1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * cfg80211 scan result handling 4 * 5 * Copyright 2008 Johannes Berg <johannes@sipsolutions.net> 6 * Copyright 2013-2014 Intel Mobile Communications GmbH 7 * Copyright 2016 Intel Deutschland GmbH 8 * Copyright (C) 2018-2023 Intel Corporation 9 */ 10 #include <linux/kernel.h> 11 #include <linux/slab.h> 12 #include <linux/module.h> 13 #include <linux/netdevice.h> 14 #include <linux/wireless.h> 15 #include <linux/nl80211.h> 16 #include <linux/etherdevice.h> 17 #include <linux/crc32.h> 18 #include <linux/bitfield.h> 19 #include <net/arp.h> 20 #include <net/cfg80211.h> 21 #include <net/cfg80211-wext.h> 22 #include <net/iw_handler.h> 23 #include "core.h" 24 #include "nl80211.h" 25 #include "wext-compat.h" 26 #include "rdev-ops.h" 27 28 /** 29 * DOC: BSS tree/list structure 30 * 31 * At the top level, the BSS list is kept in both a list in each 32 * registered device (@bss_list) as well as an RB-tree for faster 33 * lookup. In the RB-tree, entries can be looked up using their 34 * channel, MESHID, MESHCONF (for MBSSes) or channel, BSSID, SSID 35 * for other BSSes. 36 * 37 * Due to the possibility of hidden SSIDs, there's a second level 38 * structure, the "hidden_list" and "hidden_beacon_bss" pointer. 39 * The hidden_list connects all BSSes belonging to a single AP 40 * that has a hidden SSID, and connects beacon and probe response 41 * entries. For a probe response entry for a hidden SSID, the 42 * hidden_beacon_bss pointer points to the BSS struct holding the 43 * beacon's information. 44 * 45 * Reference counting is done for all these references except for 46 * the hidden_list, so that a beacon BSS struct that is otherwise 47 * not referenced has one reference for being on the bss_list and 48 * one for each probe response entry that points to it using the 49 * hidden_beacon_bss pointer. When a BSS struct that has such a 50 * pointer is get/put, the refcount update is also propagated to 51 * the referenced struct, this ensure that it cannot get removed 52 * while somebody is using the probe response version. 53 * 54 * Note that the hidden_beacon_bss pointer never changes, due to 55 * the reference counting. Therefore, no locking is needed for 56 * it. 57 * 58 * Also note that the hidden_beacon_bss pointer is only relevant 59 * if the driver uses something other than the IEs, e.g. private 60 * data stored in the BSS struct, since the beacon IEs are 61 * also linked into the probe response struct. 62 */ 63 64 /* 65 * Limit the number of BSS entries stored in mac80211. Each one is 66 * a bit over 4k at most, so this limits to roughly 4-5M of memory. 67 * If somebody wants to really attack this though, they'd likely 68 * use small beacons, and only one type of frame, limiting each of 69 * the entries to a much smaller size (in order to generate more 70 * entries in total, so overhead is bigger.) 71 */ 72 static int bss_entries_limit = 1000; 73 module_param(bss_entries_limit, int, 0644); 74 MODULE_PARM_DESC(bss_entries_limit, 75 "limit to number of scan BSS entries (per wiphy, default 1000)"); 76 77 #define IEEE80211_SCAN_RESULT_EXPIRE (30 * HZ) 78 79 /** 80 * struct cfg80211_colocated_ap - colocated AP information 81 * 82 * @list: linked list to all colocated aPS 83 * @bssid: BSSID of the reported AP 84 * @ssid: SSID of the reported AP 85 * @ssid_len: length of the ssid 86 * @center_freq: frequency the reported AP is on 87 * @unsolicited_probe: the reported AP is part of an ESS, where all the APs 88 * that operate in the same channel as the reported AP and that might be 89 * detected by a STA receiving this frame, are transmitting unsolicited 90 * Probe Response frames every 20 TUs 91 * @oct_recommended: OCT is recommended to exchange MMPDUs with the reported AP 92 * @same_ssid: the reported AP has the same SSID as the reporting AP 93 * @multi_bss: the reported AP is part of a multiple BSSID set 94 * @transmitted_bssid: the reported AP is the transmitting BSSID 95 * @colocated_ess: all the APs that share the same ESS as the reported AP are 96 * colocated and can be discovered via legacy bands. 97 * @short_ssid_valid: short_ssid is valid and can be used 98 * @short_ssid: the short SSID for this SSID 99 * @psd_20: The 20MHz PSD EIRP of the primary 20MHz channel for the reported AP 100 */ 101 struct cfg80211_colocated_ap { 102 struct list_head list; 103 u8 bssid[ETH_ALEN]; 104 u8 ssid[IEEE80211_MAX_SSID_LEN]; 105 size_t ssid_len; 106 u32 short_ssid; 107 u32 center_freq; 108 u8 unsolicited_probe:1, 109 oct_recommended:1, 110 same_ssid:1, 111 multi_bss:1, 112 transmitted_bssid:1, 113 colocated_ess:1, 114 short_ssid_valid:1; 115 s8 psd_20; 116 }; 117 118 static void bss_free(struct cfg80211_internal_bss *bss) 119 { 120 struct cfg80211_bss_ies *ies; 121 122 if (WARN_ON(atomic_read(&bss->hold))) 123 return; 124 125 ies = (void *)rcu_access_pointer(bss->pub.beacon_ies); 126 if (ies && !bss->pub.hidden_beacon_bss) 127 kfree_rcu(ies, rcu_head); 128 ies = (void *)rcu_access_pointer(bss->pub.proberesp_ies); 129 if (ies) 130 kfree_rcu(ies, rcu_head); 131 132 /* 133 * This happens when the module is removed, it doesn't 134 * really matter any more save for completeness 135 */ 136 if (!list_empty(&bss->hidden_list)) 137 list_del(&bss->hidden_list); 138 139 kfree(bss); 140 } 141 142 static inline void bss_ref_get(struct cfg80211_registered_device *rdev, 143 struct cfg80211_internal_bss *bss) 144 { 145 lockdep_assert_held(&rdev->bss_lock); 146 147 bss->refcount++; 148 149 if (bss->pub.hidden_beacon_bss) 150 bss_from_pub(bss->pub.hidden_beacon_bss)->refcount++; 151 152 if (bss->pub.transmitted_bss) 153 bss_from_pub(bss->pub.transmitted_bss)->refcount++; 154 } 155 156 static inline void bss_ref_put(struct cfg80211_registered_device *rdev, 157 struct cfg80211_internal_bss *bss) 158 { 159 lockdep_assert_held(&rdev->bss_lock); 160 161 if (bss->pub.hidden_beacon_bss) { 162 struct cfg80211_internal_bss *hbss; 163 164 hbss = bss_from_pub(bss->pub.hidden_beacon_bss); 165 hbss->refcount--; 166 if (hbss->refcount == 0) 167 bss_free(hbss); 168 } 169 170 if (bss->pub.transmitted_bss) { 171 struct cfg80211_internal_bss *tbss; 172 173 tbss = bss_from_pub(bss->pub.transmitted_bss); 174 tbss->refcount--; 175 if (tbss->refcount == 0) 176 bss_free(tbss); 177 } 178 179 bss->refcount--; 180 if (bss->refcount == 0) 181 bss_free(bss); 182 } 183 184 static bool __cfg80211_unlink_bss(struct cfg80211_registered_device *rdev, 185 struct cfg80211_internal_bss *bss) 186 { 187 lockdep_assert_held(&rdev->bss_lock); 188 189 if (!list_empty(&bss->hidden_list)) { 190 /* 191 * don't remove the beacon entry if it has 192 * probe responses associated with it 193 */ 194 if (!bss->pub.hidden_beacon_bss) 195 return false; 196 /* 197 * if it's a probe response entry break its 198 * link to the other entries in the group 199 */ 200 list_del_init(&bss->hidden_list); 201 } 202 203 list_del_init(&bss->list); 204 list_del_init(&bss->pub.nontrans_list); 205 rb_erase(&bss->rbn, &rdev->bss_tree); 206 rdev->bss_entries--; 207 WARN_ONCE((rdev->bss_entries == 0) ^ list_empty(&rdev->bss_list), 208 "rdev bss entries[%d]/list[empty:%d] corruption\n", 209 rdev->bss_entries, list_empty(&rdev->bss_list)); 210 bss_ref_put(rdev, bss); 211 return true; 212 } 213 214 bool cfg80211_is_element_inherited(const struct element *elem, 215 const struct element *non_inherit_elem) 216 { 217 u8 id_len, ext_id_len, i, loop_len, id; 218 const u8 *list; 219 220 if (elem->id == WLAN_EID_MULTIPLE_BSSID) 221 return false; 222 223 if (elem->id == WLAN_EID_EXTENSION && elem->datalen > 1 && 224 elem->data[0] == WLAN_EID_EXT_EHT_MULTI_LINK) 225 return false; 226 227 if (!non_inherit_elem || non_inherit_elem->datalen < 2) 228 return true; 229 230 /* 231 * non inheritance element format is: 232 * ext ID (56) | IDs list len | list | extension IDs list len | list 233 * Both lists are optional. Both lengths are mandatory. 234 * This means valid length is: 235 * elem_len = 1 (extension ID) + 2 (list len fields) + list lengths 236 */ 237 id_len = non_inherit_elem->data[1]; 238 if (non_inherit_elem->datalen < 3 + id_len) 239 return true; 240 241 ext_id_len = non_inherit_elem->data[2 + id_len]; 242 if (non_inherit_elem->datalen < 3 + id_len + ext_id_len) 243 return true; 244 245 if (elem->id == WLAN_EID_EXTENSION) { 246 if (!ext_id_len) 247 return true; 248 loop_len = ext_id_len; 249 list = &non_inherit_elem->data[3 + id_len]; 250 id = elem->data[0]; 251 } else { 252 if (!id_len) 253 return true; 254 loop_len = id_len; 255 list = &non_inherit_elem->data[2]; 256 id = elem->id; 257 } 258 259 for (i = 0; i < loop_len; i++) { 260 if (list[i] == id) 261 return false; 262 } 263 264 return true; 265 } 266 EXPORT_SYMBOL(cfg80211_is_element_inherited); 267 268 static size_t cfg80211_copy_elem_with_frags(const struct element *elem, 269 const u8 *ie, size_t ie_len, 270 u8 **pos, u8 *buf, size_t buf_len) 271 { 272 if (WARN_ON((u8 *)elem < ie || elem->data > ie + ie_len || 273 elem->data + elem->datalen > ie + ie_len)) 274 return 0; 275 276 if (elem->datalen + 2 > buf + buf_len - *pos) 277 return 0; 278 279 memcpy(*pos, elem, elem->datalen + 2); 280 *pos += elem->datalen + 2; 281 282 /* Finish if it is not fragmented */ 283 if (elem->datalen != 255) 284 return *pos - buf; 285 286 ie_len = ie + ie_len - elem->data - elem->datalen; 287 ie = (const u8 *)elem->data + elem->datalen; 288 289 for_each_element(elem, ie, ie_len) { 290 if (elem->id != WLAN_EID_FRAGMENT) 291 break; 292 293 if (elem->datalen + 2 > buf + buf_len - *pos) 294 return 0; 295 296 memcpy(*pos, elem, elem->datalen + 2); 297 *pos += elem->datalen + 2; 298 299 if (elem->datalen != 255) 300 break; 301 } 302 303 return *pos - buf; 304 } 305 306 static size_t cfg80211_gen_new_ie(const u8 *ie, size_t ielen, 307 const u8 *subie, size_t subie_len, 308 u8 *new_ie, size_t new_ie_len) 309 { 310 const struct element *non_inherit_elem, *parent, *sub; 311 u8 *pos = new_ie; 312 u8 id, ext_id; 313 unsigned int match_len; 314 315 non_inherit_elem = cfg80211_find_ext_elem(WLAN_EID_EXT_NON_INHERITANCE, 316 subie, subie_len); 317 318 /* We copy the elements one by one from the parent to the generated 319 * elements. 320 * If they are not inherited (included in subie or in the non 321 * inheritance element), then we copy all occurrences the first time 322 * we see this element type. 323 */ 324 for_each_element(parent, ie, ielen) { 325 if (parent->id == WLAN_EID_FRAGMENT) 326 continue; 327 328 if (parent->id == WLAN_EID_EXTENSION) { 329 if (parent->datalen < 1) 330 continue; 331 332 id = WLAN_EID_EXTENSION; 333 ext_id = parent->data[0]; 334 match_len = 1; 335 } else { 336 id = parent->id; 337 match_len = 0; 338 } 339 340 /* Find first occurrence in subie */ 341 sub = cfg80211_find_elem_match(id, subie, subie_len, 342 &ext_id, match_len, 0); 343 344 /* Copy from parent if not in subie and inherited */ 345 if (!sub && 346 cfg80211_is_element_inherited(parent, non_inherit_elem)) { 347 if (!cfg80211_copy_elem_with_frags(parent, 348 ie, ielen, 349 &pos, new_ie, 350 new_ie_len)) 351 return 0; 352 353 continue; 354 } 355 356 /* Already copied if an earlier element had the same type */ 357 if (cfg80211_find_elem_match(id, ie, (u8 *)parent - ie, 358 &ext_id, match_len, 0)) 359 continue; 360 361 /* Not inheriting, copy all similar elements from subie */ 362 while (sub) { 363 if (!cfg80211_copy_elem_with_frags(sub, 364 subie, subie_len, 365 &pos, new_ie, 366 new_ie_len)) 367 return 0; 368 369 sub = cfg80211_find_elem_match(id, 370 sub->data + sub->datalen, 371 subie_len + subie - 372 (sub->data + 373 sub->datalen), 374 &ext_id, match_len, 0); 375 } 376 } 377 378 /* The above misses elements that are included in subie but not in the 379 * parent, so do a pass over subie and append those. 380 * Skip the non-tx BSSID caps and non-inheritance element. 