1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * cfg80211 scan result handling 4 * 5 * Copyright 2008 Johannes Berg <johannes@sipsolutions.net> 6 * Copyright 2013-2014 Intel Mobile Communications GmbH 7 * Copyright 2016 Intel Deutschland GmbH 8 * Copyright (C) 2018-2022 Intel Corporation 9 */ 10 #include <linux/kernel.h> 11 #include <linux/slab.h> 12 #include <linux/module.h> 13 #include <linux/netdevice.h> 14 #include <linux/wireless.h> 15 #include <linux/nl80211.h> 16 #include <linux/etherdevice.h> 17 #include <linux/crc32.h> 18 #include <linux/bitfield.h> 19 #include <net/arp.h> 20 #include <net/cfg80211.h> 21 #include <net/cfg80211-wext.h> 22 #include <net/iw_handler.h> 23 #include "core.h" 24 #include "nl80211.h" 25 #include "wext-compat.h" 26 #include "rdev-ops.h" 27 28 /** 29 * DOC: BSS tree/list structure 30 * 31 * At the top level, the BSS list is kept in both a list in each 32 * registered device (@bss_list) as well as an RB-tree for faster 33 * lookup. In the RB-tree, entries can be looked up using their 34 * channel, MESHID, MESHCONF (for MBSSes) or channel, BSSID, SSID 35 * for other BSSes. 36 * 37 * Due to the possibility of hidden SSIDs, there's a second level 38 * structure, the "hidden_list" and "hidden_beacon_bss" pointer. 39 * The hidden_list connects all BSSes belonging to a single AP 40 * that has a hidden SSID, and connects beacon and probe response 41 * entries. For a probe response entry for a hidden SSID, the 42 * hidden_beacon_bss pointer points to the BSS struct holding the 43 * beacon's information. 44 * 45 * Reference counting is done for all these references except for 46 * the hidden_list, so that a beacon BSS struct that is otherwise 47 * not referenced has one reference for being on the bss_list and 48 * one for each probe response entry that points to it using the 49 * hidden_beacon_bss pointer. When a BSS struct that has such a 50 * pointer is get/put, the refcount update is also propagated to 51 * the referenced struct, this ensure that it cannot get removed 52 * while somebody is using the probe response version. 53 * 54 * Note that the hidden_beacon_bss pointer never changes, due to 55 * the reference counting. Therefore, no locking is needed for 56 * it. 57 * 58 * Also note that the hidden_beacon_bss pointer is only relevant 59 * if the driver uses something other than the IEs, e.g. private 60 * data stored in the BSS struct, since the beacon IEs are 61 * also linked into the probe response struct. 62 */ 63 64 /* 65 * Limit the number of BSS entries stored in mac80211. Each one is 66 * a bit over 4k at most, so this limits to roughly 4-5M of memory. 67 * If somebody wants to really attack this though, they'd likely 68 * use small beacons, and only one type of frame, limiting each of 69 * the entries to a much smaller size (in order to generate more 70 * entries in total, so overhead is bigger.) 71 */ 72 static int bss_entries_limit = 1000; 73 module_param(bss_entries_limit, int, 0644); 74 MODULE_PARM_DESC(bss_entries_limit, 75 "limit to number of scan BSS entries (per wiphy, default 1000)"); 76 77 #define IEEE80211_SCAN_RESULT_EXPIRE (30 * HZ) 78 79 /** 80 * struct cfg80211_colocated_ap - colocated AP information 81 * 82 * @list: linked list to all colocated aPS 83 * @bssid: BSSID of the reported AP 84 * @ssid: SSID of the reported AP 85 * @ssid_len: length of the ssid 86 * @center_freq: frequency the reported AP is on 87 * @unsolicited_probe: the reported AP is part of an ESS, where all the APs 88 * that operate in the same channel as the reported AP and that might be 89 * detected by a STA receiving this frame, are transmitting unsolicited 90 * Probe Response frames every 20 TUs 91 * @oct_recommended: OCT is recommended to exchange MMPDUs with the reported AP 92 * @same_ssid: the reported AP has the same SSID as the reporting AP 93 * @multi_bss: the reported AP is part of a multiple BSSID set 94 * @transmitted_bssid: the reported AP is the transmitting BSSID 95 * @colocated_ess: all the APs that share the same ESS as the reported AP are 96 * colocated and can be discovered via legacy bands. 97 * @short_ssid_valid: short_ssid is valid and can be used 98 * @short_ssid: the short SSID for this SSID 99 */ 100 struct cfg80211_colocated_ap { 101 struct list_head list; 102 u8 bssid[ETH_ALEN]; 103 u8 ssid[IEEE80211_MAX_SSID_LEN]; 104 size_t ssid_len; 105 u32 short_ssid; 106 u32 center_freq; 107 u8 unsolicited_probe:1, 108 oct_recommended:1, 109 same_ssid:1, 110 multi_bss:1, 111 transmitted_bssid:1, 112 colocated_ess:1, 113 short_ssid_valid:1; 114 }; 115 116 static void bss_free(struct cfg80211_internal_bss *bss) 117 { 118 struct cfg80211_bss_ies *ies; 119 120 if (WARN_ON(atomic_read(&bss->hold))) 121 return; 122 123 ies = (void *)rcu_access_pointer(bss->pub.beacon_ies); 124 if (ies && !bss->pub.hidden_beacon_bss) 125 kfree_rcu(ies, rcu_head); 126 ies = (void *)rcu_access_pointer(bss->pub.proberesp_ies); 127 if (ies) 128 kfree_rcu(ies, rcu_head); 129 130 /* 131 * This happens when the module is removed, it doesn't 132 * really matter any more save for completeness 133 */ 134 if (!list_empty(&bss->hidden_list)) 135 list_del(&bss->hidden_list); 136 137 kfree(bss); 138 } 139 140 static inline void bss_ref_get(struct cfg80211_registered_device *rdev, 141 struct cfg80211_internal_bss *bss) 142 { 143 lockdep_assert_held(&rdev->bss_lock); 144 145 bss->refcount++; 146 147 if (bss->pub.hidden_beacon_bss) 148 bss_from_pub(bss->pub.hidden_beacon_bss)->refcount++; 149 150 if (bss->pub.transmitted_bss) 151 bss_from_pub(bss->pub.transmitted_bss)->refcount++; 152 } 153 154 static inline void bss_ref_put(struct cfg80211_registered_device *rdev, 155 struct cfg80211_internal_bss *bss) 156 { 157 lockdep_assert_held(&rdev->bss_lock); 158 159 if (bss->pub.hidden_beacon_bss) { 160 struct cfg80211_internal_bss *hbss; 161 hbss = container_of(bss->pub.hidden_beacon_bss, 162 struct cfg80211_internal_bss, 163 pub); 164 hbss->refcount--; 165 if (hbss->refcount == 0) 166 bss_free(hbss); 167 } 168 169 if (bss->pub.transmitted_bss) { 170 struct cfg80211_internal_bss *tbss; 171 172 tbss = container_of(bss->pub.transmitted_bss, 173 struct cfg80211_internal_bss, 174 pub); 175 tbss->refcount--; 176 if (tbss->refcount == 0) 177 bss_free(tbss); 178 } 179 180 bss->refcount--; 181 if (bss->refcount == 0) 182 bss_free(bss); 183 } 184 185 static bool __cfg80211_unlink_bss(struct cfg80211_registered_device *rdev, 186 struct cfg80211_internal_bss *bss) 187 { 188 lockdep_assert_held(&rdev->bss_lock); 189 190 if (!list_empty(&bss->hidden_list)) { 191 /* 192 * don't remove the beacon entry if it has 193 * probe responses associated with it 194 */ 195 if (!bss->pub.hidden_beacon_bss) 196 return false; 197 /* 198 * if it's a probe response entry break its 199 * link to the other entries in the group 200 */ 201 list_del_init(&bss->hidden_list); 202 } 203 204 list_del_init(&bss->list); 205 list_del_init(&bss->pub.nontrans_list); 206 rb_erase(&bss->rbn, &rdev->bss_tree); 207 rdev->bss_entries--; 208 WARN_ONCE((rdev->bss_entries == 0) ^ list_empty(&rdev->bss_list), 209 "rdev bss entries[%d]/list[empty:%d] corruption\n", 210 rdev->bss_entries, list_empty(&rdev->bss_list)); 211 bss_ref_put(rdev, bss); 212 return true; 213 } 214 215 bool cfg80211_is_element_inherited(const struct element *elem, 216 const struct element *non_inherit_elem) 217 { 218 u8 id_len, ext_id_len, i, loop_len, id; 219 const u8 *list; 220 221 if (elem->id == WLAN_EID_MULTIPLE_BSSID) 222 return false; 223 224 if (!non_inherit_elem || non_inherit_elem->datalen < 2) 225 return true; 226 227 /* 228 * non inheritance element format is: 229 * ext ID (56) | IDs list len | list | extension IDs list len | list 230 * Both lists are optional. Both lengths are mandatory. 231 * This means valid length is: 232 * elem_len = 1 (extension ID) + 2 (list len fields) + list lengths 233 */ 234 id_len = non_inherit_elem->data[1]; 235 if (non_inherit_elem->datalen < 3 + id_len) 236 return true; 237 238 ext_id_len = non_inherit_elem->data[2 + id_len]; 239 if (non_inherit_elem->datalen < 3 + id_len + ext_id_len) 240 return true; 241 242 if (elem->id == WLAN_EID_EXTENSION) { 243 if (!ext_id_len) 244 return true; 245 loop_len = ext_id_len; 246 list = &non_inherit_elem->data[3 + id_len]; 247 id = elem->data[0]; 248 } else { 249 if (!id_len) 250 return true; 251 loop_len = id_len; 252 list = &non_inherit_elem->data[2]; 253 id = elem->id; 254 } 255 256 for (i = 0; i < loop_len; i++) { 257 if (list[i] == id) 258 return false; 259 } 260 261 return true; 262 } 263 EXPORT_SYMBOL(cfg80211_is_element_inherited); 264 265 static size_t cfg80211_gen_new_ie(const u8 *ie, size_t ielen, 266 const u8 *subelement, size_t subie_len, 267 u8 *new_ie, gfp_t gfp) 268 { 269 u8 *pos, *tmp; 270 const u8 *tmp_old, *tmp_new; 271 const struct element *non_inherit_elem; 272 u8 *sub_copy; 273 274 /* copy subelement as we need to change its content to 275 * mark an ie after it is processed. 276 */ 277 sub_copy = kmemdup(subelement, subie_len, gfp); 278 if (!sub_copy) 279 return 0; 280 281 pos = &new_ie[0]; 282 283 /* set new ssid */ 284 tmp_new = cfg80211_find_ie(WLAN_EID_SSID, sub_copy, subie_len); 285 if (tmp_new) { 286 memcpy(pos, tmp_new, tmp_new[1] + 2); 287 pos += (tmp_new[1] + 2); 288 } 289 290 /* get non inheritance list if exists */ 291 non_inherit_elem = 292 cfg80211_find_ext_elem(WLAN_EID_EXT_NON_INHERITANCE, 293 sub_copy, subie_len); 294 295 /* go through IEs in ie (skip SSID) and subelement, 296 * merge them into new_ie 297 */ 298 tmp_old = cfg80211_find_ie(WLAN_EID_SSID, ie, ielen); 299 tmp_old = (tmp_old) ? tmp_old + tmp_old[1] + 2 : ie; 300 301 while (tmp_old + 2 - ie <= ielen && 302 tmp_old + tmp_old[1] + 2 - ie <= ielen) { 303 if (tmp_old[0] == 0) { 304 tmp_old++; 305 continue; 306 } 307 308 if (tmp_old[0] == WLAN_EID_EXTENSION) 309 tmp = (u8 *)cfg80211_find_ext_ie(tmp_old[2], sub_copy, 310 subie_len); 311 else 312 tmp = (u8 *)cfg80211_find_ie(tmp_old[0], sub_copy, 313 subie_len); 314 315 if (!tmp) { 316 const struct element *old_elem = (void *)tmp_old; 317 318 /* ie in old ie but not in subelement */ 319 if (cfg80211_is_element_inherited(old_elem, 320 non_inherit_elem)) { 321 memcpy(pos, tmp_old, tmp_old[1] + 2); 322 pos += tmp_old[1] + 2; 323 } 324 } else { 325 /* ie in transmitting ie also in subelement, 326 * copy from subelement and flag the ie in subelement 327 * as copied (by setting eid field to WLAN_EID_SSID, 328 * which is skipped anyway). 329 * For vendor ie, compare OUI + type + subType to 330 * determine if they are the same ie. 331 */ 332 if (tmp_old[0] == WLAN_EID_VENDOR_SPECIFIC) { 333 if (!memcmp(tmp_old + 2, tmp + 2, 5)) { 334 /* same vendor ie, copy from 335 * subelement 336 */ 337 memcpy(pos, tmp, tmp[1] + 2); 338 pos += tmp[1] + 2; 339 tmp[0] = WLAN_EID_SSID; 340 } else { 341 memcpy(pos, tmp_old, tmp_old[1] + 2); 342 pos += tmp_old[1] + 2; 343 } 344 } else { 345 /* copy ie from subelement into new ie */ 346 memcpy(pos, tmp, tmp[1] + 2); 347 pos += tmp[1] + 2; 348 tmp[0] = WLAN_EID_SSID; 349 } 350 } 351 352 if (tmp_old + tmp_old[1] + 2 - ie == ielen) 353 break; 354 355 tmp_old += tmp_old[1] + 2; 356 } 357 358 /* go through subelement again to check if there is any ie not 359 * copied to new ie, skip ssid, capability, bssid-index ie 360 */ 361 tmp_new = sub_copy; 362 while (tmp_new + 2 - sub_copy <= subie_len && 363 tmp_new + tmp_new[1] + 2 - sub_copy <= subie_len) { 364 if (!