xref: /linux/net/wireless/scan.c (revision 3213486f2e442831e324cc6201a2f9e924ecc235)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * cfg80211 scan result handling
4  *
5  * Copyright 2008 Johannes Berg <johannes@sipsolutions.net>
6  * Copyright 2013-2014  Intel Mobile Communications GmbH
7  * Copyright 2016	Intel Deutschland GmbH
8  * Copyright (C) 2018-2019 Intel Corporation
9  */
10 #include <linux/kernel.h>
11 #include <linux/slab.h>
12 #include <linux/module.h>
13 #include <linux/netdevice.h>
14 #include <linux/wireless.h>
15 #include <linux/nl80211.h>
16 #include <linux/etherdevice.h>
17 #include <net/arp.h>
18 #include <net/cfg80211.h>
19 #include <net/cfg80211-wext.h>
20 #include <net/iw_handler.h>
21 #include "core.h"
22 #include "nl80211.h"
23 #include "wext-compat.h"
24 #include "rdev-ops.h"
25 
26 /**
27  * DOC: BSS tree/list structure
28  *
29  * At the top level, the BSS list is kept in both a list in each
30  * registered device (@bss_list) as well as an RB-tree for faster
31  * lookup. In the RB-tree, entries can be looked up using their
32  * channel, MESHID, MESHCONF (for MBSSes) or channel, BSSID, SSID
33  * for other BSSes.
34  *
35  * Due to the possibility of hidden SSIDs, there's a second level
36  * structure, the "hidden_list" and "hidden_beacon_bss" pointer.
37  * The hidden_list connects all BSSes belonging to a single AP
38  * that has a hidden SSID, and connects beacon and probe response
39  * entries. For a probe response entry for a hidden SSID, the
40  * hidden_beacon_bss pointer points to the BSS struct holding the
41  * beacon's information.
42  *
43  * Reference counting is done for all these references except for
44  * the hidden_list, so that a beacon BSS struct that is otherwise
45  * not referenced has one reference for being on the bss_list and
46  * one for each probe response entry that points to it using the
47  * hidden_beacon_bss pointer. When a BSS struct that has such a
48  * pointer is get/put, the refcount update is also propagated to
49  * the referenced struct, this ensure that it cannot get removed
50  * while somebody is using the probe response version.
51  *
52  * Note that the hidden_beacon_bss pointer never changes, due to
53  * the reference counting. Therefore, no locking is needed for
54  * it.
55  *
56  * Also note that the hidden_beacon_bss pointer is only relevant
57  * if the driver uses something other than the IEs, e.g. private
58  * data stored stored in the BSS struct, since the beacon IEs are
59  * also linked into the probe response struct.
60  */
61 
62 /*
63  * Limit the number of BSS entries stored in mac80211. Each one is
64  * a bit over 4k at most, so this limits to roughly 4-5M of memory.
65  * If somebody wants to really attack this though, they'd likely
66  * use small beacons, and only one type of frame, limiting each of
67  * the entries to a much smaller size (in order to generate more
68  * entries in total, so overhead is bigger.)
69  */
70 static int bss_entries_limit = 1000;
71 module_param(bss_entries_limit, int, 0644);
72 MODULE_PARM_DESC(bss_entries_limit,
73                  "limit to number of scan BSS entries (per wiphy, default 1000)");
74 
75 #define IEEE80211_SCAN_RESULT_EXPIRE	(30 * HZ)
76 
77 static void bss_free(struct cfg80211_internal_bss *bss)
78 {
79 	struct cfg80211_bss_ies *ies;
80 
81 	if (WARN_ON(atomic_read(&bss->hold)))
82 		return;
83 
84 	ies = (void *)rcu_access_pointer(bss->pub.beacon_ies);
85 	if (ies && !bss->pub.hidden_beacon_bss)
86 		kfree_rcu(ies, rcu_head);
87 	ies = (void *)rcu_access_pointer(bss->pub.proberesp_ies);
88 	if (ies)
89 		kfree_rcu(ies, rcu_head);
90 
91 	/*
92 	 * This happens when the module is removed, it doesn't
93 	 * really matter any more save for completeness
94 	 */
95 	if (!list_empty(&bss->hidden_list))
96 		list_del(&bss->hidden_list);
97 
98 	kfree(bss);
99 }
100 
101 static inline void bss_ref_get(struct cfg80211_registered_device *rdev,
102 			       struct cfg80211_internal_bss *bss)
103 {
104 	lockdep_assert_held(&rdev->bss_lock);
105 
106 	bss->refcount++;
107 	if (bss->pub.hidden_beacon_bss) {
108 		bss = container_of(bss->pub.hidden_beacon_bss,
109 				   struct cfg80211_internal_bss,
110 				   pub);
111 		bss->refcount++;
112 	}
113 	if (bss->pub.transmitted_bss) {
114 		bss = container_of(bss->pub.transmitted_bss,
115 				   struct cfg80211_internal_bss,
116 				   pub);
117 		bss->refcount++;
118 	}
119 }
120 
121 static inline void bss_ref_put(struct cfg80211_registered_device *rdev,
122 			       struct cfg80211_internal_bss *bss)
123 {
124 	lockdep_assert_held(&rdev->bss_lock);
125 
126 	if (bss->pub.hidden_beacon_bss) {
127 		struct cfg80211_internal_bss *hbss;
128 		hbss = container_of(bss->pub.hidden_beacon_bss,
129 				    struct cfg80211_internal_bss,
130 				    pub);
131 		hbss->refcount--;
132 		if (hbss->refcount == 0)
133 			bss_free(hbss);
134 	}
135 
136 	if (bss->pub.transmitted_bss) {
137 		struct cfg80211_internal_bss *tbss;
138 
139 		tbss = container_of(bss->pub.transmitted_bss,
140 				    struct cfg80211_internal_bss,
141 				    pub);
142 		tbss->refcount--;
143 		if (tbss->refcount == 0)
144 			bss_free(tbss);
145 	}
146 
147 	bss->refcount--;
148 	if (bss->refcount == 0)
149 		bss_free(bss);
150 }
151 
152 static bool __cfg80211_unlink_bss(struct cfg80211_registered_device *rdev,
153 				  struct cfg80211_internal_bss *bss)
154 {
155 	lockdep_assert_held(&rdev->bss_lock);
156 
157 	if (!list_empty(&bss->hidden_list)) {
158 		/*
159 		 * don't remove the beacon entry if it has
160 		 * probe responses associated with it
161 		 */
162 		if (!bss->pub.hidden_beacon_bss)
163 			return false;
164 		/*
165 		 * if it's a probe response entry break its
166 		 * link to the other entries in the group
167 		 */
168 		list_del_init(&bss->hidden_list);
169 	}
170 
171 	list_del_init(&bss->list);
172 	list_del_init(&bss->pub.nontrans_list);
173 	rb_erase(&bss->rbn, &rdev->bss_tree);
174 	rdev->bss_entries--;
175 	WARN_ONCE((rdev->bss_entries == 0) ^ list_empty(&rdev->bss_list),
176 		  "rdev bss entries[%d]/list[empty:%d] corruption\n",
177 		  rdev->bss_entries, list_empty(&rdev->bss_list));
178 	bss_ref_put(rdev, bss);
179 	return true;
180 }
181 
182 static size_t cfg80211_gen_new_ie(const u8 *ie, size_t ielen,
183 				  const u8 *subelement, size_t subie_len,
184 				  u8 *new_ie, gfp_t gfp)
185 {
186 	u8 *pos, *tmp;
187 	const u8 *tmp_old, *tmp_new;
188 	u8 *sub_copy;
189 
190 	/* copy subelement as we need to change its content to
191 	 * mark an ie after it is processed.
192 	 */
193 	sub_copy = kmemdup(subelement, subie_len, gfp);
194 	if (!sub_copy)
195 		return 0;
196 
197 	pos = &new_ie[0];
198 
199 	/* set new ssid */
200 	tmp_new = cfg80211_find_ie(WLAN_EID_SSID, sub_copy, subie_len);
201 	if (tmp_new) {
202 		memcpy(pos, tmp_new, tmp_new[1] + 2);
203 		pos += (tmp_new[1] + 2);
204 	}
205 
206 	/* go through IEs in ie (skip SSID) and subelement,
207 	 * merge them into new_ie
208 	 */
209 	tmp_old = cfg80211_find_ie(WLAN_EID_SSID, ie, ielen);
210 	tmp_old = (tmp_old) ? tmp_old + tmp_old[1] + 2 : ie;
211 
212 	while (tmp_old + tmp_old[1] + 2 - ie <= ielen) {
213 		if (tmp_old[0] == 0) {
214 			tmp_old++;
215 			continue;
216 		}
217 
218 		if (tmp_old[0] == WLAN_EID_EXTENSION)
219 			tmp = (u8 *)cfg80211_find_ext_ie(tmp_old[2], sub_copy,
220 							 subie_len);
221 		else
222 			tmp = (u8 *)cfg80211_find_ie(tmp_old[0], sub_copy,
223 						     subie_len);
224 
225 		if (!tmp) {
226 			/* ie in old ie but not in subelement */
227 			if (tmp_old[0] != WLAN_EID_MULTIPLE_BSSID) {
228 				memcpy(pos, tmp_old, tmp_old[1] + 2);
229 				pos += tmp_old[1] + 2;
230 			}
231 		} else {
232 			/* ie in transmitting ie also in subelement,
233 			 * copy from subelement and flag the ie in subelement
234 			 * as copied (by setting eid field to WLAN_EID_SSID,
235 			 * which is skipped anyway).
236 			 * For vendor ie, compare OUI + type + subType to
237 			 * determine if they are the same ie.