381 */ 382 for_each_element(sub, subie, subie_len) { 383 if (sub->id == WLAN_EID_NON_TX_BSSID_CAP) 384 continue; 385 386 if (sub->id == WLAN_EID_FRAGMENT) 387 continue; 388 389 if (sub->id == WLAN_EID_EXTENSION) { 390 if (sub->datalen < 1) 391 continue; 392 393 id = WLAN_EID_EXTENSION; 394 ext_id = sub->data[0]; 395 match_len = 1; 396 397 if (ext_id == WLAN_EID_EXT_NON_INHERITANCE) 398 continue; 399 } else { 400 id = sub->id; 401 match_len = 0; 402 } 403 404 /* Processed if one was included in the parent */ 405 if (cfg80211_find_elem_match(id, ie, ielen, 406 &ext_id, match_len, 0)) 407 continue; 408 409 if (!cfg80211_copy_elem_with_frags(sub, subie, subie_len, 410 &pos, new_ie, new_ie_len)) 411 return 0; 412 } 413 414 return pos - new_ie; 415 } 416 417 static bool is_bss(struct cfg80211_bss *a, const u8 *bssid, 418 const u8 *ssid, size_t ssid_len) 419 { 420 const struct cfg80211_bss_ies *ies; 421 const struct element *ssid_elem; 422 423 if (bssid && !ether_addr_equal(a->bssid, bssid)) 424 return false; 425 426 if (!ssid) 427 return true; 428 429 ies = rcu_access_pointer(a->ies); 430 if (!ies) 431 return false; 432 ssid_elem = cfg80211_find_elem(WLAN_EID_SSID, ies->data, ies->len); 433 if (!ssid_elem) 434 return false; 435 if (ssid_elem->datalen != ssid_len) 436 return false; 437 return memcmp(ssid_elem->data, ssid, ssid_len) == 0; 438 } 439 440 static int 441 cfg80211_add_nontrans_list(struct cfg80211_bss *trans_bss, 442 struct cfg80211_bss *nontrans_bss) 443 { 444 const struct element *ssid_elem; 445 struct cfg80211_bss *bss = NULL; 446 447 rcu_read_lock(); 448 ssid_elem = ieee80211_bss_get_elem(nontrans_bss, WLAN_EID_SSID); 449 if (!ssid_elem) { 450 rcu_read_unlock(); 451 return -EINVAL; 452 } 453 454 /* check if nontrans_bss is in the list */ 455 list_for_each_entry(bss, &trans_bss->nontrans_list, nontrans_list) { 456 if (is_bss(bss, nontrans_bss->bssid, ssid_elem->data, 457 ssid_elem->datalen)) { 458 rcu_read_unlock(); 459 return 0; 460 } 461 } 462 463 rcu_read_unlock(); 464 465 /* 466 * This is a bit weird - it's not on the list, but already on another 467 * one! The only way that could happen is if there's some BSSID/SSID 468 * shared by multiple APs in their multi-BSSID profiles, potentially 469 * with hidden SSID mixed in ... ignore it. 470 */ 471 if (!list_empty(&nontrans_bss->nontrans_list)) 472 return -EINVAL; 473 474 /* add to the list */ 475 list_add_tail(&nontrans_bss->nontrans_list, &trans_bss->nontrans_list); 476 return 0; 477 } 478 479 static void __cfg80211_bss_expire(struct cfg80211_registered_device *rdev, 480 unsigned long expire_time) 481 { 482 struct cfg80211_internal_bss *bss, *tmp; 483 bool expired = false; 484 485 lockdep_assert_held(&rdev->bss_lock); 486 487 list_for_each_entry_safe(bss, tmp, &rdev->bss_list, list) { 488 if (atomic_read(&bss->hold)) 489 continue; 490 if (!time_after(expire_time, bss->ts)) 491 continue; 492 493 if (__cfg80211_unlink_bss(rdev, bss)) 494 expired = true; 495 } 496 497 if (expired) 498 rdev->bss_generation++; 499 } 500 501 static bool cfg80211_bss_expire_oldest(struct cfg80211_registered_device *rdev) 502 { 503 struct cfg80211_internal_bss *bss, *oldest = NULL; 504 bool ret; 505 506 lockdep_assert_held(&rdev->bss_lock); 507 508 list_for_each_entry(bss, &rdev->bss_list, list) { 509 if (atomic_read(&bss->hold)) 510 continue; 511 512 if (!list_empty(&bss->hidden_list) && 513 !bss->pub.hidden_beacon_bss) 514 continue; 515 516 if (oldest && time_before(oldest->ts, bss->ts)) 517 continue; 518 oldest = bss; 519 } 520 521 if (WARN_ON(!oldest)) 522 return false; 523 524 /* 525 * The callers make sure to increase rdev->bss_generation if anything 526 * gets removed (and a new entry added), so there's no need to also do 527 * it here. 528 */ 529 530 ret = __cfg80211_unlink_bss(rdev, oldest); 531 WARN_ON(!ret); 532 return ret; 533 } 534 535 static u8 cfg80211_parse_bss_param(u8 data, 536 struct cfg80211_colocated_ap *coloc_ap) 537 { 538 coloc_ap->oct_recommended = 539 u8_get_bits(data, IEEE80211_RNR_TBTT_PARAMS_OCT_RECOMMENDED); 540 coloc_ap->same_ssid = 541 u8_get_bits(data, IEEE80211_RNR_TBTT_PARAMS_SAME_SSID); 542 coloc_ap->multi_bss = 543 u8_get_bits(data, IEEE80211_RNR_TBTT_PARAMS_MULTI_BSSID); 544 coloc_ap->transmitted_bssid = 545 u8_get_bits(data, IEEE80211_RNR_TBTT_PARAMS_TRANSMITTED_BSSID); 546 coloc_ap->unsolicited_probe = 547 u8_get_bits(data, IEEE80211_RNR_TBTT_PARAMS_PROBE_ACTIVE); 548 coloc_ap->colocated_ess = 549 u8_get_bits(data, IEEE80211_RNR_TBTT_PARAMS_COLOC_ESS); 550 551 return u8_get_bits(data, IEEE80211_RNR_TBTT_PARAMS_COLOC_AP); 552 } 553 554 static int cfg80211_calc_short_ssid(const struct cfg80211_bss_ies *ies, 555 const struct element **elem, u32 *s_ssid) 556 { 557 558 *elem = cfg80211_find_elem(WLAN_EID_SSID, ies->data, ies->len); 559 if (!*elem || (*elem)->datalen > IEEE80211_MAX_SSID_LEN) 560 return -EINVAL; 561 562 *s_ssid = ~crc32_le(~0, (*elem)->data, (*elem)->datalen); 563 return 0; 564 } 565 566 static void cfg80211_free_coloc_ap_list(struct list_head *coloc_ap_list) 567 { 568 struct cfg80211_colocated_ap *ap, *tmp_ap; 569 570 list_for_each_entry_safe(ap, tmp_ap, coloc_ap_list, list) { 571 list_del(&ap->list); 572 kfree(ap); 573 } 574 } 575 576 static int cfg80211_parse_ap_info(struct cfg80211_colocated_ap *entry, 577 const u8 *pos, u8 length, 578 const struct element *ssid_elem, 579 u32 s_ssid_tmp) 580 { 581 u8 bss_params; 582 583 entry->psd_20 = IEEE80211_RNR_TBTT_PARAMS_PSD_RESERVED; 584 585 /* The length is already verified by the caller to contain bss_params */ 586 if (length > sizeof(struct ieee80211_tbtt_info_7_8_9)) { 587 struct ieee80211_tbtt_info_ge_11 *tbtt_info = (void *)pos; 588 589 memcpy(entry->bssid, tbtt_info->bssid, ETH_ALEN); 590 entry->short_ssid = le32_to_cpu(tbtt_info->short_ssid); 591 entry->short_ssid_valid = true; 592 593 bss_params = tbtt_info->bss_params; 594 595 /* Ignore disabled links */ 596 if (length >= offsetofend(typeof(*tbtt_info), mld_params)) { 597 if (le16_get_bits(tbtt_info->mld_params.params, 598 IEEE80211_RNR_MLD_PARAMS_DISABLED_LINK)) 599 return -EINVAL; 600 } 601 602 if (length >= offsetofend(struct ieee80211_tbtt_info_ge_11, 603 psd_20)) 604 entry->psd_20 = tbtt_info->psd_20; 605 } else { 606 struct ieee80211_tbtt_info_7_8_9 *tbtt_info = (void *)pos; 607 608 memcpy(entry->bssid, tbtt_info->bssid, ETH_ALEN); 609 610 bss_params = tbtt_info->bss_params; 611 612 if (length == offsetofend(struct ieee80211_tbtt_info_7_8_9, 613 psd_20)) 614 entry->psd_20 = tbtt_info->psd_20; 615 } 616 617 /* ignore entries with invalid BSSID */ 618 if (!is_valid_ether_addr(entry->bssid)) 619 return -EINVAL; 620 621 /* skip non colocated APs */ 622 if (!cfg80211_parse_bss_param(bss_params, entry)) 623 return -EINVAL; 624 625 /* no information about the short ssid. Consider the entry valid 626 * for now. It would later be dropped in case there are explicit 627 * SSIDs that need to be matched 628 */ 629 if (!entry->same_ssid && !entry->short_ssid_valid) 630 return 0; 631 632 if (entry->same_ssid) { 633 entry->short_ssid = s_ssid_tmp; 634 entry->short_ssid_valid = true; 635 636 /* 637 * This is safe because we validate datalen in 638 * cfg80211_parse_colocated_ap(), before calling this 639 * function. 640 */ 641 memcpy(&entry->ssid, &ssid_elem->data, ssid_elem->datalen); 642 entry->ssid_len = ssid_elem->datalen; 643 } 644 645 return 0; 646 } 647 648 static int cfg80211_parse_colocated_ap(const struct cfg80211_bss_ies *ies, 649 struct list_head *list) 650 { 651 struct ieee80211_neighbor_ap_info *ap_info; 652 const struct element *elem, *ssid_elem; 653 const u8 *pos, *end; 654 u32 s_ssid_tmp; 655 int n_coloc = 0, ret; 656 LIST_HEAD(ap_list); 657 658 ret = cfg80211_calc_short_ssid(ies, &ssid_elem, &s_ssid_tmp); 659 if (ret) 660 return 0; 661 662 for_each_element_id(elem, WLAN_EID_REDUCED_NEIGHBOR_REPORT, 663 ies->data, ies->len) { 664 pos = elem->data; 665 end = elem->data + elem->datalen; 666 667 /* RNR IE may contain more than one NEIGHBOR_AP_INFO */ 668 while (pos + sizeof(*ap_info) <= end) { 669 enum nl80211_band band; 670 int freq; 671 u8 length, i, count; 672 673 ap_info = (void *)pos; 674 count = u8_get_bits(ap_info->tbtt_info_hdr, 675 IEEE80211_AP_INFO_TBTT_HDR_COUNT) + 1; 676 length = ap_info->tbtt_info_len; 677 678 pos += sizeof(*ap_info); 679 680 if (!ieee80211_operating_class_to_band(ap_info->op_class, 681 &band)) 682 break; 683 684 freq = ieee80211_channel_to_frequency(ap_info->channel, 685 band); 686 687 if (end - pos < count * length) 688 break; 689 690 if (u8_get_bits(ap_info->tbtt_info_hdr, 691 IEEE80211_AP_INFO_TBTT_HDR_TYPE) != 692 IEEE80211_TBTT_INFO_TYPE_TBTT) { 693 pos += count * length; 694 continue; 695 } 696 697 /* TBTT info must include bss param + BSSID + 698 * (short SSID or same_ssid bit to be set). 699 * ignore other options, and move to the 700 * next AP info 701 */ 702 if (band != NL80211_BAND_6GHZ || 703 !(length == offsetofend(struct ieee80211_tbtt_info_7_8_9, 704 bss_params) || 705 length == sizeof(struct ieee80211_tbtt_info_7_8_9) || 706 length >= offsetofend(struct ieee80211_tbtt_info_ge_11, 707 bss_params))) { 708 pos += count * length; 709 continue; 710 } 711 712 for (i = 0; i < count; i++) { 713 struct cfg80211_colocated_ap *entry; 714 715 entry = kzalloc(sizeof(*entry) + IEEE80211_MAX_SSID_LEN, 716 GFP_ATOMIC); 717 718 if (!entry) 719 goto error; 720 721 entry->center_freq = freq; 722 723 if (!cfg80211_parse_ap_info(entry, pos, length, 724 ssid_elem, 725 s_ssid_tmp)) { 726 n_coloc++; 727 list_add_tail(&entry->list, &ap_list); 728 } else { 729 kfree(entry); 730 } 731 732 pos += length; 733 } 734 } 735 736 error: 737 if (pos != end) { 738 cfg80211_free_coloc_ap_list(&ap_list); 739 return 0; 740 } 741 } 742 743 list_splice_tail(&ap_list, list); 744 return n_coloc; 745 } 746 747 static void cfg80211_scan_req_add_chan(struct cfg80211_scan_request *request, 748 struct ieee80211_channel *chan, 749 bool add_to_6ghz) 750 { 751 int i; 752 u32 n_channels = request->n_channels; 753 struct cfg80211_scan_6ghz_params *params = 754 &request->scan_6ghz_params[request->n_6ghz_params]; 755 756 for (i = 0; i < n_channels; i++) { 757 if (request->channels[i] == chan) { 758 if (add_to_6ghz) 759 params->channel_idx = i; 760 return; 761 } 762 } 763 764 request->channels[n_channels] = chan; 765 if (add_to_6ghz) 766 request->scan_6ghz_params[request->n_6ghz_params].channel_idx = 767 n_channels; 768 769 request->n_channels++; 770 } 771 772 static bool cfg80211_find_ssid_match(struct cfg80211_colocated_ap *ap, 773 struct cfg80211_scan_request *request) 774 { 775 int i; 776 u32 s_ssid; 777 778 for (i = 0; i < request->n_ssids; i++) { 779 /* wildcard ssid in the scan request */ 780 if (!request->ssids[i].ssid_len) { 781 if (ap->multi_bss && !ap->transmitted_bssid) 782 continue; 783 784 return true; 785 } 786 787 if (ap->ssid_len && 788 ap->ssid_len == request->ssids[i].ssid_len) { 789 if (!memcmp(request->ssids[i].ssid, ap->ssid, 790 ap->ssid_len)) 791 return true; 792 } else if (ap->short_ssid_valid) { 793 s_ssid = ~crc32_le(~0, request->ssids[i].ssid, 794 request->ssids[i].ssid_len); 795 796 if (ap->short_ssid == s_ssid) 797 return true; 798 } 799 } 800 801 return false; 802 } 803 804 static int cfg80211_scan_6ghz(struct cfg80211_registered_device *rdev) 805 { 806 u8 i; 807 struct cfg80211_colocated_ap *ap; 808 int n_channels, count = 0, err; 809 struct cfg80211_scan_request *request, *rdev_req = rdev->scan_req; 810 LIST_HEAD(coloc_ap_list); 811 bool need_scan_psc = true; 812 const struct ieee80211_sband_iftype_data *iftd; 813 814 rdev_req->scan_6ghz = true; 815 816 if (!rdev->wiphy.bands[NL80211_BAND_6GHZ]) 817 return -EOPNOTSUPP; 818 819 iftd = ieee80211_get_sband_iftype_data(rdev->wiphy.bands[NL80211_BAND_6GHZ], 820 rdev_req->wdev->iftype); 821 if (!iftd || !iftd->he_cap.has_he) 822 return -EOPNOTSUPP; 823 824 n_channels = rdev->wiphy.bands[NL80211_BAND_6GHZ]->n_channels; 825 826 if (rdev_req->flags & NL80211_SCAN_FLAG_COLOCATED_6GHZ) { 827 struct cfg80211_internal_bss *intbss; 828 829 spin_lock_bh(&rdev->bss_lock); 830 list_for_each_entry(intbss, &rdev->bss_list, list) { 831 struct cfg80211_bss *res = &intbss->pub; 832 const struct cfg80211_bss_ies *ies; 833 const struct element *ssid_elem; 834 struct cfg80211_colocated_ap *entry; 835 u32 s_ssid_tmp; 836 int ret; 837 838 ies = rcu_access_pointer(res->ies); 839 count += cfg80211_parse_colocated_ap(ies, 840 &coloc_ap_list); 841 842 /* In case the scan request specified a specific BSSID 843 * and the BSS is found and operating on 6GHz band then 844 * add this AP to the collocated APs list. 845 * This is relevant for ML probe requests when the lower 846 * band APs have not been discovered. 847 */ 848 if (is_broadcast_ether_addr(rdev_req->bssid) || 849 !ether_addr_equal(rdev_req->bssid, res->bssid) || 850 res->channel->band != NL80211_BAND_6GHZ) 851 continue; 852 853 ret = cfg80211_calc_short_ssid(ies, &ssid_elem, 854 &s_ssid_tmp); 855 if (ret) 856 continue; 857 858 entry = kzalloc(sizeof(*entry) + IEEE80211_MAX_SSID_LEN, 859 GFP_ATOMIC); 860 861 if (!entry) 862 continue; 863 864 memcpy(entry->bssid, res->bssid, ETH_ALEN); 865 entry->short_ssid = s_ssid_tmp; 866 memcpy(entry->ssid, ssid_elem->data, 867 ssid_elem->datalen); 868 entry->ssid_len = ssid_elem->datalen; 869 entry->short_ssid_valid = true; 870 entry->center_freq = res->channel->center_freq; 871 872 list_add_tail(&entry->list, &coloc_ap_list); 873 count++; 874 } 875 spin_unlock_bh(&rdev->bss_lock); 876 } 877 878 request = kzalloc(struct_size(request, channels, n_channels) + 879 sizeof(*request->scan_6ghz_params) * count + 880 sizeof(*request->ssids) * rdev_req->n_ssids, 881 GFP_KERNEL); 882 if (!request) { 883 cfg80211_free_coloc_ap_list(&coloc_ap_list); 884 return -ENOMEM; 885 } 886 887 *request = *rdev_req; 888 request->n_channels = 0; 889 request->scan_6ghz_params = 890 (void *)&request->channels[n_channels]; 891 892 /* 893 * PSC channels should not be scanned in case of direct scan with 1 SSID 894 * and at least one of the reported co-located APs with same SSID 895 * indicating that all APs in the same ESS are co-located 896 */ 897 if (count && request->n_ssids == 1 && request->ssids[0].ssid_len) { 898 list_for_each_entry(ap, &coloc_ap_list, list) { 899 if (ap->colocated_ess && 900 cfg80211_find_ssid_match(ap, request)) { 901 need_scan_psc = false; 902 break; 903 } 904 } 905 } 906 907 /* 908 * add to the scan request the channels that need to be scanned 909 * regardless of the collocated APs (PSC channels or all channels 910 * in case that NL80211_SCAN_FLAG_COLOCATED_6GHZ is not set) 911 */ 912 for (i = 0; i < rdev_req->n_channels; i++) { 913 if (rdev_req->channels[i]->band == NL80211_BAND_6GHZ && 914 ((need_scan_psc && 915 cfg80211_channel_is_psc(rdev_req->channels[i])) || 916 !(rdev_req->flags & NL80211_SCAN_FLAG_COLOCATED_6GHZ))) { 917 cfg80211_scan_req_add_chan(request, 918 rdev_req->channels[i], 919 false); 920 } 921 } 922 923 if (!