1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * cfg80211 scan result handling 4 * 5 * Copyright 2008 Johannes Berg <johannes@sipsolutions.net> 6 * Copyright 2013-2014 Intel Mobile Communications GmbH 7 * Copyright 2016 Intel Deutschland GmbH 8 * Copyright (C) 2018-2024 Intel Corporation 9 */ 10 #include <linux/kernel.h> 11 #include <linux/slab.h> 12 #include <linux/module.h> 13 #include <linux/netdevice.h> 14 #include <linux/wireless.h> 15 #include <linux/nl80211.h> 16 #include <linux/etherdevice.h> 17 #include <linux/crc32.h> 18 #include <linux/bitfield.h> 19 #include <net/arp.h> 20 #include <net/cfg80211.h> 21 #include <net/cfg80211-wext.h> 22 #include <net/iw_handler.h> 23 #include <kunit/visibility.h> 24 #include "core.h" 25 #include "nl80211.h" 26 #include "wext-compat.h" 27 #include "rdev-ops.h" 28 29 /** 30 * DOC: BSS tree/list structure 31 * 32 * At the top level, the BSS list is kept in both a list in each 33 * registered device (@bss_list) as well as an RB-tree for faster 34 * lookup. In the RB-tree, entries can be looked up using their 35 * channel, MESHID, MESHCONF (for MBSSes) or channel, BSSID, SSID 36 * for other BSSes. 37 * 38 * Due to the possibility of hidden SSIDs, there's a second level 39 * structure, the "hidden_list" and "hidden_beacon_bss" pointer. 40 * The hidden_list connects all BSSes belonging to a single AP 41 * that has a hidden SSID, and connects beacon and probe response 42 * entries. For a probe response entry for a hidden SSID, the 43 * hidden_beacon_bss pointer points to the BSS struct holding the 44 * beacon's information. 45 * 46 * Reference counting is done for all these references except for 47 * the hidden_list, so that a beacon BSS struct that is otherwise 48 * not referenced has one reference for being on the bss_list and 49 * one for each probe response entry that points to it using the 50 * hidden_beacon_bss pointer. When a BSS struct that has such a 51 * pointer is get/put, the refcount update is also propagated to 52 * the referenced struct, this ensure that it cannot get removed 53 * while somebody is using the probe response version. 54 * 55 * Note that the hidden_beacon_bss pointer never changes, due to 56 * the reference counting. Therefore, no locking is needed for 57 * it. 58 * 59 * Also note that the hidden_beacon_bss pointer is only relevant 60 * if the driver uses something other than the IEs, e.g. private 61 * data stored in the BSS struct, since the beacon IEs are 62 * also linked into the probe response struct. 63 */ 64 65 /* 66 * Limit the number of BSS entries stored in mac80211. Each one is 67 * a bit over 4k at most, so this limits to roughly 4-5M of memory. 68 * If somebody wants to really attack this though, they'd likely 69 * use small beacons, and only one type of frame, limiting each of 70 * the entries to a much smaller size (in order to generate more 71 * entries in total, so overhead is bigger.) 72 */ 73 static int bss_entries_limit = 1000; 74 module_param(bss_entries_limit, int, 0644); 75 MODULE_PARM_DESC(bss_entries_limit, 76 "limit to number of scan BSS entries (per wiphy, default 1000)"); 77 78 #define IEEE80211_SCAN_RESULT_EXPIRE (30 * HZ) 79 80 static void bss_free(struct cfg80211_internal_bss *bss) 81 { 82 struct cfg80211_bss_ies *ies; 83 84 if (WARN_ON(atomic_read(&bss->hold))) 85 return; 86 87 ies = (void *)rcu_access_pointer(bss->pub.beacon_ies); 88 if (ies && !bss->pub.hidden_beacon_bss) 89 kfree_rcu(ies, rcu_head); 90 ies = (void *)rcu_access_pointer(bss->pub.proberesp_ies); 91 if (ies) 92 kfree_rcu(ies, rcu_head); 93 94 /* 95 * This happens when the module is removed, it doesn't 96 * really matter any more save for completeness 97 */ 98 if (!list_empty(&bss->hidden_list)) 99 list_del(&bss->hidden_list); 100 101 kfree(bss); 102 } 103 104 static inline void bss_ref_get(struct cfg80211_registered_device *rdev, 105 struct cfg80211_internal_bss *bss) 106 { 107 lockdep_assert_held(&rdev->bss_lock); 108 109 bss->refcount++; 110 111 if (bss->pub.hidden_beacon_bss) 112 bss_from_pub(bss->pub.hidden_beacon_bss)->refcount++; 113 114 if (bss->pub.transmitted_bss) 115 bss_from_pub(bss->pub.transmitted_bss)->refcount++; 116 } 117 118 static inline void bss_ref_put(struct cfg80211_registered_device *rdev, 119 struct cfg80211_internal_bss *bss) 120 { 121 lockdep_assert_held(&rdev->bss_lock); 122 123 if (bss->pub.hidden_beacon_bss) { 124 struct cfg80211_internal_bss *hbss; 125 126 hbss = bss_from_pub(bss->pub.hidden_beacon_bss); 127 hbss->refcount--; 128 if (hbss->refcount == 0) 129 bss_free(hbss); 130 } 131 132 if (bss->pub.transmitted_bss) { 133 struct cfg80211_internal_bss *tbss; 134 135 tbss = bss_from_pub(bss->pub.transmitted_bss); 136 tbss->refcount--; 137 if (tbss->refcount == 0) 138 bss_free(tbss); 139 } 140 141 bss->refcount--; 142 if (bss->refcount == 0) 143 bss_free(bss); 144 } 145 146 static bool __cfg80211_unlink_bss(struct cfg80211_registered_device *rdev, 147 struct cfg80211_internal_bss *bss) 148 { 149 lockdep_assert_held(&rdev->bss_lock); 150 151 if (!list_empty(&bss->hidden_list)) { 152 /* 153 * don't remove the beacon entry if it has 154 * probe responses associated with it 155 */ 156 if (!bss->pub.hidden_beacon_bss) 157 return false; 158 /* 159 * if it's a probe response entry break its 160 * link to the other entries in the group 161 */ 162 list_del_init(&bss->hidden_list); 163 } 164 165 list_del_init(&bss->list); 166 list_del_init(&bss->pub.nontrans_list); 167 rb_erase(&bss->rbn, &rdev->bss_tree); 168 rdev->bss_entries--; 169 WARN_ONCE((rdev->bss_entries == 0) ^ list_empty(&rdev->bss_list), 170 "rdev bss entries[%d]/list[empty:%d] corruption\n", 171 rdev->bss_entries, list_empty(&rdev->bss_list)); 172 bss_ref_put(rdev, bss); 173 return true; 174 } 175 176 bool cfg80211_is_element_inherited(const struct element *elem, 177 const struct element *non_inherit_elem) 178 { 179 u8 id_len, ext_id_len, i, loop_len, id; 180 const u8 *list; 181 182 if (elem->id == WLAN_EID_MULTIPLE_BSSID) 183 return false; 184 185 if (elem->id == WLAN_EID_EXTENSION && elem->datalen > 1 && 186 elem->data[0] == WLAN_EID_EXT_EHT_MULTI_LINK) 187 return false; 188 189 if (!non_inherit_elem || non_inherit_elem->datalen < 2) 190 return true; 191 192 /* 193 * non inheritance element format is: 194 * ext ID (56) | IDs list len | list | extension IDs list len | list 195 * Both lists are optional. Both lengths are mandatory. 196 * This means valid length is: 197 * elem_len = 1 (extension ID) + 2 (list len fields) + list lengths 198 */ 199 id_len = non_inherit_elem->data[1]; 200 if (non_inherit_elem->datalen < 3 + id_len) 201 return true; 202 203 ext_id_len = non_inherit_elem->data[2 + id_len]; 204 if (non_inherit_elem->datalen < 3 + id_len + ext_id_len) 205 return true; 206 207 if (elem->id == WLAN_EID_EXTENSION) { 208 if (!ext_id_len) 209 return true; 210 loop_len = ext_id_len; 211 list = &non_inherit_elem->data[3 + id_len]; 212 id = elem->data[0]; 213 } else { 214 if (!id_len) 215 return true; 216 loop_len = id_len; 217 list = &non_inherit_elem->data[2]; 218 id = elem->id; 219 } 220 221 for (i = 0; i < loop_len; i++) { 222 if (list[i] == id) 223 return false; 224 } 225 226 return true; 227 } 228 EXPORT_SYMBOL(cfg80211_is_element_inherited); 229 230 static size_t cfg80211_copy_elem_with_frags(const struct element *elem, 231 const u8 *ie, size_t ie_len, 232 u8 **pos, u8 *buf, size_t buf_len) 233 { 234 if (WARN_ON((u8 *)elem < ie || elem->data > ie + ie_len || 235 elem->data + elem->datalen > ie + ie_len)) 236 return 0; 237 238 if (elem->datalen + 2 > buf + buf_len - *pos) 239 return 0; 240 241 memcpy(*pos, elem, elem->datalen + 2); 242 *pos += elem->datalen + 2; 243 244 /* Finish if it is not fragmented */ 245 if (elem->datalen != 255) 246 return *pos - buf; 247 248 ie_len = ie + ie_len - elem->data - elem->datalen; 249 ie = (const u8 *)elem->data + elem->datalen; 250 251 for_each_element(elem, ie, ie_len) { 252 if (elem->id != WLAN_EID_FRAGMENT) 253 break; 254 255 if (elem->datalen + 2 > buf + buf_len - *pos) 256 return 0; 257 258 memcpy(*pos, elem, elem->datalen + 2); 259 *pos += elem->datalen + 2; 260 261 if (elem->datalen != 255) 262 break; 263 } 264 265 return *pos - buf; 266 } 267 268 VISIBLE_IF_CFG80211_KUNIT size_t 269 cfg80211_gen_new_ie(const u8 *ie, size_t ielen, 270 const u8 *subie, size_t subie_len, 271 u8 *new_ie, size_t new_ie_len) 272 { 273 const struct element *non_inherit_elem, *parent, *sub; 274 u8 *pos = new_ie; 275 u8 id, ext_id; 276 unsigned int match_len; 277 278 non_inherit_elem = cfg80211_find_ext_elem(WLAN_EID_EXT_NON_INHERITANCE, 279 subie, subie_len); 280 281 /* We copy the elements one by one from the parent to the generated 282 * elements. 283 * If they are not inherited (included in subie or in the non 284 * inheritance element), then we copy all occurrences the first time 285 * we see this element type. 286 */ 287 for_each_element(parent, ie, ielen) { 288 if (parent->id == WLAN_EID_FRAGMENT) 289 continue; 290 291 if (parent->id == WLAN_EID_EXTENSION) { 292 if (parent->datalen < 1) 293 continue; 294 295 id = WLAN_EID_EXTENSION; 296 ext_id = parent->data[0]; 297 match_len = 1; 298 } else { 299 id = parent->id; 300 match_len = 0; 301 } 302 303 /* Find first occurrence in subie */ 304 sub = cfg80211_find_elem_match(id, subie, subie_len, 305 &ext_id, match_len, 0); 306 307 /* Copy from parent if not in subie and inherited */ 308 if (!sub && 309 cfg80211_is_element_inherited(parent, non_inherit_elem)) { 310 if (!cfg80211_copy_elem_with_frags(parent, 311 ie, ielen, 312 &pos, new_ie, 313 new_ie_len)) 314 return 0; 315 316 continue; 317 } 318 319 /* Already copied if an earlier element had the same type */ 320 if (cfg80211_find_elem_match(id, ie, (u8 *)parent - ie, 321 &ext_id, match_len, 0)) 322 continue; 323 324 /* Not inheriting, copy all similar elements from subie */ 325 while (sub) { 326 if (!cfg80211_copy_elem_with_frags(sub, 327 subie, subie_len, 328 &pos, new_ie, 329 new_ie_len)) 330 return 0; 331 332 sub = cfg80211_find_elem_match(id, 333 sub->data + sub->datalen, 334 subie_len + subie - 335 (sub->data + 336 sub->datalen), 337 &ext_id, match_len, 0); 338 } 339 } 340 341 /* The above misses elements that are included in subie but not in the 342 * parent, so do a pass over subie and append those. 343 * Skip the non-tx BSSID caps and non-inheritance element. 344 */ 345 for_each_element(sub, subie, subie_len) { 346 if (sub->id == WLAN_EID_NON_TX_BSSID_CAP) 347 continue; 348 349 if (sub->id == WLAN_EID_FRAGMENT) 350 continue; 351 352 if (sub->id == WLAN_EID_EXTENSION) { 353 if (sub->datalen < 1) 354 continue; 355 356 id = WLAN_EID_EXTENSION; 357 ext_id = sub->data[0]; 358 match_len = 1; 359 360 if (ext_id == WLAN_EID_EXT_NON_INHERITANCE) 361 continue; 362 } else { 363 id = sub->id; 364 match_len = 0; 365 } 366 367 /* Processed if one was included in the parent */ 368 if (cfg80211_find_elem_match(id, ie, ielen, 369 &ext_id, match_len, 0)) 370 continue; 371 372 if (!cfg80211_copy_elem_with_frags(sub, subie, subie_len, 373 &pos, new_ie, new_ie_len)) 374 return 0; 375 } 376 377 return pos - new_ie; 378 } 379 EXPORT_SYMBOL_IF_CFG80211_KUNIT(cfg80211_gen_new_ie); 380 381 static bool is_bss(struct cfg80211_bss *a, const u8 *bssid, 382 const u8 *ssid, size_t ssid_len) 383 { 384 const struct cfg80211_bss_ies *ies; 385 const struct element *ssid_elem; 386 387 if (bssid && !ether_addr_equal(a->bssid, bssid)) 388 return false; 389 390 if (!ssid) 391 return true; 392 393 ies = rcu_access_pointer(a->ies); 394 if (!ies) 395 return false; 396 ssid_elem = cfg80211_find_elem(WLAN_EID_SSID, ies->data, ies->len); 397 if (!ssid_elem) 398 return false; 399 if (ssid_elem->datalen != ssid_len) 400 return false; 401 return memcmp(ssid_elem->data, ssid, ssid_len) == 0; 402 } 403 404 static int 405 cfg80211_add_nontrans_list(struct cfg80211_bss *trans_bss, 406 struct cfg80211_bss *nontrans_bss) 407 { 408 const struct element *ssid_elem; 409 struct cfg80211_bss *bss = NULL; 410 411 rcu_read_lock(); 412 ssid_elem = ieee80211_bss_get_elem(nontrans_bss, WLAN_EID_SSID); 413 if (!ssid_elem) { 414 rcu_read_unlock(); 415 return -EINVAL; 416 } 417 418 /* check if nontrans_bss is in the list */ 419 list_for_each_entry(bss, &trans_bss->nontrans_list, nontrans_list) { 420 if (is_bss(bss, nontrans_bss->bssid, ssid_elem->data, 421 ssid_elem->datalen)) { 422 rcu_read_unlock(); 423 return 0; 424 } 425 } 426 427 rcu_read_unlock(); 428 429 /* 430 * This is a bit weird - it's not on the list, but already on another 431 * one! The only way that could happen is if there's some BSSID/SSID 432 * shared by multiple APs in their multi-BSSID profiles, potentially 433 * with hidden SSID mixed in ... ignore it. 434 */ 435 if (!list_empty(&nontrans_bss->nontrans_list)) 436 return -EINVAL; 437 438 /* add to the list */ 439 list_add_tail(&nontrans_bss->nontrans_list, &trans_bss->nontrans_list); 440 return 0; 441 } 442 443 static void __cfg80211_bss_expire(struct cfg80211_registered_device *rdev, 444 unsigned long expire_time) 445 { 446 struct cfg80211_internal_bss *bss, *tmp; 447 bool expired = false; 448 449 lockdep_assert_held(&rdev->bss_lock); 450 451 list_for_each_entry_safe(bss, tmp, &rdev->bss_list, list) { 452 if (atomic_read(&bss->hold)) 453 continue; 454 if (!time_after(expire_time, bss->ts)) 455 continue; 456 457 if (__cfg80211_unlink_bss(rdev, bss)) 458 expired = true; 459 } 460 461 if (expired) 462 rdev->bss_generation++; 463 } 464 465 static bool cfg80211_bss_expire_oldest(struct cfg80211_registered_device *rdev) 466 { 467 struct cfg80211_internal_bss *bss, *oldest = NULL; 468 bool ret; 469 470 lockdep_assert_held(&rdev->bss_lock); 471 472 list_for_each_entry(bss, &rdev->bss_list, list) { 473 if (atomic_read(&bss->hold)) 474 continue; 475 476 if (!list_empty(&bss->hidden_list) && 477 !bss->pub.hidden_beacon_bss) 478 continue; 479 480 if (oldest && time_before(oldest->ts, bss->ts)) 481 continue; 482 oldest = bss; 483 } 484 485 if (WARN_ON(!oldest)) 486 return false; 487 488 /* 489 * The callers make sure to increase rdev->bss_generation if anything 490 * gets removed (and a new entry added), so there's no need to also do 491 * it here. 492 */ 493 494 ret = __cfg80211_unlink_bss(rdev, oldest); 495 WARN_ON(!ret); 496 return ret; 497 } 498 499 static u8 cfg80211_parse_bss_param(u8 data, 500 struct cfg80211_colocated_ap *coloc_ap) 501 { 502 coloc_ap->oct_recommended = 503 u8_get_bits(data, IEEE80211_RNR_TBTT_PARAMS_OCT_RECOMMENDED); 504 coloc_ap->same_ssid = 505 u8_get_bits(data, IEEE80211_RNR_TBTT_PARAMS_SAME_SSID); 506 coloc_ap->multi_bss = 507 u8_get_bits(data, IEEE80211_RNR_TBTT_PARAMS_MULTI_BSSID); 508 coloc_ap->transmitted_bssid = 509 u8_get_bits(data, IEEE80211_RNR_TBTT_PARAMS_TRANSMITTED_BSSID); 510 coloc_ap->unsolicited_probe = 511 u8_get_bits(data, IEEE80211_RNR_TBTT_PARAMS_PROBE_ACTIVE); 512 coloc_ap->colocated_ess = 513 u8_get_bits(data, IEEE80211_RNR_TBTT_PARAMS_COLOC_ESS); 514 515 return u8_get_bits(data, IEEE80211_RNR_TBTT_PARAMS_COLOC_AP); 516 } 517 518 static int cfg80211_calc_short_ssid(const struct cfg80211_bss_ies *ies, 519 const struct element **elem, u32 *s_ssid) 520 { 521 522 *elem = cfg80211_find_elem(WLAN_EID_SSID, ies->data, ies->len); 523 if (!