xref: /linux/net/wireless/scan.c (revision 001821b0e79716c4e17c71d8e053a23599a7a508)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * cfg80211 scan result handling
4  *
5  * Copyright 2008 Johannes Berg <johannes@sipsolutions.net>
6  * Copyright 2013-2014  Intel Mobile Communications GmbH
7  * Copyright 2016	Intel Deutschland GmbH
8  * Copyright (C) 2018-2024 Intel Corporation
9  */
10 #include <linux/kernel.h>
11 #include <linux/slab.h>
12 #include <linux/module.h>
13 #include <linux/netdevice.h>
14 #include <linux/wireless.h>
15 #include <linux/nl80211.h>
16 #include <linux/etherdevice.h>
17 #include <linux/crc32.h>
18 #include <linux/bitfield.h>
19 #include <net/arp.h>
20 #include <net/cfg80211.h>
21 #include <net/cfg80211-wext.h>
22 #include <net/iw_handler.h>
23 #include <kunit/visibility.h>
24 #include "core.h"
25 #include "nl80211.h"
26 #include "wext-compat.h"
27 #include "rdev-ops.h"
28 
29 /**
30  * DOC: BSS tree/list structure
31  *
32  * At the top level, the BSS list is kept in both a list in each
33  * registered device (@bss_list) as well as an RB-tree for faster
34  * lookup. In the RB-tree, entries can be looked up using their
35  * channel, MESHID, MESHCONF (for MBSSes) or channel, BSSID, SSID
36  * for other BSSes.
37  *
38  * Due to the possibility of hidden SSIDs, there's a second level
39  * structure, the "hidden_list" and "hidden_beacon_bss" pointer.
40  * The hidden_list connects all BSSes belonging to a single AP
41  * that has a hidden SSID, and connects beacon and probe response
42  * entries. For a probe response entry for a hidden SSID, the
43  * hidden_beacon_bss pointer points to the BSS struct holding the
44  * beacon's information.
45  *
46  * Reference counting is done for all these references except for
47  * the hidden_list, so that a beacon BSS struct that is otherwise
48  * not referenced has one reference for being on the bss_list and
49  * one for each probe response entry that points to it using the
50  * hidden_beacon_bss pointer. When a BSS struct that has such a
51  * pointer is get/put, the refcount update is also propagated to
52  * the referenced struct, this ensure that it cannot get removed
53  * while somebody is using the probe response version.
54  *
55  * Note that the hidden_beacon_bss pointer never changes, due to
56  * the reference counting. Therefore, no locking is needed for
57  * it.
58  *
59  * Also note that the hidden_beacon_bss pointer is only relevant
60  * if the driver uses something other than the IEs, e.g. private
61  * data stored in the BSS struct, since the beacon IEs are
62  * also linked into the probe response struct.
63  */
64 
65 /*
66  * Limit the number of BSS entries stored in mac80211. Each one is
67  * a bit over 4k at most, so this limits to roughly 4-5M of memory.
68  * If somebody wants to really attack this though, they'd likely
69  * use small beacons, and only one type of frame, limiting each of
70  * the entries to a much smaller size (in order to generate more
71  * entries in total, so overhead is bigger.)
72  */
73 static int bss_entries_limit = 1000;
74 module_param(bss_entries_limit, int, 0644);
75 MODULE_PARM_DESC(bss_entries_limit,
76                  "limit to number of scan BSS entries (per wiphy, default 1000)");
77 
78 #define IEEE80211_SCAN_RESULT_EXPIRE	(30 * HZ)
79 
80 static void bss_free(struct cfg80211_internal_bss *bss)
81 {
82 	struct cfg80211_bss_ies *ies;
83 
84 	if (WARN_ON(atomic_read(&bss->hold)))
85 		return;
86 
87 	ies = (void *)rcu_access_pointer(bss->pub.beacon_ies);
88 	if (ies && !bss->pub.hidden_beacon_bss)
89 		kfree_rcu(ies, rcu_head);
90 	ies = (void *)rcu_access_pointer(bss->pub.proberesp_ies);
91 	if (ies)
92 		kfree_rcu(ies, rcu_head);
93 
94 	/*
95 	 * This happens when the module is removed, it doesn't
96 	 * really matter any more save for completeness
97 	 */
98 	if (!list_empty(&bss->hidden_list))
99 		list_del(&bss->hidden_list);
100 
101 	kfree(bss);
102 }
103 
104 static inline void bss_ref_get(struct cfg80211_registered_device *rdev,
105 			       struct cfg80211_internal_bss *bss)
106 {
107 	lockdep_assert_held(&rdev->bss_lock);
108 
109 	bss->refcount++;
110 
111 	if (bss->pub.hidden_beacon_bss)
112 		bss_from_pub(bss->pub.hidden_beacon_bss)->refcount++;
113 
114 	if (bss->pub.transmitted_bss)
115 		bss_from_pub(bss->pub.transmitted_bss)->refcount++;
116 }
117 
118 static inline void bss_ref_put(struct cfg80211_registered_device *rdev,
119 			       struct cfg80211_internal_bss *bss)
120 {
121 	lockdep_assert_held(&rdev->bss_lock);
122 
123 	if (bss->pub.hidden_beacon_bss) {
124 		struct cfg80211_internal_bss *hbss;
125 
126 		hbss = bss_from_pub(bss->pub.hidden_beacon_bss);
127 		hbss->refcount--;
128 		if (hbss->refcount == 0)
129 			bss_free(hbss);
130 	}
131 
132 	if (bss->pub.transmitted_bss) {
133 		struct cfg80211_internal_bss *tbss;
134 
135 		tbss = bss_from_pub(bss->pub.transmitted_bss);
136 		tbss->refcount--;
137 		if (tbss->refcount == 0)
138 			bss_free(tbss);
139 	}
140 
141 	bss->refcount--;
142 	if (bss->refcount == 0)
143 		bss_free(bss);
144 }
145 
146 static bool __cfg80211_unlink_bss(struct cfg80211_registered_device *rdev,
147 				  struct cfg80211_internal_bss *bss)
148 {
149 	lockdep_assert_held(&rdev->bss_lock);
150 
151 	if (!list_empty(&bss->hidden_list)) {
152 		/*
153 		 * don't remove the beacon entry if it has
154 		 * probe responses associated with it
155 		 */
156 		if (!bss->pub.hidden_beacon_bss)
157 			return false;
158 		/*
159 		 * if it's a probe response entry break its
160 		 * link to the other entries in the group
161 		 */
162 		list_del_init(&bss->hidden_list);
163 	}
164 
165 	list_del_init(&bss->list);
166 	list_del_init(&bss->pub.nontrans_list);
167 	rb_erase(&bss->rbn, &rdev->bss_tree);
168 	rdev->bss_entries--;
169 	WARN_ONCE((rdev->bss_entries == 0) ^ list_empty(&rdev->bss_list),
170 		  "rdev bss entries[%d]/list[empty:%d] corruption\n",
171 		  rdev->bss_entries, list_empty(&rdev->bss_list));
172 	bss_ref_put(rdev, bss);
173 	return true;
174 }
175 
176 bool cfg80211_is_element_inherited(const struct element *elem,
177 				   const struct element *non_inherit_elem)
178 {
179 	u8 id_len, ext_id_len, i, loop_len, id;
180 	const u8 *list;
181 
182 	if (elem->id == WLAN_EID_MULTIPLE_BSSID)
183 		return false;
184 
185 	if (elem->id == WLAN_EID_EXTENSION && elem->datalen > 1 &&
186 	    elem->data[0] == WLAN_EID_EXT_EHT_MULTI_LINK)
187 		return false;
188 
189 	if (!non_inherit_elem || non_inherit_elem->datalen < 2)
190 		return true;
191 
192 	/*
193 	 * non inheritance element format is:
194 	 * ext ID (56) | IDs list len | list | extension IDs list len | list
195 	 * Both lists are optional. Both lengths are mandatory.
196 	 * This means valid length is:
197 	 * elem_len = 1 (extension ID) + 2 (list len fields) + list lengths
198 	 */
199 	id_len = non_inherit_elem->data[1];
200 	if (non_inherit_elem->datalen < 3 + id_len)
201 		return true;
202 
203 	ext_id_len = non_inherit_elem->data[2 + id_len];
204 	if (non_inherit_elem->datalen < 3 + id_len + ext_id_len)
205 		return true;
206 
207 	if (elem->id == WLAN_EID_EXTENSION) {
208 		if (!ext_id_len)
209 			return true;
210 		loop_len = ext_id_len;
211 		list = &non_inherit_elem->data[3 + id_len];
212 		id = elem->data[0];
213 	} else {
214 		if (!id_len)
215 			return true;
216 		loop_len = id_len;
217 		list = &non_inherit_elem->data[2];
218 		id = elem->id;
219 	}
220 
221 	for (i = 0; i < loop_len; i++) {
222 		if (list[i] == id)
223 			return false;
224 	}
225 
226 	return true;
227 }
228 EXPORT_SYMBOL(cfg80211_is_element_inherited);
229 
230 static size_t cfg80211_copy_elem_with_frags(const struct element *elem,
231 					    const u8 *ie, size_t ie_len,
232 					    u8 **pos, u8 *buf, size_t buf_len)
233 {
234 	if (WARN_ON((u8 *)elem < ie || elem->data > ie + ie_len ||
235 		    elem->data + elem->datalen > ie + ie_len))
236 		return 0;
237 
238 	if (elem->datalen + 2 > buf + buf_len - *pos)
239 		return 0;
240 
241 	memcpy(*pos, elem, elem->datalen + 2);
242 	*pos += elem->datalen + 2;
243 
244 	/* Finish if it is not fragmented  */
245 	if (elem->datalen != 255)
246 		return *pos - buf;
247 
248 	ie_len = ie + ie_len - elem->data - elem->datalen;
249 	ie = (const u8 *)elem->data + elem->datalen;
250 
251 	for_each_element(elem, ie, ie_len) {
252 		if (elem->id != WLAN_EID_FRAGMENT)
253 			break;
254 
255 		if (elem->datalen + 2 > buf + buf_len - *pos)
256 			return 0;
257 
258 		memcpy(*pos, elem, elem->datalen + 2);
259 		*pos += elem->datalen + 2;
260 
261 		if (elem->datalen != 255)
262 			break;
263 	}
264 
265 	return *pos - buf;
266 }
267 
268 VISIBLE_IF_CFG80211_KUNIT size_t
269 cfg80211_gen_new_ie(const u8 *ie, size_t ielen,
270 		    const u8 *subie, size_t subie_len,
271 		    u8 *new_ie, size_t new_ie_len)
272 {
273 	const struct element *non_inherit_elem, *parent, *sub;
274 	u8 *pos = new_ie;
275 	u8 id, ext_id;
276 	unsigned int match_len;
277 
278 	non_inherit_elem = cfg80211_find_ext_elem(WLAN_EID_EXT_NON_INHERITANCE,
279 						  subie, subie_len);
280 
281 	/* We copy the elements one by one from the parent to the generated
282 	 * elements.
283 	 * If they are not inherited (included in subie or in the non
284 	 * inheritance element), then we copy all occurrences the first time
285 	 * we see this element type.
286 	 */
287 	for_each_element(parent, ie, ielen) {
288 		if (parent->id == WLAN_EID_FRAGMENT)
289 			continue;
290 
291 		if (parent->id == WLAN_EID_EXTENSION) {
292 			if (parent->datalen < 1)
293 				continue;
294 
295 			id = WLAN_EID_EXTENSION;
296 			ext_id = parent->data[0];
297 			match_len = 1;
298 		} else {
299 			id = parent->id;
300 			match_len = 0;
301 		}
302 
303 		/* Find first occurrence in subie */
304 		sub = cfg80211_find_elem_match(id, subie, subie_len,
305 					       &ext_id, match_len, 0);
306 
307 		/* Copy from parent if not in subie and inherited */
308 		if (!sub &&
309 		    cfg80211_is_element_inherited(parent, non_inherit_elem)) {
310 			if (!cfg80211_copy_elem_with_frags(parent,
311 							   ie, ielen,
312 							   &pos, new_ie,
313 							   new_ie_len))
314 				return 0;
315 
316 			continue;
317 		}
318 
319 		/* Already copied if an earlier element had the same type */
320 		if (cfg80211_find_elem_match(id, ie, (u8 *)parent - ie,
321 					     &ext_id, match_len, 0))
322 			continue;
323 
324 		/* Not inheriting, copy all similar elements from subie */
325 		while (sub) {
326 			if (!cfg80211_copy_elem_with_frags(sub,
327 							   subie, subie_len,
328 							   &pos, new_ie,
329 							   new_ie_len))
330 				return 0;
331 
332 			sub = cfg80211_find_elem_match(id,
333 						       sub->data + sub->datalen,
334 						       subie_len + subie -
335 						       (sub->data +
336 							sub->datalen),
337 						       &ext_id, match_len, 0);
338 		}
339 	}
340 
341 	/* The above misses elements that are included in subie but not in the
342 	 * parent, so do a pass over subie and append those.
343 	 * Skip the non-tx BSSID caps and non-inheritance element.
344 	 */
345 	for_each_element(sub, subie, subie_len) {
346 		if (sub->id == WLAN_EID_NON_TX_BSSID_CAP)
347 			continue;
348 
349 		if (sub->id == WLAN_EID_FRAGMENT)
350 			continue;
351 
352 		if (sub->id == WLAN_EID_EXTENSION) {
353 			if (sub->datalen < 1)
354 				continue;
355 
356 			id = WLAN_EID_EXTENSION;
357 			ext_id = sub->data[0];
358 			match_len = 1;
359 
360 			if (ext_id == WLAN_EID_EXT_NON_INHERITANCE)
361 				continue;
362 		} else {
363 			id = sub->id;
364 			match_len = 0;
365 		}
366 
367 		/* Processed if one was included in the parent */
368 		if (cfg80211_find_elem_match(id, ie, ielen,
369 					     &ext_id, match_len, 0))
370 			continue;
371 
372 		if (!cfg80211_copy_elem_with_frags(sub, subie, subie_len,
373 						   &pos, new_ie, new_ie_len))
374 			return 0;
375 	}
376 
377 	return pos - new_ie;
378 }
379 EXPORT_SYMBOL_IF_CFG80211_KUNIT(cfg80211_gen_new_ie);
380 
381 static bool is_bss(struct cfg80211_bss *a, const u8 *bssid,
382 		   const u8 *ssid, size_t ssid_len)
383 {
384 	const struct cfg80211_bss_ies *ies;
385 	const struct element *ssid_elem;
386 
387 	if (bssid && !ether_addr_equal(a->bssid, bssid))
388 		return false;
389 
390 	if (!ssid)
391 		return true;
392 
393 	ies = rcu_access_pointer(a->ies);
394 	if (!ies)
395 		return false;
396 	ssid_elem = cfg80211_find_elem(WLAN_EID_SSID, ies->data, ies->len);
397 	if (!ssid_elem)
398 		return false;
399 	if (ssid_elem->datalen != ssid_len)
400 		return false;
401 	return memcmp(ssid_elem->data, ssid, ssid_len) == 0;
402 }
403 
404 static int
405 cfg80211_add_nontrans_list(struct cfg80211_bss *trans_bss,
406 			   struct cfg80211_bss *nontrans_bss)
407 {
408 	const struct element *ssid_elem;
409 	struct cfg80211_bss *bss = NULL;
410 
411 	rcu_read_lock();
412 	ssid_elem = ieee80211_bss_get_elem(nontrans_bss, WLAN_EID_SSID);
413 	if (!ssid_elem) {
414 		rcu_read_unlock();
415 		return -EINVAL;
416 	}
417 
418 	/* check if nontrans_bss is in the list */
419 	list_for_each_entry(bss, &trans_bss->nontrans_list, nontrans_list) {
420 		if (is_bss(bss, nontrans_bss->bssid, ssid_elem->data,
421 			   ssid_elem->datalen)) {
422 			rcu_read_unlock();
423 			return 0;
424 		}
425 	}
426 
427 	rcu_read_unlock();
428 
429 	/*
430 	 * This is a bit weird - it's not on the list, but already on another
431 	 * one! The only way that could happen is if there's some BSSID/SSID
432 	 * shared by multiple APs in their multi-BSSID profiles, potentially
433 	 * with hidden SSID mixed in ... ignore it.
434 	 */
435 	if (!list_empty(&nontrans_bss->nontrans_list))
436 		return -EINVAL;
437 
438 	/* add to the list */
439 	list_add_tail(&nontrans_bss->nontrans_list, &trans_bss->nontrans_list);
440 	return 0;
441 }
442 
443 static void __cfg80211_bss_expire(struct cfg80211_registered_device *rdev,
444 				  unsigned long expire_time)
445 {
446 	struct cfg80211_internal_bss *bss, *tmp;
447 	bool expired = false;
448 
449 	lockdep_assert_held(&rdev->bss_lock);
450 
451 	list_for_each_entry_safe(bss, tmp, &rdev->bss_list, list) {
452 		if (atomic_read(&bss->hold))
453 			continue;
454 		if (!time_after(expire_time, bss->ts))
455 			continue;
456 
457 		if (__cfg80211_unlink_bss(rdev, bss))
458 			expired = true;
459 	}
460 
461 	if (expired)
462 		rdev->bss_generation++;
463 }
464 
465 static bool cfg80211_bss_expire_oldest(struct cfg80211_registered_device *rdev)
466 {
467 	struct cfg80211_internal_bss *bss, *oldest = NULL;
468 	bool ret;
469 
470 	lockdep_assert_held(&rdev->bss_lock);
471 
472 	list_for_each_entry(bss, &rdev->bss_list, list) {
473 		if (atomic_read(&bss->hold))
474 			continue;
475 
476 		if (!list_empty(&bss->hidden_list) &&
477 		    !bss->pub.hidden_beacon_bss)
478 			continue;
479 
480 		if (oldest && time_before(oldest->ts, bss->ts))
481 			continue;
482 		oldest = bss;
483 	}
484 
485 	if (WARN_ON(!oldest))
486 		return false;
487 
488 	/*
489 	 * The callers make sure to increase rdev->bss_generation if anything
490 	 * gets removed (and a new entry added), so there's no need to also do
491 	 * it here.