(rdev_req->flags & NL80211_SCAN_FLAG_COLOCATED_6GHZ)) 924 goto skip; 925 926 list_for_each_entry(ap, &coloc_ap_list, list) { 927 bool found = false; 928 struct cfg80211_scan_6ghz_params *scan_6ghz_params = 929 &request->scan_6ghz_params[request->n_6ghz_params]; 930 struct ieee80211_channel *chan = 931 ieee80211_get_channel(&rdev->wiphy, ap->center_freq); 932 933 if (!chan || chan->flags & IEEE80211_CHAN_DISABLED) 934 continue; 935 936 for (i = 0; i < rdev_req->n_channels; i++) { 937 if (rdev_req->channels[i] == chan) 938 found = true; 939 } 940 941 if (!found) 942 continue; 943 944 if (request->n_ssids > 0 && 945 !cfg80211_find_ssid_match(ap, request)) 946 continue; 947 948 if (!is_broadcast_ether_addr(request->bssid) && 949 !ether_addr_equal(request->bssid, ap->bssid)) 950 continue; 951 952 if (!request->n_ssids && ap->multi_bss && !ap->transmitted_bssid) 953 continue; 954 955 cfg80211_scan_req_add_chan(request, chan, true); 956 memcpy(scan_6ghz_params->bssid, ap->bssid, ETH_ALEN); 957 scan_6ghz_params->short_ssid = ap->short_ssid; 958 scan_6ghz_params->short_ssid_valid = ap->short_ssid_valid; 959 scan_6ghz_params->unsolicited_probe = ap->unsolicited_probe; 960 scan_6ghz_params->psd_20 = ap->psd_20; 961 962 /* 963 * If a PSC channel is added to the scan and 'need_scan_psc' is 964 * set to false, then all the APs that the scan logic is 965 * interested with on the channel are collocated and thus there 966 * is no need to perform the initial PSC channel listen. 967 */ 968 if (cfg80211_channel_is_psc(chan) && !need_scan_psc) 969 scan_6ghz_params->psc_no_listen = true; 970 971 request->n_6ghz_params++; 972 } 973 974 skip: 975 cfg80211_free_coloc_ap_list(&coloc_ap_list); 976 977 if (request->n_channels) { 978 struct cfg80211_scan_request *old = rdev->int_scan_req; 979 rdev->int_scan_req = request; 980 981 /* 982 * Add the ssids from the parent scan request to the new scan 983 * request, so the driver would be able to use them in its 984 * probe requests to discover hidden APs on PSC channels. 985 */ 986 request->ssids = (void *)&request->channels[request->n_channels]; 987 request->n_ssids = rdev_req->n_ssids; 988 memcpy(request->ssids, rdev_req->ssids, sizeof(*request->ssids) * 989 request->n_ssids); 990 991 /* 992 * If this scan follows a previous scan, save the scan start 993 * info from the first part of the scan 994 */ 995 if (old) 996 rdev->int_scan_req->info = old->info; 997 998 err = rdev_scan(rdev, request); 999 if (err) { 1000 rdev->int_scan_req = old; 1001 kfree(request); 1002 } else { 1003 kfree(old); 1004 } 1005 1006 return err; 1007 } 1008 1009 kfree(request); 1010 return -EINVAL; 1011 } 1012 1013 int cfg80211_scan(struct cfg80211_registered_device *rdev) 1014 { 1015 struct cfg80211_scan_request *request; 1016 struct cfg80211_scan_request *rdev_req = rdev->scan_req; 1017 u32 n_channels = 0, idx, i; 1018 1019 if (!(rdev->wiphy.flags & WIPHY_FLAG_SPLIT_SCAN_6GHZ)) 1020 return rdev_scan(rdev, rdev_req); 1021 1022 for (i = 0; i < rdev_req->n_channels; i++) { 1023 if (rdev_req->channels[i]->band != NL80211_BAND_6GHZ) 1024 n_channels++; 1025 } 1026 1027 if (!n_channels) 1028 return cfg80211_scan_6ghz(rdev); 1029 1030 request = kzalloc(struct_size(request, channels, n_channels), 1031 GFP_KERNEL); 1032 if (!request) 1033 return -ENOMEM; 1034 1035 *request = *rdev_req; 1036 request->n_channels = n_channels; 1037 1038 for (i = idx = 0; i < rdev_req->n_channels; i++) { 1039 if (rdev_req->channels[i]->band != NL80211_BAND_6GHZ) 1040 request->channels[idx++] = rdev_req->channels[i]; 1041 } 1042 1043 rdev_req->scan_6ghz = false; 1044 rdev->int_scan_req = request; 1045 return rdev_scan(rdev, request); 1046 } 1047 1048 void ___cfg80211_scan_done(struct cfg80211_registered_device *rdev, 1049 bool send_message) 1050 { 1051 struct cfg80211_scan_request *request, *rdev_req; 1052 struct wireless_dev *wdev; 1053 struct sk_buff *msg; 1054 #ifdef CONFIG_CFG80211_WEXT 1055 union iwreq_data wrqu; 1056 #endif 1057 1058 lockdep_assert_held(&rdev->wiphy.mtx); 1059 1060 if (rdev->scan_msg) { 1061 nl80211_send_scan_msg(rdev, rdev->scan_msg); 1062 rdev->scan_msg = NULL; 1063 return; 1064 } 1065 1066 rdev_req = rdev->scan_req; 1067 if (!rdev_req) 1068 return; 1069 1070 wdev = rdev_req->wdev; 1071 request = rdev->int_scan_req ? rdev->int_scan_req : rdev_req; 1072 1073 if (wdev_running(wdev) && 1074 (rdev->wiphy.flags & WIPHY_FLAG_SPLIT_SCAN_6GHZ) && 1075 !rdev_req->scan_6ghz && !request->info.aborted && 1076 !cfg80211_scan_6ghz(rdev)) 1077 return; 1078 1079 /* 1080 * This must be before sending the other events! 1081 * Otherwise, wpa_supplicant gets completely confused with 1082 * wext events. 1083 */ 1084 if (wdev->netdev) 1085 cfg80211_sme_scan_done(wdev->netdev); 1086 1087 if (!request->info.aborted && 1088 request->flags & NL80211_SCAN_FLAG_FLUSH) { 1089 /* flush entries from previous scans */ 1090 spin_lock_bh(&rdev->bss_lock); 1091 __cfg80211_bss_expire(rdev, request->scan_start); 1092 spin_unlock_bh(&rdev->bss_lock); 1093 } 1094 1095 msg = nl80211_build_scan_msg(rdev, wdev, request->info.aborted); 1096 1097 #ifdef CONFIG_CFG80211_WEXT 1098 if (wdev->netdev && !request->info.aborted) { 1099 memset(&wrqu, 0, sizeof(wrqu)); 1100 1101 wireless_send_event(wdev->netdev, SIOCGIWSCAN, &wrqu, NULL); 1102 } 1103 #endif 1104 1105 dev_put(wdev->netdev); 1106 1107 kfree(rdev->int_scan_req); 1108 rdev->int_scan_req = NULL; 1109 1110 kfree(rdev->scan_req); 1111 rdev->scan_req = NULL; 1112 1113 if (!send_message) 1114 rdev->scan_msg = msg; 1115 else 1116 nl80211_send_scan_msg(rdev, msg); 1117 } 1118 1119 void __cfg80211_scan_done(struct wiphy *wiphy, struct wiphy_work *wk) 1120 { 1121 ___cfg80211_scan_done(wiphy_to_rdev(wiphy), true); 1122 } 1123 1124 void cfg80211_scan_done(struct cfg80211_scan_request *request, 1125 struct cfg80211_scan_info *info) 1126 { 1127 struct cfg80211_scan_info old_info = request->info; 1128 1129 trace_cfg80211_scan_done(request, info); 1130 WARN_ON(request != wiphy_to_rdev(request->wiphy)->scan_req && 1131 request != wiphy_to_rdev(request->wiphy)->int_scan_req); 1132 1133 request->info = *info; 1134 1135 /* 1136 * In case the scan is split, the scan_start_tsf and tsf_bssid should 1137 * be of the first part. In such a case old_info.scan_start_tsf should 1138 * be non zero. 1139 */ 1140 if (request->scan_6ghz && old_info.scan_start_tsf) { 1141 request->info.scan_start_tsf = old_info.scan_start_tsf; 1142 memcpy(request->info.tsf_bssid, old_info.tsf_bssid, 1143 sizeof(request->info.tsf_bssid)); 1144 } 1145 1146 request->notified = true; 1147 wiphy_work_queue(request->wiphy, 1148 &wiphy_to_rdev(request->wiphy)->scan_done_wk); 1149 } 1150 EXPORT_SYMBOL(cfg80211_scan_done); 1151 1152 void cfg80211_add_sched_scan_req(struct cfg80211_registered_device *rdev, 1153 struct cfg80211_sched_scan_request *req) 1154 { 1155 lockdep_assert_held(&rdev->wiphy.mtx); 1156 1157 list_add_rcu(&req->list, &rdev->sched_scan_req_list); 1158 } 1159 1160 static void cfg80211_del_sched_scan_req(struct cfg80211_registered_device *rdev, 1161 struct cfg80211_sched_scan_request *req) 1162 { 1163 lockdep_assert_held(&rdev->wiphy.mtx); 1164 1165 list_del_rcu(&req->list); 1166 kfree_rcu(req, rcu_head); 1167 } 1168 1169 static struct cfg80211_sched_scan_request * 1170 cfg80211_find_sched_scan_req(struct cfg80211_registered_device *rdev, u64 reqid) 1171 { 1172 struct cfg80211_sched_scan_request *pos; 1173 1174 list_for_each_entry_rcu(pos, &rdev->sched_scan_req_list, list, 1175 lockdep_is_held(&rdev->wiphy.mtx)) { 1176 if (pos->reqid == reqid) 1177 return pos; 1178 } 1179 return NULL; 1180 } 1181 1182 /* 1183 * Determines if a scheduled scan request can be handled. When a legacy 1184 * scheduled scan is running no other scheduled scan is allowed regardless 1185 * whether the request is for legacy or multi-support scan. When a multi-support 1186 * scheduled scan is running a request for legacy scan is not allowed. In this 1187 * case a request for multi-support scan can be handled if resources are 1188 * available, ie. struct wiphy::max_sched_scan_reqs limit is not yet reached. 1189 */ 1190 int cfg80211_sched_scan_req_possible(struct cfg80211_registered_device *rdev, 1191 bool want_multi) 1192 { 1193 struct cfg80211_sched_scan_request *pos; 1194 int i = 0; 1195 1196 list_for_each_entry(pos, &rdev->sched_scan_req_list, list) { 1197 /* request id zero means legacy in progress */ 1198 if (!i && !pos->reqid) 1199 return -EINPROGRESS; 1200 i++; 1201 } 1202 1203 if (i) { 1204 /* no legacy allowed when multi request(s) are active */ 1205 if (!want_multi) 1206 return -EINPROGRESS; 1207 1208 /* resource limit reached */ 1209 if (i == rdev->wiphy.max_sched_scan_reqs) 1210 return -ENOSPC; 1211 } 1212 return 0; 1213 } 1214 1215 void cfg80211_sched_scan_results_wk(struct work_struct *work) 1216 { 1217 struct cfg80211_registered_device *rdev; 1218 struct cfg80211_sched_scan_request *req, *tmp; 1219 1220 rdev = container_of(work, struct cfg80211_registered_device, 1221 sched_scan_res_wk); 1222 1223 wiphy_lock(&rdev->wiphy); 1224 list_for_each_entry_safe(req, tmp, &rdev->sched_scan_req_list, list) { 1225 if (req->report_results) { 1226 req->report_results = false; 1227 if (req->flags & NL80211_SCAN_FLAG_FLUSH) { 1228 /* flush entries from previous scans */ 1229 spin_lock_bh(&rdev->bss_lock); 1230 __cfg80211_bss_expire(rdev, req->scan_start); 1231 spin_unlock_bh(&rdev->bss_lock); 1232 req->scan_start = jiffies; 1233 } 1234 nl80211_send_sched_scan(req, 1235 NL80211_CMD_SCHED_SCAN_RESULTS); 1236 } 1237 } 1238 wiphy_unlock(&rdev->wiphy); 1239 } 1240 1241 void cfg80211_sched_scan_results(struct wiphy *wiphy, u64 reqid) 1242 { 1243 struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy); 1244 struct cfg80211_sched_scan_request *request; 1245 1246 trace_cfg80211_sched_scan_results(wiphy, reqid); 1247 /* ignore if we're not scanning */ 1248 1249 rcu_read_lock(); 1250 request = cfg80211_find_sched_scan_req(rdev, reqid); 1251 if (request) { 1252 request->report_results = true; 1253 queue_work(cfg80211_wq, &rdev->sched_scan_res_wk); 1254 } 1255 rcu_read_unlock(); 1256 } 1257 EXPORT_SYMBOL(cfg80211_sched_scan_results); 1258 1259 void cfg80211_sched_scan_stopped_locked(struct wiphy *wiphy, u64 reqid) 1260 { 1261 struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy); 1262 1263 lockdep_assert_held(&wiphy->mtx); 1264 1265 trace_cfg80211_sched_scan_stopped(wiphy, reqid); 1266 1267 __cfg80211_stop_sched_scan(rdev, reqid, true); 1268 } 1269 EXPORT_SYMBOL(cfg80211_sched_scan_stopped_locked); 1270 1271 void cfg80211_sched_scan_stopped(struct wiphy *wiphy, u64 reqid) 1272 { 1273 wiphy_lock(wiphy); 1274 cfg80211_sched_scan_stopped_locked(wiphy, reqid); 1275 wiphy_unlock(wiphy); 1276 } 1277 EXPORT_SYMBOL(cfg80211_sched_scan_stopped); 1278 1279 int cfg80211_stop_sched_scan_req(struct cfg80211_registered_device *rdev, 1280 struct cfg80211_sched_scan_request *req, 1281 bool driver_initiated) 1282 { 1283 lockdep_assert_held(&rdev->wiphy.mtx); 1284 1285 if (!driver_initiated) { 1286 int err = rdev_sched_scan_stop(rdev, req->dev, req->reqid); 1287 if (err) 1288 return err; 1289 } 1290 1291 nl80211_send_sched_scan(req, NL80211_CMD_SCHED_SCAN_STOPPED); 1292 1293 cfg80211_del_sched_scan_req(rdev, req); 1294 1295 return 0; 1296 } 1297 1298 int __cfg80211_stop_sched_scan(struct cfg80211_registered_device *rdev, 1299 u64 reqid, bool driver_initiated) 1300 { 1301 struct cfg80211_sched_scan_request *sched_scan_req; 1302 1303 lockdep_assert_held(&rdev->wiphy.mtx); 1304 1305 sched_scan_req = cfg80211_find_sched_scan_req(rdev, reqid); 1306 if (!sched_scan_req) 1307 return -ENOENT; 1308 1309 return cfg80211_stop_sched_scan_req(rdev, sched_scan_req, 1310 driver_initiated); 1311 } 1312 1313 void cfg80211_bss_age(struct cfg80211_registered_device *rdev, 1314 unsigned long age_secs) 1315 { 1316 struct cfg80211_internal_bss *bss; 1317 unsigned long age_jiffies = msecs_to_jiffies(age_secs * MSEC_PER_SEC); 1318 1319 spin_lock_bh(&rdev->bss_lock); 1320 list_for_each_entry(bss, &rdev->bss_list, list) 1321 bss->ts -= age_jiffies; 1322 spin_unlock_bh(&rdev->bss_lock); 1323 } 1324 1325 void cfg80211_bss_expire(struct cfg80211_registered_device *rdev) 1326 { 1327 __cfg80211_bss_expire(rdev, jiffies - IEEE80211_SCAN_RESULT_EXPIRE); 1328 } 1329 1330 void cfg80211_bss_flush(struct wiphy *wiphy) 1331 { 1332 struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy); 1333 1334 spin_lock_bh(&rdev->bss_lock); 1335 __cfg80211_bss_expire(rdev, jiffies); 1336 spin_unlock_bh(&rdev->bss_lock); 1337 } 1338 EXPORT_SYMBOL(cfg80211_bss_flush); 1339 1340 const struct element * 1341 cfg80211_find_elem_match(u8 eid, const u8 *ies, unsigned int len, 1342 const u8 *match, unsigned int match_len, 1343 unsigned int match_offset) 1344 { 1345 const struct element *elem; 1346 1347 for_each_element_id(elem, eid, ies, len) { 1348 if (elem->datalen >= match_offset + match_len && 1349 !memcmp(elem->data + match_offset, match, match_len)) 1350 return elem; 1351 } 1352 1353 return NULL; 1354 } 1355 EXPORT_SYMBOL(cfg80211_find_elem_match); 1356 1357 const struct element *cfg80211_find_vendor_elem(unsigned int oui, int oui_type, 1358 const u8 *ies, 1359 unsigned int len) 1360 { 1361 const struct element *elem; 1362 u8 match[] = { oui >> 16, oui >> 8, oui, oui_type }; 1363 int match_len = (oui_type < 0) ? 