238 			 */
239 			if (tmp_old[0] == WLAN_EID_VENDOR_SPECIFIC) {
240 				if (!memcmp(tmp_old + 2, tmp + 2, 5)) {
241 					/* same vendor ie, copy from
242 					 * subelement
243 					 */
244 					memcpy(pos, tmp, tmp[1] + 2);
245 					pos += tmp[1] + 2;
246 					tmp[0] = WLAN_EID_SSID;
247 				} else {
248 					memcpy(pos, tmp_old, tmp_old[1] + 2);
249 					pos += tmp_old[1] + 2;
250 				}
251 			} else {
252 				/* copy ie from subelement into new ie */
253 				memcpy(pos, tmp, tmp[1] + 2);
254 				pos += tmp[1] + 2;
255 				tmp[0] = WLAN_EID_SSID;
256 			}
257 		}
258 
259 		if (tmp_old + tmp_old[1] + 2 - ie == ielen)
260 			break;
261 
262 		tmp_old += tmp_old[1] + 2;
263 	}
264 
265 	/* go through subelement again to check if there is any ie not
266 	 * copied to new ie, skip ssid, capability, bssid-index ie
267 	 */
268 	tmp_new = sub_copy;
269 	while (tmp_new + tmp_new[1] + 2 - sub_copy <= subie_len) {
270 		if (!(tmp_new[0] == WLAN_EID_NON_TX_BSSID_CAP ||
271 		      tmp_new[0] == WLAN_EID_SSID ||
272 		      tmp_new[0] == WLAN_EID_MULTI_BSSID_IDX)) {
273 			memcpy(pos, tmp_new, tmp_new[1] + 2);
274 			pos += tmp_new[1] + 2;
275 		}
276 		if (tmp_new + tmp_new[1] + 2 - sub_copy == subie_len)
277 			break;
278 		tmp_new += tmp_new[1] + 2;
279 	}
280 
281 	kfree(sub_copy);
282 	return pos - new_ie;
283 }
284 
285 static bool is_bss(struct cfg80211_bss *a, const u8 *bssid,
286 		   const u8 *ssid, size_t ssid_len)
287 {
288 	const struct cfg80211_bss_ies *ies;
289 	const u8 *ssidie;
290 
291 	if (bssid && !ether_addr_equal(a->bssid, bssid))
292 		return false;
293 
294 	if (!ssid)
295 		return true;
296 
297 	ies = rcu_access_pointer(a->ies);
298 	if (!ies)
299 		return false;
300 	ssidie = cfg80211_find_ie(WLAN_EID_SSID, ies->data, ies->len);
301 	if (!ssidie)
302 		return false;
303 	if (ssidie[1] != ssid_len)
304 		return false;
305 	return memcmp(ssidie + 2, ssid, ssid_len) == 0;
306 }
307 
308 static int
309 cfg80211_add_nontrans_list(struct cfg80211_bss *trans_bss,
310 			   struct cfg80211_bss *nontrans_bss)
311 {
312 	const u8 *ssid;
313 	size_t ssid_len;
314 	struct cfg80211_bss *bss = NULL;
315 
316 	rcu_read_lock();
317 	ssid = ieee80211_bss_get_ie(nontrans_bss, WLAN_EID_SSID);
318 	if (!ssid) {
319 		rcu_read_unlock();
320 		return -EINVAL;
321 	}
322 	ssid_len = ssid[1];
323 	ssid = ssid + 2;
324 	rcu_read_unlock();
325 
326 	/* check if nontrans_bss is in the list */
327 	list_for_each_entry(bss, &trans_bss->nontrans_list, nontrans_list) {
328 		if (is_bss(bss, nontrans_bss->bssid, ssid, ssid_len))
329 			return 0;
330 	}
331 
332 	/* add to the list */
333 	list_add_tail(&nontrans_bss->nontrans_list, &trans_bss->nontrans_list);
334 	return 0;
335 }
336 
337 static void __cfg80211_bss_expire(struct cfg80211_registered_device *rdev,
338 				  unsigned long expire_time)
339 {
340 	struct cfg80211_internal_bss *bss, *tmp;
341 	bool expired = false;
342 
343 	lockdep_assert_held(&rdev->bss_lock);
344 
345 	list_for_each_entry_safe(bss, tmp, &rdev->bss_list, list) {
346 		if (atomic_read(&bss->hold))
347 			continue;
348 		if (!time_after(expire_time, bss->ts))
349 			continue;
350 
351 		if (__cfg80211_unlink_bss(rdev, bss))
352 			expired = true;
353 	}
354 
355 	if (expired)
356 		rdev->bss_generation++;
357 }
358 
359 static bool cfg80211_bss_expire_oldest(struct cfg80211_registered_device *rdev)
360 {
361 	struct cfg80211_internal_bss *bss, *oldest = NULL;
362 	bool ret;
363 
364 	lockdep_assert_held(&rdev->bss_lock);
365 
366 	list_for_each_entry(bss, &rdev->bss_list, list) {
367 		if (atomic_read(&bss->hold))
368 			continue;
369 
370 		if (!list_empty(&bss->hidden_list) &&
371 		    !bss->pub.hidden_beacon_bss)
372 			continue;
373 
374 		if (oldest && time_before(oldest->ts, bss->ts))
375 			continue;
376 		oldest = bss;
377 	}
378 
379 	if (WARN_ON(!oldest))
380 		return false;
381 
382 	/*
383 	 * The callers make sure to increase rdev->bss_generation if anything
384 	 * gets removed (and a new entry added), so there's no need to also do
385 	 * it here.
386 	 */
387 
388 	ret = __cfg80211_unlink_bss(rdev, oldest);
389 	WARN_ON(!ret);
390 	return ret;
391 }
392 
393 void ___cfg80211_scan_done(struct cfg80211_registered_device *rdev,
394 			   bool send_message)
395 {
396 	struct cfg80211_scan_request *request;
397 	struct wireless_dev *wdev;
398 	struct sk_buff *msg;
399 #ifdef CONFIG_CFG80211_WEXT
400 	union iwreq_data wrqu;
401 #endif
402 
403 	ASSERT_RTNL();
404 
405 	if (rdev->scan_msg) {
406 		nl80211_send_scan_msg(rdev, rdev->scan_msg);
407 		rdev->scan_msg = NULL;
408 		return;
409 	}
410 
411 	request = rdev->scan_req;
412 	if (!request)
413 		return;
414 
415 	wdev = request->wdev;
416 
417 	/*
418 	 * This must be before sending the other events!
419 	 * Otherwise, wpa_supplicant gets completely confused with
420 	 * wext events.
421 	 */
422 	if (wdev->netdev)
423 		cfg80211_sme_scan_done(wdev->netdev);
424 
425 	if (!request->info.aborted &&
426 	    request->flags & NL80211_SCAN_FLAG_FLUSH) {
427 		/* flush entries from previous scans */
428 		spin_lock_bh(&rdev->bss_lock);
429 		__cfg80211_bss_expire(rdev, request->scan_start);
430 		spin_unlock_bh(&rdev->bss_lock);
431 	}
432 
433 	msg = nl80211_build_scan_msg(rdev, wdev, request->info.aborted);
434 
435 #ifdef CONFIG_CFG80211_WEXT
436 	if (wdev->netdev && !request->info.aborted) {
437 		memset(&wrqu, 0, sizeof(wrqu));
438 
439 		wireless_send_event(wdev->netdev, SIOCGIWSCAN, &wrqu, NULL);
440 	}
441 #endif
442 
443 	if (wdev->netdev)
444 		dev_put(wdev->netdev);
445 
446 	rdev->scan_req = NULL;
447 	kfree(request);
448 
449 	if (!send_message)
450 		rdev->scan_msg = msg;
451 	else
452 		nl80211_send_scan_msg(rdev, msg);
453 }
454 
455 void __cfg80211_scan_done(struct work_struct *wk)
456 {
457 	struct cfg80211_registered_device *rdev;
458 
459 	rdev = container_of(wk, struct cfg80211_registered_device,
460 			    scan_done_wk);
461 
462 	rtnl_lock();
463 	___cfg80211_scan_done(rdev, true);
464 	rtnl_unlock();
465 }
466 
467 void cfg80211_scan_done(struct cfg80211_scan_request *request,
468 			struct cfg80211_scan_info *info)
469 {
470 	trace_cfg80211_scan_done(request, info);
471 	WARN_ON(request != wiphy_to_rdev(request->wiphy)->scan_req);
472 
473 	request->info = *info;
474 	request->notified = true;
475 	queue_work(cfg80211_wq, &wiphy_to_rdev(request->wiphy)->scan_done_wk);
476 }
477 EXPORT_SYMBOL(cfg80211_scan_done);
478 
479 void cfg80211_add_sched_scan_req(struct cfg80211_registered_device *rdev,
480 				 struct cfg80211_sched_scan_request *req)
481 {
482 	ASSERT_RTNL();
483 
484 	list_add_rcu(&req->list, &rdev->sched_scan_req_list);
485 }
486 
487 static void cfg80211_del_sched_scan_req(struct cfg80211_registered_device *rdev,
488 					struct cfg80211_sched_scan_request *req)
489 {
490 	ASSERT_RTNL();
491 
492 	list_del_rcu(&req->list);
493 	kfree_rcu(req, rcu_head);
494 }
495 
496 static struct cfg80211_sched_scan_request *
497 cfg80211_find_sched_scan_req(struct cfg80211_registered_device *rdev, u64 reqid)
498 {
499 	struct cfg80211_sched_scan_request *pos;
500 
501 	WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
502 
503 	list_for_each_entry_rcu(pos, &rdev->sched_scan_req_list, list) {
504 		if (pos->reqid == reqid)
505 			return pos;
506 	}
507 	return NULL;
508 }
509 
510 /*
511  * Determines if a scheduled scan request can be handled. When a legacy
512  * scheduled scan is running no other scheduled scan is allowed regardless
513  * whether the request is for legacy or multi-support scan. When a multi-support
514  * scheduled scan is running a request for legacy scan is not allowed. In this
515  * case a request for multi-support scan can be handled if resources are
516  * available, ie. struct wiphy::max_sched_scan_reqs limit is not yet reached.
517  */
518 int cfg80211_sched_scan_req_possible(struct cfg80211_registered_device *rdev,
519 				     bool want_multi)
520 {
521 	struct cfg80211_sched_scan_request *pos;
522 	int i = 0;
523 
524 	list_for_each_entry(pos, &rdev->sched_scan_req_list, list) {
525 		/* request id zero means legacy in progress */
526 		if (!i && !pos->reqid)
527 			return -EINPROGRESS;
528 		i++;
529 	}
530 
531 	if (i) {
532 		/* no legacy allowed when multi request(s) are active */
533 		if (!want_multi)
534 			return -EINPROGRESS;
535 
536 		/* resource limit reached */
537 		if (i == rdev->wiphy.max_sched_scan_reqs)
538 			return -ENOSPC;
539 	}
540 	return 0;
541 }
542 
543 void cfg80211_sched_scan_results_wk(struct work_struct *work)
544 {
545 	struct cfg80211_registered_device *rdev;
546 	struct cfg80211_sched_scan_request *req, *tmp;
547 
548 	rdev = container_of(work, struct cfg80211_registered_device,
549 			   sched_scan_res_wk);
550 
551 	rtnl_lock();
552 	list_for_each_entry_safe(req, tmp, &rdev->sched_scan_req_list, list) {
553 		if (req->report_results) {
554 			req->report_results = false;
555 			if (req->flags & NL80211_SCAN_FLAG_FLUSH) {
556 				/* flush entries from previous scans */
557 				spin_lock_bh(&rdev->bss_lock);
558 				__cfg80211_bss_expire(rdev, req->scan_start);
559 				spin_unlock_bh(&rdev->bss_lock);
560 				req->scan_start = jiffies;
561 			}
562 			nl80211_send_sched_scan(req,
563 						NL80211_CMD_SCHED_SCAN_RESULTS);
564 		}
565 	}
566 	rtnl_unlock();
567 }
568 
569 void cfg80211_sched_scan_results(struct wiphy *wiphy, u64 reqid)
570 {
571 	struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
572 	struct cfg80211_sched_scan_request *request;
573 
574 	trace_cfg80211_sched_scan_results(wiphy, reqid);
575 	/* ignore if we're not scanning */
576 
577 	rcu_read_lock();
578 	request = cfg80211_find_sched_scan_req(rdev, reqid);
579 	if (request) {
580 		request->report_results = true;
581 		queue_work(cfg80211_wq, &rdev->sched_scan_res_wk);
582 	}
583 	rcu_read_unlock();
584 }
