xref: /linux/net/wireless/scan.c (revision a7f7f6248d9740d710fd6bd190293fe5e16410ac)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * cfg80211 scan result handling
4  *
5  * Copyright 2008 Johannes Berg <johannes@sipsolutions.net>
6  * Copyright 2013-2014  Intel Mobile Communications GmbH
7  * Copyright 2016	Intel Deutschland GmbH
8  * Copyright (C) 2018-2019 Intel Corporation
9  */
10 #include <linux/kernel.h>
11 #include <linux/slab.h>
12 #include <linux/module.h>
13 #include <linux/netdevice.h>
14 #include <linux/wireless.h>
15 #include <linux/nl80211.h>
16 #include <linux/etherdevice.h>
17 #include <net/arp.h>
18 #include <net/cfg80211.h>
19 #include <net/cfg80211-wext.h>
20 #include <net/iw_handler.h>
21 #include "core.h"
22 #include "nl80211.h"
23 #include "wext-compat.h"
24 #include "rdev-ops.h"
25 
26 /**
27  * DOC: BSS tree/list structure
28  *
29  * At the top level, the BSS list is kept in both a list in each
30  * registered device (@bss_list) as well as an RB-tree for faster
31  * lookup. In the RB-tree, entries can be looked up using their
32  * channel, MESHID, MESHCONF (for MBSSes) or channel, BSSID, SSID
33  * for other BSSes.
34  *
35  * Due to the possibility of hidden SSIDs, there's a second level
36  * structure, the "hidden_list" and "hidden_beacon_bss" pointer.
37  * The hidden_list connects all BSSes belonging to a single AP
38  * that has a hidden SSID, and connects beacon and probe response
39  * entries. For a probe response entry for a hidden SSID, the
40  * hidden_beacon_bss pointer points to the BSS struct holding the
41  * beacon's information.
42  *
43  * Reference counting is done for all these references except for
44  * the hidden_list, so that a beacon BSS struct that is otherwise
45  * not referenced has one reference for being on the bss_list and
46  * one for each probe response entry that points to it using the
47  * hidden_beacon_bss pointer. When a BSS struct that has such a
48  * pointer is get/put, the refcount update is also propagated to
49  * the referenced struct, this ensure that it cannot get removed
50  * while somebody is using the probe response version.
51  *
52  * Note that the hidden_beacon_bss pointer never changes, due to
53  * the reference counting. Therefore, no locking is needed for
54  * it.
55  *
56  * Also note that the hidden_beacon_bss pointer is only relevant
57  * if the driver uses something other than the IEs, e.g. private
58  * data stored stored in the BSS struct, since the beacon IEs are
59  * also linked into the probe response struct.
60  */
61 
62 /*
63  * Limit the number of BSS entries stored in mac80211. Each one is
64  * a bit over 4k at most, so this limits to roughly 4-5M of memory.
65  * If somebody wants to really attack this though, they'd likely
66  * use small beacons, and only one type of frame, limiting each of
67  * the entries to a much smaller size (in order to generate more
68  * entries in total, so overhead is bigger.)
69  */
70 static int bss_entries_limit = 1000;
71 module_param(bss_entries_limit, int, 0644);
72 MODULE_PARM_DESC(bss_entries_limit,
73                  "limit to number of scan BSS entries (per wiphy, default 1000)");
74 
75 #define IEEE80211_SCAN_RESULT_EXPIRE	(30 * HZ)
76 
77 static void bss_free(struct cfg80211_internal_bss *bss)
78 {
79 	struct cfg80211_bss_ies *ies;
80 
81 	if (WARN_ON(atomic_read(&bss->hold)))
82 		return;
83 
84 	ies = (void *)rcu_access_pointer(bss->pub.beacon_ies);
85 	if (ies && !bss->pub.hidden_beacon_bss)
86 		kfree_rcu(ies, rcu_head);
87 	ies = (void *)rcu_access_pointer(bss->pub.proberesp_ies);
88 	if (ies)
89 		kfree_rcu(ies, rcu_head);
90 
91 	/*
92 	 * This happens when the module is removed, it doesn't
93 	 * really matter any more save for completeness
94 	 */
95 	if (!list_empty(&bss->hidden_list))
96 		list_del(&bss->hidden_list);
97 
98 	kfree(bss);
99 }
100 
101 static inline void bss_ref_get(struct cfg80211_registered_device *rdev,
102 			       struct cfg80211_internal_bss *bss)
103 {
104 	lockdep_assert_held(&rdev->bss_lock);
105 
106 	bss->refcount++;
107 	if (bss->pub.hidden_beacon_bss) {
108 		bss = container_of(bss->pub.hidden_beacon_bss,
109 				   struct cfg80211_internal_bss,
110 				   pub);
111 		bss->refcount++;
112 	}
113 	if (bss->pub.transmitted_bss) {
114 		bss = container_of(bss->pub.transmitted_bss,
115 				   struct cfg80211_internal_bss,
116 				   pub);
117 		bss->refcount++;
118 	}
119 }
120 
121 static inline void bss_ref_put(struct cfg80211_registered_device *rdev,
122 			       struct cfg80211_internal_bss *bss)
123 {
124 	lockdep_assert_held(&rdev->bss_lock);
125 
126 	if (bss->pub.hidden_beacon_bss) {
127 		struct cfg80211_internal_bss *hbss;
128 		hbss = container_of(bss->pub.hidden_beacon_bss,
129 				    struct cfg80211_internal_bss,
130 				    pub);
131 		hbss->refcount--;
132 		if (hbss->refcount == 0)
133 			bss_free(hbss);
134 	}
135 
136 	if (bss->pub.transmitted_bss) {
137 		struct cfg80211_internal_bss *tbss;
138 
139 		tbss = container_of(bss->pub.transmitted_bss,
140 				    struct cfg80211_internal_bss,
141 				    pub);
142 		tbss->refcount--;
143 		if (tbss->refcount == 0)
144 			bss_free(tbss);
145 	}
146 
147 	bss->refcount--;
148 	if (bss->refcount == 0)
149 		bss_free(bss);
150 }
151 
152 static bool __cfg80211_unlink_bss(struct cfg80211_registered_device *rdev,
153 				  struct cfg80211_internal_bss *bss)
154 {
155 	lockdep_assert_held(&rdev->bss_lock);
156 
157 	if (!list_empty(&bss->hidden_list)) {
158 		/*
159 		 * don't remove the beacon entry if it has
160 		 * probe responses associated with it
161 		 */
162 		if (!bss->pub.hidden_beacon_bss)
163 			return false;
164 		/*
165 		 * if it's a probe response entry break its
166 		 * link to the other entries in the group
167 		 */
168 		list_del_init(&bss->hidden_list);
169 	}
170 
171 	list_del_init(&bss->list);
172 	list_del_init(&bss->pub.nontrans_list);
173 	rb_erase(&bss->rbn, &rdev->bss_tree);
174 	rdev->bss_entries--;
175 	WARN_ONCE((rdev->bss_entries == 0) ^ list_empty(&rdev->bss_list),
176 		  "rdev bss entries[%d]/list[empty:%d] corruption\n",
177 		  rdev->bss_entries, list_empty(&rdev->bss_list));
178 	bss_ref_put(rdev, bss);
179 	return true;
180 }
181 
182 bool cfg80211_is_element_inherited(const struct element *elem,
183 				   const struct element *non_inherit_elem)
184 {
185 	u8 id_len, ext_id_len, i, loop_len, id;
186 	const u8 *list;
187 
188 	if (elem->id == WLAN_EID_MULTIPLE_BSSID)
189 		return false;
190 
191 	if (!non_inherit_elem || non_inherit_elem->datalen < 2)
192 		return true;
193 
194 	/*
195 	 * non inheritance element format is:
196 	 * ext ID (56) | IDs list len | list | extension IDs list len | list
197 	 * Both lists are optional. Both lengths are mandatory.
198 	 * This means valid length is:
199 	 * elem_len = 1 (extension ID) + 2 (list len fields) + list lengths
200 	 */
201 	id_len = non_inherit_elem->data[1];
202 	if (non_inherit_elem->datalen < 3 + id_len)
203 		return true;
204 
205 	ext_id_len = non_inherit_elem->data[2 + id_len];
206 	if (non_inherit_elem->datalen < 3 + id_len + ext_id_len)
207 		return true;
208 
209 	if (elem->id == WLAN_EID_EXTENSION) {
210 		if (!ext_id_len)
211 			return true;
212 		loop_len = ext_id_len;
213 		list = &non_inherit_elem->data[3 + id_len];
214 		id = elem->data[0];
215 	} else {
216 		if (!id_len)
217 			return true;
218 		loop_len = id_len;
219 		list = &non_inherit_elem->data[2];
220 		id = elem->id;
221 	}
222 
223 	for (i = 0; i < loop_len; i++) {
224 		if (list[i] == id)
225 			return false;
226 	}
227 
228 	return true;
229 }
230 EXPORT_SYMBOL(cfg80211_is_element_inherited);
231 
232 static size_t cfg80211_gen_new_ie(const u8 *ie, size_t ielen,
233 				  const u8 *subelement, size_t subie_len,
234 				  u8 *new_ie, gfp_t gfp)
235 {
236 	u8 *pos, *tmp;
237 	const u8 *tmp_old, *tmp_new;
238 	const struct element *non_inherit_elem;
239 	u8 *sub_copy;
240 
241 	/* copy subelement as we need to change its content to
242 	 * mark an ie after it is processed.
243 	 */
244 	sub_copy = kmemdup(subelement, subie_len, gfp);
245 	if (!sub_copy)
246 		return 0;
247 
248 	pos = &new_ie[0];
249 
250 	/* set new ssid */
251 	tmp_new = cfg80211_find_ie(WLAN_EID_SSID, sub_copy, subie_len);
252 	if (tmp_new) {
253 		memcpy(pos, tmp_new, tmp_new[1] + 2);
254 		pos += (tmp_new[1] + 2);
255 	}
256 
257 	/* get non inheritance list if exists */
258 	non_inherit_elem =
259 		cfg80211_find_ext_elem(WLAN_EID_EXT_NON_INHERITANCE,
260 				       sub_copy, subie_len);
261 
262 	/* go through IEs in ie (skip SSID) and subelement,
263 	 * merge them into new_ie
264 	 */
265 	tmp_old = cfg80211_find_ie(WLAN_EID_SSID, ie, ielen);
266 	tmp_old = (tmp_old) ? tmp_old + tmp_old[1] + 2 : ie;
267 
268 	while (tmp_old + tmp_old[1] + 2 - ie <= ielen) {
269 		if (tmp_old[0] == 0) {
270 			tmp_old++;
271 			continue;
272 		}
273 
274 		if (tmp_old[0] == WLAN_EID_EXTENSION)
275 			tmp = (u8 *)cfg80211_find_ext_ie(tmp_old[2], sub_copy,
276 							 subie_len);
277 		else
278 			tmp = (u8 *)cfg80211_find_ie(tmp_old[0], sub_copy,
279 						     subie_len);
280 
281 		if (!tmp) {
282 			const struct element *old_elem = (void *)tmp_old;
283 
284 			/* ie in old ie but not in subelement */
285 			if (cfg80211_is_element_inherited(old_elem,
286 							  non_inherit_elem)) {
287 				memcpy(pos, tmp_old, tmp_old[1] + 2);
288 				pos += tmp_old[1] + 2;
289 			}
290 		} else {
291 			/* ie in transmitting ie also in subelement,
292 			 * copy from subelement and flag the ie in subelement
293 			 * as copied (by setting eid field to WLAN_EID_SSID,
294 			 * which is skipped anyway).
295 			 * For vendor ie, compare OUI + type + subType to
296 			 * determine if they are the same ie.