(tmp_new[0] == WLAN_EID_NON_TX_BSSID_CAP || 365 tmp_new[0] == WLAN_EID_SSID)) { 366 memcpy(pos, tmp_new, tmp_new[1] + 2); 367 pos += tmp_new[1] + 2; 368 } 369 if (tmp_new + tmp_new[1] + 2 - sub_copy == subie_len) 370 break; 371 tmp_new += tmp_new[1] + 2; 372 } 373 374 kfree(sub_copy); 375 return pos - new_ie; 376 } 377 378 static bool is_bss(struct cfg80211_bss *a, const u8 *bssid, 379 const u8 *ssid, size_t ssid_len) 380 { 381 const struct cfg80211_bss_ies *ies; 382 const struct element *ssid_elem; 383 384 if (bssid && !ether_addr_equal(a->bssid, bssid)) 385 return false; 386 387 if (!ssid) 388 return true; 389 390 ies = rcu_access_pointer(a->ies); 391 if (!ies) 392 return false; 393 ssid_elem = cfg80211_find_elem(WLAN_EID_SSID, ies->data, ies->len); 394 if (!ssid_elem) 395 return false; 396 if (ssid_elem->datalen != ssid_len) 397 return false; 398 return memcmp(ssid_elem->data, ssid, ssid_len) == 0; 399 } 400 401 static int 402 cfg80211_add_nontrans_list(struct cfg80211_bss *trans_bss, 403 struct cfg80211_bss *nontrans_bss) 404 { 405 const struct element *ssid_elem; 406 struct cfg80211_bss *bss = NULL; 407 408 rcu_read_lock(); 409 ssid_elem = ieee80211_bss_get_elem(nontrans_bss, WLAN_EID_SSID); 410 if (!ssid_elem) { 411 rcu_read_unlock(); 412 return -EINVAL; 413 } 414 415 /* check if nontrans_bss is in the list */ 416 list_for_each_entry(bss, &trans_bss->nontrans_list, nontrans_list) { 417 if (is_bss(bss, nontrans_bss->bssid, ssid_elem->data, 418 ssid_elem->datalen)) { 419 rcu_read_unlock(); 420 return 0; 421 } 422 } 423 424 rcu_read_unlock(); 425 426 /* 427 * This is a bit weird - it's not on the list, but already on another 428 * one! The only way that could happen is if there's some BSSID/SSID 429 * shared by multiple APs in their multi-BSSID profiles, potentially 430 * with hidden SSID mixed in ... ignore it. 431 */ 432 if (!list_empty(&nontrans_bss->nontrans_list)) 433 return -EINVAL; 434 435 /* add to the list */ 436 list_add_tail(&nontrans_bss->nontrans_list, &trans_bss->nontrans_list); 437 return 0; 438 } 439 440 static void __cfg80211_bss_expire(struct cfg80211_registered_device *rdev, 441 unsigned long expire_time) 442 { 443 struct cfg80211_internal_bss *bss, *tmp; 444 bool expired = false; 445 446 lockdep_assert_held(&rdev->bss_lock); 447 448 list_for_each_entry_safe(bss, tmp, &rdev->bss_list, list) { 449 if (atomic_read(&bss->hold)) 450 continue; 451 if (!time_after(expire_time, bss->ts)) 452 continue; 453 454 if (__cfg80211_unlink_bss(rdev, bss)) 455 expired = true; 456 } 457 458 if (expired) 459 rdev->bss_generation++; 460 } 461 462 static bool cfg80211_bss_expire_oldest(struct cfg80211_registered_device *rdev) 463 { 464 struct cfg80211_internal_bss *bss, *oldest = NULL; 465 bool ret; 466 467 lockdep_assert_held(&rdev->bss_lock); 468 469 list_for_each_entry(bss, &rdev->bss_list, list) { 470 if (atomic_read(&bss->hold)) 471 continue; 472 473 if (!list_empty(&bss->hidden_list) && 474 !bss->pub.hidden_beacon_bss) 475 continue; 476 477 if (oldest && time_before(oldest->ts, bss->ts)) 478 continue; 479 oldest = bss; 480 } 481 482 if (WARN_ON(!oldest)) 483 return false; 484 485 /* 486 * The callers make sure to increase rdev->bss_generation if anything 487 * gets removed (and a new entry added), so there's no need to also do 488 * it here. 489 */ 490 491 ret = __cfg80211_unlink_bss(rdev, oldest); 492 WARN_ON(!ret); 493 return ret; 494 } 495 496 static u8 cfg80211_parse_bss_param(u8 data, 497 struct cfg80211_colocated_ap *coloc_ap) 498 { 499 coloc_ap->oct_recommended = 500 u8_get_bits(data, IEEE80211_RNR_TBTT_PARAMS_OCT_RECOMMENDED); 501 coloc_ap->same_ssid = 502 u8_get_bits(data, IEEE80211_RNR_TBTT_PARAMS_SAME_SSID); 503 coloc_ap->multi_bss = 504 u8_get_bits(data, IEEE80211_RNR_TBTT_PARAMS_MULTI_BSSID); 505 coloc_ap->transmitted_bssid = 506 u8_get_bits(data, IEEE80211_RNR_TBTT_PARAMS_TRANSMITTED_BSSID); 507 coloc_ap->unsolicited_probe = 508 u8_get_bits(data, IEEE80211_RNR_TBTT_PARAMS_PROBE_ACTIVE); 509 coloc_ap->colocated_ess = 510 u8_get_bits(data, IEEE80211_RNR_TBTT_PARAMS_COLOC_ESS); 511 512 return u8_get_bits(data, IEEE80211_RNR_TBTT_PARAMS_COLOC_AP); 513 } 514 515 static int cfg80211_calc_short_ssid(const struct cfg80211_bss_ies *ies, 516 const struct element **elem, u32 *s_ssid) 517 { 518 519 *elem = cfg80211_find_elem(WLAN_EID_SSID, ies->data, ies->len); 520 if (!*elem || (*elem)->datalen > IEEE80211_MAX_SSID_LEN) 521 return -EINVAL; 522 523 *s_ssid = ~crc32_le(~0, (*elem)->data, (*elem)->datalen); 524 return 0; 525 } 526 527 static void cfg80211_free_coloc_ap_list(struct list_head *coloc_ap_list) 528 { 529 struct cfg80211_colocated_ap *ap, *tmp_ap; 530 531 list_for_each_entry_safe(ap, tmp_ap, coloc_ap_list, list) { 532 list_del(&ap->list); 533 kfree(ap); 534 } 535 } 536 537 static int cfg80211_parse_ap_info(struct cfg80211_colocated_ap *entry, 538 const u8 *pos, u8 length, 539 const struct element *ssid_elem, 540 int s_ssid_tmp) 541 { 542 /* skip the TBTT offset */ 543 pos++; 544 545 memcpy(entry->bssid, pos, ETH_ALEN); 546 pos += ETH_ALEN; 547 548 if (length >= IEEE80211_TBTT_INFO_OFFSET_BSSID_SSSID_BSS_PARAM) { 549 memcpy(&entry->short_ssid, pos, 550 sizeof(entry->short_ssid)); 551 entry->short_ssid_valid = true; 552 pos += 4; 553 } 554 555 /* skip non colocated APs */ 556 if (!cfg80211_parse_bss_param(*pos, entry)) 557 return -EINVAL; 558 pos++; 559 560 if (length == IEEE80211_TBTT_INFO_OFFSET_BSSID_BSS_PARAM) { 561 /* 562 * no information about the short ssid. Consider the entry valid 563 * for now. It would later be dropped in case there are explicit 564 * SSIDs that need to be matched 565 */ 566 if (!entry->same_ssid) 567 return 0; 568 } 569 570 if (entry->same_ssid) { 571 entry->short_ssid = s_ssid_tmp; 572 entry->short_ssid_valid = true; 573 574 /* 575 * This is safe because we validate datalen in 576 * cfg80211_parse_colocated_ap(), before calling this 577 * function. 578 */ 579 memcpy(&entry->ssid, &ssid_elem->data, 580 ssid_elem->datalen); 581 entry->ssid_len = ssid_elem->datalen; 582 } 583 return 0; 584 } 585 586 static int cfg80211_parse_colocated_ap(const struct cfg80211_bss_ies *ies, 587 struct list_head *list) 588 { 589 struct ieee80211_neighbor_ap_info *ap_info; 590 const struct element *elem, *ssid_elem; 591 const u8 *pos, *end; 592 u32 s_ssid_tmp; 593 int n_coloc = 0, ret; 594 LIST_HEAD(ap_list); 595 596 elem = cfg80211_find_elem(WLAN_EID_REDUCED_NEIGHBOR_REPORT, ies->data, 597 ies->len); 598 if (!elem) 599 return 0; 600 601 pos = elem->data; 602 end = pos + elem->datalen; 603 604 ret = cfg80211_calc_short_ssid(ies, &ssid_elem, &s_ssid_tmp); 605 if (ret) 606 return ret; 607 608 /* RNR IE may contain more than one NEIGHBOR_AP_INFO */ 609 while (pos + sizeof(*ap_info) <= end) { 610 enum nl80211_band band; 611 int freq; 612 u8 length, i, count; 613 614 ap_info = (void *)pos; 615 count = u8_get_bits(ap_info->tbtt_info_hdr, 616 IEEE80211_AP_INFO_TBTT_HDR_COUNT) + 1; 617 length = ap_info->tbtt_info_len; 618 619 pos += sizeof(*ap_info); 620 621 if (!ieee80211_operating_class_to_band(ap_info->op_class, 622 &band)) 623 break; 624 625 freq = ieee80211_channel_to_frequency(ap_info->channel, band); 626 627 if (end - pos < count * length) 628 break; 629 630 /* 631 * TBTT info must include bss param + BSSID + 632 * (short SSID or same_ssid bit to be set). 633 * ignore other options, and move to the 634 * next AP info 635 */ 636 if (band != NL80211_BAND_6GHZ || 637 (length != IEEE80211_TBTT_INFO_OFFSET_BSSID_BSS_PARAM && 638 length < IEEE80211_TBTT_INFO_OFFSET_BSSID_SSSID_BSS_PARAM)) { 639 pos += count * length; 640 continue; 641 } 642 643 for (i = 0; i < count; i++) { 644 struct cfg80211_colocated_ap *entry; 645 646 entry = kzalloc(sizeof(*entry) + IEEE80211_MAX_SSID_LEN, 647 GFP_ATOMIC); 648 649 if (!entry) 650 break; 651 652 entry->center_freq = freq; 653 654 if (!cfg80211_parse_ap_info(entry, pos, length, 655 ssid_elem, s_ssid_tmp)) { 656 n_coloc++; 657 list_add_tail(&entry->list, &ap_list); 658 } else { 659 kfree(entry); 660 } 661 662 pos += length; 663 } 664 } 665 666 if (pos != end) { 667 cfg80211_free_coloc_ap_list(&ap_list); 668 return 0; 669 } 670 671 list_splice_tail(&ap_list, list); 672 return n_coloc; 673 } 674 675 static void cfg80211_scan_req_add_chan(struct cfg80211_scan_request *request, 676 struct ieee80211_channel *chan, 677 bool add_to_6ghz) 678 { 679 int i; 680 u32 n_channels = request->n_channels; 681 struct cfg80211_scan_6ghz_params *params = 682 &request->scan_6ghz_params[request->n_6ghz_params]; 683 684 for (i = 0; i < n_channels; i++) { 685 if (request->channels[i] == chan) { 686 if (add_to_6ghz) 687 params->channel_idx = i; 688 return; 689 } 690 } 691 692 request->channels[n_channels] = chan; 693 if (add_to_6ghz) 694 request->scan_6ghz_params[request->n_6ghz_params].channel_idx = 695 n_channels; 696 697 request->n_channels++; 698 } 699 700 static bool cfg80211_find_ssid_match(struct cfg80211_colocated_ap *ap, 701 struct cfg80211_scan_request *request) 702 { 703 int i; 704 u32 s_ssid; 705 706 for (i = 0; i < request->n_ssids; i++) { 707 /* wildcard ssid in the scan request */ 708 if (!request->ssids[i].ssid_len) { 709 if (ap->multi_bss && !ap->transmitted_bssid) 710 continue; 711 712 return true; 713 } 714 715 if (ap->ssid_len && 716 ap->ssid_len == request->ssids[i].ssid_len) { 717 if (!memcmp(request->ssids[i].ssid, ap->ssid, 718 ap->ssid_len)) 719 return true; 720 } else if (ap->short_ssid_valid) { 721 s_ssid = ~crc32_le(~0, request->ssids[i].ssid, 722 request->ssids[i].ssid_len); 723 724 if (ap->short_ssid == s_ssid) 725 return true; 726 } 727 } 728 729 return false; 730 } 731 732 static int cfg80211_scan_6ghz(struct cfg80211_registered_device *rdev) 733 { 734 u8 i; 735 struct cfg80211_colocated_ap *ap; 736 int n_channels, count = 0, err; 737 struct cfg80211_scan_request *request, *rdev_req = rdev->scan_req; 738 LIST_HEAD(coloc_ap_list); 739 bool need_scan_psc = true; 740 const struct ieee80211_sband_iftype_data *iftd; 741 742 rdev_req->scan_6ghz = true; 743 744 if (!rdev->wiphy.bands[NL80211_BAND_6GHZ]) 745 return -EOPNOTSUPP; 746 747 iftd = ieee80211_get_sband_iftype_data(rdev->wiphy.bands[NL80211_BAND_6GHZ], 748 rdev_req->wdev->iftype); 749 if (!iftd || !iftd->he_cap.has_he) 750 return -EOPNOTSUPP; 751 752 n_channels = rdev->wiphy.bands[NL80211_BAND_6GHZ]->n_channels; 753 754 if (rdev_req->flags & NL80211_SCAN_FLAG_COLOCATED_6GHZ) { 755 struct cfg80211_internal_bss *intbss; 756 757 spin_lock_bh(&rdev->bss_lock); 758 list_for_each_entry(intbss, &rdev->bss_list, list) { 759 struct cfg80211_bss *res = &intbss->pub; 760 const struct cfg80211_bss_ies *ies; 761 762 ies = rcu_access_pointer(res->ies); 763 count += cfg80211_parse_colocated_ap(ies, 764 &coloc_ap_list); 765 } 766 spin_unlock_bh(&rdev->bss_lock); 767 } 768 769 request = kzalloc(struct_size(request, channels, n_channels) + 770 sizeof(*request->scan_6ghz_params) * count + 771 sizeof(*request->ssids) * rdev_req->n_ssids, 772 GFP_KERNEL); 773 if (!request) { 774 cfg80211_free_coloc_ap_list(&coloc_ap_list); 775 return -ENOMEM; 776 } 777 778 *request = *rdev_req; 779 request->n_channels = 0; 780 request->scan_6ghz_params = 781 (void *)&request->channels[n_channels]; 782 783 /* 784 * PSC channels should not be scanned in case of direct scan with 1 SSID 785 * and at least one of the reported co-located APs with same SSID 786 * indicating that all APs in the same ESS are co-located 787 */ 788 if (count && request->n_ssids == 1 && request->ssids[0].ssid_len) { 789 list_for_each_entry(ap, &coloc_ap_list, list) { 790 if (ap->colocated_ess && 791 cfg80211_find_ssid_match(ap, request)) { 792 need_scan_psc = false; 793 break; 794 } 795 } 796 } 797 798 /* 799 * add to the scan request the channels that need to be scanned 800 * regardless of the collocated APs (PSC channels or all channels 801 * in case that NL80211_SCAN_FLAG_COLOCATED_6GHZ is not set) 802 */ 803 for (i = 0; i < rdev_req->n_channels; i++) { 804 if (rdev_req->channels[i]->band == NL80211_BAND_6GHZ && 805 ((need_scan_psc && 806 cfg80211_channel_is_psc(rdev_req->channels[i])) || 807 !(rdev_req->flags & NL80211_SCAN_FLAG_COLOCATED_6GHZ))) { 808 cfg80211_scan_req_add_chan(request, 809 rdev_req->channels[i], 810 false); 811 } 812 } 813 814 if (!