3 : sizeof(match); 1364 1365 if (WARN_ON(oui_type > 0xff)) 1366 return NULL; 1367 1368 elem = cfg80211_find_elem_match(WLAN_EID_VENDOR_SPECIFIC, ies, len, 1369 match, match_len, 0); 1370 1371 if (!elem || elem->datalen < 4) 1372 return NULL; 1373 1374 return elem; 1375 } 1376 EXPORT_SYMBOL(cfg80211_find_vendor_elem); 1377 1378 /** 1379 * enum bss_compare_mode - BSS compare mode 1380 * @BSS_CMP_REGULAR: regular compare mode (for insertion and normal find) 1381 * @BSS_CMP_HIDE_ZLEN: find hidden SSID with zero-length mode 1382 * @BSS_CMP_HIDE_NUL: find hidden SSID with NUL-ed out mode 1383 */ 1384 enum bss_compare_mode { 1385 BSS_CMP_REGULAR, 1386 BSS_CMP_HIDE_ZLEN, 1387 BSS_CMP_HIDE_NUL, 1388 }; 1389 1390 static int cmp_bss(struct cfg80211_bss *a, 1391 struct cfg80211_bss *b, 1392 enum bss_compare_mode mode) 1393 { 1394 const struct cfg80211_bss_ies *a_ies, *b_ies; 1395 const u8 *ie1 = NULL; 1396 const u8 *ie2 = NULL; 1397 int i, r; 1398 1399 if (a->channel != b->channel) 1400 return (b->channel->center_freq * 1000 + b->channel->freq_offset) - 1401 (a->channel->center_freq * 1000 + a->channel->freq_offset); 1402 1403 a_ies = rcu_access_pointer(a->ies); 1404 if (!a_ies) 1405 return -1; 1406 b_ies = rcu_access_pointer(b->ies); 1407 if (!b_ies) 1408 return 1; 1409 1410 if (WLAN_CAPABILITY_IS_STA_BSS(a->capability)) 1411 ie1 = cfg80211_find_ie(WLAN_EID_MESH_ID, 1412 a_ies->data, a_ies->len); 1413 if (WLAN_CAPABILITY_IS_STA_BSS(b->capability)) 1414 ie2 = cfg80211_find_ie(WLAN_EID_MESH_ID, 1415 b_ies->data, b_ies->len); 1416 if (ie1 && ie2) { 1417 int mesh_id_cmp; 1418 1419 if (ie1[1] == ie2[1]) 1420 mesh_id_cmp = memcmp(ie1 + 2, ie2 + 2, ie1[1]); 1421 else 1422 mesh_id_cmp = ie2[1] - ie1[1]; 1423 1424 ie1 = cfg80211_find_ie(WLAN_EID_MESH_CONFIG, 1425 a_ies->data, a_ies->len); 1426 ie2 = cfg80211_find_ie(WLAN_EID_MESH_CONFIG, 1427 b_ies->data, b_ies->len); 1428 if (ie1 && ie2) { 1429 if (mesh_id_cmp) 1430 return mesh_id_cmp; 1431 if (ie1[1] != ie2[1]) 1432 return ie2[1] - ie1[1]; 1433 return memcmp(ie1 + 2, ie2 + 2, ie1[1]); 1434 } 1435 } 1436 1437 r = memcmp(a->bssid, b->bssid, sizeof(a->bssid)); 1438 if (r) 1439 return r; 1440 1441 ie1 = cfg80211_find_ie(WLAN_EID_SSID, a_ies->data, a_ies->len); 1442 ie2 = cfg80211_find_ie(WLAN_EID_SSID, b_ies->data, b_ies->len); 1443 1444 if (!ie1 && !ie2) 1445 return 0; 1446 1447 /* 1448 * Note that with "hide_ssid", the function returns a match if 1449 * the already-present BSS ("b") is a hidden SSID beacon for 1450 * the new BSS ("a"). 1451 */ 1452 1453 /* sort missing IE before (left of) present IE */ 1454 if (!ie1) 1455 return -1; 1456 if (!ie2) 1457 return 1; 1458 1459 switch (mode) { 1460 case BSS_CMP_HIDE_ZLEN: 1461 /* 1462 * In ZLEN mode we assume the BSS entry we're 1463 * looking for has a zero-length SSID. So if 1464 * the one we're looking at right now has that, 1465 * return 0. Otherwise, return the difference 1466 * in length, but since we're looking for the 1467 * 0-length it's really equivalent to returning 1468 * the length of the one we're looking at. 1469 * 1470 * No content comparison is needed as we assume 1471 * the content length is zero. 1472 */ 1473 return ie2[1]; 1474 case BSS_CMP_REGULAR: 1475 default: 1476 /* sort by length first, then by contents */ 1477 if (ie1[1] != ie2[1]) 1478 return ie2[1] - ie1[1]; 1479 return memcmp(ie1 + 2, ie2 + 2, ie1[1]); 1480 case BSS_CMP_HIDE_NUL: 1481 if (ie1[1] != ie2[1]) 1482 return ie2[1] - ie1[1]; 1483 /* this is equivalent to memcmp(zeroes, ie2 + 2, len) */ 1484 for (i = 0; i < ie2[1]; i++) 1485 if (ie2[i + 2]) 1486 return -1; 1487 return 0; 1488 } 1489 } 1490 1491 static bool cfg80211_bss_type_match(u16 capability, 1492 enum nl80211_band band, 1493 enum ieee80211_bss_type bss_type) 1494 { 1495 bool ret = true; 1496 u16 mask, val; 1497 1498 if (bss_type == IEEE80211_BSS_TYPE_ANY) 1499 return ret; 1500 1501 if (band == NL80211_BAND_60GHZ) { 1502 mask = WLAN_CAPABILITY_DMG_TYPE_MASK; 1503 switch (bss_type) { 1504 case IEEE80211_BSS_TYPE_ESS: 1505 val = WLAN_CAPABILITY_DMG_TYPE_AP; 1506 break; 1507 case IEEE80211_BSS_TYPE_PBSS: 1508 val = WLAN_CAPABILITY_DMG_TYPE_PBSS; 1509 break; 1510 case IEEE80211_BSS_TYPE_IBSS: 1511 val = WLAN_CAPABILITY_DMG_TYPE_IBSS; 1512 break; 1513 default: 1514 return false; 1515 } 1516 } else { 1517 mask = WLAN_CAPABILITY_ESS | WLAN_CAPABILITY_IBSS; 1518 switch (bss_type) { 1519 case IEEE80211_BSS_TYPE_ESS: 1520 val = WLAN_CAPABILITY_ESS; 1521 break; 1522 case IEEE80211_BSS_TYPE_IBSS: 1523 val = WLAN_CAPABILITY_IBSS; 1524 break; 1525 case IEEE80211_BSS_TYPE_MBSS: 1526 val = 0; 1527 break; 1528 default: 1529 return false; 1530 } 1531 } 1532 1533 ret = ((capability & mask) == val); 1534 return ret; 1535 } 1536 1537 /* Returned bss is reference counted and must be cleaned up appropriately. */ 1538 struct cfg80211_bss *__cfg80211_get_bss(struct wiphy *wiphy, 1539 struct ieee80211_channel *channel, 1540 const u8 *bssid, 1541 const u8 *ssid, size_t ssid_len, 1542 enum ieee80211_bss_type bss_type, 1543 enum ieee80211_privacy privacy, 1544 u32 use_for) 1545 { 1546 struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy); 1547 struct cfg80211_internal_bss *bss, *res = NULL; 1548 unsigned long now = jiffies; 1549 int bss_privacy; 1550 1551 trace_cfg80211_get_bss(wiphy, channel, bssid, ssid, ssid_len, bss_type, 1552 privacy); 1553 1554 spin_lock_bh(&rdev->bss_lock); 1555 1556 list_for_each_entry(bss, &rdev->bss_list, list) { 1557 if (!cfg80211_bss_type_match(bss->pub.capability, 1558 bss->pub.channel->band, bss_type)) 1559 continue; 1560 1561 bss_privacy = (bss->pub.capability & WLAN_CAPABILITY_PRIVACY); 1562 if ((privacy == IEEE80211_PRIVACY_ON && !bss_privacy) || 1563 (privacy == IEEE80211_PRIVACY_OFF && bss_privacy)) 1564 continue; 1565 if (channel && bss->pub.channel != channel) 1566 continue; 1567 if (!is_valid_ether_addr(bss->pub.bssid)) 1568 continue; 1569 if ((bss->pub.use_for & use_for) != use_for) 1570 continue; 1571 /* Don't get expired BSS structs */ 1572 if (time_after(now, bss->ts + IEEE80211_SCAN_RESULT_EXPIRE) && 1573 !atomic_read(&bss->hold)) 1574 continue; 1575 if (is_bss(&bss->pub, bssid, ssid, ssid_len)) { 1576 res = bss; 1577 bss_ref_get(rdev, res); 1578 break; 1579 } 1580 } 1581 1582 spin_unlock_bh(&rdev->bss_lock); 1583 if (!res) 1584 return NULL; 1585 trace_cfg80211_return_bss(&res->pub); 1586 return &res->pub; 1587 } 1588 EXPORT_SYMBOL(__cfg80211_get_bss); 1589 1590 static void rb_insert_bss(struct cfg80211_registered_device *rdev, 1591 struct cfg80211_internal_bss *bss) 1592 { 1593 struct rb_node **p = &rdev->bss_tree.rb_node; 1594 struct rb_node *parent = NULL; 1595 struct cfg80211_internal_bss *tbss; 1596 int cmp; 1597 1598 while (*p) { 1599 parent = *p; 1600 tbss = rb_entry(parent, struct cfg80211_internal_bss, rbn); 1601 1602 cmp = cmp_bss(&bss->pub, &tbss->pub, BSS_CMP_REGULAR); 1603 1604 if (WARN_ON(!cmp)) { 1605 /* will sort of leak this BSS */ 1606 return; 1607 } 1608 1609 if (cmp < 0) 1610 p = &(*p)->rb_left; 1611 else 1612 p = &(*p)->rb_right; 1613 } 1614 1615 rb_link_node(&bss->rbn, parent, p); 1616 rb_insert_color(&bss->rbn, &rdev->bss_tree); 1617 } 1618 1619 static struct cfg80211_internal_bss * 1620 rb_find_bss(struct cfg80211_registered_device *rdev, 1621 struct cfg80211_internal_bss *res, 1622 enum bss_compare_mode mode) 1623 { 1624 struct rb_node *n = rdev->bss_tree.rb_node; 1625 struct cfg80211_internal_bss *bss; 1626 int r; 1627 1628 while (n) { 1629 bss = rb_entry(n, struct cfg80211_internal_bss, rbn); 1630 r = cmp_bss(&res->pub, &bss->pub, mode); 1631 1632 if (r == 0) 1633 return bss; 1634 else if (r < 0) 1635 n = n->rb_left; 1636 else 1637 n = n->rb_right; 1638 } 1639 1640 return NULL; 1641 } 1642 1643 static bool cfg80211_combine_bsses(struct cfg80211_registered_device *rdev, 1644 struct cfg80211_internal_bss *new) 1645 { 1646 const struct cfg80211_bss_ies *ies; 1647 struct cfg80211_internal_bss *bss; 1648 const u8 *ie; 1649 int i, ssidlen; 1650 u8 fold = 0; 1651 u32 n_entries = 0; 1652 1653 ies = rcu_access_pointer(new->pub.beacon_ies); 1654 if (WARN_ON(!ies)) 1655 return false; 1656 1657 ie = cfg80211_find_ie(WLAN_EID_SSID, ies->data, ies->len); 1658 if (!ie) { 1659 /* nothing to do */ 1660 return true; 1661 } 1662 1663 ssidlen = ie[1]; 1664 for (i = 0; i < ssidlen; i++) 1665 fold |= ie[2 + i]; 1666 1667 if (fold) { 1668 /* not a hidden SSID */ 1669 return true; 1670 } 1671 1672 /* This is the bad part ... */ 1673 1674 list_for_each_entry(bss, &rdev->bss_list, list) { 1675 /* 1676 * we're iterating all the entries anyway, so take the 1677 * opportunity to validate the list length accounting 1678 */ 1679 n_entries++; 1680 1681 if (!ether_addr_equal(bss->pub.bssid, new->pub.bssid)) 1682 continue; 1683 if (bss->pub.channel != new->pub.channel) 1684 continue; 1685 if (rcu_access_pointer(bss->pub.beacon_ies)) 1686 continue; 1687 ies = rcu_access_pointer(bss->pub.ies); 1688 if (!ies) 1689 continue; 1690 ie = cfg80211_find_ie(WLAN_EID_SSID, ies->data, ies->len); 1691 if (!ie) 1692 continue; 1693 if (ssidlen && ie[1] != ssidlen) 1694 continue; 1695 if (WARN_ON_ONCE(bss->pub.hidden_beacon_bss)) 1696 continue; 1697 if (WARN_ON_ONCE(!list_empty(&bss->hidden_list))) 1698 list_del(&bss->hidden_list); 1699 /* combine them */ 1700 list_add(&bss->hidden_list, &new->hidden_list); 1701 bss->pub.hidden_beacon_bss = &new->pub; 1702 new->refcount += bss->refcount; 1703 rcu_assign_pointer(bss->pub.beacon_ies, 1704 new->pub.beacon_ies); 1705 } 1706 1707 WARN_ONCE(n_entries != rdev->bss_entries, 1708 "rdev bss entries[%d]/list[len:%d] corruption\n", 1709 rdev->bss_entries, n_entries); 1710 1711 return true; 1712 } 1713 1714 static void cfg80211_update_hidden_bsses(struct cfg80211_internal_bss *known, 1715 const struct cfg80211_bss_ies *new_ies, 1716 const struct cfg80211_bss_ies *old_ies) 1717 { 1718 struct cfg80211_internal_bss *bss; 1719 1720 /* Assign beacon IEs to all sub entries */ 1721 list_for_each_entry(bss, &known->hidden_list, hidden_list) { 1722 const struct cfg80211_bss_ies *ies; 1723 1724 ies = rcu_access_pointer(bss->pub.beacon_ies); 1725 WARN_ON(ies != old_ies); 1726 1727 rcu_assign_pointer(bss->pub.beacon_ies, new_ies); 1728 } 1729 } 1730 1731 static bool 1732 cfg80211_update_known_bss(struct cfg80211_registered_device *rdev, 1733 struct cfg80211_internal_bss *known, 1734 struct cfg80211_internal_bss *new, 1735 bool signal_valid) 1736 { 1737 lockdep_assert_held(&rdev->bss_lock); 1738 1739 /* Update IEs */ 1740 if (rcu_access_pointer(new->pub.proberesp_ies)) { 1741 const struct cfg80211_bss_ies *old; 1742 1743 old = rcu_access_pointer(known->pub.proberesp_ies); 1744 1745 rcu_assign_pointer(known->pub.proberesp_ies, 1746 new->pub.proberesp_ies); 1747 /* Override possible earlier Beacon frame IEs */ 1748 rcu_assign_pointer(known->pub.ies, 1749 new->pub.proberesp_ies); 1750 if (old) 1751 kfree_rcu((struct cfg80211_bss_ies *)old, rcu_head); 1752 } 1753 1754 if (rcu_access_pointer(new->pub.beacon_ies)) { 1755 const struct cfg80211_bss_ies *old; 1756 1757 if (known->pub.hidden_beacon_bss && 1758 !list_empty(&known->hidden_list)) { 1759 const struct cfg80211_bss_ies *f; 1760 1761 /* The known BSS struct is one of the probe 1762 * response members of a group, but we're 1763 * receiving a beacon (beacon_ies in the new 1764 * bss is used). This can only mean that the 1765 * AP changed its beacon from not having an 1766 * SSID to showing it, which is confusing so 1767 * drop this information. 1768 */ 1769 1770 f = rcu_access_pointer(new->pub.beacon_ies); 1771 kfree_rcu((struct cfg80211_bss_ies *)f, rcu_head); 1772 return false; 1773 } 1774 1775 old = rcu_access_pointer(known->pub.beacon_ies); 1776 1777 rcu_assign_pointer(known->pub.beacon_ies, new->pub.beacon_ies); 1778 1779 /* Override IEs if they were from a beacon before */ 1780 if (old == rcu_access_pointer(known->pub.ies)) 1781 rcu_assign_pointer(known->pub.ies, new->pub.beacon_ies); 1782 1783 cfg80211_update_hidden_bsses(known, 1784 rcu_access_pointer(new->pub.beacon_ies), 1785 old); 1786 1787 if (old) 1788 kfree_rcu((struct cfg80211_bss_ies *)old, rcu_head); 1789 } 1790 1791 known->pub.beacon_interval = new->pub.beacon_interval; 1792 1793 /* don't update the signal if beacon was heard on 1794 * adjacent channel. 1795 */ 1796 if (signal_valid) 1797 known->pub.signal = new->pub.signal; 1798 known->pub.capability = new->pub.capability; 1799 known->ts = new->ts; 1800 known->ts_boottime = new->ts_boottime; 1801 known->parent_tsf = new->parent_tsf; 1802 known->pub.chains = new->pub.chains; 1803 memcpy(known->pub.chain_signal, new->pub.chain_signal, 1804 IEEE80211_MAX_CHAINS); 1805 ether_addr_copy(known->parent_bssid, new->parent_bssid); 1806 known->pub.max_bssid_indicator = new->pub.max_bssid_indicator; 1807 known->pub.bssid_index = new->pub.bssid_index; 1808 known->pub.use_for &= new->pub.use_for; 1809 known->pub.cannot_use_reasons = new->pub.cannot_use_reasons; 1810 1811 return true; 1812 } 1813 1814 /* Returned bss is reference counted and must be cleaned up appropriately. */ 1815 static struct cfg80211_internal_bss * 1816 __cfg80211_bss_update(struct cfg80211_registered_device *rdev, 1817 struct cfg80211_internal_bss *tmp, 1818 bool signal_valid, unsigned long ts) 1819 { 1820 struct cfg80211_internal_bss *found = NULL; 1821 1822 if (WARN_ON(!tmp->pub.channel)) 1823 return NULL; 1824 1825 tmp->ts = ts; 1826 1827 if (WARN_ON(!rcu_access_pointer(tmp->pub.ies))) { 1828 return NULL; 1829 } 1830 1831 found = rb_find_bss(rdev, tmp, BSS_CMP_REGULAR); 1832 1833 if (found) { 1834 if (!cfg80211_update_known_bss(rdev, found, tmp, signal_valid)) 1835 return NULL; 1836 } else { 1837 struct cfg80211_internal_bss *new; 1838 struct cfg80211_internal_bss *hidden; 1839 struct cfg80211_bss_ies *ies; 1840 1841 /* 1842 * create a copy -- the "res" variable that is passed in 1843 * is allocated on the stack since it's not needed in the 1844 * more common case of an update 1845 */ 1846 new = kzalloc(sizeof(*new) + rdev->wiphy.bss_priv_size, 1847 GFP_ATOMIC); 1848 if (!new) { 1849 ies = (void *)rcu_dereference(tmp->pub.beacon_ies); 1850 if (ies) 1851 kfree_rcu(ies, rcu_head); 1852 ies = (void *)rcu_dereference(tmp->pub.proberesp_ies); 1853 if (ies) 1854 kfree_rcu(ies, rcu_head); 1855 return NULL; 1856 } 1857 memcpy(new, tmp, sizeof(*new)); 1858 new->refcount = 1; 1859 INIT_LIST_HEAD(&new->hidden_list); 1860 INIT_LIST_HEAD(&new->pub.nontrans_list); 1861 /* we'll set this later if it was non-NULL */ 1862 new->pub.transmitted_bss = NULL; 1863 1864 if (rcu_access_pointer(tmp->pub.proberesp_ies)) { 1865 hidden = rb_find_bss(rdev, tmp, BSS_CMP_HIDE_ZLEN); 1866 if (!hidden) 1867 hidden = rb_find_bss(rdev, tmp, 1868 BSS_CMP_HIDE_NUL); 1869 if (hidden) { 1870 new->pub.hidden_beacon_bss = &hidden->pub; 1871 list_add(&new->hidden_list, 1872 &hidden->hidden_list); 1873 hidden->refcount++; 1874 rcu_assign_pointer(new->pub.beacon_ies, 1875 hidden->pub.beacon_ies); 1876 } 1877 } else { 1878 /* 1879 * Ok so we found a beacon, and don't have an entry. If 1880 * it's a beacon with hidden SSID, we might be in for an 1881 * expensive search for any probe responses that should 1882 * be grouped with this beacon for updates ... 