585 EXPORT_SYMBOL(cfg80211_sched_scan_results);
586 
587 void cfg80211_sched_scan_stopped_rtnl(struct wiphy *wiphy, u64 reqid)
588 {
589 	struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
590 
591 	ASSERT_RTNL();
592 
593 	trace_cfg80211_sched_scan_stopped(wiphy, reqid);
594 
595 	__cfg80211_stop_sched_scan(rdev, reqid, true);
596 }
597 EXPORT_SYMBOL(cfg80211_sched_scan_stopped_rtnl);
598 
599 void cfg80211_sched_scan_stopped(struct wiphy *wiphy, u64 reqid)
600 {
601 	rtnl_lock();
602 	cfg80211_sched_scan_stopped_rtnl(wiphy, reqid);
603 	rtnl_unlock();
604 }
605 EXPORT_SYMBOL(cfg80211_sched_scan_stopped);
606 
607 int cfg80211_stop_sched_scan_req(struct cfg80211_registered_device *rdev,
608 				 struct cfg80211_sched_scan_request *req,
609 				 bool driver_initiated)
610 {
611 	ASSERT_RTNL();
612 
613 	if (!driver_initiated) {
614 		int err = rdev_sched_scan_stop(rdev, req->dev, req->reqid);
615 		if (err)
616 			return err;
617 	}
618 
619 	nl80211_send_sched_scan(req, NL80211_CMD_SCHED_SCAN_STOPPED);
620 
621 	cfg80211_del_sched_scan_req(rdev, req);
622 
623 	return 0;
624 }
625 
626 int __cfg80211_stop_sched_scan(struct cfg80211_registered_device *rdev,
627 			       u64 reqid, bool driver_initiated)
628 {
629 	struct cfg80211_sched_scan_request *sched_scan_req;
630 
631 	ASSERT_RTNL();
632 
633 	sched_scan_req = cfg80211_find_sched_scan_req(rdev, reqid);
634 	if (!sched_scan_req)
635 		return -ENOENT;
636 
637 	return cfg80211_stop_sched_scan_req(rdev, sched_scan_req,
638 					    driver_initiated);
639 }
640 
641 void cfg80211_bss_age(struct cfg80211_registered_device *rdev,
642                       unsigned long age_secs)
643 {
644 	struct cfg80211_internal_bss *bss;
645 	unsigned long age_jiffies = msecs_to_jiffies(age_secs * MSEC_PER_SEC);
646 
647 	spin_lock_bh(&rdev->bss_lock);
648 	list_for_each_entry(bss, &rdev->bss_list, list)
649 		bss->ts -= age_jiffies;
650 	spin_unlock_bh(&rdev->bss_lock);
651 }
652 
653 void cfg80211_bss_expire(struct cfg80211_registered_device *rdev)
654 {
655 	__cfg80211_bss_expire(rdev, jiffies - IEEE80211_SCAN_RESULT_EXPIRE);
656 }
657 
658 const struct element *
659 cfg80211_find_elem_match(u8 eid, const u8 *ies, unsigned int len,
660 			 const u8 *match, unsigned int match_len,
661 			 unsigned int match_offset)
662 {
663 	const struct element *elem;
664 
665 	for_each_element_id(elem, eid, ies, len) {
666 		if (elem->datalen >= match_offset + match_len &&
667 		    !memcmp(elem->data + match_offset, match, match_len))
668 			return elem;
669 	}
670 
671 	return NULL;
672 }
673 EXPORT_SYMBOL(cfg80211_find_elem_match);
674 
675 const struct element *cfg80211_find_vendor_elem(unsigned int oui, int oui_type,
676 						const u8 *ies,
677 						unsigned int len)
678 {
679 	const struct element *elem;
680 	u8 match[] = { oui >> 16, oui >> 8, oui, oui_type };
681 	int match_len = (oui_type < 0) ? 3 : sizeof(match);
682 
683 	if (WARN_ON(oui_type > 0xff))
684 		return NULL;
685 
686 	elem = cfg80211_find_elem_match(WLAN_EID_VENDOR_SPECIFIC, ies, len,
687 					match, match_len, 0);
688 
689 	if (!elem || elem->datalen < 4)
690 		return NULL;
691 
692 	return elem;
693 }
694 EXPORT_SYMBOL(cfg80211_find_vendor_elem);
695 
696 /**
697  * enum bss_compare_mode - BSS compare mode
698  * @BSS_CMP_REGULAR: regular compare mode (for insertion and normal find)
699  * @BSS_CMP_HIDE_ZLEN: find hidden SSID with zero-length mode
700  * @BSS_CMP_HIDE_NUL: find hidden SSID with NUL-ed out mode
701  */
702 enum bss_compare_mode {
703 	BSS_CMP_REGULAR,
704 	BSS_CMP_HIDE_ZLEN,
705 	BSS_CMP_HIDE_NUL,
706 };
707 
708 static int cmp_bss(struct cfg80211_bss *a,
709 		   struct cfg80211_bss *b,
710 		   enum bss_compare_mode mode)
711 {
712 	const struct cfg80211_bss_ies *a_ies, *b_ies;
713 	const u8 *ie1 = NULL;
714 	const u8 *ie2 = NULL;
715 	int i, r;
716 
717 	if (a->channel != b->channel)
718 		return b->channel->center_freq - a->channel->center_freq;
719 
720 	a_ies = rcu_access_pointer(a->ies);
721 	if (!a_ies)
722 		return -1;
723 	b_ies = rcu_access_pointer(b->ies);
724 	if (!b_ies)
725 		return 1;
726 
727 	if (WLAN_CAPABILITY_IS_STA_BSS(a->capability))
728 		ie1 = cfg80211_find_ie(WLAN_EID_MESH_ID,
729 				       a_ies->data, a_ies->len);
730 	if (WLAN_CAPABILITY_IS_STA_BSS(b->capability))
731 		ie2 = cfg80211_find_ie(WLAN_EID_MESH_ID,
732 				       b_ies->data, b_ies->len);
733 	if (ie1 && ie2) {
734 		int mesh_id_cmp;
735 
736 		if (ie1[1] == ie2[1])
737 			mesh_id_cmp = memcmp(ie1 + 2, ie2 + 2, ie1[1]);
738 		else
739 			mesh_id_cmp = ie2[1] - ie1[1];
740 
741 		ie1 = cfg80211_find_ie(WLAN_EID_MESH_CONFIG,
742 				       a_ies->data, a_ies->len);
743 		ie2 = cfg80211_find_ie(WLAN_EID_MESH_CONFIG,
744 				       b_ies->data, b_ies->len);
745 		if (ie1 && ie2) {
746 			if (mesh_id_cmp)
747 				return mesh_id_cmp;
748 			if (ie1[1] != ie2[1])
749 				return ie2[1] - ie1[1];
750 			return memcmp(ie1 + 2, ie2 + 2, ie1[1]);
751 		}
752 	}
753 
754 	r = memcmp(a->bssid, b->bssid, sizeof(a->bssid));
755 	if (r)
756 		return r;
757 
758 	ie1 = cfg80211_find_ie(WLAN_EID_SSID, a_ies->data, a_ies->len);
759 	ie2 = cfg80211_find_ie(WLAN_EID_SSID, b_ies->data, b_ies->len);
760 
761 	if (!ie1 && !ie2)
762 		return 0;
763 
764 	/*
765 	 * Note that with "hide_ssid", the function returns a match if
766 	 * the already-present BSS ("b") is a hidden SSID beacon for
767 	 * the new BSS ("a").
768 	 */
769 
770 	/* sort missing IE before (left of) present IE */
771 	if (!ie1)
772 		return -1;
773 	if (!ie2)
774 		return 1;
775 
776 	switch (mode) {
777 	case BSS_CMP_HIDE_ZLEN:
778 		/*
779 		 * In ZLEN mode we assume the BSS entry we're
780 		 * looking for has a zero-length SSID. So if
781 		 * the one we're looking at right now has that,
782 		 * return 0. Otherwise, return the difference
783 		 * in length, but since we're looking for the
784 		 * 0-length it's really equivalent to returning
785 		 * the length of the one we're looking at.
786 		 *
787 		 * No content comparison is needed as we assume
788 		 * the content length is zero.
789 		 */
790 		return ie2[1];
791 	case BSS_CMP_REGULAR:
792 	default:
793 		/* sort by length first, then by contents */
794 		if (ie1[1] != ie2[1])
795 			return ie2[1] - ie1[1];
796 		return memcmp(ie1 + 2, ie2 + 2, ie1[1]);
797 	case BSS_CMP_HIDE_NUL:
798 		if (ie1[1] != ie2[1])
799 			return ie2[1] - ie1[1];
800 		/* this is equivalent to memcmp(zeroes, ie2 + 2, len) */
801 		for (i = 0; i < ie2[1]; i++)
802 			if (ie2[i + 2])
803 				return -1;
804 		return 0;
805 	}
806 }
807 
808 static bool cfg80211_bss_type_match(u16 capability,
809 				    enum nl80211_band band,
810 				    enum ieee80211_bss_type bss_type)
811 {
812 	bool ret = true;
813 	u16 mask, val;
814 
815 	if (bss_type == IEEE80211_BSS_TYPE_ANY)
816 		return ret;
817 
818 	if (band == NL80211_BAND_60GHZ) {
819 		mask = WLAN_CAPABILITY_DMG_TYPE_MASK;
820 		switch (bss_type) {
821 		case IEEE80211_BSS_TYPE_ESS:
822 			val = WLAN_CAPABILITY_DMG_TYPE_AP;
823 			break;
824 		case IEEE80211_BSS_TYPE_PBSS:
825 			val = WLAN_CAPABILITY_DMG_TYPE_PBSS;
826 			break;
827 		case IEEE80211_BSS_TYPE_IBSS:
828 			val = WLAN_CAPABILITY_DMG_TYPE_IBSS;
829 			break;
830 		default:
831 			return false;
832 		}
833 	} else {
834 		mask = WLAN_CAPABILITY_ESS | WLAN_CAPABILITY_IBSS;
835 		switch (bss_type) {
836 		case IEEE80211_BSS_TYPE_ESS:
837 			val = WLAN_CAPABILITY_ESS;
838 			break;
839 		case IEEE80211_BSS_TYPE_IBSS:
840 			val = WLAN_CAPABILITY_IBSS;
841 			break;
842 		case IEEE80211_BSS_TYPE_MBSS:
843 			val = 0;
844 			break;
845 		default:
846 			return false;
847 		}
848 	}
849 
850 	ret = ((capability & mask) == val);
851 	return ret;
852 }
853 
854 /* Returned bss is reference counted and must be cleaned up appropriately. */
855 struct cfg80211_bss *cfg80211_get_bss(struct wiphy *wiphy,
856 				      struct ieee80211_channel *channel,
857 				      const u8 *bssid,
858 				      const u8 *ssid, size_t ssid_len,
859 				      enum ieee80211_bss_type bss_type,
860 				      enum ieee80211_privacy privacy)
861 {
862 	struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
863 	struct cfg80211_internal_bss *bss, *res = NULL;
864 	unsigned long now = jiffies;
865 	int bss_privacy;
866 
867 	trace_cfg80211_get_bss(wiphy, channel, bssid, ssid, ssid_len, bss_type,
868 			       privacy);
869 
870 	spin_lock_bh(&rdev->bss_lock);
871 
872 	list_for_each_entry(bss, &rdev->bss_list, list) {
873 		if (!cfg80211_bss_type_match(bss->pub.capability,
874 					     bss->pub.channel->band, bss_type))
875 			continue;
876 
877 		bss_privacy = (bss->pub.capability & WLAN_CAPABILITY_PRIVACY);
878 		if ((privacy == IEEE80211_PRIVACY_ON && !bss_privacy) ||
879 		    (privacy == IEEE80211_PRIVACY_OFF && bss_privacy))
880 			continue;
881 		if (channel && bss->pub.channel != channel)
882 			continue;
883 		if (!is_valid_ether_addr(bss->pub.bssid))
884 			continue;
885 		/* Don't get expired BSS structs */
886 		if (time_after(now, bss->ts + IEEE80211_SCAN_RESULT_EXPIRE) &&
887 		    !atomic_read(&bss->hold))
888 			continue;
889 		if (is_bss(&bss->pub, bssid, ssid, ssid_len)) {
890 			res = bss;
891 			bss_ref_get(rdev, res);
892 			break;
893 		}
894 	}
895 
896 	spin_unlock_bh(&rdev->bss_lock);
897 	if (!res)
898 		return NULL;
899 	trace_cfg80211_return_bss(&res->pub);
900 	return &res->pub;
901 }
902 EXPORT_SYMBOL(cfg80211_get_bss);
903 
904 static void rb_insert_bss(struct cfg80211_registered_device *rdev,
905 			  struct cfg80211_internal_bss *bss)
906 {
907 	struct rb_node **p = &rdev->bss_tree.rb_node;
908 	struct rb_node *parent = NULL;
909 	struct cfg80211_internal_bss *tbss;
910 	int cmp;
911 
912 	while (*p) {
913 		parent = *p;
914 		tbss = rb_entry(parent, struct cfg80211_internal_bss, rbn);
915 
916 		cmp = cmp_bss(&bss->pub, &tbss->pub, BSS_CMP_REGULAR);