(rdev_req->flags & NL80211_SCAN_FLAG_COLOCATED_6GHZ)) 815 goto skip; 816 817 list_for_each_entry(ap, &coloc_ap_list, list) { 818 bool found = false; 819 struct cfg80211_scan_6ghz_params *scan_6ghz_params = 820 &request->scan_6ghz_params[request->n_6ghz_params]; 821 struct ieee80211_channel *chan = 822 ieee80211_get_channel(&rdev->wiphy, ap->center_freq); 823 824 if (!chan || chan->flags & IEEE80211_CHAN_DISABLED) 825 continue; 826 827 for (i = 0; i < rdev_req->n_channels; i++) { 828 if (rdev_req->channels[i] == chan) 829 found = true; 830 } 831 832 if (!found) 833 continue; 834 835 if (request->n_ssids > 0 && 836 !cfg80211_find_ssid_match(ap, request)) 837 continue; 838 839 if (!request->n_ssids && ap->multi_bss && !ap->transmitted_bssid) 840 continue; 841 842 cfg80211_scan_req_add_chan(request, chan, true); 843 memcpy(scan_6ghz_params->bssid, ap->bssid, ETH_ALEN); 844 scan_6ghz_params->short_ssid = ap->short_ssid; 845 scan_6ghz_params->short_ssid_valid = ap->short_ssid_valid; 846 scan_6ghz_params->unsolicited_probe = ap->unsolicited_probe; 847 848 /* 849 * If a PSC channel is added to the scan and 'need_scan_psc' is 850 * set to false, then all the APs that the scan logic is 851 * interested with on the channel are collocated and thus there 852 * is no need to perform the initial PSC channel listen. 853 */ 854 if (cfg80211_channel_is_psc(chan) && !need_scan_psc) 855 scan_6ghz_params->psc_no_listen = true; 856 857 request->n_6ghz_params++; 858 } 859 860 skip: 861 cfg80211_free_coloc_ap_list(&coloc_ap_list); 862 863 if (request->n_channels) { 864 struct cfg80211_scan_request *old = rdev->int_scan_req; 865 rdev->int_scan_req = request; 866 867 /* 868 * Add the ssids from the parent scan request to the new scan 869 * request, so the driver would be able to use them in its 870 * probe requests to discover hidden APs on PSC channels. 871 */ 872 request->ssids = (void *)&request->channels[request->n_channels]; 873 request->n_ssids = rdev_req->n_ssids; 874 memcpy(request->ssids, rdev_req->ssids, sizeof(*request->ssids) * 875 request->n_ssids); 876 877 /* 878 * If this scan follows a previous scan, save the scan start 879 * info from the first part of the scan 880 */ 881 if (old) 882 rdev->int_scan_req->info = old->info; 883 884 err = rdev_scan(rdev, request); 885 if (err) { 886 rdev->int_scan_req = old; 887 kfree(request); 888 } else { 889 kfree(old); 890 } 891 892 return err; 893 } 894 895 kfree(request); 896 return -EINVAL; 897 } 898 899 int cfg80211_scan(struct cfg80211_registered_device *rdev) 900 { 901 struct cfg80211_scan_request *request; 902 struct cfg80211_scan_request *rdev_req = rdev->scan_req; 903 u32 n_channels = 0, idx, i; 904 905 if (!(rdev->wiphy.flags & WIPHY_FLAG_SPLIT_SCAN_6GHZ)) 906 return rdev_scan(rdev, rdev_req); 907 908 for (i = 0; i < rdev_req->n_channels; i++) { 909 if (rdev_req->channels[i]->band != NL80211_BAND_6GHZ) 910 n_channels++; 911 } 912 913 if (!n_channels) 914 return cfg80211_scan_6ghz(rdev); 915 916 request = kzalloc(struct_size(request, channels, n_channels), 917 GFP_KERNEL); 918 if (!request) 919 return -ENOMEM; 920 921 *request = *rdev_req; 922 request->n_channels = n_channels; 923 924 for (i = idx = 0; i < rdev_req->n_channels; i++) { 925 if (rdev_req->channels[i]->band != NL80211_BAND_6GHZ) 926 request->channels[idx++] = rdev_req->channels[i]; 927 } 928 929 rdev_req->scan_6ghz = false; 930 rdev->int_scan_req = request; 931 return rdev_scan(rdev, request); 932 } 933 934 void ___cfg80211_scan_done(struct cfg80211_registered_device *rdev, 935 bool send_message) 936 { 937 struct cfg80211_scan_request *request, *rdev_req; 938 struct wireless_dev *wdev; 939 struct sk_buff *msg; 940 #ifdef CONFIG_CFG80211_WEXT 941 union iwreq_data wrqu; 942 #endif 943 944 lockdep_assert_held(&rdev->wiphy.mtx); 945 946 if (rdev->scan_msg) { 947 nl80211_send_scan_msg(rdev, rdev->scan_msg); 948 rdev->scan_msg = NULL; 949 return; 950 } 951 952 rdev_req = rdev->scan_req; 953 if (!rdev_req) 954 return; 955 956 wdev = rdev_req->wdev; 957 request = rdev->int_scan_req ? rdev->int_scan_req : rdev_req; 958 959 if (wdev_running(wdev) && 960 (rdev->wiphy.flags & WIPHY_FLAG_SPLIT_SCAN_6GHZ) && 961 !rdev_req->scan_6ghz && !request->info.aborted && 962 !cfg80211_scan_6ghz(rdev)) 963 return; 964 965 /* 966 * This must be before sending the other events! 967 * Otherwise, wpa_supplicant gets completely confused with 968 * wext events. 969 */ 970 if (wdev->netdev) 971 cfg80211_sme_scan_done(wdev->netdev); 972 973 if (!request->info.aborted && 974 request->flags & NL80211_SCAN_FLAG_FLUSH) { 975 /* flush entries from previous scans */ 976 spin_lock_bh(&rdev->bss_lock); 977 __cfg80211_bss_expire(rdev, request->scan_start); 978 spin_unlock_bh(&rdev->bss_lock); 979 } 980 981 msg = nl80211_build_scan_msg(rdev, wdev, request->info.aborted); 982 983 #ifdef CONFIG_CFG80211_WEXT 984 if (wdev->netdev && !request->info.aborted) { 985 memset(&wrqu, 0, sizeof(wrqu)); 986 987 wireless_send_event(wdev->netdev, SIOCGIWSCAN, &wrqu, NULL); 988 } 989 #endif 990 991 dev_put(wdev->netdev); 992 993 kfree(rdev->int_scan_req); 994 rdev->int_scan_req = NULL; 995 996 kfree(rdev->scan_req); 997 rdev->scan_req = NULL; 998 999 if (!send_message) 1000 rdev->scan_msg = msg; 1001 else 1002 nl80211_send_scan_msg(rdev, msg); 1003 } 1004 1005 void __cfg80211_scan_done(struct work_struct *wk) 1006 { 1007 struct cfg80211_registered_device *rdev; 1008 1009 rdev = container_of(wk, struct cfg80211_registered_device, 1010 scan_done_wk); 1011 1012 wiphy_lock(&rdev->wiphy); 1013 ___cfg80211_scan_done(rdev, true); 1014 wiphy_unlock(&rdev->wiphy); 1015 } 1016 1017 void cfg80211_scan_done(struct cfg80211_scan_request *request, 1018 struct cfg80211_scan_info *info) 1019 { 1020 struct cfg80211_scan_info old_info = request->info; 1021 1022 trace_cfg80211_scan_done(request, info); 1023 WARN_ON(request != wiphy_to_rdev(request->wiphy)->scan_req && 1024 request != wiphy_to_rdev(request->wiphy)->int_scan_req); 1025 1026 request->info = *info; 1027 1028 /* 1029 * In case the scan is split, the scan_start_tsf and tsf_bssid should 1030 * be of the first part. In such a case old_info.scan_start_tsf should 1031 * be non zero. 1032 */ 1033 if (request->scan_6ghz && old_info.scan_start_tsf) { 1034 request->info.scan_start_tsf = old_info.scan_start_tsf; 1035 memcpy(request->info.tsf_bssid, old_info.tsf_bssid, 1036 sizeof(request->info.tsf_bssid)); 1037 } 1038 1039 request->notified = true; 1040 queue_work(cfg80211_wq, &wiphy_to_rdev(request->wiphy)->scan_done_wk); 1041 } 1042 EXPORT_SYMBOL(cfg80211_scan_done); 1043 1044 void cfg80211_add_sched_scan_req(struct cfg80211_registered_device *rdev, 1045 struct cfg80211_sched_scan_request *req) 1046 { 1047 lockdep_assert_held(&rdev->wiphy.mtx); 1048 1049 list_add_rcu(&req->list, &rdev->sched_scan_req_list); 1050 } 1051 1052 static void cfg80211_del_sched_scan_req(struct cfg80211_registered_device *rdev, 1053 struct cfg80211_sched_scan_request *req) 1054 { 1055 lockdep_assert_held(&rdev->wiphy.mtx); 1056 1057 list_del_rcu(&req->list); 1058 kfree_rcu(req, rcu_head); 1059 } 1060 1061 static struct cfg80211_sched_scan_request * 1062 cfg80211_find_sched_scan_req(struct cfg80211_registered_device *rdev, u64 reqid) 1063 { 1064 struct cfg80211_sched_scan_request *pos; 1065 1066 list_for_each_entry_rcu(pos, &rdev->sched_scan_req_list, list, 1067 lockdep_is_held(&rdev->wiphy.mtx)) { 1068 if (pos->reqid == reqid) 1069 return pos; 1070 } 1071 return NULL; 1072 } 1073 1074 /* 1075 * Determines if a scheduled scan request can be handled. When a legacy 1076 * scheduled scan is running no other scheduled scan is allowed regardless 1077 * whether the request is for legacy or multi-support scan. When a multi-support 1078 * scheduled scan is running a request for legacy scan is not allowed. In this 1079 * case a request for multi-support scan can be handled if resources are 1080 * available, ie. struct wiphy::max_sched_scan_reqs limit is not yet reached. 1081 */ 1082 int cfg80211_sched_scan_req_possible(struct cfg80211_registered_device *rdev, 1083 bool want_multi) 1084 { 1085 struct cfg80211_sched_scan_request *pos; 1086 int i = 0; 1087 1088 list_for_each_entry(pos, &rdev->sched_scan_req_list, list) { 1089 /* request id zero means legacy in progress */ 1090 if (!i && !pos->reqid) 1091 return -EINPROGRESS; 1092 i++; 1093 } 1094 1095 if (i) { 1096 /* no legacy allowed when multi request(s) are active */ 1097 if (!want_multi) 1098 return -EINPROGRESS; 1099 1100 /* resource limit reached */ 1101 if (i == rdev->wiphy.max_sched_scan_reqs) 1102 return -ENOSPC; 1103 } 1104 return 0; 1105 } 1106 1107 void cfg80211_sched_scan_results_wk(struct work_struct *work) 1108 { 1109 struct cfg80211_registered_device *rdev; 1110 struct cfg80211_sched_scan_request *req, *tmp; 1111 1112 rdev = container_of(work, struct cfg80211_registered_device, 1113 sched_scan_res_wk); 1114 1115 wiphy_lock(&rdev->wiphy); 1116 list_for_each_entry_safe(req, tmp, &rdev->sched_scan_req_list, list) { 1117 if (req->report_results) { 1118 req->report_results = false; 1119 if (req->flags & NL80211_SCAN_FLAG_FLUSH) { 1120 /* flush entries from previous scans */ 1121 spin_lock_bh(&rdev->bss_lock); 1122 __cfg80211_bss_expire(rdev, req->scan_start); 1123 spin_unlock_bh(&rdev->bss_lock); 1124 req->scan_start = jiffies; 1125 } 1126 nl80211_send_sched_scan(req, 1127 NL80211_CMD_SCHED_SCAN_RESULTS); 1128 } 1129 } 1130 wiphy_unlock(&rdev->wiphy); 1131 } 1132 1133 void cfg80211_sched_scan_results(struct wiphy *wiphy, u64 reqid) 1134 { 1135 struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy); 1136 struct cfg80211_sched_scan_request *request; 1137 1138 trace_cfg80211_sched_scan_results(wiphy, reqid); 1139 /* ignore if we're not scanning */ 1140 1141 rcu_read_lock(); 1142 request = cfg80211_find_sched_scan_req(rdev, reqid); 1143 if (request) { 1144 request->report_results = true; 1145 queue_work(cfg80211_wq, &rdev->sched_scan_res_wk); 1146 } 1147 rcu_read_unlock(); 1148 } 1149 EXPORT_SYMBOL(cfg80211_sched_scan_results); 1150 1151 void cfg80211_sched_scan_stopped_locked(struct wiphy *wiphy, u64 reqid) 1152 { 1153 struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy); 1154 1155 lockdep_assert_held(&wiphy->mtx); 1156 1157 trace_cfg80211_sched_scan_stopped(wiphy, reqid); 1158 1159 __cfg80211_stop_sched_scan(rdev, reqid, true); 1160 } 1161 EXPORT_SYMBOL(cfg80211_sched_scan_stopped_locked); 1162 1163 void cfg80211_sched_scan_stopped(struct wiphy *wiphy, u64 reqid) 1164 { 1165 wiphy_lock(wiphy); 1166 cfg80211_sched_scan_stopped_locked(wiphy, reqid); 1167 wiphy_unlock(wiphy); 1168 } 1169 EXPORT_SYMBOL(cfg80211_sched_scan_stopped); 1170 1171 int cfg80211_stop_sched_scan_req(struct cfg80211_registered_device *rdev, 1172 struct cfg80211_sched_scan_request *req, 1173 bool driver_initiated) 1174 { 1175 lockdep_assert_held(&rdev->wiphy.mtx); 1176 1177 if (!driver_initiated) { 1178 int err = rdev_sched_scan_stop(rdev, req->dev, req->reqid); 1179 if (err) 1180 return err; 1181 } 1182 1183 nl80211_send_sched_scan(req, NL80211_CMD_SCHED_SCAN_STOPPED); 1184 1185 cfg80211_del_sched_scan_req(rdev, req); 1186 1187 return 0; 1188 } 1189 1190 int __cfg80211_stop_sched_scan(struct cfg80211_registered_device *rdev, 1191 u64 reqid, bool driver_initiated) 1192 { 1193 struct cfg80211_sched_scan_request *sched_scan_req; 1194 1195 lockdep_assert_held(&rdev->wiphy.mtx); 1196 1197 sched_scan_req = cfg80211_find_sched_scan_req(rdev, reqid); 1198 if (!sched_scan_req) 1199 return -ENOENT; 1200 1201 return cfg80211_stop_sched_scan_req(rdev, sched_scan_req, 1202 driver_initiated); 1203 } 1204 1205 void cfg80211_bss_age(struct cfg80211_registered_device *rdev, 1206 unsigned long age_secs) 1207 { 1208 struct cfg80211_internal_bss *bss; 1209 unsigned long age_jiffies = msecs_to_jiffies(age_secs * MSEC_PER_SEC); 1210 1211 spin_lock_bh(&rdev->bss_lock); 1212 list_for_each_entry(bss, &rdev->bss_list, list) 1213 bss->ts -= age_jiffies; 1214 spin_unlock_bh(&rdev->bss_lock); 1215 } 1216 1217 void cfg80211_bss_expire(struct cfg80211_registered_device *rdev) 1218 { 1219 __cfg80211_bss_expire(rdev, jiffies - IEEE80211_SCAN_RESULT_EXPIRE); 1220 } 1221 1222 void cfg80211_bss_flush(struct wiphy *wiphy) 1223 { 1224 struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy); 1225 1226 spin_lock_bh(&rdev->bss_lock); 1227 __cfg80211_bss_expire(rdev, jiffies); 1228 spin_unlock_bh(&rdev->bss_lock); 1229 } 1230 EXPORT_SYMBOL(cfg80211_bss_flush); 1231 1232 const struct element * 1233 cfg80211_find_elem_match(u8 eid, const u8 *ies, unsigned int len, 1234 const u8 *match, unsigned int match_len, 1235 unsigned int match_offset) 1236 { 1237 const struct element *elem; 1238 1239 for_each_element_id(elem, eid, ies, len) { 1240 if (elem->datalen >= match_offset + match_len && 1241 !memcmp(elem->data + match_offset, match, match_len)) 1242 return elem; 1243 } 1244 1245 return NULL; 1246 } 1247 EXPORT_SYMBOL(cfg80211_find_elem_match); 1248 1249 const struct element *cfg80211_find_vendor_elem(unsigned int oui, int oui_type, 1250 const u8 *ies, 1251 unsigned int len) 1252 { 1253 const struct element *elem; 1254 u8 match[] = { oui >> 16, oui >> 8, oui, oui_type }; 1255 int match_len = (oui_type < 0) ? 