297 			 */
298 			if (tmp_old[0] == WLAN_EID_VENDOR_SPECIFIC) {
299 				if (!memcmp(tmp_old + 2, tmp + 2, 5)) {
300 					/* same vendor ie, copy from
301 					 * subelement
302 					 */
303 					memcpy(pos, tmp, tmp[1] + 2);
304 					pos += tmp[1] + 2;
305 					tmp[0] = WLAN_EID_SSID;
306 				} else {
307 					memcpy(pos, tmp_old, tmp_old[1] + 2);
308 					pos += tmp_old[1] + 2;
309 				}
310 			} else {
311 				/* copy ie from subelement into new ie */
312 				memcpy(pos, tmp, tmp[1] + 2);
313 				pos += tmp[1] + 2;
314 				tmp[0] = WLAN_EID_SSID;
315 			}
316 		}
317 
318 		if (tmp_old + tmp_old[1] + 2 - ie == ielen)
319 			break;
320 
321 		tmp_old += tmp_old[1] + 2;
322 	}
323 
324 	/* go through subelement again to check if there is any ie not
325 	 * copied to new ie, skip ssid, capability, bssid-index ie
326 	 */
327 	tmp_new = sub_copy;
328 	while (tmp_new + tmp_new[1] + 2 - sub_copy <= subie_len) {
329 		if (!(tmp_new[0] == WLAN_EID_NON_TX_BSSID_CAP ||
330 		      tmp_new[0] == WLAN_EID_SSID)) {
331 			memcpy(pos, tmp_new, tmp_new[1] + 2);
332 			pos += tmp_new[1] + 2;
333 		}
334 		if (tmp_new + tmp_new[1] + 2 - sub_copy == subie_len)
335 			break;
336 		tmp_new += tmp_new[1] + 2;
337 	}
338 
339 	kfree(sub_copy);
340 	return pos - new_ie;
341 }
342 
343 static bool is_bss(struct cfg80211_bss *a, const u8 *bssid,
344 		   const u8 *ssid, size_t ssid_len)
345 {
346 	const struct cfg80211_bss_ies *ies;
347 	const u8 *ssidie;
348 
349 	if (bssid && !ether_addr_equal(a->bssid, bssid))
350 		return false;
351 
352 	if (!ssid)
353 		return true;
354 
355 	ies = rcu_access_pointer(a->ies);
356 	if (!ies)
357 		return false;
358 	ssidie = cfg80211_find_ie(WLAN_EID_SSID, ies->data, ies->len);
359 	if (!ssidie)
360 		return false;
361 	if (ssidie[1] != ssid_len)
362 		return false;
363 	return memcmp(ssidie + 2, ssid, ssid_len) == 0;
364 }
365 
366 static int
367 cfg80211_add_nontrans_list(struct cfg80211_bss *trans_bss,
368 			   struct cfg80211_bss *nontrans_bss)
369 {
370 	const u8 *ssid;
371 	size_t ssid_len;
372 	struct cfg80211_bss *bss = NULL;
373 
374 	rcu_read_lock();
375 	ssid = ieee80211_bss_get_ie(nontrans_bss, WLAN_EID_SSID);
376 	if (!ssid) {
377 		rcu_read_unlock();
378 		return -EINVAL;
379 	}
380 	ssid_len = ssid[1];
381 	ssid = ssid + 2;
382 	rcu_read_unlock();
383 
384 	/* check if nontrans_bss is in the list */
385 	list_for_each_entry(bss, &trans_bss->nontrans_list, nontrans_list) {
386 		if (is_bss(bss, nontrans_bss->bssid, ssid, ssid_len))
387 			return 0;
388 	}
389 
390 	/* add to the list */
391 	list_add_tail(&nontrans_bss->nontrans_list, &trans_bss->nontrans_list);
392 	return 0;
393 }
394 
395 static void __cfg80211_bss_expire(struct cfg80211_registered_device *rdev,
396 				  unsigned long expire_time)
397 {
398 	struct cfg80211_internal_bss *bss, *tmp;
399 	bool expired = false;
400 
401 	lockdep_assert_held(&rdev->bss_lock);
402 
403 	list_for_each_entry_safe(bss, tmp, &rdev->bss_list, list) {
404 		if (atomic_read(&bss->hold))
405 			continue;
406 		if (!time_after(expire_time, bss->ts))
407 			continue;
408 
409 		if (__cfg80211_unlink_bss(rdev, bss))
410 			expired = true;
411 	}
412 
413 	if (expired)
414 		rdev->bss_generation++;
415 }
416 
417 static bool cfg80211_bss_expire_oldest(struct cfg80211_registered_device *rdev)
418 {
419 	struct cfg80211_internal_bss *bss, *oldest = NULL;
420 	bool ret;
421 
422 	lockdep_assert_held(&rdev->bss_lock);
423 
424 	list_for_each_entry(bss, &rdev->bss_list, list) {
425 		if (atomic_read(&bss->hold))
426 			continue;
427 
428 		if (!list_empty(&bss->hidden_list) &&
429 		    !bss->pub.hidden_beacon_bss)
430 			continue;
431 
432 		if (oldest && time_before(oldest->ts, bss->ts))
433 			continue;
434 		oldest = bss;
435 	}
436 
437 	if (WARN_ON(!oldest))
438 		return false;
439 
440 	/*
441 	 * The callers make sure to increase rdev->bss_generation if anything
442 	 * gets removed (and a new entry added), so there's no need to also do
443 	 * it here.
444 	 */
445 
446 	ret = __cfg80211_unlink_bss(rdev, oldest);
447 	WARN_ON(!ret);
448 	return ret;
449 }
450 
451 void ___cfg80211_scan_done(struct cfg80211_registered_device *rdev,
452 			   bool send_message)
453 {
454 	struct cfg80211_scan_request *request;
455 	struct wireless_dev *wdev;
456 	struct sk_buff *msg;
457 #ifdef CONFIG_CFG80211_WEXT
458 	union iwreq_data wrqu;
459 #endif
460 
461 	ASSERT_RTNL();
462 
463 	if (rdev->scan_msg) {
464 		nl80211_send_scan_msg(rdev, rdev->scan_msg);
465 		rdev->scan_msg = NULL;
466 		return;
467 	}
468 
469 	request = rdev->scan_req;
470 	if (!request)
471 		return;
472 
473 	wdev = request->wdev;
474 
475 	/*
476 	 * This must be before sending the other events!
477 	 * Otherwise, wpa_supplicant gets completely confused with
478 	 * wext events.
479 	 */
480 	if (wdev->netdev)
481 		cfg80211_sme_scan_done(wdev->netdev);
482 
483 	if (!request->info.aborted &&
484 	    request->flags & NL80211_SCAN_FLAG_FLUSH) {
485 		/* flush entries from previous scans */
486 		spin_lock_bh(&rdev->bss_lock);
487 		__cfg80211_bss_expire(rdev, request->scan_start);
488 		spin_unlock_bh(&rdev->bss_lock);
489 	}
490 
491 	msg = nl80211_build_scan_msg(rdev, wdev, request->info.aborted);
492 
493 #ifdef CONFIG_CFG80211_WEXT
494 	if (wdev->netdev && !request->info.aborted) {
495 		memset(&wrqu, 0, sizeof(wrqu));
496 
497 		wireless_send_event(wdev->netdev, SIOCGIWSCAN, &wrqu, NULL);
498 	}
499 #endif
500 
501 	if (wdev->netdev)
502 		dev_put(wdev->netdev);
503 
504 	rdev->scan_req = NULL;
505 	kfree(request);
506 
507 	if (!send_message)
508 		rdev->scan_msg = msg;
509 	else
510 		nl80211_send_scan_msg(rdev, msg);
511 }
512 
513 void __cfg80211_scan_done(struct work_struct *wk)
514 {
515 	struct cfg80211_registered_device *rdev;
516 
517 	rdev = container_of(wk, struct cfg80211_registered_device,
518 			    scan_done_wk);
519 
520 	rtnl_lock();
521 	___cfg80211_scan_done(rdev, true);
522 	rtnl_unlock();
523 }
524 
525 void cfg80211_scan_done(struct cfg80211_scan_request *request,
526 			struct cfg80211_scan_info *info)
527 {
528 	trace_cfg80211_scan_done(request, info);
529 	WARN_ON(request != wiphy_to_rdev(request->wiphy)->scan_req);
530 
531 	request->info = *info;
532 	request->notified = true;
533 	queue_work(cfg80211_wq, &wiphy_to_rdev(request->wiphy)->scan_done_wk);
534 }
535 EXPORT_SYMBOL(cfg80211_scan_done);
536 
537 void cfg80211_add_sched_scan_req(struct cfg80211_registered_device *rdev,
538 				 struct cfg80211_sched_scan_request *req)
539 {
540 	ASSERT_RTNL();
541 
542 	list_add_rcu(&req->list, &rdev->sched_scan_req_list);
543 }
544 
545 static void cfg80211_del_sched_scan_req(struct cfg80211_registered_device *rdev,
546 					struct cfg80211_sched_scan_request *req)
547 {
548 	ASSERT_RTNL();
549 
550 	list_del_rcu(&req->list);
551 	kfree_rcu(req, rcu_head);
552 }
553 
554 static struct cfg80211_sched_scan_request *
555 cfg80211_find_sched_scan_req(struct cfg80211_registered_device *rdev, u64 reqid)
556 {
557 	struct cfg80211_sched_scan_request *pos;
558 
559 	list_for_each_entry_rcu(pos, &rdev->sched_scan_req_list, list,
560 				lockdep_rtnl_is_held()) {
561 		if (pos->reqid == reqid)
562 			return pos;
563 	}
564 	return NULL;
565 }
566 
567 /*
568  * Determines if a scheduled scan request can be handled. When a legacy
569  * scheduled scan is running no other scheduled scan is allowed regardless
570  * whether the request is for legacy or multi-support scan. When a multi-support
571  * scheduled scan is running a request for legacy scan is not allowed. In this
572  * case a request for multi-support scan can be handled if resources are
573  * available, ie. struct wiphy::max_sched_scan_reqs limit is not yet reached.
574  */
575 int cfg80211_sched_scan_req_possible(struct cfg80211_registered_device *rdev,
576 				     bool want_multi)
577 {
578 	struct cfg80211_sched_scan_request *pos;
579 	int i = 0;
580 
581 	list_for_each_entry(pos, &rdev->sched_scan_req_list, list) {
582 		/* request id zero means legacy in progress */
583 		if (!i && !pos->reqid)
584 			return -EINPROGRESS;
585 		i++;
586 	}
587 
588 	if (i) {
589 		/* no legacy allowed when multi request(s) are active */
590 		if (!want_multi)
591 			return -EINPROGRESS;
592 
593 		/* resource limit reached */
594 		if (i == rdev->wiphy.max_sched_scan_reqs)
595 			return -ENOSPC;
596 	}
597 	return 0;
598 }
599 
600 void cfg80211_sched_scan_results_wk(struct work_struct *work)
601 {
602 	struct cfg80211_registered_device *rdev;
603 	struct cfg80211_sched_scan_request *req, *tmp;
604 
605 	rdev = container_of(work, struct cfg80211_registered_device,
606 			   sched_scan_res_wk);
607 
608 	rtnl_lock();
609 	list_for_each_entry_safe(req, tmp, &rdev->sched_scan_req_list, list) {
610 		if (req->report_results) {
611 			req->report_results = false;
612 			if (req->flags & NL80211_SCAN_FLAG_FLUSH) {
613 				/* flush entries from previous scans */
614 				spin_lock_bh(&rdev->bss_lock);
615 				__cfg80211_bss_expire(rdev, req->scan_start);
616 				spin_unlock_bh(&rdev->bss_lock);
617 				req->scan_start = jiffies;
618 			}
619 			nl80211_send_sched_scan(req,
620 						NL80211_CMD_SCHED_SCAN_RESULTS);
621 		}
622 	}
623 	rtnl_unlock();
624 }
625 
626 void cfg80211_sched_scan_results(struct wiphy *wiphy, u64 reqid)
627 {
628 	struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
629 	struct cfg80211_sched_scan_request *request;
630 
631 	trace_cfg80211_sched_scan_results(wiphy, reqid);
632 	/* ignore if we're not scanning */
633 
634 	rcu_read_lock();
635 	request = cfg80211_find_sched_scan_req(rdev, reqid);
636 	if (request) {
637 		request->report_results = true;
638 		queue_work(cfg80211_wq, &rdev->sched_scan_res_wk);
639 	}
640 	rcu_read_unlock();
641 }
642 EXPORT_SYMBOL(cfg80211_sched_scan_results);
643 
644 void cfg80211_sched_scan_stopped_rtnl(struct wiphy *wiphy, u64 reqid)
645 {
646 	struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
647 
648 	ASSERT_RTNL();
649 
650 	trace_cfg80211_sched_scan_stopped(wiphy, reqid);
651 
652 	__cfg80211_stop_sched_scan(rdev, reqid, true);
653 }
654 EXPORT_SYMBOL(cfg80211_sched_scan_stopped_rtnl);
655 
656 void cfg80211_sched_scan_stopped(struct wiphy *wiphy, u64 reqid)
657 {
658 	rtnl_lock();
659 	cfg80211_sched_scan_stopped_rtnl(wiphy, reqid);
660 	rtnl_unlock();
661 }
662 EXPORT_SYMBOL(cfg80211_sched_scan_stopped);
663 
664 int cfg80211_stop_sched_scan_req(struct cfg80211_registered_device *rdev,
665 				 struct cfg80211_sched_scan_request *req,
666 				 bool driver_initiated)
667 {
668 	ASSERT_RTNL();
669 
670 	if (!driver_initiated) {
671 		int err = rdev_sched_scan_stop(rdev, req->dev, req->reqid);
672 		if (err)
673 			return err;
674 	}
675 
676 	nl80211_send_sched_scan(req, NL80211_CMD_SCHED_SCAN_STOPPED);
677 
678 	cfg80211_del_sched_scan_req(rdev, req);
679 
680 	return 0;
681 }
682 
683 int __cfg80211_stop_sched_scan(struct cfg80211_registered_device *rdev,
684 			       u64 reqid, bool driver_initiated)
685 {
686 	struct cfg80211_sched_scan_request *sched_scan_req;
687 
688 	ASSERT_RTNL();
689 
690 	sched_scan_req = cfg80211_find_sched_scan_req(rdev, reqid);
691 	if (!sched_scan_req)
692 		return -ENOENT;
693 
694 	return cfg80211_stop_sched_scan_req(rdev, sched_scan_req,
695 					    driver_initiated);
696 }
697 
698 void cfg80211_bss_age(struct cfg80211_registered_device *rdev,
699                       unsigned long age_secs)
700 {
701 	struct cfg80211_internal_bss *bss;
702 	unsigned long age_jiffies = msecs_to_jiffies(age_secs * MSEC_PER_SEC);
703 
704 	spin_lock_bh(&rdev->bss_lock);
705 	list_for_each_entry(bss, &rdev->bss_list, list)
706 		bss->ts -= age_jiffies;
707 	spin_unlock_bh(&rdev->bss_lock);
708 }
709 
710 void cfg80211_bss_expire(struct cfg80211_registered_device *rdev)
711 {
712 	__cfg80211_bss_expire(rdev, jiffies - IEEE80211_SCAN_RESULT_EXPIRE);
713 }
714 
715 const struct element *
716 cfg80211_find_elem_match(u8 eid, const u8 *ies, unsigned int len,
717 			 const u8 *match, unsigned int match_len,
718 			 unsigned int match_offset)
719 {
720 	const struct element *elem;