917 
918 		if (WARN_ON(!cmp)) {
919 			/* will sort of leak this BSS */
920 			return;
921 		}
922 
923 		if (cmp < 0)
924 			p = &(*p)->rb_left;
925 		else
926 			p = &(*p)->rb_right;
927 	}
928 
929 	rb_link_node(&bss->rbn, parent, p);
930 	rb_insert_color(&bss->rbn, &rdev->bss_tree);
931 }
932 
933 static struct cfg80211_internal_bss *
934 rb_find_bss(struct cfg80211_registered_device *rdev,
935 	    struct cfg80211_internal_bss *res,
936 	    enum bss_compare_mode mode)
937 {
938 	struct rb_node *n = rdev->bss_tree.rb_node;
939 	struct cfg80211_internal_bss *bss;
940 	int r;
941 
942 	while (n) {
943 		bss = rb_entry(n, struct cfg80211_internal_bss, rbn);
944 		r = cmp_bss(&res->pub, &bss->pub, mode);
945 
946 		if (r == 0)
947 			return bss;
948 		else if (r < 0)
949 			n = n->rb_left;
950 		else
951 			n = n->rb_right;
952 	}
953 
954 	return NULL;
955 }
956 
957 static bool cfg80211_combine_bsses(struct cfg80211_registered_device *rdev,
958 				   struct cfg80211_internal_bss *new)
959 {
960 	const struct cfg80211_bss_ies *ies;
961 	struct cfg80211_internal_bss *bss;
962 	const u8 *ie;
963 	int i, ssidlen;
964 	u8 fold = 0;
965 	u32 n_entries = 0;
966 
967 	ies = rcu_access_pointer(new->pub.beacon_ies);
968 	if (WARN_ON(!ies))
969 		return false;
970 
971 	ie = cfg80211_find_ie(WLAN_EID_SSID, ies->data, ies->len);
972 	if (!ie) {
973 		/* nothing to do */
974 		return true;
975 	}
976 
977 	ssidlen = ie[1];
978 	for (i = 0; i < ssidlen; i++)
979 		fold |= ie[2 + i];
980 
981 	if (fold) {
982 		/* not a hidden SSID */
983 		return true;
984 	}
985 
986 	/* This is the bad part ... */
987 
988 	list_for_each_entry(bss, &rdev->bss_list, list) {
989 		/*
990 		 * we're iterating all the entries anyway, so take the
991 		 * opportunity to validate the list length accounting
992 		 */
993 		n_entries++;
994 
995 		if (!ether_addr_equal(bss->pub.bssid, new->pub.bssid))
996 			continue;
997 		if (bss->pub.channel != new->pub.channel)
998 			continue;
999 		if (bss->pub.scan_width != new->pub.scan_width)
1000 			continue;
1001 		if (rcu_access_pointer(bss->pub.beacon_ies))
1002 			continue;
1003 		ies = rcu_access_pointer(bss->pub.ies);
1004 		if (!ies)
1005 			continue;
1006 		ie = cfg80211_find_ie(WLAN_EID_SSID, ies->data, ies->len);
1007 		if (!ie)
1008 			continue;
1009 		if (ssidlen && ie[1] != ssidlen)
1010 			continue;
1011 		if (WARN_ON_ONCE(bss->pub.hidden_beacon_bss))
1012 			continue;
1013 		if (WARN_ON_ONCE(!list_empty(&bss->hidden_list)))
1014 			list_del(&bss->hidden_list);
1015 		/* combine them */
1016 		list_add(&bss->hidden_list, &new->hidden_list);
1017 		bss->pub.hidden_beacon_bss = &new->pub;
1018 		new->refcount += bss->refcount;
1019 		rcu_assign_pointer(bss->pub.beacon_ies,
1020 				   new->pub.beacon_ies);
1021 	}
1022 
1023 	WARN_ONCE(n_entries != rdev->bss_entries,
1024 		  "rdev bss entries[%d]/list[len:%d] corruption\n",
1025 		  rdev->bss_entries, n_entries);
1026 
1027 	return true;
1028 }
1029 
1030 struct cfg80211_non_tx_bss {
1031 	struct cfg80211_bss *tx_bss;
1032 	u8 max_bssid_indicator;
1033 	u8 bssid_index;
1034 };
1035 
1036 /* Returned bss is reference counted and must be cleaned up appropriately. */
1037 static struct cfg80211_internal_bss *
1038 cfg80211_bss_update(struct cfg80211_registered_device *rdev,
1039 		    struct cfg80211_internal_bss *tmp,
1040 		    bool signal_valid)
1041 {
1042 	struct cfg80211_internal_bss *found = NULL;
1043 
1044 	if (WARN_ON(!tmp->pub.channel))
1045 		return NULL;
1046 
1047 	tmp->ts = jiffies;
1048 
1049 	spin_lock_bh(&rdev->bss_lock);
1050 
1051 	if (WARN_ON(!rcu_access_pointer(tmp->pub.ies))) {
1052 		spin_unlock_bh(&rdev->bss_lock);
1053 		return NULL;
1054 	}
1055 
1056 	found = rb_find_bss(rdev, tmp, BSS_CMP_REGULAR);
1057 
1058 	if (found) {
1059 		/* Update IEs */
1060 		if (rcu_access_pointer(tmp->pub.proberesp_ies)) {
1061 			const struct cfg80211_bss_ies *old;
1062 
1063 			old = rcu_access_pointer(found->pub.proberesp_ies);
1064 
1065 			rcu_assign_pointer(found->pub.proberesp_ies,
1066 					   tmp->pub.proberesp_ies);
1067 			/* Override possible earlier Beacon frame IEs */
1068 			rcu_assign_pointer(found->pub.ies,
1069 					   tmp->pub.proberesp_ies);
1070 			if (old)
1071 				kfree_rcu((struct cfg80211_bss_ies *)old,
1072 					  rcu_head);
1073 		} else if (rcu_access_pointer(tmp->pub.beacon_ies)) {
1074 			const struct cfg80211_bss_ies *old;
1075 			struct cfg80211_internal_bss *bss;
1076 
1077 			if (found->pub.hidden_beacon_bss &&
1078 			    !list_empty(&found->hidden_list)) {
1079 				const struct cfg80211_bss_ies *f;
1080 
1081 				/*
1082 				 * The found BSS struct is one of the probe
1083 				 * response members of a group, but we're
1084 				 * receiving a beacon (beacon_ies in the tmp
1085 				 * bss is used). This can only mean that the
1086 				 * AP changed its beacon from not having an
1087 				 * SSID to showing it, which is confusing so
1088 				 * drop this information.
1089 				 */
1090 
1091 				f = rcu_access_pointer(tmp->pub.beacon_ies);
1092 				kfree_rcu((struct cfg80211_bss_ies *)f,
1093 					  rcu_head);
1094 				goto drop;
1095 			}
1096 
1097 			old = rcu_access_pointer(found->pub.beacon_ies);
1098 
1099 			rcu_assign_pointer(found->pub.beacon_ies,
1100 					   tmp->pub.beacon_ies);
1101 
1102 			/* Override IEs if they were from a beacon before */
1103 			if (old == rcu_access_pointer(found->pub.ies))
1104 				rcu_assign_pointer(found->pub.ies,
1105 						   tmp->pub.beacon_ies);
1106 
1107 			/* Assign beacon IEs to all sub entries */
1108 			list_for_each_entry(bss, &found->hidden_list,
1109 					    hidden_list) {
1110 				const struct cfg80211_bss_ies *ies;
1111 
1112 				ies = rcu_access_pointer(bss->pub.beacon_ies);
1113 				WARN_ON(ies != old);
1114 
1115 				rcu_assign_pointer(bss->pub.beacon_ies,
1116 						   tmp->pub.beacon_ies);
1117 			}
1118 
1119 			if (old)
1120 				kfree_rcu((struct cfg80211_bss_ies *)old,
1121 					  rcu_head);
1122 		}
1123 
1124 		found->pub.beacon_interval = tmp->pub.beacon_interval;
1125 		/*
1126 		 * don't update the signal if beacon was heard on
1127 		 * adjacent channel.
1128 		 */
1129 		if (signal_valid)
1130 			found->pub.signal = tmp->pub.signal;
1131 		found->pub.capability = tmp->pub.capability;
1132 		found->ts = tmp->ts;
1133 		found->ts_boottime = tmp->ts_boottime;
1134 		found->parent_tsf = tmp->parent_tsf;
1135 		found->pub.chains = tmp->pub.chains;
1136 		memcpy(found->pub.chain_signal, tmp->pub.chain_signal,
1137 		       IEEE80211_MAX_CHAINS);
1138 		ether_addr_copy(found->parent_bssid, tmp->parent_bssid);
1139 		found->pub.max_bssid_indicator = tmp->pub.max_bssid_indicator;
1140 		found->pub.bssid_index = tmp->pub.bssid_index;
1141 	} else {
1142 		struct cfg80211_internal_bss *new;
1143 		struct cfg80211_internal_bss *hidden;
1144 		struct cfg80211_bss_ies *ies;
1145 
1146 		/*
1147 		 * create a copy -- the "res" variable that is passed in
1148 		 * is allocated on the stack since it's not needed in the
1149 		 * more common case of an update
1150 		 */
1151 		new = kzalloc(sizeof(*new) + rdev->wiphy.bss_priv_size,
1152 			      GFP_ATOMIC);
1153 		if (!new) {
1154 			ies = (void *)rcu_dereference(tmp->pub.beacon_ies);
1155 			if (ies)
1156 				kfree_rcu(ies, rcu_head);
1157 			ies = (void *)rcu_dereference(tmp->pub.proberesp_ies);
1158 			if (ies)
1159 				kfree_rcu(ies, rcu_head);
1160 			goto drop;
1161 		}
1162 		memcpy(new, tmp, sizeof(*new));
1163 		new->refcount = 1;
1164 		INIT_LIST_HEAD(&new->hidden_list);
1165 		INIT_LIST_HEAD(&new->pub.nontrans_list);
1166 
1167 		if (rcu_access_pointer(tmp->pub.proberesp_ies)) {
1168 			hidden = rb_find_bss(rdev, tmp, BSS_CMP_HIDE_ZLEN);
1169 			if (!hidden)
1170 				hidden = rb_find_bss(rdev, tmp,
1171 						     BSS_CMP_HIDE_NUL);
1172 			if (hidden) {
1173 				new->pub.hidden_beacon_bss = &hidden->pub;
1174 				list_add(&new->hidden_list,
1175 					 &hidden->hidden_list);
1176 				hidden->refcount++;
1177 				rcu_assign_pointer(new->pub.beacon_ies,
1178 						   hidden->pub.beacon_ies);
1179 			}
1180 		} else {
1181 			/*
1182 			 * Ok so we found a beacon, and don't have an entry. If
1183 			 * it's a beacon with hidden SSID, we might be in for an
1184 			 * expensive search for any probe responses that should
1185 			 * be grouped with this beacon for updates ...
1186 			 */
1187 			if (!cfg80211_combine_bsses(rdev, new)) {
1188 				kfree(new);
1189 				goto drop;
1190 			}
1191 		}
1192 
1193 		if (rdev->bss_entries >= bss_entries_limit &&
1194 		    !cfg80211_bss_expire_oldest(rdev)) {
1195 			kfree(new);
1196 			goto drop;
1197 		}
1198 
1199 		/* This must be before the call to bss_ref_get */
1200 		if (tmp->pub.transmitted_bss) {
1201 			struct cfg80211_internal_bss *pbss =
1202 				container_of(tmp->pub.transmitted_bss,
1203 					     struct cfg80211_internal_bss,
1204 					     pub);
1205 
1206 			new->pub.transmitted_bss = tmp->pub.transmitted_bss;
1207 			bss_ref_get(rdev, pbss);
1208 		}
1209 
1210 		list_add_tail(&new->list, &rdev->bss_list);
1211 		rdev->bss_entries++;
1212 		rb_insert_bss(rdev, new);
1213 		found = new;
1214 	}
1215 
1216 	rdev->bss_generation++;
1217 	bss_ref_get(rdev, found);
1218 	spin_unlock_bh(&rdev->bss_lock);
1219 
1220 	return found;
1221  drop:
1222 	spin_unlock_bh(&rdev->bss_lock);
1223 	return NULL;
1224 }
1225 
1226 /*
1227  * Update RX channel information based on the available frame payload
1228  * information. This is mainly for the 2.4 GHz band where frames can be received
1229  * from neighboring channels and the Beacon frames use the DSSS Parameter Set
1230  * element to indicate the current (transmitting) channel, but this might also
1231  * be needed on other bands if RX frequency does not match with the actual
1232  * operating channel of a BSS.