1883 */ 1884 if (!cfg80211_combine_bsses(rdev, new)) { 1885 bss_ref_put(rdev, new); 1886 return NULL; 1887 } 1888 } 1889 1890 if (rdev->bss_entries >= bss_entries_limit && 1891 !cfg80211_bss_expire_oldest(rdev)) { 1892 bss_ref_put(rdev, new); 1893 return NULL; 1894 } 1895 1896 /* This must be before the call to bss_ref_get */ 1897 if (tmp->pub.transmitted_bss) { 1898 new->pub.transmitted_bss = tmp->pub.transmitted_bss; 1899 bss_ref_get(rdev, bss_from_pub(tmp->pub.transmitted_bss)); 1900 } 1901 1902 list_add_tail(&new->list, &rdev->bss_list); 1903 rdev->bss_entries++; 1904 rb_insert_bss(rdev, new); 1905 found = new; 1906 } 1907 1908 rdev->bss_generation++; 1909 bss_ref_get(rdev, found); 1910 1911 return found; 1912 } 1913 1914 struct cfg80211_internal_bss * 1915 cfg80211_bss_update(struct cfg80211_registered_device *rdev, 1916 struct cfg80211_internal_bss *tmp, 1917 bool signal_valid, unsigned long ts) 1918 { 1919 struct cfg80211_internal_bss *res; 1920 1921 spin_lock_bh(&rdev->bss_lock); 1922 res = __cfg80211_bss_update(rdev, tmp, signal_valid, ts); 1923 spin_unlock_bh(&rdev->bss_lock); 1924 1925 return res; 1926 } 1927 1928 int cfg80211_get_ies_channel_number(const u8 *ie, size_t ielen, 1929 enum nl80211_band band) 1930 { 1931 const struct element *tmp; 1932 1933 if (band == NL80211_BAND_6GHZ) { 1934 struct ieee80211_he_operation *he_oper; 1935 1936 tmp = cfg80211_find_ext_elem(WLAN_EID_EXT_HE_OPERATION, ie, 1937 ielen); 1938 if (tmp && tmp->datalen >= sizeof(*he_oper) && 1939 tmp->datalen >= ieee80211_he_oper_size(&tmp->data[1])) { 1940 const struct ieee80211_he_6ghz_oper *he_6ghz_oper; 1941 1942 he_oper = (void *)&tmp->data[1]; 1943 1944 he_6ghz_oper = ieee80211_he_6ghz_oper(he_oper); 1945 if (!he_6ghz_oper) 1946 return -1; 1947 1948 return he_6ghz_oper->primary; 1949 } 1950 } else if (band == NL80211_BAND_S1GHZ) { 1951 tmp = cfg80211_find_elem(WLAN_EID_S1G_OPERATION, ie, ielen); 1952 if (tmp && tmp->datalen >= sizeof(struct ieee80211_s1g_oper_ie)) { 1953 struct ieee80211_s1g_oper_ie *s1gop = (void *)tmp->data; 1954 1955 return s1gop->oper_ch; 1956 } 1957 } else { 1958 tmp = cfg80211_find_elem(WLAN_EID_DS_PARAMS, ie, ielen); 1959 if (tmp && tmp->datalen == 1) 1960 return tmp->data[0]; 1961 1962 tmp = cfg80211_find_elem(WLAN_EID_HT_OPERATION, ie, ielen); 1963 if (tmp && 1964 tmp->datalen >= sizeof(struct ieee80211_ht_operation)) { 1965 struct ieee80211_ht_operation *htop = (void *)tmp->data; 1966 1967 return htop->primary_chan; 1968 } 1969 } 1970 1971 return -1; 1972 } 1973 EXPORT_SYMBOL(cfg80211_get_ies_channel_number); 1974 1975 /* 1976 * Update RX channel information based on the available frame payload 1977 * information. This is mainly for the 2.4 GHz band where frames can be received 1978 * from neighboring channels and the Beacon frames use the DSSS Parameter Set 1979 * element to indicate the current (transmitting) channel, but this might also 1980 * be needed on other bands if RX frequency does not match with the actual 1981 * operating channel of a BSS, or if the AP reports a different primary channel. 1982 */ 1983 static struct ieee80211_channel * 1984 cfg80211_get_bss_channel(struct wiphy *wiphy, const u8 *ie, size_t ielen, 1985 struct ieee80211_channel *channel) 1986 { 1987 u32 freq; 1988 int channel_number; 1989 struct ieee80211_channel *alt_channel; 1990 1991 channel_number = cfg80211_get_ies_channel_number(ie, ielen, 1992 channel->band); 1993 1994 if (channel_number < 0) { 1995 /* No channel information in frame payload */ 1996 return channel; 1997 } 1998 1999 freq = ieee80211_channel_to_freq_khz(channel_number, channel->band); 2000 2001 /* 2002 * Frame info (beacon/prob res) is the same as received channel, 2003 * no need for further processing. 2004 */ 2005 if (freq == ieee80211_channel_to_khz(channel)) 2006 return channel; 2007 2008 alt_channel = ieee80211_get_channel_khz(wiphy, freq); 2009 if (!alt_channel) { 2010 if (channel->band == NL80211_BAND_2GHZ || 2011 channel->band == NL80211_BAND_6GHZ) { 2012 /* 2013 * Better not allow unexpected channels when that could 2014 * be going beyond the 1-11 range (e.g., discovering 2015 * BSS on channel 12 when radio is configured for 2016 * channel 11) or beyond the 6 GHz channel range. 2017 */ 2018 return NULL; 2019 } 2020 2021 /* No match for the payload channel number - ignore it */ 2022 return channel; 2023 } 2024 2025 /* 2026 * Use the channel determined through the payload channel number 2027 * instead of the RX channel reported by the driver. 2028 */ 2029 if (alt_channel->flags & IEEE80211_CHAN_DISABLED) 2030 return NULL; 2031 return alt_channel; 2032 } 2033 2034 struct cfg80211_inform_single_bss_data { 2035 struct cfg80211_inform_bss *drv_data; 2036 enum cfg80211_bss_frame_type ftype; 2037 struct ieee80211_channel *channel; 2038 u8 bssid[ETH_ALEN]; 2039 u64 tsf; 2040 u16 capability; 2041 u16 beacon_interval; 2042 const u8 *ie; 2043 size_t ielen; 2044 2045 enum { 2046 BSS_SOURCE_DIRECT = 0, 2047 BSS_SOURCE_MBSSID, 2048 BSS_SOURCE_STA_PROFILE, 2049 } bss_source; 2050 /* Set if reporting bss_source != BSS_SOURCE_DIRECT */ 2051 struct cfg80211_bss *source_bss; 2052 u8 max_bssid_indicator; 2053 u8 bssid_index; 2054 2055 u8 use_for; 2056 u64 cannot_use_reasons; 2057 }; 2058 2059 /* Returned bss is reference counted and must be cleaned up appropriately. */ 2060 static struct cfg80211_bss * 2061 cfg80211_inform_single_bss_data(struct wiphy *wiphy, 2062 struct cfg80211_inform_single_bss_data *data, 2063 gfp_t gfp) 2064 { 2065 struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy); 2066 struct cfg80211_inform_bss *drv_data = data->drv_data; 2067 struct cfg80211_bss_ies *ies; 2068 struct ieee80211_channel *channel; 2069 struct cfg80211_internal_bss tmp = {}, *res; 2070 int bss_type; 2071 bool signal_valid; 2072 unsigned long ts; 2073 2074 if (WARN_ON(!wiphy)) 2075 return NULL; 2076 2077 if (WARN_ON(wiphy->signal_type == CFG80211_SIGNAL_TYPE_UNSPEC && 2078 (drv_data->signal < 0 || drv_data->signal > 100))) 2079 return NULL; 2080 2081 if (WARN_ON(data->bss_source != BSS_SOURCE_DIRECT && !data->source_bss)) 2082 return NULL; 2083 2084 channel = data->channel; 2085 if (!channel) 2086 channel = cfg80211_get_bss_channel(wiphy, data->ie, data->ielen, 2087 drv_data->chan); 2088 if (!channel) 2089 return NULL; 2090 2091 memcpy(tmp.pub.bssid, data->bssid, ETH_ALEN); 2092 tmp.pub.channel = channel; 2093 if (data->bss_source != BSS_SOURCE_STA_PROFILE) 2094 tmp.pub.signal = drv_data->signal; 2095 else 2096 tmp.pub.signal = 0; 2097 tmp.pub.beacon_interval = data->beacon_interval; 2098 tmp.pub.capability = data->capability; 2099 tmp.ts_boottime = drv_data->boottime_ns; 2100 tmp.parent_tsf = drv_data->parent_tsf; 2101 ether_addr_copy(tmp.parent_bssid, drv_data->parent_bssid); 2102 tmp.pub.use_for = data->use_for; 2103 tmp.pub.cannot_use_reasons = data->cannot_use_reasons; 2104 2105 if (data->bss_source != BSS_SOURCE_DIRECT) { 2106 tmp.pub.transmitted_bss = data->source_bss; 2107 ts = bss_from_pub(data->source_bss)->ts; 2108 tmp.pub.bssid_index = data->bssid_index; 2109 tmp.pub.max_bssid_indicator = data->max_bssid_indicator; 2110 } else { 2111 ts = jiffies; 2112 2113 if (channel->band == NL80211_BAND_60GHZ) { 2114 bss_type = data->capability & 2115 WLAN_CAPABILITY_DMG_TYPE_MASK; 2116 if (bss_type == WLAN_CAPABILITY_DMG_TYPE_AP || 2117 bss_type == WLAN_CAPABILITY_DMG_TYPE_PBSS) 2118 regulatory_hint_found_beacon(wiphy, channel, 2119 gfp); 2120 } else { 2121 if (data->capability & WLAN_CAPABILITY_ESS) 2122 regulatory_hint_found_beacon(wiphy, channel, 2123 gfp); 2124 } 2125 } 2126 2127 /* 2128 * If we do not know here whether the IEs are from a Beacon or Probe 2129 * Response frame, we need to pick one of the options and only use it 2130 * with the driver that does not provide the full Beacon/Probe Response 2131 * frame. Use Beacon frame pointer to avoid indicating that this should 2132 * override the IEs pointer should we have received an earlier 2133 * indication of Probe Response data. 2134 */ 2135 ies = kzalloc(sizeof(*ies) + data->ielen, gfp); 2136 if (!ies) 2137 return NULL; 2138 ies->len = data->ielen; 2139 ies->tsf = data->tsf; 2140 ies->from_beacon = false; 2141 memcpy(ies->data, data->ie, data->ielen); 2142 2143 switch (data->ftype) { 2144 case CFG80211_BSS_FTYPE_BEACON: 2145 ies->from_beacon = true; 2146 fallthrough; 2147 case CFG80211_BSS_FTYPE_UNKNOWN: 2148 rcu_assign_pointer(tmp.pub.beacon_ies, ies); 2149 break; 2150 case CFG80211_BSS_FTYPE_PRESP: 2151 rcu_assign_pointer(tmp.pub.proberesp_ies, ies); 2152 break; 2153 } 2154 rcu_assign_pointer(tmp.pub.ies, ies); 2155 2156 signal_valid = drv_data->chan == channel; 2157 spin_lock_bh(&rdev->bss_lock); 2158 res = __cfg80211_bss_update(rdev, &tmp, signal_valid, ts); 2159 if (!res) 2160 goto drop; 2161 2162 rdev_inform_bss(rdev, &res->pub, ies, drv_data->drv_data); 2163 2164 if (data->bss_source == BSS_SOURCE_MBSSID) { 2165 /* this is a nontransmitting bss, we need to add it to 2166 * transmitting bss' list if it is not there 2167 */ 2168 if (cfg80211_add_nontrans_list(data->source_bss, &res->pub)) { 2169 if (__cfg80211_unlink_bss(rdev, res)) { 2170 rdev->bss_generation++; 2171 res = NULL; 2172 } 2173 } 2174 2175 if (!res) 2176 goto drop; 2177 } 2178 spin_unlock_bh(&rdev->bss_lock); 2179 2180 trace_cfg80211_return_bss(&res->pub); 2181 /* __cfg80211_bss_update gives us a referenced result */ 2182 return &res->pub; 2183 2184 drop: 2185 spin_unlock_bh(&rdev->bss_lock); 2186 return NULL; 2187 } 2188 2189 static const struct element 2190 *cfg80211_get_profile_continuation(const u8 *ie, size_t ielen, 2191 const struct element *mbssid_elem, 2192 const struct element *sub_elem) 2193 { 2194 const u8 *mbssid_end = mbssid_elem->data + mbssid_elem->datalen; 2195 const struct element *next_mbssid; 2196 const struct element *next_sub; 2197 2198 next_mbssid = cfg80211_find_elem(WLAN_EID_MULTIPLE_BSSID, 2199 mbssid_end, 2200 ielen - (mbssid_end - ie)); 2201 2202 /* 2203 * If it is not the last subelement in current MBSSID IE or there isn't 2204 * a next MBSSID IE - profile is complete. 2205 */ 2206 if ((sub_elem->data + sub_elem->datalen < mbssid_end - 1) || 2207 !next_mbssid) 2208 return NULL; 2209 2210 /* For any length error, just return NULL */ 2211 2212 if (next_mbssid->datalen < 4) 2213 return NULL; 2214 2215 next_sub = (void *)&next_mbssid->data[1]; 2216 2217 if (next_mbssid->data + next_mbssid->datalen < 2218 next_sub->data + next_sub->datalen) 2219 return NULL; 2220 2221 if (next_sub->id != 0 || next_sub->datalen < 2) 2222 return NULL; 2223 2224 /* 2225 * Check if the first element in the next sub element is a start 2226 * of a new profile 2227 */ 2228 return next_sub->data[0] == WLAN_EID_NON_TX_BSSID_CAP ? 2229 NULL : next_mbssid; 2230 } 2231 2232 size_t cfg80211_merge_profile(const u8 *ie, size_t ielen, 2233 const struct element *mbssid_elem, 2234 const struct element *sub_elem, 2235 u8 *merged_ie, size_t max_copy_len) 2236 { 2237 size_t copied_len = sub_elem->datalen; 2238 const struct element *next_mbssid; 2239 2240 if (sub_elem->datalen > max_copy_len) 2241 return 0; 2242 2243 memcpy(merged_ie, sub_elem->data, sub_elem->datalen); 2244 2245 while ((next_mbssid = cfg80211_get_profile_continuation(ie, ielen, 2246 mbssid_elem, 2247 sub_elem))) { 2248 const struct element *next_sub = (void *)&next_mbssid->data[1]; 2249 2250 if (copied_len + next_sub->datalen > max_copy_len) 2251 break; 2252 memcpy(merged_ie + copied_len, next_sub->data, 2253 next_sub->datalen); 2254 copied_len += next_sub->datalen; 2255 } 2256 2257 return copied_len; 2258 } 2259 EXPORT_SYMBOL(cfg80211_merge_profile); 2260 2261 static void 2262 cfg80211_parse_mbssid_data(struct wiphy *wiphy, 2263 struct cfg80211_inform_single_bss_data *tx_data, 2264 struct cfg80211_bss *source_bss, 2265 gfp_t gfp) 2266 { 2267 struct cfg80211_inform_single_bss_data data = { 2268 .drv_data = tx_data->drv_data, 2269 .ftype = tx_data->ftype, 2270 .tsf = tx_data->tsf, 2271 .beacon_interval = tx_data->beacon_interval, 2272 .source_bss = source_bss, 2273 .bss_source = BSS_SOURCE_MBSSID, 2274 .use_for = tx_data->use_for, 2275 .cannot_use_reasons = tx_data->cannot_use_reasons, 2276 }; 2277 const u8 *mbssid_index_ie; 2278 const struct element *elem, *sub; 2279 u8 *new_ie, *profile; 2280 u64 seen_indices = 0; 2281 struct cfg80211_bss *bss; 2282 2283 if (!source_bss) 2284 return; 2285 if (!cfg80211_find_elem(WLAN_EID_MULTIPLE_BSSID, 2286 tx_data->ie, tx_data->ielen)) 2287 return; 2288 if (!wiphy->support_mbssid) 2289 return; 2290 if (wiphy->support_only_he_mbssid && 2291 !cfg80211_find_ext_elem(WLAN_EID_EXT_HE_CAPABILITY, 2292 tx_data->ie, tx_data->ielen)) 2293 return; 2294 2295 new_ie = kmalloc(IEEE80211_MAX_DATA_LEN, gfp); 2296 if (!new_ie) 2297 return; 2298 2299 profile = kmalloc(tx_data->ielen, gfp); 2300 if (!profile) 2301 goto out; 2302 2303 for_each_element_id(elem, WLAN_EID_MULTIPLE_BSSID, 2304 tx_data->ie, tx_data->ielen) { 2305 if (elem->datalen < 4) 2306 continue; 2307 if (elem->data[0] < 1 || (int)elem->data[0] > 8) 2308 continue; 2309 for_each_element(sub, elem->data + 1, elem->datalen - 1) { 2310 u8 profile_len; 2311 2312 if (sub->id != 0 || sub->datalen < 4) { 2313 /* not a valid BSS profile */ 2314 continue; 2315 } 2316 2317 if (sub->data[0] != WLAN_EID_NON_TX_BSSID_CAP || 2318 sub->data[1] != 2) { 2319 /* The first element within the Nontransmitted 2320 * BSSID Profile is not the Nontransmitted 2321 * BSSID Capability element. 