492 	 */
493 
494 	ret = __cfg80211_unlink_bss(rdev, oldest);
495 	WARN_ON(!ret);
496 	return ret;
497 }
498 
499 static u8 cfg80211_parse_bss_param(u8 data,
500 				   struct cfg80211_colocated_ap *coloc_ap)
501 {
502 	coloc_ap->oct_recommended =
503 		u8_get_bits(data, IEEE80211_RNR_TBTT_PARAMS_OCT_RECOMMENDED);
504 	coloc_ap->same_ssid =
505 		u8_get_bits(data, IEEE80211_RNR_TBTT_PARAMS_SAME_SSID);
506 	coloc_ap->multi_bss =
507 		u8_get_bits(data, IEEE80211_RNR_TBTT_PARAMS_MULTI_BSSID);
508 	coloc_ap->transmitted_bssid =
509 		u8_get_bits(data, IEEE80211_RNR_TBTT_PARAMS_TRANSMITTED_BSSID);
510 	coloc_ap->unsolicited_probe =
511 		u8_get_bits(data, IEEE80211_RNR_TBTT_PARAMS_PROBE_ACTIVE);
512 	coloc_ap->colocated_ess =
513 		u8_get_bits(data, IEEE80211_RNR_TBTT_PARAMS_COLOC_ESS);
514 
515 	return u8_get_bits(data, IEEE80211_RNR_TBTT_PARAMS_COLOC_AP);
516 }
517 
518 static int cfg80211_calc_short_ssid(const struct cfg80211_bss_ies *ies,
519 				    const struct element **elem, u32 *s_ssid)
520 {
521 
522 	*elem = cfg80211_find_elem(WLAN_EID_SSID, ies->data, ies->len);
523 	if (!*elem || (*elem)->datalen > IEEE80211_MAX_SSID_LEN)
524 		return -EINVAL;
525 
526 	*s_ssid = ~crc32_le(~0, (*elem)->data, (*elem)->datalen);
527 	return 0;
528 }
529 
530 VISIBLE_IF_CFG80211_KUNIT void
531 cfg80211_free_coloc_ap_list(struct list_head *coloc_ap_list)
532 {
533 	struct cfg80211_colocated_ap *ap, *tmp_ap;
534 
535 	list_for_each_entry_safe(ap, tmp_ap, coloc_ap_list, list) {
536 		list_del(&ap->list);
537 		kfree(ap);
538 	}
539 }
540 EXPORT_SYMBOL_IF_CFG80211_KUNIT(cfg80211_free_coloc_ap_list);
541 
542 static int cfg80211_parse_ap_info(struct cfg80211_colocated_ap *entry,
543 				  const u8 *pos, u8 length,
544 				  const struct element *ssid_elem,
545 				  u32 s_ssid_tmp)
546 {
547 	u8 bss_params;
548 
549 	entry->psd_20 = IEEE80211_RNR_TBTT_PARAMS_PSD_RESERVED;
550 
551 	/* The length is already verified by the caller to contain bss_params */
552 	if (length > sizeof(struct ieee80211_tbtt_info_7_8_9)) {
553 		struct ieee80211_tbtt_info_ge_11 *tbtt_info = (void *)pos;
554 
555 		memcpy(entry->bssid, tbtt_info->bssid, ETH_ALEN);
556 		entry->short_ssid = le32_to_cpu(tbtt_info->short_ssid);
557 		entry->short_ssid_valid = true;
558 
559 		bss_params = tbtt_info->bss_params;
560 
561 		/* Ignore disabled links */
562 		if (length >= offsetofend(typeof(*tbtt_info), mld_params)) {
563 			if (le16_get_bits(tbtt_info->mld_params.params,
564 					  IEEE80211_RNR_MLD_PARAMS_DISABLED_LINK))
565 				return -EINVAL;
566 		}
567 
568 		if (length >= offsetofend(struct ieee80211_tbtt_info_ge_11,
569 					  psd_20))
570 			entry->psd_20 = tbtt_info->psd_20;
571 	} else {
572 		struct ieee80211_tbtt_info_7_8_9 *tbtt_info = (void *)pos;
573 
574 		memcpy(entry->bssid, tbtt_info->bssid, ETH_ALEN);
575 
576 		bss_params = tbtt_info->bss_params;
577 
578 		if (length == offsetofend(struct ieee80211_tbtt_info_7_8_9,
579 					  psd_20))
580 			entry->psd_20 = tbtt_info->psd_20;
581 	}
582 
583 	/* ignore entries with invalid BSSID */
584 	if (!is_valid_ether_addr(entry->bssid))
585 		return -EINVAL;
586 
587 	/* skip non colocated APs */
588 	if (!cfg80211_parse_bss_param(bss_params, entry))
589 		return -EINVAL;
590 
591 	/* no information about the short ssid. Consider the entry valid
592 	 * for now. It would later be dropped in case there are explicit
593 	 * SSIDs that need to be matched
594 	 */
595 	if (!entry->same_ssid && !entry->short_ssid_valid)
596 		return 0;
597 
598 	if (entry->same_ssid) {
599 		entry->short_ssid = s_ssid_tmp;
600 		entry->short_ssid_valid = true;
601 
602 		/*
603 		 * This is safe because we validate datalen in
604 		 * cfg80211_parse_colocated_ap(), before calling this
605 		 * function.
606 		 */
607 		memcpy(&entry->ssid, &ssid_elem->data, ssid_elem->datalen);
608 		entry->ssid_len = ssid_elem->datalen;
609 	}
610 
611 	return 0;
612 }
613 
614 bool cfg80211_iter_rnr(const u8 *elems, size_t elems_len,
615 		       enum cfg80211_rnr_iter_ret
616 		       (*iter)(void *data, u8 type,
617 			       const struct ieee80211_neighbor_ap_info *info,
618 			       const u8 *tbtt_info, u8 tbtt_info_len),
619 		       void *iter_data)
620 {
621 	const struct element *rnr;
622 	const u8 *pos, *end;
623 
624 	for_each_element_id(rnr, WLAN_EID_REDUCED_NEIGHBOR_REPORT,
625 			    elems, elems_len) {
626 		const struct ieee80211_neighbor_ap_info *info;
627 
628 		pos = rnr->data;
629 		end = rnr->data + rnr->datalen;
630 
631 		/* RNR IE may contain more than one NEIGHBOR_AP_INFO */
632 		while (sizeof(*info) <= end - pos) {
633 			u8 length, i, count;
634 			u8 type;
635 
636 			info = (void *)pos;
637 			count = u8_get_bits(info->tbtt_info_hdr,
638 					    IEEE80211_AP_INFO_TBTT_HDR_COUNT) +
639 				1;
640 			length = info->tbtt_info_len;
641 
642 			pos += sizeof(*info);
643 
644 			if (count * length > end - pos)
645 				return false;
646 
647 			type = u8_get_bits(info->tbtt_info_hdr,
648 					   IEEE80211_AP_INFO_TBTT_HDR_TYPE);
649 
650 			for (i = 0; i < count; i++) {
651 				switch (iter(iter_data, type, info,
652 					     pos, length)) {
653 				case RNR_ITER_CONTINUE:
654 					break;
655 				case RNR_ITER_BREAK:
656 					return true;
657 				case RNR_ITER_ERROR:
658 					return false;
659 				}
660 
661 				pos += length;
662 			}
663 		}
664 
665 		if (pos != end)
666 			return false;
667 	}
668 
669 	return true;
670 }
671 EXPORT_SYMBOL_GPL(cfg80211_iter_rnr);
672 
673 struct colocated_ap_data {
674 	const struct element *ssid_elem;
675 	struct list_head ap_list;
676 	u32 s_ssid_tmp;
677 	int n_coloc;
678 };
679 
680 static enum cfg80211_rnr_iter_ret
681 cfg80211_parse_colocated_ap_iter(void *_data, u8 type,
682 				 const struct ieee80211_neighbor_ap_info *info,
683 				 const u8 *tbtt_info, u8 tbtt_info_len)
684 {
685 	struct colocated_ap_data *data = _data;
686 	struct cfg80211_colocated_ap *entry;
687 	enum nl80211_band band;
688 
689 	if (type != IEEE80211_TBTT_INFO_TYPE_TBTT)
690 		return RNR_ITER_CONTINUE;
691 
692 	if (!ieee80211_operating_class_to_band(info->op_class, &band))
693 		return RNR_ITER_CONTINUE;
694 
695 	/* TBTT info must include bss param + BSSID + (short SSID or
696 	 * same_ssid bit to be set). Ignore other options, and move to
697 	 * the next AP info
698 	 */
699 	if (band != NL80211_BAND_6GHZ ||
700 	    !(tbtt_info_len == offsetofend(struct ieee80211_tbtt_info_7_8_9,
701 					   bss_params) ||
702 	      tbtt_info_len == sizeof(struct ieee80211_tbtt_info_7_8_9) ||
703 	      tbtt_info_len >= offsetofend(struct ieee80211_tbtt_info_ge_11,
704 					   bss_params)))
705 		return RNR_ITER_CONTINUE;
706 
707 	entry = kzalloc(sizeof(*entry) + IEEE80211_MAX_SSID_LEN, GFP_ATOMIC);
708 	if (!entry)
709 		return RNR_ITER_ERROR;
710 
711 	entry->center_freq =
712 		ieee80211_channel_to_frequency(info->channel, band);
713 
714 	if (!cfg80211_parse_ap_info(entry, tbtt_info, tbtt_info_len,
715 				    data->ssid_elem, data->s_ssid_tmp)) {
716 		data->n_coloc++;
717 		list_add_tail(&entry->list, &data->ap_list);
718 	} else {
719 		kfree(entry);
720 	}
721 
722 	return RNR_ITER_CONTINUE;
723 }
724 
725 VISIBLE_IF_CFG80211_KUNIT int
726 cfg80211_parse_colocated_ap(const struct cfg80211_bss_ies *ies,
727 			    struct list_head *list)
728 {
729 	struct colocated_ap_data data = {};
730 	int ret;
731 
732 	INIT_LIST_HEAD(&data.ap_list);
733 
734 	ret = cfg80211_calc_short_ssid(ies, &data.ssid_elem, &data.s_ssid_tmp);
735 	if (ret)
736 		return 0;
737 
738 	if (!cfg80211_iter_rnr(ies->data, ies->len,
739 			       cfg80211_parse_colocated_ap_iter, &data)) {
740 		cfg80211_free_coloc_ap_list(&data.ap_list);
741 		return 0;
742 	}
743 
744 	list_splice_tail(&data.ap_list, list);
745 	return data.n_coloc;
746 }
747 EXPORT_SYMBOL_IF_CFG80211_KUNIT(cfg80211_parse_colocated_ap);
748 
749 static  void cfg80211_scan_req_add_chan(struct cfg80211_scan_request *request,
750 					struct ieee80211_channel *chan,
751 					bool add_to_6ghz)
752 {
753 	int i;
754 	u32 n_channels = request->n_channels;
755 	struct cfg80211_scan_6ghz_params *params =
756 		&request->scan_6ghz_params[request->n_6ghz_params];
757 
758 	for (i = 0; i < n_channels; i++) {
759 		if (request->channels[i] == chan) {
760 			if (add_to_6ghz)
761 				params->channel_idx = i;
762 			return;
763 		}
764 	}
765 
766 	request->channels[n_channels] = chan;
767 	if (add_to_6ghz)
768 		request->scan_6ghz_params[request->n_6ghz_params].channel_idx =
769 			n_channels;
770 
771 	request->n_channels++;
772 }
773 
774 static bool cfg80211_find_ssid_match(struct cfg80211_colocated_ap *ap,
775 				     struct cfg80211_scan_request *request)
776 {
777 	int i;
778 	u32 s_ssid;
779 
780 	for (i = 0; i < request->n_ssids; i++) {
781 		/* wildcard ssid in the scan request */
782 		if (!request->ssids[i].ssid_len) {
783 			if (ap->multi_bss && !ap->transmitted_bssid)
784 				continue;
785 
786 			return true;
787 		}
788 
789 		if (ap->ssid_len &&
790 		    ap->ssid_len == request->ssids[i].ssid_len) {
791 			if (!memcmp(request->ssids[i].ssid, ap->ssid,
792 				    ap->ssid_len))
793 				return true;
794 		} else if (ap->short_ssid_valid) {
795 			s_ssid = ~crc32_le(~0, request->ssids[i].ssid,
796 					   request->ssids[i].ssid_len);
797 
798 			if (ap->short_ssid == s_ssid)
799 				return true;
800 		}
801 	}
802 
803 	return false;
804 }
805 
806 static int cfg80211_scan_6ghz(struct cfg80211_registered_device *rdev)
807 {
808 	u8 i;
809 	struct cfg80211_colocated_ap *ap;
810 	int n_channels, count = 0, err;
811 	struct cfg80211_scan_request *request, *rdev_req = rdev->scan_req;
812 	LIST_HEAD(coloc_ap_list);
813 	bool need_scan_psc = true;
814 	const struct ieee80211_sband_iftype_data *iftd;
815 
816 	rdev_req->scan_6ghz = true;
817 
818 	if (!rdev->wiphy.bands[NL80211_BAND_6GHZ])
819 		return -EOPNOTSUPP;
820 
821 	iftd = ieee80211_get_sband_iftype_data(rdev->wiphy.bands[NL80211_BAND_6GHZ],
822 					       rdev_req->wdev->iftype);
823 	if (!iftd || !iftd->he_cap.has_he)
824 		return -EOPNOTSUPP;
825 
826 	n_channels = rdev->wiphy.bands[NL80211_BAND_6GHZ]->n_channels;
827 
828 	if (rdev_req->flags & NL80211_SCAN_FLAG_COLOCATED_6GHZ) {
829 		struct cfg80211_internal_bss *intbss;
830 
831 		spin_lock_bh(&rdev->bss_lock);
832 		list_for_each_entry(intbss, &rdev->bss_list, list) {
833 			struct cfg80211_bss *res = &intbss->pub;
834 			const struct cfg80211_bss_ies *ies;
835 			const struct element *ssid_elem;
836 			struct cfg80211_colocated_ap *entry;
837 			u32 s_ssid_tmp;
838 			int ret;
839 
840 			ies = rcu_access_pointer(res->ies);
841 			count += cfg80211_parse_colocated_ap(ies,
842 							     &coloc_ap_list);
843 
844 			/* In case the scan request specified a specific BSSID
845 			 * and the BSS is found and operating on 6GHz band then
846 			 * add this AP to the collocated APs list.
847 			 * This is relevant for ML probe requests when the lower
848 			 * band APs have not been discovered.
849 			 */
850 			if (is_broadcast_ether_addr(rdev_req->bssid) ||
851 			    !ether_addr_equal(rdev_req->bssid, res->bssid) ||
852 			    res->channel->band != NL80211_BAND_6GHZ)
853 				continue;
854 
855 			ret = cfg80211_calc_short_ssid(ies, &ssid_elem,
856 						       &s_ssid_tmp);
857 			if (ret)
858 				continue;
859 
860 			entry = kzalloc(sizeof(*entry) + IEEE80211_MAX_SSID_LEN,
861 					GFP_ATOMIC);
862 
863 			if (!entry)
864 				continue;
865 
866 			memcpy(entry->bssid, res->bssid, ETH_ALEN);
867 			entry->short_ssid = s_ssid_tmp;
868 			memcpy(entry->ssid, ssid_elem->data,
869 			       ssid_elem->datalen);
870 			entry->ssid_len = ssid_elem->datalen;
871 			entry->short_ssid_valid = true;
872 			entry->center_freq = res->channel->center_freq;
873 
874 			list_add_tail(&entry->list, &coloc_ap_list);
875 			count++;
876 		}
877 		spin_unlock_bh(&rdev->bss_lock);
878 	}
879 
880 	request = kzalloc(struct_size(request, channels, n_channels) +
881 			  sizeof(*request->scan_6ghz_params) * count +
882 			  sizeof(*request->ssids) * rdev_req->n_ssids,
883 			  GFP_KERNEL);
884 	if (!request) {
885 		cfg80211_free_coloc_ap_list(&coloc_ap_list);
886 		return -ENOMEM;
887 	}
888 
889 	*request = *rdev_req;
890 	request->n_channels = 0;
891 	request->scan_6ghz_params =
892 		(void *)&request->channels[n_channels];
893 
894 	/*
895 	 * PSC channels should not be scanned in case of direct scan with 1 SSID
896 	 * and at least one of the reported co-located APs with same SSID
897 	 * indicating that all APs in the same ESS are co-located
898 	 */
899 	if (count && request->n_ssids == 1 && request->ssids[0].ssid_len) {
900 		list_for_each_entry(ap, &coloc_ap_list, list) {
901 			if (ap->colocated_ess &&
902 			    cfg80211_find_ssid_match(ap, request)) {
903 				need_scan_psc = false;
904 				break;
905 			}
906 		}
907 	}
908 
909 	/*
910 	 * add to the scan request the channels that need to be scanned
911 	 * regardless of the collocated APs (PSC channels or all channels
912 	 * in case that NL80211_SCAN_FLAG_COLOCATED_6GHZ is not set)
913 	 */
914 	for (i = 0; i < rdev_req->n_channels; i++) {
915 		if (rdev_req->channels[i]->band == NL80211_BAND_6GHZ &&
916 		    ((need_scan_psc &&
917 		      cfg80211_channel_is_psc(rdev_req->channels[i])) ||
918 		     !(rdev_req->flags & NL80211_SCAN_FLAG_COLOCATED_6GHZ))) {
919 			cfg80211_scan_req_add_chan(request,
920 						   rdev_req->channels[i],
921 						   false);
922 		}
923 	}
924 
925 	if (!(rdev_req->flags & NL80211_SCAN_FLAG_COLOCATED_6GHZ))
926 		goto skip;
927 
928 	list_for_each_entry(ap, &coloc_ap_list, list) {
929 		bool found = false;
930 		struct cfg80211_scan_6ghz_params *scan_6ghz_params =
931 			&request->scan_6ghz_params[request->n_6ghz_params];
932 		struct ieee80211_channel *chan =
933 			ieee80211_get_channel(&rdev->wiphy, ap->center_freq);
934 
935 		if (!chan || chan->flags & IEEE80211_CHAN_DISABLED)
936 			continue;
937 
938 		for (i = 0; i < rdev_req->n_channels; i++) {
939 			if (rdev_req->channels[i] == chan)
940 				found = true;
941 		}
942 
943 		if (!found)
944 			continue;
945 
946 		if (request->n_ssids > 0 &&
947 		    !cfg80211_find_ssid_match(ap, request))
948 			continue;
949 
950 		if (!is_broadcast_ether_addr(request->bssid) &&
951 		    !ether_addr_equal(request->bssid, ap->bssid))
952 			continue;
953 
954 		if (!request->n_ssids && ap->multi_bss && !ap->transmitted_bssid)
955 			continue;
956 
957 		cfg80211_scan_req_add_chan(request, chan, true);
958 		memcpy(scan_6ghz_params->bssid, ap->bssid, ETH_ALEN);
959 		scan_6ghz_params->short_ssid = ap->short_ssid;
960 		scan_6ghz_params->short_ssid_valid = ap->short_ssid_valid;
961 		scan_6ghz_params->unsolicited_probe = ap->unsolicited_probe;
962 		scan_6ghz_params->psd_20 = ap->psd_20;
963 
964 		/*
965 		 * If a PSC channel is added to the scan and 'need_scan_psc' is
966 		 * set to false, then all the APs that the scan logic is
967 		 * interested with on the channel are collocated and thus there
968 		 * is no need to perform the initial PSC channel listen.
969 		 */
970 		if (cfg80211_channel_is_psc(chan) && !need_scan_psc)
971 			scan_6ghz_params->psc_no_listen = true;
972 
973 		request->n_6ghz_params++;
974 	}
975 
976 skip:
977 	cfg80211_free_coloc_ap_list(&coloc_ap_list);
978 
979 	if (request->n_channels) {
980 		struct cfg80211_scan_request *old = rdev->int_scan_req;
981 		rdev->int_scan_req = request;
982 
983 		/*
984 		 * Add the ssids from the parent scan request to the new scan
985 		 * request, so the driver would be able to use them in its
986 		 * probe requests to discover hidden APs on PSC channels.