*elem || (*elem)->datalen > IEEE80211_MAX_SSID_LEN) 524 return -EINVAL; 525 526 *s_ssid = ~crc32_le(~0, (*elem)->data, (*elem)->datalen); 527 return 0; 528 } 529 530 VISIBLE_IF_CFG80211_KUNIT void 531 cfg80211_free_coloc_ap_list(struct list_head *coloc_ap_list) 532 { 533 struct cfg80211_colocated_ap *ap, *tmp_ap; 534 535 list_for_each_entry_safe(ap, tmp_ap, coloc_ap_list, list) { 536 list_del(&ap->list); 537 kfree(ap); 538 } 539 } 540 EXPORT_SYMBOL_IF_CFG80211_KUNIT(cfg80211_free_coloc_ap_list); 541 542 static int cfg80211_parse_ap_info(struct cfg80211_colocated_ap *entry, 543 const u8 *pos, u8 length, 544 const struct element *ssid_elem, 545 u32 s_ssid_tmp) 546 { 547 u8 bss_params; 548 549 entry->psd_20 = IEEE80211_RNR_TBTT_PARAMS_PSD_RESERVED; 550 551 /* The length is already verified by the caller to contain bss_params */ 552 if (length > sizeof(struct ieee80211_tbtt_info_7_8_9)) { 553 struct ieee80211_tbtt_info_ge_11 *tbtt_info = (void *)pos; 554 555 memcpy(entry->bssid, tbtt_info->bssid, ETH_ALEN); 556 entry->short_ssid = le32_to_cpu(tbtt_info->short_ssid); 557 entry->short_ssid_valid = true; 558 559 bss_params = tbtt_info->bss_params; 560 561 /* Ignore disabled links */ 562 if (length >= offsetofend(typeof(*tbtt_info), mld_params)) { 563 if (le16_get_bits(tbtt_info->mld_params.params, 564 IEEE80211_RNR_MLD_PARAMS_DISABLED_LINK)) 565 return -EINVAL; 566 } 567 568 if (length >= offsetofend(struct ieee80211_tbtt_info_ge_11, 569 psd_20)) 570 entry->psd_20 = tbtt_info->psd_20; 571 } else { 572 struct ieee80211_tbtt_info_7_8_9 *tbtt_info = (void *)pos; 573 574 memcpy(entry->bssid, tbtt_info->bssid, ETH_ALEN); 575 576 bss_params = tbtt_info->bss_params; 577 578 if (length == offsetofend(struct ieee80211_tbtt_info_7_8_9, 579 psd_20)) 580 entry->psd_20 = tbtt_info->psd_20; 581 } 582 583 /* ignore entries with invalid BSSID */ 584 if (!is_valid_ether_addr(entry->bssid)) 585 return -EINVAL; 586 587 /* skip non colocated APs */ 588 if (!cfg80211_parse_bss_param(bss_params, entry)) 589 return -EINVAL; 590 591 /* no information about the short ssid. Consider the entry valid 592 * for now. It would later be dropped in case there are explicit 593 * SSIDs that need to be matched 594 */ 595 if (!entry->same_ssid && !entry->short_ssid_valid) 596 return 0; 597 598 if (entry->same_ssid) { 599 entry->short_ssid = s_ssid_tmp; 600 entry->short_ssid_valid = true; 601 602 /* 603 * This is safe because we validate datalen in 604 * cfg80211_parse_colocated_ap(), before calling this 605 * function. 606 */ 607 memcpy(&entry->ssid, &ssid_elem->data, ssid_elem->datalen); 608 entry->ssid_len = ssid_elem->datalen; 609 } 610 611 return 0; 612 } 613 614 enum cfg80211_rnr_iter_ret { 615 RNR_ITER_CONTINUE, 616 RNR_ITER_BREAK, 617 RNR_ITER_ERROR, 618 }; 619 620 static bool 621 cfg80211_iter_rnr(const u8 *elems, size_t elems_len, 622 enum cfg80211_rnr_iter_ret 623 (*iter)(void *data, u8 type, 624 const struct ieee80211_neighbor_ap_info *info, 625 const u8 *tbtt_info, u8 tbtt_info_len), 626 void *iter_data) 627 { 628 const struct element *rnr; 629 const u8 *pos, *end; 630 631 for_each_element_id(rnr, WLAN_EID_REDUCED_NEIGHBOR_REPORT, 632 elems, elems_len) { 633 const struct ieee80211_neighbor_ap_info *info; 634 635 pos = rnr->data; 636 end = rnr->data + rnr->datalen; 637 638 /* RNR IE may contain more than one NEIGHBOR_AP_INFO */ 639 while (sizeof(*info) <= end - pos) { 640 u8 length, i, count; 641 u8 type; 642 643 info = (void *)pos; 644 count = u8_get_bits(info->tbtt_info_hdr, 645 IEEE80211_AP_INFO_TBTT_HDR_COUNT) + 646 1; 647 length = info->tbtt_info_len; 648 649 pos += sizeof(*info); 650 651 if (count * length > end - pos) 652 return false; 653 654 type = u8_get_bits(info->tbtt_info_hdr, 655 IEEE80211_AP_INFO_TBTT_HDR_TYPE); 656 657 for (i = 0; i < count; i++) { 658 switch (iter(iter_data, type, info, 659 pos, length)) { 660 case RNR_ITER_CONTINUE: 661 break; 662 case RNR_ITER_BREAK: 663 return true; 664 case RNR_ITER_ERROR: 665 return false; 666 } 667 668 pos += length; 669 } 670 } 671 672 if (pos != end) 673 return false; 674 } 675 676 return true; 677 } 678 679 struct colocated_ap_data { 680 const struct element *ssid_elem; 681 struct list_head ap_list; 682 u32 s_ssid_tmp; 683 int n_coloc; 684 }; 685 686 static enum cfg80211_rnr_iter_ret 687 cfg80211_parse_colocated_ap_iter(void *_data, u8 type, 688 const struct ieee80211_neighbor_ap_info *info, 689 const u8 *tbtt_info, u8 tbtt_info_len) 690 { 691 struct colocated_ap_data *data = _data; 692 struct cfg80211_colocated_ap *entry; 693 enum nl80211_band band; 694 695 if (type != IEEE80211_TBTT_INFO_TYPE_TBTT) 696 return RNR_ITER_CONTINUE; 697 698 if (!ieee80211_operating_class_to_band(info->op_class, &band)) 699 return RNR_ITER_CONTINUE; 700 701 /* TBTT info must include bss param + BSSID + (short SSID or 702 * same_ssid bit to be set). Ignore other options, and move to 703 * the next AP info 704 */ 705 if (band != NL80211_BAND_6GHZ || 706 !(tbtt_info_len == offsetofend(struct ieee80211_tbtt_info_7_8_9, 707 bss_params) || 708 tbtt_info_len == sizeof(struct ieee80211_tbtt_info_7_8_9) || 709 tbtt_info_len >= offsetofend(struct ieee80211_tbtt_info_ge_11, 710 bss_params))) 711 return RNR_ITER_CONTINUE; 712 713 entry = kzalloc(sizeof(*entry) + IEEE80211_MAX_SSID_LEN, GFP_ATOMIC); 714 if (!entry) 715 return RNR_ITER_ERROR; 716 717 entry->center_freq = 718 ieee80211_channel_to_frequency(info->channel, band); 719 720 if (!cfg80211_parse_ap_info(entry, tbtt_info, tbtt_info_len, 721 data->ssid_elem, data->s_ssid_tmp)) { 722 data->n_coloc++; 723 list_add_tail(&entry->list, &data->ap_list); 724 } else { 725 kfree(entry); 726 } 727 728 return RNR_ITER_CONTINUE; 729 } 730 731 VISIBLE_IF_CFG80211_KUNIT int 732 cfg80211_parse_colocated_ap(const struct cfg80211_bss_ies *ies, 733 struct list_head *list) 734 { 735 struct colocated_ap_data data = {}; 736 int ret; 737 738 INIT_LIST_HEAD(&data.ap_list); 739 740 ret = cfg80211_calc_short_ssid(ies, &data.ssid_elem, &data.s_ssid_tmp); 741 if (ret) 742 return 0; 743 744 if (!cfg80211_iter_rnr(ies->data, ies->len, 745 cfg80211_parse_colocated_ap_iter, &data)) { 746 cfg80211_free_coloc_ap_list(&data.ap_list); 747 return 0; 748 } 749 750 list_splice_tail(&data.ap_list, list); 751 return data.n_coloc; 752 } 753 EXPORT_SYMBOL_IF_CFG80211_KUNIT(cfg80211_parse_colocated_ap); 754 755 static void cfg80211_scan_req_add_chan(struct cfg80211_scan_request *request, 756 struct ieee80211_channel *chan, 757 bool add_to_6ghz) 758 { 759 int i; 760 u32 n_channels = request->n_channels; 761 struct cfg80211_scan_6ghz_params *params = 762 &request->scan_6ghz_params[request->n_6ghz_params]; 763 764 for (i = 0; i < n_channels; i++) { 765 if (request->channels[i] == chan) { 766 if (add_to_6ghz) 767 params->channel_idx = i; 768 return; 769 } 770 } 771 772 request->channels[n_channels] = chan; 773 if (add_to_6ghz) 774 request->scan_6ghz_params[request->n_6ghz_params].channel_idx = 775 n_channels; 776 777 request->n_channels++; 778 } 779 780 static bool cfg80211_find_ssid_match(struct cfg80211_colocated_ap *ap, 781 struct cfg80211_scan_request *request) 782 { 783 int i; 784 u32 s_ssid; 785 786 for (i = 0; i < request->n_ssids; i++) { 787 /* wildcard ssid in the scan request */ 788 if (!request->ssids[i].ssid_len) { 789 if (ap->multi_bss && !ap->transmitted_bssid) 790 continue; 791 792 return true; 793 } 794 795 if (ap->ssid_len && 796 ap->ssid_len == request->ssids[i].ssid_len) { 797 if (!memcmp(request->ssids[i].ssid, ap->ssid, 798 ap->ssid_len)) 799 return true; 800 } else if (ap->short_ssid_valid) { 801 s_ssid = ~crc32_le(~0, request->ssids[i].ssid, 802 request->ssids[i].ssid_len); 803 804 if (ap->short_ssid == s_ssid) 805 return true; 806 } 807 } 808 809 return false; 810 } 811 812 static int cfg80211_scan_6ghz(struct cfg80211_registered_device *rdev) 813 { 814 u8 i; 815 struct cfg80211_colocated_ap *ap; 816 int n_channels, count = 0, err; 817 struct cfg80211_scan_request *request, *rdev_req = rdev->scan_req; 818 LIST_HEAD(coloc_ap_list); 819 bool need_scan_psc = true; 820 const struct ieee80211_sband_iftype_data *iftd; 821 822 rdev_req->scan_6ghz = true; 823 824 if (!rdev->wiphy.bands[NL80211_BAND_6GHZ]) 825 return -EOPNOTSUPP; 826 827 iftd = ieee80211_get_sband_iftype_data(rdev->wiphy.bands[NL80211_BAND_6GHZ], 828 rdev_req->wdev->iftype); 829 if (!iftd || !iftd->he_cap.has_he) 830 return -EOPNOTSUPP; 831 832 n_channels = rdev->wiphy.bands[NL80211_BAND_6GHZ]->n_channels; 833 834 if (rdev_req->flags & NL80211_SCAN_FLAG_COLOCATED_6GHZ) { 835 struct cfg80211_internal_bss *intbss; 836 837 spin_lock_bh(&rdev->bss_lock); 838 list_for_each_entry(intbss, &rdev->bss_list, list) { 839 struct cfg80211_bss *res = &intbss->pub; 840 const struct cfg80211_bss_ies *ies; 841 const struct element *ssid_elem; 842 struct cfg80211_colocated_ap *entry; 843 u32 s_ssid_tmp; 844 int ret; 845 846 ies = rcu_access_pointer(res->ies); 847 count += cfg80211_parse_colocated_ap(ies, 848 &coloc_ap_list); 849 850 /* In case the scan request specified a specific BSSID 851 * and the BSS is found and operating on 6GHz band then 852 * add this AP to the collocated APs list. 853 * This is relevant for ML probe requests when the lower 854 * band APs have not been discovered. 855 */ 856 if (is_broadcast_ether_addr(rdev_req->bssid) || 857 !ether_addr_equal(rdev_req->bssid, res->bssid) || 858 res->channel->band != NL80211_BAND_6GHZ) 859 continue; 860 861 ret = cfg80211_calc_short_ssid(ies, &ssid_elem, 862 &s_ssid_tmp); 863 if (ret) 864 continue; 865 866 entry = kzalloc(sizeof(*entry) + IEEE80211_MAX_SSID_LEN, 867 GFP_ATOMIC); 868 869 if (!entry) 870 continue; 871 872 memcpy(entry->bssid, res->bssid, ETH_ALEN); 873 entry->short_ssid = s_ssid_tmp; 874 memcpy(entry->ssid, ssid_elem->data, 875 ssid_elem->datalen); 876 entry->ssid_len = ssid_elem->datalen; 877 entry->short_ssid_valid = true; 878 entry->center_freq = res->channel->center_freq; 879 880 list_add_tail(&entry->list, &coloc_ap_list); 881 count++; 882 } 883 spin_unlock_bh(&rdev->bss_lock); 884 } 885 886 request = kzalloc(struct_size(request, channels, n_channels) + 887 sizeof(*request->scan_6ghz_params) * count + 888 sizeof(*request->ssids) * rdev_req->n_ssids, 889 GFP_KERNEL); 890 if (!request) { 891 cfg80211_free_coloc_ap_list(&coloc_ap_list); 892 return -ENOMEM; 893 } 894 895 *request = *rdev_req; 896 request->n_channels = 0; 897 request->scan_6ghz_params = 898 (void *)&request->channels[n_channels]; 899 900 /* 901 * PSC channels should not be scanned in case of direct scan with 1 SSID 902 * and at least one of the reported co-located APs with same SSID 903 * indicating that all APs in the same ESS are co-located 904 */ 905 if (count && request->n_ssids == 1 && request->ssids[0].ssid_len) { 906 list_for_each_entry(ap, &coloc_ap_list, list) { 907 if (ap->colocated_ess && 908 cfg80211_find_ssid_match(ap, request)) { 909 need_scan_psc = false; 910 break; 911 } 912 } 913 } 914 915 /* 916 * add to the scan request the channels that need to be scanned 917 * regardless of the collocated APs (PSC channels or all channels 918 * in case that NL80211_SCAN_FLAG_COLOCATED_6GHZ is not set) 919 */ 920 for (i = 0; i < rdev_req->n_channels; i++) { 921 if (rdev_req->channels[i]->band == NL80211_BAND_6GHZ && 922 ((need_scan_psc && 923 cfg80211_channel_is_psc(rdev_req->channels[i])) || 924 !(rdev_req->flags & NL80211_SCAN_FLAG_COLOCATED_6GHZ))) { 925 cfg80211_scan_req_add_chan(request, 926 rdev_req->channels[i], 927 false); 928 } 929 } 930 931 if (!(rdev_req->flags & NL80211_SCAN_FLAG_COLOCATED_6GHZ)) 932 goto skip; 933 934 list_for_each_entry(ap, &coloc_ap_list, list) { 935 bool found = false; 936 struct cfg80211_scan_6ghz_params *scan_6ghz_params = 937 &request->scan_6ghz_params[request->n_6ghz_params]; 938 struct ieee80211_channel *chan = 939 ieee80211_get_channel(&rdev->wiphy, ap->center_freq); 940 941 if (!chan || chan->flags & IEEE80211_CHAN_DISABLED) 942 continue; 943 944 for (i = 0; i < rdev_req->n_channels; i++) { 945 if (rdev_req->channels[i] == chan) 946 found = true; 947 } 948 949 if (!found) 950 continue; 951 952 if (request->n_ssids > 0 && 953 !cfg80211_find_ssid_match(ap, request)) 954 continue; 955 956 if (!is_broadcast_ether_addr(request->bssid) && 957 !ether_addr_equal(request->bssid, ap->bssid)) 958 continue; 959 960 if (!request->n_ssids && ap->multi_bss && !ap->transmitted_bssid) 961 continue; 962 963 cfg80211_scan_req_add_chan(request, chan, true); 964 memcpy(scan_6ghz_params->bssid, ap->bssid, ETH_ALEN); 965 scan_6ghz_params->short_ssid = ap->short_ssid; 966 scan_6ghz_params->short_ssid_valid = ap->short_ssid_valid; 967 scan_6ghz_params->unsolicited_probe = ap->unsolicited_probe; 968 scan_6ghz_params->psd_20 = ap->psd_20; 969 970 /* 971 * If a PSC channel is added to the scan and 'need_scan_psc' is 972 * set to false, then all the APs that the scan logic is 973 * interested with on the channel are collocated and thus there 974 * is no need to perform the initial PSC channel listen. 