721 
722 	for_each_element_id(elem, eid, ies, len) {
723 		if (elem->datalen >= match_offset + match_len &&
724 		    !memcmp(elem->data + match_offset, match, match_len))
725 			return elem;
726 	}
727 
728 	return NULL;
729 }
730 EXPORT_SYMBOL(cfg80211_find_elem_match);
731 
732 const struct element *cfg80211_find_vendor_elem(unsigned int oui, int oui_type,
733 						const u8 *ies,
734 						unsigned int len)
735 {
736 	const struct element *elem;
737 	u8 match[] = { oui >> 16, oui >> 8, oui, oui_type };
738 	int match_len = (oui_type < 0) ? 3 : sizeof(match);
739 
740 	if (WARN_ON(oui_type > 0xff))
741 		return NULL;
742 
743 	elem = cfg80211_find_elem_match(WLAN_EID_VENDOR_SPECIFIC, ies, len,
744 					match, match_len, 0);
745 
746 	if (!elem || elem->datalen < 4)
747 		return NULL;
748 
749 	return elem;
750 }
751 EXPORT_SYMBOL(cfg80211_find_vendor_elem);
752 
753 /**
754  * enum bss_compare_mode - BSS compare mode
755  * @BSS_CMP_REGULAR: regular compare mode (for insertion and normal find)
756  * @BSS_CMP_HIDE_ZLEN: find hidden SSID with zero-length mode
757  * @BSS_CMP_HIDE_NUL: find hidden SSID with NUL-ed out mode
758  */
759 enum bss_compare_mode {
760 	BSS_CMP_REGULAR,
761 	BSS_CMP_HIDE_ZLEN,
762 	BSS_CMP_HIDE_NUL,
763 };
764 
765 static int cmp_bss(struct cfg80211_bss *a,
766 		   struct cfg80211_bss *b,
767 		   enum bss_compare_mode mode)
768 {
769 	const struct cfg80211_bss_ies *a_ies, *b_ies;
770 	const u8 *ie1 = NULL;
771 	const u8 *ie2 = NULL;
772 	int i, r;
773 
774 	if (a->channel != b->channel)
775 		return b->channel->center_freq - a->channel->center_freq;
776 
777 	a_ies = rcu_access_pointer(a->ies);
778 	if (!a_ies)
779 		return -1;
780 	b_ies = rcu_access_pointer(b->ies);
781 	if (!b_ies)
782 		return 1;
783 
784 	if (WLAN_CAPABILITY_IS_STA_BSS(a->capability))
785 		ie1 = cfg80211_find_ie(WLAN_EID_MESH_ID,
786 				       a_ies->data, a_ies->len);
787 	if (WLAN_CAPABILITY_IS_STA_BSS(b->capability))
788 		ie2 = cfg80211_find_ie(WLAN_EID_MESH_ID,
789 				       b_ies->data, b_ies->len);
790 	if (ie1 && ie2) {
791 		int mesh_id_cmp;
792 
793 		if (ie1[1] == ie2[1])
794 			mesh_id_cmp = memcmp(ie1 + 2, ie2 + 2, ie1[1]);
795 		else
796 			mesh_id_cmp = ie2[1] - ie1[1];
797 
798 		ie1 = cfg80211_find_ie(WLAN_EID_MESH_CONFIG,
799 				       a_ies->data, a_ies->len);
800 		ie2 = cfg80211_find_ie(WLAN_EID_MESH_CONFIG,
801 				       b_ies->data, b_ies->len);
802 		if (ie1 && ie2) {
803 			if (mesh_id_cmp)
804 				return mesh_id_cmp;
805 			if (ie1[1] != ie2[1])
806 				return ie2[1] - ie1[1];
807 			return memcmp(ie1 + 2, ie2 + 2, ie1[1]);
808 		}
809 	}
810 
811 	r = memcmp(a->bssid, b->bssid, sizeof(a->bssid));
812 	if (r)
813 		return r;
814 
815 	ie1 = cfg80211_find_ie(WLAN_EID_SSID, a_ies->data, a_ies->len);
816 	ie2 = cfg80211_find_ie(WLAN_EID_SSID, b_ies->data, b_ies->len);
817 
818 	if (!ie1 && !ie2)
819 		return 0;
820 
821 	/*
822 	 * Note that with "hide_ssid", the function returns a match if
823 	 * the already-present BSS ("b") is a hidden SSID beacon for
824 	 * the new BSS ("a").
825 	 */
826 
827 	/* sort missing IE before (left of) present IE */
828 	if (!ie1)
829 		return -1;
830 	if (!ie2)
831 		return 1;
832 
833 	switch (mode) {
834 	case BSS_CMP_HIDE_ZLEN:
835 		/*
836 		 * In ZLEN mode we assume the BSS entry we're
837 		 * looking for has a zero-length SSID. So if
838 		 * the one we're looking at right now has that,
839 		 * return 0. Otherwise, return the difference
840 		 * in length, but since we're looking for the
841 		 * 0-length it's really equivalent to returning
842 		 * the length of the one we're looking at.
843 		 *
844 		 * No content comparison is needed as we assume
845 		 * the content length is zero.
846 		 */
847 		return ie2[1];
848 	case BSS_CMP_REGULAR:
849 	default:
850 		/* sort by length first, then by contents */
851 		if (ie1[1] != ie2[1])
852 			return ie2[1] - ie1[1];
853 		return memcmp(ie1 + 2, ie2 + 2, ie1[1]);
854 	case BSS_CMP_HIDE_NUL:
855 		if (ie1[1] != ie2[1])
856 			return ie2[1] - ie1[1];
857 		/* this is equivalent to memcmp(zeroes, ie2 + 2, len) */
858 		for (i = 0; i < ie2[1]; i++)
859 			if (ie2[i + 2])
860 				return -1;
861 		return 0;
862 	}
863 }
864 
865 static bool cfg80211_bss_type_match(u16 capability,
866 				    enum nl80211_band band,
867 				    enum ieee80211_bss_type bss_type)
868 {
869 	bool ret = true;
870 	u16 mask, val;
871 
872 	if (bss_type == IEEE80211_BSS_TYPE_ANY)
873 		return ret;
874 
875 	if (band == NL80211_BAND_60GHZ) {
876 		mask = WLAN_CAPABILITY_DMG_TYPE_MASK;
877 		switch (bss_type) {
878 		case IEEE80211_BSS_TYPE_ESS:
879 			val = WLAN_CAPABILITY_DMG_TYPE_AP;
880 			break;
881 		case IEEE80211_BSS_TYPE_PBSS:
882 			val = WLAN_CAPABILITY_DMG_TYPE_PBSS;
883 			break;
884 		case IEEE80211_BSS_TYPE_IBSS:
885 			val = WLAN_CAPABILITY_DMG_TYPE_IBSS;
886 			break;
887 		default:
888 			return false;
889 		}
890 	} else {
891 		mask = WLAN_CAPABILITY_ESS | WLAN_CAPABILITY_IBSS;
892 		switch (bss_type) {
893 		case IEEE80211_BSS_TYPE_ESS:
894 			val = WLAN_CAPABILITY_ESS;
895 			break;
896 		case IEEE80211_BSS_TYPE_IBSS:
897 			val = WLAN_CAPABILITY_IBSS;
898 			break;
899 		case IEEE80211_BSS_TYPE_MBSS:
900 			val = 0;
901 			break;
902 		default:
903 			return false;
904 		}
905 	}
906 
907 	ret = ((capability & mask) == val);
908 	return ret;
909 }
910 
911 /* Returned bss is reference counted and must be cleaned up appropriately. */
912 struct cfg80211_bss *cfg80211_get_bss(struct wiphy *wiphy,
913 				      struct ieee80211_channel *channel,
914 				      const u8 *bssid,
915 				      const u8 *ssid, size_t ssid_len,
916 				      enum ieee80211_bss_type bss_type,
917 				      enum ieee80211_privacy privacy)
918 {
919 	struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
920 	struct cfg80211_internal_bss *bss, *res = NULL;
921 	unsigned long now = jiffies;
922 	int bss_privacy;
923 
924 	trace_cfg80211_get_bss(wiphy, channel, bssid, ssid, ssid_len, bss_type,
925 			       privacy);
926 
927 	spin_lock_bh(&rdev->bss_lock);
928 
929 	list_for_each_entry(bss, &rdev->bss_list, list) {
930 		if (!cfg80211_bss_type_match(bss->pub.capability,
931 					     bss->pub.channel->band, bss_type))
932 			continue;
933 
934 		bss_privacy = (bss->pub.capability & WLAN_CAPABILITY_PRIVACY);
935 		if ((privacy == IEEE80211_PRIVACY_ON && !bss_privacy) ||
936 		    (privacy == IEEE80211_PRIVACY_OFF && bss_privacy))
937 			continue;
938 		if (channel && bss->pub.channel != channel)
939 			continue;
940 		if (!is_valid_ether_addr(bss->pub.bssid))
941 			continue;
942 		/* Don't get expired BSS structs */
943 		if (time_after(now, bss->ts + IEEE80211_SCAN_RESULT_EXPIRE) &&
944 		    !atomic_read(&bss->hold))
945 			continue;
946 		if (is_bss(&bss->pub, bssid, ssid, ssid_len)) {
947 			res = bss;
948 			bss_ref_get(rdev, res);
949 			break;
950 		}
951 	}
952 
953 	spin_unlock_bh(&rdev->bss_lock);
954 	if (!res)
955 		return NULL;
956 	trace_cfg80211_return_bss(&res->pub);
957 	return &res->pub;
958 }
959 EXPORT_SYMBOL(cfg80211_get_bss);
960 
961 static void rb_insert_bss(struct cfg80211_registered_device *rdev,
962 			  struct cfg80211_internal_bss *bss)
963 {
964 	struct rb_node **p = &rdev->bss_tree.rb_node;
965 	struct rb_node *parent = NULL;
966 	struct cfg80211_internal_bss *tbss;
967 	int cmp;
968 
969 	while (*p) {
970 		parent = *p;
971 		tbss = rb_entry(parent, struct cfg80211_internal_bss, rbn);
972 
973 		cmp = cmp_bss(&bss->pub, &tbss->pub, BSS_CMP_REGULAR);
974 
975 		if (WARN_ON(!cmp)) {
976 			/* will sort of leak this BSS */
977 			return;
978 		}
979 
980 		if (cmp < 0)
981 			p = &(*p)->rb_left;
982 		else
983 			p = &(*p)->rb_right;
984 	}
985 
986 	rb_link_node(&bss->rbn, parent, p);
987 	rb_insert_color(&bss->rbn, &rdev->bss_tree);
988 }
989 
990 static struct cfg80211_internal_bss *
991 rb_find_bss(struct cfg80211_registered_device *rdev,
992 	    struct cfg80211_internal_bss *res,
993 	    enum bss_compare_mode mode)
994 {
995 	struct rb_node *n = rdev->bss_tree.rb_node;
996 	struct cfg80211_internal_bss *bss;
997 	int r;
998 
999 	while (n) {
1000 		bss = rb_entry(n, struct cfg80211_internal_bss, rbn);
1001 		r = cmp_bss(&res->pub, &bss->pub, mode);
1002 
1003 		if (r == 0)
1004 			return bss;
1005 		else if (r < 0)
1006 			n = n->rb_left;
1007 		else
1008 			n = n->rb_right;
1009 	}
1010 
1011 	return NULL;
1012 }
1013 
1014 static bool cfg80211_combine_bsses(struct cfg80211_registered_device *rdev,
1015 				   struct cfg80211_internal_bss *new)
1016 {
1017 	const struct cfg80211_bss_ies *ies;
1018 	struct cfg80211_internal_bss *bss;
1019 	const u8 *ie;
1020 	int i, ssidlen;
1021 	u8 fold = 0;
1022 	u32 n_entries = 0;
1023 
1024 	ies = rcu_access_pointer(new->pub.beacon_ies);
1025 	if (WARN_ON(!ies))
1026 		return false;
1027 
1028 	ie = cfg80211_find_ie(WLAN_EID_SSID, ies->data, ies->len);
1029 	if (!ie) {
1030 		/* nothing to do */
1031 		return true;
1032 	}
1033 
1034 	ssidlen = ie[1];
1035 	for (i = 0; i < ssidlen; i++)
1036 		fold |= ie[2 + i];
1037 
1038 	if (fold) {
1039 		/* not a hidden SSID */
1040 		return true;
1041 	}
1042 
1043 	/* This is the bad part ... */
1044 
1045 	list_for_each_entry(bss, &rdev->bss_list, list) {
1046 		/*
1047 		 * we're iterating all the entries anyway, so take the
1048 		 * opportunity to validate the list length accounting
1049 		 */
1050 		n_entries++;
1051 
1052 		if (!ether_addr_equal(bss->pub.bssid, new->pub.bssid))
1053 			continue;
1054 		if (bss->pub.channel != new->pub.channel)
1055 			continue;
1056 		if (bss->pub.scan_width != new->pub.scan_width)
1057 			continue;
1058 		if (rcu_access_pointer(bss->pub.beacon_ies))
1059 			continue;
1060 		ies = rcu_access_pointer(bss->pub.ies);
1061 		if (!ies)
1062 			continue;
1063 		ie = cfg80211_find_ie(WLAN_EID_SSID, ies->data, ies->len);
1064 		if (!ie)
1065 			continue;
1066 		if (ssidlen && ie[1] != ssidlen)
1067 			continue;
1068 		if (WARN_ON_ONCE(bss->pub.hidden_beacon_bss))
1069 			continue;
1070 		if (WARN_ON_ONCE(!list_empty(&bss->hidden_list)))
1071 			list_del(&bss->hidden_list);
1072 		/* combine them */
1073 		list_add(&bss->hidden_list, &new->hidden_list);
1074 		bss->pub.hidden_beacon_bss = &new->pub;
1075 		new->refcount += bss->refcount;
1076 		rcu_assign_pointer(bss->pub.beacon_ies,
1077 				   new->pub.beacon_ies);
1078 	}
1079 
1080 	WARN_ONCE(n_entries != rdev->bss_entries,
1081 		  "rdev bss entries[%d]/list[len:%d] corruption\n",
1082 		  rdev->bss_entries, n_entries);
1083 
1084 	return true;
1085 }
1086 
1087 struct cfg80211_non_tx_bss {
1088 	struct cfg80211_bss *tx_bss;
1089 	u8 max_bssid_indicator;
1090 	u8 bssid_index;
1091 };
1092 
1093 static bool
1094 cfg80211_update_known_bss(struct cfg80211_registered_device *rdev,
1095 			  struct cfg80211_internal_bss *known,
1096 			  struct cfg80211_internal_bss *new,
1097 			  bool signal_valid)
1098 {
1099 	lockdep_assert_held(&rdev->bss_lock);
1100 
1101 	/* Update IEs */
1102 	if (rcu_access_pointer(new->pub.proberesp_ies)) {
1103 		const struct cfg80211_bss_ies *old;
1104 
1105 		old = rcu_access_pointer(known->pub.proberesp_ies);
1106 
1107 		rcu_assign_pointer(known->pub.proberesp_ies,
1108 				   new->pub.proberesp_ies);
1109 		/* Override possible earlier Beacon frame IEs */
1110 		rcu_assign_pointer(known->pub.ies,
1111 				   new->pub.proberesp_ies);
1112 		if (old)
1113 			kfree_rcu((struct cfg80211_bss_ies *)old, rcu_head);
1114 	} else if (rcu_access_pointer(new->pub.beacon_ies)) {
1115 		const struct cfg80211_bss_ies *old;
1116 		struct cfg80211_internal_bss *bss;
1117 
1118 		if (known->pub.hidden_beacon_bss &&
1119 		    !list_empty(&known->hidden_list)) {
1120 			const struct cfg80211_bss_ies *f;
1121 
1122 			/* The known BSS struct is one of the probe
1123 			 * response members of a group, but we're
1124 			 * receiving a beacon (beacon_ies in the new
1125 			 * bss is used). This can only mean that the
1126 			 * AP changed its beacon from not having an
1127 			 * SSID to showing it, which is confusing so
1128 			 * drop this information.