987 		 */
988 		request->ssids = (void *)&request->channels[request->n_channels];
989 		request->n_ssids = rdev_req->n_ssids;
990 		memcpy(request->ssids, rdev_req->ssids, sizeof(*request->ssids) *
991 		       request->n_ssids);
992 
993 		/*
994 		 * If this scan follows a previous scan, save the scan start
995 		 * info from the first part of the scan
996 		 */
997 		if (old)
998 			rdev->int_scan_req->info = old->info;
999 
1000 		err = rdev_scan(rdev, request);
1001 		if (err) {
1002 			rdev->int_scan_req = old;
1003 			kfree(request);
1004 		} else {
1005 			kfree(old);
1006 		}
1007 
1008 		return err;
1009 	}
1010 
1011 	kfree(request);
1012 	return -EINVAL;
1013 }
1014 
1015 int cfg80211_scan(struct cfg80211_registered_device *rdev)
1016 {
1017 	struct cfg80211_scan_request *request;
1018 	struct cfg80211_scan_request *rdev_req = rdev->scan_req;
1019 	u32 n_channels = 0, idx, i;
1020 
1021 	if (!(rdev->wiphy.flags & WIPHY_FLAG_SPLIT_SCAN_6GHZ))
1022 		return rdev_scan(rdev, rdev_req);
1023 
1024 	for (i = 0; i < rdev_req->n_channels; i++) {
1025 		if (rdev_req->channels[i]->band != NL80211_BAND_6GHZ)
1026 			n_channels++;
1027 	}
1028 
1029 	if (!n_channels)
1030 		return cfg80211_scan_6ghz(rdev);
1031 
1032 	request = kzalloc(struct_size(request, channels, n_channels),
1033 			  GFP_KERNEL);
1034 	if (!request)
1035 		return -ENOMEM;
1036 
1037 	*request = *rdev_req;
1038 	request->n_channels = n_channels;
1039 
1040 	for (i = idx = 0; i < rdev_req->n_channels; i++) {
1041 		if (rdev_req->channels[i]->band != NL80211_BAND_6GHZ)
1042 			request->channels[idx++] = rdev_req->channels[i];
1043 	}
1044 
1045 	rdev_req->scan_6ghz = false;
1046 	rdev->int_scan_req = request;
1047 	return rdev_scan(rdev, request);
1048 }
1049 
1050 void ___cfg80211_scan_done(struct cfg80211_registered_device *rdev,
1051 			   bool send_message)
1052 {
1053 	struct cfg80211_scan_request *request, *rdev_req;
1054 	struct wireless_dev *wdev;
1055 	struct sk_buff *msg;
1056 #ifdef CONFIG_CFG80211_WEXT
1057 	union iwreq_data wrqu;
1058 #endif
1059 
1060 	lockdep_assert_held(&rdev->wiphy.mtx);
1061 
1062 	if (rdev->scan_msg) {
1063 		nl80211_send_scan_msg(rdev, rdev->scan_msg);
1064 		rdev->scan_msg = NULL;
1065 		return;
1066 	}
1067 
1068 	rdev_req = rdev->scan_req;
1069 	if (!rdev_req)
1070 		return;
1071 
1072 	wdev = rdev_req->wdev;
1073 	request = rdev->int_scan_req ? rdev->int_scan_req : rdev_req;
1074 
1075 	if (wdev_running(wdev) &&
1076 	    (rdev->wiphy.flags & WIPHY_FLAG_SPLIT_SCAN_6GHZ) &&
1077 	    !rdev_req->scan_6ghz && !request->info.aborted &&
1078 	    !cfg80211_scan_6ghz(rdev))
1079 		return;
1080 
1081 	/*
1082 	 * This must be before sending the other events!
1083 	 * Otherwise, wpa_supplicant gets completely confused with
1084 	 * wext events.
1085 	 */
1086 	if (wdev->netdev)
1087 		cfg80211_sme_scan_done(wdev->netdev);
1088 
1089 	if (!request->info.aborted &&
1090 	    request->flags & NL80211_SCAN_FLAG_FLUSH) {
1091 		/* flush entries from previous scans */
1092 		spin_lock_bh(&rdev->bss_lock);
1093 		__cfg80211_bss_expire(rdev, request->scan_start);
1094 		spin_unlock_bh(&rdev->bss_lock);
1095 	}
1096 
1097 	msg = nl80211_build_scan_msg(rdev, wdev, request->info.aborted);
1098 
1099 #ifdef CONFIG_CFG80211_WEXT
1100 	if (wdev->netdev && !request->info.aborted) {
1101 		memset(&wrqu, 0, sizeof(wrqu));
1102 
1103 		wireless_send_event(wdev->netdev, SIOCGIWSCAN, &wrqu, NULL);
1104 	}
1105 #endif
1106 
1107 	dev_put(wdev->netdev);
1108 
1109 	kfree(rdev->int_scan_req);
1110 	rdev->int_scan_req = NULL;
1111 
1112 	kfree(rdev->scan_req);
1113 	rdev->scan_req = NULL;
1114 
1115 	if (!send_message)
1116 		rdev->scan_msg = msg;
1117 	else
1118 		nl80211_send_scan_msg(rdev, msg);
1119 }
1120 
1121 void __cfg80211_scan_done(struct wiphy *wiphy, struct wiphy_work *wk)
1122 {
1123 	___cfg80211_scan_done(wiphy_to_rdev(wiphy), true);
1124 }
1125 
1126 void cfg80211_scan_done(struct cfg80211_scan_request *request,
1127 			struct cfg80211_scan_info *info)
1128 {
1129 	struct cfg80211_scan_info old_info = request->info;
1130 
1131 	trace_cfg80211_scan_done(request, info);
1132 	WARN_ON(request != wiphy_to_rdev(request->wiphy)->scan_req &&
1133 		request != wiphy_to_rdev(request->wiphy)->int_scan_req);
1134 
1135 	request->info = *info;
1136 
1137 	/*
1138 	 * In case the scan is split, the scan_start_tsf and tsf_bssid should
1139 	 * be of the first part. In such a case old_info.scan_start_tsf should
1140 	 * be non zero.
1141 	 */
1142 	if (request->scan_6ghz && old_info.scan_start_tsf) {
1143 		request->info.scan_start_tsf = old_info.scan_start_tsf;
1144 		memcpy(request->info.tsf_bssid, old_info.tsf_bssid,
1145 		       sizeof(request->info.tsf_bssid));
1146 	}
1147 
1148 	request->notified = true;
1149 	wiphy_work_queue(request->wiphy,
1150 			 &wiphy_to_rdev(request->wiphy)->scan_done_wk);
1151 }
1152 EXPORT_SYMBOL(cfg80211_scan_done);
1153 
1154 void cfg80211_add_sched_scan_req(struct cfg80211_registered_device *rdev,
1155 				 struct cfg80211_sched_scan_request *req)
1156 {
1157 	lockdep_assert_held(&rdev->wiphy.mtx);
1158 
1159 	list_add_rcu(&req->list, &rdev->sched_scan_req_list);
1160 }
1161 
1162 static void cfg80211_del_sched_scan_req(struct cfg80211_registered_device *rdev,
1163 					struct cfg80211_sched_scan_request *req)
1164 {
1165 	lockdep_assert_held(&rdev->wiphy.mtx);
1166 
1167 	list_del_rcu(&req->list);
1168 	kfree_rcu(req, rcu_head);
1169 }
1170 
1171 static struct cfg80211_sched_scan_request *
1172 cfg80211_find_sched_scan_req(struct cfg80211_registered_device *rdev, u64 reqid)
1173 {
1174 	struct cfg80211_sched_scan_request *pos;
1175 
1176 	list_for_each_entry_rcu(pos, &rdev->sched_scan_req_list, list,
1177 				lockdep_is_held(&rdev->wiphy.mtx)) {
1178 		if (pos->reqid == reqid)
1179 			return pos;
1180 	}
1181 	return NULL;
1182 }
1183 
1184 /*
1185  * Determines if a scheduled scan request can be handled. When a legacy
1186  * scheduled scan is running no other scheduled scan is allowed regardless
1187  * whether the request is for legacy or multi-support scan. When a multi-support
1188  * scheduled scan is running a request for legacy scan is not allowed. In this
1189  * case a request for multi-support scan can be handled if resources are
1190  * available, ie. struct wiphy::max_sched_scan_reqs limit is not yet reached.
1191  */
1192 int cfg80211_sched_scan_req_possible(struct cfg80211_registered_device *rdev,
1193 				     bool want_multi)
1194 {
1195 	struct cfg80211_sched_scan_request *pos;
1196 	int i = 0;
1197 
1198 	list_for_each_entry(pos, &rdev->sched_scan_req_list, list) {
1199 		/* request id zero means legacy in progress */
1200 		if (!i && !pos->reqid)
1201 			return -EINPROGRESS;
1202 		i++;
1203 	}
1204 
1205 	if (i) {
1206 		/* no legacy allowed when multi request(s) are active */
1207 		if (!want_multi)
1208 			return -EINPROGRESS;
1209 
1210 		/* resource limit reached */
1211 		if (i == rdev->wiphy.max_sched_scan_reqs)
1212 			return -ENOSPC;
1213 	}
1214 	return 0;
1215 }
1216 
1217 void cfg80211_sched_scan_results_wk(struct work_struct *work)
1218 {
1219 	struct cfg80211_registered_device *rdev;
1220 	struct cfg80211_sched_scan_request *req, *tmp;
1221 
1222 	rdev = container_of(work, struct cfg80211_registered_device,
1223 			   sched_scan_res_wk);
1224 
1225 	wiphy_lock(&rdev->wiphy);
1226 	list_for_each_entry_safe(req, tmp, &rdev->sched_scan_req_list, list) {
1227 		if (req->report_results) {
1228 			req->report_results = false;
1229 			if (req->flags & NL80211_SCAN_FLAG_FLUSH) {
1230 				/* flush entries from previous scans */
1231 				spin_lock_bh(&rdev->bss_lock);
1232 				__cfg80211_bss_expire(rdev, req->scan_start);
1233 				spin_unlock_bh(&rdev->bss_lock);
1234 				req->scan_start = jiffies;
1235 			}
1236 			nl80211_send_sched_scan(req,
1237 						NL80211_CMD_SCHED_SCAN_RESULTS);
1238 		}
1239 	}
1240 	wiphy_unlock(&rdev->wiphy);
1241 }
1242 
1243 void cfg80211_sched_scan_results(struct wiphy *wiphy, u64 reqid)
1244 {
1245 	struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
1246 	struct cfg80211_sched_scan_request *request;
1247 
1248 	trace_cfg80211_sched_scan_results(wiphy, reqid);
1249 	/* ignore if we're not scanning */
1250 
1251 	rcu_read_lock();
1252 	request = cfg80211_find_sched_scan_req(rdev, reqid);
1253 	if (request) {
1254 		request->report_results = true;
1255 		queue_work(cfg80211_wq, &rdev->sched_scan_res_wk);
1256 	}
1257 	rcu_read_unlock();
1258 }
1259 EXPORT_SYMBOL(cfg80211_sched_scan_results);
1260 
1261 void cfg80211_sched_scan_stopped_locked(struct wiphy *wiphy, u64 reqid)
1262 {
1263 	struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
1264 
1265 	lockdep_assert_held(&wiphy->mtx);
1266 
1267 	trace_cfg80211_sched_scan_stopped(wiphy, reqid);
1268 
1269 	__cfg80211_stop_sched_scan(rdev, reqid, true);
1270 }
1271 EXPORT_SYMBOL(cfg80211_sched_scan_stopped_locked);
1272 
1273 void cfg80211_sched_scan_stopped(struct wiphy *wiphy, u64 reqid)
1274 {
1275 	wiphy_lock(wiphy);
1276 	cfg80211_sched_scan_stopped_locked(wiphy, reqid);
1277 	wiphy_unlock(wiphy);
1278 }
1279 EXPORT_SYMBOL(cfg80211_sched_scan_stopped);
1280 
1281 int cfg80211_stop_sched_scan_req(struct cfg80211_registered_device *rdev,
1282 				 struct cfg80211_sched_scan_request *req,
1283 				 bool driver_initiated)
1284 {
1285 	lockdep_assert_held(&rdev->wiphy.mtx);
1286 
1287 	if (!driver_initiated) {
1288 		int err = rdev_sched_scan_stop(rdev, req->dev, req->reqid);
1289 		if (err)
1290 			return err;
1291 	}
1292 
1293 	nl80211_send_sched_scan(req, NL80211_CMD_SCHED_SCAN_STOPPED);
1294 
1295 	cfg80211_del_sched_scan_req(rdev, req);
1296 
1297 	return 0;
1298 }
1299 
1300 int __cfg80211_stop_sched_scan(struct cfg80211_registered_device *rdev,
1301 			       u64 reqid, bool driver_initiated)
1302 {
1303 	struct cfg80211_sched_scan_request *sched_scan_req;
1304 
1305 	lockdep_assert_held(&rdev->wiphy.mtx);
1306 
1307 	sched_scan_req = cfg80211_find_sched_scan_req(rdev, reqid);
1308 	if (!sched_scan_req)
1309 		return -ENOENT;
1310 
1311 	return cfg80211_stop_sched_scan_req(rdev, sched_scan_req,
1312 					    driver_initiated);
1313 }
1314 
1315 void cfg80211_bss_age(struct cfg80211_registered_device *rdev,
1316                       unsigned long age_secs)
1317 {
1318 	struct cfg80211_internal_bss *bss;
1319 	unsigned long age_jiffies = msecs_to_jiffies(age_secs * MSEC_PER_SEC);
1320 
1321 	spin_lock_bh(&rdev->bss_lock);
1322 	list_for_each_entry(bss, &rdev->bss_list, list)
1323 		bss->ts -= age_jiffies;
1324 	spin_unlock_bh(&rdev->bss_lock);
1325 }
1326 
1327 void cfg80211_bss_expire(struct cfg80211_registered_device *rdev)
1328 {
1329 	__cfg80211_bss_expire(rdev, jiffies - IEEE80211_SCAN_RESULT_EXPIRE);
1330 }
1331 
1332 void cfg80211_bss_flush(struct wiphy *wiphy)
1333 {
1334 	struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
1335 
1336 	spin_lock_bh(&rdev->bss_lock);
1337 	__cfg80211_bss_expire(rdev, jiffies);
1338 	spin_unlock_bh(&rdev->bss_lock);
1339 }
1340 EXPORT_SYMBOL(cfg80211_bss_flush);
1341 
1342 const struct element *
1343 cfg80211_find_elem_match(u8 eid, const u8 *ies, unsigned int len,
1344 			 const u8 *match, unsigned int match_len,
1345 			 unsigned int match_offset)
1346 {
1347 	const struct element *elem;
1348 
1349 	for_each_element_id(elem, eid, ies, len) {
1350 		if (elem->datalen >= match_offset + match_len &&
1351 		    !memcmp(elem->data + match_offset, match, match_len))
1352 			return elem;
1353 	}
1354 
1355 	return NULL;
1356 }
1357 EXPORT_SYMBOL(cfg80211_find_elem_match);
1358 
1359 const struct element *cfg80211_find_vendor_elem(unsigned int oui, int oui_type,
1360 						const u8 *ies,
1361 						unsigned int len)
1362 {
1363 	const struct element *elem;
1364 	u8 match[] = { oui >> 16, oui >> 8, oui, oui_type };
1365 	int match_len = (oui_type < 0) ? 3 : sizeof(match);
1366 
1367 	if (WARN_ON(oui_type > 0xff))
1368 		return NULL;
1369 
1370 	elem = cfg80211_find_elem_match(WLAN_EID_VENDOR_SPECIFIC, ies, len,
1371 					match, match_len, 0);
1372 
1373 	if (!elem || elem->datalen < 4)
1374 		return NULL;
1375 
1376 	return elem;
1377 }
1378 EXPORT_SYMBOL(cfg80211_find_vendor_elem);
1379 
1380 /**
1381  * enum bss_compare_mode - BSS compare mode
1382  * @BSS_CMP_REGULAR: regular compare mode (for insertion and normal find)
1383  * @BSS_CMP_HIDE_ZLEN: find hidden SSID with zero-length mode
1384  * @BSS_CMP_HIDE_NUL: find hidden SSID with NUL-ed out mode
1385  */
1386 enum bss_compare_mode {
1387 	BSS_CMP_REGULAR,
1388 	BSS_CMP_HIDE_ZLEN,
1389 	BSS_CMP_HIDE_NUL,
1390 };
1391 
1392 static int cmp_bss(struct cfg80211_bss *a,
1393 		   struct cfg80211_bss *b,
1394 		   enum bss_compare_mode mode)
1395 {
1396 	const struct cfg80211_bss_ies *a_ies, *b_ies;
1397 	const u8 *ie1 = NULL;
1398 	const u8 *ie2 = NULL;
1399 	int i, r;
1400 
1401 	if (a->channel != b->channel)
1402 		return (b->channel->center_freq * 1000 + b->channel->freq_offset) -
1403 		       (a->channel->center_freq * 1000 + a->channel->freq_offset);
1404 
1405 	a_ies = rcu_access_pointer(a->ies);
1406 	if (!a_ies)
1407 		return -1;
1408 	b_ies = rcu_access_pointer(b->ies);
1409 	if (!b_ies)
1410 		return 1;
1411 
1412 	if (WLAN_CAPABILITY_IS_STA_BSS(a->capability))
1413 		ie1 = cfg80211_find_ie(WLAN_EID_MESH_ID,
1414 				       a_ies->data, a_ies->len);
1415 	if (WLAN_CAPABILITY_IS_STA_BSS(b->capability))
1416 		ie2 = cfg80211_find_ie(WLAN_EID_MESH_ID,
1417 				       b_ies->data, b_ies->len);
1418 	if (ie1 && ie2) {
1419 		int mesh_id_cmp;
1420 
1421 		if (ie1[1] == ie2[1])
1422 			mesh_id_cmp = memcmp(ie1 + 2, ie2 + 2, ie1[1]);
1423 		else
1424 			mesh_id_cmp = ie2[1] - ie1[1];
1425 
1426 		ie1 = cfg80211_find_ie(WLAN_EID_MESH_CONFIG,
1427 				       a_ies->data, a_ies->len);
1428 		ie2 = cfg80211_find_ie(WLAN_EID_MESH_CONFIG,
1429 				       b_ies->data, b_ies->len);
1430 		if (ie1 && ie2) {
1431 			if (mesh_id_cmp)
1432 				return mesh_id_cmp;
1433 			if (ie1[1] != ie2[1])
1434 				return ie2[1] - ie1[1];
1435 			return memcmp(ie1 + 2, ie2 + 2, ie1[1]);
1436 		}
1437 	}
1438 
1439 	r = memcmp(a->bssid, b->bssid, sizeof(a->bssid));
1440 	if (r)
1441 		return r;
1442 
1443 	ie1 = cfg80211_find_ie(WLAN_EID_SSID, a_ies->data, a_ies->len);
1444 	ie2 = cfg80211_find_ie(WLAN_EID_SSID, b_ies->data, b_ies->len);
1445 
1446 	if (!ie1 && !ie2)
1447 		return 0;
1448 
1449 	/*
1450 	 * Note that with "hide_ssid", the function returns a match if
1451 	 * the already-present BSS ("b") is a hidden SSID beacon for
1452 	 * the new BSS ("a").
1453 	 */
1454 
1455 	/* sort missing IE before (left of) present IE */
1456 	if (!ie1)
1457 		return -1;
1458 	if (!ie2)
1459 		return 1;
1460 
1461 	switch (mode) {
1462 	case BSS_CMP_HIDE_ZLEN:
1463 		/*
1464 		 * In ZLEN mode we assume the BSS entry we're
1465 		 * looking for has a zero-length SSID. So if
1466 		 * the one we're looking at right now has that,
1467 		 * return 0. Otherwise, return the difference
1468 		 * in length, but since we're looking for the
1469 		 * 0-length it's really equivalent to returning
1470 		 * the length of the one we're looking at.
1471 		 *
1472 		 * No content comparison is needed as we assume
1473 		 * the content length is zero.