975 */ 976 if (cfg80211_channel_is_psc(chan) && !need_scan_psc) 977 scan_6ghz_params->psc_no_listen = true; 978 979 request->n_6ghz_params++; 980 } 981 982 skip: 983 cfg80211_free_coloc_ap_list(&coloc_ap_list); 984 985 if (request->n_channels) { 986 struct cfg80211_scan_request *old = rdev->int_scan_req; 987 rdev->int_scan_req = request; 988 989 /* 990 * Add the ssids from the parent scan request to the new scan 991 * request, so the driver would be able to use them in its 992 * probe requests to discover hidden APs on PSC channels. 993 */ 994 request->ssids = (void *)&request->channels[request->n_channels]; 995 request->n_ssids = rdev_req->n_ssids; 996 memcpy(request->ssids, rdev_req->ssids, sizeof(*request->ssids) * 997 request->n_ssids); 998 999 /* 1000 * If this scan follows a previous scan, save the scan start 1001 * info from the first part of the scan 1002 */ 1003 if (old) 1004 rdev->int_scan_req->info = old->info; 1005 1006 err = rdev_scan(rdev, request); 1007 if (err) { 1008 rdev->int_scan_req = old; 1009 kfree(request); 1010 } else { 1011 kfree(old); 1012 } 1013 1014 return err; 1015 } 1016 1017 kfree(request); 1018 return -EINVAL; 1019 } 1020 1021 int cfg80211_scan(struct cfg80211_registered_device *rdev) 1022 { 1023 struct cfg80211_scan_request *request; 1024 struct cfg80211_scan_request *rdev_req = rdev->scan_req; 1025 u32 n_channels = 0, idx, i; 1026 1027 if (!(rdev->wiphy.flags & WIPHY_FLAG_SPLIT_SCAN_6GHZ)) 1028 return rdev_scan(rdev, rdev_req); 1029 1030 for (i = 0; i < rdev_req->n_channels; i++) { 1031 if (rdev_req->channels[i]->band != NL80211_BAND_6GHZ) 1032 n_channels++; 1033 } 1034 1035 if (!n_channels) 1036 return cfg80211_scan_6ghz(rdev); 1037 1038 request = kzalloc(struct_size(request, channels, n_channels), 1039 GFP_KERNEL); 1040 if (!request) 1041 return -ENOMEM; 1042 1043 *request = *rdev_req; 1044 request->n_channels = n_channels; 1045 1046 for (i = idx = 0; i < rdev_req->n_channels; i++) { 1047 if (rdev_req->channels[i]->band != NL80211_BAND_6GHZ) 1048 request->channels[idx++] = rdev_req->channels[i]; 1049 } 1050 1051 rdev_req->scan_6ghz = false; 1052 rdev->int_scan_req = request; 1053 return rdev_scan(rdev, request); 1054 } 1055 1056 void ___cfg80211_scan_done(struct cfg80211_registered_device *rdev, 1057 bool send_message) 1058 { 1059 struct cfg80211_scan_request *request, *rdev_req; 1060 struct wireless_dev *wdev; 1061 struct sk_buff *msg; 1062 #ifdef CONFIG_CFG80211_WEXT 1063 union iwreq_data wrqu; 1064 #endif 1065 1066 lockdep_assert_held(&rdev->wiphy.mtx); 1067 1068 if (rdev->scan_msg) { 1069 nl80211_send_scan_msg(rdev, rdev->scan_msg); 1070 rdev->scan_msg = NULL; 1071 return; 1072 } 1073 1074 rdev_req = rdev->scan_req; 1075 if (!rdev_req) 1076 return; 1077 1078 wdev = rdev_req->wdev; 1079 request = rdev->int_scan_req ? rdev->int_scan_req : rdev_req; 1080 1081 if (wdev_running(wdev) && 1082 (rdev->wiphy.flags & WIPHY_FLAG_SPLIT_SCAN_6GHZ) && 1083 !rdev_req->scan_6ghz && !request->info.aborted && 1084 !cfg80211_scan_6ghz(rdev)) 1085 return; 1086 1087 /* 1088 * This must be before sending the other events! 1089 * Otherwise, wpa_supplicant gets completely confused with 1090 * wext events. 1091 */ 1092 if (wdev->netdev) 1093 cfg80211_sme_scan_done(wdev->netdev); 1094 1095 if (!request->info.aborted && 1096 request->flags & NL80211_SCAN_FLAG_FLUSH) { 1097 /* flush entries from previous scans */ 1098 spin_lock_bh(&rdev->bss_lock); 1099 __cfg80211_bss_expire(rdev, request->scan_start); 1100 spin_unlock_bh(&rdev->bss_lock); 1101 } 1102 1103 msg = nl80211_build_scan_msg(rdev, wdev, request->info.aborted); 1104 1105 #ifdef CONFIG_CFG80211_WEXT 1106 if (wdev->netdev && !request->info.aborted) { 1107 memset(&wrqu, 0, sizeof(wrqu)); 1108 1109 wireless_send_event(wdev->netdev, SIOCGIWSCAN, &wrqu, NULL); 1110 } 1111 #endif 1112 1113 dev_put(wdev->netdev); 1114 1115 kfree(rdev->int_scan_req); 1116 rdev->int_scan_req = NULL; 1117 1118 kfree(rdev->scan_req); 1119 rdev->scan_req = NULL; 1120 1121 if (!send_message) 1122 rdev->scan_msg = msg; 1123 else 1124 nl80211_send_scan_msg(rdev, msg); 1125 } 1126 1127 void __cfg80211_scan_done(struct wiphy *wiphy, struct wiphy_work *wk) 1128 { 1129 ___cfg80211_scan_done(wiphy_to_rdev(wiphy), true); 1130 } 1131 1132 void cfg80211_scan_done(struct cfg80211_scan_request *request, 1133 struct cfg80211_scan_info *info) 1134 { 1135 struct cfg80211_scan_info old_info = request->info; 1136 1137 trace_cfg80211_scan_done(request, info); 1138 WARN_ON(request != wiphy_to_rdev(request->wiphy)->scan_req && 1139 request != wiphy_to_rdev(request->wiphy)->int_scan_req); 1140 1141 request->info = *info; 1142 1143 /* 1144 * In case the scan is split, the scan_start_tsf and tsf_bssid should 1145 * be of the first part. In such a case old_info.scan_start_tsf should 1146 * be non zero. 1147 */ 1148 if (request->scan_6ghz && old_info.scan_start_tsf) { 1149 request->info.scan_start_tsf = old_info.scan_start_tsf; 1150 memcpy(request->info.tsf_bssid, old_info.tsf_bssid, 1151 sizeof(request->info.tsf_bssid)); 1152 } 1153 1154 request->notified = true; 1155 wiphy_work_queue(request->wiphy, 1156 &wiphy_to_rdev(request->wiphy)->scan_done_wk); 1157 } 1158 EXPORT_SYMBOL(cfg80211_scan_done); 1159 1160 void cfg80211_add_sched_scan_req(struct cfg80211_registered_device *rdev, 1161 struct cfg80211_sched_scan_request *req) 1162 { 1163 lockdep_assert_held(&rdev->wiphy.mtx); 1164 1165 list_add_rcu(&req->list, &rdev->sched_scan_req_list); 1166 } 1167 1168 static void cfg80211_del_sched_scan_req(struct cfg80211_registered_device *rdev, 1169 struct cfg80211_sched_scan_request *req) 1170 { 1171 lockdep_assert_held(&rdev->wiphy.mtx); 1172 1173 list_del_rcu(&req->list); 1174 kfree_rcu(req, rcu_head); 1175 } 1176 1177 static struct cfg80211_sched_scan_request * 1178 cfg80211_find_sched_scan_req(struct cfg80211_registered_device *rdev, u64 reqid) 1179 { 1180 struct cfg80211_sched_scan_request *pos; 1181 1182 list_for_each_entry_rcu(pos, &rdev->sched_scan_req_list, list, 1183 lockdep_is_held(&rdev->wiphy.mtx)) { 1184 if (pos->reqid == reqid) 1185 return pos; 1186 } 1187 return NULL; 1188 } 1189 1190 /* 1191 * Determines if a scheduled scan request can be handled. When a legacy 1192 * scheduled scan is running no other scheduled scan is allowed regardless 1193 * whether the request is for legacy or multi-support scan. When a multi-support 1194 * scheduled scan is running a request for legacy scan is not allowed. In this 1195 * case a request for multi-support scan can be handled if resources are 1196 * available, ie. struct wiphy::max_sched_scan_reqs limit is not yet reached. 1197 */ 1198 int cfg80211_sched_scan_req_possible(struct cfg80211_registered_device *rdev, 1199 bool want_multi) 1200 { 1201 struct cfg80211_sched_scan_request *pos; 1202 int i = 0; 1203 1204 list_for_each_entry(pos, &rdev->sched_scan_req_list, list) { 1205 /* request id zero means legacy in progress */ 1206 if (!i && !pos->reqid) 1207 return -EINPROGRESS; 1208 i++; 1209 } 1210 1211 if (i) { 1212 /* no legacy allowed when multi request(s) are active */ 1213 if (!want_multi) 1214 return -EINPROGRESS; 1215 1216 /* resource limit reached */ 1217 if (i == rdev->wiphy.max_sched_scan_reqs) 1218 return -ENOSPC; 1219 } 1220 return 0; 1221 } 1222 1223 void cfg80211_sched_scan_results_wk(struct work_struct *work) 1224 { 1225 struct cfg80211_registered_device *rdev; 1226 struct cfg80211_sched_scan_request *req, *tmp; 1227 1228 rdev = container_of(work, struct cfg80211_registered_device, 1229 sched_scan_res_wk); 1230 1231 wiphy_lock(&rdev->wiphy); 1232 list_for_each_entry_safe(req, tmp, &rdev->sched_scan_req_list, list) { 1233 if (req->report_results) { 1234 req->report_results = false; 1235 if (req->flags & NL80211_SCAN_FLAG_FLUSH) { 1236 /* flush entries from previous scans */ 1237 spin_lock_bh(&rdev->bss_lock); 1238 __cfg80211_bss_expire(rdev, req->scan_start); 1239 spin_unlock_bh(&rdev->bss_lock); 1240 req->scan_start = jiffies; 1241 } 1242 nl80211_send_sched_scan(req, 1243 NL80211_CMD_SCHED_SCAN_RESULTS); 1244 } 1245 } 1246 wiphy_unlock(&rdev->wiphy); 1247 } 1248 1249 void cfg80211_sched_scan_results(struct wiphy *wiphy, u64 reqid) 1250 { 1251 struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy); 1252 struct cfg80211_sched_scan_request *request; 1253 1254 trace_cfg80211_sched_scan_results(wiphy, reqid); 1255 /* ignore if we're not scanning */ 1256 1257 rcu_read_lock(); 1258 request = cfg80211_find_sched_scan_req(rdev, reqid); 1259 if (request) { 1260 request->report_results = true; 1261 queue_work(cfg80211_wq, &rdev->sched_scan_res_wk); 1262 } 1263 rcu_read_unlock(); 1264 } 1265 EXPORT_SYMBOL(cfg80211_sched_scan_results); 1266 1267 void cfg80211_sched_scan_stopped_locked(struct wiphy *wiphy, u64 reqid) 1268 { 1269 struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy); 1270 1271 lockdep_assert_held(&wiphy->mtx); 1272 1273 trace_cfg80211_sched_scan_stopped(wiphy, reqid); 1274 1275 __cfg80211_stop_sched_scan(rdev, reqid, true); 1276 } 1277 EXPORT_SYMBOL(cfg80211_sched_scan_stopped_locked); 1278 1279 void cfg80211_sched_scan_stopped(struct wiphy *wiphy, u64 reqid) 1280 { 1281 wiphy_lock(wiphy); 1282 cfg80211_sched_scan_stopped_locked(wiphy, reqid); 1283 wiphy_unlock(wiphy); 1284 } 1285 EXPORT_SYMBOL(cfg80211_sched_scan_stopped); 1286 1287 int cfg80211_stop_sched_scan_req(struct cfg80211_registered_device *rdev, 1288 struct cfg80211_sched_scan_request *req, 1289 bool driver_initiated) 1290 { 1291 lockdep_assert_held(&rdev->wiphy.mtx); 1292 1293 if (!driver_initiated) { 1294 int err = rdev_sched_scan_stop(rdev, req->dev, req->reqid); 1295 if (err) 1296 return err; 1297 } 1298 1299 nl80211_send_sched_scan(req, NL80211_CMD_SCHED_SCAN_STOPPED); 1300 1301 cfg80211_del_sched_scan_req(rdev, req); 1302 1303 return 0; 1304 } 1305 1306 int __cfg80211_stop_sched_scan(struct cfg80211_registered_device *rdev, 1307 u64 reqid, bool driver_initiated) 1308 { 1309 struct cfg80211_sched_scan_request *sched_scan_req; 1310 1311 lockdep_assert_held(&rdev->wiphy.mtx); 1312 1313 sched_scan_req = cfg80211_find_sched_scan_req(rdev, reqid); 1314 if (!sched_scan_req) 1315 return -ENOENT; 1316 1317 return cfg80211_stop_sched_scan_req(rdev, sched_scan_req, 1318 driver_initiated); 1319 } 1320 1321 void cfg80211_bss_age(struct cfg80211_registered_device *rdev, 1322 unsigned long age_secs) 1323 { 1324 struct cfg80211_internal_bss *bss; 1325 unsigned long age_jiffies = msecs_to_jiffies(age_secs * MSEC_PER_SEC); 1326 1327 spin_lock_bh(&rdev->bss_lock); 1328 list_for_each_entry(bss, &rdev->bss_list, list) 1329 bss->ts -= age_jiffies; 1330 spin_unlock_bh(&rdev->bss_lock); 1331 } 1332 1333 void cfg80211_bss_expire(struct cfg80211_registered_device *rdev) 1334 { 1335 __cfg80211_bss_expire(rdev, jiffies - IEEE80211_SCAN_RESULT_EXPIRE); 1336 } 1337 1338 void cfg80211_bss_flush(struct wiphy *wiphy) 1339 { 1340 struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy); 1341 1342 spin_lock_bh(&rdev->bss_lock); 1343 __cfg80211_bss_expire(rdev, jiffies); 1344 spin_unlock_bh(&rdev->bss_lock); 1345 } 1346 EXPORT_SYMBOL(cfg80211_bss_flush); 1347 1348 const struct element * 1349 cfg80211_find_elem_match(u8 eid, const u8 *ies, unsigned int len, 1350 const u8 *match, unsigned int match_len, 1351 unsigned int match_offset) 1352 { 1353 const struct element *elem; 1354 1355 for_each_element_id(elem, eid, ies, len) { 1356 if (elem->datalen >= match_offset + match_len && 1357 !memcmp(elem->data + match_offset, match, match_len)) 1358 return elem; 1359 } 1360 1361 return NULL; 1362 } 1363 EXPORT_SYMBOL(cfg80211_find_elem_match); 1364 1365 const struct element *cfg80211_find_vendor_elem(unsigned int oui, int oui_type, 1366 const u8 *ies, 1367 unsigned int len) 1368 { 1369 const struct element *elem; 1370 u8 match[] = { oui >> 16, oui >> 8, oui, oui_type }; 1371 int match_len = (oui_type < 0) ? 3 : sizeof(match); 1372 1373 if (WARN_ON(oui_type > 0xff)) 1374 return NULL; 1375 1376 elem = cfg80211_find_elem_match(WLAN_EID_VENDOR_SPECIFIC, ies, len, 1377 match, match_len, 0); 1378 1379 if (!elem || elem->datalen < 4) 1380 return NULL; 1381 1382 return elem; 1383 } 1384 EXPORT_SYMBOL(cfg80211_find_vendor_elem); 1385 1386 /** 1387 * enum bss_compare_mode - BSS compare mode 1388 * @BSS_CMP_REGULAR: regular compare mode (for insertion and normal find) 1389 * @BSS_CMP_HIDE_ZLEN: find hidden SSID with zero-length mode 1390 * @BSS_CMP_HIDE_NUL: find hidden SSID with NUL-ed out mode 1391 */ 1392 enum bss_compare_mode { 1393 BSS_CMP_REGULAR, 1394 BSS_CMP_HIDE_ZLEN, 1395 BSS_CMP_HIDE_NUL, 1396 }; 1397 1398 static int cmp_bss(struct cfg80211_bss *a, 1399 struct cfg80211_bss *b, 1400 enum bss_compare_mode mode) 1401 { 1402 const struct cfg80211_bss_ies *a_ies, *b_ies; 1403 const u8 *ie1 = NULL; 1404 const u8 *ie2 = NULL; 1405 int i, r; 1406 1407 if (a->channel != b->channel) 1408 return (b->channel->center_freq * 1000 + b->channel->freq_offset) - 1409 (a->channel->center_freq * 1000 + a->channel->freq_offset); 1410 1411 a_ies = rcu_access_pointer(a->ies); 1412 if (!a_ies) 1413 return -1; 1414 b_ies = rcu_access_pointer(b->ies); 1415 if (!b_ies) 1416 return 1; 1417 1418 if (WLAN_CAPABILITY_IS_STA_BSS(a->capability)) 1419 ie1 = cfg80211_find_ie(WLAN_EID_MESH_ID, 1420 a_ies->data, a_ies->len); 1421 if (WLAN_CAPABILITY_IS_STA_BSS(b->capability)) 1422 ie2 = cfg80211_find_ie(WLAN_EID_MESH_ID, 1423 b_ies->data, b_ies->len); 1424 if (ie1 && ie2) { 1425 int mesh_id_cmp; 1426 1427 if (ie1[1] == ie2[1]) 1428 mesh_id_cmp = memcmp(ie1 + 2, ie2 + 2, ie1[1]); 1429 else 1430 mesh_id_cmp = ie2[1] - ie1[1]; 1431 1432 ie1 = cfg80211_find_ie(WLAN_EID_MESH_CONFIG, 1433 a_ies->data, a_ies->len); 1434 ie2 = cfg80211_find_ie(WLAN_EID_MESH_CONFIG, 1435 b_ies->data, b_ies->len); 1436 if (ie1 && ie2) { 1437 if (mesh_id_cmp) 1438 return mesh_id_cmp; 1439 if (ie1[1] != ie2[1]) 1440 return ie2[1] - ie1[1]; 1441 return memcmp(ie1 + 2, ie2 + 2, ie1[1]); 1442 } 1443 } 1444 1445 r = memcmp(a->bssid, b->bssid, sizeof(a->bssid)); 1446 if (r) 1447 return r; 1448 1449 ie1 = cfg80211_find_ie(WLAN_EID_SSID, a_ies->data, a_ies->len); 1450 ie2 = cfg80211_find_ie(WLAN_EID_SSID, b_ies->data, b_ies->len); 1451 1452 if (!ie1 && !ie2) 1453 return 0; 1454 1455 /* 1456 * Note that with "hide_ssid", the function returns a match if 1457 * the already-present BSS ("b") is a hidden SSID beacon for 1458 * the new BSS ("a"). 