1129 			 */
1130 
1131 			f = rcu_access_pointer(new->pub.beacon_ies);
1132 			kfree_rcu((struct cfg80211_bss_ies *)f, rcu_head);
1133 			return false;
1134 		}
1135 
1136 		old = rcu_access_pointer(known->pub.beacon_ies);
1137 
1138 		rcu_assign_pointer(known->pub.beacon_ies, new->pub.beacon_ies);
1139 
1140 		/* Override IEs if they were from a beacon before */
1141 		if (old == rcu_access_pointer(known->pub.ies))
1142 			rcu_assign_pointer(known->pub.ies, new->pub.beacon_ies);
1143 
1144 		/* Assign beacon IEs to all sub entries */
1145 		list_for_each_entry(bss, &known->hidden_list, hidden_list) {
1146 			const struct cfg80211_bss_ies *ies;
1147 
1148 			ies = rcu_access_pointer(bss->pub.beacon_ies);
1149 			WARN_ON(ies != old);
1150 
1151 			rcu_assign_pointer(bss->pub.beacon_ies,
1152 					   new->pub.beacon_ies);
1153 		}
1154 
1155 		if (old)
1156 			kfree_rcu((struct cfg80211_bss_ies *)old, rcu_head);
1157 	}
1158 
1159 	known->pub.beacon_interval = new->pub.beacon_interval;
1160 
1161 	/* don't update the signal if beacon was heard on
1162 	 * adjacent channel.
1163 	 */
1164 	if (signal_valid)
1165 		known->pub.signal = new->pub.signal;
1166 	known->pub.capability = new->pub.capability;
1167 	known->ts = new->ts;
1168 	known->ts_boottime = new->ts_boottime;
1169 	known->parent_tsf = new->parent_tsf;
1170 	known->pub.chains = new->pub.chains;
1171 	memcpy(known->pub.chain_signal, new->pub.chain_signal,
1172 	       IEEE80211_MAX_CHAINS);
1173 	ether_addr_copy(known->parent_bssid, new->parent_bssid);
1174 	known->pub.max_bssid_indicator = new->pub.max_bssid_indicator;
1175 	known->pub.bssid_index = new->pub.bssid_index;
1176 
1177 	return true;
1178 }
1179 
1180 /* Returned bss is reference counted and must be cleaned up appropriately. */
1181 struct cfg80211_internal_bss *
1182 cfg80211_bss_update(struct cfg80211_registered_device *rdev,
1183 		    struct cfg80211_internal_bss *tmp,
1184 		    bool signal_valid, unsigned long ts)
1185 {
1186 	struct cfg80211_internal_bss *found = NULL;
1187 
1188 	if (WARN_ON(!tmp->pub.channel))
1189 		return NULL;
1190 
1191 	tmp->ts = ts;
1192 
1193 	spin_lock_bh(&rdev->bss_lock);
1194 
1195 	if (WARN_ON(!rcu_access_pointer(tmp->pub.ies))) {
1196 		spin_unlock_bh(&rdev->bss_lock);
1197 		return NULL;
1198 	}
1199 
1200 	found = rb_find_bss(rdev, tmp, BSS_CMP_REGULAR);
1201 
1202 	if (found) {
1203 		if (!cfg80211_update_known_bss(rdev, found, tmp, signal_valid))
1204 			goto drop;
1205 	} else {
1206 		struct cfg80211_internal_bss *new;
1207 		struct cfg80211_internal_bss *hidden;
1208 		struct cfg80211_bss_ies *ies;
1209 
1210 		/*
1211 		 * create a copy -- the "res" variable that is passed in
1212 		 * is allocated on the stack since it's not needed in the
1213 		 * more common case of an update
1214 		 */
1215 		new = kzalloc(sizeof(*new) + rdev->wiphy.bss_priv_size,
1216 			      GFP_ATOMIC);
1217 		if (!new) {
1218 			ies = (void *)rcu_dereference(tmp->pub.beacon_ies);
1219 			if (ies)
1220 				kfree_rcu(ies, rcu_head);
1221 			ies = (void *)rcu_dereference(tmp->pub.proberesp_ies);
1222 			if (ies)
1223 				kfree_rcu(ies, rcu_head);
1224 			goto drop;
1225 		}
1226 		memcpy(new, tmp, sizeof(*new));
1227 		new->refcount = 1;
1228 		INIT_LIST_HEAD(&new->hidden_list);
1229 		INIT_LIST_HEAD(&new->pub.nontrans_list);
1230 
1231 		if (rcu_access_pointer(tmp->pub.proberesp_ies)) {
1232 			hidden = rb_find_bss(rdev, tmp, BSS_CMP_HIDE_ZLEN);
1233 			if (!hidden)
1234 				hidden = rb_find_bss(rdev, tmp,
1235 						     BSS_CMP_HIDE_NUL);
1236 			if (hidden) {
1237 				new->pub.hidden_beacon_bss = &hidden->pub;
1238 				list_add(&new->hidden_list,
1239 					 &hidden->hidden_list);
1240 				hidden->refcount++;
1241 				rcu_assign_pointer(new->pub.beacon_ies,
1242 						   hidden->pub.beacon_ies);
1243 			}
1244 		} else {
1245 			/*
1246 			 * Ok so we found a beacon, and don't have an entry. If
1247 			 * it's a beacon with hidden SSID, we might be in for an
1248 			 * expensive search for any probe responses that should
1249 			 * be grouped with this beacon for updates ...
1250 			 */
1251 			if (!cfg80211_combine_bsses(rdev, new)) {
1252 				kfree(new);
1253 				goto drop;
1254 			}
1255 		}
1256 
1257 		if (rdev->bss_entries >= bss_entries_limit &&
1258 		    !cfg80211_bss_expire_oldest(rdev)) {
1259 			kfree(new);
1260 			goto drop;
1261 		}
1262 
1263 		/* This must be before the call to bss_ref_get */
1264 		if (tmp->pub.transmitted_bss) {
1265 			struct cfg80211_internal_bss *pbss =
1266 				container_of(tmp->pub.transmitted_bss,
1267 					     struct cfg80211_internal_bss,
1268 					     pub);
1269 
1270 			new->pub.transmitted_bss = tmp->pub.transmitted_bss;
1271 			bss_ref_get(rdev, pbss);
1272 		}
1273 
1274 		list_add_tail(&new->list, &rdev->bss_list);
1275 		rdev->bss_entries++;
1276 		rb_insert_bss(rdev, new);
1277 		found = new;
1278 	}
1279 
1280 	rdev->bss_generation++;
1281 	bss_ref_get(rdev, found);
1282 	spin_unlock_bh(&rdev->bss_lock);
1283 
1284 	return found;
1285  drop:
1286 	spin_unlock_bh(&rdev->bss_lock);
1287 	return NULL;
1288 }
1289 
1290 /*
1291  * Update RX channel information based on the available frame payload
1292  * information. This is mainly for the 2.4 GHz band where frames can be received
1293  * from neighboring channels and the Beacon frames use the DSSS Parameter Set
1294  * element to indicate the current (transmitting) channel, but this might also
1295  * be needed on other bands if RX frequency does not match with the actual
1296  * operating channel of a BSS.
1297  */
1298 static struct ieee80211_channel *
1299 cfg80211_get_bss_channel(struct wiphy *wiphy, const u8 *ie, size_t ielen,
1300 			 struct ieee80211_channel *channel,
1301 			 enum nl80211_bss_scan_width scan_width)
1302 {
1303 	const u8 *tmp;
1304 	u32 freq;
1305 	int channel_number = -1;
1306 	struct ieee80211_channel *alt_channel;
1307 
1308 	tmp = cfg80211_find_ie(WLAN_EID_DS_PARAMS, ie, ielen);
1309 	if (tmp && tmp[1] == 1) {
1310 		channel_number = tmp[2];
1311 	} else {
1312 		tmp = cfg80211_find_ie(WLAN_EID_HT_OPERATION, ie, ielen);
1313 		if (tmp && tmp[1] >= sizeof(struct ieee80211_ht_operation)) {
1314 			struct ieee80211_ht_operation *htop = (void *)(tmp + 2);
1315 
1316 			channel_number = htop->primary_chan;
1317 		}
1318 	}
1319 
1320 	if (channel_number < 0) {
1321 		/* No channel information in frame payload */
1322 		return channel;
1323 	}
1324 
1325 	freq = ieee80211_channel_to_freq_khz(channel_number, channel->band);
1326 	alt_channel = ieee80211_get_channel_khz(wiphy, freq);
1327 	if (!alt_channel) {
1328 		if (channel->band == NL80211_BAND_2GHZ) {
1329 			/*
1330 			 * Better not allow unexpected channels when that could
1331 			 * be going beyond the 1-11 range (e.g., discovering
1332 			 * BSS on channel 12 when radio is configured for
1333 			 * channel 11.
1334 			 */
1335 			return NULL;
1336 		}
1337 
1338 		/* No match for the payload channel number - ignore it */
1339 		return channel;
1340 	}
1341 
1342 	if (scan_width == NL80211_BSS_CHAN_WIDTH_10 ||
1343 	    scan_width == NL80211_BSS_CHAN_WIDTH_5) {
1344 		/*
1345 		 * Ignore channel number in 5 and 10 MHz channels where there
1346 		 * may not be an n:1 or 1:n mapping between frequencies and
1347 		 * channel numbers.
1348 		 */
1349 		return channel;
1350 	}
1351 
1352 	/*
1353 	 * Use the channel determined through the payload channel number
1354 	 * instead of the RX channel reported by the driver.