2322 */ 2323 continue; 2324 } 2325 2326 memset(profile, 0, tx_data->ielen); 2327 profile_len = cfg80211_merge_profile(tx_data->ie, 2328 tx_data->ielen, 2329 elem, 2330 sub, 2331 profile, 2332 tx_data->ielen); 2333 2334 /* found a Nontransmitted BSSID Profile */ 2335 mbssid_index_ie = cfg80211_find_ie 2336 (WLAN_EID_MULTI_BSSID_IDX, 2337 profile, profile_len); 2338 if (!mbssid_index_ie || mbssid_index_ie[1] < 1 || 2339 mbssid_index_ie[2] == 0 || 2340 mbssid_index_ie[2] > 46) { 2341 /* No valid Multiple BSSID-Index element */ 2342 continue; 2343 } 2344 2345 if (seen_indices & BIT_ULL(mbssid_index_ie[2])) 2346 /* We don't support legacy split of a profile */ 2347 net_dbg_ratelimited("Partial info for BSSID index %d\n", 2348 mbssid_index_ie[2]); 2349 2350 seen_indices |= BIT_ULL(mbssid_index_ie[2]); 2351 2352 data.bssid_index = mbssid_index_ie[2]; 2353 data.max_bssid_indicator = elem->data[0]; 2354 2355 cfg80211_gen_new_bssid(tx_data->bssid, 2356 data.max_bssid_indicator, 2357 data.bssid_index, 2358 data.bssid); 2359 2360 memset(new_ie, 0, IEEE80211_MAX_DATA_LEN); 2361 data.ie = new_ie; 2362 data.ielen = cfg80211_gen_new_ie(tx_data->ie, 2363 tx_data->ielen, 2364 profile, 2365 profile_len, 2366 new_ie, 2367 IEEE80211_MAX_DATA_LEN); 2368 if (!data.ielen) 2369 continue; 2370 2371 data.capability = get_unaligned_le16(profile + 2); 2372 bss = cfg80211_inform_single_bss_data(wiphy, &data, gfp); 2373 if (!bss) 2374 break; 2375 cfg80211_put_bss(wiphy, bss); 2376 } 2377 } 2378 2379 out: 2380 kfree(new_ie); 2381 kfree(profile); 2382 } 2383 2384 ssize_t cfg80211_defragment_element(const struct element *elem, const u8 *ies, 2385 size_t ieslen, u8 *data, size_t data_len, 2386 u8 frag_id) 2387 { 2388 const struct element *next; 2389 ssize_t copied; 2390 u8 elem_datalen; 2391 2392 if (!elem) 2393 return -EINVAL; 2394 2395 /* elem might be invalid after the memmove */ 2396 next = (void *)(elem->data + elem->datalen); 2397 elem_datalen = elem->datalen; 2398 2399 if (elem->id == WLAN_EID_EXTENSION) { 2400 copied = elem->datalen - 1; 2401 if (copied > data_len) 2402 return -ENOSPC; 2403 2404 memmove(data, elem->data + 1, copied); 2405 } else { 2406 copied = elem->datalen; 2407 if (copied > data_len) 2408 return -ENOSPC; 2409 2410 memmove(data, elem->data, copied); 2411 } 2412 2413 /* Fragmented elements must have 255 bytes */ 2414 if (elem_datalen < 255) 2415 return copied; 2416 2417 for (elem = next; 2418 elem->data < ies + ieslen && 2419 elem->data + elem->datalen <= ies + ieslen; 2420 elem = next) { 2421 /* elem might be invalid after the memmove */ 2422 next = (void *)(elem->data + elem->datalen); 2423 2424 if (elem->id != frag_id) 2425 break; 2426 2427 elem_datalen = elem->datalen; 2428 2429 if (copied + elem_datalen > data_len) 2430 return -ENOSPC; 2431 2432 memmove(data + copied, elem->data, elem_datalen); 2433 copied += elem_datalen; 2434 2435 /* Only the last fragment may be short */ 2436 if (elem_datalen != 255) 2437 break; 2438 } 2439 2440 return copied; 2441 } 2442 EXPORT_SYMBOL(cfg80211_defragment_element); 2443 2444 struct cfg80211_mle { 2445 struct ieee80211_multi_link_elem *mle; 2446 struct ieee80211_mle_per_sta_profile 2447 *sta_prof[IEEE80211_MLD_MAX_NUM_LINKS]; 2448 ssize_t sta_prof_len[IEEE80211_MLD_MAX_NUM_LINKS]; 2449 2450 u8 data[]; 2451 }; 2452 2453 static struct cfg80211_mle * 2454 cfg80211_defrag_mle(const struct element *mle, const u8 *ie, size_t ielen, 2455 gfp_t gfp) 2456 { 2457 const struct element *elem; 2458 struct cfg80211_mle *res; 2459 size_t buf_len; 2460 ssize_t mle_len; 2461 u8 common_size, idx; 2462 2463 if (!mle || !ieee80211_mle_size_ok(mle->data + 1, mle->datalen - 1)) 2464 return NULL; 2465 2466 /* Required length for first defragmentation */ 2467 buf_len = mle->datalen - 1; 2468 for_each_element(elem, mle->data + mle->datalen, 2469 ielen - sizeof(*mle) + mle->datalen) { 2470 if (elem->id != WLAN_EID_FRAGMENT) 2471 break; 2472 2473 buf_len += elem->datalen; 2474 } 2475 2476 res = kzalloc(struct_size(res, data, buf_len), gfp); 2477 if (!res) 2478 return NULL; 2479 2480 mle_len = cfg80211_defragment_element(mle, ie, ielen, 2481 res->data, buf_len, 2482 WLAN_EID_FRAGMENT); 2483 if (mle_len < 0) 2484 goto error; 2485 2486 res->mle = (void *)res->data; 2487 2488 /* Find the sub-element area in the buffer */ 2489 common_size = ieee80211_mle_common_size((u8 *)res->mle); 2490 ie = res->data + common_size; 2491 ielen = mle_len - common_size; 2492 2493 idx = 0; 2494 for_each_element_id(elem, IEEE80211_MLE_SUBELEM_PER_STA_PROFILE, 2495 ie, ielen) { 2496 res->sta_prof[idx] = (void *)elem->data; 2497 res->sta_prof_len[idx] = elem->datalen; 2498 2499 idx++; 2500 if (idx >= IEEE80211_MLD_MAX_NUM_LINKS) 2501 break; 2502 } 2503 if (!for_each_element_completed(elem, ie, ielen)) 2504 goto error; 2505 2506 /* Defragment sta_info in-place */ 2507 for (idx = 0; idx < IEEE80211_MLD_MAX_NUM_LINKS && res->sta_prof[idx]; 2508 idx++) { 2509 if (res->sta_prof_len[idx] < 255) 2510 continue; 2511 2512 elem = (void *)res->sta_prof[idx] - 2; 2513 2514 if (idx + 1 < ARRAY_SIZE(res->sta_prof) && 2515 res->sta_prof[idx + 1]) 2516 buf_len = (u8 *)res->sta_prof[idx + 1] - 2517 (u8 *)res->sta_prof[idx]; 2518 else 2519 buf_len = ielen + ie - (u8 *)elem; 2520 2521 res->sta_prof_len[idx] = 2522 cfg80211_defragment_element(elem, 2523 (u8 *)elem, buf_len, 2524 (u8 *)res->sta_prof[idx], 2525 buf_len, 2526 IEEE80211_MLE_SUBELEM_FRAGMENT); 2527 if (res->sta_prof_len[idx] < 0) 2528 goto error; 2529 } 2530 2531 return res; 2532 2533 error: 2534 kfree(res); 2535 return NULL; 2536 } 2537 2538 static u8 2539 cfg80211_tbtt_info_for_mld_ap(const u8 *ie, size_t ielen, u8 mld_id, u8 link_id, 2540 const struct ieee80211_neighbor_ap_info **ap_info, 2541 const u8 **tbtt_info) 2542 { 2543 const struct ieee80211_neighbor_ap_info *info; 2544 const struct element *rnr; 2545 const u8 *pos, *end; 2546 2547 for_each_element_id(rnr, WLAN_EID_REDUCED_NEIGHBOR_REPORT, ie, ielen) { 2548 pos = rnr->data; 2549 end = rnr->data + rnr->datalen; 2550 2551 /* RNR IE may contain more than one NEIGHBOR_AP_INFO */ 2552 while (sizeof(*info) <= end - pos) { 2553 const struct ieee80211_rnr_mld_params *mld_params; 2554 u16 params; 2555 u8 length, i, count, mld_params_offset; 2556 u8 type, lid; 2557 u32 use_for; 2558 2559 info = (void *)pos; 2560 count = u8_get_bits(info->tbtt_info_hdr, 2561 IEEE80211_AP_INFO_TBTT_HDR_COUNT) + 1; 2562 length = info->tbtt_info_len; 2563 2564 pos += sizeof(*info); 2565 2566 if (count * length > end - pos) 2567 return 0; 2568 2569 type = u8_get_bits(info->tbtt_info_hdr, 2570 IEEE80211_AP_INFO_TBTT_HDR_TYPE); 2571 2572 if (type == IEEE80211_TBTT_INFO_TYPE_TBTT && 2573 length >= 2574 offsetofend(struct ieee80211_tbtt_info_ge_11, 2575 mld_params)) { 2576 mld_params_offset = 2577 offsetof(struct ieee80211_tbtt_info_ge_11, mld_params); 2578 use_for = NL80211_BSS_USE_FOR_ALL; 2579 } else if (type == IEEE80211_TBTT_INFO_TYPE_MLD && 2580 length >= sizeof(struct ieee80211_rnr_mld_params)) { 2581 mld_params_offset = 0; 2582 use_for = NL80211_BSS_USE_FOR_MLD_LINK; 2583 } else { 2584 pos += count * length; 2585 continue; 2586 } 2587 2588 for (i = 0; i < count; i++) { 2589 mld_params = (void *)pos + mld_params_offset; 2590 params = le16_to_cpu(mld_params->params); 2591 2592 lid = u16_get_bits(params, 2593 IEEE80211_RNR_MLD_PARAMS_LINK_ID); 2594 2595 if (mld_id == mld_params->mld_id && 2596 link_id == lid) { 2597 *ap_info = info; 2598 *tbtt_info = pos; 2599 2600 return use_for; 2601 } 2602 2603 pos += length; 2604 } 2605 } 2606 } 2607 2608 return 0; 2609 } 2610 2611 static void cfg80211_parse_ml_sta_data(struct wiphy *wiphy, 2612 struct cfg80211_inform_single_bss_data *tx_data, 2613 struct cfg80211_bss *source_bss, 2614 gfp_t gfp) 2615 { 2616 struct cfg80211_inform_single_bss_data data = { 2617 .drv_data = tx_data->drv_data, 2618 .ftype = tx_data->ftype, 2619 .source_bss = source_bss, 2620 .bss_source = BSS_SOURCE_STA_PROFILE, 2621 }; 2622 struct ieee80211_multi_link_elem *ml_elem; 2623 const struct element *elem; 2624 struct cfg80211_mle *mle; 2625 u16 control; 2626 u8 ml_common_len; 2627 u8 *new_ie; 2628 struct cfg80211_bss *bss; 2629 int mld_id; 2630 u16 seen_links = 0; 2631 const u8 *pos; 2632 u8 i; 2633 2634 if (!source_bss) 2635 return; 2636 2637 if (tx_data->ftype != CFG80211_BSS_FTYPE_PRESP) 2638 return; 2639 2640 elem = cfg80211_find_ext_elem(WLAN_EID_EXT_EHT_MULTI_LINK, 2641 tx_data->ie, tx_data->ielen); 2642 if (!elem || !ieee80211_mle_size_ok(elem->data + 1, elem->datalen - 1)) 2643 return; 2644 2645 ml_elem = (void *)elem->data + 1; 2646 control = le16_to_cpu(ml_elem->control); 2647 if (u16_get_bits(control, IEEE80211_ML_CONTROL_TYPE) != 2648 IEEE80211_ML_CONTROL_TYPE_BASIC) 2649 return; 2650 2651 /* Must be present when transmitted by an AP (in a probe response) */ 2652 if (!(control & IEEE80211_MLC_BASIC_PRES_BSS_PARAM_CH_CNT) || 2653 !(control & IEEE80211_MLC_BASIC_PRES_LINK_ID) || 2654 !(control & IEEE80211_MLC_BASIC_PRES_MLD_CAPA_OP)) 2655 return; 2656 2657 ml_common_len = ml_elem->variable[0]; 2658 2659 /* length + MLD MAC address + link ID info + BSS Params Change Count */ 2660 pos = ml_elem->variable + 1 + 6 + 1 + 1; 2661 2662 if (u16_get_bits(control, IEEE80211_MLC_BASIC_PRES_MED_SYNC_DELAY)) 2663 pos += 2; 2664 if (u16_get_bits(control, IEEE80211_MLC_BASIC_PRES_EML_CAPA)) 2665 pos += 2; 2666 2667 /* MLD capabilities and operations */ 2668 pos += 2; 2669 2670 /* Not included when the (nontransmitted) AP is responding itself, 2671 * but defined to zero then (Draft P802.11be_D3.0, 9.4.2.170.2) 2672 */ 2673 if (u16_get_bits(control, IEEE80211_MLC_BASIC_PRES_MLD_ID)) { 2674 mld_id = *pos; 2675 pos += 1; 2676 } else { 2677 mld_id = 0; 2678 } 2679 2680 /* Extended MLD capabilities and operations */ 2681 pos += 2; 2682 2683 /* Fully defrag the ML element for sta information/profile iteration */ 2684 mle = cfg80211_defrag_mle(elem, tx_data->ie, tx_data->ielen, gfp); 2685 if (!mle) 2686 return; 2687 2688 new_ie = kmalloc(IEEE80211_MAX_DATA_LEN, gfp); 2689 if (!new_ie) 2690 goto out; 2691 2692 for (i = 0; i < ARRAY_SIZE(mle->sta_prof) && mle->sta_prof[i]; i++) { 2693 const struct ieee80211_neighbor_ap_info *ap_info; 2694 enum nl80211_band band; 2695 u32 freq; 2696 const u8 *profile; 2697 const u8 *tbtt_info; 2698 ssize_t profile_len; 2699 u8 link_id, use_for; 2700 2701 if (!ieee80211_mle_basic_sta_prof_size_ok((u8 *)mle->sta_prof[i], 2702 mle->sta_prof_len[i])) 2703 continue; 2704 2705 control = le16_to_cpu(mle->sta_prof[i]->control); 2706 2707 if (!(control & IEEE80211_MLE_STA_CONTROL_COMPLETE_PROFILE)) 2708 continue; 2709 2710 link_id = u16_get_bits(control, 2711 IEEE80211_MLE_STA_CONTROL_LINK_ID); 2712 if (seen_links & BIT(link_id)) 2713 break; 2714 seen_links |= BIT(link_id); 2715 2716 if (!(control & IEEE80211_MLE_STA_CONTROL_BEACON_INT_PRESENT) || 2717 !(control & IEEE80211_MLE_STA_CONTROL_TSF_OFFS_PRESENT) || 2718 !(control & IEEE80211_MLE_STA_CONTROL_STA_MAC_ADDR_PRESENT)) 2719 continue; 2720 2721 memcpy(data.bssid, mle->sta_prof[i]->variable, ETH_ALEN); 2722 data.beacon_interval = 2723 get_unaligned_le16(mle->sta_prof[i]->variable + 6); 2724 data.tsf = tx_data->tsf + 2725 get_unaligned_le64(mle->sta_prof[i]->variable + 8); 2726 2727 /* sta_info_len counts itself */ 2728 profile = mle->sta_prof[i]->variable + 2729 mle->sta_prof[i]->sta_info_len - 1; 2730 profile_len = (u8 *)mle->sta_prof[i] + mle->sta_prof_len[i] - 2731 profile; 2732 2733 if (profile_len < 2) 2734 continue; 2735 2736 data.capability = get_unaligned_le16(profile); 2737 profile += 2; 2738 profile_len -= 2; 2739 2740 /* Find in RNR to look up channel information */ 2741 use_for = cfg80211_tbtt_info_for_mld_ap(tx_data->ie, 2742 tx_data->ielen, 2743 mld_id, link_id, 2744 &ap_info, &tbtt_info); 2745 if (!use_for) 2746 continue; 2747 2748 /* We could sanity check the BSSID is included */ 2749 2750 if (!ieee80211_operating_class_to_band(ap_info->op_class, 2751 &band)) 2752 continue; 2753 2754 freq = ieee80211_channel_to_freq_khz(ap_info->channel, band); 2755 data.channel = ieee80211_get_channel_khz(wiphy, freq); 2756 2757 if (use_for == NL80211_BSS_USE_FOR_MLD_LINK && 2758 !