1459 */ 1460 1461 /* sort missing IE before (left of) present IE */ 1462 if (!ie1) 1463 return -1; 1464 if (!ie2) 1465 return 1; 1466 1467 switch (mode) { 1468 case BSS_CMP_HIDE_ZLEN: 1469 /* 1470 * In ZLEN mode we assume the BSS entry we're 1471 * looking for has a zero-length SSID. So if 1472 * the one we're looking at right now has that, 1473 * return 0. Otherwise, return the difference 1474 * in length, but since we're looking for the 1475 * 0-length it's really equivalent to returning 1476 * the length of the one we're looking at. 1477 * 1478 * No content comparison is needed as we assume 1479 * the content length is zero. 1480 */ 1481 return ie2[1]; 1482 case BSS_CMP_REGULAR: 1483 default: 1484 /* sort by length first, then by contents */ 1485 if (ie1[1] != ie2[1]) 1486 return ie2[1] - ie1[1]; 1487 return memcmp(ie1 + 2, ie2 + 2, ie1[1]); 1488 case BSS_CMP_HIDE_NUL: 1489 if (ie1[1] != ie2[1]) 1490 return ie2[1] - ie1[1]; 1491 /* this is equivalent to memcmp(zeroes, ie2 + 2, len) */ 1492 for (i = 0; i < ie2[1]; i++) 1493 if (ie2[i + 2]) 1494 return -1; 1495 return 0; 1496 } 1497 } 1498 1499 static bool cfg80211_bss_type_match(u16 capability, 1500 enum nl80211_band band, 1501 enum ieee80211_bss_type bss_type) 1502 { 1503 bool ret = true; 1504 u16 mask, val; 1505 1506 if (bss_type == IEEE80211_BSS_TYPE_ANY) 1507 return ret; 1508 1509 if (band == NL80211_BAND_60GHZ) { 1510 mask = WLAN_CAPABILITY_DMG_TYPE_MASK; 1511 switch (bss_type) { 1512 case IEEE80211_BSS_TYPE_ESS: 1513 val = WLAN_CAPABILITY_DMG_TYPE_AP; 1514 break; 1515 case IEEE80211_BSS_TYPE_PBSS: 1516 val = WLAN_CAPABILITY_DMG_TYPE_PBSS; 1517 break; 1518 case IEEE80211_BSS_TYPE_IBSS: 1519 val = WLAN_CAPABILITY_DMG_TYPE_IBSS; 1520 break; 1521 default: 1522 return false; 1523 } 1524 } else { 1525 mask = WLAN_CAPABILITY_ESS | WLAN_CAPABILITY_IBSS; 1526 switch (bss_type) { 1527 case IEEE80211_BSS_TYPE_ESS: 1528 val = WLAN_CAPABILITY_ESS; 1529 break; 1530 case IEEE80211_BSS_TYPE_IBSS: 1531 val = WLAN_CAPABILITY_IBSS; 1532 break; 1533 case IEEE80211_BSS_TYPE_MBSS: 1534 val = 0; 1535 break; 1536 default: 1537 return false; 1538 } 1539 } 1540 1541 ret = ((capability & mask) == val); 1542 return ret; 1543 } 1544 1545 /* Returned bss is reference counted and must be cleaned up appropriately. */ 1546 struct cfg80211_bss *__cfg80211_get_bss(struct wiphy *wiphy, 1547 struct ieee80211_channel *channel, 1548 const u8 *bssid, 1549 const u8 *ssid, size_t ssid_len, 1550 enum ieee80211_bss_type bss_type, 1551 enum ieee80211_privacy privacy, 1552 u32 use_for) 1553 { 1554 struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy); 1555 struct cfg80211_internal_bss *bss, *res = NULL; 1556 unsigned long now = jiffies; 1557 int bss_privacy; 1558 1559 trace_cfg80211_get_bss(wiphy, channel, bssid, ssid, ssid_len, bss_type, 1560 privacy); 1561 1562 spin_lock_bh(&rdev->bss_lock); 1563 1564 list_for_each_entry(bss, &rdev->bss_list, list) { 1565 if (!cfg80211_bss_type_match(bss->pub.capability, 1566 bss->pub.channel->band, bss_type)) 1567 continue; 1568 1569 bss_privacy = (bss->pub.capability & WLAN_CAPABILITY_PRIVACY); 1570 if ((privacy == IEEE80211_PRIVACY_ON && !bss_privacy) || 1571 (privacy == IEEE80211_PRIVACY_OFF && bss_privacy)) 1572 continue; 1573 if (channel && bss->pub.channel != channel) 1574 continue; 1575 if (!is_valid_ether_addr(bss->pub.bssid)) 1576 continue; 1577 if ((bss->pub.use_for & use_for) != use_for) 1578 continue; 1579 /* Don't get expired BSS structs */ 1580 if (time_after(now, bss->ts + IEEE80211_SCAN_RESULT_EXPIRE) && 1581 !atomic_read(&bss->hold)) 1582 continue; 1583 if (is_bss(&bss->pub, bssid, ssid, ssid_len)) { 1584 res = bss; 1585 bss_ref_get(rdev, res); 1586 break; 1587 } 1588 } 1589 1590 spin_unlock_bh(&rdev->bss_lock); 1591 if (!res) 1592 return NULL; 1593 trace_cfg80211_return_bss(&res->pub); 1594 return &res->pub; 1595 } 1596 EXPORT_SYMBOL(__cfg80211_get_bss); 1597 1598 static void rb_insert_bss(struct cfg80211_registered_device *rdev, 1599 struct cfg80211_internal_bss *bss) 1600 { 1601 struct rb_node **p = &rdev->bss_tree.rb_node; 1602 struct rb_node *parent = NULL; 1603 struct cfg80211_internal_bss *tbss; 1604 int cmp; 1605 1606 while (*p) { 1607 parent = *p; 1608 tbss = rb_entry(parent, struct cfg80211_internal_bss, rbn); 1609 1610 cmp = cmp_bss(&bss->pub, &tbss->pub, BSS_CMP_REGULAR); 1611 1612 if (WARN_ON(!cmp)) { 1613 /* will sort of leak this BSS */ 1614 return; 1615 } 1616 1617 if (cmp < 0) 1618 p = &(*p)->rb_left; 1619 else 1620 p = &(*p)->rb_right; 1621 } 1622 1623 rb_link_node(&bss->rbn, parent, p); 1624 rb_insert_color(&bss->rbn, &rdev->bss_tree); 1625 } 1626 1627 static struct cfg80211_internal_bss * 1628 rb_find_bss(struct cfg80211_registered_device *rdev, 1629 struct cfg80211_internal_bss *res, 1630 enum bss_compare_mode mode) 1631 { 1632 struct rb_node *n = rdev->bss_tree.rb_node; 1633 struct cfg80211_internal_bss *bss; 1634 int r; 1635 1636 while (n) { 1637 bss = rb_entry(n, struct cfg80211_internal_bss, rbn); 1638 r = cmp_bss(&res->pub, &bss->pub, mode); 1639 1640 if (r == 0) 1641 return bss; 1642 else if (r < 0) 1643 n = n->rb_left; 1644 else 1645 n = n->rb_right; 1646 } 1647 1648 return NULL; 1649 } 1650 1651 static bool cfg80211_combine_bsses(struct cfg80211_registered_device *rdev, 1652 struct cfg80211_internal_bss *new) 1653 { 1654 const struct cfg80211_bss_ies *ies; 1655 struct cfg80211_internal_bss *bss; 1656 const u8 *ie; 1657 int i, ssidlen; 1658 u8 fold = 0; 1659 u32 n_entries = 0; 1660 1661 ies = rcu_access_pointer(new->pub.beacon_ies); 1662 if (WARN_ON(!ies)) 1663 return false; 1664 1665 ie = cfg80211_find_ie(WLAN_EID_SSID, ies->data, ies->len); 1666 if (!ie) { 1667 /* nothing to do */ 1668 return true; 1669 } 1670 1671 ssidlen = ie[1]; 1672 for (i = 0; i < ssidlen; i++) 1673 fold |= ie[2 + i]; 1674 1675 if (fold) { 1676 /* not a hidden SSID */ 1677 return true; 1678 } 1679 1680 /* This is the bad part ... */ 1681 1682 list_for_each_entry(bss, &rdev->bss_list, list) { 1683 /* 1684 * we're iterating all the entries anyway, so take the 1685 * opportunity to validate the list length accounting 1686 */ 1687 n_entries++; 1688 1689 if (!ether_addr_equal(bss->pub.bssid, new->pub.bssid)) 1690 continue; 1691 if (bss->pub.channel != new->pub.channel) 1692 continue; 1693 if (rcu_access_pointer(bss->pub.beacon_ies)) 1694 continue; 1695 ies = rcu_access_pointer(bss->pub.ies); 1696 if (!ies) 1697 continue; 1698 ie = cfg80211_find_ie(WLAN_EID_SSID, ies->data, ies->len); 1699 if (!ie) 1700 continue; 1701 if (ssidlen && ie[1] != ssidlen) 1702 continue; 1703 if (WARN_ON_ONCE(bss->pub.hidden_beacon_bss)) 1704 continue; 1705 if (WARN_ON_ONCE(!list_empty(&bss->hidden_list))) 1706 list_del(&bss->hidden_list); 1707 /* combine them */ 1708 list_add(&bss->hidden_list, &new->hidden_list); 1709 bss->pub.hidden_beacon_bss = &new->pub; 1710 new->refcount += bss->refcount; 1711 rcu_assign_pointer(bss->pub.beacon_ies, 1712 new->pub.beacon_ies); 1713 } 1714 1715 WARN_ONCE(n_entries != rdev->bss_entries, 1716 "rdev bss entries[%d]/list[len:%d] corruption\n", 1717 rdev->bss_entries, n_entries); 1718 1719 return true; 1720 } 1721 1722 static void cfg80211_update_hidden_bsses(struct cfg80211_internal_bss *known, 1723 const struct cfg80211_bss_ies *new_ies, 1724 const struct cfg80211_bss_ies *old_ies) 1725 { 1726 struct cfg80211_internal_bss *bss; 1727 1728 /* Assign beacon IEs to all sub entries */ 1729 list_for_each_entry(bss, &known->hidden_list, hidden_list) { 1730 const struct cfg80211_bss_ies *ies; 1731 1732 ies = rcu_access_pointer(bss->pub.beacon_ies); 1733 WARN_ON(ies != old_ies); 1734 1735 rcu_assign_pointer(bss->pub.beacon_ies, new_ies); 1736 } 1737 } 1738 1739 static void cfg80211_check_stuck_ecsa(struct cfg80211_registered_device *rdev, 1740 struct cfg80211_internal_bss *known, 1741 const struct cfg80211_bss_ies *old) 1742 { 1743 const struct ieee80211_ext_chansw_ie *ecsa; 1744 const struct element *elem_new, *elem_old; 1745 const struct cfg80211_bss_ies *new, *bcn; 1746 1747 if (known->pub.proberesp_ecsa_stuck) 1748 return; 1749 1750 new = rcu_dereference_protected(known->pub.proberesp_ies, 1751 lockdep_is_held(&rdev->bss_lock)); 1752 if (WARN_ON(!new)) 1753 return; 1754 1755 if (new->tsf - old->tsf < USEC_PER_SEC) 1756 return; 1757 1758 elem_old = cfg80211_find_elem(WLAN_EID_EXT_CHANSWITCH_ANN, 1759 old->data, old->len); 1760 if (!elem_old) 1761 return; 1762 1763 elem_new = cfg80211_find_elem(WLAN_EID_EXT_CHANSWITCH_ANN, 1764 new->data, new->len); 1765 if (!elem_new) 1766 return; 1767 1768 bcn = rcu_dereference_protected(known->pub.beacon_ies, 1769 lockdep_is_held(&rdev->bss_lock)); 1770 if (bcn && 1771 cfg80211_find_elem(WLAN_EID_EXT_CHANSWITCH_ANN, 1772 bcn->data, bcn->len)) 1773 return; 1774 1775 if (elem_new->datalen != elem_old->datalen) 1776 return; 1777 if (elem_new->datalen < sizeof(struct ieee80211_ext_chansw_ie)) 1778 return; 1779 if (memcmp(elem_new->data, elem_old->data, elem_new->datalen)) 1780 return; 1781 1782 ecsa = (void *)elem_new->data; 1783 1784 if (!ecsa->mode) 1785 return; 1786 1787 if (ecsa->new_ch_num != 1788 ieee80211_frequency_to_channel(known->pub.channel->center_freq)) 1789 return; 1790 1791 known->pub.proberesp_ecsa_stuck = 1; 1792 } 1793 1794 static bool 1795 cfg80211_update_known_bss(struct cfg80211_registered_device *rdev, 1796 struct cfg80211_internal_bss *known, 1797 struct cfg80211_internal_bss *new, 1798 bool signal_valid) 1799 { 1800 lockdep_assert_held(&rdev->bss_lock); 1801 1802 /* Update IEs */ 1803 if (rcu_access_pointer(new->pub.proberesp_ies)) { 1804 const struct cfg80211_bss_ies *old; 1805 1806 old = rcu_access_pointer(known->pub.proberesp_ies); 1807 1808 rcu_assign_pointer(known->pub.proberesp_ies, 1809 new->pub.proberesp_ies); 1810 /* Override possible earlier Beacon frame IEs */ 1811 rcu_assign_pointer(known->pub.ies, 1812 new->pub.proberesp_ies); 1813 if (old) { 1814 cfg80211_check_stuck_ecsa(rdev, known, old); 1815 kfree_rcu((struct cfg80211_bss_ies *)old, rcu_head); 1816 } 1817 } 1818 1819 if (rcu_access_pointer(new->pub.beacon_ies)) { 1820 const struct cfg80211_bss_ies *old; 1821 1822 if (known->pub.hidden_beacon_bss && 1823 !list_empty(&known->hidden_list)) { 1824 const struct cfg80211_bss_ies *f; 1825 1826 /* The known BSS struct is one of the probe 1827 * response members of a group, but we're 1828 * receiving a beacon (beacon_ies in the new 1829 * bss is used). This can only mean that the 1830 * AP changed its beacon from not having an 1831 * SSID to showing it, which is confusing so 1832 * drop this information. 1833 */ 1834 1835 f = rcu_access_pointer(new->pub.beacon_ies); 1836 kfree_rcu((struct cfg80211_bss_ies *)f, rcu_head); 1837 return false; 1838 } 1839 1840 old = rcu_access_pointer(known->pub.beacon_ies); 1841 1842 rcu_assign_pointer(known->pub.beacon_ies, new->pub.beacon_ies); 1843 1844 /* Override IEs if they were from a beacon before */ 1845 if (old == rcu_access_pointer(known->pub.ies)) 1846 rcu_assign_pointer(known->pub.ies, new->pub.beacon_ies); 1847 1848 cfg80211_update_hidden_bsses(known, 1849 rcu_access_pointer(new->pub.beacon_ies), 1850 old); 1851 1852 if (old) 1853 kfree_rcu((struct cfg80211_bss_ies *)old, rcu_head); 1854 } 1855 1856 known->pub.beacon_interval = new->pub.beacon_interval; 1857 1858 /* don't update the signal if beacon was heard on 1859 * adjacent channel. 1860 */ 1861 if (signal_valid) 1862 known->pub.signal = new->pub.signal; 1863 known->pub.capability = new->pub.capability; 1864 known->ts = new->ts; 1865 known->ts_boottime = new->ts_boottime; 1866 known->parent_tsf = new->parent_tsf; 1867 known->pub.chains = new->pub.chains; 1868 memcpy(known->pub.chain_signal, new->pub.chain_signal, 1869 IEEE80211_MAX_CHAINS); 1870 ether_addr_copy(known->parent_bssid, new->parent_bssid); 1871 known->pub.max_bssid_indicator = new->pub.max_bssid_indicator; 1872 known->pub.bssid_index = new->pub.bssid_index; 1873 known->pub.use_for &= new->pub.use_for; 1874 known->pub.cannot_use_reasons = new->pub.cannot_use_reasons; 1875 1876 return true; 1877 } 1878 1879 /* Returned bss is reference counted and must be cleaned up appropriately. */ 1880 static struct cfg80211_internal_bss * 1881 __cfg80211_bss_update(struct cfg80211_registered_device *rdev, 1882 struct cfg80211_internal_bss *tmp, 1883 bool signal_valid, unsigned long ts) 1884 { 1885 struct cfg80211_internal_bss *found = NULL; 1886 struct cfg80211_bss_ies *ies; 1887 1888 if (WARN_ON(!tmp->pub.channel)) 1889 goto free_ies; 1890 1891 tmp->ts = ts; 1892 1893 if (WARN_ON(!rcu_access_pointer(tmp->pub.ies))) 1894 goto free_ies; 1895 1896 found = rb_find_bss(rdev, tmp, BSS_CMP_REGULAR); 1897 1898 if (found) { 1899 if (!cfg80211_update_known_bss(rdev, found, tmp, signal_valid)) 1900 return NULL; 1901 } else { 1902 struct cfg80211_internal_bss *new; 1903 struct cfg80211_internal_bss *hidden; 1904 1905 /* 1906 * create a copy -- the "res" variable that is passed in 1907 * is allocated on the stack since it's not needed in the 1908 * more common case of an update 1909 */ 1910 new = kzalloc(sizeof(*new) + rdev->wiphy.bss_priv_size, 1911 GFP_ATOMIC); 1912 if (!new) 1913 goto free_ies; 1914 memcpy(new, tmp, sizeof(*new)); 1915 new->refcount = 1; 1916 INIT_LIST_HEAD(&new->hidden_list); 1917 INIT_LIST_HEAD(&new->pub.nontrans_list); 1918 /* we'll set this later if it was non-NULL */ 1919 new->pub.transmitted_bss = NULL; 1920 1921 if (rcu_access_pointer(tmp->pub.proberesp_ies)) { 1922 hidden = rb_find_bss(rdev, tmp, BSS_CMP_HIDE_ZLEN); 1923 if (!hidden) 1924 hidden = rb_find_bss(rdev, tmp, 1925 BSS_CMP_HIDE_NUL); 1926 if (hidden) { 1927 new->pub.hidden_beacon_bss = &hidden->pub; 1928 list_add(&new->hidden_list, 1929 &hidden->hidden_list); 1930 hidden->refcount++; 1931 1932 ies = (void *)rcu_access_pointer(new->pub.beacon_ies); 1933 rcu_assign_pointer(new->pub.beacon_ies, 1934 hidden->pub.beacon_ies); 1935 if (ies) 1936 kfree_rcu(ies, rcu_head); 1937 } 1938 } else { 1939 /* 1940 * Ok so we found a beacon, and don't have an entry. If 1941 * it's a beacon with hidden SSID, we might be in for an 1942 * expensive search for any probe responses that should 1943 * be grouped with this beacon for updates ... 