1474 		 */
1475 		return ie2[1];
1476 	case BSS_CMP_REGULAR:
1477 	default:
1478 		/* sort by length first, then by contents */
1479 		if (ie1[1] != ie2[1])
1480 			return ie2[1] - ie1[1];
1481 		return memcmp(ie1 + 2, ie2 + 2, ie1[1]);
1482 	case BSS_CMP_HIDE_NUL:
1483 		if (ie1[1] != ie2[1])
1484 			return ie2[1] - ie1[1];
1485 		/* this is equivalent to memcmp(zeroes, ie2 + 2, len) */
1486 		for (i = 0; i < ie2[1]; i++)
1487 			if (ie2[i + 2])
1488 				return -1;
1489 		return 0;
1490 	}
1491 }
1492 
1493 static bool cfg80211_bss_type_match(u16 capability,
1494 				    enum nl80211_band band,
1495 				    enum ieee80211_bss_type bss_type)
1496 {
1497 	bool ret = true;
1498 	u16 mask, val;
1499 
1500 	if (bss_type == IEEE80211_BSS_TYPE_ANY)
1501 		return ret;
1502 
1503 	if (band == NL80211_BAND_60GHZ) {
1504 		mask = WLAN_CAPABILITY_DMG_TYPE_MASK;
1505 		switch (bss_type) {
1506 		case IEEE80211_BSS_TYPE_ESS:
1507 			val = WLAN_CAPABILITY_DMG_TYPE_AP;
1508 			break;
1509 		case IEEE80211_BSS_TYPE_PBSS:
1510 			val = WLAN_CAPABILITY_DMG_TYPE_PBSS;
1511 			break;
1512 		case IEEE80211_BSS_TYPE_IBSS:
1513 			val = WLAN_CAPABILITY_DMG_TYPE_IBSS;
1514 			break;
1515 		default:
1516 			return false;
1517 		}
1518 	} else {
1519 		mask = WLAN_CAPABILITY_ESS | WLAN_CAPABILITY_IBSS;
1520 		switch (bss_type) {
1521 		case IEEE80211_BSS_TYPE_ESS:
1522 			val = WLAN_CAPABILITY_ESS;
1523 			break;
1524 		case IEEE80211_BSS_TYPE_IBSS:
1525 			val = WLAN_CAPABILITY_IBSS;
1526 			break;
1527 		case IEEE80211_BSS_TYPE_MBSS:
1528 			val = 0;
1529 			break;
1530 		default:
1531 			return false;
1532 		}
1533 	}
1534 
1535 	ret = ((capability & mask) == val);
1536 	return ret;
1537 }
1538 
1539 /* Returned bss is reference counted and must be cleaned up appropriately. */
1540 struct cfg80211_bss *__cfg80211_get_bss(struct wiphy *wiphy,
1541 					struct ieee80211_channel *channel,
1542 					const u8 *bssid,
1543 					const u8 *ssid, size_t ssid_len,
1544 					enum ieee80211_bss_type bss_type,
1545 					enum ieee80211_privacy privacy,
1546 					u32 use_for)
1547 {
1548 	struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
1549 	struct cfg80211_internal_bss *bss, *res = NULL;
1550 	unsigned long now = jiffies;
1551 	int bss_privacy;
1552 
1553 	trace_cfg80211_get_bss(wiphy, channel, bssid, ssid, ssid_len, bss_type,
1554 			       privacy);
1555 
1556 	spin_lock_bh(&rdev->bss_lock);
1557 
1558 	list_for_each_entry(bss, &rdev->bss_list, list) {
1559 		if (!cfg80211_bss_type_match(bss->pub.capability,
1560 					     bss->pub.channel->band, bss_type))
1561 			continue;
1562 
1563 		bss_privacy = (bss->pub.capability & WLAN_CAPABILITY_PRIVACY);
1564 		if ((privacy == IEEE80211_PRIVACY_ON && !bss_privacy) ||
1565 		    (privacy == IEEE80211_PRIVACY_OFF && bss_privacy))
1566 			continue;
1567 		if (channel && bss->pub.channel != channel)
1568 			continue;
1569 		if (!is_valid_ether_addr(bss->pub.bssid))
1570 			continue;
1571 		if ((bss->pub.use_for & use_for) != use_for)
1572 			continue;
1573 		/* Don't get expired BSS structs */
1574 		if (time_after(now, bss->ts + IEEE80211_SCAN_RESULT_EXPIRE) &&
1575 		    !atomic_read(&bss->hold))
1576 			continue;
1577 		if (is_bss(&bss->pub, bssid, ssid, ssid_len)) {
1578 			res = bss;
1579 			bss_ref_get(rdev, res);
1580 			break;
1581 		}
1582 	}
1583 
1584 	spin_unlock_bh(&rdev->bss_lock);
1585 	if (!res)
1586 		return NULL;
1587 	trace_cfg80211_return_bss(&res->pub);
1588 	return &res->pub;
1589 }
1590 EXPORT_SYMBOL(__cfg80211_get_bss);
1591 
1592 static void rb_insert_bss(struct cfg80211_registered_device *rdev,
1593 			  struct cfg80211_internal_bss *bss)
1594 {
1595 	struct rb_node **p = &rdev->bss_tree.rb_node;
1596 	struct rb_node *parent = NULL;
1597 	struct cfg80211_internal_bss *tbss;
1598 	int cmp;
1599 
1600 	while (*p) {
1601 		parent = *p;
1602 		tbss = rb_entry(parent, struct cfg80211_internal_bss, rbn);
1603 
1604 		cmp = cmp_bss(&bss->pub, &tbss->pub, BSS_CMP_REGULAR);
1605 
1606 		if (WARN_ON(!cmp)) {
1607 			/* will sort of leak this BSS */
1608 			return;
1609 		}
1610 
1611 		if (cmp < 0)
1612 			p = &(*p)->rb_left;
1613 		else
1614 			p = &(*p)->rb_right;
1615 	}
1616 
1617 	rb_link_node(&bss->rbn, parent, p);
1618 	rb_insert_color(&bss->rbn, &rdev->bss_tree);
1619 }
1620 
1621 static struct cfg80211_internal_bss *
1622 rb_find_bss(struct cfg80211_registered_device *rdev,
1623 	    struct cfg80211_internal_bss *res,
1624 	    enum bss_compare_mode mode)
1625 {
1626 	struct rb_node *n = rdev->bss_tree.rb_node;
1627 	struct cfg80211_internal_bss *bss;
1628 	int r;
1629 
1630 	while (n) {
1631 		bss = rb_entry(n, struct cfg80211_internal_bss, rbn);
1632 		r = cmp_bss(&res->pub, &bss->pub, mode);
1633 
1634 		if (r == 0)
1635 			return bss;
1636 		else if (r < 0)
1637 			n = n->rb_left;
1638 		else
1639 			n = n->rb_right;
1640 	}
1641 
1642 	return NULL;
1643 }
1644 
1645 static bool cfg80211_combine_bsses(struct cfg80211_registered_device *rdev,
1646 				   struct cfg80211_internal_bss *new)
1647 {
1648 	const struct cfg80211_bss_ies *ies;
1649 	struct cfg80211_internal_bss *bss;
1650 	const u8 *ie;
1651 	int i, ssidlen;
1652 	u8 fold = 0;
1653 	u32 n_entries = 0;
1654 
1655 	ies = rcu_access_pointer(new->pub.beacon_ies);
1656 	if (WARN_ON(!ies))
1657 		return false;
1658 
1659 	ie = cfg80211_find_ie(WLAN_EID_SSID, ies->data, ies->len);
1660 	if (!ie) {
1661 		/* nothing to do */
1662 		return true;
1663 	}
1664 
1665 	ssidlen = ie[1];
1666 	for (i = 0; i < ssidlen; i++)
1667 		fold |= ie[2 + i];
1668 
1669 	if (fold) {
1670 		/* not a hidden SSID */
1671 		return true;
1672 	}
1673 
1674 	/* This is the bad part ... */
1675 
1676 	list_for_each_entry(bss, &rdev->bss_list, list) {
1677 		/*
1678 		 * we're iterating all the entries anyway, so take the
1679 		 * opportunity to validate the list length accounting
1680 		 */
1681 		n_entries++;
1682 
1683 		if (!ether_addr_equal(bss->pub.bssid, new->pub.bssid))
1684 			continue;
1685 		if (bss->pub.channel != new->pub.channel)
1686 			continue;
1687 		if (rcu_access_pointer(bss->pub.beacon_ies))
1688 			continue;
1689 		ies = rcu_access_pointer(bss->pub.ies);
1690 		if (!ies)
1691 			continue;
1692 		ie = cfg80211_find_ie(WLAN_EID_SSID, ies->data, ies->len);
1693 		if (!ie)
1694 			continue;
1695 		if (ssidlen && ie[1] != ssidlen)
1696 			continue;
1697 		if (WARN_ON_ONCE(bss->pub.hidden_beacon_bss))
1698 			continue;
1699 		if (WARN_ON_ONCE(!list_empty(&bss->hidden_list)))
1700 			list_del(&bss->hidden_list);
1701 		/* combine them */
1702 		list_add(&bss->hidden_list, &new->hidden_list);
1703 		bss->pub.hidden_beacon_bss = &new->pub;
1704 		new->refcount += bss->refcount;
1705 		rcu_assign_pointer(bss->pub.beacon_ies,
1706 				   new->pub.beacon_ies);
1707 	}
1708 
1709 	WARN_ONCE(n_entries != rdev->bss_entries,
1710 		  "rdev bss entries[%d]/list[len:%d] corruption\n",
1711 		  rdev->bss_entries, n_entries);
1712 
1713 	return true;
1714 }
1715 
1716 static void cfg80211_update_hidden_bsses(struct cfg80211_internal_bss *known,
1717 					 const struct cfg80211_bss_ies *new_ies,
1718 					 const struct cfg80211_bss_ies *old_ies)
1719 {
1720 	struct cfg80211_internal_bss *bss;
1721 
1722 	/* Assign beacon IEs to all sub entries */
1723 	list_for_each_entry(bss, &known->hidden_list, hidden_list) {
1724 		const struct cfg80211_bss_ies *ies;
1725 
1726 		ies = rcu_access_pointer(bss->pub.beacon_ies);
1727 		WARN_ON(ies != old_ies);
1728 
1729 		rcu_assign_pointer(bss->pub.beacon_ies, new_ies);
1730 	}
1731 }
1732 
1733 static void cfg80211_check_stuck_ecsa(struct cfg80211_registered_device *rdev,
1734 				      struct cfg80211_internal_bss *known,
1735 				      const struct cfg80211_bss_ies *old)
1736 {
1737 	const struct ieee80211_ext_chansw_ie *ecsa;
1738 	const struct element *elem_new, *elem_old;
1739 	const struct cfg80211_bss_ies *new, *bcn;
1740 
1741 	if (known->pub.proberesp_ecsa_stuck)
1742 		return;
1743 
1744 	new = rcu_dereference_protected(known->pub.proberesp_ies,
1745 					lockdep_is_held(&rdev->bss_lock));
1746 	if (WARN_ON(!new))
1747 		return;
1748 
1749 	if (new->tsf - old->tsf < USEC_PER_SEC)
1750 		return;
1751 
1752 	elem_old = cfg80211_find_elem(WLAN_EID_EXT_CHANSWITCH_ANN,
1753 				      old->data, old->len);
1754 	if (!elem_old)
1755 		return;
1756 
1757 	elem_new = cfg80211_find_elem(WLAN_EID_EXT_CHANSWITCH_ANN,
1758 				      new->data, new->len);
1759 	if (!elem_new)
1760 		return;
1761 
1762 	bcn = rcu_dereference_protected(known->pub.beacon_ies,
1763 					lockdep_is_held(&rdev->bss_lock));
1764 	if (bcn &&
1765 	    cfg80211_find_elem(WLAN_EID_EXT_CHANSWITCH_ANN,
1766 			       bcn->data, bcn->len))
1767 		return;
1768 
1769 	if (elem_new->datalen != elem_old->datalen)
1770 		return;
1771 	if (elem_new->datalen < sizeof(struct ieee80211_ext_chansw_ie))
1772 		return;
1773 	if (memcmp(elem_new->data, elem_old->data, elem_new->datalen))
1774 		return;
1775 
1776 	ecsa = (void *)elem_new->data;
1777 
1778 	if (!ecsa->mode)
1779 		return;
1780 
1781 	if (ecsa->new_ch_num !=
1782 	    ieee80211_frequency_to_channel(known->pub.channel->center_freq))
1783 		return;
1784 
1785 	known->pub.proberesp_ecsa_stuck = 1;
1786 }
1787 
1788 static bool
1789 cfg80211_update_known_bss(struct cfg80211_registered_device *rdev,
1790 			  struct cfg80211_internal_bss *known,
1791 			  struct cfg80211_internal_bss *new,
1792 			  bool signal_valid)
1793 {
1794 	lockdep_assert_held(&rdev->bss_lock);
1795 
1796 	/* Update IEs */
1797 	if (rcu_access_pointer(new->pub.proberesp_ies)) {
1798 		const struct cfg80211_bss_ies *old;
1799 
1800 		old = rcu_access_pointer(known->pub.proberesp_ies);
1801 
1802 		rcu_assign_pointer(known->pub.proberesp_ies,
1803 				   new->pub.proberesp_ies);
1804 		/* Override possible earlier Beacon frame IEs */
1805 		rcu_assign_pointer(known->pub.ies,
1806 				   new->pub.proberesp_ies);
1807 		if (old) {
1808 			cfg80211_check_stuck_ecsa(rdev, known, old);
1809 			kfree_rcu((struct cfg80211_bss_ies *)old, rcu_head);
1810 		}
1811 	}
1812 
1813 	if (rcu_access_pointer(new->pub.beacon_ies)) {
1814 		const struct cfg80211_bss_ies *old;
1815 
1816 		if (known->pub.hidden_beacon_bss &&
1817 		    !list_empty(&known->hidden_list)) {
1818 			const struct cfg80211_bss_ies *f;
1819 
1820 			/* The known BSS struct is one of the probe
1821 			 * response members of a group, but we're
1822 			 * receiving a beacon (beacon_ies in the new
1823 			 * bss is used). This can only mean that the
1824 			 * AP changed its beacon from not having an
1825 			 * SSID to showing it, which is confusing so
1826 			 * drop this information.
1827 			 */
1828 
1829 			f = rcu_access_pointer(new->pub.beacon_ies);
1830 			kfree_rcu((struct cfg80211_bss_ies *)f, rcu_head);
1831 			return false;
1832 		}
1833 
1834 		old = rcu_access_pointer(known->pub.beacon_ies);
1835 
1836 		rcu_assign_pointer(known->pub.beacon_ies, new->pub.beacon_ies);
1837 
1838 		/* Override IEs if they were from a beacon before */
1839 		if (old == rcu_access_pointer(known->pub.ies))
1840 			rcu_assign_pointer(known->pub.ies, new->pub.beacon_ies);
1841 
1842 		cfg80211_update_hidden_bsses(known,
1843 					     rcu_access_pointer(new->pub.beacon_ies),
1844 					     old);
1845 
1846 		if (old)
1847 			kfree_rcu((struct cfg80211_bss_ies *)old, rcu_head);
1848 	}
1849 
1850 	known->pub.beacon_interval = new->pub.beacon_interval;
1851 
1852 	/* don't update the signal if beacon was heard on
1853 	 * adjacent channel.
1854 	 */
1855 	if (signal_valid)
1856 		known->pub.signal = new->pub.signal;
1857 	known->pub.capability = new->pub.capability;
1858 	known->ts = new->ts;
1859 	known->ts_boottime = new->ts_boottime;
1860 	known->parent_tsf = new->parent_tsf;
1861 	known->pub.chains = new->pub.chains;
1862 	memcpy(known->pub.chain_signal, new->pub.chain_signal,
1863 	       IEEE80211_MAX_CHAINS);
1864 	ether_addr_copy(known->parent_bssid, new->parent_bssid);
1865 	known->pub.max_bssid_indicator = new->pub.max_bssid_indicator;
1866 	known->pub.bssid_index = new->pub.bssid_index;
1867 	known->pub.use_for &= new->pub.use_for;
1868 	known->pub.cannot_use_reasons = new->pub.cannot_use_reasons;
1869 
1870 	return true;
1871 }
1872 
1873 /* Returned bss is reference counted and must be cleaned up appropriately. */
1874 static struct cfg80211_internal_bss *
1875 __cfg80211_bss_update(struct cfg80211_registered_device *rdev,
1876 		      struct cfg80211_internal_bss *tmp,
1877 		      bool signal_valid, unsigned long ts)
1878 {
1879 	struct cfg80211_internal_bss *found = NULL;
1880 	struct cfg80211_bss_ies *ies;
1881 
1882 	if (WARN_ON(!tmp->pub.channel))
1883 		goto free_ies;
1884 
1885 	tmp->ts = ts;
1886 
1887 	if (WARN_ON(!rcu_access_pointer(tmp->pub.ies)))
1888 		goto free_ies;
1889 
1890 	found = rb_find_bss(rdev, tmp, BSS_CMP_REGULAR);
1891 
1892 	if (found) {
1893 		if (!cfg80211_update_known_bss(rdev, found, tmp, signal_valid))
1894 			return NULL;
1895 	} else {
1896 		struct cfg80211_internal_bss *new;
1897 		struct cfg80211_internal_bss *hidden;
1898 
1899 		/*
1900 		 * create a copy -- the "res" variable that is passed in
1901 		 * is allocated on the stack since it's not needed in the
1902 		 * more common case of an update
1903 		 */
1904 		new = kzalloc(sizeof(*new) + rdev->wiphy.bss_priv_size,
1905 			      GFP_ATOMIC);
1906 		if (!new)
1907 			goto free_ies;
1908 		memcpy(new, tmp, sizeof(*new));
1909 		new->refcount = 1;
1910 		INIT_LIST_HEAD(&new->hidden_list);
1911 		INIT_LIST_HEAD(&new->pub.nontrans_list);
1912 		/* we'll set this later if it was non-NULL */
1913 		new->pub.transmitted_bss = NULL;
1914 
1915 		if (rcu_access_pointer(tmp->pub.proberesp_ies)) {
1916 			hidden = rb_find_bss(rdev, tmp, BSS_CMP_HIDE_ZLEN);
1917 			if (!hidden)
1918 				hidden = rb_find_bss(rdev, tmp,
1919 						     BSS_CMP_HIDE_NUL);
1920 			if (hidden) {
1921 				new->pub.hidden_beacon_bss = &hidden->pub;
1922 				list_add(&new->hidden_list,
1923 					 &hidden->hidden_list);
1924 				hidden->refcount++;
1925 
1926 				ies = (void *)rcu_access_pointer(new->pub.beacon_ies);
1927 				rcu_assign_pointer(new->pub.beacon_ies,
1928 						   hidden->pub.beacon_ies);
1929 				if (ies)
1930 					kfree_rcu(ies, rcu_head);
1931 			}
1932 		} else {
1933 			/*
1934 			 * Ok so we found a beacon, and don't have an entry. If
1935 			 * it's a beacon with hidden SSID, we might be in for an
1936 			 * expensive search for any probe responses that should
1937 			 * be grouped with this beacon for updates ...
1938 			 */
1939 			if (!cfg80211_combine_bsses(rdev, new)) {
1940 				bss_ref_put(rdev, new);
1941 				return NULL;
1942 			}
1943 		}
1944 
1945 		if (rdev->bss_entries >= bss_entries_limit &&
1946 		    !cfg80211_bss_expire_oldest(rdev)) {
1947 			bss_ref_put(rdev, new);
1948 			return NULL;
1949 		}
1950 
1951 		/* This must be before the call to bss_ref_get */
1952 		if (tmp->pub.transmitted_bss) {
1953 			new->pub.transmitted_bss = tmp->pub.transmitted_bss;
1954 			bss_ref_get(rdev, bss_from_pub(tmp->pub.transmitted_bss));
1955 		}
1956 
1957 		list_add_tail(&new->list, &rdev->bss_list);
1958 		rdev->bss_entries++;
1959 		rb_insert_bss(rdev, new);
1960 		found = new;
1961 	}
1962 
1963 	rdev->bss_generation++;
1964 	bss_ref_get(rdev, found);
1965 
1966 	return found;
1967 
1968 free_ies:
1969 	ies = (void *)rcu_dereference(tmp->pub.beacon_ies);
1970 	if (ies)
1971 		kfree_rcu(ies, rcu_head);
1972 	ies = (void *)rcu_dereference(tmp->pub.proberesp_ies);
1973 	if (ies)
1974 		kfree_rcu(ies, rcu_head);
1975 
1976 	return NULL;
1977 }
1978 
1979 struct cfg80211_internal_bss *
1980 cfg80211_bss_update(struct cfg80211_registered_device *rdev,
1981 		    struct cfg80211_internal_bss *tmp,
1982 		    bool signal_valid, unsigned long ts)
1983 {
1984 	struct cfg80211_internal_bss *res;
1985 
1986 	spin_lock_bh(&rdev->bss_lock);
1987 	res = __cfg80211_bss_update(rdev, tmp, signal_valid, ts);
1988 	spin_unlock_bh(&rdev->bss_lock);
1989 
1990 	return res;
1991 }
1992 
1993 int cfg80211_get_ies_channel_number(const u8 *ie, size_t ielen,
1994 				    enum nl80211_band band)
1995 {
1996 	const struct element *tmp;
1997 
1998 	if (band == NL80211_BAND_6GHZ) {
1999 		struct ieee80211_he_operation *he_oper;
2000 
2001 		tmp = cfg80211_find_ext_elem(WLAN_EID_EXT_HE_OPERATION, ie,
2002 					     ielen);
2003 		if (tmp && tmp->datalen >= sizeof(*he_oper) &&
2004 		    tmp->datalen >= ieee80211_he_oper_size(&tmp->data[1])) {
2005 			const struct ieee80211_he_6ghz_oper *he_6ghz_oper;
2006 
2007 			he_oper = (void *)&tmp->data[1];
2008 
2009 			he_6ghz_oper = ieee80211_he_6ghz_oper(he_oper);
2010 			if (!he_6ghz_oper)
2011 				return -1;
2012 
2013 			return he_6ghz_oper->primary;
2014 		}
2015 	} else if (band == NL80211_BAND_S1GHZ) {
2016 		tmp = cfg80211_find_elem(WLAN_EID_S1G_OPERATION, ie, ielen);
2017 		if (tmp && tmp->datalen >= sizeof(struct ieee80211_s1g_oper_ie)) {
2018 			struct ieee80211_s1g_oper_ie *s1gop = (void *)tmp->data;
2019 
2020 			return s1gop->oper_ch;
2021 		}
2022 	} else {
2023 		tmp = cfg80211_find_elem(WLAN_EID_DS_PARAMS, ie, ielen);
2024 		if (tmp && tmp->datalen == 1)
2025 			return tmp->data[0];
2026 
2027 		tmp = cfg80211_find_elem(WLAN_EID_HT_OPERATION, ie, ielen);
2028 		if (tmp &&
2029 		    tmp->datalen >= sizeof(struct ieee80211_ht_operation)) {
2030 			struct ieee80211_ht_operation *htop = (void *)tmp->data;
2031 
2032 			return htop->primary_chan;
2033 		}
2034 	}
2035 
2036 	return -1;
2037 }
2038 EXPORT_SYMBOL(cfg80211_get_ies_channel_number);
2039 
2040 /*
2041  * Update RX channel information based on the available frame payload
2042  * information. This is mainly for the 2.4 GHz band where frames can be received
2043  * from neighboring channels and the Beacon frames use the DSSS Parameter Set
2044  * element to indicate the current (transmitting) channel, but this might also
2045  * be needed on other bands if RX frequency does not match with the actual
2046  * operating channel of a BSS, or if the AP reports a different primary channel.
