buf);
3765 
3766  unlock:
3767 	rcu_read_unlock();
3768 	return current_ev;
3769 }
3770 
3771 
3772 static int ieee80211_scan_results(struct cfg80211_registered_device *rdev,
3773 				  struct iw_request_info *info,
3774 				  char *buf, size_t len)
3775 {
3776 	char *current_ev = buf;
3777 	char *end_buf = buf + len;
3778 	struct cfg80211_internal_bss *bss;
3779 	int err = 0;
3780 
3781 	spin_lock_bh(&rdev->bss_lock);
3782 	cfg80211_bss_expire(rdev);
3783 
3784 	list_for_each_entry(bss, &rdev->bss_list, list) {
3785 		if (buf + len - current_ev <= IW_EV_ADDR_LEN) {
3786 			err = -E2BIG;
3787 			break;
3788 		}
3789 		current_ev = ieee80211_bss(&rdev->wiphy, info, bss,
3790 					   current_ev, end_buf);
3791 		if (IS_ERR(current_ev)) {
3792 			err = PTR_ERR(current_ev);
3793 			break;
3794 		}
3795 	}
3796 	spin_unlock_bh(&rdev->bss_lock);
3797 
3798 	if (err)
3799 		return err;
3800 	return current_ev - buf;
3801 }
3802 
3803 
3804 int cfg80211_wext_giwscan(struct net_device *dev,
3805 			  struct iw_request_info *info,
3806 			  union iwreq_data *wrqu, char *extra)
3807 {
3808 	struct iw_point *data = &wrqu->data;
3809 	struct cfg80211_registered_device *rdev;
3810 	int res;
3811 
3812 	if (!netif_running(dev))
3813 		return -ENETDOWN;
3814 
3815 	rdev = cfg80211_get_dev_from_ifindex(dev_net(dev), dev->ifindex);
3816 
3817 	if (IS_ERR(rdev))
3818 		return PTR_ERR(rdev);
3819 
3820 	if (rdev->scan_req || rdev->scan_msg)
3821 		return -EAGAIN;
3822 
3823 	res = ieee80211_scan_results(rdev, info, extra, data->length);
3824 	data->length = 0;
3825 	if (res >= 0) {
3826 		data->length = res;
3827 		res = 0;
3828 	}
3829 
3830 	return res;
3831 }
3832 EXPORT_WEXT_HANDLER(cfg80211_wext_giwscan);
3833 #endif
3834