1355 	 */
1356 	if (alt_channel->flags & IEEE80211_CHAN_DISABLED)
1357 		return NULL;
1358 	return alt_channel;
1359 }
1360 
1361 /* Returned bss is reference counted and must be cleaned up appropriately. */
1362 static struct cfg80211_bss *
1363 cfg80211_inform_single_bss_data(struct wiphy *wiphy,
1364 				struct cfg80211_inform_bss *data,
1365 				enum cfg80211_bss_frame_type ftype,
1366 				const u8 *bssid, u64 tsf, u16 capability,
1367 				u16 beacon_interval, const u8 *ie, size_t ielen,
1368 				struct cfg80211_non_tx_bss *non_tx_data,
1369 				gfp_t gfp)
1370 {
1371 	struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
1372 	struct cfg80211_bss_ies *ies;
1373 	struct ieee80211_channel *channel;
1374 	struct cfg80211_internal_bss tmp = {}, *res;
1375 	int bss_type;
1376 	bool signal_valid;
1377 	unsigned long ts;
1378 
1379 	if (WARN_ON(!wiphy))
1380 		return NULL;
1381 
1382 	if (WARN_ON(wiphy->signal_type == CFG80211_SIGNAL_TYPE_UNSPEC &&
1383 		    (data->signal < 0 || data->signal > 100)))
1384 		return NULL;
1385 
1386 	channel = cfg80211_get_bss_channel(wiphy, ie, ielen, data->chan,
1387 					   data->scan_width);
1388 	if (!channel)
1389 		return NULL;
1390 
1391 	memcpy(tmp.pub.bssid, bssid, ETH_ALEN);
1392 	tmp.pub.channel = channel;
1393 	tmp.pub.scan_width = data->scan_width;
1394 	tmp.pub.signal = data->signal;
1395 	tmp.pub.beacon_interval = beacon_interval;
1396 	tmp.pub.capability = capability;
1397 	tmp.ts_boottime = data->boottime_ns;
1398 	if (non_tx_data) {
1399 		tmp.pub.transmitted_bss = non_tx_data->tx_bss;
1400 		ts = bss_from_pub(non_tx_data->tx_bss)->ts;
1401 		tmp.pub.bssid_index = non_tx_data->bssid_index;
1402 		tmp.pub.max_bssid_indicator = non_tx_data->max_bssid_indicator;
1403 	} else {
1404 		ts = jiffies;
1405 	}
1406 
1407 	/*
1408 	 * If we do not know here whether the IEs are from a Beacon or Probe
1409 	 * Response frame, we need to pick one of the options and only use it
1410 	 * with the driver that does not provide the full Beacon/Probe Response
1411 	 * frame. Use Beacon frame pointer to avoid indicating that this should
1412 	 * override the IEs pointer should we have received an earlier
1413 	 * indication of Probe Response data.
1414 	 */
1415 	ies = kzalloc(sizeof(*ies) + ielen, gfp);
1416 	if (!ies)
1417 		return NULL;
1418 	ies->len = ielen;
1419 	ies->tsf = tsf;
1420 	ies->from_beacon = false;
1421 	memcpy(ies->data, ie, ielen);
1422 
1423 	switch (ftype) {
1424 	case CFG80211_BSS_FTYPE_BEACON:
1425 		ies->from_beacon = true;
1426 		/* fall through */
1427 	case CFG80211_BSS_FTYPE_UNKNOWN:
1428 		rcu_assign_pointer(tmp.pub.beacon_ies, ies);
1429 		break;
1430 	case CFG80211_BSS_FTYPE_PRESP:
1431 		rcu_assign_pointer(tmp.pub.proberesp_ies, ies);
1432 		break;
1433 	}
1434 	rcu_assign_pointer(tmp.pub.ies, ies);
1435 
1436 	signal_valid = data->chan == channel;
1437 	res = cfg80211_bss_update(wiphy_to_rdev(wiphy), &tmp, signal_valid, ts);
1438 	if (!res)
1439 		return NULL;
1440 
1441 	if (channel->band == NL80211_BAND_60GHZ) {
1442 		bss_type = res->pub.capability & WLAN_CAPABILITY_DMG_TYPE_MASK;
1443 		if (bss_type == WLAN_CAPABILITY_DMG_TYPE_AP ||
1444 		    bss_type == WLAN_CAPABILITY_DMG_TYPE_PBSS)
1445 			regulatory_hint_found_beacon(wiphy, channel, gfp);
1446 	} else {
1447 		if (res->pub.capability & WLAN_CAPABILITY_ESS)
1448 			regulatory_hint_found_beacon(wiphy, channel, gfp);
1449 	}
1450 
1451 	if (non_tx_data) {
1452 		/* this is a nontransmitting bss, we need to add it to
1453 		 * transmitting bss' list if it is not there
1454 		 */
1455 		if (cfg80211_add_nontrans_list(non_tx_data->tx_bss,
1456 					       &res->pub)) {
1457 			if (__cfg80211_unlink_bss(rdev, res))
1458 				rdev->bss_generation++;
1459 		}
1460 	}
1461 
1462 	trace_cfg80211_return_bss(&res->pub);
1463 	/* cfg80211_bss_update gives us a referenced result */
1464 	return &res->pub;
1465 }
1466 
1467 static const struct element
1468 *cfg80211_get_profile_continuation(const u8 *ie, size_t ielen,
1469 				   const struct element *mbssid_elem,
1470 				   const struct element *sub_elem)
1471 {
1472 	const u8 *mbssid_end = mbssid_elem->data + mbssid_elem->datalen;
1473 	const struct element *next_mbssid;
1474 	const struct element *next_sub;
1475 
1476 	next_mbssid = cfg80211_find_elem(WLAN_EID_MULTIPLE_BSSID,
1477 					 mbssid_end,
1478 					 ielen - (mbssid_end - ie));
1479 
1480 	/*
1481 	 * If is is not the last subelement in current MBSSID IE or there isn't
1482 	 * a next MBSSID IE - profile is complete.
1483 	*/
1484 	if ((sub_elem->data + sub_elem->datalen < mbssid_end - 1) ||
1485 	    !next_mbssid)
1486 		return NULL;
1487 
1488 	/* For any length error, just return NULL */
1489 
1490 	if (next_mbssid->datalen < 4)
1491 		return NULL;
1492 
1493 	next_sub = (void *)&next_mbssid->data[1];
1494 
1495 	if (next_mbssid->data + next_mbssid->datalen <
1496 	    next_sub->data + next_sub->datalen)
1497 		return NULL;
1498 
1499 	if (next_sub->id != 0 || next_sub->datalen < 2)
1500 		return NULL;
1501 
1502 	/*
1503 	 * Check if the first element in the next sub element is a start
1504 	 * of a new profile
1505 	 */
1506 	return next_sub->data[0] == WLAN_EID_NON_TX_BSSID_CAP ?
1507 	       NULL : next_mbssid;
1508 }
1509 
1510 size_t cfg80211_merge_profile(const u8 *ie, size_t ielen,
1511 			      const struct element *mbssid_elem,
1512 			      const struct element *sub_elem,
1513 			      u8 *merged_ie, size_t max_copy_len)
1514 {
1515 	size_t copied_len = sub_elem->datalen;
1516 	const struct element *next_mbssid;
1517 
1518 	if (sub_elem->datalen > max_copy_len)
1519 		return 0;
1520 
1521 	memcpy(merged_ie, sub_elem->data, sub_elem->datalen);
1522 
1523 	while ((next_mbssid = cfg80211_get_profile_continuation(ie, ielen,
1524 								mbssid_elem,
1525 								sub_elem))) {
1526 		const struct element *next_sub = (void *)&next_mbssid->data[1];
1527 
1528 		if (copied_len + next_sub->datalen > max_copy_len)
1529 			break;
1530 		memcpy(merged_ie + copied_len, next_sub->data,
1531 		       next_sub->datalen);
1532 		copied_len += next_sub->datalen;
1533 	}
1534 
1535 	return copied_len;
1536 }
1537 EXPORT_SYMBOL(cfg80211_merge_profile);
1538 
1539 static void cfg80211_parse_mbssid_data(struct wiphy *wiphy,
1540 				       struct cfg80211_inform_bss *data,
1541 				       enum cfg80211_bss_frame_type ftype,
1542 				       const u8 *bssid, u64 tsf,
1543 				       u16 beacon_interval, const u8 *ie,
1544 				       size_t ielen,
1545 				       struct cfg80211_non_tx_bss *non_tx_data,
1546 				       gfp_t gfp)
1547 {
1548 	const u8 *mbssid_index_ie;
1549 	const struct element *elem, *sub;
1550 	size_t new_ie_len;
1551 	u8 new_bssid[ETH_ALEN];
1552 	u8 *new_ie, *profile;
1553 	u64 seen_indices = 0;
1554 	u16 capability;
1555 	struct cfg80211_bss *bss;
1556 
1557 	if (!non_tx_data)
1558 		return;
1559 	if (!cfg80211_find_ie(WLAN_EID_MULTIPLE_BSSID, ie, ielen))
1560 		return;
1561 	if (!wiphy->support_mbssid)
1562 		return;
1563 	if (wiphy->support_only_he_mbssid &&
1564 	    !cfg80211_find_ext_ie(WLAN_EID_EXT_HE_CAPABILITY, ie, ielen))
1565 		return;
1566 
1567 	new_ie = kmalloc(IEEE80211_MAX_DATA_LEN, gfp);
1568 	if (!new_ie)
1569 		return;
1570 
1571 	profile = kmalloc(ielen, gfp);
1572 	if (!profile)
1573 		goto out;
1574 
1575 	for_each_element_id(elem, WLAN_EID_MULTIPLE_BSSID, ie, ielen) {
1576 		if (elem->datalen < 4)
1577 			continue;
1578 		for_each_element(sub, elem->data + 1, elem->datalen - 1) {
1579 			u8 profile_len;
1580 
1581 			if (sub->id != 0 || sub->datalen < 4) {
1582 				/* not a valid BSS profile */
1583 				continue;
1584 			}
1585 
1586 			if (sub->data[0] != WLAN_EID_NON_TX_BSSID_CAP ||
1587 			    sub->data[1] != 2) {
1588 				/* The first element within the Nontransmitted
1589 				 * BSSID Profile is not the Nontransmitted
1590 				 * BSSID Capability element.
1591 				 */
1592 				continue;
1593 			}
1594 
1595 			memset(profile, 0, ielen);
1596 			profile_len = cfg80211_merge_profile(ie, ielen,
1597 							     elem,
1598 							     sub,
1599 							     profile,
1600 							     ielen);
1601 
1602 			/* found a Nontransmitted BSSID Profile */
1603 			mbssid_index_ie = cfg80211_find_ie
1604 				(WLAN_EID_MULTI_BSSID_IDX,
1605 				 profile, profile_len);
1606 			if (!mbssid_index_ie || mbssid_index_ie[1] < 1 ||
1607 			    mbssid_index_ie[2] == 0 ||
1608 			    mbssid_index_ie[2] > 46) {
1609 				/* No valid Multiple BSSID-Index element */
1610 				continue;
1611 			}
1612 
1613 			if (seen_indices & BIT_ULL(mbssid_index_ie[2]))
1614 				/* We don't support legacy split of a profile */
1615 				net_dbg_ratelimited("Partial info for BSSID index %d\n",
1616 						    mbssid_index_ie[2]);
1617 
1618 			seen_indices |= BIT_ULL(mbssid_index_ie[2]);
1619 
1620 			non_tx_data->bssid_index = mbssid_index_ie[2];
1621 			non_tx_data->max_bssid_indicator = elem->data[0];
1622 
1623 			cfg80211_gen_new_bssid(bssid,
1624 					       non_tx_data->max_bssid_indicator,
1625 					       non_tx_data->bssid_index,
1626 					       new_bssid);
1627 			memset(new_ie, 0, IEEE80211_MAX_DATA_LEN);
1628 			new_ie_len = cfg80211_gen_new_ie(ie, ielen,
1629 							 profile,
1630 							 profile_len, new_ie,
1631 							 gfp);
1632 			if (!new_ie_len)
1633 				continue;
1634 
1635 			capability = get_unaligned_le16(profile + 2);
1636 			bss = cfg80211_inform_single_bss_data(wiphy, data,
1637 							      ftype,
1638 							      new_bssid, tsf,
1639 							      capability,
1640 							      beacon_interval,
1641 							      new_ie,
1642 							      new_ie_len,
1643 							      non_tx_data,
1644 							      gfp);
1645 			if (!bss)
1646 				break;
1647 			cfg80211_put_bss(wiphy, bss);
1648 		}
1649 	}
1650 
1651 out:
1652 	kfree(new_ie);
1653 	kfree(profile);
1654 }
1655 
1656 struct cfg80211_bss *
1657 cfg80211_inform_bss_data(struct wiphy *wiphy,
1658 			 struct cfg80211_inform_bss *data,
1659 			 enum cfg80211_bss_frame_type ftype,
1660 			 const u8 *bssid, u64 tsf, u16 capability,
1661 			 u16 beacon_interval, const u8 *ie, size_t ielen,
1662 			 gfp_t gfp)
1663 {
1664 	struct cfg80211_bss *res;
1665 	struct cfg80211_non_tx_bss non_tx_data;
1666 
1667 	res = cfg80211_inform_single_bss_data(wiphy, data, ftype, bssid, tsf,
1668 					      capability, beacon_interval, ie,
1669 					      ielen, NULL, gfp);
1670 	if (!res)
1671 		return NULL;
1672 	non_tx_data.tx_bss = res;
1673 	cfg80211_parse_mbssid_data(wiphy, data, ftype, bssid, tsf,
1674 				   beacon_interval, ie, ielen, &non_tx_data,
1675 				   gfp);
1676 	return res;
1677 }
1678 EXPORT_SYMBOL(cfg80211_inform_bss_data);
1679 
1680 static void
1681 cfg80211_parse_mbssid_frame_data(struct wiphy *wiphy,
1682 				 struct cfg80211_inform_bss *data,
1683 				 struct ieee80211_mgmt *mgmt, size_t len,
1684 				 struct cfg80211_non_tx_bss *non_tx_data,
1685 				 gfp_t gfp)
1686 {
1687 	enum cfg80211_bss_frame_type ftype;
1688 	const u8 *ie = mgmt->u.probe_resp.variable;
1689 	size_t ielen = len - offsetof(struct ieee80211_mgmt,
1690 				      u.probe_resp.variable);
1691 
1692 	ftype = ieee80211_is_beacon(mgmt->frame_control) ?