3 : sizeof(match); 1256 1257 if (WARN_ON(oui_type > 0xff)) 1258 return NULL; 1259 1260 elem = cfg80211_find_elem_match(WLAN_EID_VENDOR_SPECIFIC, ies, len, 1261 match, match_len, 0); 1262 1263 if (!elem || elem->datalen < 4) 1264 return NULL; 1265 1266 return elem; 1267 } 1268 EXPORT_SYMBOL(cfg80211_find_vendor_elem); 1269 1270 /** 1271 * enum bss_compare_mode - BSS compare mode 1272 * @BSS_CMP_REGULAR: regular compare mode (for insertion and normal find) 1273 * @BSS_CMP_HIDE_ZLEN: find hidden SSID with zero-length mode 1274 * @BSS_CMP_HIDE_NUL: find hidden SSID with NUL-ed out mode 1275 */ 1276 enum bss_compare_mode { 1277 BSS_CMP_REGULAR, 1278 BSS_CMP_HIDE_ZLEN, 1279 BSS_CMP_HIDE_NUL, 1280 }; 1281 1282 static int cmp_bss(struct cfg80211_bss *a, 1283 struct cfg80211_bss *b, 1284 enum bss_compare_mode mode) 1285 { 1286 const struct cfg80211_bss_ies *a_ies, *b_ies; 1287 const u8 *ie1 = NULL; 1288 const u8 *ie2 = NULL; 1289 int i, r; 1290 1291 if (a->channel != b->channel) 1292 return b->channel->center_freq - a->channel->center_freq; 1293 1294 a_ies = rcu_access_pointer(a->ies); 1295 if (!a_ies) 1296 return -1; 1297 b_ies = rcu_access_pointer(b->ies); 1298 if (!b_ies) 1299 return 1; 1300 1301 if (WLAN_CAPABILITY_IS_STA_BSS(a->capability)) 1302 ie1 = cfg80211_find_ie(WLAN_EID_MESH_ID, 1303 a_ies->data, a_ies->len); 1304 if (WLAN_CAPABILITY_IS_STA_BSS(b->capability)) 1305 ie2 = cfg80211_find_ie(WLAN_EID_MESH_ID, 1306 b_ies->data, b_ies->len); 1307 if (ie1 && ie2) { 1308 int mesh_id_cmp; 1309 1310 if (ie1[1] == ie2[1]) 1311 mesh_id_cmp = memcmp(ie1 + 2, ie2 + 2, ie1[1]); 1312 else 1313 mesh_id_cmp = ie2[1] - ie1[1]; 1314 1315 ie1 = cfg80211_find_ie(WLAN_EID_MESH_CONFIG, 1316 a_ies->data, a_ies->len); 1317 ie2 = cfg80211_find_ie(WLAN_EID_MESH_CONFIG, 1318 b_ies->data, b_ies->len); 1319 if (ie1 && ie2) { 1320 if (mesh_id_cmp) 1321 return mesh_id_cmp; 1322 if (ie1[1] != ie2[1]) 1323 return ie2[1] - ie1[1]; 1324 return memcmp(ie1 + 2, ie2 + 2, ie1[1]); 1325 } 1326 } 1327 1328 r = memcmp(a->bssid, b->bssid, sizeof(a->bssid)); 1329 if (r) 1330 return r; 1331 1332 ie1 = cfg80211_find_ie(WLAN_EID_SSID, a_ies->data, a_ies->len); 1333 ie2 = cfg80211_find_ie(WLAN_EID_SSID, b_ies->data, b_ies->len); 1334 1335 if (!ie1 && !ie2) 1336 return 0; 1337 1338 /* 1339 * Note that with "hide_ssid", the function returns a match if 1340 * the already-present BSS ("b") is a hidden SSID beacon for 1341 * the new BSS ("a"). 1342 */ 1343 1344 /* sort missing IE before (left of) present IE */ 1345 if (!ie1) 1346 return -1; 1347 if (!ie2) 1348 return 1; 1349 1350 switch (mode) { 1351 case BSS_CMP_HIDE_ZLEN: 1352 /* 1353 * In ZLEN mode we assume the BSS entry we're 1354 * looking for has a zero-length SSID. So if 1355 * the one we're looking at right now has that, 1356 * return 0. Otherwise, return the difference 1357 * in length, but since we're looking for the 1358 * 0-length it's really equivalent to returning 1359 * the length of the one we're looking at. 1360 * 1361 * No content comparison is needed as we assume 1362 * the content length is zero. 1363 */ 1364 return ie2[1]; 1365 case BSS_CMP_REGULAR: 1366 default: 1367 /* sort by length first, then by contents */ 1368 if (ie1[1] != ie2[1]) 1369 return ie2[1] - ie1[1]; 1370 return memcmp(ie1 + 2, ie2 + 2, ie1[1]); 1371 case BSS_CMP_HIDE_NUL: 1372 if (ie1[1] != ie2[1]) 1373 return ie2[1] - ie1[1]; 1374 /* this is equivalent to memcmp(zeroes, ie2 + 2, len) */ 1375 for (i = 0; i < ie2[1]; i++) 1376 if (ie2[i + 2]) 1377 return -1; 1378 return 0; 1379 } 1380 } 1381 1382 static bool cfg80211_bss_type_match(u16 capability, 1383 enum nl80211_band band, 1384 enum ieee80211_bss_type bss_type) 1385 { 1386 bool ret = true; 1387 u16 mask, val; 1388 1389 if (bss_type == IEEE80211_BSS_TYPE_ANY) 1390 return ret; 1391 1392 if (band == NL80211_BAND_60GHZ) { 1393 mask = WLAN_CAPABILITY_DMG_TYPE_MASK; 1394 switch (bss_type) { 1395 case IEEE80211_BSS_TYPE_ESS: 1396 val = WLAN_CAPABILITY_DMG_TYPE_AP; 1397 break; 1398 case IEEE80211_BSS_TYPE_PBSS: 1399 val = WLAN_CAPABILITY_DMG_TYPE_PBSS; 1400 break; 1401 case IEEE80211_BSS_TYPE_IBSS: 1402 val = WLAN_CAPABILITY_DMG_TYPE_IBSS; 1403 break; 1404 default: 1405 return false; 1406 } 1407 } else { 1408 mask = WLAN_CAPABILITY_ESS | WLAN_CAPABILITY_IBSS; 1409 switch (bss_type) { 1410 case IEEE80211_BSS_TYPE_ESS: 1411 val = WLAN_CAPABILITY_ESS; 1412 break; 1413 case IEEE80211_BSS_TYPE_IBSS: 1414 val = WLAN_CAPABILITY_IBSS; 1415 break; 1416 case IEEE80211_BSS_TYPE_MBSS: 1417 val = 0; 1418 break; 1419 default: 1420 return false; 1421 } 1422 } 1423 1424 ret = ((capability & mask) == val); 1425 return ret; 1426 } 1427 1428 /* Returned bss is reference counted and must be cleaned up appropriately. */ 1429 struct cfg80211_bss *cfg80211_get_bss(struct wiphy *wiphy, 1430 struct ieee80211_channel *channel, 1431 const u8 *bssid, 1432 const u8 *ssid, size_t ssid_len, 1433 enum ieee80211_bss_type bss_type, 1434 enum ieee80211_privacy privacy) 1435 { 1436 struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy); 1437 struct cfg80211_internal_bss *bss, *res = NULL; 1438 unsigned long now = jiffies; 1439 int bss_privacy; 1440 1441 trace_cfg80211_get_bss(wiphy, channel, bssid, ssid, ssid_len, bss_type, 1442 privacy); 1443 1444 spin_lock_bh(&rdev->bss_lock); 1445 1446 list_for_each_entry(bss, &rdev->bss_list, list) { 1447 if (!cfg80211_bss_type_match(bss->pub.capability, 1448 bss->pub.channel->band, bss_type)) 1449 continue; 1450 1451 bss_privacy = (bss->pub.capability & WLAN_CAPABILITY_PRIVACY); 1452 if ((privacy == IEEE80211_PRIVACY_ON && !bss_privacy) || 1453 (privacy == IEEE80211_PRIVACY_OFF && bss_privacy)) 1454 continue; 1455 if (channel && bss->pub.channel != channel) 1456 continue; 1457 if (!is_valid_ether_addr(bss->pub.bssid)) 1458 continue; 1459 /* Don't get expired BSS structs */ 1460 if (time_after(now, bss->ts + IEEE80211_SCAN_RESULT_EXPIRE) && 1461 !atomic_read(&bss->hold)) 1462 continue; 1463 if (is_bss(&bss->pub, bssid, ssid, ssid_len)) { 1464 res = bss; 1465 bss_ref_get(rdev, res); 1466 break; 1467 } 1468 } 1469 1470 spin_unlock_bh(&rdev->bss_lock); 1471 if (!res) 1472 return NULL; 1473 trace_cfg80211_return_bss(&res->pub); 1474 return &res->pub; 1475 } 1476 EXPORT_SYMBOL(cfg80211_get_bss); 1477 1478 static void rb_insert_bss(struct cfg80211_registered_device *rdev, 1479 struct cfg80211_internal_bss *bss) 1480 { 1481 struct rb_node **p = &rdev->bss_tree.rb_node; 1482 struct rb_node *parent = NULL; 1483 struct cfg80211_internal_bss *tbss; 1484 int cmp; 1485 1486 while (*p) { 1487 parent = *p; 1488 tbss = rb_entry(parent, struct cfg80211_internal_bss, rbn); 1489 1490 cmp = cmp_bss(&bss->pub, &tbss->pub, BSS_CMP_REGULAR); 1491 1492 if (WARN_ON(!cmp)) { 1493 /* will sort of leak this BSS */ 1494 return; 1495 } 1496 1497 if (cmp < 0) 1498 p = &(*p)->rb_left; 1499 else 1500 p = &(*p)->rb_right; 1501 } 1502 1503 rb_link_node(&bss->rbn, parent, p); 1504 rb_insert_color(&bss->rbn, &rdev->bss_tree); 1505 } 1506 1507 static struct cfg80211_internal_bss * 1508 rb_find_bss(struct cfg80211_registered_device *rdev, 1509 struct cfg80211_internal_bss *res, 1510 enum bss_compare_mode mode) 1511 { 1512 struct rb_node *n = rdev->bss_tree.rb_node; 1513 struct cfg80211_internal_bss *bss; 1514 int r; 1515 1516 while (n) { 1517 bss = rb_entry(n, struct cfg80211_internal_bss, rbn); 1518 r = cmp_bss(&res->pub, &bss->pub, mode); 1519 1520 if (r == 0) 1521 return bss; 1522 else if (r < 0) 1523 n = n->rb_left; 1524 else 1525 n = n->rb_right; 1526 } 1527 1528 return NULL; 1529 } 1530 1531 static bool cfg80211_combine_bsses(struct cfg80211_registered_device *rdev, 1532 struct cfg80211_internal_bss *new) 1533 { 1534 const struct cfg80211_bss_ies *ies; 1535 struct cfg80211_internal_bss *bss; 1536 const u8 *ie; 1537 int i, ssidlen; 1538 u8 fold = 0; 1539 u32 n_entries = 0; 1540 1541 ies = rcu_access_pointer(new->pub.beacon_ies); 1542 if (WARN_ON(!ies)) 1543 return false; 1544 1545 ie = cfg80211_find_ie(WLAN_EID_SSID, ies->data, ies->len); 1546 if (!ie) { 1547 /* nothing to do */ 1548 return true; 1549 } 1550 1551 ssidlen = ie[1]; 1552 for (i = 0; i < ssidlen; i++) 1553 fold |= ie[2 + i]; 1554 1555 if (fold) { 1556 /* not a hidden SSID */ 1557 return true; 1558 } 1559 1560 /* This is the bad part ... */ 1561 1562 list_for_each_entry(bss, &rdev->bss_list, list) { 1563 /* 1564 * we're iterating all the entries anyway, so take the 1565 * opportunity to validate the list length accounting 1566 */ 1567 n_entries++; 1568 1569 if (!ether_addr_equal(bss->pub.bssid, new->pub.bssid)) 1570 continue; 1571 if (bss->pub.channel != new->pub.channel) 1572 continue; 1573 if (bss->pub.scan_width != new->pub.scan_width) 1574 continue; 1575 if (rcu_access_pointer(bss->pub.beacon_ies)) 1576 continue; 1577 ies = rcu_access_pointer(bss->pub.ies); 1578 if (!ies) 1579 continue; 1580 ie = cfg80211_find_ie(WLAN_EID_SSID, ies->data, ies->len); 1581 if (!ie) 1582 continue; 1583 if (ssidlen && ie[1] != ssidlen) 1584 continue; 1585 if (WARN_ON_ONCE(bss->pub.hidden_beacon_bss)) 1586 continue; 1587 if (WARN_ON_ONCE(!list_empty(&bss->hidden_list))) 1588 list_del(&bss->hidden_list); 1589 /* combine them */ 1590 list_add(&bss->hidden_list, &new->hidden_list); 1591 bss->pub.hidden_beacon_bss = &new->pub; 1592 new->refcount += bss->refcount; 1593 rcu_assign_pointer(bss->pub.beacon_ies, 1594 new->pub.beacon_ies); 1595 } 1596 1597 WARN_ONCE(n_entries != rdev->bss_entries, 1598 "rdev bss entries[%d]/list[len:%d] corruption\n", 1599 rdev->bss_entries, n_entries); 1600 1601 return true; 1602 } 1603 1604 struct cfg80211_non_tx_bss { 1605 struct cfg80211_bss *tx_bss; 1606 u8 max_bssid_indicator; 1607 u8 bssid_index; 1608 }; 1609 1610 static void cfg80211_update_hidden_bsses(struct cfg80211_internal_bss *known, 1611 const struct cfg80211_bss_ies *new_ies, 1612 const struct cfg80211_bss_ies *old_ies) 1613 { 1614 struct cfg80211_internal_bss *bss; 1615 1616 /* Assign beacon IEs to all sub entries */ 1617 list_for_each_entry(bss, &known->hidden_list, hidden_list) { 1618 const struct cfg80211_bss_ies *ies; 1619 1620 ies = rcu_access_pointer(bss->pub.beacon_ies); 1621 WARN_ON(ies != old_ies); 1622 1623 rcu_assign_pointer(bss->pub.beacon_ies, new_ies); 1624 } 1625 } 1626 1627 static bool 1628 cfg80211_update_known_bss(struct cfg80211_registered_device *rdev, 1629 struct cfg80211_internal_bss *known, 1630 struct cfg80211_internal_bss *new, 1631 bool signal_valid) 1632 { 1633 lockdep_assert_held(&rdev->bss_lock); 1634 1635 /* Update IEs */ 1636 if (rcu_access_pointer(new->pub.proberesp_ies)) { 1637 const struct cfg80211_bss_ies *old; 1638 1639 old = rcu_access_pointer(known->pub.proberesp_ies); 1640 1641 rcu_assign_pointer(known->pub.proberesp_ies, 1642 new->pub.proberesp_ies); 1643 /* Override possible earlier Beacon frame IEs */ 1644 rcu_assign_pointer(known->pub.ies, 1645 new->pub.proberesp_ies); 1646 if (old) 1647 kfree_rcu((struct cfg80211_bss_ies *)old, rcu_head); 1648 } else if (rcu_access_pointer(new->pub.beacon_ies)) { 1649 const struct cfg80211_bss_ies *old; 1650 1651 if (known->pub.hidden_beacon_bss && 1652 !list_empty(&known->hidden_list)) { 1653 const struct cfg80211_bss_ies *f; 1654 1655 /* The known BSS struct is one of the probe 1656 * response members of a group, but we're 1657 * receiving a beacon (beacon_ies in the new 1658 * bss is used). This can only mean that the 1659 * AP changed its beacon from not having an 1660 * SSID to showing it, which is confusing so 1661 * drop this information. 