1944 */ 1945 if (!cfg80211_combine_bsses(rdev, new)) { 1946 bss_ref_put(rdev, new); 1947 return NULL; 1948 } 1949 } 1950 1951 if (rdev->bss_entries >= bss_entries_limit && 1952 !cfg80211_bss_expire_oldest(rdev)) { 1953 bss_ref_put(rdev, new); 1954 return NULL; 1955 } 1956 1957 /* This must be before the call to bss_ref_get */ 1958 if (tmp->pub.transmitted_bss) { 1959 new->pub.transmitted_bss = tmp->pub.transmitted_bss; 1960 bss_ref_get(rdev, bss_from_pub(tmp->pub.transmitted_bss)); 1961 } 1962 1963 list_add_tail(&new->list, &rdev->bss_list); 1964 rdev->bss_entries++; 1965 rb_insert_bss(rdev, new); 1966 found = new; 1967 } 1968 1969 rdev->bss_generation++; 1970 bss_ref_get(rdev, found); 1971 1972 return found; 1973 1974 free_ies: 1975 ies = (void *)rcu_dereference(tmp->pub.beacon_ies); 1976 if (ies) 1977 kfree_rcu(ies, rcu_head); 1978 ies = (void *)rcu_dereference(tmp->pub.proberesp_ies); 1979 if (ies) 1980 kfree_rcu(ies, rcu_head); 1981 1982 return NULL; 1983 } 1984 1985 struct cfg80211_internal_bss * 1986 cfg80211_bss_update(struct cfg80211_registered_device *rdev, 1987 struct cfg80211_internal_bss *tmp, 1988 bool signal_valid, unsigned long ts) 1989 { 1990 struct cfg80211_internal_bss *res; 1991 1992 spin_lock_bh(&rdev->bss_lock); 1993 res = __cfg80211_bss_update(rdev, tmp, signal_valid, ts); 1994 spin_unlock_bh(&rdev->bss_lock); 1995 1996 return res; 1997 } 1998 1999 int cfg80211_get_ies_channel_number(const u8 *ie, size_t ielen, 2000 enum nl80211_band band) 2001 { 2002 const struct element *tmp; 2003 2004 if (band == NL80211_BAND_6GHZ) { 2005 struct ieee80211_he_operation *he_oper; 2006 2007 tmp = cfg80211_find_ext_elem(WLAN_EID_EXT_HE_OPERATION, ie, 2008 ielen); 2009 if (tmp && tmp->datalen >= sizeof(*he_oper) && 2010 tmp->datalen >= ieee80211_he_oper_size(&tmp->data[1])) { 2011 const struct ieee80211_he_6ghz_oper *he_6ghz_oper; 2012 2013 he_oper = (void *)&tmp->data[1]; 2014 2015 he_6ghz_oper = ieee80211_he_6ghz_oper(he_oper); 2016 if (!he_6ghz_oper) 2017 return -1; 2018 2019 return he_6ghz_oper->primary; 2020 } 2021 } else if (band == NL80211_BAND_S1GHZ) { 2022 tmp = cfg80211_find_elem(WLAN_EID_S1G_OPERATION, ie, ielen); 2023 if (tmp && tmp->datalen >= sizeof(struct ieee80211_s1g_oper_ie)) { 2024 struct ieee80211_s1g_oper_ie *s1gop = (void *)tmp->data; 2025 2026 return s1gop->oper_ch; 2027 } 2028 } else { 2029 tmp = cfg80211_find_elem(WLAN_EID_DS_PARAMS, ie, ielen); 2030 if (tmp && tmp->datalen == 1) 2031 return tmp->data[0]; 2032 2033 tmp = cfg80211_find_elem(WLAN_EID_HT_OPERATION, ie, ielen); 2034 if (tmp && 2035 tmp->datalen >= sizeof(struct ieee80211_ht_operation)) { 2036 struct ieee80211_ht_operation *htop = (void *)tmp->data; 2037 2038 return htop->primary_chan; 2039 } 2040 } 2041 2042 return -1; 2043 } 2044 EXPORT_SYMBOL(cfg80211_get_ies_channel_number); 2045 2046 /* 2047 * Update RX channel information based on the available frame payload 2048 * information. This is mainly for the 2.4 GHz band where frames can be received 2049 * from neighboring channels and the Beacon frames use the DSSS Parameter Set 2050 * element to indicate the current (transmitting) channel, but this might also 2051 * be needed on other bands if RX frequency does not match with the actual 2052 * operating channel of a BSS, or if the AP reports a different primary channel. 2053 */ 2054 static struct ieee80211_channel * 2055 cfg80211_get_bss_channel(struct wiphy *wiphy, const u8 *ie, size_t ielen, 2056 struct ieee80211_channel *channel) 2057 { 2058 u32 freq; 2059 int channel_number; 2060 struct ieee80211_channel *alt_channel; 2061 2062 channel_number = cfg80211_get_ies_channel_number(ie, ielen, 2063 channel->band); 2064 2065 if (channel_number < 0) { 2066 /* No channel information in frame payload */ 2067 return channel; 2068 } 2069 2070 freq = ieee80211_channel_to_freq_khz(channel_number, channel->band); 2071 2072 /* 2073 * Frame info (beacon/prob res) is the same as received channel, 2074 * no need for further processing. 2075 */ 2076 if (freq == ieee80211_channel_to_khz(channel)) 2077 return channel; 2078 2079 alt_channel = ieee80211_get_channel_khz(wiphy, freq); 2080 if (!alt_channel) { 2081 if (channel->band == NL80211_BAND_2GHZ || 2082 channel->band == NL80211_BAND_6GHZ) { 2083 /* 2084 * Better not allow unexpected channels when that could 2085 * be going beyond the 1-11 range (e.g., discovering 2086 * BSS on channel 12 when radio is configured for 2087 * channel 11) or beyond the 6 GHz channel range. 2088 */ 2089 return NULL; 2090 } 2091 2092 /* No match for the payload channel number - ignore it */ 2093 return channel; 2094 } 2095 2096 /* 2097 * Use the channel determined through the payload channel number 2098 * instead of the RX channel reported by the driver. 2099 */ 2100 if (alt_channel->flags & IEEE80211_CHAN_DISABLED) 2101 return NULL; 2102 return alt_channel; 2103 } 2104 2105 struct cfg80211_inform_single_bss_data { 2106 struct cfg80211_inform_bss *drv_data; 2107 enum cfg80211_bss_frame_type ftype; 2108 struct ieee80211_channel *channel; 2109 u8 bssid[ETH_ALEN]; 2110 u64 tsf; 2111 u16 capability; 2112 u16 beacon_interval; 2113 const u8 *ie; 2114 size_t ielen; 2115 2116 enum { 2117 BSS_SOURCE_DIRECT = 0, 2118 BSS_SOURCE_MBSSID, 2119 BSS_SOURCE_STA_PROFILE, 2120 } bss_source; 2121 /* Set if reporting bss_source != BSS_SOURCE_DIRECT */ 2122 struct cfg80211_bss *source_bss; 2123 u8 max_bssid_indicator; 2124 u8 bssid_index; 2125 2126 u8 use_for; 2127 u64 cannot_use_reasons; 2128 }; 2129 2130 static bool cfg80211_6ghz_power_type_valid(const u8 *ie, size_t ielen, 2131 const u32 flags) 2132 { 2133 const struct element *tmp; 2134 struct ieee80211_he_operation *he_oper; 2135 2136 tmp = cfg80211_find_ext_elem(WLAN_EID_EXT_HE_OPERATION, ie, ielen); 2137 if (tmp && tmp->datalen >= sizeof(*he_oper) + 1) { 2138 const struct ieee80211_he_6ghz_oper *he_6ghz_oper; 2139 2140 he_oper = (void *)&tmp->data[1]; 2141 he_6ghz_oper = ieee80211_he_6ghz_oper(he_oper); 2142 2143 if (!he_6ghz_oper) 2144 return false; 2145 2146 switch (u8_get_bits(he_6ghz_oper->control, 2147 IEEE80211_HE_6GHZ_OPER_CTRL_REG_INFO)) { 2148 case IEEE80211_6GHZ_CTRL_REG_LPI_AP: 2149 return true; 2150 case IEEE80211_6GHZ_CTRL_REG_SP_AP: 2151 return !(flags & IEEE80211_CHAN_NO_6GHZ_AFC_CLIENT); 2152 case IEEE80211_6GHZ_CTRL_REG_VLP_AP: 2153 return !(flags & IEEE80211_CHAN_NO_6GHZ_VLP_CLIENT); 2154 } 2155 } 2156 return false; 2157 } 2158 2159 /* Returned bss is reference counted and must be cleaned up appropriately. */ 2160 static struct cfg80211_bss * 2161 cfg80211_inform_single_bss_data(struct wiphy *wiphy, 2162 struct cfg80211_inform_single_bss_data *data, 2163 gfp_t gfp) 2164 { 2165 struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy); 2166 struct cfg80211_inform_bss *drv_data = data->drv_data; 2167 struct cfg80211_bss_ies *ies; 2168 struct ieee80211_channel *channel; 2169 struct cfg80211_internal_bss tmp = {}, *res; 2170 int bss_type; 2171 bool signal_valid; 2172 unsigned long ts; 2173 2174 if (WARN_ON(!wiphy)) 2175 return NULL; 2176 2177 if (WARN_ON(wiphy->signal_type == CFG80211_SIGNAL_TYPE_UNSPEC && 2178 (drv_data->signal < 0 || drv_data->signal > 100))) 2179 return NULL; 2180 2181 if (WARN_ON(data->bss_source != BSS_SOURCE_DIRECT && !data->source_bss)) 2182 return NULL; 2183 2184 channel = data->channel; 2185 if (!channel) 2186 channel = cfg80211_get_bss_channel(wiphy, data->ie, data->ielen, 2187 drv_data->chan); 2188 if (!channel) 2189 return NULL; 2190 2191 if (channel->band == NL80211_BAND_6GHZ && 2192 !cfg80211_6ghz_power_type_valid(data->ie, data->ielen, 2193 channel->flags)) { 2194 data->use_for = 0; 2195 data->cannot_use_reasons = 2196 NL80211_BSS_CANNOT_USE_6GHZ_PWR_MISMATCH; 2197 } 2198 2199 memcpy(tmp.pub.bssid, data->bssid, ETH_ALEN); 2200 tmp.pub.channel = channel; 2201 if (data->bss_source != BSS_SOURCE_STA_PROFILE) 2202 tmp.pub.signal = drv_data->signal; 2203 else 2204 tmp.pub.signal = 0; 2205 tmp.pub.beacon_interval = data->beacon_interval; 2206 tmp.pub.capability = data->capability; 2207 tmp.ts_boottime = drv_data->boottime_ns; 2208 tmp.parent_tsf = drv_data->parent_tsf; 2209 ether_addr_copy(tmp.parent_bssid, drv_data->parent_bssid); 2210 tmp.pub.chains = drv_data->chains; 2211 memcpy(tmp.pub.chain_signal, drv_data->chain_signal, 2212 IEEE80211_MAX_CHAINS); 2213 tmp.pub.use_for = data->use_for; 2214 tmp.pub.cannot_use_reasons = data->cannot_use_reasons; 2215 2216 if (data->bss_source != BSS_SOURCE_DIRECT) { 2217 tmp.pub.transmitted_bss = data->source_bss; 2218 ts = bss_from_pub(data->source_bss)->ts; 2219 tmp.pub.bssid_index = data->bssid_index; 2220 tmp.pub.max_bssid_indicator = data->max_bssid_indicator; 2221 } else { 2222 ts = jiffies; 2223 2224 if (channel->band == NL80211_BAND_60GHZ) { 2225 bss_type = data->capability & 2226 WLAN_CAPABILITY_DMG_TYPE_MASK; 2227 if (bss_type == WLAN_CAPABILITY_DMG_TYPE_AP || 2228 bss_type == WLAN_CAPABILITY_DMG_TYPE_PBSS) 2229 regulatory_hint_found_beacon(wiphy, channel, 2230 gfp); 2231 } else { 2232 if (data->capability & WLAN_CAPABILITY_ESS) 2233 regulatory_hint_found_beacon(wiphy, channel, 2234 gfp); 2235 } 2236 } 2237 2238 /* 2239 * If we do not know here whether the IEs are from a Beacon or Probe 2240 * Response frame, we need to pick one of the options and only use it 2241 * with the driver that does not provide the full Beacon/Probe Response 2242 * frame. Use Beacon frame pointer to avoid indicating that this should 2243 * override the IEs pointer should we have received an earlier 2244 * indication of Probe Response data. 2245 */ 2246 ies = kzalloc(sizeof(*ies) + data->ielen, gfp); 2247 if (!ies) 2248 return NULL; 2249 ies->len = data->ielen; 2250 ies->tsf = data->tsf; 2251 ies->from_beacon = false; 2252 memcpy(ies->data, data->ie, data->ielen); 2253 2254 switch (data->ftype) { 2255 case CFG80211_BSS_FTYPE_BEACON: 2256 case CFG80211_BSS_FTYPE_S1G_BEACON: 2257 ies->from_beacon = true; 2258 fallthrough; 2259 case CFG80211_BSS_FTYPE_UNKNOWN: 2260 rcu_assign_pointer(tmp.pub.beacon_ies, ies); 2261 break; 2262 case CFG80211_BSS_FTYPE_PRESP: 2263 rcu_assign_pointer(tmp.pub.proberesp_ies, ies); 2264 break; 2265 } 2266 rcu_assign_pointer(tmp.pub.ies, ies); 2267 2268 signal_valid = drv_data->chan == channel; 2269 spin_lock_bh(&rdev->bss_lock); 2270 res = __cfg80211_bss_update(rdev, &tmp, signal_valid, ts); 2271 if (!res) 2272 goto drop; 2273 2274 rdev_inform_bss(rdev, &res->pub, ies, drv_data->drv_data); 2275 2276 if (data->bss_source == BSS_SOURCE_MBSSID) { 2277 /* this is a nontransmitting bss, we need to add it to 2278 * transmitting bss' list if it is not there 2279 */ 2280 if (cfg80211_add_nontrans_list(data->source_bss, &res->pub)) { 2281 if (__cfg80211_unlink_bss(rdev, res)) { 2282 rdev->bss_generation++; 2283 res = NULL; 2284 } 2285 } 2286 2287 if (!res) 2288 goto drop; 2289 } 2290 spin_unlock_bh(&rdev->bss_lock); 2291 2292 trace_cfg80211_return_bss(&res->pub); 2293 /* __cfg80211_bss_update gives us a referenced result */ 2294 return &res->pub; 2295 2296 drop: 2297 spin_unlock_bh(&rdev->bss_lock); 2298 return NULL; 2299 } 2300 2301 static const struct element 2302 *cfg80211_get_profile_continuation(const u8 *ie, size_t ielen, 2303 const struct element *mbssid_elem, 2304 const struct element *sub_elem) 2305 { 2306 const u8 *mbssid_end = mbssid_elem->data + mbssid_elem->datalen; 2307 const struct element *next_mbssid; 2308 const struct element *next_sub; 2309 2310 next_mbssid = cfg80211_find_elem(WLAN_EID_MULTIPLE_BSSID, 2311 mbssid_end, 2312 ielen - (mbssid_end - ie)); 2313 2314 /* 2315 * If it is not the last subelement in current MBSSID IE or there isn't 2316 * a next MBSSID IE - profile is complete. 2317 */ 2318 if ((sub_elem->data + sub_elem->datalen < mbssid_end - 1) || 2319 !next_mbssid) 2320 return NULL; 2321 2322 /* For any length error, just return NULL */ 2323 2324 if (next_mbssid->datalen < 4) 2325 return NULL; 2326 2327 next_sub = (void *)&next_mbssid->data[1]; 2328 2329 if (next_mbssid->data + next_mbssid->datalen < 2330 next_sub->data + next_sub->datalen) 2331 return NULL; 2332 2333 if (next_sub->id != 0 || next_sub->datalen < 2) 2334 return NULL; 2335 2336 /* 2337 * Check if the first element in the next sub element is a start 2338 * of a new profile 2339 */ 2340 return next_sub->data[0] == WLAN_EID_NON_TX_BSSID_CAP ? 