1233  */
1234 static struct ieee80211_channel *
1235 cfg80211_get_bss_channel(struct wiphy *wiphy, const u8 *ie, size_t ielen,
1236 			 struct ieee80211_channel *channel,
1237 			 enum nl80211_bss_scan_width scan_width)
1238 {
1239 	const u8 *tmp;
1240 	u32 freq;
1241 	int channel_number = -1;
1242 	struct ieee80211_channel *alt_channel;
1243 
1244 	tmp = cfg80211_find_ie(WLAN_EID_DS_PARAMS, ie, ielen);
1245 	if (tmp && tmp[1] == 1) {
1246 		channel_number = tmp[2];
1247 	} else {
1248 		tmp = cfg80211_find_ie(WLAN_EID_HT_OPERATION, ie, ielen);
1249 		if (tmp && tmp[1] >= sizeof(struct ieee80211_ht_operation)) {
1250 			struct ieee80211_ht_operation *htop = (void *)(tmp + 2);
1251 
1252 			channel_number = htop->primary_chan;
1253 		}
1254 	}
1255 
1256 	if (channel_number < 0) {
1257 		/* No channel information in frame payload */
1258 		return channel;
1259 	}
1260 
1261 	freq = ieee80211_channel_to_frequency(channel_number, channel->band);
1262 	alt_channel = ieee80211_get_channel(wiphy, freq);
1263 	if (!alt_channel) {
1264 		if (channel->band == NL80211_BAND_2GHZ) {
1265 			/*
1266 			 * Better not allow unexpected channels when that could
1267 			 * be going beyond the 1-11 range (e.g., discovering
1268 			 * BSS on channel 12 when radio is configured for
1269 			 * channel 11.
1270 			 */
1271 			return NULL;
1272 		}
1273 
1274 		/* No match for the payload channel number - ignore it */
1275 		return channel;
1276 	}
1277 
1278 	if (scan_width == NL80211_BSS_CHAN_WIDTH_10 ||
1279 	    scan_width == NL80211_BSS_CHAN_WIDTH_5) {
1280 		/*
1281 		 * Ignore channel number in 5 and 10 MHz channels where there
1282 		 * may not be an n:1 or 1:n mapping between frequencies and
1283 		 * channel numbers.
1284 		 */
1285 		return channel;
1286 	}
1287 
1288 	/*
1289 	 * Use the channel determined through the payload channel number
1290 	 * instead of the RX channel reported by the driver.
1291 	 */
1292 	if (alt_channel->flags & IEEE80211_CHAN_DISABLED)
1293 		return NULL;
1294 	return alt_channel;
1295 }
1296 
1297 /* Returned bss is reference counted and must be cleaned up appropriately. */
1298 static struct cfg80211_bss *
1299 cfg80211_inform_single_bss_data(struct wiphy *wiphy,
1300 				struct cfg80211_inform_bss *data,
1301 				enum cfg80211_bss_frame_type ftype,
1302 				const u8 *bssid, u64 tsf, u16 capability,
1303 				u16 beacon_interval, const u8 *ie, size_t ielen,
1304 				struct cfg80211_non_tx_bss *non_tx_data,
1305 				gfp_t gfp)
1306 {
1307 	struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
1308 	struct cfg80211_bss_ies *ies;
1309 	struct ieee80211_channel *channel;
1310 	struct cfg80211_internal_bss tmp = {}, *res;
1311 	int bss_type;
1312 	bool signal_valid;
1313 
1314 	if (WARN_ON(!wiphy))
1315 		return NULL;
1316 
1317 	if (WARN_ON(wiphy->signal_type == CFG80211_SIGNAL_TYPE_UNSPEC &&
1318 		    (data->signal < 0 || data->signal > 100)))
1319 		return NULL;
1320 
1321 	channel = cfg80211_get_bss_channel(wiphy, ie, ielen, data->chan,
1322 					   data->scan_width);
1323 	if (!channel)
1324 		return NULL;
1325 
1326 	memcpy(tmp.pub.bssid, bssid, ETH_ALEN);
1327 	tmp.pub.channel = channel;
1328 	tmp.pub.scan_width = data->scan_width;
1329 	tmp.pub.signal = data->signal;
1330 	tmp.pub.beacon_interval = beacon_interval;
1331 	tmp.pub.capability = capability;
1332 	tmp.ts_boottime = data->boottime_ns;
1333 	if (non_tx_data) {
1334 		tmp.pub.transmitted_bss = non_tx_data->tx_bss;
1335 		tmp.pub.bssid_index = non_tx_data->bssid_index;
1336 		tmp.pub.max_bssid_indicator = non_tx_data->max_bssid_indicator;
1337 	}
1338 
1339 	/*
1340 	 * If we do not know here whether the IEs are from a Beacon or Probe
1341 	 * Response frame, we need to pick one of the options and only use it
1342 	 * with the driver that does not provide the full Beacon/Probe Response
1343 	 * frame. Use Beacon frame pointer to avoid indicating that this should
1344 	 * override the IEs pointer should we have received an earlier
1345 	 * indication of Probe Response data.
1346 	 */
1347 	ies = kzalloc(sizeof(*ies) + ielen, gfp);
1348 	if (!ies)
1349 		return NULL;
1350 	ies->len = ielen;
1351 	ies->tsf = tsf;
1352 	ies->from_beacon = false;
1353 	memcpy(ies->data, ie, ielen);
1354 
1355 	switch (ftype) {
1356 	case CFG80211_BSS_FTYPE_BEACON:
1357 		ies->from_beacon = true;
1358 		/* fall through */
1359 	case CFG80211_BSS_FTYPE_UNKNOWN:
1360 		rcu_assign_pointer(tmp.pub.beacon_ies, ies);
1361 		break;
1362 	case CFG80211_BSS_FTYPE_PRESP:
1363 		rcu_assign_pointer(tmp.pub.proberesp_ies, ies);
1364 		break;
1365 	}
1366 	rcu_assign_pointer(tmp.pub.ies, ies);
1367 
1368 	signal_valid = abs(data->chan->center_freq - channel->center_freq) <=
1369 		wiphy->max_adj_channel_rssi_comp;
1370 	res = cfg80211_bss_update(wiphy_to_rdev(wiphy), &tmp, signal_valid);
1371 	if (!res)
1372 		return NULL;
1373 
1374 	if (channel->band == NL80211_BAND_60GHZ) {
1375 		bss_type = res->pub.capability & WLAN_CAPABILITY_DMG_TYPE_MASK;
1376 		if (bss_type == WLAN_CAPABILITY_DMG_TYPE_AP ||
1377 		    bss_type == WLAN_CAPABILITY_DMG_TYPE_PBSS)
1378 			regulatory_hint_found_beacon(wiphy, channel, gfp);
1379 	} else {
1380 		if (res->pub.capability & WLAN_CAPABILITY_ESS)
1381 			regulatory_hint_found_beacon(wiphy, channel, gfp);
1382 	}
1383 
1384 	if (non_tx_data && non_tx_data->tx_bss) {
1385 		/* this is a nontransmitting bss, we need to add it to
1386 		 * transmitting bss' list if it is not there
1387 		 */
1388 		if (cfg80211_add_nontrans_list(non_tx_data->tx_bss,
1389 					       &res->pub)) {
1390 			if (__cfg80211_unlink_bss(rdev, res))
1391 				rdev->bss_generation++;
1392 		}
1393 	}
1394 
1395 	trace_cfg80211_return_bss(&res->pub);
1396 	/* cfg80211_bss_update gives us a referenced result */
1397 	return &res->pub;
1398 }
1399 
1400 static void cfg80211_parse_mbssid_data(struct wiphy *wiphy,
1401 				       struct cfg80211_inform_bss *data,
1402 				       enum cfg80211_bss_frame_type ftype,
1403 				       const u8 *bssid, u64 tsf,
1404 				       u16 beacon_interval, const u8 *ie,
1405 				       size_t ielen,
1406 				       struct cfg80211_non_tx_bss *non_tx_data,
1407 				       gfp_t gfp)
1408 {
1409 	const u8 *mbssid_index_ie;
1410 	const struct element *elem, *sub;
1411 	size_t new_ie_len;
1412 	u8 new_bssid[ETH_ALEN];
1413 	u8 *new_ie;
1414 	u16 capability;
1415 	struct cfg80211_bss *bss;
1416 
1417 	if (!non_tx_data)
1418 		return;
1419 	if (!cfg80211_find_ie(WLAN_EID_MULTIPLE_BSSID, ie, ielen))
1420 		return;
1421 	if (!wiphy->support_mbssid)
1422 		return;
1423 	if (wiphy->support_only_he_mbssid &&
1424 	    !cfg80211_find_ext_ie(WLAN_EID_EXT_HE_CAPABILITY, ie, ielen))
1425 		return;
1426 
1427 	new_ie = kmalloc(IEEE80211_MAX_DATA_LEN, gfp);
1428 	if (!new_ie)
1429 		return;
1430 
1431 	for_each_element_id(elem, WLAN_EID_MULTIPLE_BSSID, ie, ielen) {
1432 		if (elem->datalen < 4)
1433 			continue;
1434 		for_each_element(sub, elem->data + 1, elem->datalen - 1) {
1435 			if (sub->id != 0 || sub->datalen < 4) {
1436 				/* not a valid BSS profile */
1437 				continue;
1438 			}
1439 
1440 			if (sub->data[0] != WLAN_EID_NON_TX_BSSID_CAP ||
1441 			    sub->data[1] != 2) {
1442 				/* The first element within the Nontransmitted
1443 				 * BSSID Profile is not the Nontransmitted
1444 				 * BSSID Capability element.
1445 				 */
1446 				continue;
1447 			}
1448 
1449 			/* found a Nontransmitted BSSID Profile */
1450 			mbssid_index_ie = cfg80211_find_ie
1451 				(WLAN_EID_MULTI_BSSID_IDX,
1452 				 sub->data, sub->datalen);
1453 			if (!mbssid_index_ie || mbssid_index_ie[1] < 1 ||
1454 			    mbssid_index_ie[2] == 0) {
1455 				/* No valid Multiple BSSID-Index element */
1456 				continue;
1457 			}
1458 
1459 			non_tx_data->bssid_index = mbssid_index_ie[2];
1460 			non_tx_data->max_bssid_indicator = elem->data[0];
1461 
1462 			cfg80211_gen_new_bssid(bssid,
1463 					       non_tx_data->max_bssid_indicator,
1464 					       non_tx_data->bssid_index,
1465 					       new_bssid);
1466 			memset(new_ie, 0, IEEE80211_MAX_DATA_LEN);
1467 			new_ie_len = cfg80211_gen_new_ie(ie, ielen, sub->data,
1468 							 sub->datalen, new_ie,
1469 							 gfp);
1470 			if (!new_ie_len)
1471 				continue;
1472 
1473 			capability = get_unaligned_le16(sub->data + 2);
1474 			bss = cfg80211_inform_single_bss_data(wiphy, data,
1475 							      ftype,
1476 							      new_bssid, tsf,
1477 							      capability,
1478 							      beacon_interval,
1479 							      new_ie,
1480 							      new_ie_len,
1481 							      non_tx_data,
1482 							      gfp);
1483 			if (!bss)
1484 				break;
1485 			cfg80211_put_bss(wiphy, bss);
1486 		}
1487 	}
1488 
1489 	kfree(new_ie);
1490 }
1491 
1492 struct cfg80211_bss *
1493 cfg80211_inform_bss_data(struct wiphy *wiphy,
1494 			 struct cfg80211_inform_bss *data,
1495 			 enum cfg80211_bss_frame_type ftype,
1496 			 const u8 *bssid, u64 tsf, u16 capability,
1497 			 u16 beacon_interval, const u8 *ie, size_t ielen,
1498 			 gfp_t gfp)
1499 {
1500 	struct cfg80211_bss *res;
1501 	struct cfg80211_non_tx_bss non_tx_data;
1502 
1503 	res = cfg80211_inform_single_bss_data(wiphy, data, ftype, bssid, tsf,
1504 					      capability, beacon_interval, ie,
1505 					      ielen, NULL, gfp);
1506 	non_tx_data.tx_bss = res;
1507 	cfg80211_parse_mbssid_data(wiphy, data, ftype, bssid, tsf,
1508 				   beacon_interval, ie, ielen, &non_tx_data,
1509 				   gfp);
1510 	return res;
1511 }
1512 EXPORT_SYMBOL(cfg80211_inform_bss_data);
1513 
1514 static void
1515 cfg80211_parse_mbssid_frame_data(struct wiphy *wiphy,
1516 				 struct cfg80211_inform_bss *data,
1517 				 struct ieee80211_mgmt *mgmt, size_t len,
1518 				 struct cfg80211_non_tx_bss *non_tx_data,
1519 				 gfp_t gfp)
1520 {
1521 	enum cfg80211_bss_frame_type ftype;
1522 	const u8 *ie = mgmt->u.probe_resp.variable;
1523 	size_t ielen = len - offsetof(struct ieee80211_mgmt,
1524 				      u.probe_resp.variable);
1525 
1526 	ftype = ieee80211_is_beacon(mgmt->frame_control) ?