1662 */ 1663 1664 f = rcu_access_pointer(new->pub.beacon_ies); 1665 kfree_rcu((struct cfg80211_bss_ies *)f, rcu_head); 1666 return false; 1667 } 1668 1669 old = rcu_access_pointer(known->pub.beacon_ies); 1670 1671 rcu_assign_pointer(known->pub.beacon_ies, new->pub.beacon_ies); 1672 1673 /* Override IEs if they were from a beacon before */ 1674 if (old == rcu_access_pointer(known->pub.ies)) 1675 rcu_assign_pointer(known->pub.ies, new->pub.beacon_ies); 1676 1677 cfg80211_update_hidden_bsses(known, new->pub.beacon_ies, old); 1678 1679 if (old) 1680 kfree_rcu((struct cfg80211_bss_ies *)old, rcu_head); 1681 } 1682 1683 known->pub.beacon_interval = new->pub.beacon_interval; 1684 1685 /* don't update the signal if beacon was heard on 1686 * adjacent channel. 1687 */ 1688 if (signal_valid) 1689 known->pub.signal = new->pub.signal; 1690 known->pub.capability = new->pub.capability; 1691 known->ts = new->ts; 1692 known->ts_boottime = new->ts_boottime; 1693 known->parent_tsf = new->parent_tsf; 1694 known->pub.chains = new->pub.chains; 1695 memcpy(known->pub.chain_signal, new->pub.chain_signal, 1696 IEEE80211_MAX_CHAINS); 1697 ether_addr_copy(known->parent_bssid, new->parent_bssid); 1698 known->pub.max_bssid_indicator = new->pub.max_bssid_indicator; 1699 known->pub.bssid_index = new->pub.bssid_index; 1700 1701 return true; 1702 } 1703 1704 /* Returned bss is reference counted and must be cleaned up appropriately. */ 1705 struct cfg80211_internal_bss * 1706 cfg80211_bss_update(struct cfg80211_registered_device *rdev, 1707 struct cfg80211_internal_bss *tmp, 1708 bool signal_valid, unsigned long ts) 1709 { 1710 struct cfg80211_internal_bss *found = NULL; 1711 1712 if (WARN_ON(!tmp->pub.channel)) 1713 return NULL; 1714 1715 tmp->ts = ts; 1716 1717 spin_lock_bh(&rdev->bss_lock); 1718 1719 if (WARN_ON(!rcu_access_pointer(tmp->pub.ies))) { 1720 spin_unlock_bh(&rdev->bss_lock); 1721 return NULL; 1722 } 1723 1724 found = rb_find_bss(rdev, tmp, BSS_CMP_REGULAR); 1725 1726 if (found) { 1727 if (!cfg80211_update_known_bss(rdev, found, tmp, signal_valid)) 1728 goto drop; 1729 } else { 1730 struct cfg80211_internal_bss *new; 1731 struct cfg80211_internal_bss *hidden; 1732 struct cfg80211_bss_ies *ies; 1733 1734 /* 1735 * create a copy -- the "res" variable that is passed in 1736 * is allocated on the stack since it's not needed in the 1737 * more common case of an update 1738 */ 1739 new = kzalloc(sizeof(*new) + rdev->wiphy.bss_priv_size, 1740 GFP_ATOMIC); 1741 if (!new) { 1742 ies = (void *)rcu_dereference(tmp->pub.beacon_ies); 1743 if (ies) 1744 kfree_rcu(ies, rcu_head); 1745 ies = (void *)rcu_dereference(tmp->pub.proberesp_ies); 1746 if (ies) 1747 kfree_rcu(ies, rcu_head); 1748 goto drop; 1749 } 1750 memcpy(new, tmp, sizeof(*new)); 1751 new->refcount = 1; 1752 INIT_LIST_HEAD(&new->hidden_list); 1753 INIT_LIST_HEAD(&new->pub.nontrans_list); 1754 /* we'll set this later if it was non-NULL */ 1755 new->pub.transmitted_bss = NULL; 1756 1757 if (rcu_access_pointer(tmp->pub.proberesp_ies)) { 1758 hidden = rb_find_bss(rdev, tmp, BSS_CMP_HIDE_ZLEN); 1759 if (!hidden) 1760 hidden = rb_find_bss(rdev, tmp, 1761 BSS_CMP_HIDE_NUL); 1762 if (hidden) { 1763 new->pub.hidden_beacon_bss = &hidden->pub; 1764 list_add(&new->hidden_list, 1765 &hidden->hidden_list); 1766 hidden->refcount++; 1767 rcu_assign_pointer(new->pub.beacon_ies, 1768 hidden->pub.beacon_ies); 1769 } 1770 } else { 1771 /* 1772 * Ok so we found a beacon, and don't have an entry. If 1773 * it's a beacon with hidden SSID, we might be in for an 1774 * expensive search for any probe responses that should 1775 * be grouped with this beacon for updates ... 1776 */ 1777 if (!cfg80211_combine_bsses(rdev, new)) { 1778 bss_ref_put(rdev, new); 1779 goto drop; 1780 } 1781 } 1782 1783 if (rdev->bss_entries >= bss_entries_limit && 1784 !cfg80211_bss_expire_oldest(rdev)) { 1785 bss_ref_put(rdev, new); 1786 goto drop; 1787 } 1788 1789 /* This must be before the call to bss_ref_get */ 1790 if (tmp->pub.transmitted_bss) { 1791 struct cfg80211_internal_bss *pbss = 1792 container_of(tmp->pub.transmitted_bss, 1793 struct cfg80211_internal_bss, 1794 pub); 1795 1796 new->pub.transmitted_bss = tmp->pub.transmitted_bss; 1797 bss_ref_get(rdev, pbss); 1798 } 1799 1800 list_add_tail(&new->list, &rdev->bss_list); 1801 rdev->bss_entries++; 1802 rb_insert_bss(rdev, new); 1803 found = new; 1804 } 1805 1806 rdev->bss_generation++; 1807 bss_ref_get(rdev, found); 1808 spin_unlock_bh(&rdev->bss_lock); 1809 1810 return found; 1811 drop: 1812 spin_unlock_bh(&rdev->bss_lock); 1813 return NULL; 1814 } 1815 1816 int cfg80211_get_ies_channel_number(const u8 *ie, size_t ielen, 1817 enum nl80211_band band, 1818 enum cfg80211_bss_frame_type ftype) 1819 { 1820 const struct element *tmp; 1821 1822 if (band == NL80211_BAND_6GHZ) { 1823 struct ieee80211_he_operation *he_oper; 1824 1825 tmp = cfg80211_find_ext_elem(WLAN_EID_EXT_HE_OPERATION, ie, 1826 ielen); 1827 if (tmp && tmp->datalen >= sizeof(*he_oper) && 1828 tmp->datalen >= ieee80211_he_oper_size(&tmp->data[1])) { 1829 const struct ieee80211_he_6ghz_oper *he_6ghz_oper; 1830 1831 he_oper = (void *)&tmp->data[1]; 1832 1833 he_6ghz_oper = ieee80211_he_6ghz_oper(he_oper); 1834 if (!he_6ghz_oper) 1835 return -1; 1836 1837 if (ftype != CFG80211_BSS_FTYPE_BEACON || 1838 he_6ghz_oper->control & IEEE80211_HE_6GHZ_OPER_CTRL_DUP_BEACON) 1839 return he_6ghz_oper->primary; 1840 } 1841 } else if (band == NL80211_BAND_S1GHZ) { 1842 tmp = cfg80211_find_elem(WLAN_EID_S1G_OPERATION, ie, ielen); 1843 if (tmp && tmp->datalen >= sizeof(struct ieee80211_s1g_oper_ie)) { 1844 struct ieee80211_s1g_oper_ie *s1gop = (void *)tmp->data; 1845 1846 return s1gop->oper_ch; 1847 } 1848 } else { 1849 tmp = cfg80211_find_elem(WLAN_EID_DS_PARAMS, ie, ielen); 1850 if (tmp && tmp->datalen == 1) 1851 return tmp->data[0]; 1852 1853 tmp = cfg80211_find_elem(WLAN_EID_HT_OPERATION, ie, ielen); 1854 if (tmp && 1855 tmp->datalen >= sizeof(struct ieee80211_ht_operation)) { 1856 struct ieee80211_ht_operation *htop = (void *)tmp->data; 1857 1858 return htop->primary_chan; 1859 } 1860 } 1861 1862 return -1; 1863 } 1864 EXPORT_SYMBOL(cfg80211_get_ies_channel_number); 1865 1866 /* 1867 * Update RX channel information based on the available frame payload 1868 * information. This is mainly for the 2.4 GHz band where frames can be received 1869 * from neighboring channels and the Beacon frames use the DSSS Parameter Set 1870 * element to indicate the current (transmitting) channel, but this might also 1871 * be needed on other bands if RX frequency does not match with the actual 1872 * operating channel of a BSS, or if the AP reports a different primary channel. 1873 */ 1874 static struct ieee80211_channel * 1875 cfg80211_get_bss_channel(struct wiphy *wiphy, const u8 *ie, size_t ielen, 1876 struct ieee80211_channel *channel, 1877 enum nl80211_bss_scan_width scan_width, 1878 enum cfg80211_bss_frame_type ftype) 1879 { 1880 u32 freq; 1881 int channel_number; 1882 struct ieee80211_channel *alt_channel; 1883 1884 channel_number = cfg80211_get_ies_channel_number(ie, ielen, 1885 channel->band, ftype); 1886 1887 if (channel_number < 0) { 1888 /* No channel information in frame payload */ 1889 return channel; 1890 } 1891 1892 freq = ieee80211_channel_to_freq_khz(channel_number, channel->band); 1893 1894 /* 1895 * In 6GHz, duplicated beacon indication is relevant for 1896 * beacons only. 1897 */ 1898 if (channel->band == NL80211_BAND_6GHZ && 1899 (freq == channel->center_freq || 1900 abs(freq - channel->center_freq) > 80)) 1901 return channel; 1902 1903 alt_channel = ieee80211_get_channel_khz(wiphy, freq); 1904 if (!alt_channel) { 1905 if (channel->band == NL80211_BAND_2GHZ) { 1906 /* 1907 * Better not allow unexpected channels when that could 1908 * be going beyond the 1-11 range (e.g., discovering 1909 * BSS on channel 12 when radio is configured for 1910 * channel 11. 1911 */ 1912 return NULL; 1913 } 1914 1915 /* No match for the payload channel number - ignore it */ 1916 return channel; 1917 } 1918 1919 if (scan_width == NL80211_BSS_CHAN_WIDTH_10 || 1920 scan_width == NL80211_BSS_CHAN_WIDTH_5) { 1921 /* 1922 * Ignore channel number in 5 and 10 MHz channels where there 1923 * may not be an n:1 or 1:n mapping between frequencies and 1924 * channel numbers. 1925 */ 1926 return channel; 1927 } 1928 1929 /* 1930 * Use the channel determined through the payload channel number 1931 * instead of the RX channel reported by the driver. 1932 */ 1933 if (alt_channel->flags & IEEE80211_CHAN_DISABLED) 1934 return NULL; 1935 return alt_channel; 1936 } 1937 1938 /* Returned bss is reference counted and must be cleaned up appropriately. */ 1939 static struct cfg80211_bss * 1940 cfg80211_inform_single_bss_data(struct wiphy *wiphy, 1941 struct cfg80211_inform_bss *data, 1942 enum cfg80211_bss_frame_type ftype, 1943 const u8 *bssid, u64 tsf, u16 capability, 1944 u16 beacon_interval, const u8 *ie, size_t ielen, 1945 struct cfg80211_non_tx_bss *non_tx_data, 1946 gfp_t gfp) 1947 { 1948 struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy); 1949 struct cfg80211_bss_ies *ies; 1950 struct ieee80211_channel *channel; 1951 struct cfg80211_internal_bss tmp = {}, *res; 1952 int bss_type; 1953 bool signal_valid; 1954 unsigned long ts; 1955 1956 if (WARN_ON(!wiphy)) 1957 return NULL; 1958 1959 if (WARN_ON(wiphy->signal_type == CFG80211_SIGNAL_TYPE_UNSPEC && 1960 (data->signal < 0 || data->signal > 100))) 1961 return NULL; 1962 1963 channel = cfg80211_get_bss_channel(wiphy, ie, ielen, data->chan, 1964 data->scan_width, ftype); 1965 if (!channel) 1966 return NULL; 1967 1968 memcpy(tmp.pub.bssid, bssid, ETH_ALEN); 1969 tmp.pub.channel = channel; 1970 tmp.pub.scan_width = data->scan_width; 1971 tmp.pub.signal = data->signal; 1972 tmp.pub.beacon_interval = beacon_interval; 1973 tmp.pub.capability = capability; 1974 tmp.ts_boottime = data->boottime_ns; 1975 tmp.parent_tsf = data->parent_tsf; 1976 ether_addr_copy(tmp.parent_bssid, data->parent_bssid); 1977 1978 if (non_tx_data) { 1979 tmp.pub.transmitted_bss = non_tx_data->tx_bss; 1980 ts = bss_from_pub(non_tx_data->tx_bss)->ts; 1981 tmp.pub.bssid_index = non_tx_data->bssid_index; 1982 tmp.pub.max_bssid_indicator = non_tx_data->max_bssid_indicator; 1983 } else { 1984 ts = jiffies; 1985 } 1986 1987 /* 1988 * If we do not know here whether the IEs are from a Beacon or Probe 1989 * Response frame, we need to pick one of the options and only use it 1990 * with the driver that does not provide the full Beacon/Probe Response 1991 * frame. Use Beacon frame pointer to avoid indicating that this should 1992 * override the IEs pointer should we have received an earlier 1993 * indication of Probe Response data. 1994 */ 1995 ies = kzalloc(sizeof(*ies) + ielen, gfp); 1996 if (!ies) 1997 return NULL; 1998 ies->len = ielen; 1999 ies->tsf = tsf; 2000 ies->from_beacon = false; 2001 memcpy(ies->data, ie, ielen); 2002 2003 switch (ftype) { 2004 case CFG80211_BSS_FTYPE_BEACON: 2005 ies->from_beacon = true; 2006 fallthrough; 2007 case CFG80211_BSS_FTYPE_UNKNOWN: 2008 rcu_assign_pointer(tmp.pub.beacon_ies, ies); 2009 break; 2010 case CFG80211_BSS_FTYPE_PRESP: 2011 rcu_assign_pointer(tmp.pub.proberesp_ies, ies); 2012 break; 2013 } 2014 rcu_assign_pointer(tmp.pub.ies, ies); 2015 2016 signal_valid = data->chan == channel; 2017 res = cfg80211_bss_update(wiphy_to_rdev(wiphy), &tmp, signal_valid, ts); 2018 if (!res) 2019 return NULL; 2020 2021 if (channel->band == NL80211_BAND_60GHZ) { 2022 bss_type = res->pub.capability & WLAN_CAPABILITY_DMG_TYPE_MASK; 2023 if (bss_type == WLAN_CAPABILITY_DMG_TYPE_AP || 2024 bss_type == WLAN_CAPABILITY_DMG_TYPE_PBSS) 2025 regulatory_hint_found_beacon(wiphy, channel, gfp); 2026 } else { 2027 if (res->pub.capability & WLAN_CAPABILITY_ESS) 2028 regulatory_hint_found_beacon(wiphy, channel, gfp); 2029 } 2030 2031 if (non_tx_data) { 2032 /* this is a nontransmitting bss, we need to add it to 2033 * transmitting bss' list if it is not there 2034 */ 2035 spin_lock_bh(&rdev->bss_lock); 2036 if (cfg80211_add_nontrans_list(non_tx_data->tx_bss, 2037 &res->pub)) { 2038 if (__cfg80211_unlink_bss(rdev, res)) { 2039 rdev->bss_generation++; 2040 res = NULL; 2041 } 2042 } 2043 spin_unlock_bh(&rdev->bss_lock); 2044 2045 if (!res) 2046 return NULL; 2047 } 2048 2049 trace_cfg80211_return_bss(&res->pub); 2050 /* cfg80211_bss_update gives us a referenced result */ 2051 return &res->pub; 2052 } 2053 2054 static const struct element 2055 *cfg80211_get_profile_continuation(const u8 *ie, size_t ielen, 2056 const struct element *mbssid_elem, 2057 const struct element *sub_elem) 2058 { 2059 const u8 *mbssid_end = mbssid_elem->data + mbssid_elem->datalen; 2060 const struct element *next_mbssid; 2061 const struct element *next_sub; 2062 2063 next_mbssid = cfg80211_find_elem(WLAN_EID_MULTIPLE_BSSID, 2064 mbssid_end, 2065 ielen - (mbssid_end - ie)); 2066 2067 /* 2068 * If it is not the last subelement in current MBSSID IE or there isn't 2069 * a next MBSSID IE - profile is complete. 