2341 NULL : next_mbssid; 2342 } 2343 2344 size_t cfg80211_merge_profile(const u8 *ie, size_t ielen, 2345 const struct element *mbssid_elem, 2346 const struct element *sub_elem, 2347 u8 *merged_ie, size_t max_copy_len) 2348 { 2349 size_t copied_len = sub_elem->datalen; 2350 const struct element *next_mbssid; 2351 2352 if (sub_elem->datalen > max_copy_len) 2353 return 0; 2354 2355 memcpy(merged_ie, sub_elem->data, sub_elem->datalen); 2356 2357 while ((next_mbssid = cfg80211_get_profile_continuation(ie, ielen, 2358 mbssid_elem, 2359 sub_elem))) { 2360 const struct element *next_sub = (void *)&next_mbssid->data[1]; 2361 2362 if (copied_len + next_sub->datalen > max_copy_len) 2363 break; 2364 memcpy(merged_ie + copied_len, next_sub->data, 2365 next_sub->datalen); 2366 copied_len += next_sub->datalen; 2367 } 2368 2369 return copied_len; 2370 } 2371 EXPORT_SYMBOL(cfg80211_merge_profile); 2372 2373 static void 2374 cfg80211_parse_mbssid_data(struct wiphy *wiphy, 2375 struct cfg80211_inform_single_bss_data *tx_data, 2376 struct cfg80211_bss *source_bss, 2377 gfp_t gfp) 2378 { 2379 struct cfg80211_inform_single_bss_data data = { 2380 .drv_data = tx_data->drv_data, 2381 .ftype = tx_data->ftype, 2382 .tsf = tx_data->tsf, 2383 .beacon_interval = tx_data->beacon_interval, 2384 .source_bss = source_bss, 2385 .bss_source = BSS_SOURCE_MBSSID, 2386 .use_for = tx_data->use_for, 2387 .cannot_use_reasons = tx_data->cannot_use_reasons, 2388 }; 2389 const u8 *mbssid_index_ie; 2390 const struct element *elem, *sub; 2391 u8 *new_ie, *profile; 2392 u64 seen_indices = 0; 2393 struct cfg80211_bss *bss; 2394 2395 if (!source_bss) 2396 return; 2397 if (!cfg80211_find_elem(WLAN_EID_MULTIPLE_BSSID, 2398 tx_data->ie, tx_data->ielen)) 2399 return; 2400 if (!wiphy->support_mbssid) 2401 return; 2402 if (wiphy->support_only_he_mbssid && 2403 !cfg80211_find_ext_elem(WLAN_EID_EXT_HE_CAPABILITY, 2404 tx_data->ie, tx_data->ielen)) 2405 return; 2406 2407 new_ie = kmalloc(IEEE80211_MAX_DATA_LEN, gfp); 2408 if (!new_ie) 2409 return; 2410 2411 profile = kmalloc(tx_data->ielen, gfp); 2412 if (!profile) 2413 goto out; 2414 2415 for_each_element_id(elem, WLAN_EID_MULTIPLE_BSSID, 2416 tx_data->ie, tx_data->ielen) { 2417 if (elem->datalen < 4) 2418 continue; 2419 if (elem->data[0] < 1 || (int)elem->data[0] > 8) 2420 continue; 2421 for_each_element(sub, elem->data + 1, elem->datalen - 1) { 2422 u8 profile_len; 2423 2424 if (sub->id != 0 || sub->datalen < 4) { 2425 /* not a valid BSS profile */ 2426 continue; 2427 } 2428 2429 if (sub->data[0] != WLAN_EID_NON_TX_BSSID_CAP || 2430 sub->data[1] != 2) { 2431 /* The first element within the Nontransmitted 2432 * BSSID Profile is not the Nontransmitted 2433 * BSSID Capability element. 2434 */ 2435 continue; 2436 } 2437 2438 memset(profile, 0, tx_data->ielen); 2439 profile_len = cfg80211_merge_profile(tx_data->ie, 2440 tx_data->ielen, 2441 elem, 2442 sub, 2443 profile, 2444 tx_data->ielen); 2445 2446 /* found a Nontransmitted BSSID Profile */ 2447 mbssid_index_ie = cfg80211_find_ie 2448 (WLAN_EID_MULTI_BSSID_IDX, 2449 profile, profile_len); 2450 if (!mbssid_index_ie || mbssid_index_ie[1] < 1 || 2451 mbssid_index_ie[2] == 0 || 2452 mbssid_index_ie[2] > 46) { 2453 /* No valid Multiple BSSID-Index element */ 2454 continue; 2455 } 2456 2457 if (seen_indices & BIT_ULL(mbssid_index_ie[2])) 2458 /* We don't support legacy split of a profile */ 2459 net_dbg_ratelimited("Partial info for BSSID index %d\n", 2460 mbssid_index_ie[2]); 2461 2462 seen_indices |= BIT_ULL(mbssid_index_ie[2]); 2463 2464 data.bssid_index = mbssid_index_ie[2]; 2465 data.max_bssid_indicator = elem->data[0]; 2466 2467 cfg80211_gen_new_bssid(tx_data->bssid, 2468 data.max_bssid_indicator, 2469 data.bssid_index, 2470 data.bssid); 2471 2472 memset(new_ie, 0, IEEE80211_MAX_DATA_LEN); 2473 data.ie = new_ie; 2474 data.ielen = cfg80211_gen_new_ie(tx_data->ie, 2475 tx_data->ielen, 2476 profile, 2477 profile_len, 2478 new_ie, 2479 IEEE80211_MAX_DATA_LEN); 2480 if (!data.ielen) 2481 continue; 2482 2483 data.capability = get_unaligned_le16(profile + 2); 2484 bss = cfg80211_inform_single_bss_data(wiphy, &data, gfp); 2485 if (!bss) 2486 break; 2487 cfg80211_put_bss(wiphy, bss); 2488 } 2489 } 2490 2491 out: 2492 kfree(new_ie); 2493 kfree(profile); 2494 } 2495 2496 ssize_t cfg80211_defragment_element(const struct element *elem, const u8 *ies, 2497 size_t ieslen, u8 *data, size_t data_len, 2498 u8 frag_id) 2499 { 2500 const struct element *next; 2501 ssize_t copied; 2502 u8 elem_datalen; 2503 2504 if (!elem) 2505 return -EINVAL; 2506 2507 /* elem might be invalid after the memmove */ 2508 next = (void *)(elem->data + elem->datalen); 2509 elem_datalen = elem->datalen; 2510 2511 if (elem->id == WLAN_EID_EXTENSION) { 2512 copied = elem->datalen - 1; 2513 if (copied > data_len) 2514 return -ENOSPC; 2515 2516 memmove(data, elem->data + 1, copied); 2517 } else { 2518 copied = elem->datalen; 2519 if (copied > data_len) 2520 return -ENOSPC; 2521 2522 memmove(data, elem->data, copied); 2523 } 2524 2525 /* Fragmented elements must have 255 bytes */ 2526 if (elem_datalen < 255) 2527 return copied; 2528 2529 for (elem = next; 2530 elem->data < ies + ieslen && 2531 elem->data + elem->datalen <= ies + ieslen; 2532 elem = next) { 2533 /* elem might be invalid after the memmove */ 2534 next = (void *)(elem->data + elem->datalen); 2535 2536 if (elem->id != frag_id) 2537 break; 2538 2539 elem_datalen = elem->datalen; 2540 2541 if (copied + elem_datalen > data_len) 2542 return -ENOSPC; 2543 2544 memmove(data + copied, elem->data, elem_datalen); 2545 copied += elem_datalen; 2546 2547 /* Only the last fragment may be short */ 2548 if (elem_datalen != 255) 2549 break; 2550 } 2551 2552 return copied; 2553 } 2554 EXPORT_SYMBOL(cfg80211_defragment_element); 2555 2556 struct cfg80211_mle { 2557 struct ieee80211_multi_link_elem *mle; 2558 struct ieee80211_mle_per_sta_profile 2559 *sta_prof[IEEE80211_MLD_MAX_NUM_LINKS]; 2560 ssize_t sta_prof_len[IEEE80211_MLD_MAX_NUM_LINKS]; 2561 2562 u8 data[]; 2563 }; 2564 2565 static struct cfg80211_mle * 2566 cfg80211_defrag_mle(const struct element *mle, const u8 *ie, size_t ielen, 2567 gfp_t gfp) 2568 { 2569 const struct element *elem; 2570 struct cfg80211_mle *res; 2571 size_t buf_len; 2572 ssize_t mle_len; 2573 u8 common_size, idx; 2574 2575 if (!mle || !ieee80211_mle_size_ok(mle->data + 1, mle->datalen - 1)) 2576 return NULL; 2577 2578 /* Required length for first defragmentation */ 2579 buf_len = mle->datalen - 1; 2580 for_each_element(elem, mle->data + mle->datalen, 2581 ielen - sizeof(*mle) + mle->datalen) { 2582 if (elem->id != WLAN_EID_FRAGMENT) 2583 break; 2584 2585 buf_len += elem->datalen; 2586 } 2587 2588 res = kzalloc(struct_size(res, data, buf_len), gfp); 2589 if (!res) 2590 return NULL; 2591 2592 mle_len = cfg80211_defragment_element(mle, ie, ielen, 2593 res->data, buf_len, 2594 WLAN_EID_FRAGMENT); 2595 if (mle_len < 0) 2596 goto error; 2597 2598 res->mle = (void *)res->data; 2599 2600 /* Find the sub-element area in the buffer */ 2601 common_size = ieee80211_mle_common_size((u8 *)res->mle); 2602 ie = res->data + common_size; 2603 ielen = mle_len - common_size; 2604 2605 idx = 0; 2606 for_each_element_id(elem, IEEE80211_MLE_SUBELEM_PER_STA_PROFILE, 2607 ie, ielen) { 2608 res->sta_prof[idx] = (void *)elem->data; 2609 res->sta_prof_len[idx] = elem->datalen; 2610 2611 idx++; 2612 if (idx >= IEEE80211_MLD_MAX_NUM_LINKS) 2613 break; 2614 } 2615 if (!for_each_element_completed(elem, ie, ielen)) 2616 goto error; 2617 2618 /* Defragment sta_info in-place */ 2619 for (idx = 0; idx < IEEE80211_MLD_MAX_NUM_LINKS && res->sta_prof[idx]; 2620 idx++) { 2621 if (res->sta_prof_len[idx] < 255) 2622 continue; 2623 2624 elem = (void *)res->sta_prof[idx] - 2; 2625 2626 if (idx + 1 < ARRAY_SIZE(res->sta_prof) && 2627 res->sta_prof[idx + 1]) 2628 buf_len = (u8 *)res->sta_prof[idx + 1] - 2629 (u8 *)res->sta_prof[idx]; 2630 else 2631 buf_len = ielen + ie - (u8 *)elem; 2632 2633 res->sta_prof_len[idx] = 2634 cfg80211_defragment_element(elem, 2635 (u8 *)elem, buf_len, 2636 (u8 *)res->sta_prof[idx], 2637 buf_len, 2638 IEEE80211_MLE_SUBELEM_FRAGMENT); 2639 if (res->sta_prof_len[idx] < 0) 2640 goto error; 2641 } 2642 2643 return res; 2644 2645 error: 2646 kfree(res); 2647 return NULL; 2648 } 2649 2650 struct tbtt_info_iter_data { 2651 const struct ieee80211_neighbor_ap_info *ap_info; 2652 u8 param_ch_count; 2653 u32 use_for; 2654 u8 mld_id, link_id; 2655 }; 2656 2657 static enum cfg80211_rnr_iter_ret 2658 cfg802121_mld_ap_rnr_iter(void *_data, u8 type, 2659 const struct ieee80211_neighbor_ap_info *info, 2660 const u8 *tbtt_info, u8 tbtt_info_len) 2661 { 2662 const struct ieee80211_rnr_mld_params *mld_params; 2663 struct tbtt_info_iter_data *data = _data; 2664 u8 link_id; 2665 2666 if (type == IEEE80211_TBTT_INFO_TYPE_TBTT && 2667 tbtt_info_len >= offsetofend(struct ieee80211_tbtt_info_ge_11, 2668 mld_params)) 2669 mld_params = (void *)(tbtt_info + 2670 offsetof(struct ieee80211_tbtt_info_ge_11, 2671 mld_params)); 2672 else if (type == IEEE80211_TBTT_INFO_TYPE_MLD && 2673 tbtt_info_len >= sizeof(struct ieee80211_rnr_mld_params)) 2674 mld_params = (void *)tbtt_info; 2675 else 2676 return RNR_ITER_CONTINUE; 2677 2678 link_id = le16_get_bits(mld_params->params, 2679 IEEE80211_RNR_MLD_PARAMS_LINK_ID); 2680 2681 if (data->mld_id != mld_params->mld_id) 2682 return RNR_ITER_CONTINUE; 2683 2684 if (data->link_id != link_id) 2685 return RNR_ITER_CONTINUE; 2686 2687 data->ap_info = info; 2688 data->param_ch_count = 2689 le16_get_bits(mld_params->params, 2690 IEEE80211_RNR_MLD_PARAMS_BSS_CHANGE_COUNT); 2691 2692 if (type == IEEE80211_TBTT_INFO_TYPE_TBTT) 2693 data->use_for = NL80211_BSS_USE_FOR_ALL; 2694 else 2695 data->use_for = NL80211_BSS_USE_FOR_MLD_LINK; 2696 return RNR_ITER_BREAK; 2697 } 2698 2699 static u8 2700 cfg80211_rnr_info_for_mld_ap(const u8 *ie, size_t ielen, u8 mld_id, u8 link_id, 2701 const struct ieee80211_neighbor_ap_info **ap_info, 2702 u8 *param_ch_count) 2703 { 2704 struct tbtt_info_iter_data data = { 2705 .mld_id = mld_id, 2706 .link_id = link_id, 2707 }; 2708 2709 cfg80211_iter_rnr(ie, ielen, cfg802121_mld_ap_rnr_iter, &data); 2710 2711 *ap_info = data.ap_info; 2712 *param_ch_count = data.param_ch_count; 2713 2714 return data.use_for; 2715 } 2716 2717 static struct element * 2718 cfg80211_gen_reporter_rnr(struct cfg80211_bss *source_bss, bool is_mbssid, 2719 bool same_mld, u8 link_id, u8 bss_change_count, 2720 gfp_t gfp) 2721 { 2722 const struct cfg80211_bss_ies *ies; 2723 struct ieee80211_neighbor_ap_info ap_info; 2724 struct ieee80211_tbtt_info_ge_11 tbtt_info; 2725 u32 short_ssid; 2726 const struct element *elem; 2727 struct element *res; 2728 2729 /* 2730 * We only generate the RNR to permit ML lookups. For that we do not 2731 * need an entry for the corresponding transmitting BSS, lets just skip 2732 * it even though it would be easy to add. 2733 */ 2734 if (!same_mld) 2735 return NULL; 2736 2737 /* We could use tx_data->ies if we change cfg80211_calc_short_ssid */ 2738 rcu_read_lock(); 2739 ies = rcu_dereference(source_bss->ies); 2740 2741 ap_info.tbtt_info_len = offsetofend(typeof(tbtt_info), mld_params); 2742 ap_info.tbtt_info_hdr = 2743 u8_encode_bits(IEEE80211_TBTT_INFO_TYPE_TBTT, 2744 IEEE80211_AP_INFO_TBTT_HDR_TYPE) | 2745 u8_encode_bits(0, IEEE80211_AP_INFO_TBTT_HDR_COUNT); 2746 2747 ap_info.channel = ieee80211_frequency_to_channel(source_bss->channel->center_freq); 2748 2749 /* operating class */ 2750 elem = cfg80211_find_elem(WLAN_EID_SUPPORTED_REGULATORY_CLASSES, 2751 ies->data, ies->len); 2752 if (elem && elem->datalen >= 1) { 2753 ap_info.op_class = elem->data[0]; 2754 } else { 2755 struct cfg80211_chan_def chandef; 2756 2757 /* The AP is not providing us with anything to work with. So 2758 * make up a somewhat reasonable operating class, but don't 2759 * bother with it too much as no one will ever use the 2760 * information. 2761 */ 2762 cfg80211_chandef_create(&chandef, source_bss->channel, 2763 NL80211_CHAN_NO_HT); 2764 2765 if (!ieee80211_chandef_to_operating_class(&chandef, 2766 &ap_info.op_class)) 2767 goto out_unlock; 2768 } 2769 2770 /* Just set TBTT offset and PSD 20 to invalid/unknown */ 2771 tbtt_info.tbtt_offset = 255; 2772 tbtt_info.psd_20 = IEEE80211_RNR_TBTT_PARAMS_PSD_RESERVED; 2773 2774 memcpy(tbtt_info.bssid, source_bss->bssid, ETH_ALEN); 2775 if (cfg80211_calc_short_ssid(ies, &elem, &short_ssid)) 2776 goto out_unlock; 2777 2778 rcu_read_unlock(); 2779 2780 tbtt_info.short_ssid = cpu_to_le32(short_ssid); 2781 2782 tbtt_info.bss_params = IEEE80211_RNR_TBTT_PARAMS_SAME_SSID; 2783 2784 if (is_mbssid) { 2785 tbtt_info.bss_params |= IEEE80211_RNR_TBTT_PARAMS_MULTI_BSSID; 2786 tbtt_info.bss_params |= IEEE80211_RNR_TBTT_PARAMS_TRANSMITTED_BSSID; 2787 } 2788 2789 tbtt_info.mld_params.mld_id = 0; 2790 tbtt_info.mld_params.params = 2791 le16_encode_bits(link_id, IEEE80211_RNR_MLD_PARAMS_LINK_ID) | 2792 le16_encode_bits(bss_change_count, 2793 IEEE80211_RNR_MLD_PARAMS_BSS_CHANGE_COUNT); 2794 2795 res = kzalloc(struct_size(res, data, 2796 sizeof(ap_info) + ap_info.tbtt_info_len), 2797 gfp); 2798 if (!res) 2799 return NULL; 2800 2801 /* Copy the data */ 2802 res->id = WLAN_EID_REDUCED_NEIGHBOR_REPORT; 2803 res->datalen = sizeof(ap_info) + ap_info.tbtt_info_len; 2804 memcpy(res->data, &ap_info, sizeof(ap_info)); 2805 memcpy(res->data + sizeof(ap_info), &tbtt_info, ap_info.tbtt_info_len); 2806 2807 return res; 2808 2809 out_unlock: 2810 rcu_read_unlock(); 2811 return NULL; 2812 } 2813 2814 static void 2815 cfg80211_parse_ml_elem_sta_data(struct wiphy *wiphy, 2816 struct cfg80211_inform_single_bss_data *tx_data, 2817 struct cfg80211_bss *source_bss, 2818 const struct element *elem, 2819 gfp_t gfp) 2820 { 2821 struct cfg80211_inform_single_bss_data data = { 2822 .drv_data = tx_data->drv_data, 2823 .ftype = tx_data->ftype, 2824 .source_bss = source_bss, 2825 .bss_source = BSS_SOURCE_STA_PROFILE, 2826 }; 2827 struct element *reporter_rnr = NULL; 2828 struct ieee80211_multi_link_elem *ml_elem; 2829 struct cfg80211_mle *mle; 2830 u16 control; 2831 u8 ml_common_len; 2832 u8 *new_ie = NULL; 2833 struct cfg80211_bss *bss; 2834 u8 mld_id, reporter_link_id, bss_change_count; 2835 u16 seen_links = 0; 2836 u8 i; 2837 2838 if (!ieee80211_mle_type_ok(elem->data + 1, 2839 IEEE80211_ML_CONTROL_TYPE_BASIC, 2840 elem->datalen - 1)) 2841 return; 2842 2843 ml_elem = (void *)(elem->data + 1); 2844 control = le16_to_cpu(ml_elem->control); 2845 ml_common_len = ml_elem->variable[0]; 2846 2847 /* Must be present when transmitted by an AP (in a probe response) */ 2848 if (!(control & IEEE80211_MLC_BASIC_PRES_BSS_PARAM_CH_CNT) || 2849 !(control & IEEE80211_MLC_BASIC_PRES_LINK_ID) || 2850 !