2047  */
2048 static struct ieee80211_channel *
2049 cfg80211_get_bss_channel(struct wiphy *wiphy, const u8 *ie, size_t ielen,
2050 			 struct ieee80211_channel *channel)
2051 {
2052 	u32 freq;
2053 	int channel_number;
2054 	struct ieee80211_channel *alt_channel;
2055 
2056 	channel_number = cfg80211_get_ies_channel_number(ie, ielen,
2057 							 channel->band);
2058 
2059 	if (channel_number < 0) {
2060 		/* No channel information in frame payload */
2061 		return channel;
2062 	}
2063 
2064 	freq = ieee80211_channel_to_freq_khz(channel_number, channel->band);
2065 
2066 	/*
2067 	 * Frame info (beacon/prob res) is the same as received channel,
2068 	 * no need for further processing.
2069 	 */
2070 	if (freq == ieee80211_channel_to_khz(channel))
2071 		return channel;
2072 
2073 	alt_channel = ieee80211_get_channel_khz(wiphy, freq);
2074 	if (!alt_channel) {
2075 		if (channel->band == NL80211_BAND_2GHZ ||
2076 		    channel->band == NL80211_BAND_6GHZ) {
2077 			/*
2078 			 * Better not allow unexpected channels when that could
2079 			 * be going beyond the 1-11 range (e.g., discovering
2080 			 * BSS on channel 12 when radio is configured for
2081 			 * channel 11) or beyond the 6 GHz channel range.
2082 			 */
2083 			return NULL;
2084 		}
2085 
2086 		/* No match for the payload channel number - ignore it */
2087 		return channel;
2088 	}
2089 
2090 	/*
2091 	 * Use the channel determined through the payload channel number
2092 	 * instead of the RX channel reported by the driver.
2093 	 */
2094 	if (alt_channel->flags & IEEE80211_CHAN_DISABLED)
2095 		return NULL;
2096 	return alt_channel;
2097 }
2098 
2099 struct cfg80211_inform_single_bss_data {
2100 	struct cfg80211_inform_bss *drv_data;
2101 	enum cfg80211_bss_frame_type ftype;
2102 	struct ieee80211_channel *channel;
2103 	u8 bssid[ETH_ALEN];
2104 	u64 tsf;
2105 	u16 capability;
2106 	u16 beacon_interval;
2107 	const u8 *ie;
2108 	size_t ielen;
2109 
2110 	enum {
2111 		BSS_SOURCE_DIRECT = 0,
2112 		BSS_SOURCE_MBSSID,
2113 		BSS_SOURCE_STA_PROFILE,
2114 	} bss_source;
2115 	/* Set if reporting bss_source != BSS_SOURCE_DIRECT */
2116 	struct cfg80211_bss *source_bss;
2117 	u8 max_bssid_indicator;
2118 	u8 bssid_index;
2119 
2120 	u8 use_for;
2121 	u64 cannot_use_reasons;
2122 };
2123 
2124 static bool cfg80211_6ghz_power_type_valid(const u8 *ie, size_t ielen,
2125 					   const u32 flags)
2126 {
2127 	const struct element *tmp;
2128 	struct ieee80211_he_operation *he_oper;
2129 
2130 	tmp = cfg80211_find_ext_elem(WLAN_EID_EXT_HE_OPERATION, ie, ielen);
2131 	if (tmp && tmp->datalen >= sizeof(*he_oper) + 1) {
2132 		const struct ieee80211_he_6ghz_oper *he_6ghz_oper;
2133 
2134 		he_oper = (void *)&tmp->data[1];
2135 		he_6ghz_oper = ieee80211_he_6ghz_oper(he_oper);
2136 
2137 		if (!he_6ghz_oper)
2138 			return false;
2139 
2140 		switch (u8_get_bits(he_6ghz_oper->control,
2141 				    IEEE80211_HE_6GHZ_OPER_CTRL_REG_INFO)) {
2142 		case IEEE80211_6GHZ_CTRL_REG_LPI_AP:
2143 		case IEEE80211_6GHZ_CTRL_REG_INDOOR_LPI_AP:
2144 			return true;
2145 		case IEEE80211_6GHZ_CTRL_REG_SP_AP:
2146 		case IEEE80211_6GHZ_CTRL_REG_INDOOR_SP_AP:
2147 			return !(flags & IEEE80211_CHAN_NO_6GHZ_AFC_CLIENT);
2148 		case IEEE80211_6GHZ_CTRL_REG_VLP_AP:
2149 			return !(flags & IEEE80211_CHAN_NO_6GHZ_VLP_CLIENT);
2150 		default:
2151 			return false;
2152 		}
2153 	}
2154 	return false;
2155 }
2156 
2157 /* Returned bss is reference counted and must be cleaned up appropriately. */
2158 static struct cfg80211_bss *
2159 cfg80211_inform_single_bss_data(struct wiphy *wiphy,
2160 				struct cfg80211_inform_single_bss_data *data,
2161 				gfp_t gfp)
2162 {
2163 	struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
2164 	struct cfg80211_inform_bss *drv_data = data->drv_data;
2165 	struct cfg80211_bss_ies *ies;
2166 	struct ieee80211_channel *channel;
2167 	struct cfg80211_internal_bss tmp = {}, *res;
2168 	int bss_type;
2169 	bool signal_valid;
2170 	unsigned long ts;
2171 
2172 	if (WARN_ON(!wiphy))
2173 		return NULL;
2174 
2175 	if (WARN_ON(wiphy->signal_type == CFG80211_SIGNAL_TYPE_UNSPEC &&
2176 		    (drv_data->signal < 0 || drv_data->signal > 100)))
2177 		return NULL;
2178 
2179 	if (WARN_ON(data->bss_source != BSS_SOURCE_DIRECT && !data->source_bss))
2180 		return NULL;
2181 
2182 	channel = data->channel;
2183 	if (!channel)
2184 		channel = cfg80211_get_bss_channel(wiphy, data->ie, data->ielen,
2185 						   drv_data->chan);
2186 	if (!channel)
2187 		return NULL;
2188 
2189 	if (channel->band == NL80211_BAND_6GHZ &&
2190 	    !cfg80211_6ghz_power_type_valid(data->ie, data->ielen,
2191 					    channel->flags)) {
2192 		data->use_for = 0;
2193 		data->cannot_use_reasons =
2194 			NL80211_BSS_CANNOT_USE_6GHZ_PWR_MISMATCH;
2195 	}
2196 
2197 	memcpy(tmp.pub.bssid, data->bssid, ETH_ALEN);
2198 	tmp.pub.channel = channel;
2199 	if (data->bss_source != BSS_SOURCE_STA_PROFILE)
2200 		tmp.pub.signal = drv_data->signal;
2201 	else
2202 		tmp.pub.signal = 0;
2203 	tmp.pub.beacon_interval = data->beacon_interval;
2204 	tmp.pub.capability = data->capability;
2205 	tmp.ts_boottime = drv_data->boottime_ns;
2206 	tmp.parent_tsf = drv_data->parent_tsf;
2207 	ether_addr_copy(tmp.parent_bssid, drv_data->parent_bssid);
2208 	tmp.pub.chains = drv_data->chains;
2209 	memcpy(tmp.pub.chain_signal, drv_data->chain_signal,
2210 	       IEEE80211_MAX_CHAINS);
2211 	tmp.pub.use_for = data->use_for;
2212 	tmp.pub.cannot_use_reasons = data->cannot_use_reasons;
2213 
2214 	switch (data->bss_source) {
2215 	case BSS_SOURCE_MBSSID:
2216 		tmp.pub.transmitted_bss = data->source_bss;
2217 		fallthrough;
2218 	case BSS_SOURCE_STA_PROFILE:
2219 		ts = bss_from_pub(data->source_bss)->ts;
2220 		tmp.pub.bssid_index = data->bssid_index;
2221 		tmp.pub.max_bssid_indicator = data->max_bssid_indicator;
2222 		break;
2223 	case BSS_SOURCE_DIRECT:
2224 		ts = jiffies;
2225 
2226 		if (channel->band == NL80211_BAND_60GHZ) {
2227 			bss_type = data->capability &
2228 				   WLAN_CAPABILITY_DMG_TYPE_MASK;
2229 			if (bss_type == WLAN_CAPABILITY_DMG_TYPE_AP ||
2230 			    bss_type == WLAN_CAPABILITY_DMG_TYPE_PBSS)
2231 				regulatory_hint_found_beacon(wiphy, channel,
2232 							     gfp);
2233 		} else {
2234 			if (data->capability & WLAN_CAPABILITY_ESS)
2235 				regulatory_hint_found_beacon(wiphy, channel,
2236 							     gfp);
2237 		}
2238 		break;
2239 	}
2240 
2241 	/*
2242 	 * If we do not know here whether the IEs are from a Beacon or Probe
2243 	 * Response frame, we need to pick one of the options and only use it
2244 	 * with the driver that does not provide the full Beacon/Probe Response
2245 	 * frame. Use Beacon frame pointer to avoid indicating that this should
2246 	 * override the IEs pointer should we have received an earlier
2247 	 * indication of Probe Response data.
2248 	 */
2249 	ies = kzalloc(sizeof(*ies) + data->ielen, gfp);
2250 	if (!ies)
2251 		return NULL;
2252 	ies->len = data->ielen;
2253 	ies->tsf = data->tsf;
2254 	ies->from_beacon = false;
2255 	memcpy(ies->data, data->ie, data->ielen);
2256 
2257 	switch (data->ftype) {
2258 	case CFG80211_BSS_FTYPE_BEACON:
2259 	case CFG80211_BSS_FTYPE_S1G_BEACON:
2260 		ies->from_beacon = true;
2261 		fallthrough;
2262 	case CFG80211_BSS_FTYPE_UNKNOWN:
2263 		rcu_assign_pointer(tmp.pub.beacon_ies, ies);
2264 		break;
2265 	case CFG80211_BSS_FTYPE_PRESP:
2266 		rcu_assign_pointer(tmp.pub.proberesp_ies, ies);
2267 		break;
2268 	}
2269 	rcu_assign_pointer(tmp.pub.ies, ies);
2270 
2271 	signal_valid = drv_data->chan == channel;
2272 	spin_lock_bh(&rdev->bss_lock);
2273 	res = __cfg80211_bss_update(rdev, &tmp, signal_valid, ts);
2274 	if (!res)
2275 		goto drop;
2276 
2277 	rdev_inform_bss(rdev, &res->pub, ies, drv_data->drv_data);
2278 
2279 	if (data->bss_source == BSS_SOURCE_MBSSID) {
2280 		/* this is a nontransmitting bss, we need to add it to
2281 		 * transmitting bss' list if it is not there
2282 		 */
2283 		if (cfg80211_add_nontrans_list(data->source_bss, &res->pub)) {
2284 			if (__cfg80211_unlink_bss(rdev, res)) {
2285 				rdev->bss_generation++;
2286 				res = NULL;
2287 			}
2288 		}
2289 
2290 		if (!res)
2291 			goto drop;
2292 	}
2293 	spin_unlock_bh(&rdev->bss_lock);
2294 
2295 	trace_cfg80211_return_bss(&res->pub);
2296 	/* __cfg80211_bss_update gives us a referenced result */
2297 	return &res->pub;
2298 
2299 drop:
2300 	spin_unlock_bh(&rdev->bss_lock);
2301 	return NULL;
2302 }
2303 
2304 static const struct element
2305 *cfg80211_get_profile_continuation(const u8 *ie, size_t ielen,
2306 				   const struct element *mbssid_elem,
2307 				   const struct element *sub_elem)
2308 {
2309 	const u8 *mbssid_end = mbssid_elem->data + mbssid_elem->datalen;
2310 	const struct element *next_mbssid;
2311 	const struct element *next_sub;
2312 
2313 	next_mbssid = cfg80211_find_elem(WLAN_EID_MULTIPLE_BSSID,
2314 					 mbssid_end,
2315 					 ielen - (mbssid_end - ie));
2316 
2317 	/*
2318 	 * If it is not the last subelement in current MBSSID IE or there isn't
2319 	 * a next MBSSID IE - profile is complete.
2320 	*/
2321 	if ((sub_elem->data + sub_elem->datalen < mbssid_end - 1) ||
2322 	    !next_mbssid)
2323 		return NULL;
2324 
2325 	/* For any length error, just return NULL */
2326 
2327 	if (next_mbssid->datalen < 4)
2328 		return NULL;
2329 
2330 	next_sub = (void *)&next_mbssid->data[1];
2331 
2332 	if (next_mbssid->data + next_mbssid->datalen <
2333 	    next_sub->data + next_sub->datalen)
2334 		return NULL;
2335 
2336 	if (next_sub->id != 0 || next_sub->datalen < 2)
2337 		return NULL;
2338 
2339 	/*
2340 	 * Check if the first element in the next sub element is a start
2341 	 * of a new profile
2342 	 */
2343 	return next_sub->data[0] == WLAN_EID_NON_TX_BSSID_CAP ?
2344 	       NULL : next_mbssid;
2345 }
2346 
2347 size_t cfg80211_merge_profile(const u8 *ie, size_t ielen,
2348 			      const struct element *mbssid_elem,
2349 			      const struct element *sub_elem,
2350 			      u8 *merged_ie, size_t max_copy_len)
2351 {
2352 	size_t copied_len = sub_elem->datalen;
2353 	const struct element *next_mbssid;
2354 
2355 	if (sub_elem->datalen > max_copy_len)
2356 		return 0;
2357 
2358 	memcpy(merged_ie, sub_elem->data, sub_elem->datalen);
2359 
2360 	while ((next_mbssid = cfg80211_get_profile_continuation(ie, ielen,
2361 								mbssid_elem,
2362 								sub_elem))) {
2363 		const struct element *next_sub = (void *)&next_mbssid->data[1];
2364 
2365 		if (copied_len + next_sub->datalen > max_copy_len)
2366 			break;
2367 		memcpy(merged_ie + copied_len, next_sub->data,
2368 		       next_sub->datalen);
2369 		copied_len += next_sub->datalen;
2370 	}
2371 
2372 	return copied_len;
2373 }
2374 EXPORT_SYMBOL(cfg80211_merge_profile);
2375 
2376 static void
2377 cfg80211_parse_mbssid_data(struct wiphy *wiphy,
2378 			   struct cfg80211_inform_single_bss_data *tx_data,
2379 			   struct cfg80211_bss *source_bss,
2380 			   gfp_t gfp)
2381 {
2382 	struct cfg80211_inform_single_bss_data data = {
2383 		.drv_data = tx_data->drv_data,
2384 		.ftype = tx_data->ftype,
2385 		.tsf = tx_data->tsf,
2386 		.beacon_interval = tx_data->beacon_interval,
2387 		.source_bss = source_bss,
2388 		.bss_source = BSS_SOURCE_MBSSID,
2389 		.use_for = tx_data->use_for,
2390 		.cannot_use_reasons = tx_data->cannot_use_reasons,
2391 	};
2392 	const u8 *mbssid_index_ie;
2393 	const struct element *elem, *sub;
2394 	u8 *new_ie, *profile;
2395 	u64 seen_indices = 0;
2396 	struct cfg80211_bss *bss;
2397 
2398 	if (!source_bss)
2399 		return;
2400 	if (!cfg80211_find_elem(WLAN_EID_MULTIPLE_BSSID,
2401 				tx_data->ie, tx_data->ielen))
2402 		return;
2403 	if (!wiphy->support_mbssid)
2404 		return;
2405 	if (wiphy->support_only_he_mbssid &&
2406 	    !cfg80211_find_ext_elem(WLAN_EID_EXT_HE_CAPABILITY,
2407 				    tx_data->ie, tx_data->ielen))
2408 		return;
2409 
2410 	new_ie = kmalloc(IEEE80211_MAX_DATA_LEN, gfp);
2411 	if (!new_ie)
2412 		return;
2413 
2414 	profile = kmalloc(tx_data->ielen, gfp);
2415 	if (!profile)
2416 		goto out;
2417 
2418 	for_each_element_id(elem, WLAN_EID_MULTIPLE_BSSID,
2419 			    tx_data->ie, tx_data->ielen) {
2420 		if (elem->datalen < 4)
2421 			continue;
2422 		if (elem->data[0] < 1 || (int)elem->data[0] > 8)
2423 			continue;
2424 		for_each_element(sub, elem->data + 1, elem->datalen - 1) {
2425 			u8 profile_len;
2426 
2427 			if (sub->id != 0 || sub->datalen < 4) {
2428 				/* not a valid BSS profile */
2429 				continue;
2430 			}
2431 
2432 			if (sub->data[0] != WLAN_EID_NON_TX_BSSID_CAP ||
2433 			    sub->data[1] != 2) {
2434 				/* The first element within the Nontransmitted
2435 				 * BSSID Profile is not the Nontransmitted
2436 				 * BSSID Capability element.