1693 		CFG80211_BSS_FTYPE_BEACON : CFG80211_BSS_FTYPE_PRESP;
1694 
1695 	cfg80211_parse_mbssid_data(wiphy, data, ftype, mgmt->bssid,
1696 				   le64_to_cpu(mgmt->u.probe_resp.timestamp),
1697 				   le16_to_cpu(mgmt->u.probe_resp.beacon_int),
1698 				   ie, ielen, non_tx_data, gfp);
1699 }
1700 
1701 static void
1702 cfg80211_update_notlisted_nontrans(struct wiphy *wiphy,
1703 				   struct cfg80211_bss *nontrans_bss,
1704 				   struct ieee80211_mgmt *mgmt, size_t len)
1705 {
1706 	u8 *ie, *new_ie, *pos;
1707 	const u8 *nontrans_ssid, *trans_ssid, *mbssid;
1708 	size_t ielen = len - offsetof(struct ieee80211_mgmt,
1709 				      u.probe_resp.variable);
1710 	size_t new_ie_len;
1711 	struct cfg80211_bss_ies *new_ies;
1712 	const struct cfg80211_bss_ies *old;
1713 	u8 cpy_len;
1714 
1715 	lockdep_assert_held(&wiphy_to_rdev(wiphy)->bss_lock);
1716 
1717 	ie = mgmt->u.probe_resp.variable;
1718 
1719 	new_ie_len = ielen;
1720 	trans_ssid = cfg80211_find_ie(WLAN_EID_SSID, ie, ielen);
1721 	if (!trans_ssid)
1722 		return;
1723 	new_ie_len -= trans_ssid[1];
1724 	mbssid = cfg80211_find_ie(WLAN_EID_MULTIPLE_BSSID, ie, ielen);
1725 	/*
1726 	 * It's not valid to have the MBSSID element before SSID
1727 	 * ignore if that happens - the code below assumes it is
1728 	 * after (while copying things inbetween).
1729 	 */
1730 	if (!mbssid || mbssid < trans_ssid)
1731 		return;
1732 	new_ie_len -= mbssid[1];
1733 
1734 	nontrans_ssid = ieee80211_bss_get_ie(nontrans_bss, WLAN_EID_SSID);
1735 	if (!nontrans_ssid)
1736 		return;
1737 
1738 	new_ie_len += nontrans_ssid[1];
1739 
1740 	/* generate new ie for nontrans BSS
1741 	 * 1. replace SSID with nontrans BSS' SSID
1742 	 * 2. skip MBSSID IE
1743 	 */
1744 	new_ie = kzalloc(new_ie_len, GFP_ATOMIC);
1745 	if (!new_ie)
1746 		return;
1747 
1748 	new_ies = kzalloc(sizeof(*new_ies) + new_ie_len, GFP_ATOMIC);
1749 	if (!new_ies)
1750 		goto out_free;
1751 
1752 	pos = new_ie;
1753 
1754 	/* copy the nontransmitted SSID */
1755 	cpy_len = nontrans_ssid[1] + 2;
1756 	memcpy(pos, nontrans_ssid, cpy_len);
1757 	pos += cpy_len;
1758 	/* copy the IEs between SSID and MBSSID */
1759 	cpy_len = trans_ssid[1] + 2;
1760 	memcpy(pos, (trans_ssid + cpy_len), (mbssid - (trans_ssid + cpy_len)));
1761 	pos += (mbssid - (trans_ssid + cpy_len));
1762 	/* copy the IEs after MBSSID */
1763 	cpy_len = mbssid[1] + 2;
1764 	memcpy(pos, mbssid + cpy_len, ((ie + ielen) - (mbssid + cpy_len)));
1765 
1766 	/* update ie */
1767 	new_ies->len = new_ie_len;
1768 	new_ies->tsf = le64_to_cpu(mgmt->u.probe_resp.timestamp);
1769 	new_ies->from_beacon = ieee80211_is_beacon(mgmt->frame_control);
1770 	memcpy(new_ies->data, new_ie, new_ie_len);
1771 	if (ieee80211_is_probe_resp(mgmt->frame_control)) {
1772 		old = rcu_access_pointer(nontrans_bss->proberesp_ies);
1773 		rcu_assign_pointer(nontrans_bss->proberesp_ies, new_ies);
1774 		rcu_assign_pointer(nontrans_bss->ies, new_ies);
1775 		if (old)
1776 			kfree_rcu((struct cfg80211_bss_ies *)old, rcu_head);
1777 	} else {
1778 		old = rcu_access_pointer(nontrans_bss->beacon_ies);
1779 		rcu_assign_pointer(nontrans_bss->beacon_ies, new_ies);
1780 		rcu_assign_pointer(nontrans_bss->ies, new_ies);
1781 		if (old)
1782 			kfree_rcu((struct cfg80211_bss_ies *)old, rcu_head);
1783 	}
1784 
1785 out_free:
1786 	kfree(new_ie);
1787 }
1788 
1789 /* cfg80211_inform_bss_width_frame helper */
1790 static struct cfg80211_bss *
1791 cfg80211_inform_single_bss_frame_data(struct wiphy *wiphy,
1792 				      struct cfg80211_inform_bss *data,
1793 				      struct ieee80211_mgmt *mgmt, size_t len,
1794 				      gfp_t gfp)
1795 {
1796 	struct cfg80211_internal_bss tmp = {}, *res;
1797 	struct cfg80211_bss_ies *ies;
1798 	struct ieee80211_channel *channel;
1799 	bool signal_valid;
1800 	size_t ielen = len - offsetof(struct ieee80211_mgmt,
1801 				      u.probe_resp.variable);
1802 	int bss_type;
1803 
1804 	BUILD_BUG_ON(offsetof(struct ieee80211_mgmt, u.probe_resp.variable) !=
1805 			offsetof(struct ieee80211_mgmt, u.beacon.variable));
1806 
1807 	trace_cfg80211_inform_bss_frame(wiphy, data, mgmt, len);
1808 
1809 	if (WARN_ON(!mgmt))
1810 		return NULL;
1811 
1812 	if (WARN_ON(!wiphy))
1813 		return NULL;
1814 
1815 	if (WARN_ON(wiphy->signal_type == CFG80211_SIGNAL_TYPE_UNSPEC &&
1816 		    (data->signal < 0 || data->signal > 100)))
1817 		return NULL;
1818 
1819 	if (WARN_ON(len < offsetof(struct ieee80211_mgmt, u.probe_resp.variable)))
1820 		return NULL;
1821 
1822 	channel = cfg80211_get_bss_channel(wiphy, mgmt->u.beacon.variable,
1823 					   ielen, data->chan, data->scan_width);
1824 	if (!channel)
1825 		return NULL;
1826 
1827 	ies = kzalloc(sizeof(*ies) + ielen, gfp);
1828 	if (!ies)
1829 		return NULL;
1830 	ies->len = ielen;
1831 	ies->tsf = le64_to_cpu(mgmt->u.probe_resp.timestamp);
1832 	ies->from_beacon = ieee80211_is_beacon(mgmt->frame_control);
1833 	memcpy(ies->data, mgmt->u.probe_resp.variable, ielen);
1834 
1835 	if (ieee80211_is_probe_resp(mgmt->frame_control))
1836 		rcu_assign_pointer(tmp.pub.proberesp_ies, ies);
1837 	else
1838 		rcu_assign_pointer(tmp.pub.beacon_ies, ies);
1839 	rcu_assign_pointer(tmp.pub.ies, ies);
1840 
1841 	memcpy(tmp.pub.bssid, mgmt->bssid, ETH_ALEN);
1842 	tmp.pub.channel = channel;
1843 	tmp.pub.scan_width = data->scan_width;
1844 	tmp.pub.signal = data->signal;
1845 	tmp.pub.beacon_interval = le16_to_cpu(mgmt->u.probe_resp.beacon_int);
1846 	tmp.pub.capability = le16_to_cpu(mgmt->u.probe_resp.capab_info);
1847 	tmp.ts_boottime = data->boottime_ns;
1848 	tmp.parent_tsf = data->parent_tsf;
1849 	tmp.pub.chains = data->chains;
1850 	memcpy(tmp.pub.chain_signal, data->chain_signal, IEEE80211_MAX_CHAINS);
1851 	ether_addr_copy(tmp.parent_bssid, data->parent_bssid);
1852 
1853 	signal_valid = data->chan == channel;
1854 	res = cfg80211_bss_update(wiphy_to_rdev(wiphy), &tmp, signal_valid,
1855 				  jiffies);
1856 	if (!res)
1857 		return NULL;
1858 
1859 	if (channel->band == NL80211_BAND_60GHZ) {
1860 		bss_type = res->pub.capability & WLAN_CAPABILITY_DMG_TYPE_MASK;
1861 		if (bss_type == WLAN_CAPABILITY_DMG_TYPE_AP ||
1862 		    bss_type == WLAN_CAPABILITY_DMG_TYPE_PBSS)
1863 			regulatory_hint_found_beacon(wiphy, channel, gfp);
1864 	} else {
1865 		if (res->pub.capability & WLAN_CAPABILITY_ESS)
1866 			regulatory_hint_found_beacon(wiphy, channel, gfp);
1867 	}
1868 
1869 	trace_cfg80211_return_bss(&res->pub);
1870 	/* cfg80211_bss_update gives us a referenced result */
1871 	return &res->pub;
1872 }
1873 
1874 struct cfg80211_bss *
1875 cfg80211_inform_bss_frame_data(struct wiphy *wiphy,
1876 			       struct cfg80211_inform_bss *data,
1877 			       struct ieee80211_mgmt *mgmt, size_t len,
1878 			       gfp_t gfp)
1879 {
1880 	struct cfg80211_bss *res, *tmp_bss;
1881 	const u8 *ie = mgmt->u.probe_resp.variable;
1882 	const struct cfg80211_bss_ies *ies1, *ies2;
1883 	size_t ielen = len - offsetof(struct ieee80211_mgmt,
1884 				      u.probe_resp.variable);
1885 	struct cfg80211_non_tx_bss non_tx_data;
1886 
1887 	res = cfg80211_inform_single_bss_frame_data(wiphy, data, mgmt,
1888 						    len, gfp);
1889 	if (!res || !wiphy->support_mbssid ||
1890 	    !cfg80211_find_ie(WLAN_EID_MULTIPLE_BSSID, ie, ielen))
1891 		return res;
1892 	if (wiphy->support_only_he_mbssid &&
1893 	    !cfg80211_find_ext_ie(WLAN_EID_EXT_HE_CAPABILITY, ie, ielen))
1894 		return res;
1895 
1896 	non_tx_data.tx_bss = res;
1897 	/* process each non-transmitting bss */
1898 	cfg80211_parse_mbssid_frame_data(wiphy, data, mgmt, len,
1899 					 &non_tx_data, gfp);
1900 
1901 	spin_lock_bh(&wiphy_to_rdev(wiphy)->bss_lock);
1902 
1903 	/* check if the res has other nontransmitting bss which is not
1904 	 * in MBSSID IE
1905 	 */
1906 	ies1 = rcu_access_pointer(res->ies);
1907 
1908 	/* go through nontrans_list, if the timestamp of the BSS is
1909 	 * earlier than the timestamp of the transmitting BSS then
1910 	 * update it
1911 	 */
1912 	list_for_each_entry(tmp_bss, &res->nontrans_list,
1913 			    nontrans_list) {
1914 		ies2 = rcu_access_pointer(tmp_bss->ies);
1915 		if (ies2->tsf < ies1->tsf)
1916 			cfg80211_update_notlisted_nontrans(wiphy, tmp_bss,
1917 							   mgmt, len);
1918 	}
1919 	spin_unlock_bh(&wiphy_to_rdev(wiphy)->bss_lock);
1920 
1921 	return res;
1922 }
1923 EXPORT_SYMBOL(cfg80211_inform_bss_frame_data);
1924 
1925 void cfg80211_ref_bss(struct wiphy *wiphy, struct cfg80211_bss *pub)
1926 {
1927 	struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
1928 	struct cfg80211_internal_bss *bss;
1929 
1930 	if (!pub)
1931 		return;
1932 
1933 	bss = container_of(pub, struct cfg80211_internal_bss, pub);
1934 
1935 	spin_lock_bh(&rdev->bss_lock);
1936 	bss_ref_get(rdev, bss);
1937 	spin_unlock_bh(&rdev->bss_lock);
1938 }
1939 EXPORT_SYMBOL(cfg80211_ref_bss);
1940 
1941 void cfg80211_put_bss(struct wiphy *wiphy, struct cfg80211_bss *pub)
1942 {
1943 	struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
1944 	struct cfg80211_internal_bss *bss;
1945 
1946 	if (!pub)
1947 		return;
1948 
1949 	bss = container_of(pub, struct cfg80211_internal_bss, pub);
1950 
1951 	spin_lock_bh(&rdev->bss_lock);
1952 	bss_ref_put(rdev, bss);
1953 	spin_unlock_bh(&rdev->bss_lock);
1954 }
1955 EXPORT_SYMBOL(cfg80211_put_bss);
1956 
1957 void cfg80211_unlink_bss(struct wiphy *wiphy, struct cfg80211_bss *pub)
1958 {
1959 	struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
1960 	struct cfg80211_internal_bss *bss, *tmp1;
1961 	struct cfg80211_bss *nontrans_bss, *tmp;
1962 
1963 	if (WARN_ON(!pub))
1964 		return;
1965 
1966 	bss = container_of(pub, struct cfg80211_internal_bss, pub);
1967 
1968 	spin_lock_bh(&rdev->bss_lock);
1969 	if (list_empty(&bss->list))
1970 		goto out;
1971 
1972 	list_for_each_entry_safe(nontrans_bss, tmp,
1973 				 &pub->nontrans_list,
1974 				 nontrans_list) {
1975 		tmp1 = container_of(nontrans_bss,
1976 				    struct cfg80211_internal_bss, pub);
1977 		if (__cfg80211_unlink_bss(rdev, tmp1))
1978 			rdev->bss_generation++;
1979 	}
1980 
1981 	if (__cfg80211_unlink_bss(rdev, bss))
1982 		rdev->bss_generation++;
1983 out:
1984 	spin_unlock_bh(&rdev->bss_lock);
1985 }
1986 EXPORT_SYMBOL(cfg80211_unlink_bss);
1987 
1988 void cfg80211_bss_iter(struct wiphy *wiphy,
1989 		       struct cfg80211_chan_def *chandef,
1990 		       void (*iter)(struct wiphy *wiphy,
1991 				    struct cfg80211_bss *bss,
1992 				    void *data),
1993 		       void *iter_data)
1994 {
1995 	struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
1996 	struct cfg80211_internal_bss *bss;
1997 
1998 	spin_lock_bh(&rdev->bss_lock);
1999 
2000 	list_for_each_entry(bss, &rdev->bss_list, list) {
2001 		if (!chandef || cfg80211_is_sub_chan(chandef, bss->pub.channel))
2002 			iter(wiphy, &bss->pub, iter_data);
2003 	}
2004 
2005 	spin_unlock_bh(&rdev->bss_lock);
2006 }
2007 EXPORT_SYMBOL(cfg80211_bss_iter);
2008 
2009 void cfg80211_update_assoc_bss_entry(struct wireless_dev *wdev,
2010 				     struct ieee80211_channel *chan)
2011 {
2012 	struct wiphy *wiphy = wdev->wiphy;
2013 	struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
2014 	struct cfg80211_internal_bss *cbss = wdev->current_bss;
2015 	struct cfg80211_internal_bss *new = NULL;
2016 	struct cfg80211_internal_bss *bss;
2017 	struct cfg80211_bss *nontrans_bss;
2018 	struct cfg80211_bss *tmp;
2019 
2020 	spin_lock_bh(&rdev->bss_lock);
2021 
2022 	/*
2023 	 * Some APs use CSA also for bandwidth changes, i.e., without actually
2024 	 * changing the control channel, so no need to update in such a case.