(control & IEEE80211_MLC_BASIC_PRES_MLD_CAPA_OP)) 2851 return; 2852 2853 reporter_link_id = ieee80211_mle_get_link_id(elem->data + 1); 2854 bss_change_count = ieee80211_mle_get_bss_param_ch_cnt(elem->data + 1); 2855 2856 /* 2857 * The MLD ID of the reporting AP is always zero. It is set if the AP 2858 * is part of an MBSSID set and will be non-zero for ML Elements 2859 * relating to a nontransmitted BSS (matching the Multi-BSSID Index, 2860 * Draft P802.11be_D3.2, 35.3.4.2) 2861 */ 2862 mld_id = ieee80211_mle_get_mld_id(elem->data + 1); 2863 2864 /* Fully defrag the ML element for sta information/profile iteration */ 2865 mle = cfg80211_defrag_mle(elem, tx_data->ie, tx_data->ielen, gfp); 2866 if (!mle) 2867 return; 2868 2869 /* No point in doing anything if there is no per-STA profile */ 2870 if (!mle->sta_prof[0]) 2871 goto out; 2872 2873 new_ie = kmalloc(IEEE80211_MAX_DATA_LEN, gfp); 2874 if (!new_ie) 2875 goto out; 2876 2877 reporter_rnr = cfg80211_gen_reporter_rnr(source_bss, 2878 u16_get_bits(control, 2879 IEEE80211_MLC_BASIC_PRES_MLD_ID), 2880 mld_id == 0, reporter_link_id, 2881 bss_change_count, 2882 gfp); 2883 2884 for (i = 0; i < ARRAY_SIZE(mle->sta_prof) && mle->sta_prof[i]; i++) { 2885 const struct ieee80211_neighbor_ap_info *ap_info; 2886 enum nl80211_band band; 2887 u32 freq; 2888 const u8 *profile; 2889 ssize_t profile_len; 2890 u8 param_ch_count; 2891 u8 link_id, use_for; 2892 2893 if (!ieee80211_mle_basic_sta_prof_size_ok((u8 *)mle->sta_prof[i], 2894 mle->sta_prof_len[i])) 2895 continue; 2896 2897 control = le16_to_cpu(mle->sta_prof[i]->control); 2898 2899 if (!(control & IEEE80211_MLE_STA_CONTROL_COMPLETE_PROFILE)) 2900 continue; 2901 2902 link_id = u16_get_bits(control, 2903 IEEE80211_MLE_STA_CONTROL_LINK_ID); 2904 if (seen_links & BIT(link_id)) 2905 break; 2906 seen_links |= BIT(link_id); 2907 2908 if (!(control & IEEE80211_MLE_STA_CONTROL_BEACON_INT_PRESENT) || 2909 !(control & IEEE80211_MLE_STA_CONTROL_TSF_OFFS_PRESENT) || 2910 !(control & IEEE80211_MLE_STA_CONTROL_STA_MAC_ADDR_PRESENT)) 2911 continue; 2912 2913 memcpy(data.bssid, mle->sta_prof[i]->variable, ETH_ALEN); 2914 data.beacon_interval = 2915 get_unaligned_le16(mle->sta_prof[i]->variable + 6); 2916 data.tsf = tx_data->tsf + 2917 get_unaligned_le64(mle->sta_prof[i]->variable + 8); 2918 2919 /* sta_info_len counts itself */ 2920 profile = mle->sta_prof[i]->variable + 2921 mle->sta_prof[i]->sta_info_len - 1; 2922 profile_len = (u8 *)mle->sta_prof[i] + mle->sta_prof_len[i] - 2923 profile; 2924 2925 if (profile_len < 2) 2926 continue; 2927 2928 data.capability = get_unaligned_le16(profile); 2929 profile += 2; 2930 profile_len -= 2; 2931 2932 /* Find in RNR to look up channel information */ 2933 use_for = cfg80211_rnr_info_for_mld_ap(tx_data->ie, 2934 tx_data->ielen, 2935 mld_id, link_id, 2936 &ap_info, 2937 ¶m_ch_count); 2938 if (!use_for) 2939 continue; 2940 2941 /* We could sanity check the BSSID is included */ 2942 2943 if (!ieee80211_operating_class_to_band(ap_info->op_class, 2944 &band)) 2945 continue; 2946 2947 freq = ieee80211_channel_to_freq_khz(ap_info->channel, band); 2948 data.channel = ieee80211_get_channel_khz(wiphy, freq); 2949 2950 if (use_for == NL80211_BSS_USE_FOR_MLD_LINK && 2951 !(wiphy->flags & WIPHY_FLAG_SUPPORTS_NSTR_NONPRIMARY)) { 2952 use_for = 0; 2953 data.cannot_use_reasons = 2954 NL80211_BSS_CANNOT_USE_NSTR_NONPRIMARY; 2955 } 2956 data.use_for = use_for; 2957 2958 /* Generate new elements */ 2959 memset(new_ie, 0, IEEE80211_MAX_DATA_LEN); 2960 data.ie = new_ie; 2961 data.ielen = cfg80211_gen_new_ie(tx_data->ie, tx_data->ielen, 2962 profile, profile_len, 2963 new_ie, 2964 IEEE80211_MAX_DATA_LEN); 2965 if (!data.ielen) 2966 continue; 2967 2968 /* The generated elements do not contain: 2969 * - Basic ML element 2970 * - A TBTT entry in the RNR for the transmitting AP 2971 * 2972 * This information is needed both internally and in userspace 2973 * as such, we should append it here. 2974 */ 2975 if (data.ielen + 3 + sizeof(*ml_elem) + ml_common_len > 2976 IEEE80211_MAX_DATA_LEN) 2977 continue; 2978 2979 /* Copy the Basic Multi-Link element including the common 2980 * information, and then fix up the link ID and BSS param 2981 * change count. 2982 * Note that the ML element length has been verified and we 2983 * also checked that it contains the link ID. 2984 */ 2985 new_ie[data.ielen++] = WLAN_EID_EXTENSION; 2986 new_ie[data.ielen++] = 1 + sizeof(*ml_elem) + ml_common_len; 2987 new_ie[data.ielen++] = WLAN_EID_EXT_EHT_MULTI_LINK; 2988 memcpy(new_ie + data.ielen, ml_elem, 2989 sizeof(*ml_elem) + ml_common_len); 2990 2991 new_ie[data.ielen + sizeof(*ml_elem) + 1 + ETH_ALEN] = link_id; 2992 new_ie[data.ielen + sizeof(*ml_elem) + 1 + ETH_ALEN + 1] = 2993 param_ch_count; 2994 2995 data.ielen += sizeof(*ml_elem) + ml_common_len; 2996 2997 if (reporter_rnr && (use_for & NL80211_BSS_USE_FOR_NORMAL)) { 2998 if (data.ielen + sizeof(struct element) + 2999 reporter_rnr->datalen > IEEE80211_MAX_DATA_LEN) 3000 continue; 3001 3002 memcpy(new_ie + data.ielen, reporter_rnr, 3003 sizeof(struct element) + reporter_rnr->datalen); 3004 data.ielen += sizeof(struct element) + 3005 reporter_rnr->datalen; 3006 } 3007 3008 bss = cfg80211_inform_single_bss_data(wiphy, &data, gfp); 3009 if (!bss) 3010 break; 3011 cfg80211_put_bss(wiphy, bss); 3012 } 3013 3014 out: 3015 kfree(reporter_rnr); 3016 kfree(new_ie); 3017 kfree(mle); 3018 } 3019 3020 static void cfg80211_parse_ml_sta_data(struct wiphy *wiphy, 3021 struct cfg80211_inform_single_bss_data *tx_data, 3022 struct cfg80211_bss *source_bss, 3023 gfp_t gfp) 3024 { 3025 const struct element *elem; 3026 3027 if (!source_bss) 3028 return; 3029 3030 if (tx_data->ftype != CFG80211_BSS_FTYPE_PRESP) 3031 return; 3032 3033 for_each_element_extid(elem, WLAN_EID_EXT_EHT_MULTI_LINK, 3034 tx_data->ie, tx_data->ielen) 3035 cfg80211_parse_ml_elem_sta_data(wiphy, tx_data, source_bss, 3036 elem, gfp); 3037 } 3038 3039 struct cfg80211_bss * 3040 cfg80211_inform_bss_data(struct wiphy *wiphy, 3041 struct cfg80211_inform_bss *data, 3042 enum cfg80211_bss_frame_type ftype, 3043 const u8 *bssid, u64 tsf, u16 capability, 3044 u16 beacon_interval, const u8 *ie, size_t ielen, 3045 gfp_t gfp) 3046 { 3047 struct cfg80211_inform_single_bss_data inform_data = { 3048 .drv_data = data, 3049 .ftype = ftype, 3050 .tsf = tsf, 3051 .capability = capability, 3052 .beacon_interval = beacon_interval, 3053 .ie = ie, 3054 .ielen = ielen, 3055 .use_for = data->restrict_use ? 3056 data->use_for : 3057 NL80211_BSS_USE_FOR_ALL, 3058 .cannot_use_reasons = data->cannot_use_reasons, 3059 }; 3060 struct cfg80211_bss *res; 3061 3062 memcpy(inform_data.bssid, bssid, ETH_ALEN); 3063 3064 res = cfg80211_inform_single_bss_data(wiphy, &inform_data, gfp); 3065 if (!res) 3066 return NULL; 3067 3068 /* don't do any further MBSSID/ML handling for S1G */ 3069 if (ftype == CFG80211_BSS_FTYPE_S1G_BEACON) 3070 return res; 3071 3072 cfg80211_parse_mbssid_data(wiphy, &inform_data, res, gfp); 3073 3074 cfg80211_parse_ml_sta_data(wiphy, &inform_data, res, gfp); 3075 3076 return res; 3077 } 3078 EXPORT_SYMBOL(cfg80211_inform_bss_data); 3079 3080 struct cfg80211_bss * 3081 cfg80211_inform_bss_frame_data(struct wiphy *wiphy, 3082 struct cfg80211_inform_bss *data, 3083 struct ieee80211_mgmt *mgmt, size_t len, 3084 gfp_t gfp) 3085 { 3086 size_t min_hdr_len = offsetof(struct ieee80211_mgmt, 3087 u.probe_resp.variable); 3088 struct ieee80211_ext *ext = NULL; 3089 enum cfg80211_bss_frame_type ftype; 3090 u16 beacon_interval; 3091 const u8 *bssid; 3092 u16 capability; 3093 const u8 *ie; 3094 size_t ielen; 3095 u64 tsf; 3096 3097 if (WARN_ON(!mgmt)) 3098 return NULL; 3099 3100 if (WARN_ON(!wiphy)) 3101 return NULL; 3102 3103 BUILD_BUG_ON(offsetof(struct ieee80211_mgmt, u.probe_resp.variable) != 3104 offsetof(struct ieee80211_mgmt, u.beacon.variable)); 3105 3106 trace_cfg80211_inform_bss_frame(wiphy, data, mgmt, len); 3107 3108 if (ieee80211_is_s1g_beacon(mgmt->frame_control)) { 3109 ext = (void *) mgmt; 3110 min_hdr_len = offsetof(struct ieee80211_ext, u.s1g_beacon); 3111 if (ieee80211_is_s1g_short_beacon(mgmt->frame_control)) 3112 min_hdr_len = offsetof(struct ieee80211_ext, 3113 u.s1g_short_beacon.variable); 3114 } 3115 3116 if (WARN_ON(len < min_hdr_len)) 3117 return NULL; 3118 3119 ielen = len - min_hdr_len; 3120 ie = mgmt->u.probe_resp.variable; 3121 if (ext) { 3122 const struct ieee80211_s1g_bcn_compat_ie *compat; 3123 const struct element *elem; 3124 3125 if (ieee80211_is_s1g_short_beacon(mgmt->frame_control)) 3126 ie = ext->u.s1g_short_beacon.variable; 3127 else 3128 ie = ext->u.s1g_beacon.variable; 3129 3130 elem = cfg80211_find_elem(WLAN_EID_S1G_BCN_COMPAT, ie, ielen); 3131 if (!elem) 3132 return NULL; 3133 if (elem->datalen < sizeof(*compat)) 3134 return NULL; 3135 compat = (void *)elem->data; 3136 bssid = ext->u.s1g_beacon.sa; 3137 capability = le16_to_cpu(compat->compat_info); 3138 beacon_interval = le16_to_cpu(compat->beacon_int); 3139 } else { 3140 bssid = mgmt->bssid; 3141 beacon_interval = le16_to_cpu(mgmt->u.probe_resp.beacon_int); 3142 capability = le16_to_cpu(mgmt->u.probe_resp.capab_info); 3143 } 3144 3145 tsf = le64_to_cpu(mgmt->u.probe_resp.timestamp); 3146 3147 if (ieee80211_is_probe_resp(mgmt->frame_control)) 3148 ftype = CFG80211_BSS_FTYPE_PRESP; 3149 else if (ext) 3150 ftype = CFG80211_BSS_FTYPE_S1G_BEACON; 3151 else 3152 ftype = CFG80211_BSS_FTYPE_BEACON; 3153 3154 return cfg80211_inform_bss_data(wiphy, data, ftype, 3155 bssid, tsf, capability, 3156 beacon_interval, ie, ielen, 3157 gfp); 3158 } 3159 EXPORT_SYMBOL(cfg80211_inform_bss_frame_data); 3160 3161 void cfg80211_ref_bss(struct wiphy *wiphy, struct cfg80211_bss *pub) 3162 { 3163 struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy); 3164 3165 if (!pub) 3166 return; 3167 3168 spin_lock_bh(&rdev->bss_lock); 3169 bss_ref_get(rdev, bss_from_pub(pub)); 3170 spin_unlock_bh(&rdev->bss_lock); 3171 } 3172 EXPORT_SYMBOL(cfg80211_ref_bss); 3173 3174 void cfg80211_put_bss(struct wiphy *wiphy, struct cfg80211_bss *pub) 3175 { 3176 struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy); 3177 3178 if (!pub) 3179 return; 3180 3181 spin_lock_bh(&rdev->bss_lock); 3182 bss_ref_put(rdev, bss_from_pub(pub)); 3183 spin_unlock_bh(&rdev->bss_lock); 3184 } 3185 EXPORT_SYMBOL(cfg80211_put_bss); 3186 3187 void cfg80211_unlink_bss(struct wiphy *wiphy, struct cfg80211_bss *pub) 3188 { 3189 struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy); 3190 struct cfg80211_internal_bss *bss, *tmp1; 3191 struct cfg80211_bss *nontrans_bss, *tmp; 3192 3193 if (WARN_ON(!pub)) 3194 return; 3195 3196 bss = bss_from_pub(pub); 3197 3198 spin_lock_bh(&rdev->bss_lock); 3199 if (list_empty(&bss->list)) 3200 goto out; 3201 3202 list_for_each_entry_safe(nontrans_bss, tmp, 3203 &pub->nontrans_list, 3204 nontrans_list) { 3205 tmp1 = bss_from_pub(nontrans_bss); 3206 if (__cfg80211_unlink_bss(rdev, tmp1)) 3207 rdev->bss_generation++; 3208 } 3209 3210 if (__cfg80211_unlink_bss(rdev, bss)) 3211 rdev->bss_generation++; 3212 out: 3213 spin_unlock_bh(&rdev->bss_lock); 3214 } 3215 EXPORT_SYMBOL(cfg80211_unlink_bss); 3216 3217 void cfg80211_bss_iter(struct wiphy *wiphy, 3218 struct cfg80211_chan_def *chandef, 3219 void (*iter)(struct wiphy *wiphy, 3220 struct cfg80211_bss *bss, 3221 void *data), 3222 void *iter_data) 3223 { 3224 struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy); 3225 struct cfg80211_internal_bss *bss; 3226 3227 spin_lock_bh(&rdev->bss_lock); 3228 3229 list_for_each_entry(bss, &rdev->bss_list, list) { 3230 if (!chandef || cfg80211_is_sub_chan(chandef, bss->pub.channel, 3231 false)) 3232 iter(wiphy, &bss->pub, iter_data); 3233 } 3234 3235 spin_unlock_bh(&rdev->bss_lock); 3236 } 3237 EXPORT_SYMBOL(cfg80211_bss_iter); 3238 3239 void cfg80211_update_assoc_bss_entry(struct wireless_dev *wdev, 3240 unsigned int link_id, 3241 struct ieee80211_channel *chan) 3242 { 3243 struct wiphy *wiphy = wdev->wiphy; 3244 struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy); 3245 struct cfg80211_internal_bss *cbss = wdev->links[link_id].client.current_bss; 3246 struct cfg80211_internal_bss *new = NULL; 3247 struct cfg80211_internal_bss *bss; 3248 struct cfg80211_bss *nontrans_bss; 3249 struct cfg80211_bss *tmp; 3250 3251 spin_lock_bh(&rdev->bss_lock); 3252 3253 /* 3254 * Some APs use CSA also for bandwidth changes, i.e., without actually 3255 * changing the control channel, so no need to update in such a case. 3256 */ 3257 if (cbss->pub.channel == chan) 3258 goto done; 3259 3260 /* use transmitting bss */ 3261 if (cbss->pub.transmitted_bss) 3262 cbss = bss_from_pub(cbss->pub.transmitted_bss); 3263 3264 cbss->pub.channel = chan; 3265 3266 list_for_each_entry(bss, &rdev->bss_list, list) { 3267 if (!cfg80211_bss_type_match(bss->pub.capability, 3268 bss->pub.channel->band, 3269 wdev->conn_bss_type)) 3270 continue; 3271 3272 if (bss == cbss) 3273 continue; 3274 3275 if (!cmp_bss(&bss->pub, &cbss->pub, BSS_CMP_REGULAR)) { 3276 new = bss; 3277 break; 3278 } 3279 } 3280 3281 if (new) { 3282 /* to save time, update IEs for transmitting bss only */ 3283 cfg80211_update_known_bss(rdev, cbss, new, false); 3284 new->pub.proberesp_ies = NULL; 3285 new->pub.beacon_ies = NULL; 3286 3287 list_for_each_entry_safe(nontrans_bss, tmp, 3288 &new->pub.nontrans_list, 3289 nontrans_list) { 3290 bss = bss_from_pub(nontrans_bss); 3291 if (__cfg80211_unlink_bss(rdev, bss)) 3292 rdev->bss_generation++; 3293 } 3294 3295 WARN_ON(atomic_read(&new->hold)); 3296 if (!WARN_ON(!