2437 				 */
2438 				continue;
2439 			}
2440 
2441 			memset(profile, 0, tx_data->ielen);
2442 			profile_len = cfg80211_merge_profile(tx_data->ie,
2443 							     tx_data->ielen,
2444 							     elem,
2445 							     sub,
2446 							     profile,
2447 							     tx_data->ielen);
2448 
2449 			/* found a Nontransmitted BSSID Profile */
2450 			mbssid_index_ie = cfg80211_find_ie
2451 				(WLAN_EID_MULTI_BSSID_IDX,
2452 				 profile, profile_len);
2453 			if (!mbssid_index_ie || mbssid_index_ie[1] < 1 ||
2454 			    mbssid_index_ie[2] == 0 ||
2455 			    mbssid_index_ie[2] > 46 ||
2456 			    mbssid_index_ie[2] >= (1 << elem->data[0])) {
2457 				/* No valid Multiple BSSID-Index element */
2458 				continue;
2459 			}
2460 
2461 			if (seen_indices & BIT_ULL(mbssid_index_ie[2]))
2462 				/* We don't support legacy split of a profile */
2463 				net_dbg_ratelimited("Partial info for BSSID index %d\n",
2464 						    mbssid_index_ie[2]);
2465 
2466 			seen_indices |= BIT_ULL(mbssid_index_ie[2]);
2467 
2468 			data.bssid_index = mbssid_index_ie[2];
2469 			data.max_bssid_indicator = elem->data[0];
2470 
2471 			cfg80211_gen_new_bssid(tx_data->bssid,
2472 					       data.max_bssid_indicator,
2473 					       data.bssid_index,
2474 					       data.bssid);
2475 
2476 			memset(new_ie, 0, IEEE80211_MAX_DATA_LEN);
2477 			data.ie = new_ie;
2478 			data.ielen = cfg80211_gen_new_ie(tx_data->ie,
2479 							 tx_data->ielen,
2480 							 profile,
2481 							 profile_len,
2482 							 new_ie,
2483 							 IEEE80211_MAX_DATA_LEN);
2484 			if (!data.ielen)
2485 				continue;
2486 
2487 			data.capability = get_unaligned_le16(profile + 2);
2488 			bss = cfg80211_inform_single_bss_data(wiphy, &data, gfp);
2489 			if (!bss)
2490 				break;
2491 			cfg80211_put_bss(wiphy, bss);
2492 		}
2493 	}
2494 
2495 out:
2496 	kfree(new_ie);
2497 	kfree(profile);
2498 }
2499 
2500 ssize_t cfg80211_defragment_element(const struct element *elem, const u8 *ies,
2501 				    size_t ieslen, u8 *data, size_t data_len,
2502 				    u8 frag_id)
2503 {
2504 	const struct element *next;
2505 	ssize_t copied;
2506 	u8 elem_datalen;
2507 
2508 	if (!elem)
2509 		return -EINVAL;
2510 
2511 	/* elem might be invalid after the memmove */
2512 	next = (void *)(elem->data + elem->datalen);
2513 	elem_datalen = elem->datalen;
2514 
2515 	if (elem->id == WLAN_EID_EXTENSION) {
2516 		copied = elem->datalen - 1;
2517 
2518 		if (data) {
2519 			if (copied > data_len)
2520 				return -ENOSPC;
2521 
2522 			memmove(data, elem->data + 1, copied);
2523 		}
2524 	} else {
2525 		copied = elem->datalen;
2526 
2527 		if (data) {
2528 			if (copied > data_len)
2529 				return -ENOSPC;
2530 
2531 			memmove(data, elem->data, copied);
2532 		}
2533 	}
2534 
2535 	/* Fragmented elements must have 255 bytes */
2536 	if (elem_datalen < 255)
2537 		return copied;
2538 
2539 	for (elem = next;
2540 	     elem->data < ies + ieslen &&
2541 		elem->data + elem->datalen <= ies + ieslen;
2542 	     elem = next) {
2543 		/* elem might be invalid after the memmove */
2544 		next = (void *)(elem->data + elem->datalen);
2545 
2546 		if (elem->id != frag_id)
2547 			break;
2548 
2549 		elem_datalen = elem->datalen;
2550 
2551 		if (data) {
2552 			if (copied + elem_datalen > data_len)
2553 				return -ENOSPC;
2554 
2555 			memmove(data + copied, elem->data, elem_datalen);
2556 		}
2557 
2558 		copied += elem_datalen;
2559 
2560 		/* Only the last fragment may be short */
2561 		if (elem_datalen != 255)
2562 			break;
2563 	}
2564 
2565 	return copied;
2566 }
2567 EXPORT_SYMBOL(cfg80211_defragment_element);
2568 
2569 struct cfg80211_mle {
2570 	struct ieee80211_multi_link_elem *mle;
2571 	struct ieee80211_mle_per_sta_profile
2572 		*sta_prof[IEEE80211_MLD_MAX_NUM_LINKS];
2573 	ssize_t sta_prof_len[IEEE80211_MLD_MAX_NUM_LINKS];
2574 
2575 	u8 data[];
2576 };
2577 
2578 static struct cfg80211_mle *
2579 cfg80211_defrag_mle(const struct element *mle, const u8 *ie, size_t ielen,
2580 		    gfp_t gfp)
2581 {
2582 	const struct element *elem;
2583 	struct cfg80211_mle *res;
2584 	size_t buf_len;
2585 	ssize_t mle_len;
2586 	u8 common_size, idx;
2587 
2588 	if (!mle || !ieee80211_mle_size_ok(mle->data + 1, mle->datalen - 1))
2589 		return NULL;
2590 
2591 	/* Required length for first defragmentation */
2592 	buf_len = mle->datalen - 1;
2593 	for_each_element(elem, mle->data + mle->datalen,
2594 			 ielen - sizeof(*mle) + mle->datalen) {
2595 		if (elem->id != WLAN_EID_FRAGMENT)
2596 			break;
2597 
2598 		buf_len += elem->datalen;
2599 	}
2600 
2601 	res = kzalloc(struct_size(res, data, buf_len), gfp);
2602 	if (!res)
2603 		return NULL;
2604 
2605 	mle_len = cfg80211_defragment_element(mle, ie, ielen,
2606 					      res->data, buf_len,
2607 					      WLAN_EID_FRAGMENT);
2608 	if (mle_len < 0)
2609 		goto error;
2610 
2611 	res->mle = (void *)res->data;
2612 
2613 	/* Find the sub-element area in the buffer */
2614 	common_size = ieee80211_mle_common_size((u8 *)res->mle);
2615 	ie = res->data + common_size;
2616 	ielen = mle_len - common_size;
2617 
2618 	idx = 0;
2619 	for_each_element_id(elem, IEEE80211_MLE_SUBELEM_PER_STA_PROFILE,
2620 			    ie, ielen) {
2621 		res->sta_prof[idx] = (void *)elem->data;
2622 		res->sta_prof_len[idx] = elem->datalen;
2623 
2624 		idx++;
2625 		if (idx >= IEEE80211_MLD_MAX_NUM_LINKS)
2626 			break;
2627 	}
2628 	if (!for_each_element_completed(elem, ie, ielen))
2629 		goto error;
2630 
2631 	/* Defragment sta_info in-place */
2632 	for (idx = 0; idx < IEEE80211_MLD_MAX_NUM_LINKS && res->sta_prof[idx];
2633 	     idx++) {
2634 		if (res->sta_prof_len[idx] < 255)
2635 			continue;
2636 
2637 		elem = (void *)res->sta_prof[idx] - 2;
2638 
2639 		if (idx + 1 < ARRAY_SIZE(res->sta_prof) &&
2640 		    res->sta_prof[idx + 1])
2641 			buf_len = (u8 *)res->sta_prof[idx + 1] -
2642 				  (u8 *)res->sta_prof[idx];
2643 		else
2644 			buf_len = ielen + ie - (u8 *)elem;
2645 
2646 		res->sta_prof_len[idx] =
2647 			cfg80211_defragment_element(elem,
2648 						    (u8 *)elem, buf_len,
2649 						    (u8 *)res->sta_prof[idx],
2650 						    buf_len,
2651 						    IEEE80211_MLE_SUBELEM_FRAGMENT);
2652 		if (res->sta_prof_len[idx] < 0)
2653 			goto error;
2654 	}
2655 
2656 	return res;
2657 
2658 error:
2659 	kfree(res);
2660 	return NULL;
2661 }
2662 
2663 struct tbtt_info_iter_data {
2664 	const struct ieee80211_neighbor_ap_info *ap_info;
2665 	u8 param_ch_count;
2666 	u32 use_for;
2667 	u8 mld_id, link_id;
2668 	bool non_tx;
2669 };
2670 
2671 static enum cfg80211_rnr_iter_ret
2672 cfg802121_mld_ap_rnr_iter(void *_data, u8 type,
2673 			  const struct ieee80211_neighbor_ap_info *info,
2674 			  const u8 *tbtt_info, u8 tbtt_info_len)
2675 {
2676 	const struct ieee80211_rnr_mld_params *mld_params;
2677 	struct tbtt_info_iter_data *data = _data;
2678 	u8 link_id;
2679 	bool non_tx = false;
2680 
2681 	if (type == IEEE80211_TBTT_INFO_TYPE_TBTT &&
2682 	    tbtt_info_len >= offsetofend(struct ieee80211_tbtt_info_ge_11,
2683 					 mld_params)) {
2684 		const struct ieee80211_tbtt_info_ge_11 *tbtt_info_ge_11 =
2685 			(void *)tbtt_info;
2686 
2687 		non_tx = (tbtt_info_ge_11->bss_params &
2688 			  (IEEE80211_RNR_TBTT_PARAMS_MULTI_BSSID |
2689 			   IEEE80211_RNR_TBTT_PARAMS_TRANSMITTED_BSSID)) ==
2690 			 IEEE80211_RNR_TBTT_PARAMS_MULTI_BSSID;
2691 		mld_params = &tbtt_info_ge_11->mld_params;
2692 	} else if (type == IEEE80211_TBTT_INFO_TYPE_MLD &&
2693 		 tbtt_info_len >= sizeof(struct ieee80211_rnr_mld_params))
2694 		mld_params = (void *)tbtt_info;
2695 	else
2696 		return RNR_ITER_CONTINUE;
2697 
2698 	link_id = le16_get_bits(mld_params->params,
2699 				IEEE80211_RNR_MLD_PARAMS_LINK_ID);
2700 
2701 	if (data->mld_id != mld_params->mld_id)
2702 		return RNR_ITER_CONTINUE;
2703 
2704 	if (data->link_id != link_id)
2705 		return RNR_ITER_CONTINUE;
2706 
2707 	data->ap_info = info;
2708 	data->param_ch_count =
2709 		le16_get_bits(mld_params->params,
2710 			      IEEE80211_RNR_MLD_PARAMS_BSS_CHANGE_COUNT);
2711 	data->non_tx = non_tx;
2712 
2713 	if (type == IEEE80211_TBTT_INFO_TYPE_TBTT)
2714 		data->use_for = NL80211_BSS_USE_FOR_ALL;
2715 	else
2716 		data->use_for = NL80211_BSS_USE_FOR_MLD_LINK;
2717 	return RNR_ITER_BREAK;
2718 }
2719 
2720 static u8
2721 cfg80211_rnr_info_for_mld_ap(const u8 *ie, size_t ielen, u8 mld_id, u8 link_id,
2722 			     const struct ieee80211_neighbor_ap_info **ap_info,
2723 			     u8 *param_ch_count, bool *non_tx)
2724 {
2725 	struct tbtt_info_iter_data data = {
2726 		.mld_id = mld_id,
2727 		.link_id = link_id,
2728 	};
2729 
2730 	cfg80211_iter_rnr(ie, ielen, cfg802121_mld_ap_rnr_iter, &data);
2731 
2732 	*ap_info = data.ap_info;
2733 	*param_ch_count = data.param_ch_count;
2734 	*non_tx = data.non_tx;
2735 
2736 	return data.use_for;
2737 }
2738 
2739 static struct element *
2740 cfg80211_gen_reporter_rnr(struct cfg80211_bss *source_bss, bool is_mbssid,
2741 			  bool same_mld, u8 link_id, u8 bss_change_count,
2742 			  gfp_t gfp)
2743 {
2744 	const struct cfg80211_bss_ies *ies;
2745 	struct ieee80211_neighbor_ap_info ap_info;
2746 	struct ieee80211_tbtt_info_ge_11 tbtt_info;
2747 	u32 short_ssid;
2748 	const struct element *elem;
2749 	struct element *res;
2750 
2751 	/*
2752 	 * We only generate the RNR to permit ML lookups. For that we do not
2753 	 * need an entry for the corresponding transmitting BSS, lets just skip
2754 	 * it even though it would be easy to add.
2755 	 */
2756 	if (!same_mld)
2757 		return NULL;
2758 
2759 	/* We could use tx_data->ies if we change cfg80211_calc_short_ssid */
2760 	rcu_read_lock();
2761 	ies = rcu_dereference(source_bss->ies);
2762 
2763 	ap_info.tbtt_info_len = offsetofend(typeof(tbtt_info), mld_params);
2764 	ap_info.tbtt_info_hdr =
2765 			u8_encode_bits(IEEE80211_TBTT_INFO_TYPE_TBTT,
2766 				       IEEE80211_AP_INFO_TBTT_HDR_TYPE) |
2767 			u8_encode_bits(0, IEEE80211_AP_INFO_TBTT_HDR_COUNT);
2768 
2769 	ap_info.channel = ieee80211_frequency_to_channel(source_bss->channel->center_freq);
2770 
2771 	/* operating class */
2772 	elem = cfg80211_find_elem(WLAN_EID_SUPPORTED_REGULATORY_CLASSES,
2773 				  ies->data, ies->len);
2774 	if (elem && elem->datalen >= 1) {
2775 		ap_info.op_class = elem->data[0];
2776 	} else {
2777 		struct cfg80211_chan_def chandef;
2778 
2779 		/* The AP is not providing us with anything to work with. So
2780 		 * make up a somewhat reasonable operating class, but don't
2781 		 * bother with it too much as no one will ever use the
2782 		 * information.
2783 		 */
2784 		cfg80211_chandef_create(&chandef, source_bss->channel,
2785 					NL80211_CHAN_NO_HT);
2786 
2787 		if (!ieee80211_chandef_to_operating_class(&chandef,
2788 							  &ap_info.op_class))
2789 			goto out_unlock;
2790 	}
2791 
2792 	/* Just set TBTT offset and PSD 20 to invalid/unknown */
2793 	tbtt_info.tbtt_offset = 255;
2794 	tbtt_info.psd_20 = IEEE80211_RNR_TBTT_PARAMS_PSD_RESERVED;
2795 
2796 	memcpy(tbtt_info.bssid, source_bss->bssid, ETH_ALEN);
2797 	if (cfg80211_calc_short_ssid(ies, &elem, &short_ssid))
2798 		goto out_unlock;
2799 
2800 	rcu_read_unlock();
2801 
2802 	tbtt_info.short_ssid = cpu_to_le32(short_ssid);
2803 
2804 	tbtt_info.bss_params = IEEE80211_RNR_TBTT_PARAMS_SAME_SSID;
2805 
2806 	if (is_mbssid) {
2807 		tbtt_info.bss_params |= IEEE80211_RNR_TBTT_PARAMS_MULTI_BSSID;
2808 		tbtt_info.bss_params |= IEEE80211_RNR_TBTT_PARAMS_TRANSMITTED_BSSID;
2809 	}
2810 
2811 	tbtt_info.mld_params.mld_id = 0;
2812 	tbtt_info.mld_params.params =
2813 		le16_encode_bits(link_id, IEEE80211_RNR_MLD_PARAMS_LINK_ID) |
2814 		le16_encode_bits(bss_change_count,
2815 				 IEEE80211_RNR_MLD_PARAMS_BSS_CHANGE_COUNT);
2816 
2817 	res = kzalloc(struct_size(res, data,
2818 				  sizeof(ap_info) + ap_info.tbtt_info_len),
2819 		      gfp);
2820 	if (!res)
2821 		return NULL;
2822 
2823 	/* Copy the data */
2824 	res->id = WLAN_EID_REDUCED_NEIGHBOR_REPORT;
2825 	res->datalen = sizeof(ap_info) + ap_info.tbtt_info_len;
2826 	memcpy(res->data, &ap_info, sizeof(ap_info));
2827 	memcpy(res->data + sizeof(ap_info), &tbtt_info, ap_info.tbtt_info_len);
2828 
2829 	return res;
2830 
2831 out_unlock:
2832 	rcu_read_unlock();
2833 	return NULL;
2834 }
2835 
2836 static void
2837 cfg80211_parse_ml_elem_sta_data(struct wiphy *wiphy,
2838 				struct cfg80211_inform_single_bss_data *tx_data,
2839 				struct cfg80211_bss *source_bss,
2840 				const struct element *elem,
2841 				gfp_t gfp)
2842 {
2843 	struct cfg80211_inform_single_bss_data data = {
2844 		.drv_data = tx_data->drv_data,
2845 		.ftype = tx_data->ftype,
2846 		.source_bss = source_bss,
2847 		.bss_source = BSS_SOURCE_STA_PROFILE,
2848 	};
2849 	struct element *reporter_rnr = NULL;
2850 	struct ieee80211_multi_link_elem *ml_elem;
2851 	struct cfg80211_mle *mle;
2852 	u16 control;
2853 	u8 ml_common_len;
2854 	u8 *new_ie = NULL;
2855 	struct cfg80211_bss *bss;
2856 	u8 mld_id, reporter_link_id, bss_change_count;
2857 	u16 seen_links = 0;
2858 	u8 i;
2859 
2860 	if (!ieee80211_mle_type_ok(elem->data + 1,
2861 				   IEEE80211_ML_CONTROL_TYPE_BASIC,
2862 				   elem->datalen - 1))
2863 		return;
2864 
2865 	ml_elem = (void *)(elem->data + 1);
2866 	control = le16_to_cpu(ml_elem->control);
2867 	ml_common_len = ml_elem->variable[0];
2868 
2869 	/* Must be present when transmitted by an AP (in a probe response) */
2870 	if (!(control & IEEE80211_MLC_BASIC_PRES_BSS_PARAM_CH_CNT) ||
2871 	    !(control & IEEE80211_MLC_BASIC_PRES_LINK_ID) ||
2872 	    !(control & IEEE80211_MLC_BASIC_PRES_MLD_CAPA_OP))
2873 		return;
2874 
2875 	reporter_link_id = ieee80211_mle_get_link_id(elem->data + 1);
2876 	bss_change_count = ieee80211_mle_get_bss_param_ch_cnt(elem->data + 1);
2877 
2878 	/*
2879 	 * The MLD ID of the reporting AP is always zero. It is set if the AP
2880 	 * is part of an MBSSID set and will be non-zero for ML Elements
2881 	 * relating to a nontransmitted BSS (matching the Multi-BSSID Index,
2882 	 * Draft P802.11be_D3.2, 35.3.4.2)
2883 	 */
2884 	mld_id = ieee80211_mle_get_mld_id(elem->data + 1);
2885 
2886 	/* Fully defrag the ML element for sta information/profile iteration */
2887 	mle = cfg80211_defrag_mle(elem, tx_data->ie, tx_data->ielen, gfp);
2888 	if (!mle)
2889 		return;
2890 
2891 	/* No point in doing anything if there is no per-STA profile */
2892 	if (!mle->sta_prof[0])
2893 		goto out;
2894 
2895 	new_ie = kmalloc(IEEE80211_MAX_DATA_LEN, gfp);
2896 	if (!new_ie)
2897 		goto out;
2898 
2899 	reporter_rnr = cfg80211_gen_reporter_rnr(source_bss,
2900 						 u16_get_bits(control,
2901 							      IEEE80211_MLC_BASIC_PRES_MLD_ID),
2902 						 mld_id == 0, reporter_link_id,
2903 						 bss_change_count,
2904 						 gfp);
2905 
2906 	for (i = 0; i < ARRAY_SIZE(mle->sta_prof) && mle->sta_prof[i]; i++) {
2907 		const struct ieee80211_neighbor_ap_info *ap_info;
2908 		enum nl80211_band band;
2909 		u32 freq;
2910 		const u8 *profile;
2911 		ssize_t profile_len;
2912 		u8 param_ch_count;
2913 		u8 link_id, use_for;
2914 		bool non_tx;
2915 
2916 		if (!ieee80211_mle_basic_sta_prof_size_ok((u8 *)mle->sta_prof[i],
2917 							  mle->sta_prof_len[i]))
2918 			continue;
2919 
2920 		control = le16_to_cpu(mle->sta_prof[i]->control);
2921 
2922 		if (!(control & IEEE80211_MLE_STA_CONTROL_COMPLETE_PROFILE))
2923 			continue;
2924 
2925 		link_id = u16_get_bits(control,
2926 				       IEEE80211_MLE_STA_CONTROL_LINK_ID);
2927 		if (seen_links & BIT(link_id))
2928 			break;
2929 		seen_links |= BIT(link_id);
2930 
2931 		if (!(control & IEEE80211_MLE_STA_CONTROL_BEACON_INT_PRESENT) ||
2932 		    !(control & IEEE80211_MLE_STA_CONTROL_TSF_OFFS_PRESENT) ||
2933 		    !(control & IEEE80211_MLE_STA_CONTROL_STA_MAC_ADDR_PRESENT))
2934 			continue;
2935 
2936 		memcpy(data.bssid, mle->sta_prof[i]->variable, ETH_ALEN);
2937 		data.beacon_interval =
2938 			get_unaligned_le16(mle->sta_prof[i]->variable + 6);
2939 		data.tsf = tx_data->tsf +
2940 			   get_unaligned_le64(mle->sta_prof[i]->variable + 8);
2941 
2942 		/* sta_info_len counts itself */
2943 		profile = mle->sta_prof[i]->variable +
2944 			  mle->sta_prof[i]->sta_info_len - 1;
2945 		profile_len = (u8 *)mle->sta_prof[i] + mle->sta_prof_len[i] -
2946 			      profile;
2947 
2948 		if (profile_len < 2)
2949 			continue;
2950 
2951 		data.capability = get_unaligned_le16(profile);
2952 		profile += 2;
2953 		profile_len -= 2;
2954 
2955 		/* Find in RNR to look up channel information */
2956 		use_for = cfg80211_rnr_info_for_mld_ap(tx_data->ie,
2957 						       tx_data->ielen,
2958 						       mld_id, link_id,
2959 						       &ap_info,
2960 						       &param_ch_count,
2961 						       &non_tx);
2962 		if (!use_for)
2963 			continue;
2964 
2965 		/*
2966 		 * As of 802.11be_D5.0, the specification does not give us any
2967 		 * way of discovering both the MaxBSSID and the Multiple-BSSID
2968 		 * Index. It does seem like the Multiple-BSSID Index element
2969 		 * may be provided, but section 9.4.2.45 explicitly forbids
2970 		 * including a Multiple-BSSID Element (in this case without any
2971 		 * subelements).