(wiphy->flags & WIPHY_FLAG_SUPPORTS_NSTR_NONPRIMARY)) { 2759 use_for = 0; 2760 data.cannot_use_reasons = 2761 NL80211_BSS_CANNOT_USE_NSTR_NONPRIMARY; 2762 } 2763 data.use_for = use_for; 2764 2765 /* Generate new elements */ 2766 memset(new_ie, 0, IEEE80211_MAX_DATA_LEN); 2767 data.ie = new_ie; 2768 data.ielen = cfg80211_gen_new_ie(tx_data->ie, tx_data->ielen, 2769 profile, profile_len, 2770 new_ie, 2771 IEEE80211_MAX_DATA_LEN); 2772 if (!data.ielen) 2773 continue; 2774 2775 /* The generated elements do not contain: 2776 * - Basic ML element 2777 * - A TBTT entry in the RNR for the transmitting AP 2778 * 2779 * This information is needed both internally and in userspace 2780 * as such, we should append it here. 2781 */ 2782 if (data.ielen + 3 + sizeof(*ml_elem) + ml_common_len > 2783 IEEE80211_MAX_DATA_LEN) 2784 continue; 2785 2786 /* Copy the Basic Multi-Link element including the common 2787 * information, and then fix up the link ID. 2788 * Note that the ML element length has been verified and we 2789 * also checked that it contains the link ID. 2790 */ 2791 new_ie[data.ielen++] = WLAN_EID_EXTENSION; 2792 new_ie[data.ielen++] = 1 + sizeof(*ml_elem) + ml_common_len; 2793 new_ie[data.ielen++] = WLAN_EID_EXT_EHT_MULTI_LINK; 2794 memcpy(new_ie + data.ielen, ml_elem, 2795 sizeof(*ml_elem) + ml_common_len); 2796 2797 new_ie[data.ielen + sizeof(*ml_elem) + 1 + ETH_ALEN] = link_id; 2798 2799 data.ielen += sizeof(*ml_elem) + ml_common_len; 2800 2801 /* TODO: Add an RNR containing only the reporting AP */ 2802 2803 bss = cfg80211_inform_single_bss_data(wiphy, &data, gfp); 2804 if (!bss) 2805 break; 2806 cfg80211_put_bss(wiphy, bss); 2807 } 2808 2809 out: 2810 kfree(new_ie); 2811 kfree(mle); 2812 } 2813 2814 struct cfg80211_bss * 2815 cfg80211_inform_bss_data(struct wiphy *wiphy, 2816 struct cfg80211_inform_bss *data, 2817 enum cfg80211_bss_frame_type ftype, 2818 const u8 *bssid, u64 tsf, u16 capability, 2819 u16 beacon_interval, const u8 *ie, size_t ielen, 2820 gfp_t gfp) 2821 { 2822 struct cfg80211_inform_single_bss_data inform_data = { 2823 .drv_data = data, 2824 .ftype = ftype, 2825 .tsf = tsf, 2826 .capability = capability, 2827 .beacon_interval = beacon_interval, 2828 .ie = ie, 2829 .ielen = ielen, 2830 .use_for = data->restrict_use ? 2831 data->use_for : 2832 NL80211_BSS_USE_FOR_ALL, 2833 .cannot_use_reasons = data->cannot_use_reasons, 2834 }; 2835 struct cfg80211_bss *res; 2836 2837 memcpy(inform_data.bssid, bssid, ETH_ALEN); 2838 2839 res = cfg80211_inform_single_bss_data(wiphy, &inform_data, gfp); 2840 if (!res) 2841 return NULL; 2842 2843 cfg80211_parse_mbssid_data(wiphy, &inform_data, res, gfp); 2844 2845 cfg80211_parse_ml_sta_data(wiphy, &inform_data, res, gfp); 2846 2847 return res; 2848 } 2849 EXPORT_SYMBOL(cfg80211_inform_bss_data); 2850 2851 /* cfg80211_inform_bss_width_frame helper */ 2852 static struct cfg80211_bss * 2853 cfg80211_inform_single_bss_frame_data(struct wiphy *wiphy, 2854 struct cfg80211_inform_bss *data, 2855 struct ieee80211_mgmt *mgmt, size_t len, 2856 gfp_t gfp) 2857 { 2858 struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy); 2859 struct cfg80211_internal_bss tmp = {}, *res; 2860 struct cfg80211_bss_ies *ies; 2861 struct ieee80211_channel *channel; 2862 bool signal_valid; 2863 struct ieee80211_ext *ext = NULL; 2864 u8 *bssid, *variable; 2865 u16 capability, beacon_int; 2866 size_t ielen, min_hdr_len = offsetof(struct ieee80211_mgmt, 2867 u.probe_resp.variable); 2868 int bss_type; 2869 2870 BUILD_BUG_ON(offsetof(struct ieee80211_mgmt, u.probe_resp.variable) != 2871 offsetof(struct ieee80211_mgmt, u.beacon.variable)); 2872 2873 trace_cfg80211_inform_bss_frame(wiphy, data, mgmt, len); 2874 2875 if (WARN_ON(!mgmt)) 2876 return NULL; 2877 2878 if (WARN_ON(!wiphy)) 2879 return NULL; 2880 2881 if (WARN_ON(wiphy->signal_type == CFG80211_SIGNAL_TYPE_UNSPEC && 2882 (data->signal < 0 || data->signal > 100))) 2883 return NULL; 2884 2885 if (ieee80211_is_s1g_beacon(mgmt->frame_control)) { 2886 ext = (void *) mgmt; 2887 min_hdr_len = offsetof(struct ieee80211_ext, u.s1g_beacon); 2888 if (ieee80211_is_s1g_short_beacon(mgmt->frame_control)) 2889 min_hdr_len = offsetof(struct ieee80211_ext, 2890 u.s1g_short_beacon.variable); 2891 } 2892 2893 if (WARN_ON(len < min_hdr_len)) 2894 return NULL; 2895 2896 ielen = len - min_hdr_len; 2897 variable = mgmt->u.probe_resp.variable; 2898 if (ext) { 2899 if (ieee80211_is_s1g_short_beacon(mgmt->frame_control)) 2900 variable = ext->u.s1g_short_beacon.variable; 2901 else 2902 variable = ext->u.s1g_beacon.variable; 2903 } 2904 2905 channel = cfg80211_get_bss_channel(wiphy, variable, ielen, data->chan); 2906 if (!channel) 2907 return NULL; 2908 2909 if (ext) { 2910 const struct ieee80211_s1g_bcn_compat_ie *compat; 2911 const struct element *elem; 2912 2913 elem = cfg80211_find_elem(WLAN_EID_S1G_BCN_COMPAT, 2914 variable, ielen); 2915 if (!elem) 2916 return NULL; 2917 if (elem->datalen < sizeof(*compat)) 2918 return NULL; 2919 compat = (void *)elem->data; 2920 bssid = ext->u.s1g_beacon.sa; 2921 capability = le16_to_cpu(compat->compat_info); 2922 beacon_int = le16_to_cpu(compat->beacon_int); 2923 } else { 2924 bssid = mgmt->bssid; 2925 beacon_int = le16_to_cpu(mgmt->u.probe_resp.beacon_int); 2926 capability = le16_to_cpu(mgmt->u.probe_resp.capab_info); 2927 } 2928 2929 if (channel->band == NL80211_BAND_60GHZ) { 2930 bss_type = capability & WLAN_CAPABILITY_DMG_TYPE_MASK; 2931 if (bss_type == WLAN_CAPABILITY_DMG_TYPE_AP || 2932 bss_type == WLAN_CAPABILITY_DMG_TYPE_PBSS) 2933 regulatory_hint_found_beacon(wiphy, channel, gfp); 2934 } else { 2935 if (capability & WLAN_CAPABILITY_ESS) 2936 regulatory_hint_found_beacon(wiphy, channel, gfp); 2937 } 2938 2939 ies = kzalloc(sizeof(*ies) + ielen, gfp); 2940 if (!ies) 2941 return NULL; 2942 ies->len = ielen; 2943 ies->tsf = le64_to_cpu(mgmt->u.probe_resp.timestamp); 2944 ies->from_beacon = ieee80211_is_beacon(mgmt->frame_control) || 2945 ieee80211_is_s1g_beacon(mgmt->frame_control); 2946 memcpy(ies->data, variable, ielen); 2947 2948 if (ieee80211_is_probe_resp(mgmt->frame_control)) 2949 rcu_assign_pointer(tmp.pub.proberesp_ies, ies); 2950 else 2951 rcu_assign_pointer(tmp.pub.beacon_ies, ies); 2952 rcu_assign_pointer(tmp.pub.ies, ies); 2953 2954 memcpy(tmp.pub.bssid, bssid, ETH_ALEN); 2955 tmp.pub.beacon_interval = beacon_int; 2956 tmp.pub.capability = capability; 2957 tmp.pub.channel = channel; 2958 tmp.pub.signal = data->signal; 2959 tmp.ts_boottime = data->boottime_ns; 2960 tmp.parent_tsf = data->parent_tsf; 2961 tmp.pub.chains = data->chains; 2962 memcpy(tmp.pub.chain_signal, data->chain_signal, IEEE80211_MAX_CHAINS); 2963 ether_addr_copy(tmp.parent_bssid, data->parent_bssid); 2964 tmp.pub.use_for = data->restrict_use ? 2965 data->use_for : 2966 NL80211_BSS_USE_FOR_ALL; 2967 tmp.pub.cannot_use_reasons = data->cannot_use_reasons; 2968 2969 signal_valid = data->chan == channel; 2970 spin_lock_bh(&rdev->bss_lock); 2971 res = __cfg80211_bss_update(rdev, &tmp, signal_valid, jiffies); 2972 if (!res) 2973 goto drop; 2974 2975 rdev_inform_bss(rdev, &res->pub, ies, data->drv_data); 2976 2977 spin_unlock_bh(&rdev->bss_lock); 2978 2979 trace_cfg80211_return_bss(&res->pub); 2980 /* __cfg80211_bss_update gives us a referenced result */ 2981 return &res->pub; 2982 2983 drop: 2984 spin_unlock_bh(&rdev->bss_lock); 2985 return NULL; 2986 } 2987 2988 struct cfg80211_bss * 2989 cfg80211_inform_bss_frame_data(struct wiphy *wiphy, 2990 struct cfg80211_inform_bss *data, 2991 struct ieee80211_mgmt *mgmt, size_t len, 2992 gfp_t gfp) 2993 { 2994 struct cfg80211_inform_single_bss_data inform_data = { 2995 .drv_data = data, 2996 .ie = mgmt->u.probe_resp.variable, 2997 .ielen = len - offsetof(struct ieee80211_mgmt, 2998 u.probe_resp.variable), 2999 .use_for = data->restrict_use ? 3000 data->use_for : 3001 NL80211_BSS_USE_FOR_ALL, 3002 .cannot_use_reasons = data->cannot_use_reasons, 3003 }; 3004 struct cfg80211_bss *res; 3005 3006 res = cfg80211_inform_single_bss_frame_data(wiphy, data, mgmt, 3007 len, gfp); 3008 if (!res) 3009 return NULL; 3010 3011 /* don't do any further MBSSID/ML handling for S1G */ 3012 if (ieee80211_is_s1g_beacon(mgmt->frame_control)) 3013 return res; 3014 3015 inform_data.ftype = ieee80211_is_beacon(mgmt->frame_control) ? 3016 CFG80211_BSS_FTYPE_BEACON : CFG80211_BSS_FTYPE_PRESP; 3017 memcpy(inform_data.bssid, mgmt->bssid, ETH_ALEN); 3018 inform_data.tsf = le64_to_cpu(mgmt->u.probe_resp.timestamp); 3019 inform_data.beacon_interval = 3020 le16_to_cpu(mgmt->u.probe_resp.beacon_int); 3021 3022 /* process each non-transmitting bss */ 3023 cfg80211_parse_mbssid_data(wiphy, &inform_data, res, gfp); 3024 3025 cfg80211_parse_ml_sta_data(wiphy, &inform_data, res, gfp); 3026 3027 return res; 3028 } 3029 EXPORT_SYMBOL(cfg80211_inform_bss_frame_data); 3030 3031 void cfg80211_ref_bss(struct wiphy *wiphy, struct cfg80211_bss *pub) 3032 { 3033 struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy); 3034 3035 if (!pub) 3036 return; 3037 3038 spin_lock_bh(&rdev->bss_lock); 3039 bss_ref_get(rdev, bss_from_pub(pub)); 3040 spin_unlock_bh(&rdev->bss_lock); 3041 } 3042 EXPORT_SYMBOL(cfg80211_ref_bss); 3043 3044 void cfg80211_put_bss(struct wiphy *wiphy, struct cfg80211_bss *pub) 3045 { 3046 struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy); 3047 3048 if (!pub) 3049 return; 3050 3051 spin_lock_bh(&rdev->bss_lock); 3052 bss_ref_put(rdev, bss_from_pub(pub)); 3053 spin_unlock_bh(&rdev->bss_lock); 3054 } 3055 EXPORT_SYMBOL(cfg80211_put_bss); 3056 3057 void cfg80211_unlink_bss(struct wiphy *wiphy, struct cfg80211_bss *pub) 3058 { 3059 struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy); 3060 struct cfg80211_internal_bss *bss, *tmp1; 3061 struct cfg80211_bss *nontrans_bss, *tmp; 3062 3063 if (WARN_ON(!pub)) 3064 return; 3065 3066 bss = bss_from_pub(pub); 3067 3068 spin_lock_bh(&rdev->bss_lock); 3069 if (list_empty(&bss->list)) 3070 goto out; 3071 3072 list_for_each_entry_safe(nontrans_bss, tmp, 3073 &pub->nontrans_list, 3074 nontrans_list) { 3075 tmp1 = bss_from_pub(nontrans_bss); 3076 if (__cfg80211_unlink_bss(rdev, tmp1)) 3077 rdev->bss_generation++; 3078 } 3079 3080 if (__cfg80211_unlink_bss(rdev, bss)) 3081 rdev->bss_generation++; 3082 out: 3083 spin_unlock_bh(&rdev->bss_lock); 3084 } 3085 EXPORT_SYMBOL(cfg80211_unlink_bss); 3086 3087 void cfg80211_bss_iter(struct wiphy *wiphy, 3088 struct cfg80211_chan_def *chandef, 3089 void (*iter)(struct wiphy *wiphy, 3090 struct cfg80211_bss *bss, 3091 void *data), 3092 void *iter_data) 3093 { 3094 struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy); 3095 struct cfg80211_internal_bss *bss; 3096 3097 spin_lock_bh(&rdev->bss_lock); 3098 3099 list_for_each_entry(bss, &rdev->bss_list, list) { 3100 if (!chandef || cfg80211_is_sub_chan(chandef, bss->pub.channel, 3101 false)) 3102 iter(wiphy, &bss->pub, iter_data); 3103 } 3104 3105 spin_unlock_bh(&rdev->bss_lock); 3106 } 3107 EXPORT_SYMBOL(cfg80211_bss_iter); 3108 3109 void cfg80211_update_assoc_bss_entry(struct wireless_dev *wdev, 3110 unsigned int link_id, 3111 struct ieee80211_channel *chan) 3112 { 3113 struct wiphy *wiphy = wdev->wiphy; 3114 struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy); 3115 struct cfg80211_internal_bss *cbss = wdev->links[link_id].client.current_bss; 3116 struct cfg80211_internal_bss *new = NULL; 3117 struct cfg80211_internal_bss *bss; 3118 struct cfg80211_bss *nontrans_bss; 3119 struct cfg80211_bss *tmp; 3120 3121 spin_lock_bh(&rdev->bss_lock); 3122 3123 /* 3124 * Some APs use CSA also for bandwidth changes, i.e., without actually 3125 * changing the control channel, so no need to update in such a case. 3126 */ 3127 if (cbss->pub.channel == chan) 3128 goto done; 3129 3130 /* use transmitting bss */ 3131 if (cbss->pub.transmitted_bss) 3132 cbss = bss_from_pub(cbss->pub.transmitted_bss); 3133 3134 cbss->pub.channel = chan; 3135 3136 list_for_each_entry(bss, &rdev->bss_list, list) { 3137 if (!cfg80211_bss_type_match(bss->pub.capability, 3138 bss->pub.channel->band, 3139 wdev->conn_bss_type)) 3140 continue; 3141 3142 if (bss == cbss) 3143 continue; 3144 3145 if (!cmp_bss(&bss->pub, &cbss->pub, BSS_CMP_REGULAR)) { 3146 new = bss; 3147 break; 3148 } 3149 } 3150 3151 if (new) { 3152 /* to save time, update IEs for transmitting bss only */ 3153 if (cfg80211_update_known_bss(rdev, cbss, new, false)) { 3154 new->pub.proberesp_ies = NULL; 3155 new->pub.beacon_ies = NULL; 3156 } 3157 3158 list_for_each_entry_safe(nontrans_bss, tmp, 3159 &new->pub.nontrans_list, 3160 nontrans_list) { 3161 bss = bss_from_pub(nontrans_bss); 3162 if (__cfg80211_unlink_bss(rdev, bss)) 3163 rdev->bss_generation++; 3164 } 3165 3166 WARN_ON(atomic_read(&new->hold)); 3167 if (!WARN_ON(!