__cfg80211_unlink_bss(rdev, new))) 3297 rdev->bss_generation++; 3298 } 3299 3300 rb_erase(&cbss->rbn, &rdev->bss_tree); 3301 rb_insert_bss(rdev, cbss); 3302 rdev->bss_generation++; 3303 3304 list_for_each_entry_safe(nontrans_bss, tmp, 3305 &cbss->pub.nontrans_list, 3306 nontrans_list) { 3307 bss = bss_from_pub(nontrans_bss); 3308 bss->pub.channel = chan; 3309 rb_erase(&bss->rbn, &rdev->bss_tree); 3310 rb_insert_bss(rdev, bss); 3311 rdev->bss_generation++; 3312 } 3313 3314 done: 3315 spin_unlock_bh(&rdev->bss_lock); 3316 } 3317 3318 #ifdef CONFIG_CFG80211_WEXT 3319 static struct cfg80211_registered_device * 3320 cfg80211_get_dev_from_ifindex(struct net *net, int ifindex) 3321 { 3322 struct cfg80211_registered_device *rdev; 3323 struct net_device *dev; 3324 3325 ASSERT_RTNL(); 3326 3327 dev = dev_get_by_index(net, ifindex); 3328 if (!dev) 3329 return ERR_PTR(-ENODEV); 3330 if (dev->ieee80211_ptr) 3331 rdev = wiphy_to_rdev(dev->ieee80211_ptr->wiphy); 3332 else 3333 rdev = ERR_PTR(-ENODEV); 3334 dev_put(dev); 3335 return rdev; 3336 } 3337 3338 int cfg80211_wext_siwscan(struct net_device *dev, 3339 struct iw_request_info *info, 3340 union iwreq_data *wrqu, char *extra) 3341 { 3342 struct cfg80211_registered_device *rdev; 3343 struct wiphy *wiphy; 3344 struct iw_scan_req *wreq = NULL; 3345 struct cfg80211_scan_request *creq; 3346 int i, err, n_channels = 0; 3347 enum nl80211_band band; 3348 3349 if (!netif_running(dev)) 3350 return -ENETDOWN; 3351 3352 if (wrqu->data.length == sizeof(struct iw_scan_req)) 3353 wreq = (struct iw_scan_req *)extra; 3354 3355 rdev = cfg80211_get_dev_from_ifindex(dev_net(dev), dev->ifindex); 3356 3357 if (IS_ERR(rdev)) 3358 return PTR_ERR(rdev); 3359 3360 if (rdev->scan_req || rdev->scan_msg) 3361 return -EBUSY; 3362 3363 wiphy = &rdev->wiphy; 3364 3365 /* Determine number of channels, needed to allocate creq */ 3366 if (wreq && wreq->num_channels) 3367 n_channels = wreq->num_channels; 3368 else 3369 n_channels = ieee80211_get_num_supported_channels(wiphy); 3370 3371 creq = kzalloc(sizeof(*creq) + sizeof(struct cfg80211_ssid) + 3372 n_channels * sizeof(void *), 3373 GFP_ATOMIC); 3374 if (!creq) 3375 return -ENOMEM; 3376 3377 creq->wiphy = wiphy; 3378 creq->wdev = dev->ieee80211_ptr; 3379 /* SSIDs come after channels */ 3380 creq->ssids = (void *)&creq->channels[n_channels]; 3381 creq->n_channels = n_channels; 3382 creq->n_ssids = 1; 3383 creq->scan_start = jiffies; 3384 3385 /* translate "Scan on frequencies" request */ 3386 i = 0; 3387 for (band = 0; band < NUM_NL80211_BANDS; band++) { 3388 int j; 3389 3390 if (!wiphy->bands[band]) 3391 continue; 3392 3393 for (j = 0; j < wiphy->bands[band]->n_channels; j++) { 3394 /* ignore disabled channels */ 3395 if (wiphy->bands[band]->channels[j].flags & 3396 IEEE80211_CHAN_DISABLED) 3397 continue; 3398 3399 /* If we have a wireless request structure and the 3400 * wireless request specifies frequencies, then search 3401 * for the matching hardware channel. 3402 */ 3403 if (wreq && wreq->num_channels) { 3404 int k; 3405 int wiphy_freq = wiphy->bands[band]->channels[j].center_freq; 3406 for (k = 0; k < wreq->num_channels; k++) { 3407 struct iw_freq *freq = 3408 &wreq->channel_list[k]; 3409 int wext_freq = 3410 cfg80211_wext_freq(freq); 3411 3412 if (wext_freq == wiphy_freq) 3413 goto wext_freq_found; 3414 } 3415 goto wext_freq_not_found; 3416 } 3417 3418 wext_freq_found: 3419 creq->channels[i] = &wiphy->bands[band]->channels[j]; 3420 i++; 3421 wext_freq_not_found: ; 3422 } 3423 } 3424 /* No channels found? */ 3425 if (!i) { 3426 err = -EINVAL; 3427 goto out; 3428 } 3429 3430 /* Set real number of channels specified in creq->channels[] */ 3431 creq->n_channels = i; 3432 3433 /* translate "Scan for SSID" request */ 3434 if (wreq) { 3435 if (wrqu->data.flags & IW_SCAN_THIS_ESSID) { 3436 if (wreq->essid_len > IEEE80211_MAX_SSID_LEN) { 3437 err = -EINVAL; 3438 goto out; 3439 } 3440 memcpy(creq->ssids[0].ssid, wreq->essid, wreq->essid_len); 3441 creq->ssids[0].ssid_len = wreq->essid_len; 3442 } 3443 if (wreq->scan_type == IW_SCAN_TYPE_PASSIVE) 3444 creq->n_ssids = 0; 3445 } 3446 3447 for (i = 0; i < NUM_NL80211_BANDS; i++) 3448 if (wiphy->bands[i]) 3449 creq->rates[i] = (1 << wiphy->bands[i]->n_bitrates) - 1; 3450 3451 eth_broadcast_addr(creq->bssid); 3452 3453 wiphy_lock(&rdev->wiphy); 3454 3455 rdev->scan_req = creq; 3456 err = rdev_scan(rdev, creq); 3457 if (err) { 3458 rdev->scan_req = NULL; 3459 /* creq will be freed below */ 3460 } else { 3461 nl80211_send_scan_start(rdev, dev->ieee80211_ptr); 3462 /* creq now owned by driver */ 3463 creq = NULL; 3464 dev_hold(dev); 3465 } 3466 wiphy_unlock(&rdev->wiphy); 3467 out: 3468 kfree(creq); 3469 return err; 3470 } 3471 EXPORT_WEXT_HANDLER(cfg80211_wext_siwscan); 3472 3473 static char *ieee80211_scan_add_ies(struct iw_request_info *info, 3474 const struct cfg80211_bss_ies *ies, 3475 char *current_ev, char *end_buf) 3476 { 3477 const u8 *pos, *end, *next; 3478 struct iw_event iwe; 3479 3480 if (!ies) 3481 return current_ev; 3482 3483 /* 3484 * If needed, fragment the IEs buffer (at IE boundaries) into short 3485 * enough fragments to fit into IW_GENERIC_IE_MAX octet messages. 3486 */ 3487 pos = ies->data; 3488 end = pos + ies->len; 3489 3490 while (end - pos > IW_GENERIC_IE_MAX) { 3491 next = pos + 2 + pos[1]; 3492 while (next + 2 + next[1] - pos < IW_GENERIC_IE_MAX) 3493 next = next + 2 + next[1]; 3494 3495 memset(&iwe, 0, sizeof(iwe)); 3496 iwe.cmd = IWEVGENIE; 3497 iwe.u.data.length = next - pos; 3498 current_ev = iwe_stream_add_point_check(info, current_ev, 3499 end_buf, &iwe, 3500 (void *)pos); 3501 if (IS_ERR(current_ev)) 3502 return current_ev; 3503 pos = next; 3504 } 3505 3506 if (end > pos) { 3507 memset(&iwe, 0, sizeof(iwe)); 3508 iwe.cmd = IWEVGENIE; 3509 iwe.u.data.length = end - pos; 3510 current_ev = iwe_stream_add_point_check(info, current_ev, 3511 end_buf, &iwe, 3512 (void *)pos); 3513 if (IS_ERR(current_ev)) 3514 return current_ev; 3515 } 3516 3517 return current_ev; 3518 } 3519 3520 static char * 3521 ieee80211_bss(struct wiphy *wiphy, struct iw_request_info *info, 3522 struct cfg80211_internal_bss *bss, char *current_ev, 3523 char *end_buf) 3524 { 3525 const struct cfg80211_bss_ies *ies; 3526 struct iw_event iwe; 3527 const u8 *ie; 3528 u8 buf[50]; 3529 u8 *cfg, *p, *tmp; 3530 int rem, i, sig; 3531 bool ismesh = false; 3532 3533 memset(&iwe, 0, sizeof(iwe)); 3534 iwe.cmd = SIOCGIWAP; 3535 iwe.u.ap_addr.sa_family = ARPHRD_ETHER; 3536 memcpy(iwe.u.ap_addr.sa_data, bss->pub.bssid, ETH_ALEN); 3537 current_ev = iwe_stream_add_event_check(info, current_ev, end_buf, &iwe, 3538 IW_EV_ADDR_LEN); 3539 if (IS_ERR(current_ev)) 3540 return current_ev; 3541 3542 memset(&iwe, 0, sizeof(iwe)); 3543 iwe.cmd = SIOCGIWFREQ; 3544 iwe.u.freq.m = ieee80211_frequency_to_channel(bss->pub.channel->center_freq); 3545 iwe.u.freq.e = 0; 3546 current_ev = iwe_stream_add_event_check(info, current_ev, end_buf, &iwe, 3547 IW_EV_FREQ_LEN); 3548 if (IS_ERR(current_ev)) 3549 return current_ev; 3550 3551 memset(&iwe, 0, sizeof(iwe)); 3552 iwe.cmd = SIOCGIWFREQ; 3553 iwe.u.freq.m = bss->pub.channel->center_freq; 3554 iwe.u.freq.e = 6; 3555 current_ev = iwe_stream_add_event_check(info, current_ev, end_buf, &iwe, 3556 IW_EV_FREQ_LEN); 3557 if (IS_ERR(current_ev)) 3558 return current_ev; 3559 3560 if (wiphy->signal_type != CFG80211_SIGNAL_TYPE_NONE) { 3561 memset(&iwe, 0, sizeof(iwe)); 3562 iwe.cmd = IWEVQUAL; 3563 iwe.u.qual.updated = IW_QUAL_LEVEL_UPDATED | 3564 IW_QUAL_NOISE_INVALID | 3565 IW_QUAL_QUAL_UPDATED; 3566 switch (wiphy->signal_type) { 3567 case CFG80211_SIGNAL_TYPE_MBM: 3568 sig = bss->pub.signal / 100; 3569 iwe.u.qual.level = sig; 3570 iwe.u.qual.updated |= IW_QUAL_DBM; 3571 if (sig < -110) /* rather bad */ 3572 sig = -110; 3573 else if (sig > -40) /* perfect */ 3574 sig = -40; 3575 /* will give a range of 0 .. 70 */ 3576 iwe.u.qual.qual = sig + 110; 3577 break; 3578 case CFG80211_SIGNAL_TYPE_UNSPEC: 3579 iwe.u.qual.level = bss->pub.signal; 3580 /* will give range 0 .. 100 */ 3581 iwe.u.qual.qual = bss->pub.signal; 3582 break; 3583 default: 3584 /* not reached */ 3585 break; 3586 } 3587 current_ev = iwe_stream_add_event_check(info, current_ev, 3588 end_buf, &iwe, 3589 IW_EV_QUAL_LEN); 3590 if (IS_ERR(current_ev)) 3591 return current_ev; 3592 } 3593 3594 memset(&iwe, 0, sizeof(iwe)); 3595 iwe.cmd = SIOCGIWENCODE; 3596 if (bss->pub.capability & WLAN_CAPABILITY_PRIVACY) 3597 iwe.u.data.flags = IW_ENCODE_ENABLED | IW_ENCODE_NOKEY; 3598 else 3599 iwe.u.data.flags = IW_ENCODE_DISABLED; 3600 iwe.u.data.length = 0; 3601 current_ev = iwe_stream_add_point_check(info, current_ev, end_buf, 3602 &iwe, ""); 3603 if (IS_ERR(current_ev)) 3604 return current_ev; 3605 3606 rcu_read_lock(); 3607 ies = rcu_dereference(bss->pub.ies); 3608 rem = ies->len; 3609 ie = ies->data; 3610 3611 while (rem >= 2) { 3612 /* invalid data */ 3613 if (ie[1] > rem - 2) 3614 break; 3615 3616 switch (ie[0]) { 3617 case WLAN_EID_SSID: 3618 memset(&iwe, 0, sizeof(iwe)); 3619 iwe.cmd = SIOCGIWESSID; 3620 iwe.u.data.length = ie[1]; 3621 iwe.u.data.flags = 1; 3622 current_ev = iwe_stream_add_point_check(info, 3623 current_ev, 3624 end_buf, &iwe, 3625 (u8 *)ie + 2); 3626 if (IS_ERR(current_ev)) 3627 goto unlock; 3628 break; 3629 case WLAN_EID_MESH_ID: 3630 memset(&iwe, 0, sizeof(iwe)); 3631 iwe.cmd = SIOCGIWESSID; 3632 iwe.u.data.length = ie[1]; 3633 iwe.u.data.flags = 1; 3634 current_ev = iwe_stream_add_point_check(info, 3635 current_ev, 3636 end_buf, &iwe, 3637 (u8 *)ie + 2); 3638 if (IS_ERR(current_ev)) 3639 goto unlock; 3640 break; 3641 case WLAN_EID_MESH_CONFIG: 3642 ismesh = true; 3643 if (ie[1] != sizeof(struct ieee80211_meshconf_ie)) 3644 break; 3645 cfg = (u8 *)ie + 2; 3646 memset(&iwe, 0, sizeof(iwe)); 3647 iwe.cmd = IWEVCUSTOM; 3648 iwe.u.data.length = sprintf(buf, 3649 "Mesh Network Path Selection Protocol ID: 0x%02X", 3650 cfg[0]); 3651 current_ev = iwe_stream_add_point_check(info, 3652 current_ev, 3653 end_buf, 3654 &iwe, buf); 3655 if (IS_ERR(current_ev)) 3656 goto unlock; 3657 iwe.u.data.length = sprintf(buf, 3658 "Path Selection Metric ID: 0x%02X", 3659 cfg[1]); 3660 current_ev = iwe_stream_add_point_check(info, 3661 current_ev, 3662 end_buf, 3663 &iwe, buf); 3664 if (IS_ERR(current_ev)) 3665 goto unlock; 3666 iwe.u.data.length = sprintf(buf, 3667 "Congestion Control Mode ID: 0x%02X", 3668 cfg[2]); 3669 current_ev = iwe_stream_add_point_check(info, 3670 current_ev, 3671 end_buf, 3672 &iwe, buf); 3673 if (IS_ERR(current_ev)) 3674 goto unlock; 3675 iwe.u.data.length = sprintf(buf, 3676 "Synchronization ID: 0x%02X", 3677 cfg[3]); 3678 current_ev = iwe_stream_add_point_check(info, 3679 current_ev, 3680 end_buf, 3681 &iwe, buf); 3682 if (IS_ERR(current_ev)) 3683 goto unlock; 3684 iwe.u.data.length = sprintf(buf, 3685 "Authentication ID: 0x%02X", 3686 cfg[4]); 3687 current_ev = iwe_stream_add_point_check(info, 3688 current_ev, 3689 end_buf, 3690 &iwe, buf); 3691 if (IS_ERR(current_ev)) 3692 goto unlock; 3693 iwe.u.data.length = sprintf(buf, 3694 "Formation Info: 0x%02X", 3695 cfg[5]); 3696 current_ev = iwe_stream_add_point_check(info, 3697 current_ev, 3698 end_buf, 3699 &iwe, buf); 3700 if (IS_ERR(current_ev)) 3701 goto unlock; 3702 iwe.u.data.length = sprintf(buf, 3703 "Capabilities: 0x%02X", 3704 cfg[6]); 3705 current_ev = iwe_stream_add_point_check(info, 3706 current_ev, 3707 end_buf, 3708 &iwe, buf); 3709 if (IS_ERR(current_ev)) 3710 goto unlock; 3711 break; 3712 case WLAN_EID_SUPP_RATES: 3713 case WLAN_EID_EXT_SUPP_RATES: 3714 /* display all supported rates in readable format */ 3715 p = current_ev + iwe_stream_lcp_len(info); 3716 3717 memset(&iwe, 0, sizeof(iwe)); 3718 iwe.cmd = SIOCGIWRATE; 3719 /* Those two flags are ignored... */ 3720 iwe.u.bitrate.fixed = iwe.u.bitrate.disabled = 0; 3721 3722 for (i = 0; i < ie[1]; i++) { 3723 iwe.u.bitrate.value = 3724 ((ie[i + 2] & 0x7f) * 500000); 3725 tmp = p; 3726 p = iwe_stream_add_value(info, current_ev, p, 3727 end_buf, &iwe, 3728 IW_EV_PARAM_LEN); 3729 if (p == tmp) { 3730 current_ev = ERR_PTR(-E2BIG); 3731 goto unlock; 3732 } 3733 } 3734 current_ev = p; 3735 break; 3736 } 3737 rem -= ie[1] + 2; 3738 ie += ie[1] + 2; 3739 } 3740 3741 if (bss->pub.capability & (WLAN_CAPABILITY_ESS | WLAN_CAPABILITY_IBSS) || 3742 ismesh) { 3743 memset(&iwe, 0, sizeof(iwe)); 3744 iwe.cmd = SIOCGIWMODE; 3745 if (ismesh) 3746 iwe.u.mode = IW_MODE_MESH; 3747 else if (bss->pub.capability & WLAN_CAPABILITY_ESS) 3748 iwe.u.mode = IW_MODE_MASTER; 3749 else 3750 iwe.u.mode = IW_MODE_ADHOC; 3751 current_ev = iwe_stream_add_event_check(info, current_ev, 3752 end_buf, &iwe, 3753 IW_EV_UINT_LEN); 3754 if (IS_ERR(current_ev)) 3755 goto unlock; 3756 } 3757 3758 memset(&iwe, 0, sizeof(iwe)); 3759 iwe.cmd = IWEVCUSTOM; 3760 iwe.u.data.length = sprintf(buf, "tsf=%016llx", 3761 (unsigned long long)(ies->tsf)); 3762 current_ev = iwe_stream_add_point_check(info, current_ev, end_buf, 3763 &iwe, buf); 3764 if (IS_ERR(current_ev)) 3765 goto unlock; 3766 memset(&iwe, 0, sizeof(iwe)); 3767 iwe.cmd = IWEVCUSTOM; 3768 iwe.u.data.length = sprintf(buf, " Last beacon: %ums ago", 3769 elapsed_jiffies_msecs(bss->ts)); 3770 current_ev = iwe_stream_add_point_check(info, current_ev, 3771 end_buf, &iwe, buf); 3772 if (IS_ERR(current_ev)) 3773 goto unlock; 3774 3775 current_ev = ieee80211_scan_add_ies(info, ies, current_ev, end_buf); 3776 3777 unlock: 3778 rcu_read_unlock(); 3779 return current_ev; 3780 } 3781 3782 3783 static int ieee80211_scan_results(struct cfg80211_registered_device *rdev, 3784 struct iw_request_info *info, 3785 char *buf, size_t len) 3786 { 3787 char *current_ev = buf; 3788 char *end_buf = buf + len; 3789 struct cfg80211_internal_bss *bss; 3790 int err = 0; 3791 3792 spin_lock_bh(&rdev->bss_lock); 3793 cfg80211_bss_expire(rdev); 3794 3795 list_for_each_entry(bss, &rdev->bss_list, list) { 3796 if (buf + len - current_ev <= IW_EV_ADDR_LEN) { 3797 err = -E2BIG; 3798 break; 3799 } 3800 current_ev = ieee80211_bss(&rdev->wiphy, info, bss, 3801 current_ev, end_buf); 3802 if (IS_ERR(current_ev)) { 3803 err = PTR_ERR(current_ev); 3804 break; 3805 } 3806 } 3807 spin_unlock_bh(&rdev->bss_lock); 3808 3809 if (err) 3810 return err; 3811 return current_ev - buf; 3812 } 3813 3814 3815 int cfg80211_wext_giwscan(struct net_device *dev, 3816 struct iw_request_info *info, 3817 union iwreq_data *wrqu, char *extra) 3818 { 3819 struct iw_point *data = &wrqu->data; 3820 struct cfg80211_registered_device *rdev; 3821 int res; 3822 3823 if (!netif_running(dev)) 3824 return -ENETDOWN; 3825 3826 rdev = cfg80211_get_dev_from_ifindex(dev_net(dev), dev->ifindex); 3827 3828 if (IS_ERR(rdev)) 3829 return PTR_ERR(rdev); 3830 3831 if (rdev->scan_req || rdev->scan_msg) 3832 return -EAGAIN; 3833 3834 res = ieee80211_scan_results(rdev, info, extra, data->length); 3835 data->length = 0; 3836 if (res >= 0) { 3837 data->length = res; 3838 res = 0; 3839 } 3840 3841 return res; 3842 } 3843 EXPORT_WEXT_HANDLER(cfg80211_wext_giwscan); 3844 #endif 3845