2972 		 * Without both pieces of information we cannot calculate the
2973 		 * reference BSSID, so simply ignore the BSS.
2974 		 */
2975 		if (non_tx)
2976 			continue;
2977 
2978 		/* We could sanity check the BSSID is included */
2979 
2980 		if (!ieee80211_operating_class_to_band(ap_info->op_class,
2981 						       &band))
2982 			continue;
2983 
2984 		freq = ieee80211_channel_to_freq_khz(ap_info->channel, band);
2985 		data.channel = ieee80211_get_channel_khz(wiphy, freq);
2986 
2987 		if (use_for == NL80211_BSS_USE_FOR_MLD_LINK &&
2988 		    !(wiphy->flags & WIPHY_FLAG_SUPPORTS_NSTR_NONPRIMARY)) {
2989 			use_for = 0;
2990 			data.cannot_use_reasons =
2991 				NL80211_BSS_CANNOT_USE_NSTR_NONPRIMARY;
2992 		}
2993 		data.use_for = use_for;
2994 
2995 		/* Generate new elements */
2996 		memset(new_ie, 0, IEEE80211_MAX_DATA_LEN);
2997 		data.ie = new_ie;
2998 		data.ielen = cfg80211_gen_new_ie(tx_data->ie, tx_data->ielen,
2999 						 profile, profile_len,
3000 						 new_ie,
3001 						 IEEE80211_MAX_DATA_LEN);
3002 		if (!data.ielen)
3003 			continue;
3004 
3005 		/* The generated elements do not contain:
3006 		 *  - Basic ML element
3007 		 *  - A TBTT entry in the RNR for the transmitting AP
3008 		 *
3009 		 * This information is needed both internally and in userspace
3010 		 * as such, we should append it here.
3011 		 */
3012 		if (data.ielen + 3 + sizeof(*ml_elem) + ml_common_len >
3013 		    IEEE80211_MAX_DATA_LEN)
3014 			continue;
3015 
3016 		/* Copy the Basic Multi-Link element including the common
3017 		 * information, and then fix up the link ID and BSS param
3018 		 * change count.
3019 		 * Note that the ML element length has been verified and we
3020 		 * also checked that it contains the link ID.
3021 		 */
3022 		new_ie[data.ielen++] = WLAN_EID_EXTENSION;
3023 		new_ie[data.ielen++] = 1 + sizeof(*ml_elem) + ml_common_len;
3024 		new_ie[data.ielen++] = WLAN_EID_EXT_EHT_MULTI_LINK;
3025 		memcpy(new_ie + data.ielen, ml_elem,
3026 		       sizeof(*ml_elem) + ml_common_len);
3027 
3028 		new_ie[data.ielen + sizeof(*ml_elem) + 1 + ETH_ALEN] = link_id;
3029 		new_ie[data.ielen + sizeof(*ml_elem) + 1 + ETH_ALEN + 1] =
3030 			param_ch_count;
3031 
3032 		data.ielen += sizeof(*ml_elem) + ml_common_len;
3033 
3034 		if (reporter_rnr && (use_for & NL80211_BSS_USE_FOR_NORMAL)) {
3035 			if (data.ielen + sizeof(struct element) +
3036 			    reporter_rnr->datalen > IEEE80211_MAX_DATA_LEN)
3037 				continue;
3038 
3039 			memcpy(new_ie + data.ielen, reporter_rnr,
3040 			       sizeof(struct element) + reporter_rnr->datalen);
3041 			data.ielen += sizeof(struct element) +
3042 				      reporter_rnr->datalen;
3043 		}
3044 
3045 		bss = cfg80211_inform_single_bss_data(wiphy, &data, gfp);
3046 		if (!bss)
3047 			break;
3048 		cfg80211_put_bss(wiphy, bss);
3049 	}
3050 
3051 out:
3052 	kfree(reporter_rnr);
3053 	kfree(new_ie);
3054 	kfree(mle);
3055 }
3056 
3057 static void cfg80211_parse_ml_sta_data(struct wiphy *wiphy,
3058 				       struct cfg80211_inform_single_bss_data *tx_data,
3059 				       struct cfg80211_bss *source_bss,
3060 				       gfp_t gfp)
3061 {
3062 	const struct element *elem;
3063 
3064 	if (!source_bss)
3065 		return;
3066 
3067 	if (tx_data->ftype != CFG80211_BSS_FTYPE_PRESP)
3068 		return;
3069 
3070 	for_each_element_extid(elem, WLAN_EID_EXT_EHT_MULTI_LINK,
3071 			       tx_data->ie, tx_data->ielen)
3072 		cfg80211_parse_ml_elem_sta_data(wiphy, tx_data, source_bss,
3073 						elem, gfp);
3074 }
3075 
3076 struct cfg80211_bss *
3077 cfg80211_inform_bss_data(struct wiphy *wiphy,
3078 			 struct cfg80211_inform_bss *data,
3079 			 enum cfg80211_bss_frame_type ftype,
3080 			 const u8 *bssid, u64 tsf, u16 capability,
3081 			 u16 beacon_interval, const u8 *ie, size_t ielen,
3082 			 gfp_t gfp)
3083 {
3084 	struct cfg80211_inform_single_bss_data inform_data = {
3085 		.drv_data = data,
3086 		.ftype = ftype,
3087 		.tsf = tsf,
3088 		.capability = capability,
3089 		.beacon_interval = beacon_interval,
3090 		.ie = ie,
3091 		.ielen = ielen,
3092 		.use_for = data->restrict_use ?
3093 				data->use_for :
3094 				NL80211_BSS_USE_FOR_ALL,
3095 		.cannot_use_reasons = data->cannot_use_reasons,
3096 	};
3097 	struct cfg80211_bss *res;
3098 
3099 	memcpy(inform_data.bssid, bssid, ETH_ALEN);
3100 
3101 	res = cfg80211_inform_single_bss_data(wiphy, &inform_data, gfp);
3102 	if (!res)
3103 		return NULL;
3104 
3105 	/* don't do any further MBSSID/ML handling for S1G */
3106 	if (ftype == CFG80211_BSS_FTYPE_S1G_BEACON)
3107 		return res;
3108 
3109 	cfg80211_parse_mbssid_data(wiphy, &inform_data, res, gfp);
3110 
3111 	cfg80211_parse_ml_sta_data(wiphy, &inform_data, res, gfp);
3112 
3113 	return res;
3114 }
3115 EXPORT_SYMBOL(cfg80211_inform_bss_data);
3116 
3117 struct cfg80211_bss *
3118 cfg80211_inform_bss_frame_data(struct wiphy *wiphy,
3119 			       struct cfg80211_inform_bss *data,
3120 			       struct ieee80211_mgmt *mgmt, size_t len,
3121 			       gfp_t gfp)
3122 {
3123 	size_t min_hdr_len = offsetof(struct ieee80211_mgmt,
3124 				      u.probe_resp.variable);
3125 	struct ieee80211_ext *ext = NULL;
3126 	enum cfg80211_bss_frame_type ftype;
3127 	u16 beacon_interval;
3128 	const u8 *bssid;
3129 	u16 capability;
3130 	const u8 *ie;
3131 	size_t ielen;
3132 	u64 tsf;
3133 
3134 	if (WARN_ON(!mgmt))
3135 		return NULL;
3136 
3137 	if (WARN_ON(!wiphy))
3138 		return NULL;
3139 
3140 	BUILD_BUG_ON(offsetof(struct ieee80211_mgmt, u.probe_resp.variable) !=
3141 		     offsetof(struct ieee80211_mgmt, u.beacon.variable));
3142 
3143 	trace_cfg80211_inform_bss_frame(wiphy, data, mgmt, len);
3144 
3145 	if (ieee80211_is_s1g_beacon(mgmt->frame_control)) {
3146 		ext = (void *) mgmt;
3147 		min_hdr_len = offsetof(struct ieee80211_ext, u.s1g_beacon);
3148 		if (ieee80211_is_s1g_short_beacon(mgmt->frame_control))
3149 			min_hdr_len = offsetof(struct ieee80211_ext,
3150 					       u.s1g_short_beacon.variable);
3151 	}
3152 
3153 	if (WARN_ON(len < min_hdr_len))
3154 		return NULL;
3155 
3156 	ielen = len - min_hdr_len;
3157 	ie = mgmt->u.probe_resp.variable;
3158 	if (ext) {
3159 		const struct ieee80211_s1g_bcn_compat_ie *compat;
3160 		const struct element *elem;
3161 
3162 		if (ieee80211_is_s1g_short_beacon(mgmt->frame_control))
3163 			ie = ext->u.s1g_short_beacon.variable;
3164 		else
3165 			ie = ext->u.s1g_beacon.variable;
3166 
3167 		elem = cfg80211_find_elem(WLAN_EID_S1G_BCN_COMPAT, ie, ielen);
3168 		if (!elem)
3169 			return NULL;
3170 		if (elem->datalen < sizeof(*compat))
3171 			return NULL;
3172 		compat = (void *)elem->data;
3173 		bssid = ext->u.s1g_beacon.sa;
3174 		capability = le16_to_cpu(compat->compat_info);
3175 		beacon_interval = le16_to_cpu(compat->beacon_int);
3176 	} else {
3177 		bssid = mgmt->bssid;
3178 		beacon_interval = le16_to_cpu(mgmt->u.probe_resp.beacon_int);
3179 		capability = le16_to_cpu(mgmt->u.probe_resp.capab_info);
3180 	}
3181 
3182 	tsf = le64_to_cpu(mgmt->u.probe_resp.timestamp);
3183 
3184 	if (ieee80211_is_probe_resp(mgmt->frame_control))
3185 		ftype = CFG80211_BSS_FTYPE_PRESP;
3186 	else if (ext)
3187 		ftype = CFG80211_BSS_FTYPE_S1G_BEACON;
3188 	else
3189 		ftype = CFG80211_BSS_FTYPE_BEACON;
3190 
3191 	return cfg80211_inform_bss_data(wiphy, data, ftype,
3192 					bssid, tsf, capability,
3193 					beacon_interval, ie, ielen,
3194 					gfp);
3195 }
3196 EXPORT_SYMBOL(cfg80211_inform_bss_frame_data);
3197 
3198 void cfg80211_ref_bss(struct wiphy *wiphy, struct cfg80211_bss *pub)
3199 {
3200 	struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
3201 
3202 	if (!pub)
3203 		return;
3204 
3205 	spin_lock_bh(&rdev->bss_lock);
3206 	bss_ref_get(rdev, bss_from_pub(pub));
3207 	spin_unlock_bh(&rdev->bss_lock);
3208 }
3209 EXPORT_SYMBOL(cfg80211_ref_bss);
3210 
3211 void cfg80211_put_bss(struct wiphy *wiphy, struct cfg80211_bss *pub)
3212 {
3213 	struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
3214 
3215 	if (!pub)
3216 		return;
3217 
3218 	spin_lock_bh(&rdev->bss_lock);
3219 	bss_ref_put(rdev, bss_from_pub(pub));
3220 	spin_unlock_bh(&rdev->bss_lock);
3221 }
3222 EXPORT_SYMBOL(cfg80211_put_bss);
3223 
3224 void cfg80211_unlink_bss(struct wiphy *wiphy, struct cfg80211_bss *pub)
3225 {
3226 	struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
3227 	struct cfg80211_internal_bss *bss, *tmp1;
3228 	struct cfg80211_bss *nontrans_bss, *tmp;
3229 
3230 	if (WARN_ON(!pub))
3231 		return;
3232 
3233 	bss = bss_from_pub(pub);
3234 
3235 	spin_lock_bh(&rdev->bss_lock);
3236 	if (list_empty(&bss->list))
3237 		goto out;
3238 
3239 	list_for_each_entry_safe(nontrans_bss, tmp,
3240 				 &pub->nontrans_list,
3241 				 nontrans_list) {
3242 		tmp1 = bss_from_pub(nontrans_bss);
3243 		if (__cfg80211_unlink_bss(rdev, tmp1))
3244 			rdev->bss_generation++;
3245 	}
3246 
3247 	if (__cfg80211_unlink_bss(rdev, bss))
3248 		rdev->bss_generation++;
3249 out:
3250 	spin_unlock_bh(&rdev->bss_lock);
3251 }
3252 EXPORT_SYMBOL(cfg80211_unlink_bss);
3253 
3254 void cfg80211_bss_iter(struct wiphy *wiphy,
3255 		       struct cfg80211_chan_def *chandef,
3256 		       void (*iter)(struct wiphy *wiphy,
3257 				    struct cfg80211_bss *bss,
3258 				    void *data),
3259 		       void *iter_data)
3260 {
3261 	struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
3262 	struct cfg80211_internal_bss *bss;
3263 
3264 	spin_lock_bh(&rdev->bss_lock);
3265 
3266 	list_for_each_entry(bss, &rdev->bss_list, list) {
3267 		if (!chandef || cfg80211_is_sub_chan(chandef, bss->pub.channel,
3268 						     false))
3269 			iter(wiphy, &bss->pub, iter_data);
3270 	}
3271 
3272 	spin_unlock_bh(&rdev->bss_lock);
3273 }
3274 EXPORT_SYMBOL(cfg80211_bss_iter);
3275 
3276 void cfg80211_update_assoc_bss_entry(struct wireless_dev *wdev,
3277 				     unsigned int link_id,
3278 				     struct ieee80211_channel *chan)
3279 {
3280 	struct wiphy *wiphy = wdev->wiphy;
3281 	struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
3282 	struct cfg80211_internal_bss *cbss = wdev->links[link_id].client.current_bss;
3283 	struct cfg80211_internal_bss *new = NULL;
3284 	struct cfg80211_internal_bss *bss;
3285 	struct cfg80211_bss *nontrans_bss;
3286 	struct cfg80211_bss *tmp;
3287 
3288 	spin_lock_bh(&rdev->bss_lock);
3289 
3290 	/*
3291 	 * Some APs use CSA also for bandwidth changes, i.e., without actually
3292 	 * changing the control channel, so no need to update in such a case.
3293 	 */
3294 	if (cbss->pub.channel == chan)
3295 		goto done;
3296 
3297 	/* use transmitting bss */
3298 	if (cbss->pub.transmitted_bss)
3299 		cbss = bss_from_pub(cbss->pub.transmitted_bss);
3300 
3301 	cbss->pub.channel = chan;
3302 
3303 	list_for_each_entry(bss, &rdev->bss_list, list) {
3304 		if (!cfg80211_bss_type_match(bss->pub.capability,
3305 					     bss->pub.channel->band,
3306 					     wdev->conn_bss_type))
3307 			continue;
3308 
3309 		if (bss == cbss)
3310 			continue;
3311 
3312 		if (!cmp_bss(&bss->pub, &cbss->pub, BSS_CMP_REGULAR)) {
3313 			new = bss;
3314 			break;
3315 		}
3316 	}
3317 
3318 	if (new) {
3319 		/* to save time, update IEs for transmitting bss only */
3320 		cfg80211_update_known_bss(rdev, cbss, new, false);
3321 		new->pub.proberesp_ies = NULL;
3322 		new->pub.beacon_ies = NULL;
3323 
3324 		list_for_each_entry_safe(nontrans_bss, tmp,
3325 					 &new->pub.nontrans_list,
3326 					 nontrans_list) {
3327 			bss = bss_from_pub(nontrans_bss);
3328 			if (__cfg80211_unlink_bss(rdev, bss))
3329 				rdev->bss_generation++;
3330 		}
3331 
3332 		WARN_ON(atomic_read(&new->hold));
3333 		if (!WARN_ON(!__cfg80211_unlink_bss(rdev, new)))
3334 			rdev->bss_generation++;
3335 	}
3336 
3337 	rb_erase(&cbss->rbn, &rdev->bss_tree);
3338 	rb_insert_bss(rdev, cbss);
3339 	rdev->bss_generation++;
3340 
3341 	list_for_each_entry_safe(nontrans_bss, tmp,
3342 				 &cbss->pub.nontrans_list,
3343 				 nontrans_list) {
3344 		bss = bss_from_pub(nontrans_bss);
3345 		bss->pub.channel = chan;
3346 		rb_erase(&bss->rbn, &rdev->bss_tree);
3347 		rb_insert_bss(rdev, bss);
3348 		rdev->bss_generation++;
3349 	}
3350 
3351 done:
3352 	spin_unlock_bh(&rdev->bss_lock);
3353 }
3354 
3355 #ifdef CONFIG_CFG80211_WEXT
3356 static struct cfg80211_registered_device *
3357 cfg80211_get_dev_from_ifindex(struct net *net, int ifindex)
3358 {
3359 	struct cfg80211_registered_device *rdev;
3360 	struct net_device *dev;
3361 
3362 	ASSERT_RTNL();
3363 
3364 	dev = dev_get_by_index(net, ifindex);
3365 	if (!dev)
3366 		return ERR_PTR(-ENODEV);
3367 	if (dev->ieee80211_ptr)
3368 		rdev = wiphy_to_rdev(dev->ieee80211_ptr->wiphy);
3369 	else
3370 		rdev = ERR_PTR(-ENODEV);
3371 	dev_put(dev);
3372 	return rdev;
3373 }
3374 
3375 int cfg80211_wext_siwscan(struct net_device *dev,
3376 			  struct iw_request_info *info,
3377 			  union iwreq_data *wrqu, char *extra)
3378 {
3379 	struct cfg80211_registered_device *rdev;
3380 	struct wiphy *wiphy;
3381 	struct iw_scan_req *wreq = NULL;
3382 	struct cfg80211_scan_request *creq;
3383 	int i, err, n_channels = 0;
3384 	enum nl80211_band band;
3385 
3386 	if (!netif_running(dev))
3387 		return -ENETDOWN;
3388 
3389 	if (wrqu->data.length == sizeof(struct iw_scan_req))
3390 		wreq = (struct iw_scan_req *)extra;
3391 
3392 	rdev = cfg80211_get_dev_from_ifindex(dev_net(dev), dev->ifindex);
3393 
3394 	if (IS_ERR(rdev))
3395 		return PTR_ERR(rdev);
3396 
3397 	if (rdev->scan_req || rdev->scan_msg)
3398 		return -EBUSY;
3399 
3400 	wiphy = &rdev->wiphy;
3401 
3402 	/* Determine number of channels, needed to allocate creq */
3403 	if (wreq && wreq->num_channels)
3404 		n_channels = wreq->num_channels;
3405 	else
3406 		n_channels = ieee80211_get_num_supported_channels(wiphy);
3407 
3408 	creq = kzalloc(sizeof(*creq) + sizeof(struct cfg80211_ssid) +
3409 		       n_channels * sizeof(void *),
3410 		       GFP_ATOMIC);
3411 	if (!creq)
3412 		return -ENOMEM;
3413 
3414 	creq->wiphy = wiphy;
3415 	creq->wdev = dev->ieee80211_ptr;
3416 	/* SSIDs come after channels */
3417 	creq->ssids = (void *)&creq->channels[n_channels];
3418 	creq->n_channels = n_channels;
3419 	creq->n_ssids = 1;
3420 	creq->scan_start = jiffies;
3421 
3422 	/* translate "Scan on frequencies" request */
3423 	i = 0;
3424 	for (band = 0; band < NUM_NL80211_BANDS; band++) {
3425 		int j;
3426 
3427 		if (!wiphy->bands[band])
3428 			continue;
3429 
3430 		for (j = 0; j < wiphy->bands[band]->n_channels; j++) {
3431 			/* ignore disabled channels */
3432 			if (wiphy->bands[band]->channels[j].flags &
3433 						IEEE80211_CHAN_DISABLED)
3434 				continue;
3435 
3436 			/* If we have a wireless request structure and the
3437 			 * wireless request specifies frequencies, then search
3438 			 * for the matching hardware channel.