2070 */ 2071 if ((sub_elem->data + sub_elem->datalen < mbssid_end - 1) || 2072 !next_mbssid) 2073 return NULL; 2074 2075 /* For any length error, just return NULL */ 2076 2077 if (next_mbssid->datalen < 4) 2078 return NULL; 2079 2080 next_sub = (void *)&next_mbssid->data[1]; 2081 2082 if (next_mbssid->data + next_mbssid->datalen < 2083 next_sub->data + next_sub->datalen) 2084 return NULL; 2085 2086 if (next_sub->id != 0 || next_sub->datalen < 2) 2087 return NULL; 2088 2089 /* 2090 * Check if the first element in the next sub element is a start 2091 * of a new profile 2092 */ 2093 return next_sub->data[0] == WLAN_EID_NON_TX_BSSID_CAP ? 2094 NULL : next_mbssid; 2095 } 2096 2097 size_t cfg80211_merge_profile(const u8 *ie, size_t ielen, 2098 const struct element *mbssid_elem, 2099 const struct element *sub_elem, 2100 u8 *merged_ie, size_t max_copy_len) 2101 { 2102 size_t copied_len = sub_elem->datalen; 2103 const struct element *next_mbssid; 2104 2105 if (sub_elem->datalen > max_copy_len) 2106 return 0; 2107 2108 memcpy(merged_ie, sub_elem->data, sub_elem->datalen); 2109 2110 while ((next_mbssid = cfg80211_get_profile_continuation(ie, ielen, 2111 mbssid_elem, 2112 sub_elem))) { 2113 const struct element *next_sub = (void *)&next_mbssid->data[1]; 2114 2115 if (copied_len + next_sub->datalen > max_copy_len) 2116 break; 2117 memcpy(merged_ie + copied_len, next_sub->data, 2118 next_sub->datalen); 2119 copied_len += next_sub->datalen; 2120 } 2121 2122 return copied_len; 2123 } 2124 EXPORT_SYMBOL(cfg80211_merge_profile); 2125 2126 static void cfg80211_parse_mbssid_data(struct wiphy *wiphy, 2127 struct cfg80211_inform_bss *data, 2128 enum cfg80211_bss_frame_type ftype, 2129 const u8 *bssid, u64 tsf, 2130 u16 beacon_interval, const u8 *ie, 2131 size_t ielen, 2132 struct cfg80211_non_tx_bss *non_tx_data, 2133 gfp_t gfp) 2134 { 2135 const u8 *mbssid_index_ie; 2136 const struct element *elem, *sub; 2137 size_t new_ie_len; 2138 u8 new_bssid[ETH_ALEN]; 2139 u8 *new_ie, *profile; 2140 u64 seen_indices = 0; 2141 u16 capability; 2142 struct cfg80211_bss *bss; 2143 2144 if (!non_tx_data) 2145 return; 2146 if (!cfg80211_find_elem(WLAN_EID_MULTIPLE_BSSID, ie, ielen)) 2147 return; 2148 if (!wiphy->support_mbssid) 2149 return; 2150 if (wiphy->support_only_he_mbssid && 2151 !cfg80211_find_ext_elem(WLAN_EID_EXT_HE_CAPABILITY, ie, ielen)) 2152 return; 2153 2154 new_ie = kmalloc(IEEE80211_MAX_DATA_LEN, gfp); 2155 if (!new_ie) 2156 return; 2157 2158 profile = kmalloc(ielen, gfp); 2159 if (!profile) 2160 goto out; 2161 2162 for_each_element_id(elem, WLAN_EID_MULTIPLE_BSSID, ie, ielen) { 2163 if (elem->datalen < 4) 2164 continue; 2165 if (elem->data[0] < 1 || (int)elem->data[0] > 8) 2166 continue; 2167 for_each_element(sub, elem->data + 1, elem->datalen - 1) { 2168 u8 profile_len; 2169 2170 if (sub->id != 0 || sub->datalen < 4) { 2171 /* not a valid BSS profile */ 2172 continue; 2173 } 2174 2175 if (sub->data[0] != WLAN_EID_NON_TX_BSSID_CAP || 2176 sub->data[1] != 2) { 2177 /* The first element within the Nontransmitted 2178 * BSSID Profile is not the Nontransmitted 2179 * BSSID Capability element. 2180 */ 2181 continue; 2182 } 2183 2184 memset(profile, 0, ielen); 2185 profile_len = cfg80211_merge_profile(ie, ielen, 2186 elem, 2187 sub, 2188 profile, 2189 ielen); 2190 2191 /* found a Nontransmitted BSSID Profile */ 2192 mbssid_index_ie = cfg80211_find_ie 2193 (WLAN_EID_MULTI_BSSID_IDX, 2194 profile, profile_len); 2195 if (!mbssid_index_ie || mbssid_index_ie[1] < 1 || 2196 mbssid_index_ie[2] == 0 || 2197 mbssid_index_ie[2] > 46) { 2198 /* No valid Multiple BSSID-Index element */ 2199 continue; 2200 } 2201 2202 if (seen_indices & BIT_ULL(mbssid_index_ie[2])) 2203 /* We don't support legacy split of a profile */ 2204 net_dbg_ratelimited("Partial info for BSSID index %d\n", 2205 mbssid_index_ie[2]); 2206 2207 seen_indices |= BIT_ULL(mbssid_index_ie[2]); 2208 2209 non_tx_data->bssid_index = mbssid_index_ie[2]; 2210 non_tx_data->max_bssid_indicator = elem->data[0]; 2211 2212 cfg80211_gen_new_bssid(bssid, 2213 non_tx_data->max_bssid_indicator, 2214 non_tx_data->bssid_index, 2215 new_bssid); 2216 memset(new_ie, 0, IEEE80211_MAX_DATA_LEN); 2217 new_ie_len = cfg80211_gen_new_ie(ie, ielen, 2218 profile, 2219 profile_len, new_ie, 2220 gfp); 2221 if (!new_ie_len) 2222 continue; 2223 2224 capability = get_unaligned_le16(profile + 2); 2225 bss = cfg80211_inform_single_bss_data(wiphy, data, 2226 ftype, 2227 new_bssid, tsf, 2228 capability, 2229 beacon_interval, 2230 new_ie, 2231 new_ie_len, 2232 non_tx_data, 2233 gfp); 2234 if (!bss) 2235 break; 2236 cfg80211_put_bss(wiphy, bss); 2237 } 2238 } 2239 2240 out: 2241 kfree(new_ie); 2242 kfree(profile); 2243 } 2244 2245 struct cfg80211_bss * 2246 cfg80211_inform_bss_data(struct wiphy *wiphy, 2247 struct cfg80211_inform_bss *data, 2248 enum cfg80211_bss_frame_type ftype, 2249 const u8 *bssid, u64 tsf, u16 capability, 2250 u16 beacon_interval, const u8 *ie, size_t ielen, 2251 gfp_t gfp) 2252 { 2253 struct cfg80211_bss *res; 2254 struct cfg80211_non_tx_bss non_tx_data; 2255 2256 res = cfg80211_inform_single_bss_data(wiphy, data, ftype, bssid, tsf, 2257 capability, beacon_interval, ie, 2258 ielen, NULL, gfp); 2259 if (!res) 2260 return NULL; 2261 non_tx_data.tx_bss = res; 2262 cfg80211_parse_mbssid_data(wiphy, data, ftype, bssid, tsf, 2263 beacon_interval, ie, ielen, &non_tx_data, 2264 gfp); 2265 return res; 2266 } 2267 EXPORT_SYMBOL(cfg80211_inform_bss_data); 2268 2269 static void 2270 cfg80211_parse_mbssid_frame_data(struct wiphy *wiphy, 2271 struct cfg80211_inform_bss *data, 2272 struct ieee80211_mgmt *mgmt, size_t len, 2273 struct cfg80211_non_tx_bss *non_tx_data, 2274 gfp_t gfp) 2275 { 2276 enum cfg80211_bss_frame_type ftype; 2277 const u8 *ie = mgmt->u.probe_resp.variable; 2278 size_t ielen = len - offsetof(struct ieee80211_mgmt, 2279 u.probe_resp.variable); 2280 2281 ftype = ieee80211_is_beacon(mgmt->frame_control) ? 2282 CFG80211_BSS_FTYPE_BEACON : CFG80211_BSS_FTYPE_PRESP; 2283 2284 cfg80211_parse_mbssid_data(wiphy, data, ftype, mgmt->bssid, 2285 le64_to_cpu(mgmt->u.probe_resp.timestamp), 2286 le16_to_cpu(mgmt->u.probe_resp.beacon_int), 2287 ie, ielen, non_tx_data, gfp); 2288 } 2289 2290 static void 2291 cfg80211_update_notlisted_nontrans(struct wiphy *wiphy, 2292 struct cfg80211_bss *nontrans_bss, 2293 struct ieee80211_mgmt *mgmt, size_t len) 2294 { 2295 u8 *ie, *new_ie, *pos; 2296 const struct element *nontrans_ssid; 2297 const u8 *trans_ssid, *mbssid; 2298 size_t ielen = len - offsetof(struct ieee80211_mgmt, 2299 u.probe_resp.variable); 2300 size_t new_ie_len; 2301 struct cfg80211_bss_ies *new_ies; 2302 const struct cfg80211_bss_ies *old; 2303 size_t cpy_len; 2304 2305 lockdep_assert_held(&wiphy_to_rdev(wiphy)->bss_lock); 2306 2307 ie = mgmt->u.probe_resp.variable; 2308 2309 new_ie_len = ielen; 2310 trans_ssid = cfg80211_find_ie(WLAN_EID_SSID, ie, ielen); 2311 if (!trans_ssid) 2312 return; 2313 new_ie_len -= trans_ssid[1]; 2314 mbssid = cfg80211_find_ie(WLAN_EID_MULTIPLE_BSSID, ie, ielen); 2315 /* 2316 * It's not valid to have the MBSSID element before SSID 2317 * ignore if that happens - the code below assumes it is 2318 * after (while copying things inbetween). 2319 */ 2320 if (!mbssid || mbssid < trans_ssid) 2321 return; 2322 new_ie_len -= mbssid[1]; 2323 2324 nontrans_ssid = ieee80211_bss_get_elem(nontrans_bss, WLAN_EID_SSID); 2325 if (!nontrans_ssid) 2326 return; 2327 2328 new_ie_len += nontrans_ssid->datalen; 2329 2330 /* generate new ie for nontrans BSS 2331 * 1. replace SSID with nontrans BSS' SSID 2332 * 2. skip MBSSID IE 2333 */ 2334 new_ie = kzalloc(new_ie_len, GFP_ATOMIC); 2335 if (!new_ie) 2336 return; 2337 2338 new_ies = kzalloc(sizeof(*new_ies) + new_ie_len, GFP_ATOMIC); 2339 if (!new_ies) 2340 goto out_free; 2341 2342 pos = new_ie; 2343 2344 /* copy the nontransmitted SSID */ 2345 cpy_len = nontrans_ssid->datalen + 2; 2346 memcpy(pos, nontrans_ssid, cpy_len); 2347 pos += cpy_len; 2348 /* copy the IEs between SSID and MBSSID */ 2349 cpy_len = trans_ssid[1] + 2; 2350 memcpy(pos, (trans_ssid + cpy_len), (mbssid - (trans_ssid + cpy_len))); 2351 pos += (mbssid - (trans_ssid + cpy_len)); 2352 /* copy the IEs after MBSSID */ 2353 cpy_len = mbssid[1] + 2; 2354 memcpy(pos, mbssid + cpy_len, ((ie + ielen) - (mbssid + cpy_len))); 2355 2356 /* update ie */ 2357 new_ies->len = new_ie_len; 2358 new_ies->tsf = le64_to_cpu(mgmt->u.probe_resp.timestamp); 2359 new_ies->from_beacon = ieee80211_is_beacon(mgmt->frame_control); 2360 memcpy(new_ies->data, new_ie, new_ie_len); 2361 if (ieee80211_is_probe_resp(mgmt->frame_control)) { 2362 old = rcu_access_pointer(nontrans_bss->proberesp_ies); 2363 rcu_assign_pointer(nontrans_bss->proberesp_ies, new_ies); 2364 rcu_assign_pointer(nontrans_bss->ies, new_ies); 2365 if (old) 2366 kfree_rcu((struct cfg80211_bss_ies *)old, rcu_head); 2367 } else { 2368 old = rcu_access_pointer(nontrans_bss->beacon_ies); 2369 rcu_assign_pointer(nontrans_bss->beacon_ies, new_ies); 2370 cfg80211_update_hidden_bsses(bss_from_pub(nontrans_bss), 2371 new_ies, old); 2372 rcu_assign_pointer(nontrans_bss->ies, new_ies); 2373 if (old) 2374 kfree_rcu((struct cfg80211_bss_ies *)old, rcu_head); 2375 } 2376 2377 out_free: 2378 kfree(new_ie); 2379 } 2380 2381 /* cfg80211_inform_bss_width_frame helper */ 2382 static struct cfg80211_bss * 2383 cfg80211_inform_single_bss_frame_data(struct wiphy *wiphy, 2384 struct cfg80211_inform_bss *data, 2385 struct ieee80211_mgmt *mgmt, size_t len, 2386 gfp_t gfp) 2387 { 2388 struct cfg80211_internal_bss tmp = {}, *res; 2389 struct cfg80211_bss_ies *ies; 2390 struct ieee80211_channel *channel; 2391 bool signal_valid; 2392 struct ieee80211_ext *ext = NULL; 2393 u8 *bssid, *variable; 2394 u16 capability, beacon_int; 2395 size_t ielen, min_hdr_len = offsetof(struct ieee80211_mgmt, 2396 u.probe_resp.variable); 2397 int bss_type; 2398 enum cfg80211_bss_frame_type ftype; 2399 2400 BUILD_BUG_ON(offsetof(struct ieee80211_mgmt, u.probe_resp.variable) != 2401 offsetof(struct ieee80211_mgmt, u.beacon.variable)); 2402 2403 trace_cfg80211_inform_bss_frame(wiphy, data, mgmt, len); 2404 2405 if (WARN_ON(!mgmt)) 2406 return NULL; 2407 2408 if (WARN_ON(!wiphy)) 2409 return NULL; 2410 2411 if (WARN_ON(wiphy->signal_type == CFG80211_SIGNAL_TYPE_UNSPEC && 2412 (data->signal < 0 || data->signal > 100))) 2413 return NULL; 2414 2415 if (ieee80211_is_s1g_beacon(mgmt->frame_control)) { 2416 ext = (void *) mgmt; 2417 min_hdr_len = offsetof(struct ieee80211_ext, u.s1g_beacon); 2418 if (ieee80211_is_s1g_short_beacon(mgmt->frame_control)) 2419 min_hdr_len = offsetof(struct ieee80211_ext, 2420 u.s1g_short_beacon.variable); 2421 } 2422 2423 if (WARN_ON(len < min_hdr_len)) 2424 return NULL; 2425 2426 ielen = len - min_hdr_len; 2427 variable = mgmt->u.probe_resp.variable; 2428 if (ext) { 2429 if (ieee80211_is_s1g_short_beacon(mgmt->frame_control)) 2430 variable = ext->u.s1g_short_beacon.variable; 2431 else 2432 variable = ext->u.s1g_beacon.variable; 2433 } 2434 2435 if (ieee80211_is_beacon(mgmt->frame_control)) 2436 ftype = CFG80211_BSS_FTYPE_BEACON; 2437 else if (ieee80211_is_probe_resp(mgmt->frame_control)) 2438 ftype = CFG80211_BSS_FTYPE_PRESP; 2439 else 2440 ftype = CFG80211_BSS_FTYPE_UNKNOWN; 2441 2442 channel = cfg80211_get_bss_channel(wiphy, variable, 2443 ielen, data->chan, data->scan_width, 2444 ftype); 2445 if (!channel) 2446 return NULL; 2447 2448 if (ext) { 2449 const struct ieee80211_s1g_bcn_compat_ie *compat; 2450 const struct element *elem; 2451 2452 elem = cfg80211_find_elem(WLAN_EID_S1G_BCN_COMPAT, 2453 variable, ielen); 2454 if (!elem) 2455 return NULL; 2456 if (elem->datalen < sizeof(*compat)) 2457 return NULL; 2458 compat = (void *)elem->data; 2459 bssid = ext->u.s1g_beacon.sa; 2460 capability = le16_to_cpu(compat->compat_info); 2461 beacon_int = le16_to_cpu(compat->beacon_int); 2462 } else { 2463 bssid = mgmt->bssid; 2464 beacon_int = le16_to_cpu(mgmt->u.probe_resp.beacon_int); 2465 capability = le16_to_cpu(mgmt->u.probe_resp.capab_info); 2466 } 2467 2468 ies = kzalloc(sizeof(*ies) + ielen, gfp); 2469 if (!ies) 2470 return NULL; 2471 ies->len = ielen; 2472 ies->tsf = le64_to_cpu(mgmt->u.probe_resp.timestamp); 2473 ies->from_beacon = ieee80211_is_beacon(mgmt->frame_control) || 2474 ieee80211_is_s1g_beacon(mgmt->frame_control); 2475 memcpy(ies->data, variable, ielen); 2476 2477 if (ieee80211_is_probe_resp(mgmt->frame_control)) 2478 rcu_assign_pointer(tmp.pub.proberesp_ies, ies); 2479 else 2480 rcu_assign_pointer(tmp.pub.beacon_ies, ies); 2481 rcu_assign_pointer(tmp.pub.ies, ies); 2482 2483 memcpy(tmp.pub.bssid, bssid, ETH_ALEN); 2484 tmp.pub.beacon_interval = beacon_int; 2485 tmp.pub.capability = capability; 2486 tmp.pub.channel = channel; 2487 tmp.pub.scan_width = data->scan_width; 2488 tmp.pub.signal = data->signal; 2489 tmp.ts_boottime = data->boottime_ns; 2490 tmp.parent_tsf = data->parent_tsf; 2491 tmp.pub.chains = data->chains; 2492 memcpy(tmp.pub.chain_signal, data->chain_signal, IEEE80211_MAX_CHAINS); 2493 ether_addr_copy(tmp.parent_bssid, data->parent_bssid); 2494 2495 signal_valid = data->chan == channel; 2496 res = cfg80211_bss_update(wiphy_to_rdev(wiphy), &tmp, signal_valid, 2497 jiffies); 2498 if (!res) 2499 return NULL; 2500 2501 if (channel->band == NL80211_BAND_60GHZ) { 2502 bss_type = res->pub.capability & WLAN_CAPABILITY_DMG_TYPE_MASK; 2503 if (bss_type == WLAN_CAPABILITY_DMG_TYPE_AP || 2504 bss_type == WLAN_CAPABILITY_DMG_TYPE_PBSS) 2505 regulatory_hint_found_beacon(wiphy, channel, gfp); 2506 } else { 2507 if (res->pub.capability & WLAN_CAPABILITY_ESS) 2508 regulatory_hint_found_beacon(wiphy, channel, gfp); 2509 } 2510 2511 trace_cfg80211_return_bss(&res->pub); 2512 /* cfg80211_bss_update gives us a referenced result */ 2513 return &res->pub; 2514 } 2515 2516 struct cfg80211_bss * 2517 cfg80211_inform_bss_frame_data(struct wiphy *wiphy, 2518 struct cfg80211_inform_bss *data, 2519 struct ieee80211_mgmt *mgmt, size_t len, 2520 gfp_t gfp) 2521 { 2522 struct cfg80211_bss *res, *tmp_bss; 2523 const u8 *ie = mgmt->u.probe_resp.variable; 2524 const struct cfg80211_bss_ies *ies1, *ies2; 2525 size_t ielen = len - offsetof(struct ieee80211_mgmt, 2526 u.probe_resp.variable); 2527 struct cfg80211_non_tx_bss non_tx_data; 2528 2529 res = cfg80211_inform_single_bss_frame_data(wiphy, data, mgmt, 2530 len, gfp); 2531 if (!res || !wiphy->support_mbssid || 2532 !cfg80211_find_elem(WLAN_EID_MULTIPLE_BSSID, ie, ielen)) 2533 return res; 2534 if (wiphy->support_only_he_mbssid && 2535 !cfg80211_find_ext_elem(WLAN_EID_EXT_HE_CAPABILITY, ie, ielen)) 2536 return res; 2537 2538 non_tx_data.tx_bss = res; 2539 /* process each non-transmitting bss */ 2540 cfg80211_parse_mbssid_frame_data(wiphy, data, mgmt, len, 2541 &non_tx_data, gfp); 2542 2543 spin_lock_bh(&wiphy_to_rdev(wiphy)->bss_lock); 2544 2545 /* check if the res has other nontransmitting bss which is not 2546 * in MBSSID IE 2547 */ 2548 ies1 = rcu_access_pointer(res->ies); 2549 2550 /* go through nontrans_list, if the timestamp of the BSS is 2551 * earlier than the timestamp of the transmitting BSS then 2552 * update it 2553 */ 2554 list_for_each_entry(tmp_bss, &res->nontrans_list, 2555 nontrans_list) { 2556 ies2 = rcu_access_pointer(tmp_bss->ies); 2557 if (ies2->tsf < ies1->tsf) 2558 cfg80211_update_notlisted_nontrans(wiphy, tmp_bss, 2559 mgmt, len); 2560 } 2561 spin_unlock_bh(&wiphy_to_rdev(wiphy)->bss_lock); 2562 2563 return res; 2564 } 2565 EXPORT_SYMBOL(cfg80211_inform_bss_frame_data); 2566 2567 void cfg80211_ref_bss(struct wiphy *wiphy, struct cfg80211_bss *pub) 2568 { 2569 struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy); 2570 struct cfg80211_internal_bss *bss; 2571 2572 if (!pub) 2573 return; 2574 2575 bss = container_of(pub, struct cfg80211_internal_bss, pub); 2576 2577 spin_lock_bh(&rdev->bss_lock); 2578 bss_ref_get(rdev, bss); 2579 spin_unlock_bh(&rdev->bss_lock); 2580 } 2581 EXPORT_SYMBOL(cfg80211_ref_bss); 2582 2583 void cfg80211_put_bss(struct wiphy *wiphy, struct cfg80211_bss *pub) 2584 { 2585 struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy); 2586 struct cfg80211_internal_bss *bss; 2587 2588 if (!pub) 2589 return; 2590 2591 bss = container_of(pub, struct cfg80211_internal_bss, pub); 2592 2593 spin_lock_bh(&rdev->bss_lock); 2594 bss_ref_put(rdev, bss); 2595 spin_unlock_bh(&rdev->bss_lock); 2596 } 2597 EXPORT_SYMBOL(cfg80211_put_bss); 2598 2599 void cfg80211_unlink_bss(struct wiphy *wiphy, struct cfg80211_bss *pub) 2600 { 2601 struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy); 2602 struct cfg80211_internal_bss *bss, *tmp1; 2603 struct cfg80211_bss *nontrans_bss, *tmp; 2604 2605 if (WARN_ON(!pub)) 2606 return; 2607 2608 bss = container_of(pub, struct cfg80211_internal_bss, pub); 2609 2610 spin_lock_bh(&rdev->bss_lock); 2611 if (list_empty(&bss->list)) 2612 goto out; 2613 2614 list_for_each_entry_safe(nontrans_bss, tmp, 2615 &pub->nontrans_list, 2616 nontrans_list) { 2617 tmp1 = container_of(nontrans_bss, 2618 struct cfg80211_internal_bss, pub); 2619 if (__cfg80211_unlink_bss(rdev, tmp1)) 2620 rdev->bss_generation++; 2621 } 2622 2623 if (__cfg80211_unlink_bss(rdev, bss)) 2624 rdev->bss_generation++; 2625 out: 2626 spin_unlock_bh(&rdev->bss_lock); 2627 } 2628 EXPORT_SYMBOL(cfg80211_unlink_bss); 2629 2630 void cfg80211_bss_iter(struct wiphy *wiphy, 2631 struct cfg80211_chan_def *chandef, 2632 void (*iter)(struct wiphy *wiphy, 2633 struct cfg80211_bss *bss, 2634 void *data), 2635 void *iter_data) 2636 { 2637 struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy); 2638 struct cfg80211_internal_bss *bss; 2639 2640 spin_lock_bh(&rdev->bss_lock); 2641 2642 list_for_each_entry(bss, &rdev->bss_list, list) { 2643 if (!chandef || cfg80211_is_sub_chan(chandef, bss->pub.channel, 2644 false)) 2645 iter(wiphy, &bss->pub, iter_data); 2646 } 2647 2648 spin_unlock_bh(&rdev->bss_lock); 2649 } 2650 EXPORT_SYMBOL(cfg80211_bss_iter); 2651 2652 void cfg80211_update_assoc_bss_entry(struct wireless_dev *wdev, 2653 unsigned int link_id, 2654 struct ieee80211_channel *chan) 2655 { 2656 struct wiphy *wiphy = wdev->wiphy; 2657 struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy); 2658 struct cfg80211_internal_bss *cbss = wdev->links[link_id].client.current_bss; 2659 struct cfg80211_internal_bss *new = NULL; 2660 struct cfg80211_internal_bss *bss; 2661 struct cfg80211_bss *nontrans_bss; 2662 struct cfg80211_bss *tmp; 2663 2664 spin_lock_bh(&rdev->bss_lock); 2665 2666 /* 2667 * Some APs use CSA also for bandwidth changes, i.e., without actually 2668 * changing the control channel, so no need to update in such a case. 2669 */ 2670 if (cbss->pub.channel == chan) 2671 goto done; 2672 2673 /* use transmitting bss */ 2674 if (cbss->pub.transmitted_bss) 2675 cbss = container_of(cbss->pub.transmitted_bss, 2676 struct cfg80211_internal_bss, 2677 pub); 2678 2679 cbss->pub.channel = chan; 2680 2681 list_for_each_entry(bss, &rdev->bss_list, list) { 2682 if (!cfg80211_bss_type_match(bss->pub.capability, 2683 bss->pub.channel->band, 2684 wdev->conn_bss_type)) 2685 continue; 2686 2687 if (bss == cbss) 2688 continue; 2689 2690 if (!cmp_bss(&bss->pub, &cbss->pub, BSS_CMP_REGULAR)) { 2691 new = bss; 2692 break; 2693 } 2694 } 2695 2696 if (new) { 2697 /* to save time, update IEs for transmitting bss only */ 2698 if (cfg80211_update_known_bss(rdev, cbss, new, false)) { 2699 new->pub.proberesp_ies = NULL; 2700 new->pub.beacon_ies = NULL; 2701 } 2702 2703 list_for_each_entry_safe(nontrans_bss, tmp, 2704 &new->pub.nontrans_list, 2705 nontrans_list) { 2706 bss = container_of(nontrans_bss, 2707 struct cfg80211_internal_bss, pub); 2708 if (__cfg80211_unlink_bss(rdev, bss)) 2709 rdev->bss_generation++; 2710 } 2711 2712 WARN_ON(atomic_read(&new->hold)); 2713 if (!WARN_ON(!__cfg80211_unlink_bss(rdev, new))) 2714 rdev->bss_generation++; 2715 } 2716 2717 rb_erase(&cbss->rbn, &rdev->bss_tree); 2718 rb_insert_bss(rdev, cbss); 2719 rdev->bss_generation++; 2720 2721 list_for_each_entry_safe(nontrans_bss, tmp, 2722 &cbss->pub.nontrans_list, 2723 nontrans_list) { 2724 bss = container_of(nontrans_bss, 2725 struct cfg80211_internal_bss, pub); 2726 bss->pub.channel = chan; 2727 rb_erase(&bss->rbn, &rdev->bss_tree); 2728 rb_insert_bss(rdev, bss); 2729 rdev->bss_generation++; 2730 } 2731 2732 done: 2733 spin_unlock_bh(&rdev->bss_lock); 2734 } 2735 2736 #ifdef CONFIG_CFG80211_WEXT 2737 static struct cfg80211_registered_device * 2738 cfg80211_get_dev_from_ifindex(struct net *net, int ifindex) 2739 { 2740 struct cfg80211_registered_device *rdev; 2741 struct net_device *dev; 2742 2743 ASSERT_RTNL(); 2744 2745 dev = dev_get_by_index(net, ifindex); 2746 if (!dev) 2747 return ERR_PTR(-ENODEV); 2748 if (dev->ieee80211_ptr) 2749 rdev = wiphy_to_rdev(dev->ieee80211_ptr->wiphy); 2750 else 2751 rdev = ERR_PTR(-ENODEV); 2752 dev_put(dev); 2753 return rdev; 2754 } 2755 2756 int cfg80211_wext_siwscan(struct net_device *dev, 2757 struct iw_request_info *info, 2758 union iwreq_data *wrqu, char *extra) 2759 { 2760 struct cfg80211_registered_device *rdev; 2761 struct wiphy *wiphy; 2762 struct iw_scan_req *wreq = NULL; 2763 struct cfg80211_scan_request *creq; 2764 int i, err, n_channels = 0; 2765 enum nl80211_band band; 2766 2767 if (!netif_running(dev)) 2768 return -ENETDOWN; 2769 2770 if (wrqu->data.length == sizeof(struct iw_scan_req)) 2771 wreq = (struct iw_scan_req *)extra; 2772 2773 rdev = cfg80211_get_dev_from_ifindex(dev_net(dev), dev->ifindex); 2774 2775 if (IS_ERR(rdev)) 2776 return PTR_ERR(rdev); 2777 2778 if (rdev->scan_req || rdev->scan_msg) 2779 return -EBUSY; 2780 2781 wiphy = &rdev->wiphy; 2782 2783 /* Determine number of channels, needed to allocate creq */ 2784 if (wreq && wreq->num_channels) 2785 n_channels = wreq->num_channels; 2786 else 2787 n_channels = ieee80211_get_num_supported_channels(wiphy); 2788 2789 creq = kzalloc(sizeof(*creq) + sizeof(struct cfg80211_ssid) + 2790 n_channels * sizeof(void *), 2791 GFP_ATOMIC); 2792 if (!creq) 2793 return -ENOMEM; 2794 2795 creq->wiphy = wiphy; 2796 creq->wdev = dev->ieee80211_ptr; 2797 /* SSIDs come after channels */ 2798 creq->ssids = (void *)&creq->channels[n_channels]; 2799 creq->n_channels = n_channels; 2800 creq->n_ssids = 1; 2801 creq->scan_start = jiffies; 2802 2803 /* translate "Scan on frequencies" request */ 2804 i = 0; 2805 for (band = 0; band < NUM_NL80211_BANDS; band++) { 2806 int j; 2807 2808 if (!wiphy->bands[band]) 2809 continue; 2810 2811 for (j = 0; j < wiphy->bands[band]->n_channels; j++) { 2812 /* ignore disabled channels */ 2813 if (wiphy->bands[band]->channels[j].flags & 2814 IEEE80211_CHAN_DISABLED) 2815 continue; 2816 2817 /* If we have a wireless request structure and the 2818 * wireless request specifies frequencies, then search 2819 * for the matching hardware channel. 