1527 		CFG80211_BSS_FTYPE_BEACON : CFG80211_BSS_FTYPE_PRESP;
1528 
1529 	cfg80211_parse_mbssid_data(wiphy, data, ftype, mgmt->bssid,
1530 				   le64_to_cpu(mgmt->u.probe_resp.timestamp),
1531 				   le16_to_cpu(mgmt->u.probe_resp.beacon_int),
1532 				   ie, ielen, non_tx_data, gfp);
1533 }
1534 
1535 static void
1536 cfg80211_update_notlisted_nontrans(struct wiphy *wiphy,
1537 				   struct cfg80211_bss *nontrans_bss,
1538 				   struct ieee80211_mgmt *mgmt, size_t len,
1539 				   gfp_t gfp)
1540 {
1541 	u8 *ie, *new_ie, *pos;
1542 	const u8 *nontrans_ssid, *trans_ssid, *mbssid;
1543 	size_t ielen = len - offsetof(struct ieee80211_mgmt,
1544 				      u.probe_resp.variable);
1545 	size_t new_ie_len;
1546 	struct cfg80211_bss_ies *new_ies;
1547 	const struct cfg80211_bss_ies *old;
1548 	u8 cpy_len;
1549 
1550 	ie = mgmt->u.probe_resp.variable;
1551 
1552 	new_ie_len = ielen;
1553 	trans_ssid = cfg80211_find_ie(WLAN_EID_SSID, ie, ielen);
1554 	if (!trans_ssid)
1555 		return;
1556 	new_ie_len -= trans_ssid[1];
1557 	mbssid = cfg80211_find_ie(WLAN_EID_MULTIPLE_BSSID, ie, ielen);
1558 	if (!mbssid)
1559 		return;
1560 	new_ie_len -= mbssid[1];
1561 	rcu_read_lock();
1562 	nontrans_ssid = ieee80211_bss_get_ie(nontrans_bss, WLAN_EID_SSID);
1563 	if (!nontrans_ssid) {
1564 		rcu_read_unlock();
1565 		return;
1566 	}
1567 	new_ie_len += nontrans_ssid[1];
1568 	rcu_read_unlock();
1569 
1570 	/* generate new ie for nontrans BSS
1571 	 * 1. replace SSID with nontrans BSS' SSID
1572 	 * 2. skip MBSSID IE
1573 	 */
1574 	new_ie = kzalloc(new_ie_len, gfp);
1575 	if (!new_ie)
1576 		return;
1577 	new_ies = kzalloc(sizeof(*new_ies) + new_ie_len, gfp);
1578 	if (!new_ies)
1579 		goto out_free;
1580 
1581 	pos = new_ie;
1582 
1583 	/* copy the nontransmitted SSID */
1584 	cpy_len = nontrans_ssid[1] + 2;
1585 	memcpy(pos, nontrans_ssid, cpy_len);
1586 	pos += cpy_len;
1587 	/* copy the IEs between SSID and MBSSID */
1588 	cpy_len = trans_ssid[1] + 2;
1589 	memcpy(pos, (trans_ssid + cpy_len), (mbssid - (trans_ssid + cpy_len)));
1590 	pos += (mbssid - (trans_ssid + cpy_len));
1591 	/* copy the IEs after MBSSID */
1592 	cpy_len = mbssid[1] + 2;
1593 	memcpy(pos, mbssid + cpy_len, ((ie + ielen) - (mbssid + cpy_len)));
1594 
1595 	/* update ie */
1596 	new_ies->len = new_ie_len;
1597 	new_ies->tsf = le64_to_cpu(mgmt->u.probe_resp.timestamp);
1598 	new_ies->from_beacon = ieee80211_is_beacon(mgmt->frame_control);
1599 	memcpy(new_ies->data, new_ie, new_ie_len);
1600 	if (ieee80211_is_probe_resp(mgmt->frame_control)) {
1601 		old = rcu_access_pointer(nontrans_bss->proberesp_ies);
1602 		rcu_assign_pointer(nontrans_bss->proberesp_ies, new_ies);
1603 		rcu_assign_pointer(nontrans_bss->ies, new_ies);
1604 		if (old)
1605 			kfree_rcu((struct cfg80211_bss_ies *)old, rcu_head);
1606 	} else {
1607 		old = rcu_access_pointer(nontrans_bss->beacon_ies);
1608 		rcu_assign_pointer(nontrans_bss->beacon_ies, new_ies);
1609 		rcu_assign_pointer(nontrans_bss->ies, new_ies);
1610 		if (old)
1611 			kfree_rcu((struct cfg80211_bss_ies *)old, rcu_head);
1612 	}
1613 
1614 out_free:
1615 	kfree(new_ie);
1616 }
1617 
1618 /* cfg80211_inform_bss_width_frame helper */
1619 static struct cfg80211_bss *
1620 cfg80211_inform_single_bss_frame_data(struct wiphy *wiphy,
1621 				      struct cfg80211_inform_bss *data,
1622 				      struct ieee80211_mgmt *mgmt, size_t len,
1623 				      struct cfg80211_non_tx_bss *non_tx_data,
1624 				      gfp_t gfp)
1625 {
1626 	struct cfg80211_internal_bss tmp = {}, *res;
1627 	struct cfg80211_bss_ies *ies;
1628 	struct ieee80211_channel *channel;
1629 	bool signal_valid;
1630 	size_t ielen = len - offsetof(struct ieee80211_mgmt,
1631 				      u.probe_resp.variable);
1632 	int bss_type;
1633 
1634 	BUILD_BUG_ON(offsetof(struct ieee80211_mgmt, u.probe_resp.variable) !=
1635 			offsetof(struct ieee80211_mgmt, u.beacon.variable));
1636 
1637 	trace_cfg80211_inform_bss_frame(wiphy, data, mgmt, len);
1638 
1639 	if (WARN_ON(!mgmt))
1640 		return NULL;
1641 
1642 	if (WARN_ON(!wiphy))
1643 		return NULL;
1644 
1645 	if (WARN_ON(wiphy->signal_type == CFG80211_SIGNAL_TYPE_UNSPEC &&
1646 		    (data->signal < 0 || data->signal > 100)))
1647 		return NULL;
1648 
1649 	if (WARN_ON(len < offsetof(struct ieee80211_mgmt, u.probe_resp.variable)))
1650 		return NULL;
1651 
1652 	channel = cfg80211_get_bss_channel(wiphy, mgmt->u.beacon.variable,
1653 					   ielen, data->chan, data->scan_width);
1654 	if (!channel)
1655 		return NULL;
1656 
1657 	ies = kzalloc(sizeof(*ies) + ielen, gfp);
1658 	if (!ies)
1659 		return NULL;
1660 	ies->len = ielen;
1661 	ies->tsf = le64_to_cpu(mgmt->u.probe_resp.timestamp);
1662 	ies->from_beacon = ieee80211_is_beacon(mgmt->frame_control);
1663 	memcpy(ies->data, mgmt->u.probe_resp.variable, ielen);
1664 
1665 	if (ieee80211_is_probe_resp(mgmt->frame_control))
1666 		rcu_assign_pointer(tmp.pub.proberesp_ies, ies);
1667 	else
1668 		rcu_assign_pointer(tmp.pub.beacon_ies, ies);
1669 	rcu_assign_pointer(tmp.pub.ies, ies);
1670 
1671 	memcpy(tmp.pub.bssid, mgmt->bssid, ETH_ALEN);
1672 	tmp.pub.channel = channel;
1673 	tmp.pub.scan_width = data->scan_width;
1674 	tmp.pub.signal = data->signal;
1675 	tmp.pub.beacon_interval = le16_to_cpu(mgmt->u.probe_resp.beacon_int);
1676 	tmp.pub.capability = le16_to_cpu(mgmt->u.probe_resp.capab_info);
1677 	tmp.ts_boottime = data->boottime_ns;
1678 	tmp.parent_tsf = data->parent_tsf;
1679 	tmp.pub.chains = data->chains;
1680 	memcpy(tmp.pub.chain_signal, data->chain_signal, IEEE80211_MAX_CHAINS);
1681 	ether_addr_copy(tmp.parent_bssid, data->parent_bssid);
1682 	if (non_tx_data) {
1683 		tmp.pub.transmitted_bss = non_tx_data->tx_bss;
1684 		tmp.pub.bssid_index = non_tx_data->bssid_index;
1685 		tmp.pub.max_bssid_indicator = non_tx_data->max_bssid_indicator;
1686 	}
1687 
1688 	signal_valid = abs(data->chan->center_freq - channel->center_freq) <=
1689 		wiphy->max_adj_channel_rssi_comp;
1690 	res = cfg80211_bss_update(wiphy_to_rdev(wiphy), &tmp, signal_valid);
1691 	if (!res)
1692 		return NULL;
1693 
1694 	if (channel->band == NL80211_BAND_60GHZ) {
1695 		bss_type = res->pub.capability & WLAN_CAPABILITY_DMG_TYPE_MASK;
1696 		if (bss_type == WLAN_CAPABILITY_DMG_TYPE_AP ||
1697 		    bss_type == WLAN_CAPABILITY_DMG_TYPE_PBSS)
1698 			regulatory_hint_found_beacon(wiphy, channel, gfp);
1699 	} else {
1700 		if (res->pub.capability & WLAN_CAPABILITY_ESS)
1701 			regulatory_hint_found_beacon(wiphy, channel, gfp);
1702 	}
1703 
1704 	trace_cfg80211_return_bss(&res->pub);
1705 	/* cfg80211_bss_update gives us a referenced result */
1706 	return &res->pub;
1707 }
1708 
1709 struct cfg80211_bss *
1710 cfg80211_inform_bss_frame_data(struct wiphy *wiphy,
1711 			       struct cfg80211_inform_bss *data,
1712 			       struct ieee80211_mgmt *mgmt, size_t len,
1713 			       gfp_t gfp)
1714 {
1715 	struct cfg80211_bss *res, *tmp_bss;
1716 	const u8 *ie = mgmt->u.probe_resp.variable;
1717 	const struct cfg80211_bss_ies *ies1, *ies2;
1718 	size_t ielen = len - offsetof(struct ieee80211_mgmt,
1719 				      u.probe_resp.variable);
1720 	struct cfg80211_non_tx_bss non_tx_data;
1721 
1722 	res = cfg80211_inform_single_bss_frame_data(wiphy, data, mgmt,
1723 						    len, NULL, gfp);
1724 	if (!res || !wiphy->support_mbssid ||
1725 	    !cfg80211_find_ie(WLAN_EID_MULTIPLE_BSSID, ie, ielen))
1726 		return res;
1727 	if (wiphy->support_only_he_mbssid &&
1728 	    !cfg80211_find_ext_ie(WLAN_EID_EXT_HE_CAPABILITY, ie, ielen))
1729 		return res;
1730 
1731 	non_tx_data.tx_bss = res;
1732 	/* process each non-transmitting bss */