3439 			 */
3440 			if (wreq && wreq->num_channels) {
3441 				int k;
3442 				int wiphy_freq = wiphy->bands[band]->channels[j].center_freq;
3443 				for (k = 0; k < wreq->num_channels; k++) {
3444 					struct iw_freq *freq =
3445 						&wreq->channel_list[k];
3446 					int wext_freq =
3447 						cfg80211_wext_freq(freq);
3448 
3449 					if (wext_freq == wiphy_freq)
3450 						goto wext_freq_found;
3451 				}
3452 				goto wext_freq_not_found;
3453 			}
3454 
3455 		wext_freq_found:
3456 			creq->channels[i] = &wiphy->bands[band]->channels[j];
3457 			i++;
3458 		wext_freq_not_found: ;
3459 		}
3460 	}
3461 	/* No channels found? */
3462 	if (!i) {
3463 		err = -EINVAL;
3464 		goto out;
3465 	}
3466 
3467 	/* Set real number of channels specified in creq->channels[] */
3468 	creq->n_channels = i;
3469 
3470 	/* translate "Scan for SSID" request */
3471 	if (wreq) {
3472 		if (wrqu->data.flags & IW_SCAN_THIS_ESSID) {
3473 			if (wreq->essid_len > IEEE80211_MAX_SSID_LEN) {
3474 				err = -EINVAL;
3475 				goto out;
3476 			}
3477 			memcpy(creq->ssids[0].ssid, wreq->essid, wreq->essid_len);
3478 			creq->ssids[0].ssid_len = wreq->essid_len;
3479 		}
3480 		if (wreq->scan_type == IW_SCAN_TYPE_PASSIVE)
3481 			creq->n_ssids = 0;
3482 	}
3483 
3484 	for (i = 0; i < NUM_NL80211_BANDS; i++)
3485 		if (wiphy->bands[i])
3486 			creq->rates[i] = (1 << wiphy->bands[i]->n_bitrates) - 1;
3487 
3488 	eth_broadcast_addr(creq->bssid);
3489 
3490 	wiphy_lock(&rdev->wiphy);
3491 
3492 	rdev->scan_req = creq;
3493 	err = rdev_scan(rdev, creq);
3494 	if (err) {
3495 		rdev->scan_req = NULL;
3496 		/* creq will be freed below */
3497 	} else {
3498 		nl80211_send_scan_start(rdev, dev->ieee80211_ptr);
3499 		/* creq now owned by driver */
3500 		creq = NULL;
3501 		dev_hold(dev);
3502 	}
3503 	wiphy_unlock(&rdev->wiphy);
3504  out:
3505 	kfree(creq);
3506 	return err;
3507 }
3508 EXPORT_WEXT_HANDLER(cfg80211_wext_siwscan);
3509 
3510 static char *ieee80211_scan_add_ies(struct iw_request_info *info,
3511 				    const struct cfg80211_bss_ies *ies,
3512 				    char *current_ev, char *end_buf)
3513 {
3514 	const u8 *pos, *end, *next;
3515 	struct iw_event iwe;
3516 
3517 	if (!ies)
3518 		return current_ev;
3519 
3520 	/*
3521 	 * If needed, fragment the IEs buffer (at IE boundaries) into short
3522 	 * enough fragments to fit into IW_GENERIC_IE_MAX octet messages.
3523 	 */
3524 	pos = ies->data;
3525 	end = pos + ies->len;
3526 
3527 	while (end - pos > IW_GENERIC_IE_MAX) {
3528 		next = pos + 2 + pos[1];
3529 		while (next + 2 + next[1] - pos < IW_GENERIC_IE_MAX)
3530 			next = next + 2 + next[1];
3531 
3532 		memset(&iwe, 0, sizeof(iwe));
3533 		iwe.cmd = IWEVGENIE;
3534 		iwe.u.data.length = next - pos;
3535 		current_ev = iwe_stream_add_point_check(info, current_ev,
3536 							end_buf, &iwe,
3537 							(void *)pos);
3538 		if (IS_ERR(current_ev))
3539 			return current_ev;
3540 		pos = next;
3541 	}
3542 
3543 	if (end > pos) {
3544 		memset(&iwe, 0, sizeof(iwe));
3545 		iwe.cmd = IWEVGENIE;
3546 		iwe.u.data.length = end - pos;
3547 		current_ev = iwe_stream_add_point_check(info, current_ev,
3548 							end_buf, &iwe,
3549 							(void *)pos);
3550 		if (IS_ERR(current_ev))
3551 			return current_ev;
3552 	}
3553 
3554 	return current_ev;
3555 }
3556 
3557 static char *
3558 ieee80211_bss(struct wiphy *wiphy, struct iw_request_info *info,
3559 	      struct cfg80211_internal_bss *bss, char *current_ev,
3560 	      char *end_buf)
3561 {
3562 	const struct cfg80211_bss_ies *ies;
3563 	struct iw_event iwe;
3564 	const u8 *ie;
3565 	u8 buf[50];
3566 	u8 *cfg, *p, *tmp;
3567 	int rem, i, sig;
3568 	bool ismesh = false;
3569 
3570 	memset(&iwe, 0, sizeof(iwe));
3571 	iwe.cmd = SIOCGIWAP;
3572 	iwe.u.ap_addr.sa_family = ARPHRD_ETHER;
3573 	memcpy(iwe.u.ap_addr.sa_data, bss->pub.bssid, ETH_ALEN);
3574 	current_ev = iwe_stream_add_event_check(info, current_ev, end_buf, &iwe,
3575 						IW_EV_ADDR_LEN);
3576 	if (IS_ERR(current_ev))
3577 		return current_ev;
3578 
3579 	memset(&iwe, 0, sizeof(iwe));
3580 	iwe.cmd = SIOCGIWFREQ;
3581 	iwe.u.freq.m = ieee80211_frequency_to_channel(bss->pub.channel->center_freq);
3582 	iwe.u.freq.e = 0;
3583 	current_ev = iwe_stream_add_event_check(info, current_ev, end_buf, &iwe,
3584 						IW_EV_FREQ_LEN);
3585 	if (IS_ERR(current_ev))
3586 		return current_ev;
3587 
3588 	memset(&iwe, 0, sizeof(iwe));
3589 	iwe.cmd = SIOCGIWFREQ;
3590 	iwe.u.freq.m = bss->pub.channel->center_freq;
3591 	iwe.u.freq.e = 6;
3592 	current_ev = iwe_stream_add_event_check(info, current_ev, end_buf, &iwe,
3593 						IW_EV_FREQ_LEN);
3594 	if (IS_ERR(current_ev))
3595 		return current_ev;
3596 
3597 	if (wiphy->signal_type != CFG80211_SIGNAL_TYPE_NONE) {
3598 		memset(&iwe, 0, sizeof(iwe));
3599 		iwe.cmd = IWEVQUAL;
3600 		iwe.u.qual.updated = IW_QUAL_LEVEL_UPDATED |
3601 				     IW_QUAL_NOISE_INVALID |
3602 				     IW_QUAL_QUAL_UPDATED;
3603 		switch (wiphy->signal_type) {
3604 		case CFG80211_SIGNAL_TYPE_MBM:
3605 			sig = bss->pub.signal / 100;
3606 			iwe.u.qual.level = sig;
3607 			iwe.u.qual.updated |= IW_QUAL_DBM;
3608 			if (sig < -110)		/* rather bad */
3609 				sig = -110;
3610 			else if (sig > -40)	/* perfect */
3611 				sig = -40;
3612 			/* will give a range of 0 .. 70 */
3613 			iwe.u.qual.qual = sig + 110;
3614 			break;
3615 		case CFG80211_SIGNAL_TYPE_UNSPEC:
3616 			iwe.u.qual.level = bss->pub.signal;
3617 			/* will give range 0 .. 100 */
3618 			iwe.u.qual.qual = bss->pub.signal;
3619 			break;
3620 		default:
3621 			/* not reached */
3622 			break;
3623 		}
3624 		current_ev = iwe_stream_add_event_check(info, current_ev,
3625 							end_buf, &iwe,
3626 							IW_EV_QUAL_LEN);
3627 		if (IS_ERR(current_ev))
3628 			return current_ev;
3629 	}
3630 
3631 	memset(&iwe, 0, sizeof(iwe));
3632 	iwe.cmd = SIOCGIWENCODE;
3633 	if (bss->pub.capability & WLAN_CAPABILITY_PRIVACY)
3634 		iwe.u.data.flags = IW_ENCODE_ENABLED | IW_ENCODE_NOKEY;
3635 	else
3636 		iwe.u.data.flags = IW_ENCODE_DISABLED;
3637 	iwe.u.data.length = 0;
3638 	current_ev = iwe_stream_add_point_check(info, current_ev, end_buf,
3639 						&iwe, "");
3640 	if (IS_ERR(current_ev))
3641 		return current_ev;
3642 
3643 	rcu_read_lock();
3644 	ies = rcu_dereference(bss->pub.ies);
3645 	rem = ies->len;
3646 	ie = ies->data;
3647 
3648 	while (rem >= 2) {
3649 		/* invalid data */
3650 		if (ie[1] > rem - 2)
3651 			break;
3652 
3653 		switch (ie[0]) {
3654 		case WLAN_EID_SSID:
3655 			memset(&iwe, 0, sizeof(iwe));
3656 			iwe.cmd = SIOCGIWESSID;
3657 			iwe.u.data.length = ie[1];
3658 			iwe.u.data.flags = 1;
3659 			current_ev = iwe_stream_add_point_check(info,
3660 								current_ev,
3661 								end_buf, &iwe,
3662 								(u8 *)ie + 2);
3663 			if (IS_ERR(current_ev))
3664 				goto unlock;
3665 			break;
3666 		case WLAN_EID_MESH_ID:
3667 			memset(&iwe, 0, sizeof(iwe));
3668 			iwe.cmd = SIOCGIWESSID;
3669 			iwe.u.data.length = ie[1];
3670 			iwe.u.data.flags = 1;
3671 			current_ev = iwe_stream_add_point_check(info,
3672 								current_ev,
3673 								end_buf, &iwe,
3674 								(u8 *)ie + 2);
3675 			if (IS_ERR(current_ev))
3676 				goto unlock;
3677 			break;
3678 		case WLAN_EID_MESH_CONFIG:
3679 			ismesh = true;
3680 			if (ie[1] != sizeof(struct ieee80211_meshconf_ie))
3681 				break;
3682 			cfg = (u8 *)ie + 2;
3683 			memset(&iwe, 0, sizeof(iwe));
3684 			iwe.cmd = IWEVCUSTOM;
3685 			iwe.u.data.length = sprintf(buf,
3686 						    "Mesh Network Path Selection Protocol ID: 0x%02X",
3687 						    cfg[0]);
3688 			current_ev = iwe_stream_add_point_check(info,
3689 								current_ev,
3690 								end_buf,
3691 								&iwe, buf);
3692 			if (IS_ERR(current_ev))
3693 				goto unlock;
3694 			iwe.u.data.length = sprintf(buf,
3695 						    "Path Selection Metric ID: 0x%02X",
3696 						    cfg[1]);
3697 			current_ev = iwe_stream_add_point_check(info,
3698 								current_ev,
3699 								end_buf,
3700 								&iwe, buf);
3701 			if (IS_ERR(current_ev))
3702 				goto unlock;
3703 			iwe.u.data.length = sprintf(buf,
3704 						    "Congestion Control Mode ID: 0x%02X",
3705 						    cfg[2]);
3706 			current_ev = iwe_stream_add_point_check(info,
3707 								current_ev,
3708 								end_buf,
3709 								&iwe, buf);
3710 			if (IS_ERR(current_ev))
3711 				goto unlock;
3712 			iwe.u.data.length = sprintf(buf,
3713 						    "Synchronization ID: 0x%02X",
3714 						    cfg[3]);
3715 			current_ev = iwe_stream_add_point_check(info,
3716 								current_ev,
3717 								end_buf,
3718 								&iwe, buf);
3719 			if (IS_ERR(current_ev))
3720 				goto unlock;
3721 			iwe.u.data.length = sprintf(buf,
3722 						    "Authentication ID: 0x%02X",
3723 						    cfg[4]);
3724 			current_ev = iwe_stream_add_point_check(info,
3725 								current_ev,
3726 								end_buf,
3727 								&iwe, buf);
3728 			if (IS_ERR(current_ev))
3729 				goto unlock;
3730 			iwe.u.data.length = sprintf(buf,
3731 						    "Formation Info: 0x%02X",
3732 						    cfg[5]);
3733 			current_ev = iwe_stream_add_point_check(info,
3734 								current_ev,
3735 								end_buf,
3736 								&iwe, buf);
3737 			if (IS_ERR(current_ev))
3738 				goto unlock;
3739 			iwe.u.data.length = sprintf(buf,
3740 						    "Capabilities: 0x%02X",
3741 						    cfg[6]);
3742 			current_ev = iwe_stream_add_point_check(info,
3743 								current_ev,
3744 								end_buf,
3745 								&iwe, buf);
3746 			if (IS_ERR(current_ev))
3747 				goto unlock;
3748 			break;
3749 		case WLAN_EID_SUPP_RATES:
3750 		case WLAN_EID_EXT_SUPP_RATES:
3751 			/* display all supported rates in readable format */
3752 			p = current_ev + iwe_stream_lcp_len(info);
3753 
3754 			memset(&iwe, 0, sizeof(iwe));
3755 			iwe.cmd = SIOCGIWRATE;
3756 			/* Those two flags are ignored... */
3757 			iwe.u.bitrate.fixed = iwe.u.bitrate.disabled = 0;
3758 
3759 			for (i = 0; i < ie[1]; i++) {
3760 				iwe.u.bitrate.value =
3761 					((ie[i + 2] & 0x7f) * 500000);
3762 				tmp = p;
3763 				p = iwe_stream_add_value(info, current_ev, p,
3764 							 end_buf, &iwe,
3765 							 IW_EV_PARAM_LEN);
3766 				if (p == tmp) {
3767 					current_ev = ERR_PTR(-E2BIG);
3768 					goto unlock;
3769 				}
3770 			}
3771 			current_ev = p;
3772 			break;
3773 		}
3774 		rem -= ie[1] + 2;
3775 		ie += ie[1] + 2;
3776 	}
3777 
3778 	if (bss->pub.capability & (WLAN_CAPABILITY_ESS | WLAN_CAPABILITY_IBSS) ||
3779 	    ismesh) {
3780 		memset(&iwe, 0, sizeof(iwe));
3781 		iwe.cmd = SIOCGIWMODE;
3782 		if (ismesh)
3783 			iwe.u.mode = IW_MODE_MESH;
3784 		else if (bss->pub.capability & WLAN_CAPABILITY_ESS)
3785 			iwe.u.mode = IW_MODE_MASTER;
3786 		else
3787 			iwe.u.mode = IW_MODE_ADHOC;
3788 		current_ev = iwe_stream_add_event_check(info, current_ev,
3789 							end_buf, &iwe,
3790 							IW_EV_UINT_LEN);
3791 		if (IS_ERR(current_ev))
3792 			goto unlock;
3793 	}
3794 
3795 	memset(&iwe, 0, sizeof(iwe));
3796 	iwe.cmd = IWEVCUSTOM;
3797 	iwe.u.data.length = sprintf(buf, "tsf=%016llx",
3798 				    (unsigned long long)(ies->tsf));
3799 	current_ev = iwe_stream_add_point_check(info, current_ev, end_buf,
3800 						&iwe, buf);
3801 	if (IS_ERR(current_ev))
3802 		goto unlock;
3803 	memset(&iwe, 0, sizeof(iwe));
3804 	iwe.cmd = IWEVCUSTOM;
3805 	iwe.u.data.length = sprintf(buf, " Last beacon: %ums ago",
3806 				    elapsed_jiffies_msecs(bss->ts));
3807 	current_ev = iwe_stream_add_point_check(info, current_ev,
3808 						end_buf, &iwe, buf);
3809 	if (IS_ERR(current_ev))
3810 		goto unlock;
3811 
3812 	current_ev = ieee80211_scan_add_ies(info, ies, current_ev, end_buf);
3813 
3814  unlock:
3815 	rcu_read_unlock();
3816 	return current_ev;
3817 }
3818 
3819 
3820 static int ieee80211_scan_results(struct cfg80211_registered_device *rdev,
3821 				  struct iw_request_info *info,
3822 				  char *buf, size_t len)
3823 {
3824 	char *current_ev = buf;
3825 	char *end_buf = buf + len;
3826 	struct cfg80211_internal_bss *bss;
3827 	int err = 0;
3828 
3829 	spin_lock_bh(&rdev->bss_lock);
3830 	cfg80211_bss_expire(rdev);
3831 
3832 	list_for_each_entry(bss, &rdev->bss_list, list) {
3833 		if (buf + len - current_ev <= IW_EV_ADDR_LEN) {
3834 			err = -E2BIG;
3835 			break;
3836 		}
3837 		current_ev = ieee80211_bss(&rdev->wiphy, info, bss,
3838 					   current_ev, end_buf);
3839 		if (IS_ERR(current_ev)) {
3840 			err = PTR_ERR(current_ev);
3841 			break;
3842 		}
3843 	}
3844 	spin_unlock_bh(&rdev->bss_lock);
3845 
3846 	if (err)
3847 		return err;
3848 	return current_ev - buf;
3849 }
3850 
3851 
3852 int cfg80211_wext_giwscan(struct net_device *dev,
3853 			  struct iw_request_info *info,
3854 			  union iwreq_data *wrqu, char *extra)
3855 {
3856 	struct iw_point *data = &wrqu->data;
3857 	struct cfg80211_registered_device *rdev;
3858 	int res;
3859 
3860 	if (!netif_running(dev))
3861 		return -ENETDOWN;
3862 
3863 	rdev = cfg80211_get_dev_from_ifindex(dev_net(dev), dev->ifindex);
3864 
3865 	if (IS_ERR(rdev))
3866 		return PTR_ERR(rdev);
3867 
3868 	if (rdev->scan_req || rdev->scan_msg)
3869 		return -EAGAIN;
3870 
3871 	res = ieee80211_scan_results(rdev, info, extra, data->length);
3872 	data->length = 0;
3873 	if (res >= 0) {
3874 		data->length = res;
3875 		res = 0;
3876 	}
3877 
3878 	return res;
3879 }
3880 EXPORT_WEXT_HANDLER(cfg80211_wext_giwscan);
3881 #endif
3882