2820 */ 2821 if (wreq && wreq->num_channels) { 2822 int k; 2823 int wiphy_freq = wiphy->bands[band]->channels[j].center_freq; 2824 for (k = 0; k < wreq->num_channels; k++) { 2825 struct iw_freq *freq = 2826 &wreq->channel_list[k]; 2827 int wext_freq = 2828 cfg80211_wext_freq(freq); 2829 2830 if (wext_freq == wiphy_freq) 2831 goto wext_freq_found; 2832 } 2833 goto wext_freq_not_found; 2834 } 2835 2836 wext_freq_found: 2837 creq->channels[i] = &wiphy->bands[band]->channels[j]; 2838 i++; 2839 wext_freq_not_found: ; 2840 } 2841 } 2842 /* No channels found? */ 2843 if (!i) { 2844 err = -EINVAL; 2845 goto out; 2846 } 2847 2848 /* Set real number of channels specified in creq->channels[] */ 2849 creq->n_channels = i; 2850 2851 /* translate "Scan for SSID" request */ 2852 if (wreq) { 2853 if (wrqu->data.flags & IW_SCAN_THIS_ESSID) { 2854 if (wreq->essid_len > IEEE80211_MAX_SSID_LEN) { 2855 err = -EINVAL; 2856 goto out; 2857 } 2858 memcpy(creq->ssids[0].ssid, wreq->essid, wreq->essid_len); 2859 creq->ssids[0].ssid_len = wreq->essid_len; 2860 } 2861 if (wreq->scan_type == IW_SCAN_TYPE_PASSIVE) 2862 creq->n_ssids = 0; 2863 } 2864 2865 for (i = 0; i < NUM_NL80211_BANDS; i++) 2866 if (wiphy->bands[i]) 2867 creq->rates[i] = (1 << wiphy->bands[i]->n_bitrates) - 1; 2868 2869 eth_broadcast_addr(creq->bssid); 2870 2871 wiphy_lock(&rdev->wiphy); 2872 2873 rdev->scan_req = creq; 2874 err = rdev_scan(rdev, creq); 2875 if (err) { 2876 rdev->scan_req = NULL; 2877 /* creq will be freed below */ 2878 } else { 2879 nl80211_send_scan_start(rdev, dev->ieee80211_ptr); 2880 /* creq now owned by driver */ 2881 creq = NULL; 2882 dev_hold(dev); 2883 } 2884 wiphy_unlock(&rdev->wiphy); 2885 out: 2886 kfree(creq); 2887 return err; 2888 } 2889 EXPORT_WEXT_HANDLER(cfg80211_wext_siwscan); 2890 2891 static char *ieee80211_scan_add_ies(struct iw_request_info *info, 2892 const struct cfg80211_bss_ies *ies, 2893 char *current_ev, char *end_buf) 2894 { 2895 const u8 *pos, *end, *next; 2896 struct iw_event iwe; 2897 2898 if (!ies) 2899 return current_ev; 2900 2901 /* 2902 * If needed, fragment the IEs buffer (at IE boundaries) into short 2903 * enough fragments to fit into IW_GENERIC_IE_MAX octet messages. 2904 */ 2905 pos = ies->data; 2906 end = pos + ies->len; 2907 2908 while (end - pos > IW_GENERIC_IE_MAX) { 2909 next = pos + 2 + pos[1]; 2910 while (next + 2 + next[1] - pos < IW_GENERIC_IE_MAX) 2911 next = next + 2 + next[1]; 2912 2913 memset(&iwe, 0, sizeof(iwe)); 2914 iwe.cmd = IWEVGENIE; 2915 iwe.u.data.length = next - pos; 2916 current_ev = iwe_stream_add_point_check(info, current_ev, 2917 end_buf, &iwe, 2918 (void *)pos); 2919 if (IS_ERR(current_ev)) 2920 return current_ev; 2921 pos = next; 2922 } 2923 2924 if (end > pos) { 2925 memset(&iwe, 0, sizeof(iwe)); 2926 iwe.cmd = IWEVGENIE; 2927 iwe.u.data.length = end - pos; 2928 current_ev = iwe_stream_add_point_check(info, current_ev, 2929 end_buf, &iwe, 2930 (void *)pos); 2931 if (IS_ERR(current_ev)) 2932 return current_ev; 2933 } 2934 2935 return current_ev; 2936 } 2937 2938 static char * 2939 ieee80211_bss(struct wiphy *wiphy, struct iw_request_info *info, 2940 struct cfg80211_internal_bss *bss, char *current_ev, 2941 char *end_buf) 2942 { 2943 const struct cfg80211_bss_ies *ies; 2944 struct iw_event iwe; 2945 const u8 *ie; 2946 u8 buf[50]; 2947 u8 *cfg, *p, *tmp; 2948 int rem, i, sig; 2949 bool ismesh = false; 2950 2951 memset(&iwe, 0, sizeof(iwe)); 2952 iwe.cmd = SIOCGIWAP; 2953 iwe.u.ap_addr.sa_family = ARPHRD_ETHER; 2954 memcpy(iwe.u.ap_addr.sa_data, bss->pub.bssid, ETH_ALEN); 2955 current_ev = iwe_stream_add_event_check(info, current_ev, end_buf, &iwe, 2956 IW_EV_ADDR_LEN); 2957 if (IS_ERR(current_ev)) 2958 return current_ev; 2959 2960 memset(&iwe, 0, sizeof(iwe)); 2961 iwe.cmd = SIOCGIWFREQ; 2962 iwe.u.freq.m = ieee80211_frequency_to_channel(bss->pub.channel->center_freq); 2963 iwe.u.freq.e = 0; 2964 current_ev = iwe_stream_add_event_check(info, current_ev, end_buf, &iwe, 2965 IW_EV_FREQ_LEN); 2966 if (IS_ERR(current_ev)) 2967 return current_ev; 2968 2969 memset(&iwe, 0, sizeof(iwe)); 2970 iwe.cmd = SIOCGIWFREQ; 2971 iwe.u.freq.m = bss->pub.channel->center_freq; 2972 iwe.u.freq.e = 6; 2973 current_ev = iwe_stream_add_event_check(info, current_ev, end_buf, &iwe, 2974 IW_EV_FREQ_LEN); 2975 if (IS_ERR(current_ev)) 2976 return current_ev; 2977 2978 if (wiphy->signal_type != CFG80211_SIGNAL_TYPE_NONE) { 2979 memset(&iwe, 0, sizeof(iwe)); 2980 iwe.cmd = IWEVQUAL; 2981 iwe.u.qual.updated = IW_QUAL_LEVEL_UPDATED | 2982 IW_QUAL_NOISE_INVALID | 2983 IW_QUAL_QUAL_UPDATED; 2984 switch (wiphy->signal_type) { 2985 case CFG80211_SIGNAL_TYPE_MBM: 2986 sig = bss->pub.signal / 100; 2987 iwe.u.qual.level = sig; 2988 iwe.u.qual.updated |= IW_QUAL_DBM; 2989 if (sig < -110) /* rather bad */ 2990 sig = -110; 2991 else if (sig > -40) /* perfect */ 2992 sig = -40; 2993 /* will give a range of 0 .. 70 */ 2994 iwe.u.qual.qual = sig + 110; 2995 break; 2996 case CFG80211_SIGNAL_TYPE_UNSPEC: 2997 iwe.u.qual.level = bss->pub.signal; 2998 /* will give range 0 .. 100 */ 2999 iwe.u.qual.qual = bss->pub.signal; 3000 break; 3001 default: 3002 /* not reached */ 3003 break; 3004 } 3005 current_ev = iwe_stream_add_event_check(info, current_ev, 3006 end_buf, &iwe, 3007 IW_EV_QUAL_LEN); 3008 if (IS_ERR(current_ev)) 3009 return current_ev; 3010 } 3011 3012 memset(&iwe, 0, sizeof(iwe)); 3013 iwe.cmd = SIOCGIWENCODE; 3014 if (bss->pub.capability & WLAN_CAPABILITY_PRIVACY) 3015 iwe.u.data.flags = IW_ENCODE_ENABLED | IW_ENCODE_NOKEY; 3016 else 3017 iwe.u.data.flags = IW_ENCODE_DISABLED; 3018 iwe.u.data.length = 0; 3019 current_ev = iwe_stream_add_point_check(info, current_ev, end_buf, 3020 &iwe, ""); 3021 if (IS_ERR(current_ev)) 3022 return current_ev; 3023 3024 rcu_read_lock(); 3025 ies = rcu_dereference(bss->pub.ies); 3026 rem = ies->len; 3027 ie = ies->data; 3028 3029 while (rem >= 2) { 3030 /* invalid data */ 3031 if (ie[1] > rem - 2) 3032 break; 3033 3034 switch (ie[0]) { 3035 case WLAN_EID_SSID: 3036 memset(&iwe, 0, sizeof(iwe)); 3037 iwe.cmd = SIOCGIWESSID; 3038 iwe.u.data.length = ie[1]; 3039 iwe.u.data.flags = 1; 3040 current_ev = iwe_stream_add_point_check(info, 3041 current_ev, 3042 end_buf, &iwe, 3043 (u8 *)ie + 2); 3044 if (IS_ERR(current_ev)) 3045 goto unlock; 3046 break; 3047 case WLAN_EID_MESH_ID: 3048 memset(&iwe, 0, sizeof(iwe)); 3049 iwe.cmd = SIOCGIWESSID; 3050 iwe.u.data.length = ie[1]; 3051 iwe.u.data.flags = 1; 3052 current_ev = iwe_stream_add_point_check(info, 3053 current_ev, 3054 end_buf, &iwe, 3055 (u8 *)ie + 2); 3056 if (IS_ERR(current_ev)) 3057 goto unlock; 3058 break; 3059 case WLAN_EID_MESH_CONFIG: 3060 ismesh = true; 3061 if (ie[1] != sizeof(struct ieee80211_meshconf_ie)) 3062 break; 3063 cfg = (u8 *)ie + 2; 3064 memset(&iwe, 0, sizeof(iwe)); 3065 iwe.cmd = IWEVCUSTOM; 3066 sprintf(buf, "Mesh Network Path Selection Protocol ID: " 3067 "0x%02X", cfg[0]); 3068 iwe.u.data.length = strlen(buf); 3069 current_ev = iwe_stream_add_point_check(info, 3070 current_ev, 3071 end_buf, 3072 &iwe, buf); 3073 if (IS_ERR(current_ev)) 3074 goto unlock; 3075 sprintf(buf, "Path Selection Metric ID: 0x%02X", 3076 cfg[1]); 3077 iwe.u.data.length = strlen(buf); 3078 current_ev = iwe_stream_add_point_check(info, 3079 current_ev, 3080 end_buf, 3081 &iwe, buf); 3082 if (IS_ERR(current_ev)) 3083 goto unlock; 3084 sprintf(buf, "Congestion Control Mode ID: 0x%02X", 3085 cfg[2]); 3086 iwe.u.data.length = strlen(buf); 3087 current_ev = iwe_stream_add_point_check(info, 3088 current_ev, 3089 end_buf, 3090 &iwe, buf); 3091 if (IS_ERR(current_ev)) 3092 goto unlock; 3093 sprintf(buf, "Synchronization ID: 0x%02X", cfg[3]); 3094 iwe.u.data.length = strlen(buf); 3095 current_ev = iwe_stream_add_point_check(info, 3096 current_ev, 3097 end_buf, 3098 &iwe, buf); 3099 if (IS_ERR(current_ev)) 3100 goto unlock; 3101 sprintf(buf, "Authentication ID: 0x%02X", cfg[4]); 3102 iwe.u.data.length = strlen(buf); 3103 current_ev = iwe_stream_add_point_check(info, 3104 current_ev, 3105 end_buf, 3106 &iwe, buf); 3107 if (IS_ERR(current_ev)) 3108 goto unlock; 3109 sprintf(buf, "Formation Info: 0x%02X", cfg[5]); 3110 iwe.u.data.length = strlen(buf); 3111 current_ev = iwe_stream_add_point_check(info, 3112 current_ev, 3113 end_buf, 3114 &iwe, buf); 3115 if (IS_ERR(current_ev)) 3116 goto unlock; 3117 sprintf(buf, "Capabilities: 0x%02X", cfg[6]); 3118 iwe.u.data.length = strlen(buf); 3119 current_ev = iwe_stream_add_point_check(info, 3120 current_ev, 3121 end_buf, 3122 &iwe, buf); 3123 if (IS_ERR(current_ev)) 3124 goto unlock; 3125 break; 3126 case WLAN_EID_SUPP_RATES: 3127 case WLAN_EID_EXT_SUPP_RATES: 3128 /* display all supported rates in readable format */ 3129 p = current_ev + iwe_stream_lcp_len(info); 3130 3131 memset(&iwe, 0, sizeof(iwe)); 3132 iwe.cmd = SIOCGIWRATE; 3133 /* Those two flags are ignored... */ 3134 iwe.u.bitrate.fixed = iwe.u.bitrate.disabled = 0; 3135 3136 for (i = 0; i < ie[1]; i++) { 3137 iwe.u.bitrate.value = 3138 ((ie[i + 2] & 0x7f) * 500000); 3139 tmp = p; 3140 p = iwe_stream_add_value(info, current_ev, p, 3141 end_buf, &iwe, 3142 IW_EV_PARAM_LEN); 3143 if (p == tmp) { 3144 current_ev = ERR_PTR(-E2BIG); 3145 goto unlock; 3146 } 3147 } 3148 current_ev = p; 3149 break; 3150 } 3151 rem -= ie[1] + 2; 3152 ie += ie[1] + 2; 3153 } 3154 3155 if (bss->pub.capability & (WLAN_CAPABILITY_ESS | WLAN_CAPABILITY_IBSS) || 3156 ismesh) { 3157 memset(&iwe, 0, sizeof(iwe)); 3158 iwe.cmd = SIOCGIWMODE; 3159 if (ismesh) 3160 iwe.u.mode = IW_MODE_MESH; 3161 else if (bss->pub.capability & WLAN_CAPABILITY_ESS) 3162 iwe.u.mode = IW_MODE_MASTER; 3163 else 3164 iwe.u.mode = IW_MODE_ADHOC; 3165 current_ev = iwe_stream_add_event_check(info, current_ev, 3166 end_buf, &iwe, 3167 IW_EV_UINT_LEN); 3168 if (IS_ERR(current_ev)) 3169 goto unlock; 3170 } 3171 3172 memset(&iwe, 0, sizeof(iwe)); 3173 iwe.cmd = IWEVCUSTOM; 3174 sprintf(buf, "tsf=%016llx", (unsigned long long)(ies->tsf)); 3175 iwe.u.data.length = strlen(buf); 3176 current_ev = iwe_stream_add_point_check(info, current_ev, end_buf, 3177 &iwe, buf); 3178 if (IS_ERR(current_ev)) 3179 goto unlock; 3180 memset(&iwe, 0, sizeof(iwe)); 3181 iwe.cmd = IWEVCUSTOM; 3182 sprintf(buf, " Last beacon: %ums ago", 3183 elapsed_jiffies_msecs(bss->ts)); 3184 iwe.u.data.length = strlen(buf); 3185 current_ev = iwe_stream_add_point_check(info, current_ev, 3186 end_buf, &iwe, buf); 3187 if (IS_ERR(current_ev)) 3188 goto unlock; 3189 3190 current_ev = ieee80211_scan_add_ies(info, ies, current_ev, end_buf); 3191 3192 unlock: 3193 rcu_read_unlock(); 3194 return current_ev; 3195 } 3196 3197 3198 static int ieee80211_scan_results(struct cfg80211_registered_device *rdev, 3199 struct iw_request_info *info, 3200 char *buf, size_t len) 3201 { 3202 char *current_ev = buf; 3203 char *end_buf = buf + len; 3204 struct cfg80211_internal_bss *bss; 3205 int err = 0; 3206 3207 spin_lock_bh(&rdev->bss_lock); 3208 cfg80211_bss_expire(rdev); 3209 3210 list_for_each_entry(bss, &rdev->bss_list, list) { 3211 if (buf + len - current_ev <= IW_EV_ADDR_LEN) { 3212 err = -E2BIG; 3213 break; 3214 } 3215 current_ev = ieee80211_bss(&rdev->wiphy, info, bss, 3216 current_ev, end_buf); 3217 if (IS_ERR(current_ev)) { 3218 err = PTR_ERR(current_ev); 3219 break; 3220 } 3221 } 3222 spin_unlock_bh(&rdev->bss_lock); 3223 3224 if (err) 3225 return err; 3226 return current_ev - buf; 3227 } 3228 3229 3230 int cfg80211_wext_giwscan(struct net_device *dev, 3231 struct iw_request_info *info, 3232 struct iw_point *data, char *extra) 3233 { 3234 struct cfg80211_registered_device *rdev; 3235 int res; 3236 3237 if (!netif_running(dev)) 3238 return -ENETDOWN; 3239 3240 rdev = cfg80211_get_dev_from_ifindex(dev_net(dev), dev->ifindex); 3241 3242 if (IS_ERR(rdev)) 3243 return PTR_ERR(rdev); 3244 3245 if (rdev->scan_req || rdev->scan_msg) 3246 return -EAGAIN; 3247 3248 res = ieee80211_scan_results(rdev, info, extra, data->length); 3249 data->length = 0; 3250 if (res >= 0) { 3251 data->length = res; 3252 res = 0; 3253 } 3254 3255 return res; 3256 } 3257 EXPORT_WEXT_HANDLER(cfg80211_wext_giwscan); 3258 #endif 3259