1733 	cfg80211_parse_mbssid_frame_data(wiphy, data, mgmt, len,
1734 					 &non_tx_data, gfp);
1735 
1736 	/* check if the res has other nontransmitting bss which is not
1737 	 * in MBSSID IE
1738 	 */
1739 	ies1 = rcu_access_pointer(res->ies);
1740 
1741 	/* go through nontrans_list, if the timestamp of the BSS is
1742 	 * earlier than the timestamp of the transmitting BSS then
1743 	 * update it
1744 	 */
1745 	list_for_each_entry(tmp_bss, &res->nontrans_list,
1746 			    nontrans_list) {
1747 		ies2 = rcu_access_pointer(tmp_bss->ies);
1748 		if (ies2->tsf < ies1->tsf)
1749 			cfg80211_update_notlisted_nontrans(wiphy, tmp_bss,
1750 							   mgmt, len, gfp);
1751 	}
1752 
1753 	return res;
1754 }
1755 EXPORT_SYMBOL(cfg80211_inform_bss_frame_data);
1756 
1757 void cfg80211_ref_bss(struct wiphy *wiphy, struct cfg80211_bss *pub)
1758 {
1759 	struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
1760 	struct cfg80211_internal_bss *bss;
1761 
1762 	if (!pub)
1763 		return;
1764 
1765 	bss = container_of(pub, struct cfg80211_internal_bss, pub);
1766 
1767 	spin_lock_bh(&rdev->bss_lock);
1768 	bss_ref_get(rdev, bss);
1769 	spin_unlock_bh(&rdev->bss_lock);
1770 }
1771 EXPORT_SYMBOL(cfg80211_ref_bss);
1772 
1773 void cfg80211_put_bss(struct wiphy *wiphy, struct cfg80211_bss *pub)
1774 {
1775 	struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
1776 	struct cfg80211_internal_bss *bss;
1777 
1778 	if (!pub)
1779 		return;
1780 
1781 	bss = container_of(pub, struct cfg80211_internal_bss, pub);
1782 
1783 	spin_lock_bh(&rdev->bss_lock);
1784 	bss_ref_put(rdev, bss);
1785 	spin_unlock_bh(&rdev->bss_lock);
1786 }
1787 EXPORT_SYMBOL(cfg80211_put_bss);
1788 
1789 void cfg80211_unlink_bss(struct wiphy *wiphy, struct cfg80211_bss *pub)
1790 {
1791 	struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
1792 	struct cfg80211_internal_bss *bss, *tmp1;
1793 	struct cfg80211_bss *nontrans_bss, *tmp;
1794 
1795 	if (WARN_ON(!pub))
1796 		return;
1797 
1798 	bss = container_of(pub, struct cfg80211_internal_bss, pub);
1799 
1800 	spin_lock_bh(&rdev->bss_lock);
1801 	if (list_empty(&bss->list))
1802 		goto out;
1803 
1804 	list_for_each_entry_safe(nontrans_bss, tmp,
1805 				 &pub->nontrans_list,
1806 				 nontrans_list) {
1807 		tmp1 = container_of(nontrans_bss,
1808 				    struct cfg80211_internal_bss, pub);
1809 		if (__cfg80211_unlink_bss(rdev, tmp1))
1810 			rdev->bss_generation++;
1811 	}
1812 
1813 	if (__cfg80211_unlink_bss(rdev, bss))
1814 		rdev->bss_generation++;
1815 out:
1816 	spin_unlock_bh(&rdev->bss_lock);
1817 }
1818 EXPORT_SYMBOL(cfg80211_unlink_bss);
1819 
1820 #ifdef CONFIG_CFG80211_WEXT
1821 static struct cfg80211_registered_device *
1822 cfg80211_get_dev_from_ifindex(struct net *net, int ifindex)
1823 {
1824 	struct cfg80211_registered_device *rdev;
1825 	struct net_device *dev;
1826 
1827 	ASSERT_RTNL();
1828 
1829 	dev = dev_get_by_index(net, ifindex);
1830 	if (!dev)
1831 		return ERR_PTR(-ENODEV);
1832 	if (dev->ieee80211_ptr)
1833 		rdev = wiphy_to_rdev(dev->ieee80211_ptr->wiphy);
1834 	else
1835 		rdev = ERR_PTR(-ENODEV);
1836 	dev_put(dev);
1837 	return rdev;
1838 }
1839 
1840 int cfg80211_wext_siwscan(struct net_device *dev,
1841 			  struct iw_request_info *info,
1842 			  union iwreq_data *wrqu, char *extra)
1843 {
1844 	struct cfg80211_registered_device *rdev;
1845 	struct wiphy *wiphy;
1846 	struct iw_scan_req *wreq = NULL;
1847 	struct cfg80211_scan_request *creq = NULL;
1848 	int i, err, n_channels = 0;
1849 	enum nl80211_band band;
1850 
1851 	if (!netif_running(dev))
1852 		return -ENETDOWN;
1853 
1854 	if (wrqu->data.length == sizeof(struct iw_scan_req))
1855 		wreq = (struct iw_scan_req *)extra;
1856 
1857 	rdev = cfg80211_get_dev_from_ifindex(dev_net(dev), dev->ifindex);
1858 
1859 	if (IS_ERR(rdev))
1860 		return PTR_ERR(rdev);
1861 
1862 	if (rdev->scan_req || rdev->scan_msg) {
1863 		err = -EBUSY;
1864 		goto out;
1865 	}
1866 
1867 	wiphy = &rdev->wiphy;
1868 
1869 	/* Determine number of channels, needed to allocate creq */
1870 	if (wreq && wreq->num_channels)
1871 		n_channels = wreq->num_channels;
1872 	else
1873 		n_channels = ieee80211_get_num_supported_channels(wiphy);
1874 
1875 	creq = kzalloc(sizeof(*creq) + sizeof(struct cfg80211_ssid) +
1876 		       n_channels * sizeof(void *),
1877 		       GFP_ATOMIC);
1878 	if (!creq) {
1879 		err = -ENOMEM;
1880 		goto out;
1881 	}
1882 
1883 	creq->wiphy = wiphy;
1884 	creq->wdev = dev->ieee80211_ptr;
1885 	/* SSIDs come after channels */
1886 	creq->ssids = (void *)&creq->channels[n_channels];
1887 	creq->n_channels = n_channels;
1888 	creq->n_ssids = 1;
1889 	creq->scan_start = jiffies;
1890 
1891 	/* translate "Scan on frequencies" request */
1892 	i = 0;
1893 	for (band = 0; band < NUM_NL80211_BANDS; band++) {
1894 		int j;
1895 
1896 		if (!wiphy->bands[band])
1897 			continue;
1898 
1899 		for (j = 0; j < wiphy->bands[band]->n_channels; j++) {
1900 			/* ignore disabled channels */
1901 			if (wiphy->bands[band]->channels[j].flags &
1902 						IEEE80211_CHAN_DISABLED)
1903 				continue;
1904 
1905 			/* If we have a wireless request structure and the
1906 			 * wireless request specifies frequencies, then search
1907 			 * for the matching hardware channel.
1908 			 */
1909 			if (wreq && wreq->num_channels) {
1910 				int k;
1911 				int wiphy_freq = wiphy->bands[band]->channels[j].center_freq;
1912 				for (k = 0; k < wreq->num_channels; k++) {
1913 					struct iw_freq *freq =
1914 						&wreq->channel_list[k];
1915 					int wext_freq =
1916 						cfg80211_wext_freq(freq);
1917 
1918 					if (wext_freq == wiphy_freq)
1919 						goto wext_freq_found;
1920 				}
1921 				goto wext_freq_not_found;
1922 			}
1923 
1924 		wext_freq_found:
1925 			creq->channels[i] = &wiphy->bands[band]->channels[j];
1926 			i++;
1927 		wext_freq_not_found: ;
1928 		}
1929 	}
1930 	/* No channels found? */
1931 	if (!i) {
1932 		err = -EINVAL;
1933 		goto out;
1934 	}
1935 
1936 	/* Set real number of channels specified in creq->channels[] */
1937 	creq->n_channels = i;
1938 
1939 	/* translate "Scan for SSID" request */
1940 	if (wreq) {
1941 		if (wrqu->data.flags & IW_SCAN_THIS_ESSID) {
1942 			if (wreq->essid_len > IEEE80211_MAX_SSID_LEN) {
1943 				err = -EINVAL;
1944 				goto out;
1945 			}
1946 			memcpy(creq->ssids[0].ssid, wreq->essid, wreq->essid_len);
1947 			creq->ssids[0].ssid_len = wreq->essid_len;
1948 		}
1949 		if (wreq->scan_type == IW_SCAN_TYPE_PASSIVE)
1950 			creq->n_ssids = 0;
1951 	}
1952 
1953 	for (i = 0; i < NUM_NL80211_BANDS; i++)
1954 		if (wiphy->bands[i])
1955 			creq->rates[i] = (1 << wiphy->bands[i]->n_bitrates) - 1;
1956 
1957 	eth_broadcast_addr(creq->bssid);
1958 
1959 	rdev->scan_req = creq;
1960 	err = rdev_scan(rdev, creq);
1961 	if (err) {
1962 		rdev->scan_req = NULL;
1963 		/* creq will be freed below */
1964 	} else {
1965 		nl80211_send_scan_start(rdev, dev->ieee80211_ptr);
1966 		/* creq now owned by driver */
1967 		creq = NULL;
1968 		dev_hold(dev);
1969 	}
1970  out:
1971 	kfree(creq);
1972 	return err;
1973 }
1974 EXPORT_WEXT_HANDLER(cfg80211_wext_siwscan);
1975 
1976 static char *ieee80211_scan_add_ies(struct iw_request_info *info,
1977 				    const struct cfg80211_bss_ies *ies,
1978 				    char *current_ev, char *end_buf)
1979 {
1980 	const u8 *pos, *end, *next;
1981 	struct iw_event iwe;
1982 
1983 	if (!ies)
1984 		return current_ev;
1985 
1986 	/*
1987 	 * If needed, fragment the IEs buffer (at IE boundaries) into short
1988 	 * enough fragments to fit into IW_GENERIC_IE_MAX octet messages.