2025 	 */
2026 	if (cbss->pub.channel == chan)
2027 		goto done;
2028 
2029 	/* use transmitting bss */
2030 	if (cbss->pub.transmitted_bss)
2031 		cbss = container_of(cbss->pub.transmitted_bss,
2032 				    struct cfg80211_internal_bss,
2033 				    pub);
2034 
2035 	cbss->pub.channel = chan;
2036 
2037 	list_for_each_entry(bss, &rdev->bss_list, list) {
2038 		if (!cfg80211_bss_type_match(bss->pub.capability,
2039 					     bss->pub.channel->band,
2040 					     wdev->conn_bss_type))
2041 			continue;
2042 
2043 		if (bss == cbss)
2044 			continue;
2045 
2046 		if (!cmp_bss(&bss->pub, &cbss->pub, BSS_CMP_REGULAR)) {
2047 			new = bss;
2048 			break;
2049 		}
2050 	}
2051 
2052 	if (new) {
2053 		/* to save time, update IEs for transmitting bss only */
2054 		if (cfg80211_update_known_bss(rdev, cbss, new, false)) {
2055 			new->pub.proberesp_ies = NULL;
2056 			new->pub.beacon_ies = NULL;
2057 		}
2058 
2059 		list_for_each_entry_safe(nontrans_bss, tmp,
2060 					 &new->pub.nontrans_list,
2061 					 nontrans_list) {
2062 			bss = container_of(nontrans_bss,
2063 					   struct cfg80211_internal_bss, pub);
2064 			if (__cfg80211_unlink_bss(rdev, bss))
2065 				rdev->bss_generation++;
2066 		}
2067 
2068 		WARN_ON(atomic_read(&new->hold));
2069 		if (!WARN_ON(!__cfg80211_unlink_bss(rdev, new)))
2070 			rdev->bss_generation++;
2071 	}
2072 
2073 	rb_erase(&cbss->rbn, &rdev->bss_tree);
2074 	rb_insert_bss(rdev, cbss);
2075 	rdev->bss_generation++;
2076 
2077 	list_for_each_entry_safe(nontrans_bss, tmp,
2078 				 &cbss->pub.nontrans_list,
2079 				 nontrans_list) {
2080 		bss = container_of(nontrans_bss,
2081 				   struct cfg80211_internal_bss, pub);
2082 		bss->pub.channel = chan;
2083 		rb_erase(&bss->rbn, &rdev->bss_tree);
2084 		rb_insert_bss(rdev, bss);
2085 		rdev->bss_generation++;
2086 	}
2087 
2088 done:
2089 	spin_unlock_bh(&rdev->bss_lock);
2090 }
2091 
2092 #ifdef CONFIG_CFG80211_WEXT
2093 static struct cfg80211_registered_device *
2094 cfg80211_get_dev_from_ifindex(struct net *net, int ifindex)
2095 {
2096 	struct cfg80211_registered_device *rdev;
2097 	struct net_device *dev;
2098 
2099 	ASSERT_RTNL();
2100 
2101 	dev = dev_get_by_index(net, ifindex);
2102 	if (!dev)
2103 		return ERR_PTR(-ENODEV);
2104 	if (dev->ieee80211_ptr)
2105 		rdev = wiphy_to_rdev(dev->ieee80211_ptr->wiphy);
2106 	else
2107 		rdev = ERR_PTR(-ENODEV);
2108 	dev_put(dev);
2109 	return rdev;
2110 }
2111 
2112 int cfg80211_wext_siwscan(struct net_device *dev,
2113 			  struct iw_request_info *info,
2114 			  union iwreq_data *wrqu, char *extra)
2115 {
2116 	struct cfg80211_registered_device *rdev;
2117 	struct wiphy *wiphy;
2118 	struct iw_scan_req *wreq = NULL;
2119 	struct cfg80211_scan_request *creq = NULL;
2120 	int i, err, n_channels = 0;
2121 	enum nl80211_band band;
2122 
2123 	if (!netif_running(dev))
2124 		return -ENETDOWN;
2125 
2126 	if (wrqu->data.length == sizeof(struct iw_scan_req))
2127 		wreq = (struct iw_scan_req *)extra;
2128 
2129 	rdev = cfg80211_get_dev_from_ifindex(dev_net(dev), dev->ifindex);
2130 
2131 	if (IS_ERR(rdev))
2132 		return PTR_ERR(rdev);
2133 
2134 	if (rdev->scan_req || rdev->scan_msg) {
2135 		err = -EBUSY;
2136 		goto out;
2137 	}
2138 
2139 	wiphy = &rdev->wiphy;
2140 
2141 	/* Determine number of channels, needed to allocate creq */
2142 	if (wreq && wreq->num_channels)
2143 		n_channels = wreq->num_channels;
2144 	else
2145 		n_channels = ieee80211_get_num_supported_channels(wiphy);
2146 
2147 	creq = kzalloc(sizeof(*creq) + sizeof(struct cfg80211_ssid) +
2148 		       n_channels * sizeof(void *),
2149 		       GFP_ATOMIC);
2150 	if (!creq) {
2151 		err = -ENOMEM;
2152 		goto out;
2153 	}
2154 
2155 	creq->wiphy = wiphy;
2156 	creq->wdev = dev->ieee80211_ptr;
2157 	/* SSIDs come after channels */
2158 	creq->ssids = (void *)&creq->channels[n_channels];
2159 	creq->n_channels = n_channels;
2160 	creq->n_ssids = 1;
2161 	creq->scan_start = jiffies;
2162 
2163 	/* translate "Scan on frequencies" request */
2164 	i = 0;
2165 	for (band = 0; band < NUM_NL80211_BANDS; band++) {
2166 		int j;
2167 
2168 		if (!wiphy->bands[band])
2169 			continue;
2170 
2171 		for (j = 0; j < wiphy->bands[band]->n_channels; j++) {
2172 			/* ignore disabled channels */
2173 			if (wiphy->bands[band]->channels[j].flags &
2174 						IEEE80211_CHAN_DISABLED)
2175 				continue;
2176 
2177 			/* If we have a wireless request structure and the
2178 			 * wireless request specifies frequencies, then search
2179 			 * for the matching hardware channel.
2180 			 */
2181 			if (wreq && wreq->num_channels) {
2182 				int k;
2183 				int wiphy_freq = wiphy->bands[band]->channels[j].center_freq;
2184 				for (k = 0; k < wreq->num_channels; k++) {
2185 					struct iw_freq *freq =
2186 						&wreq->channel_list[k];
2187 					int wext_freq =
2188 						cfg80211_wext_freq(freq);
2189 
2190 					if (wext_freq == wiphy_freq)
2191 						goto wext_freq_found;
2192 				}
2193 				goto wext_freq_not_found;
2194 			}
2195 
2196 		wext_freq_found:
2197 			creq->channels[i] = &wiphy->bands[band]->channels[j];
2198 			i++;
2199 		wext_freq_not_found: ;
2200 		}
2201 	}
2202 	/* No channels found? */
2203 	if (!i) {
2204 		err = -EINVAL;
2205 		goto out;
2206 	}
2207 
2208 	/* Set real number of channels specified in creq->channels[] */
2209 	creq->n_channels = i;
2210 
2211 	/* translate "Scan for SSID" request */
2212 	if (wreq) {
2213 		if (wrqu->data.flags & IW_SCAN_THIS_ESSID) {
2214 			if (wreq->essid_len > IEEE80211_MAX_SSID_LEN) {
2215 				err = -EINVAL;
2216 				goto out;
2217 			}
2218 			memcpy(creq->ssids[0].ssid, wreq->essid, wreq->essid_len);
2219 			creq->ssids[0].ssid_len = wreq->essid_len;
2220 		}
2221 		if (wreq->scan_type == IW_SCAN_TYPE_PASSIVE)
2222 			creq->n_ssids = 0;
2223 	}
2224 
2225 	for (i = 0; i < NUM_NL80211_BANDS; i++)
2226 		if (wiphy->bands[i])
2227 			creq->rates[i] = (1 << wiphy->bands[i]->n_bitrates) - 1;
2228 
2229 	eth_broadcast_addr(creq->bssid);
2230 
2231 	rdev->scan_req = creq;
2232 	err = rdev_scan(rdev, creq);
2233 	if (err) {
2234 		rdev->scan_req = NULL;
2235 		/* creq will be freed below */
2236 	} else {
2237 		nl80211_send_scan_start(rdev, dev->ieee80211_ptr);
2238 		/* creq now owned by driver */
2239 		creq = NULL;
2240 		dev_hold(dev);
2241 	}
2242  out:
2243 	kfree(creq);
2244 	return err;
2245 }
2246 EXPORT_WEXT_HANDLER(cfg80211_wext_siwscan);
2247 
2248 static char *ieee80211_scan_add_ies(struct iw_request_info *info,
2249 				    const struct cfg80211_bss_ies *ies,
2250 				    char *current_ev, char *end_buf)
2251 {
2252 	const u8 *pos, *end, *next;
2253 	struct iw_event iwe;
2254 
2255 	if (!ies)
2256 		return current_ev;
2257 
2258 	/*
2259 	 * If needed, fragment the IEs buffer (at IE boundaries) into short
2260 	 * enough fragments to fit into IW_GENERIC_IE_MAX octet messages.