__cfg80211_unlink_bss(rdev, new))) 3168 rdev->bss_generation++; 3169 } 3170 3171 rb_erase(&cbss->rbn, &rdev->bss_tree); 3172 rb_insert_bss(rdev, cbss); 3173 rdev->bss_generation++; 3174 3175 list_for_each_entry_safe(nontrans_bss, tmp, 3176 &cbss->pub.nontrans_list, 3177 nontrans_list) { 3178 bss = bss_from_pub(nontrans_bss); 3179 bss->pub.channel = chan; 3180 rb_erase(&bss->rbn, &rdev->bss_tree); 3181 rb_insert_bss(rdev, bss); 3182 rdev->bss_generation++; 3183 } 3184 3185 done: 3186 spin_unlock_bh(&rdev->bss_lock); 3187 } 3188 3189 #ifdef CONFIG_CFG80211_WEXT 3190 static struct cfg80211_registered_device * 3191 cfg80211_get_dev_from_ifindex(struct net *net, int ifindex) 3192 { 3193 struct cfg80211_registered_device *rdev; 3194 struct net_device *dev; 3195 3196 ASSERT_RTNL(); 3197 3198 dev = dev_get_by_index(net, ifindex); 3199 if (!dev) 3200 return ERR_PTR(-ENODEV); 3201 if (dev->ieee80211_ptr) 3202 rdev = wiphy_to_rdev(dev->ieee80211_ptr->wiphy); 3203 else 3204 rdev = ERR_PTR(-ENODEV); 3205 dev_put(dev); 3206 return rdev; 3207 } 3208 3209 int cfg80211_wext_siwscan(struct net_device *dev, 3210 struct iw_request_info *info, 3211 union iwreq_data *wrqu, char *extra) 3212 { 3213 struct cfg80211_registered_device *rdev; 3214 struct wiphy *wiphy; 3215 struct iw_scan_req *wreq = NULL; 3216 struct cfg80211_scan_request *creq; 3217 int i, err, n_channels = 0; 3218 enum nl80211_band band; 3219 3220 if (!netif_running(dev)) 3221 return -ENETDOWN; 3222 3223 if (wrqu->data.length == sizeof(struct iw_scan_req)) 3224 wreq = (struct iw_scan_req *)extra; 3225 3226 rdev = cfg80211_get_dev_from_ifindex(dev_net(dev), dev->ifindex); 3227 3228 if (IS_ERR(rdev)) 3229 return PTR_ERR(rdev); 3230 3231 if (rdev->scan_req || rdev->scan_msg) 3232 return -EBUSY; 3233 3234 wiphy = &rdev->wiphy; 3235 3236 /* Determine number of channels, needed to allocate creq */ 3237 if (wreq && wreq->num_channels) 3238 n_channels = wreq->num_channels; 3239 else 3240 n_channels = ieee80211_get_num_supported_channels(wiphy); 3241 3242 creq = kzalloc(sizeof(*creq) + sizeof(struct cfg80211_ssid) + 3243 n_channels * sizeof(void *), 3244 GFP_ATOMIC); 3245 if (!creq) 3246 return -ENOMEM; 3247 3248 creq->wiphy = wiphy; 3249 creq->wdev = dev->ieee80211_ptr; 3250 /* SSIDs come after channels */ 3251 creq->ssids = (void *)&creq->channels[n_channels]; 3252 creq->n_channels = n_channels; 3253 creq->n_ssids = 1; 3254 creq->scan_start = jiffies; 3255 3256 /* translate "Scan on frequencies" request */ 3257 i = 0; 3258 for (band = 0; band < NUM_NL80211_BANDS; band++) { 3259 int j; 3260 3261 if (!wiphy->bands[band]) 3262 continue; 3263 3264 for (j = 0; j < wiphy->bands[band]->n_channels; j++) { 3265 /* ignore disabled channels */ 3266 if (wiphy->bands[band]->channels[j].flags & 3267 IEEE80211_CHAN_DISABLED) 3268 continue; 3269 3270 /* If we have a wireless request structure and the 3271 * wireless request specifies frequencies, then search 3272 * for the matching hardware channel. 3273 */ 3274 if (wreq && wreq->num_channels) { 3275 int k; 3276 int wiphy_freq = wiphy->bands[band]->channels[j].center_freq; 3277 for (k = 0; k < wreq->num_channels; k++) { 3278 struct iw_freq *freq = 3279 &wreq->channel_list[k]; 3280 int wext_freq = 3281 cfg80211_wext_freq(freq); 3282 3283 if (wext_freq == wiphy_freq) 3284 goto wext_freq_found; 3285 } 3286 goto wext_freq_not_found; 3287 } 3288 3289 wext_freq_found: 3290 creq->channels[i] = &wiphy->bands[band]->channels[j]; 3291 i++; 3292 wext_freq_not_found: ; 3293 } 3294 } 3295 /* No channels found? */ 3296 if (!i) { 3297 err = -EINVAL; 3298 goto out; 3299 } 3300 3301 /* Set real number of channels specified in creq->channels[] */ 3302 creq->n_channels = i; 3303 3304 /* translate "Scan for SSID" request */ 3305 if (wreq) { 3306 if (wrqu->data.flags & IW_SCAN_THIS_ESSID) { 3307 if (wreq->essid_len > IEEE80211_MAX_SSID_LEN) { 3308 err = -EINVAL; 3309 goto out; 3310 } 3311 memcpy(creq->ssids[0].ssid, wreq->essid, wreq->essid_len); 3312 creq->ssids[0].ssid_len = wreq->essid_len; 3313 } 3314 if (wreq->scan_type == IW_SCAN_TYPE_PASSIVE) 3315 creq->n_ssids = 0; 3316 } 3317 3318 for (i = 0; i < NUM_NL80211_BANDS; i++) 3319 if (wiphy->bands[i]) 3320 creq->rates[i] = (1 << wiphy->bands[i]->n_bitrates) - 1; 3321 3322 eth_broadcast_addr(creq->bssid); 3323 3324 wiphy_lock(&rdev->wiphy); 3325 3326 rdev->scan_req = creq; 3327 err = rdev_scan(rdev, creq); 3328 if (err) { 3329 rdev->scan_req = NULL; 3330 /* creq will be freed below */ 3331 } else { 3332 nl80211_send_scan_start(rdev, dev->ieee80211_ptr); 3333 /* creq now owned by driver */ 3334 creq = NULL; 3335 dev_hold(dev); 3336 } 3337 wiphy_unlock(&rdev->wiphy); 3338 out: 3339 kfree(creq); 3340 return err; 3341 } 3342 EXPORT_WEXT_HANDLER(cfg80211_wext_siwscan); 3343 3344 static char *ieee80211_scan_add_ies(struct iw_request_info *info, 3345 const struct cfg80211_bss_ies *ies, 3346 char *current_ev, char *end_buf) 3347 { 3348 const u8 *pos, *end, *next; 3349 struct iw_event iwe; 3350 3351 if (!ies) 3352 return current_ev; 3353 3354 /* 3355 * If needed, fragment the IEs buffer (at IE boundaries) into short 3356 * enough fragments to fit into IW_GENERIC_IE_MAX octet messages. 3357 */ 3358 pos = ies->data; 3359 end = pos + ies->len; 3360 3361 while (end - pos > IW_GENERIC_IE_MAX) { 3362 next = pos + 2 + pos[1]; 3363 while (next + 2 + next[1] - pos < IW_GENERIC_IE_MAX) 3364 next = next + 2 + next[1]; 3365 3366 memset(&iwe, 0, sizeof(iwe)); 3367 iwe.cmd = IWEVGENIE; 3368 iwe.u.data.length = next - pos; 3369 current_ev = iwe_stream_add_point_check(info, current_ev, 3370 end_buf, &iwe, 3371 (void *)pos); 3372 if (IS_ERR(current_ev)) 3373 return current_ev; 3374 pos = next; 3375 } 3376 3377 if (end > pos) { 3378 memset(&iwe, 0, sizeof(iwe)); 3379 iwe.cmd = IWEVGENIE; 3380 iwe.u.data.length = end - pos; 3381 current_ev = iwe_stream_add_point_check(info, current_ev, 3382 end_buf, &iwe, 3383 (void *)pos); 3384 if (IS_ERR(current_ev)) 3385 return current_ev; 3386 } 3387 3388 return current_ev; 3389 } 3390 3391 static char * 3392 ieee80211_bss(struct wiphy *wiphy, struct iw_request_info *info, 3393 struct cfg80211_internal_bss *bss, char *current_ev, 3394 char *end_buf) 3395 { 3396 const struct cfg80211_bss_ies *ies; 3397 struct iw_event iwe; 3398 const u8 *ie; 3399 u8 buf[50]; 3400 u8 *cfg, *p, *tmp; 3401 int rem, i, sig; 3402 bool ismesh = false; 3403 3404 memset(&iwe, 0, sizeof(iwe)); 3405 iwe.cmd = SIOCGIWAP; 3406 iwe.u.ap_addr.sa_family = ARPHRD_ETHER; 3407 memcpy(iwe.u.ap_addr.sa_data, bss->pub.bssid, ETH_ALEN); 3408 current_ev = iwe_stream_add_event_check(info, current_ev, end_buf, &iwe, 3409 IW_EV_ADDR_LEN); 3410 if (IS_ERR(current_ev)) 3411 return current_ev; 3412 3413 memset(&iwe, 0, sizeof(iwe)); 3414 iwe.cmd = SIOCGIWFREQ; 3415 iwe.u.freq.m = ieee80211_frequency_to_channel(bss->pub.channel->center_freq); 3416 iwe.u.freq.e = 0; 3417 current_ev = iwe_stream_add_event_check(info, current_ev, end_buf, &iwe, 3418 IW_EV_FREQ_LEN); 3419 if (IS_ERR(current_ev)) 3420 return current_ev; 3421 3422 memset(&iwe, 0, sizeof(iwe)); 3423 iwe.cmd = SIOCGIWFREQ; 3424 iwe.u.freq.m = bss->pub.channel->center_freq; 3425 iwe.u.freq.e = 6; 3426 current_ev = iwe_stream_add_event_check(info, current_ev, end_buf, &iwe, 3427 IW_EV_FREQ_LEN); 3428 if (IS_ERR(current_ev)) 3429 return current_ev; 3430 3431 if (wiphy->signal_type != CFG80211_SIGNAL_TYPE_NONE) { 3432 memset(&iwe, 0, sizeof(iwe)); 3433 iwe.cmd = IWEVQUAL; 3434 iwe.u.qual.updated = IW_QUAL_LEVEL_UPDATED | 3435 IW_QUAL_NOISE_INVALID | 3436 IW_QUAL_QUAL_UPDATED; 3437 switch (wiphy->signal_type) { 3438 case CFG80211_SIGNAL_TYPE_MBM: 3439 sig = bss->pub.signal / 100; 3440 iwe.u.qual.level = sig; 3441 iwe.u.qual.updated |= IW_QUAL_DBM; 3442 if (sig < -110) /* rather bad */ 3443 sig = -110; 3444 else if (sig > -40) /* perfect */ 3445 sig = -40; 3446 /* will give a range of 0 .. 70 */ 3447 iwe.u.qual.qual = sig + 110; 3448 break; 3449 case CFG80211_SIGNAL_TYPE_UNSPEC: 3450 iwe.u.qual.level = bss->pub.signal; 3451 /* will give range 0 .. 100 */ 3452 iwe.u.qual.qual = bss->pub.signal; 3453 break; 3454 default: 3455 /* not reached */ 3456 break; 3457 } 3458 current_ev = iwe_stream_add_event_check(info, current_ev, 3459 end_buf, &iwe, 3460 IW_EV_QUAL_LEN); 3461 if (IS_ERR(current_ev)) 3462 return current_ev; 3463 } 3464 3465 memset(&iwe, 0, sizeof(iwe)); 3466 iwe.cmd = SIOCGIWENCODE; 3467 if (bss->pub.capability & WLAN_CAPABILITY_PRIVACY) 3468 iwe.u.data.flags = IW_ENCODE_ENABLED | IW_ENCODE_NOKEY; 3469 else 3470 iwe.u.data.flags = IW_ENCODE_DISABLED; 3471 iwe.u.data.length = 0; 3472 current_ev = iwe_stream_add_point_check(info, current_ev, end_buf, 3473 &iwe, ""); 3474 if (IS_ERR(current_ev)) 3475 return current_ev; 3476 3477 rcu_read_lock(); 3478 ies = rcu_dereference(bss->pub.ies); 3479 rem = ies->len; 3480 ie = ies->data; 3481 3482 while (rem >= 2) { 3483 /* invalid data */ 3484 if (ie[1] > rem - 2) 3485 break; 3486 3487 switch (ie[0]) { 3488 case WLAN_EID_SSID: 3489 memset(&iwe, 0, sizeof(iwe)); 3490 iwe.cmd = SIOCGIWESSID; 3491 iwe.u.data.length = ie[1]; 3492 iwe.u.data.flags = 1; 3493 current_ev = iwe_stream_add_point_check(info, 3494 current_ev, 3495 end_buf, &iwe, 3496 (u8 *)ie + 2); 3497 if (IS_ERR(current_ev)) 3498 goto unlock; 3499 break; 3500 case WLAN_EID_MESH_ID: 3501 memset(&iwe, 0, sizeof(iwe)); 3502 iwe.cmd = SIOCGIWESSID; 3503 iwe.u.data.length = ie[1]; 3504 iwe.u.data.flags = 1; 3505 current_ev = iwe_stream_add_point_check(info, 3506 current_ev, 3507 end_buf, &iwe, 3508 (u8 *)ie + 2); 3509 if (IS_ERR(current_ev)) 3510 goto unlock; 3511 break; 3512 case WLAN_EID_MESH_CONFIG: 3513 ismesh = true; 3514 if (ie[1] != sizeof(struct ieee80211_meshconf_ie)) 3515 break; 3516 cfg = (u8 *)ie + 2; 3517 memset(&iwe, 0, sizeof(iwe)); 3518 iwe.cmd = IWEVCUSTOM; 3519 iwe.u.data.length = sprintf(buf, 3520 "Mesh Network Path Selection Protocol ID: 0x%02X", 3521 cfg[0]); 3522 current_ev = iwe_stream_add_point_check(info, 3523 current_ev, 3524 end_buf, 3525 &iwe, buf); 3526 if (IS_ERR(current_ev)) 3527 goto unlock; 3528 iwe.u.data.length = sprintf(buf, 3529 "Path Selection Metric ID: 0x%02X", 3530 cfg[1]); 3531 current_ev = iwe_stream_add_point_check(info, 3532 current_ev, 3533 end_buf, 3534 &iwe, buf); 3535 if (IS_ERR(current_ev)) 3536 goto unlock; 3537 iwe.u.data.length = sprintf(buf, 3538 "Congestion Control Mode ID: 0x%02X", 3539 cfg[2]); 3540 current_ev = iwe_stream_add_point_check(info, 3541 current_ev, 3542 end_buf, 3543 &iwe, buf); 3544 if (IS_ERR(current_ev)) 3545 goto unlock; 3546 iwe.u.data.length = sprintf(buf, 3547 "Synchronization ID: 0x%02X", 3548 cfg[3]); 3549 current_ev = iwe_stream_add_point_check(info, 3550 current_ev, 3551 end_buf, 3552 &iwe, buf); 3553 if (IS_ERR(current_ev)) 3554 goto unlock; 3555 iwe.u.data.length = sprintf(buf, 3556 "Authentication ID: 0x%02X", 3557 cfg[4]); 3558 current_ev = iwe_stream_add_point_check(info, 3559 current_ev, 3560 end_buf, 3561 &iwe, buf); 3562 if (IS_ERR(current_ev)) 3563 goto unlock; 3564 iwe.u.data.length = sprintf(buf, 3565 "Formation Info: 0x%02X", 3566 cfg[5]); 3567 current_ev = iwe_stream_add_point_check(info, 3568 current_ev, 3569 end_buf, 3570 &iwe, buf); 3571 if (IS_ERR(current_ev)) 3572 goto unlock; 3573 iwe.u.data.length = sprintf(buf, 3574 "Capabilities: 0x%02X", 3575 cfg[6]); 3576 current_ev = iwe_stream_add_point_check(info, 3577 current_ev, 3578 end_buf, 3579 &iwe, buf); 3580 if (IS_ERR(current_ev)) 3581 goto unlock; 3582 break; 3583 case WLAN_EID_SUPP_RATES: 3584 case WLAN_EID_EXT_SUPP_RATES: 3585 /* display all supported rates in readable format */ 3586 p = current_ev + iwe_stream_lcp_len(info); 3587 3588 memset(&iwe, 0, sizeof(iwe)); 3589 iwe.cmd = SIOCGIWRATE; 3590 /* Those two flags are ignored... */ 3591 iwe.u.bitrate.fixed = iwe.u.bitrate.disabled = 0; 3592 3593 for (i = 0; i < ie[1]; i++) { 3594 iwe.u.bitrate.value = 3595 ((ie[i + 2] & 0x7f) * 500000); 3596 tmp = p; 3597 p = iwe_stream_add_value(info, current_ev, p, 3598 end_buf, &iwe, 3599 IW_EV_PARAM_LEN); 3600 if (p == tmp) { 3601 current_ev = ERR_PTR(-E2BIG); 3602 goto unlock; 3603 } 3604 } 3605 current_ev = p; 3606 break; 3607 } 3608 rem -= ie[1] + 2; 3609 ie += ie[1] + 2; 3610 } 3611 3612 if (bss->pub.capability & (WLAN_CAPABILITY_ESS | WLAN_CAPABILITY_IBSS) || 3613 ismesh) { 3614 memset(&iwe, 0, sizeof(iwe)); 3615 iwe.cmd = SIOCGIWMODE; 3616 if (ismesh) 3617 iwe.u.mode = IW_MODE_MESH; 3618 else if (bss->pub.capability & WLAN_CAPABILITY_ESS) 3619 iwe.u.mode = IW_MODE_MASTER; 3620 else 3621 iwe.u.mode = IW_MODE_ADHOC; 3622 current_ev = iwe_stream_add_event_check(info, current_ev, 3623 end_buf, &iwe, 3624 IW_EV_UINT_LEN); 3625 if (IS_ERR(current_ev)) 3626 goto unlock; 3627 } 3628 3629 memset(&iwe, 0, sizeof(iwe)); 3630 iwe.cmd = IWEVCUSTOM; 3631 iwe.u.data.length = sprintf(buf, "tsf=%016llx", 3632 (unsigned long long)(ies->tsf)); 3633 current_ev = iwe_stream_add_point_check(info, current_ev, end_buf, 3634 &iwe, buf); 3635 if (IS_ERR(current_ev)) 3636 goto unlock; 3637 memset(&iwe, 0, sizeof(iwe)); 3638 iwe.cmd = IWEVCUSTOM; 3639 iwe.u.data.length = sprintf(buf, " Last beacon: %ums ago", 3640 elapsed_jiffies_msecs(bss->ts)); 3641 current_ev = iwe_stream_add_point_check(info, current_ev, 3642 end_buf, &iwe, buf); 3643 if (IS_ERR(current_ev)) 3644 goto unlock; 3645 3646 current_ev = ieee80211_scan_add_ies(info, ies, current_ev, end_buf); 3647 3648 unlock: 3649 rcu_read_unlock(); 3650 return current_ev; 3651 } 3652 3653 3654 static int ieee80211_scan_results(struct cfg80211_registered_device *rdev, 3655 struct iw_request_info *info, 3656 char *buf, size_t len) 3657 { 3658 char *current_ev = buf; 3659 char *end_buf = buf + len; 3660 struct cfg80211_internal_bss *bss; 3661 int err = 0; 3662 3663 spin_lock_bh(&rdev->bss_lock); 3664 cfg80211_bss_expire(rdev); 3665 3666 list_for_each_entry(bss, &rdev->bss_list, list) { 3667 if (buf + len - current_ev <= IW_EV_ADDR_LEN) { 3668 err = -E2BIG; 3669 break; 3670 } 3671 current_ev = ieee80211_bss(&rdev->wiphy, info, bss, 3672 current_ev, end_buf); 3673 if (IS_ERR(current_ev)) { 3674 err = PTR_ERR(current_ev); 3675 break; 3676 } 3677 } 3678 spin_unlock_bh(&rdev->bss_lock); 3679 3680 if (err) 3681 return err; 3682 return current_ev - buf; 3683 } 3684 3685 3686 int cfg80211_wext_giwscan(struct net_device *dev, 3687 struct iw_request_info *info, 3688 union iwreq_data *wrqu, char *extra) 3689 { 3690 struct iw_point *data = &wrqu->data; 3691 struct cfg80211_registered_device *rdev; 3692 int res; 3693 3694 if (!netif_running(dev)) 3695 return -ENETDOWN; 3696 3697 rdev = cfg80211_get_dev_from_ifindex(dev_net(dev), dev->ifindex); 3698 3699 if (IS_ERR(rdev)) 3700 return PTR_ERR(rdev); 3701 3702 if (rdev->scan_req || rdev->scan_msg) 3703 return -EAGAIN; 3704 3705 res = ieee80211_scan_results(rdev, info, extra, data->length); 3706 data->length = 0; 3707 if (res >= 0) { 3708 data->length = res; 3709 res = 0; 3710 } 3711 3712 return res; 3713 } 3714 EXPORT_WEXT_HANDLER(cfg80211_wext_giwscan); 3715 #endif 3716