1989 	 */
1990 	pos = ies->data;
1991 	end = pos + ies->len;
1992 
1993 	while (end - pos > IW_GENERIC_IE_MAX) {
1994 		next = pos + 2 + pos[1];
1995 		while (next + 2 + next[1] - pos < IW_GENERIC_IE_MAX)
1996 			next = next + 2 + next[1];
1997 
1998 		memset(&iwe, 0, sizeof(iwe));
1999 		iwe.cmd = IWEVGENIE;
2000 		iwe.u.data.length = next - pos;
2001 		current_ev = iwe_stream_add_point_check(info, current_ev,
2002 							end_buf, &iwe,
2003 							(void *)pos);
2004 		if (IS_ERR(current_ev))
2005 			return current_ev;
2006 		pos = next;
2007 	}
2008 
2009 	if (end > pos) {
2010 		memset(&iwe, 0, sizeof(iwe));
2011 		iwe.cmd = IWEVGENIE;
2012 		iwe.u.data.length = end - pos;
2013 		current_ev = iwe_stream_add_point_check(info, current_ev,
2014 							end_buf, &iwe,
2015 							(void *)pos);
2016 		if (IS_ERR(current_ev))
2017 			return current_ev;
2018 	}
2019 
2020 	return current_ev;
2021 }
2022 
2023 static char *
2024 ieee80211_bss(struct wiphy *wiphy, struct iw_request_info *info,
2025 	      struct cfg80211_internal_bss *bss, char *current_ev,
2026 	      char *end_buf)
2027 {
2028 	const struct cfg80211_bss_ies *ies;
2029 	struct iw_event iwe;
2030 	const u8 *ie;
2031 	u8 buf[50];
2032 	u8 *cfg, *p, *tmp;
2033 	int rem, i, sig;
2034 	bool ismesh = false;
2035 
2036 	memset(&iwe, 0, sizeof(iwe));
2037 	iwe.cmd = SIOCGIWAP;
2038 	iwe.u.ap_addr.sa_family = ARPHRD_ETHER;
2039 	memcpy(iwe.u.ap_addr.sa_data, bss->pub.bssid, ETH_ALEN);
2040 	current_ev = iwe_stream_add_event_check(info, current_ev, end_buf, &iwe,
2041 						IW_EV_ADDR_LEN);
2042 	if (IS_ERR(current_ev))
2043 		return current_ev;
2044 
2045 	memset(&iwe, 0, sizeof(iwe));
2046 	iwe.cmd = SIOCGIWFREQ;
2047 	iwe.u.freq.m = ieee80211_frequency_to_channel(bss->pub.channel->center_freq);
2048 	iwe.u.freq.e = 0;
2049 	current_ev = iwe_stream_add_event_check(info, current_ev, end_buf, &iwe,
2050 						IW_EV_FREQ_LEN);
2051 	if (IS_ERR(current_ev))
2052 		return current_ev;
2053 
2054 	memset(&iwe, 0, sizeof(iwe));
2055 	iwe.cmd = SIOCGIWFREQ;
2056 	iwe.u.freq.m = bss->pub.channel->center_freq;
2057 	iwe.u.freq.e = 6;
2058 	current_ev = iwe_stream_add_event_check(info, current_ev, end_buf, &iwe,
2059 						IW_EV_FREQ_LEN);
2060 	if (IS_ERR(current_ev))
2061 		return current_ev;
2062 
2063 	if (wiphy->signal_type != CFG80211_SIGNAL_TYPE_NONE) {
2064 		memset(&iwe, 0, sizeof(iwe));
2065 		iwe.cmd = IWEVQUAL;
2066 		iwe.u.qual.updated = IW_QUAL_LEVEL_UPDATED |
2067 				     IW_QUAL_NOISE_INVALID |
2068 				     IW_QUAL_QUAL_UPDATED;
2069 		switch (wiphy->signal_type) {
2070 		case CFG80211_SIGNAL_TYPE_MBM:
2071 			sig = bss->pub.signal / 100;
2072 			iwe.u.qual.level = sig;
2073 			iwe.u.qual.updated |= IW_QUAL_DBM;
2074 			if (sig < -110)		/* rather bad */
2075 				sig = -110;
2076 			else if (sig > -40)	/* perfect */
2077 				sig = -40;
2078 			/* will give a range of 0 .. 70 */
2079 			iwe.u.qual.qual = sig + 110;
2080 			break;
2081 		case CFG80211_SIGNAL_TYPE_UNSPEC:
2082 			iwe.u.qual.level = bss->pub.signal;
2083 			/* will give range 0 .. 100 */
2084 			iwe.u.qual.qual = bss->pub.signal;
2085 			break;
2086 		default:
2087 			/* not reached */
2088 			break;
2089 		}
2090 		current_ev = iwe_stream_add_event_check(info, current_ev,
2091 							end_buf, &iwe,
2092 							IW_EV_QUAL_LEN);
2093 		if (IS_ERR(current_ev))
2094 			return current_ev;
2095 	}
2096 
2097 	memset(&iwe, 0, sizeof(iwe));
2098 	iwe.cmd = SIOCGIWENCODE;
2099 	if (bss->pub.capability & WLAN_CAPABILITY_PRIVACY)
2100 		iwe.u.data.flags = IW_ENCODE_ENABLED | IW_ENCODE_NOKEY;
2101 	else
2102 		iwe.u.data.flags = IW_ENCODE_DISABLED;
2103 	iwe.u.data.length = 0;
2104 	current_ev = iwe_stream_add_point_check(info, current_ev, end_buf,
2105 						&iwe, "");
2106 	if (IS_ERR(current_ev))
2107 		return current_ev;
2108 
2109 	rcu_read_lock();
2110 	ies = rcu_dereference(bss->pub.ies);
2111 	rem = ies->len;
2112 	ie = ies->data;
2113 
2114 	while (rem >= 2) {
2115 		/* invalid data */
2116 		if (ie[1] > rem - 2)
2117 			break;
2118 
2119 		switch (ie[0]) {
2120 		case WLAN_EID_SSID:
2121 			memset(&iwe, 0, sizeof(iwe));
2122 			iwe.cmd = SIOCGIWESSID;
2123 			iwe.u.data.length = ie[1];
2124 			iwe.u.data.flags = 1;
2125 			current_ev = iwe_stream_add_point_check(info,
2126 								current_ev,
2127 								end_buf, &iwe,
2128 								(u8 *)ie + 2);
2129 			if (IS_ERR(current_ev))
2130 				goto unlock;
2131 			break;
2132 		case WLAN_EID_MESH_ID:
2133 			memset(&iwe, 0, sizeof(iwe));
2134 			iwe.cmd = SIOCGIWESSID;
2135 			iwe.u.data.length = ie[1];
2136 			iwe.u.data.flags = 1;
2137 			current_ev = iwe_stream_add_point_check(info,
2138 								current_ev,
2139 								end_buf, &iwe,
2140 								(u8 *)ie + 2);
2141 			if (IS_ERR(current_ev))
2142 				goto unlock;
2143 			break;
2144 		case WLAN_EID_MESH_CONFIG:
2145 			ismesh = true;
2146 			if (ie[1] != sizeof(struct ieee80211_meshconf_ie))
2147 				break;
2148 			cfg = (u8 *)ie + 2;
2149 			memset(&iwe, 0, sizeof(iwe));
2150 			iwe.cmd = IWEVCUSTOM;
2151 			sprintf(buf, "Mesh Network Path Selection Protocol ID: "
2152 				"0x%02X", cfg[0]);
2153 			iwe.u.data.length = strlen(buf);
2154 			current_ev = iwe_stream_add_point_check(info,
2155 								current_ev,
2156 								end_buf,
2157 								&iwe, buf);
2158 			if (IS_ERR(current_ev))
2159 				goto unlock;
2160 			sprintf(buf, "Path Selection Metric ID: 0x%02X",
2161 				cfg[1]);
2162 			iwe.u.data.length = strlen(buf);
2163 			current_ev = iwe_stream_add_point_check(info,
2164 								current_ev,
2165 								end_buf,
2166 								&iwe, buf);
2167 			if (IS_ERR(current_ev))
2168 				goto unlock;
2169 			sprintf(buf, "Congestion Control Mode ID: 0x%02X",
2170 				cfg[2]);
2171 			iwe.u.data.length = strlen(buf);
2172 			current_ev = iwe_stream_add_point_check(info,
2173 								current_ev,
2174 								end_buf,
2175 								&iwe, buf);
2176 			if (IS_ERR(current_ev))
2177 				goto unlock;
2178 			sprintf(buf, "Synchronization ID: 0x%02X", cfg[3]);
2179 			iwe.u.data.length = strlen(buf);
2180 			current_ev = iwe_stream_add_point_check(info,
2181 								current_ev,
2182 								end_buf,
2183 								&iwe, buf);
2184 			if (IS_ERR(current_ev))
2185 				goto unlock;
2186 			sprintf(buf, "Authentication ID: 0x%02X", cfg[4]);
2187 			iwe.u.data.length = strlen(buf);
2188 			current_ev = iwe_stream_add_point_check(info,
2189 								current_ev,
2190 								end_buf,
2191 								&iwe, buf);
2192 			if (IS_ERR(current_ev))
2193 				goto unlock;
2194 			sprintf(buf, "Formation Info: 0x%02X", cfg[5]);
2195 			iwe.u.data.length = strlen(buf);
2196 			current_ev = iwe_stream_add_point_check(info,
2197 								current_ev,
2198 								end_buf,
2199 								&iwe, buf);
2200 			if (IS_ERR(current_ev))
2201 				goto unlock;
2202 			sprintf(buf, "Capabilities: 0x%02X", cfg[6]);
2203 			iwe.u.data.length = strlen(buf);
2204 			current_ev = iwe_stream_add_point_check(info,
2205 								current_ev,
2206 								end_buf,
2207 								&iwe, buf);
2208 			if (IS_ERR(current_ev))
2209 				goto unlock;
2210 			break;
2211 		case WLAN_EID_SUPP_RATES:
2212 		case WLAN_EID_EXT_SUPP_RATES:
2213 			/* display all supported rates in readable format */
2214 			p = current_ev + iwe_stream_lcp_len(info);
2215 
2216 			memset(&iwe, 0, sizeof(iwe));
2217 			iwe.cmd = SIOCGIWRATE;
2218 			/* Those two flags are ignored... */
2219 			iwe.u.bitrate.fixed = iwe.u.bitrate.disabled = 0;
2220 
2221 			for (i = 0; i < ie[1]; i++) {
2222 				iwe.u.bitrate.value =
2223 					((ie[i + 2] & 0x7f) * 500000);
2224 				tmp = p;
2225 				p = iwe_stream_add_value(info, current_ev, p,
2226 							 end_buf, &iwe,
2227 							 IW_EV_PARAM_LEN);
2228 				if (p == tmp) {
2229 					current_ev = ERR_PTR(-E2BIG);
2230 					goto unlock;
2231 				}
2232 			}
2233 			current_ev = p;
2234 			break;
2235 		}
2236 		rem -= ie[1] + 2;
2237 		ie += ie[1] + 2;
2238 	}
2239 
2240 	if (bss->pub.capability & (WLAN_CAPABILITY_ESS | WLAN_CAPABILITY_IBSS) ||
2241 	    ismesh) {
2242 		memset(&iwe, 0, sizeof(iwe));
2243 		iwe.cmd = SIOCGIWMODE;
2244 		if (ismesh)
2245 			iwe.u.mode = IW_MODE_MESH;
2246 		else if (bss->pub.capability & WLAN_CAPABILITY_ESS)
2247 			iwe.u.mode = IW_MODE_MASTER;
2248 		else
2249 			iwe.u.mode = IW_MODE_ADHOC;
2250 		current_ev = iwe_stream_add_event_check(info, current_ev,
2251 							end_buf, &iwe,
2252 							IW_EV_UINT_LEN);
2253 		if (IS_ERR(current_ev))
2254 			goto unlock;
2255 	}
2256 
2257 	memset(&iwe, 0, sizeof(iwe));
2258 	iwe.cmd = IWEVCUSTOM;
2259 	sprintf(buf, "tsf=%016llx", (unsigned long long)(ies->tsf));
2260 	iwe.u.data.length = strlen(buf);
2261 	current_ev = iwe_stream_add_point_check(info, current_ev, end_buf,
2262 						&iwe, buf);
2263 	if (IS_ERR(current_ev))
2264 		goto unlock;
2265 	memset(&iwe, 0, sizeof(iwe));
2266 	iwe.cmd = IWEVCUSTOM;
2267 	sprintf(buf, " Last beacon: %ums ago",
2268 		elapsed_jiffies_msecs(bss->ts));
2269 	iwe.u.data.length = strlen(buf);
2270 	current_ev = iwe_stream_add_point_check(info, current_ev,
2271 						end_buf, &iwe, buf);
2272 	if (IS_ERR(current_ev))
2273 		goto unlock;
2274 
2275 	current_ev = ieee80211_scan_add_ies(info, ies, current_ev, end_buf);
2276 
2277  unlock:
2278 	rcu_read_unlock();
2279 	return current_ev;
2280 }
2281 
2282 
2283 static int ieee80211_scan_results(struct cfg80211_registered_device *rdev,
2284 				  struct iw_request_info *info,
2285 				  char *buf, size_t len)
2286 {
2287 	char *current_ev = buf;
2288 	char *end_buf = buf + len;
2289 	struct cfg80211_internal_bss *bss;
2290 	int err = 0;
2291 
2292 	spin_lock_bh(&rdev->bss_lock);
2293 	cfg80211_bss_expire(rdev);
2294 
2295 	list_for_each_entry(bss, &rdev->bss_list, list) {
2296 		if (buf + len - current_ev <= IW_EV_ADDR_LEN) {
2297 			err = -E2BIG;
2298 			break;
2299 		}
2300 		current_ev = ieee80211_bss(&rdev->wiphy, info, bss,
2301 					   current_ev, end_buf);
2302 		if (IS_ERR(current_ev)) {
2303 			err = PTR_ERR(current_ev);
2304 			break;
2305 		}
2306 	}
2307 	spin_unlock_bh(&rdev->bss_lock);
2308 
2309 	if (err)
2310 		return err;
2311 	return current_ev - buf;
2312 }
2313 
2314 
2315 int cfg80211_wext_giwscan(struct net_device *dev,
2316 			  struct iw_request_info *info,
2317 			  struct iw_point *data, char *extra)
2318 {
2319 	struct cfg80211_registered_device *rdev;
2320 	int res;
2321 
2322 	if (!netif_running(dev))
2323 		return -ENETDOWN;
2324 
2325 	rdev = cfg80211_get_dev_from_ifindex(dev_net(dev), dev->ifindex);
2326 
2327 	if (IS_ERR(rdev))
2328 		return PTR_ERR(rdev);
2329 
2330 	if (rdev->scan_req || rdev->scan_msg)
2331 		return -EAGAIN;
2332 
2333 	res = ieee80211_scan_results(rdev, info, extra, data->length);
2334 	data->length = 0;
2335 	if (res >= 0) {
2336 		data->length = res;
2337 		res = 0;
2338 	}
2339 
2340 	return res;
2341 }
2342 EXPORT_WEXT_HANDLER(cfg80211_wext_giwscan);
2343 #endif
2344