2261 	 */
2262 	pos = ies->data;
2263 	end = pos + ies->len;
2264 
2265 	while (end - pos > IW_GENERIC_IE_MAX) {
2266 		next = pos + 2 + pos[1];
2267 		while (next + 2 + next[1] - pos < IW_GENERIC_IE_MAX)
2268 			next = next + 2 + next[1];
2269 
2270 		memset(&iwe, 0, sizeof(iwe));
2271 		iwe.cmd = IWEVGENIE;
2272 		iwe.u.data.length = next - pos;
2273 		current_ev = iwe_stream_add_point_check(info, current_ev,
2274 							end_buf, &iwe,
2275 							(void *)pos);
2276 		if (IS_ERR(current_ev))
2277 			return current_ev;
2278 		pos = next;
2279 	}
2280 
2281 	if (end > pos) {
2282 		memset(&iwe, 0, sizeof(iwe));
2283 		iwe.cmd = IWEVGENIE;
2284 		iwe.u.data.length = end - pos;
2285 		current_ev = iwe_stream_add_point_check(info, current_ev,
2286 							end_buf, &iwe,
2287 							(void *)pos);
2288 		if (IS_ERR(current_ev))
2289 			return current_ev;
2290 	}
2291 
2292 	return current_ev;
2293 }
2294 
2295 static char *
2296 ieee80211_bss(struct wiphy *wiphy, struct iw_request_info *info,
2297 	      struct cfg80211_internal_bss *bss, char *current_ev,
2298 	      char *end_buf)
2299 {
2300 	const struct cfg80211_bss_ies *ies;
2301 	struct iw_event iwe;
2302 	const u8 *ie;
2303 	u8 buf[50];
2304 	u8 *cfg, *p, *tmp;
2305 	int rem, i, sig;
2306 	bool ismesh = false;
2307 
2308 	memset(&iwe, 0, sizeof(iwe));
2309 	iwe.cmd = SIOCGIWAP;
2310 	iwe.u.ap_addr.sa_family = ARPHRD_ETHER;
2311 	memcpy(iwe.u.ap_addr.sa_data, bss->pub.bssid, ETH_ALEN);
2312 	current_ev = iwe_stream_add_event_check(info, current_ev, end_buf, &iwe,
2313 						IW_EV_ADDR_LEN);
2314 	if (IS_ERR(current_ev))
2315 		return current_ev;
2316 
2317 	memset(&iwe, 0, sizeof(iwe));
2318 	iwe.cmd = SIOCGIWFREQ;
2319 	iwe.u.freq.m = ieee80211_frequency_to_channel(bss->pub.channel->center_freq);
2320 	iwe.u.freq.e = 0;
2321 	current_ev = iwe_stream_add_event_check(info, current_ev, end_buf, &iwe,
2322 						IW_EV_FREQ_LEN);
2323 	if (IS_ERR(current_ev))
2324 		return current_ev;
2325 
2326 	memset(&iwe, 0, sizeof(iwe));
2327 	iwe.cmd = SIOCGIWFREQ;
2328 	iwe.u.freq.m = bss->pub.channel->center_freq;
2329 	iwe.u.freq.e = 6;
2330 	current_ev = iwe_stream_add_event_check(info, current_ev, end_buf, &iwe,
2331 						IW_EV_FREQ_LEN);
2332 	if (IS_ERR(current_ev))
2333 		return current_ev;
2334 
2335 	if (wiphy->signal_type != CFG80211_SIGNAL_TYPE_NONE) {
2336 		memset(&iwe, 0, sizeof(iwe));
2337 		iwe.cmd = IWEVQUAL;
2338 		iwe.u.qual.updated = IW_QUAL_LEVEL_UPDATED |
2339 				     IW_QUAL_NOISE_INVALID |
2340 				     IW_QUAL_QUAL_UPDATED;
2341 		switch (wiphy->signal_type) {
2342 		case CFG80211_SIGNAL_TYPE_MBM:
2343 			sig = bss->pub.signal / 100;
2344 			iwe.u.qual.level = sig;
2345 			iwe.u.qual.updated |= IW_QUAL_DBM;
2346 			if (sig < -110)		/* rather bad */
2347 				sig = -110;
2348 			else if (sig > -40)	/* perfect */
2349 				sig = -40;
2350 			/* will give a range of 0 .. 70 */
2351 			iwe.u.qual.qual = sig + 110;
2352 			break;
2353 		case CFG80211_SIGNAL_TYPE_UNSPEC:
2354 			iwe.u.qual.level = bss->pub.signal;
2355 			/* will give range 0 .. 100 */
2356 			iwe.u.qual.qual = bss->pub.signal;
2357 			break;
2358 		default:
2359 			/* not reached */
2360 			break;
2361 		}
2362 		current_ev = iwe_stream_add_event_check(info, current_ev,
2363 							end_buf, &iwe,
2364 							IW_EV_QUAL_LEN);
2365 		if (IS_ERR(current_ev))
2366 			return current_ev;
2367 	}
2368 
2369 	memset(&iwe, 0, sizeof(iwe));
2370 	iwe.cmd = SIOCGIWENCODE;
2371 	if (bss->pub.capability & WLAN_CAPABILITY_PRIVACY)
2372 		iwe.u.data.flags = IW_ENCODE_ENABLED | IW_ENCODE_NOKEY;
2373 	else
2374 		iwe.u.data.flags = IW_ENCODE_DISABLED;
2375 	iwe.u.data.length = 0;
2376 	current_ev = iwe_stream_add_point_check(info, current_ev, end_buf,
2377 						&iwe, "");
2378 	if (IS_ERR(current_ev))
2379 		return current_ev;
2380 
2381 	rcu_read_lock();
2382 	ies = rcu_dereference(bss->pub.ies);
2383 	rem = ies->len;
2384 	ie = ies->data;
2385 
2386 	while (rem >= 2) {
2387 		/* invalid data */
2388 		if (ie[1] > rem - 2)
2389 			break;
2390 
2391 		switch (ie[0]) {
2392 		case WLAN_EID_SSID:
2393 			memset(&iwe, 0, sizeof(iwe));
2394 			iwe.cmd = SIOCGIWESSID;
2395 			iwe.u.data.length = ie[1];
2396 			iwe.u.data.flags = 1;
2397 			current_ev = iwe_stream_add_point_check(info,
2398 								current_ev,
2399 								end_buf, &iwe,
2400 								(u8 *)ie + 2);
2401 			if (IS_ERR(current_ev))
2402 				goto unlock;
2403 			break;
2404 		case WLAN_EID_MESH_ID:
2405 			memset(&iwe, 0, sizeof(iwe));
2406 			iwe.cmd = SIOCGIWESSID;
2407 			iwe.u.data.length = ie[1];
2408 			iwe.u.data.flags = 1;
2409 			current_ev = iwe_stream_add_point_check(info,
2410 								current_ev,
2411 								end_buf, &iwe,
2412 								(u8 *)ie + 2);
2413 			if (IS_ERR(current_ev))
2414 				goto unlock;
2415 			break;
2416 		case WLAN_EID_MESH_CONFIG:
2417 			ismesh = true;
2418 			if (ie[1] != sizeof(struct ieee80211_meshconf_ie))
2419 				break;
2420 			cfg = (u8 *)ie + 2;
2421 			memset(&iwe, 0, sizeof(iwe));
2422 			iwe.cmd = IWEVCUSTOM;
2423 			sprintf(buf, "Mesh Network Path Selection Protocol ID: "
2424 				"0x%02X", cfg[0]);
2425 			iwe.u.data.length = strlen(buf);
2426 			current_ev = iwe_stream_add_point_check(info,
2427 								current_ev,
2428 								end_buf,
2429 								&iwe, buf);
2430 			if (IS_ERR(current_ev))
2431 				goto unlock;
2432 			sprintf(buf, "Path Selection Metric ID: 0x%02X",
2433 				cfg[1]);
2434 			iwe.u.data.length = strlen(buf);
2435 			current_ev = iwe_stream_add_point_check(info,
2436 								current_ev,
2437 								end_buf,
2438 								&iwe, buf);
2439 			if (IS_ERR(current_ev))
2440 				goto unlock;
2441 			sprintf(buf, "Congestion Control Mode ID: 0x%02X",
2442 				cfg[2]);
2443 			iwe.u.data.length = strlen(buf);
2444 			current_ev = iwe_stream_add_point_check(info,
2445 								current_ev,
2446 								end_buf,
2447 								&iwe, buf);
2448 			if (IS_ERR(current_ev))
2449 				goto unlock;
2450 			sprintf(buf, "Synchronization ID: 0x%02X", cfg[3]);
2451 			iwe.u.data.length = strlen(buf);
2452 			current_ev = iwe_stream_add_point_check(info,
2453 								current_ev,
2454 								end_buf,
2455 								&iwe, buf);
2456 			if (IS_ERR(current_ev))
2457 				goto unlock;
2458 			sprintf(buf, "Authentication ID: 0x%02X", cfg[4]);
2459 			iwe.u.data.length = strlen(buf);
2460 			current_ev = iwe_stream_add_point_check(info,
2461 								current_ev,
2462 								end_buf,
2463 								&iwe, buf);
2464 			if (IS_ERR(current_ev))
2465 				goto unlock;
2466 			sprintf(buf, "Formation Info: 0x%02X", cfg[5]);
2467 			iwe.u.data.length = strlen(buf);
2468 			current_ev = iwe_stream_add_point_check(info,
2469 								current_ev,
2470 								end_buf,
2471 								&iwe, buf);
2472 			if (IS_ERR(current_ev))
2473 				goto unlock;
2474 			sprintf(buf, "Capabilities: 0x%02X", cfg[6]);
2475 			iwe.u.data.length = strlen(buf);
2476 			current_ev = iwe_stream_add_point_check(info,
2477 								current_ev,
2478 								end_buf,
2479 								&iwe, buf);
2480 			if (IS_ERR(current_ev))
2481 				goto unlock;
2482 			break;
2483 		case WLAN_EID_SUPP_RATES:
2484 		case WLAN_EID_EXT_SUPP_RATES:
2485 			/* display all supported rates in readable format */
2486 			p = current_ev + iwe_stream_lcp_len(info);
2487 
2488 			memset(&iwe, 0, sizeof(iwe));
2489 			iwe.cmd = SIOCGIWRATE;
2490 			/* Those two flags are ignored... */
2491 			iwe.u.bitrate.fixed = iwe.u.bitrate.disabled = 0;
2492 
2493 			for (i = 0; i < ie[1]; i++) {
2494 				iwe.u.bitrate.value =
2495 					((ie[i + 2] & 0x7f) * 500000);
2496 				tmp = p;
2497 				p = iwe_stream_add_value(info, current_ev, p,
2498 							 end_buf, &iwe,
2499 							 IW_EV_PARAM_LEN);
2500 				if (p == tmp) {
2501 					current_ev = ERR_PTR(-E2BIG);
2502 					goto unlock;
2503 				}
2504 			}
2505 			current_ev = p;
2506 			break;
2507 		}
2508 		rem -= ie[1] + 2;
2509 		ie += ie[1] + 2;
2510 	}
2511 
2512 	if (bss->pub.capability & (WLAN_CAPABILITY_ESS | WLAN_CAPABILITY_IBSS) ||
2513 	    ismesh) {
2514 		memset(&iwe, 0, sizeof(iwe));
2515 		iwe.cmd = SIOCGIWMODE;
2516 		if (ismesh)
2517 			iwe.u.mode = IW_MODE_MESH;
2518 		else if (bss->pub.capability & WLAN_CAPABILITY_ESS)
2519 			iwe.u.mode = IW_MODE_MASTER;
2520 		else
2521 			iwe.u.mode = IW_MODE_ADHOC;
2522 		current_ev = iwe_stream_add_event_check(info, current_ev,
2523 							end_buf, &iwe,
2524 							IW_EV_UINT_LEN);
2525 		if (IS_ERR(current_ev))
2526 			goto unlock;
2527 	}
2528 
2529 	memset(&iwe, 0, sizeof(iwe));
2530 	iwe.cmd = IWEVCUSTOM;
2531 	sprintf(buf, "tsf=%016llx", (unsigned long long)(ies->tsf));
2532 	iwe.u.data.length = strlen(buf);
2533 	current_ev = iwe_stream_add_point_check(info, current_ev, end_buf,
2534 						&iwe, buf);
2535 	if (IS_ERR(current_ev))
2536 		goto unlock;
2537 	memset(&iwe, 0, sizeof(iwe));
2538 	iwe.cmd = IWEVCUSTOM;
2539 	sprintf(buf, " Last beacon: %ums ago",
2540 		elapsed_jiffies_msecs(bss->ts));
2541 	iwe.u.data.length = strlen(buf);
2542 	current_ev = iwe_stream_add_point_check(info, current_ev,
2543 						end_buf, &iwe, buf);
2544 	if (IS_ERR(current_ev))
2545 		goto unlock;
2546 
2547 	current_ev = ieee80211_scan_add_ies(info, ies, current_ev, end_buf);
2548 
2549  unlock:
2550 	rcu_read_unlock();
2551 	return current_ev;
2552 }
2553 
2554 
2555 static int ieee80211_scan_results(struct cfg80211_registered_device *rdev,
2556 				  struct iw_request_info *info,
2557 				  char *buf, size_t len)
2558 {
2559 	char *current_ev = buf;
2560 	char *end_buf = buf + len;
2561 	struct cfg80211_internal_bss *bss;
2562 	int err = 0;
2563 
2564 	spin_lock_bh(&rdev->bss_lock);
2565 	cfg80211_bss_expire(rdev);
2566 
2567 	list_for_each_entry(bss, &rdev->bss_list, list) {
2568 		if (buf + len - current_ev <= IW_EV_ADDR_LEN) {
2569 			err = -E2BIG;
2570 			break;
2571 		}
2572 		current_ev = ieee80211_bss(&rdev->wiphy, info, bss,
2573 					   current_ev, end_buf);
2574 		if (IS_ERR(current_ev)) {
2575 			err = PTR_ERR(current_ev);
2576 			break;
2577 		}
2578 	}
2579 	spin_unlock_bh(&rdev->bss_lock);
2580 
2581 	if (err)
2582 		return err;
2583 	return current_ev - buf;
2584 }
2585 
2586 
2587 int cfg80211_wext_giwscan(struct net_device *dev,
2588 			  struct iw_request_info *info,
2589 			  struct iw_point *data, char *extra)
2590 {
2591 	struct cfg80211_registered_device *rdev;
2592 	int res;
2593 
2594 	if (!netif_running(dev))
2595 		return -ENETDOWN;
2596 
2597 	rdev = cfg80211_get_dev_from_ifindex(dev_net(dev), dev->ifindex);
2598 
2599 	if (IS_ERR(rdev))
2600 		return PTR_ERR(rdev);
2601 
2602 	if (rdev->scan_req || rdev->scan_msg)
2603 		return -EAGAIN;
2604 
2605 	res = ieee80211_scan_results(rdev, info, extra, data->length);
2606 	data->length = 0;
2607 	if (res >= 0) {
2608 		data->length = res;
2609 		res = 0;
2610 	}
2611 
2612 	return res;
2613 }
2614 EXPORT_WEXT_HANDLER(cfg80211_wext_giwscan);
2615 #endif
2616